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ABSTRACT

NEW TECHNIQUES IN DYNAMIC ANALYSIS OF

STRUCTURES: SPECTRAL ELEMENT METHOD,

TRAVELLING WAVE METHOD AND ENERGY FLUX

The Spectral Element Method (SEM), Travelling Wave Method (TWM), and the

Energy Flux are robust techniques to calculate the dynamic response of the structures,

which are all based on the exact solution of the governing differential equations. In the

formulation of these methods, either elementary or higher order element theories can

be adopted. Since they use the exact solution, the inertia terms are implemented prop-

erly. An element without any discontinuity can be modeled as a single element. Thus,

the number of degrees of freedoms (DOFs) decreases considerably, providing significant

reduction in the problem size and the computation time. High-frequency wave modes,

which are the modes more sensitive to small changes in the dynamic characteristics of

the structure, can be captured more accurately with these methods. The matrix equa-

tions for the dynamic response of two and three-dimensional structures can easily be

formed by assembling the element response matrices derived from the SEM, TWM and

Energy Flux approach. All the formulations are given in frequency domain. There-

fore, damping and SSI (Soil-Structure Interaction) effects can be incorporated more

accurately, because many element-level damping properties and foundation impedance

functions are frequency dependent. The propagation path of the disturbance within

the structure, as well as the dissipated and reflected waves and energies can be tracked.

This gives more insight into the dynamic behavior and the energy absorption capacity

of the structure. Since they are very accurate in high frequencies, these methods also

provide more powerful tools for system identification and damage detection. Most of

the small and invisible damages in structures are hidden in high frequencies.
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ÖZET

YAPILARIN DİNAMİK ANALİZİ İÇİN YENİ

YÖNTEMLER: SPEKTRAL ELEMAN METODU,

YÜRÜYEN DALGA METODU VE ENERJİ AKISI

Spektral Eleman Metodu (Spectral Element Method (SEM)), Yürüyen Dalga

Metodu (Travelling Wave Method (TWM)) ve Enerji Akısı (Energy Flux), yapıların

dinamik davranışı ve dinamik özelliklerinin belirlenmesi için kullanılabilecek, diferan-

siyel denklemin kesin çözümüne dayalı yöntemlerdir. Bu yöntemler hem basit hem de

yüksek mertebeli eleman teorileri kullanılarak formülize edilebilmektedir. Söz konusu

yöntemlerde, diferansiyel denklemin kesin çözümü kullanıldığından dolayı, atalet kuvvet-

leri uygun şekilde tanımlanabilmektedir. Herhangi bir süreksizliğin olmadığı elemanlar,

yekpare olarak modellenebilir. Bu sayede, tanımlanan serbestlik derecelerinin sayısı

ve analiz süresi önemli derecede azalmaktadır. Yapının dinamik karakteristiğindeki

değişimlere daha duyarlı olan yüksek frekanslı dalga modları, bu yöntemler ile elde

edilebilmektedir. İki ve üç boyutlu yapıları oluşturan elemanlar, SEM, TWM ve Enerji

Akısı analizlerindeki matris birleştirme prosedürünün geçerliliği ile kolayca birleştirilebil-

mektedir. Birçok sönümleme özelliğinin frekansa bağlı olmasından dolayı yapısal sönüm,

bu yöntemler kullanılarak daha doğru olarak modellenebilmektedir. Yapı Zemin Etk-

ileşimi (SSI) de yukarıda bahsedilen yöntemler ile uygulanabilmektedir. Zeminin ri-

jitlik ve sönüm özelliklerini yansıtan Temel Empedans Fonksiyonlarının (Foundation

Impedance Functions (FIF)) frekansa bağlı olmasından dolayı, frekans alanında oldukça

etkili olan SEM, TWM ve Enerji Akısı yöntemleri, Yapı Zemin Etkileşimi analizlerinde

daha kullanışlı olmaktadır. TWM ve Enerji Akısı yöntemleri kullanılarak yapıya uygu-

lanan etkinin yapı içerisindeki yayılımı takip edilebilmektedir. Bu sayede, sönümlenen,

yansıyan ve komşu elemana iletilen dalganın/enerji akısının oranı ve yapının dinamik

özelliklerine ait detaylı bilgi elde edilebilmektedir.
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û1, û2 Spectral representation of the longitudinal displacement at

member ends
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ωn Circular frequency related to the nth mode
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1. INTRODUCTION

Traditionally, Finite Element Method (FEM) is utilized to carry out dynamic

analysis of structures. However, in medium to high frequency range, FEM does not

able to capture the dynamic response accurately. FEM is formulated based on the

frequency independent shape functions, which are obtained from the weak form of

the governing differential equations and the inertial loads are concentrated at member

ends. In order to improve the accuracy of the response in FEM, the mesh size used

in the modeling must be smaller than the shortest wavelength. In other words, the

response at frequencies with wavelengths that are smaller than the mesh size (i.e.,

high frequencies) cannot be calculated accurately. Therefore, to account for such high

frequency responses, the number of elements and the number of the degrees of freedoms

(DOFs) in the FEM model should be increased substantially.

Spectral Element Method (SEM) is a robust and alternative method to FEM

for calculating the dynamic response and identifying the dynamic characteristics of

engineering structures. SEM is formulated based on the frequency dependent shape

functions, which are determined from the exact solution of the differential equation

of an element. In literature, it is referred as the exact method, as it uses the exact

solutions to the wave equations and considers inertial forces directly [1]. Since each

component of the structure is seen as a waveguide and can be assembled using a matrix

analogy to FEM, complex structures can be handled. Unlike the conventional FEM,

high-frequency wave modes, which are the modes more sensitive to small changes in the

dynamic characteristics of the structure, can be captured without dividing elements

into small sized segments. Thus, the number of elements and the number of DOFs are

decreased substantially [2].

Travelling Wave Method (TWM) also yields accurate results in medium to high

frequency range, and the propagation path of the disturbance can be tracked. In

contrast to SEM, base excitation can be applied without making any assumptions

since the boundary conditions can be directly imposed into the system of equation in
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wave propagation solutions.

Energy flux is a dynamic measure of energy, which is defined as the kinetic energy

due to seismic shaking multiplied by the propagation velocity of seismic waves. It gives

the amount of seismic energy transmitted per unit time through a cross-section of a

medium [3]. In this manner, characteristics of energy flow and dissipation throughout

the structure with respect to frequency can be obtained. Energy flux propagates as

the waves travel through the waveguides. As in the wave propagation formulation, at

the discontinuities, some portion of the incident energy transmitted into the adjacent

members and some part is reflected. The reflection and transmission coefficients for

the energy flux are independent of the direction of the propagation. The sum of the

reflected and transmitted energy flux is equal to the incident energy flux due to the

principle of conservation of energy.

Another advantage of SEM, TWM and Energy Flux is that Soil-Structure In-

teraction (SSI) effects can easily be incorporated in the analysis. SSI represents the

influence of soil flexibility around the foundation on the response of a structure, and can

change the dynamic response substantially [4]. It is a critical factor controlling damage

during earthquakes. SSI must be considered in the analysis of structures founded on

soft soils. Foundation Impedance Functions (FIF), which represent the stiffness and

damping properties of the soil-foundation system, are frequency dependent. Although,

impedance functions can be approximated in time domain in the form of recursive fil-

ters [4], it is much easier to incorporate them in the frequency domain directly in SEM

analysis.

This thesis covers the applications of the SEM and TWM approaches in dynamic

analysis of the plane frame structures with and without considering soil structure in-

teraction. Additionally, Energy Flux approach is introduced as an alternative method-

ology that can be used in the dynamic analysis of engineering structures.

The second chapter presents a brief information about the techniques that are

used to develop the governing differential equations of the motion (GDEM) of the
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elements. Afterwards, GDEM for one dimensional elements based on various theories

with different complexities are derived. These equations are used in the following three

chapters.

Third chapter introduces derivation of spectral element matrices of one dimen-

sional elements according to the Fourier based SEM. This chapter also covers a liter-

ature survey on SEM and the procedure for assembling spectral element matrices of

arbitrary oriented members. A numerical example is presented, which compares the

dynamic response of a plane frame structure calculated from SEM and FEM.

The TWM is presented in the fourth chapter. The method and the previous

studies are briefly outlined. A general procedure to derive propagation, reflection

and transmission relations, which allows to adopt various engineering theories for one

dimensional elements is presented. A numerical example is attached to simulate the

variation in the dynamic response of a plane frame structure based on FEM and TWM.

In the fifth chapter, an energy-based approach, Energy Flux, for the dynamic

analysis of structures is introduced. The reflection and transmission coefficients at var-

ious types of structural joints are derived based on elementary theories. The application

of this method on plane frame structures is presented.

Chapter six gives a brief information about the Soil-Structure Interaction (SSI)

analysis and discusses some examples of existing FIFs. The integration of SSI in SEM

and TWM methods is presented.
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2. FORMULATION OF GOVERNING DIFFERENTIAL

EQUATIONS OF MOTION

The mathematical expressions that relate the dynamic displacements to the ap-

plied dynamic forces are called as Governing Differential Equations of Motion (GDEM).

Since the equilibrium and compatibility concepts of mechanics of the structures involve

forces and displacements, respectively, they must be satisfied by the GDEM. The most

important and the most challenging part of the dynamic analysis of structures is the

formulation of GDEM [5]. The most common approaches to derive GDEM are direct

equilibration using d’Alembert’s principle, principle of virtual displacements, varia-

tional approach (Hamilton’s principle) and Lagrange’s equations of motion.

The equilibrium condition states that the sum of the internal and external forces,

or moments, are equal to zero at each joint and each node of the structure. The

compatibility condition indicates that the displacements of two nodes are equal if they

are connected at the same joint.

In direct equilibrium approach, the equation of motion represents the Newton’s

second law and the inertial forces represent the d’Alembert’s principle. Newton’s sec-

ond law states that, the force is equal to the product of the mass and acceleration.

According to the d’Alembert’s principle, developed internal force is proportional to the

mass and its acceleration. For simple systems, direct equilibrium approach is the most

convenient method to express the GDEM. However, as the degrees of freedoms (DOFs)

and the number of masses connected to each other increase, this method becomes cum-

bersome. In such cases, equation of motion may be obtained more conveniently using

principle of virtual displacements. In accordance with this method, the work done by

the virtual displacements are equal to zero if a system is in equilibrium. Hamilton’s

principle and Lagrange’s equations of motion are classified as energy-based approaches

since both uses kinetic and potential energy terms to evaluate the GDEM.
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2.1. Rod Theories

A rod is a structural element, which can only resist loads in its axial direction.

Since stresses are developed in the axial direction of the member, deformations are

formed along the same direction.

Figure 2.1 shows the material and geometric properties of a rod and the forces

acting on an infinitesimally small rod segment. E is the Young’s modulus of the

material, A is the area of the section, ρ is the mass density per unit volume, ν is the

Poisson’s ratio, L is the length of the member, q(x, t) is the externally applied body

force per unit volume, F is the resultant in the longitudinal direction and u(x, t) is the

displacement in the longitudinal direction.

Figure 2.1. Properties of a rod element and forces acting on a segment of a rod.

Four main theories with different complexities exist in the literature for the lon-

gitudinal vibration of rod elements. The simplest one is the Elementary Rod Theory,

which can be found in the book by Doyle [6]. Love Rod Theory is the modified version

of elementary rod theory, developed by Love [7]. Mindlin-Herrmann Rod Theory can

be considered as the improved version of the Love rod theory, which is proposed by

Mindlin and Herrmann [8]. The most complex one is the Three-Mode Rod Theory,

which was developed by Viktorow [9]. Generally Elementary or Love rod theories are

utilized in structural analysis, since Mindlin-Herrmann and Three-mode theories in-

troduce additional DOFs. According to Krawczuk, Grabowska and Palacz [10], Love

theory will be sufficient to obtain accurate dynamic response up to the frequencies that

represent the very high modes.
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2.1.1. Elementary Rod Theory

Elementary rod theory assumes that only axial force F (x, t) is acting through

each section, and considers only the axial deformations and longitudinal wave motions.

According to this theory, stresses and deflections developed in the section are in axial

direction and uniformly distributed along the neutral axis. The contribution of the

transverse motion to the stresses due to Poisson’s effect is neglected. The axial strain

in an infinitesimally small segment with length ∆x is calculated as:

εxx =
∂u

∂x
(2.1)

The internal forces developed under the effect of the applied external load is:

F + ∆F − F + q∆x = ρA∆xü (2.2)

Since the material is assumed to be linear, Hooke’s law gives the stress as,

σxx = Eεxx = E
∂u

∂x
(2.3)

The resultant axial force is calculated as,

F = ∫ σxxdA = EA
∂u

∂x
(2.4)

By means of compatibility, equilibrium and constitutive behavior, the differential

equation of the motion for a rod element based on Elementary rod theory is calculated

as:

EA
∂2u

∂x2
= ρA

∂2u

∂t2
− q (2.5)
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2.1.2. Love Rod Theory

Love rod theory assumes that, a rod element deforms along its axial direction

and also contracts due to the Poisson’s effect. As a consequence of the contraction,

each point along the element has a transverse component of velocity. Thus, the kinetic

energy of the element is affected by an additional term related to the particle velocity in

transverse direction. The strain energy of the element is the same as for the elementary

rod theory. The transverse strain and the particle velocity in transverse direction is

derived as,

εT = −ν ∂u
∂x

(2.6)

u̇T = −νr∂u̇
∂x

(2.7)

where, εT is the transverse strain, u̇T is the transverse velocity, ν is the Poisson’s ratio

and r is the distance from the centroid of the cross section. The expressions given

in Equations 2.8 and 2.9 below represent the derivation of the potential and kinetic

energies. In these equations, U stands for the potential energy, T is for kinetic energy

and J is the polar moment of area.

U =
1

2

L

∫
0
EA

(
∂u

∂x

)2

dx (2.8)

T =
1

2

L∫
0

ρ

[
Au̇2 + ν2J

(
∂u̇

∂x

)2
]
dx (2.9)

The governing differential equation of the motion based on the Love rod theory

is derived by means of Hamilton’s principle as follows,

EA
∂2u

∂x2
+ ν2ρJ

∂2ü

∂x2
= ρA

∂2u

∂t2
− q (2.10)
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2.1.3. Mindlin-Herrmann Rod Theory

Mindlin-Herrmann rod theory is an improved version of the Love rod theory, in

which, in addition to the axial and transverse strains, the shear deformations due to

the transverse displacements are considered. Unlike the Love rod theory, an extra

DOF related to the lateral contraction is introduced. The shear deformation is inde-

pendent from the axial deformations and non-uniform distribution of the longitudinal

displacement is ignored. Thus, the deformation field can be expressed as,

ū(x, y) ≈ u(x) (2.11)

v̄(x, y) ≈ ψ(x)y (2.12)

In Eq. 2.12, ψ(x) stands for the vertical contraction. The following expression stands

for the 2D stresses assuming the state of plane stress,

σxx = (2µ+ λ)

(
∂ū

∂x
+ ν

∂v̄

∂y

)
(2.13)

σyy = (2µ+ λ)

(
∂v̄

∂y
+ ν

∂ū

∂x

)
(2.14)

τxy = µ

(
∂ū

∂y
+
∂v̄

∂x

)
(2.15)

In equations 2.13 to 2.15, λ and µ are the Lamé constants, which are defined as,

λ =
νE

(1 + ν)(1− 2ν)
(2.16)

µ=
E

2(1 + ν)
(2.17)

Potential and kinetic energies of the section is derived as follows,

U =
1

2

L

∫
0

{
(2µ+ λ)A

[(
∂u

∂x

)2

+ ψ2

]
+ 2λA

∂u

∂x
ψ + µI

(
∂ψ

∂x

)2
}
dx (2.18)

T =
1

2

L∫
0

(
ρAu̇2 + ρIψ̇2

)
dx (2.19)
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The GDEM based on Mindlin-Herrmann rod theory is derived using the equa-

tions 2.18 and 2.19 for potential and kinetic energies, respectively and utilizing the

Hamilton’s principle as,

∂

∂x

[
(2µ+ λ)A

∂u

∂x

]
+ λA

∂ψ

∂x
= ρA

∂2v

∂t2
− q (2.20)

∂

∂x

[
µIK1

∂ψ

∂x

]
− (2µ+ λ)Aψ − λA∂u

∂x
= ρIK2

∂2ψ

∂t2
(2.21)

In Eq. 2.21, I is the second moment of inertia, K1 and K2 are the adjustable parameters

that are chosen to give the best correspondence between the waveguide theory and the

2-D theory [11]. These parameters can be calculated using the equations 2.22 and 2.23

which are given below [12],

K1 =
12

π2
(2.22)

K2 = K1

(
1 + ν

0.87 + 1.12ν

)2

(2.23)

The rod theories mentioned earlier can be recovered by setting the parameters

appropriately. For instance, elementary rod theory is recovered by setting the term

µIK1 = 0 and ρIK2 = 0 and replacing ψ in terms of u.

2.1.4. Three-Mode Rod Theory

Three-mode rod theory is the most complex rod theory when compared to the

theories presented earlier. The theory considers the longitudinal displacement, Pois-

son’s ratio effect and the parabolic distribution of the longitudinal displacement along

the cross section. In addition to Mindlin-Herrmann rod theory, a new DOF related to

the parabolic distribution of the axial displacement is introduced. As a result, three

degrees of freedom, one longitudinal and two rotational, exist at each node of the rod
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element. The deformation field is expressed as:

ū(x, y) ≈ u(x) + φ(x)h

(
1− 12

y2

h2

)
(2.24)

v̄(x, y) ≈ ψ(x)y (2.25)

In Eq. 2.24, φ(x) stands for the parabolic distribution of the axial displacement, h

is for the height of the rod element. The corresponding strains and stresses to these

deformations are expressed in the equations from 2.26 to 2.28 and from 2.29 to 2.31,

respectively.

εxx =
∂u

∂x
+
∂φ

∂x
h

(
1− 12

y2

h2

)
(2.26)

εyy = ψ (2.27)

γxy =

(
−24

φy

h
+
∂ψ

∂x

)
y (2.28)

σxx = (2µ+ λ)

[
∂u

∂x
+
∂φ

∂x
h

(
1− 12

y2

h2

)]
+ λψ (2.29)

σyy = (2µ+ λ)ψ + λ

[
∂u

∂x
+
∂φ

∂x
h

(
1− 12

y2

h2

)]
(2.30)

τxy = µy

(
−24

φy

h
+
∂ψ

∂x

)
(2.31)

Potential and kinetic energies are calculated as follows,

U =
1

2

L

∫
0

 (2µ+ λ)A
[(

∂u
∂x

)2
+ 4

5
h2
(
∂φ
∂x

)2
+ ψ2

]
+2λA∂u

∂x
ψ + µI

(
∂ψ
∂x
− 24φ

h

)2

 dx (2.32)

T =
1

2

L∫
0

(
ρAu̇2 + ρA

4

5
h2φ̇2 + ρIψ̇2

)
dx (2.33)

The governing differential equation of motion for the Three-Mode rod theory is

derived using the definitions given in equations 2.32 and 2.33 for potential and kinetic
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energies, respectively, and utilizing the Hamilton’s principle as:

∂

∂x

[
(2µ+ λ)A

∂u

∂x

]
+ λA

∂ψ

∂x
= ρA

∂2u

∂t2
− q (2.34)

∂

∂x

(
µI
∂ψ

∂x

)
− (2µ+ λ)Aψ − λA∂u

∂x
− 2µAh

∂φ

∂x
= ρI

∂2ψ

∂t2
(2.35)

∂

∂x

[
(2µ+ λ)I

∂φ

∂x

]
− 5µAφ+

10

48
µAh

∂ψ

∂x
= ρI

∂2φ

∂t2
(2.36)

2.2. Beam Theories

A beam is a structural element that supports bending moments and shear forces

developed due to the applied transverse loads. Figure 2.2 shows the material and

geometric properties of a beam and the forces acting on an infinitesimally small beam

segment. E is the Young’s modulus of the material, I is the second moment of the area,

ρ is the mass density per unit volume, A is the area of the section, ν is the Poisson’s

ratio, L is the length of the member, q(x, t) is the externally applied body force per

unit volume and v(x, t) is the deflection of the centerline. The resultant forces and

moments are represented by V and M , respectively.

Figure 2.2. Properties of a beam element and forces acting on a segment of a beam.

Flexural response of a beam is commonly defined based on the Bernoulli-Euler and

Timoshenko beam theories. The evolution of the Bernoulli-Euler beam theory dates to

18th century. Rayleigh beam theory is an improved version of the Bernoulli-Euler beam
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theory, which accounts for the effects of the rotational inertia. The Timoshenko beam

theory [13] considers the effects of both shear deformations and rotational inertia.

2.2.1. Bernoulli-Euler Beam Theory

Bernoulli-Euler beam theory, which is also referred as the engineer’s beam theory

or classical beam theory, assumes that only bending moment M(x, t) and shear forces

V (x, t) are acting through each section. The theory accounts only for flexural deforma-

tions and flexural wave motions. Although transverse shear forces are considered, any

shear deformations due to it is neglected. Since shear deformation through the thick-

ness is neglected, vertical displacements, v(x, t), can be assumed to be nearly constant

and the stress state is uniaxial along the thickness. Thus, the assumption of “plane

sections remain plane” is valid. The slope, φ(x, t), of the section can be obtained by

differentiating the transverse displacement, v(x, t), with respect to spatial coordinates.

According to the small deflection theory, deformation field of the Bernoulli-Euler beam

is expressed as follows,

ū(x, y) ≈ −yφ(x) (2.37)

v̄(x, y) ≈ v(x) (2.38)

The nonzero strains due to the deformations are calculated as,

εxx = −y ∂
2v

∂x2
(2.39)

The stress, calculated according to the Hooke’s law, is given in as

σxx = −Ey∂
2v

∂x2
(2.40)

The equilibrium conditions give that

∂V

∂x
= ρA

∂2v

∂t2
− qv (2.41)



13

∂M

∂x
+V = −qφ (2.42)

The resultant moment is calculated as

M =

∫
−σxxydA = EI

∂2v

∂x2
(2.43)

The equation of the motion is obtained by substituting Eq. 2.43 into the equi-

librium conditions for shear force and moment, which are given by the equations 2.41

and 2.42 as follows

EI
∂4v

∂x4
+ ρA

∂2v

∂t2
= q (2.44)

2.2.2. Timoshenko Beam Theory

Timoshenko beam theory accounts for the effects of shear deformation and ro-

tational inertia. The assumptions made in the Bernoulli-Euler beam theory are valid,

except the one that assumes plane sections remain plane after deformation. Since the

shear deformation is introduced, plane sections do not remain plane after deformation.

The displacement field is expressed as the displacement field related to Bernoulli-Euler

beam theory. The strains and the stresses are expressed as follows,

εxx = −y ∂
2v

∂x2
(2.45)

εyy = 0 (2.46)

γxy = −φ+
∂v

∂x
(2.47)

σxx = −Ey∂φ
∂x

(2.48)

τxy = G

(
−φ+

∂v

∂x

)
(2.49)
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Total strain energy and kinetic energy can be calculated using following equations,

U =
1

2

L

∫
0

[
EI

(
∂φ

∂x

)2

+GA

(
φ− ∂v

∂x

)2
]
dx (2.50)

T =
1

2

L∫
0

ρ
(
Iφ̇2 + Av̇2

)
dx (2.51)

The equations of the motion, obtained by using the Hamilton’s principle, is given

as

GAK1

[
∂2v

∂x2
− ∂φ

∂x

]
= ρA

∂2v

∂t2
− q (2.52)

EI

(
∂2φ

∂x2

)
+GAK1

(
∂v

∂x
− φ
)

= ρIK2
∂2φ

∂t2
(2.53)

In equations 2.52 and 2.53 GAK1 is the shear stiffness of the section and K1 and K2 are

adjustable parameters for shear and rotational inertia. In case of Bernoulli Euler beam,

GAK1 =∞ and ρIK2 = 0, which ensures the assumptions for the shear deformations

and rotational inertia. Besides the Bernoulli-Euler beam theory, Rayleigh beam theory

can also be obtained by setting GAK1 = ∞. It is recommended to select values of

K1 = π2/12 and K2 = 1 for a rectangular cross-section [12].
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3. SPECTRAL ELEMENT METHOD

Dynamic analysis of structures is generally carried out using Finite Element

Method (FEM). In medium to high frequency range, FEM cannot capture the dy-

namic response accurately. FEM is formulated based on the frequency independent

shape functions, which are obtained from the weak form of the governing differential

equations and the inertial loads are concentrated at member ends. In order to improve

the accuracy of the response in FEM, the mesh size used in modeling must be smaller

than the shortest wavelength. In other words, the response at frequencies with wave-

lengths that are smaller than the mesh size (i.e., high frequencies) cannot be calculated

accurately. Therefore, to account for such high frequency responses, the number of el-

ements and the number of the degrees of freedoms (DOFs) in the FEM model should

be increased substantially.

Spectral Element Method (SEM) is a robust and alternative method to FEM

for calculating the dynamic response and identifying the dynamic characteristics of

engineering structures. SEM is formulated based on the frequency dependent shape

functions, which are determined from the exact solution of the differential equation

of an element. In literature, it is referred as the exact method, as it uses the exact

solutions to the wave equations and considers inertial forces directly [1]. Since each

component of the structure is seen as a waveguide and can be assembled using a matrix

analogy to FEM, complex structures can be handled. Unlike the conventional FEM,

high-frequency wave modes, which are the modes more sensitive to small changes in the

dynamic characteristics of the structure, can be captured without dividing elements

into small sized segments. Thus, the number of elements and the number of DOFs are

decreased substantially [2].

In his pioneering study, Doyle applied SEM to wave propagation in structures [14].

He derived spectral element matrices for rod, beam, plate elements and for bounded

and unbounded media. Gopalakrishnan [15], expanded the field of use of this method

by producing spectral element matrices related to higher order element theories and
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tapered elements. Moreover, he also introduced the super spectral element, which com-

bines the SEM and FEM. Gopalakrishnan, Martin and Doyle [2], presented a matrix

methodology to handle frame structures. Krawczuk, Grabowska and Palacz [10] ap-

plied SEM to four different rod theories and compared them. Rizzi and Doyle [16, 17]

applied this method to bounded and unbounded media.

In SEM, the time domain governing differential equation of motion (GDEM),

which is given by Eq. 3.1, is converted into frequency domain via Discrete Fourier

Transformation (DFT).

L (u) +M (ü) = q (3.1)

In Eq. 3.1, L is the differential operator, M is the inertial operator, double dot is the

second derivative with respect to time and q is the externally applied body force. The

solution to the Eq. 3.1 is represented as,

u(x, t) =
∑
n

ûn(x, ωn)eiωnt (3.2)

In Eq. 3.2, ûn is the spatially dependent Fourier coefficient and ωn is the circular

frequency. Then, the GDEM in the frequency domain is obtained as,

Lûn(x)− ω2
nMûn(x) = q̂ (3.3)

The homogenous solution to the wave equation is given in Eq. 3.4. For brevity, the

subscripts n will be omitted.

û(x) =

p∑
i=1

e(−iki(ω)x)Ci (3.4)

ki(ω) is the wavenumber of the ith mode, which is one of the distinct roots of the

characteristic equation of the wave equation. Ci is the constant related to the ith

mode. The general solution must satisfy both the geometric and natural boundary
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conditions at both ends of a member, which corresponds to x = 0 and x = L for an

element with length L.

The frequency dependent shape functions are obtained from the Eq. 3.4 using

the geometric and natural boundary conditions related to the both end nodes of the

element. By virtue of these dynamic shape functions, the dynamic stiffness matrices

are constructed. Since the dynamic stiffness matrices are frequency dependent, they

must be evaluated at each frequency within the interested frequency interval. Basic

steps of the general procedure for SEM is illustrated in Figure 3.1.

Figure 3.1. General procedure for SEM.

Additional information about the construction of the dynamic stiffness matrices

can be found in the following sections.

3.1. Spectral Element for Rod Elements

Spectral element matrices for rod elements are obtained based on the elementary,

Love, Mindlin-Herrmann and Three-Mode rod theories. The time domain GDEMs

related to these theories are defined in Section 2.1 Rod Theories.
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The need for higher order rod theories results from the inadequacy of elementary

rod theory to capture an accurate dynamic response, if the element is deep and/or the

frequency of interest is large. Doyle [12], derived the exact displacements and tractions

under the effect of 20 kHz narrowband pulse, which is presented in Figure 3.2. In this

figure, each line corresponds to a different time. The longitudinal displacements follow

a parabolic path in contrast to the assumption made in the Elementary rod theory. The

transverse displacements are almost linear. As a result, the higher order rod theories

yield more accurate results since the stresses and strains are computed based on more

realistic assumptions.

Even though, exact displacements and tractions prove that the higher order rod

theories are necessary in the dynamic analysis of deep elements at higher frequencies,

higher order rod theories have their drawbacks due to the generated additional modes,

which are not considered in the standard analysis of structures. As stated by the

Krawczuk, Grabowska and Palacz [10], Love rod theory seems to be the most practical

theory, which can be used in the dynamic analysis up to the highest vibration frequen-

cies, because it does not introduce additional vibration modes and compatible with the

first mode of the both Mindlin-Herrmann and Three- Mode theories.

Figure 3.2. Exact displacements and traction distributions on a cross section [12].
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3.1.1. Elementary Rod Theory

Time domain GDEM is given by Eq. 2.5. The spectral representation of this

equation is:

EA
d2û

dx2
+ ρAω2û = −q̂ (3.5)

The longitudinal displacement at any arbitrary point of the element using the wave

solution is derived as,

û(x) = Ae−ikRx +Be−ikR(L−x) (3.6)

The first term in Eq. 3.6 stands for the forward-moving wave and the second term for

the backward-moving wave, x represents the location of the arbitrary point, L is the

element length and kR is the wavenumber. The wavenumber is calculated as:

kR =
√

(ω2ρA) / (EA) (3.7)

The nodal displacements at ith and jth end of the structure referred as û1 and û2,

and are derived by substituting the related x values into Eq. 3.6. Thus, frequency

dependent shape functions, which are represented by ĝR1(x) and ĝR2(x) are computed

as

û(x) =
[
ĝR1(x) ĝR2(x)

] û1

û2


=
[
e−ikRx e−ikR(L−x)

] 1 e−ikRL

e−ikRL 1

−1 û1

û2


(3.8)

The spectral element matrix is obtained by using the relation between the axial



20

force and the axial displacement as

 F̂1

F̂ 2

 =

 −F̂ (0)

F̂ (L)

 = EA

 −ĝ′R1(0) −ĝ′R2(0)

ĝ′R1(L) ĝ′R2(L)

 û1

û2

 (3.9)

In Eq. 3.9, the prime stands for the first derivative of the shape functions with respect

to the spatial coordinate. The dynamic stiffness matrix is a square and symmetric

matrix. In case of undamped structures, it is real valued. For damped structures, the

elements of the matrix are complex valued.

3.1.2. Love Rod Theory

Time domain GDEM is given by Eq. 2.10. The spectral representation of this

equation is:

EA
d2û

dx2
− ω2ν2ρJ

d2û

dx2
+ ω2ρAû = −q̂ (3.10)

The longitudinal displacement at any arbitrary point of a rod element is derived as,

û(x) = Ae−ikRx +Be−ikR(L−x) (3.11)

The first term in Eq. 3.11 stands for the incident wave and the second term for

the reflected wave. kR is the wavenumber, which is obtained from the characteristic

equation as

kR =

√
ω2ρA

EA− ω2ν2ρJ
(3.12)

The dynamic stiffness matrix for a rod element based on the Love rod theory is
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obtained using a procedure analogous to the elementary rod theory and is found as

 F̂1

F̂ 2

 =

 −F̂ (0)

F̂ (L)

 =


EA

 −ĝ′R1(0) −ĝ′R2(0)

ĝ′R1(L) ĝ′R2(L)


+ν2ρω2J

 ĝR1 (0) ĝR2 (0)

−ĝR1 (L) −ĝR2 (L)




 û1

û2

 (3.13)

The stiffness matrix is complex, square and symmetric.

3.1.3. Mindlin-Herrmann Rod Theory

Time domain GDEM for Mindlin-Herrmann rod theory is given by the equations

Eq. 2.20 and 2.21. The matrix form of the spectral representation is:

 −T1kR
2 + ρAω2 −ikRT2

ikRT2 −T3kR
2 − T1 + ρIK2ω

2

 û

ψ̂

 =

 0

0

 (3.14)

where, T1, T2 and T3 are calculated as:

T1 = (2µ+ λ)A; T2 = λA; T3 = µIK1 (3.15)

Setting determinant equal to zero gives the characteristic equation, which will be

used to obtain wavenumbers. Equation 3.14 given above yields to two-mode pairs.

Wavenumbers kR1 and kR2 in equations Eq. 3.16 and 3.17 stand for the first and sec-

ond mode pairs, respectively. An additional term is introduced in the wave solution of

the Mindlin-Herrmann rod theory due to the second propagating mode, which arises

due to the Poisson’s effect. Thus, the displacements are derived as:

û(x) = AR1e
−ikR1x +BR2e

−ikR2x − CR1e
−ikR1(L−x) −DR2e

−ikR2(L−x) (3.16)

ψ̂(x) = Ae−ikR1x +Be−ikR2x + Ce−ikR1(L−x) +De−ikR2(L−x) (3.17)
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The first two terms of the equations 3.16 and 3.17 stand for the incident waves and the

last two terms for the reflected waves. R1 and R2 represent the amplitude ratios and

calculated as follows,

Ri =
ikRiλA

− (2µ+ λ)AkRi
2 + ρAω2

(3.18)

The shape functions for the longitudinal displacement and the displacement related to

Poisson’s ratio effect are derived by substituting boundary conditions into Eqs. 3.16

and 3.17. The stiffness matrix is constructed as it is done for the previous rod theories

using the relation between force and displacement, which is given as:

F̂ = (2µ+ λ)A
∂û

∂x
+ λAψ̂ (3.19)

Q̂ = µIK1
∂ψ̂

∂x
(3.20)

The explicit form of the stiffness matrix of Mindlin-Herrmann rod can be found

in the paper by Krawczuk et al. [10].

3.1.4. Three-Mode Rod Theory

The time-domain GDEM for the Three-Mode rod theory is given by the equations

2.34 to 2.36. The matrix form of the spectral representation is given as


T4 −ikRλA 0

ikRλA T5 2ikRµAh

0 −10
48
iµAh T6




û

ψ̂

φ̂

 =


0

0

0

 (3.21)

where,

T4 = − (2µ+ λ)AkR
2 + ρAω2

T5 = −µIkR2 − (2µ+ λ)A+ ρIω2

T6 = − (2µ+ λ) IkR
2 − 5µA+ ρIω2
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Wavenumbers kR1, kR2 and kR3 representing the generated three-modes can be found

by solving the characteristic equation. The displacements are derived using the formu-

lations given below,

û(x) = AR4e
−ikR1x +BR5e

−ikR2x + CR6e
−ikR3x...

+DR4e
−ikR1(L−x) + ER5e

−ikR2(L−x) + FR6e
−ikR3(L−x)

(3.22)

ψ̂(x) = AR1e−ikR1x+BR2e−ikR2x+CR3e−ikR3x...

−DR1e−ikR1(L−x)−ER2e−ikR2(L−x)−FR3e−ikR3(L−x)
(3.23)

φ̂(x) = Ae−ikR1x +Be−ikR2x + Ce−ikR3x....

+De−ikR1(L−x) + Ee−ikR2(L−x) + Fe−ikR3(L−x)
(3.24)

The first three terms of the equations 3.22, 3.23 and 3.24 stand for the incident waves

and the last three terms for the reflected waves. R1...R6 represent the amplitude ratios

and calculated as follows,

Ri =
(2µ+ λ) IkRi

2 + 5µA− ρIω2

−10
48
iµAh

(3.25)

where, i = 1, 2, 3

Ri =
ikRjλA

− (2µ+ λ)AkRj
2 + ρAω2

Rj (3.26)

where, i = 4, 5, 6 and i = 1, 2, 3. Dynamic stiffness matrix of a rod element based

on the Three-Mode theory is derived similar to the Mindlin-Herrmann rod theory, by

using the force and displacement relations given by the following equations.

F̂ = (2µ+ λ)A
∂û

∂x
+ λAψ̂ (3.27)

Q̂ = µI

(
∂ψ̂

∂x
− 24

φ̂

h

)
(3.28)

Ŝ =
48

5
(2µ+ λ) I

∂φ̂

∂x
(3.29)
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The explicit form of the stiffness matrix of Three-Mode rod can be found in the

paper by Krawczuk et al. [10].

3.1.5. Comparison of the Rod Theories

In this section, elementary, Love, Mindlin-Herrmann and Three-Mode rod theo-

ries are compared to each other by means of the dispersion and spectrum relationships

and the terms of the dynamic stiffness matrices. Dispersion represents the relation

between the wave speed and the frequency. A wave is called as non-dispersive, if the

speed of the wave is constant with respect to the frequency. Conversely, if the speed of

the wave is changing as the frequency changes, the wave is called as dispersive wave.

The wave speed is derived as:

c =
ω

k
; cg =

dω

dk
(3.30)

Eq. 3.30 represents the derivation of the phase speed (c) and the group velocity (cg).

The dynamic analysis is based on superposition of harmonics at different frequencies,

which travel at different phase speeds. Group velocity is the velocity of the superim-

posed wave groups.

In elementary rod theory, only one mode of vibration is generated. The wavenum-

ber is purely real in undamped case and the wave is non-dispersive. The phase and

group velocities are derived by the following equations:

c =
ω

kR
=

√
EA

ρA
; cg =

dω

dkR
=

√
EA

ρA
(3.31)

Love rod theory considers the Poisson’s ratio effect, but no additional mode of

vibration is generated. The wavenumber can be purely imaginary after a certain fre-

quency limit. Thus, transverse motion will absorb all of the input energy. Eq. 3.32
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gives the phase velocity and the group velocity.

c =
ω

kR
=

√
EA− ω2υ2ρJ

ρA
; cg =

dω

dkR
=

√
EA

ρA

[
1− ω2υ2ρJ

EA

]3/2

(3.32)

Shear deformations due to motions in the transverse direction, and the Poisson’s

ratio effects are considered in the Mindlin-Herrmann rod theory. An additional mode

with a cut-off frequency is generated. The cut-off frequency is obtained by setting the

wavenumber in the characteristic equation equal to zero. The second mode does not

propagate until the cut-off frequency, and starts to dominate the behavior beyond this

limit. The cut-off frequency is calculated as

ωc =

√
(2µ+ λ)A

ρIK2

(3.33)

Group velocities for Mindlin-Herrmann rod is calculated by the formulae given

below [18],

cg =
dω

dkR
= c2

[
c− ω dc

dω

]−1

(3.34)

In Three-Mode theory two additional modes related to the Poisson’s ratio effect

and non-uniform distribution of the longitudinal displacements are generated. The

cut-off frequencies related to these additional modes are given by Eq. 3.35 and the

group velocity is calculated using Eq. 3.34.

ωc1 =

√
5µA

ρI
;ωc2 =

√
(2µ+ λ)A

ρI
(3.35)

Figure 3.3 below shows the change in the absolute value of wavenumbers with

frequency for the elementary, Love, Mindlin-Herrmann and Three-Mode rod theories.



26

In the low frequency range, the wavenumbers of elementary and Love rod theories are

compatible. Additionally, the first mode of both Mindlin-Herrmann and Three-Mode

rod theories behave in a similar manner. However, beyond an exact frequency range,

behavior of the wavenumbers differentiate from each other. The second mode of the

Mindlin-Herrmann rod theory is fully imaginary up to a certain limit of frequency,

and beyond this limit it starts to propagate. Also, second and third modes of the

Three-Mode theory have cut-off frequencies.

Figure 3.3. Spectrum relation for Elementary, Love, Mindlin-Herrmann and

Three-mode rod theories.

The dispersion relationships for the four rod theories are presented in Figure

3.4. The vertical axis shows the absolute value of the ratio between group and phase

velocities. When Elementary rod theory is considered, the wave propagates in a non-

dispersive manner; the ratio is constant throughout the whole frequency range. Love

rod theory shows that, as the frequency increases, group velocity becomes smaller than

the phase velocity. Group velocities related to the first mode of the Mindlin-Hermann

and Three-Mode rod theories decrease until a certain frequency limit, then it increases

to an asymptotical value. Additional modes generated by the both Mindlin Herrmann

and Three-Mode rod theories propagate beyond the cut-off frequency. They increase

up to an asymptotical value.

The terms of the stiffness matrices obtained based on the SEM, FEM and theo-
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Figure 3.4. Dispersion relationship for elementary, Love, Mindlin-Herrmann and

Three-mode rod theories.

retical solutions are compared to each other to investigate the difference in the stiffness

terms. The stiffness matrices related to the conventional rod is constructed according

to the formulation given below [6].

K =
EA

L

 1 −1

−1 1

− ρALω2

6

 2 1

1 2

 (3.36)

The theoretical stiffness matrix is obtained using the general solution to ordinary

differential equation and is given by Eq. 3.37 below:

K =
EA

L

kR
sin kRL

 cos kRL −1

−1 cos kRL

 (3.37)

In Eq. 3.37, kR represents the roots of the characteristic equation.

Figure 3.5, shows the absolute value of k11 term, which is the value at the first

row and first column of the stiffness matrix, for the Elementary, Love and Mindlin-

Herrmann rod theories, and the conventional and theoretical solutions.
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Figure 3.5. k11 values according to conventional, theoretical, Elementary, Love and

Mindlin-Herrmann rod theories.

In the low frequency range, the stiffness terms, k11, for all methods are identical.

However, as the frequency increases, conventional rod differs from the others, while the

other methods remain identical.

3.2. Spectral Element for Beam Elements

Spectral element matrices for beam elements based on the Bernoulli-Euler and

Timoshenko beam theories are derived in this section. Related time domain GDEM

can be found in Section 2.2 Beam Theories.

Bernoulli-Euler beam theory becomes erroneous at high frequencies, as it leads

to unrealistic wave speeds. Moreover, if the element’s depth is high, neglecting the

effects of the rotational inertia and shearing deformations causes erroneous results.

Thus, higher order beam theories should be adopted for such elements, and/or for high

frequencies. Doyle [12] derived the exact displacements and tractions in a beam element

with 100 mm high, subjected to 20 kHz narrowband pulse. The results are presented in

Figure 3.6. In this figure, each line corresponds to a different time. The displacement

in the longitudinal direction is compatible with the assumptions made in the Bernoulli-

Euler beam theory. However, the distribution of the vertical displacements cannot be
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captured based on this theory. As can be seen from the figure, parabolic distribution

of the shear stress should be considered in the analysis.

Figure 3.6. Exact displacements and traction distributions on a cross section [12].

Timoshenko beam theory does not produce additional degrees of freedoms, but

considers deformations due to shear. As a result, the slope of the sections becomes

an independent variable, and the wave mode related to that variable can be obtained.

Consequently, the behavior of a beam element under an applied dynamic load can be

obtained more precisely by using higher order beam theories.

3.2.1. Bernoulli-Euler Beam Theory

The time domain GDEM for the Bernoulli-Euler beam theory is given by Eq.

2.44. Frequency domain GDEM is obtained as

EI
d4v̂

dx4
− ω2ρAv̂ = q̂ (3.38)

The displacement in the transverse direction at any arbitrary point is derived as given in

equation 3.39 and the slope is derived simply by differentiating the vertical displacement

with respect to spatial coordinate.

v̂(x) = Ae−ikBx +Be−kBx + Ce−ikB(L−x) +De−kB(L−x) (3.39)
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φ̂(x) = −ikBAe−ikBx − kBBe−kBx + ikBCe
−ikB(L−x) + kBDe

−kB(L−x) (3.40)

The first two terms of the equations 3.39 and 3.40 are the incident waves, and the last

two terms are the reflected waves. In addition, the first and the third terms are the

wave propagation solution while the remaining terms are related to spatially damped

vibrations [12]. kB is the wavenumber and obtained as

kB =

(
ω2ρA

EI

)1/4

(3.41)

The frequency dependent shape functions (ĝBi(x)) are derived by substituting the

boundary conditions to the equations 3.39, and 3.40, and are given by the following

equation,

v(x) =



ĝB1(x)

ĝB2(x)

ĝB3(x)

ĝB4(x)



T 

v̂1

φ̂1

v̂2

φ̂2


(3.42)

where,



ĝB1(x)

ĝB2(x)

ĝB3(x)

ĝB4(x)



T

=


e−ikBx

e−kBx

e−ikB(L−x)

e−kB(L−x)



T
1 1 e−ikBL e−kBL

−ikB −kB ikBe
−ikBL kBe

−kBL

e−ikBL e−kBL 1 1

−ikBe−ikBL −kBe−kBL ikB kB



−1

The dynamic shape functions are formed in pairs, and each component of the pairs

are symmetric to each other. The spectral element matrix for a beam according to the

Bernoulli-Euler beam theory can be constructed using the force-displacement relation-
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ship as given in the following equation,



V̂1

M̂1

V̂2

M̂2


= EI


ĝ′′′B1(0) ĝ′′′B2(0) ĝ′′′B3(0) ĝ′′′B4(0)

−ĝ′′B1(0) −ĝ′′B2(0) −ĝ′′B3(0) −ĝ′′B4(0)

−ĝ′′′B1(L) −ĝ′′′B2(L) −ĝ′′′B3(L) −ĝ′′′B4(L)

ĝ′′B1(L) ĝ′′B2(L) ĝ′′B3(L) ĝ′′B4(L)





v̂1

φ̂1

v̂2

φ̂2


(3.43)

M̂1, M̂2, V̂1 and V̂2 are the spectral bending moments and shear forces at each end nodes

of the element, which are equal to −M̂(0), M̂(L), −V̂ (0) and V̂ (L), respectively. The

stiffness matrix is square, symmetric and complex valued.

3.2.2. Timoshenko Beam Theory

The time domain GDEMs related to Timoshenko beam theory are given in the

equations 2.52 and 2.53. Spectral representation of the GDEM in matrix form is given

as:

 GAK1kB
2 − ρAω2 −ikBGAK1

ikBGAK1 EIkB
2 +GAK1 − ρIK2ω

2

 v̂

φ̂

 =

 0

0

 (3.44)

The roots of the characteristic equation of the matrix above gives the wavenumbers

kB1 and kB2, which are related to the first and the second mode of vibration.

Since shear deformations are considered in the Timoshenko beam theory, plane

sections no longer remain plane, and the slope cannot be obtained by differentiating the

vertical displacement with respect to spatial coordinate. Thus, a second independent

variable is introduced.

v̂(x) = AR1e
−ikB1x +BR2e

−ikB2x − CR1e
−ikB1(L−x) −DR2e

−ikB2(L−x) (3.45)

φ̂(x) = Ae−ikB1x +Be−ikB2x + Ce−ikB1(L−x) +De−ikB2(L−x) (3.46)
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The amplitude ratios, R1 and R2, are derived by using following formula,

Ri =
ikiGAK1

GAK1ki
2 − ρAω2

(3.47)

Dynamic shape functions can be derived in an analogous way to the Mindlin-Herrmann

rod theory. The force-displacement relationship for a Timoshenko beam is given as,

V̂ = −EI d
2φ̂

dx2
− ρIK2ω

2φ̂ (3.48)

M̂ = EI
dφ̂

dx
(3.49)

Dynamic stiffness matrix for Timoshenko beam can be constructed using the dynamic

shape functions, (ĝBφi(x)), and the force-displacement relationships defined above. The

form of the stiffness matrix is given below,



V̂1

M̂1

V̂2

M̂2


=



EI


ĝ′′Bφ1(0) ĝ′′Bφ2(0) ĝ′′Bφ3(0) ĝ′′Bφ4(0)

−ĝ′Bφ1(0) −ĝ′Bφ2(0) −ĝ′Bφ3(0) −ĝ′Bφ4(0)

−ĝ′′Bφ1(L) −ĝ′′Bφ2(L) −ĝ′′Bφ3(L) −ĝ′′Bφ4(L)

ĝ′Bφ1(L) ĝ′Bφ2(L) ĝ′Bφ3(L) ĝ′Bφ4(L)



+ρIK2ω
2


ĝBφ1(0) ĝBφ2(0) ĝBφ3(0) ĝBφ4(0)

0 0 0 0

−ĝBφ1(L) −ĝBφ2(L) −ĝBφ3(L) −ĝBφ4(L)

0 0 0 0







v̂1

φ̂1

v̂2

φ̂2



(3.50)

3.2.3. Comparison of the Beam Theories

In this section, Bernoulli-Euler and Timoshenko beam theories are compared by

means of spectrum and dispersion relationships. Then, the terms of spectral element

matrices of these two theories are compared to the stiffness matrices obtained theoret-

ically and to those of the classical finite element analysis.
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The phase and the group velocities related to the Bernoulli-Euler beam theory

are derived as given by Eq. 3.51. The group velocity for the Timoshenko beam theory

can be calculated using Eq. 3.34.

c =
ω

k
=
√
ω

[
EI

ρA

]1/4

; cg =
dω

dk
= 2
√
ω

[
EI

ρA

]1/4

(3.51)

Timoshenko beam theory does not introduce additional modes when compared to

Bernoulli-Euler beam theory. However, since the shear deformations and the rotational

inertia are considered, the behavior of each mode is changed. With the introduction of

the shear deformations, slope becomes an independent variable. One of the significant

differences between these two beam theories is the presence of second propagating mode

with a cut-off frequency [2]. The cut-off frequency, where the wavenumber is equal to

zero, can be found to be:

ωc =

√
GAK1

ρIK2

(3.52)

Figure 3.7. Spectrum relationship for Bernoulli-Euler and Timoshenko beam theories.

Figure 3.7 shows the spectrum relations for the Bernoulli-Euler and Timoshenko

beam theories. As can be seen from the figure, the behavior of the wave modes is
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similar for the low frequency range. Beyond the cut-off frequency, the second mode

of the Timoshenko beam begins to propagate, and the behavior related to these two

beam theories becomes different from each other.

Figure 3.8 shows the dispersion relationship of the Bernoulli-Euler and Timo-

shenko beams. The vertical axis is the ratio between the group velocity and longitu-

dinal wave speed. As can be seen from the figure, in high frequency range Bernoulli-

Euler beam theory produces very high speeds. The second mode of the Timoshenko

beam starts to propagate at the cut-off frequency, and becomes asymptotic to a higher

speed [11].

Figure 3.8. Dispersion relationship for Bernoulli-Euler and Timoshenko beam

theories.

Figure 3.9 shows the stiffness term k11 according to the conventional, theoretical,

Bernoulli-Euler and Timoshenko beam theories. The stiffness of the conventional beam

is obtained as follows [6],

K =
EI

L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

−
ρALω2

420


156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2


(3.53)
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The theoretical stiffness matrix is obtained using the general solution to the

ordinary differential equation, and is given by Eq. 3.54 [19].

K =
EI

L3


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

 (3.54)

where,

L̄ = kBL

∆B = 1

1−(cos L̄ cosh L̄)

k11 = ∆BL̄
3
(
cos L̄ sinh L̄+ sin L̄ cosh L̄

)
= k33

k22 = ∆BL̄
3kB

−2
(
− cos L̄ sinh L̄+ sin L̄ cosh L̄

)
= k44

k12 = ∆BL̄
3kB

−1
(
sin L̄ sinh L̄

)
= k21 = −k34 = −k43

k13 = −∆BL̄
3
(
sin L̄+ sinh L̄

)
= k31

k14 = ∆BL̄
3kB

−1
(
− cos L̄+ cosh L̄

)
= k41 = −k23 = −k32

k24 = ∆BL̄
3kB

−2
(
− sin L̄+ sinh L̄

)
= k42

Figure 3.9. k11 values according to conventional, theoretical, Bernoulli-Euler and

Timoshenko beam theories.
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The dynamic stiffness matrix is symmetric, and in general complex valued. All of

the beam models have the same characteristics in the low frequency range. However,

they differ from each other as the frequency increases. If the member is not a small

sized member, they will differ from each other at lower frequencies, too. The stiffness

terms related to conventional beam theory show only one zero-crossing, while the others

show many zero-crossings. The stiffness term of the conventional beam continues to

infinity when the frequency increases.

3.3. Assemblage of Spectral Element Matrices

The arbitrarily oriented elements that form the plane frame are assembled using

a procedure analogous to FEM. The joints, where two or more elements intersect

with each other, are assumed to be rigid and massless. The interactions between

longitudinal and flexural deflections are neglected since the small deflection theory is

adopted in the formulation. Therefore, stiffness matrix of each element is obtained

by the superposition of the spectral element matrices of a rod and a beam element in

the local coordinate system. Spectral element matrices of each element transformed

into global coordinates, and assembled to form the plane frame. The spectral element

matrix of an element in local coordinate system is obtained as follows:



F̂1

V̂1

M̂1

F̂2

V̂2

M̂2


=



EA



k̂R11 0 0 k̂R12 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k̂R21 0 0 k̂R22 0 0

0 0 0 0 0 0

0 0 0 0 0 0



+EI



0 0 0 0 0 0

0 k̂B11 k̂B12 0 k̂B13 k̂B14

0 k̂B21 k̂B22 0 k̂B23 k̂B24

0 0 0 0 0 0

0 k̂B31 k̂B32 0 k̂B33 k̂B34

0 k̂B41 k̂B42 0 k̂B43 k̂B44







û1

v̂1

φ̂1

û2

v̂2

φ̂2


(3.55)
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The resultant forces and moments are represented by F̂ , V̂ and M̂ . The subscripts 1

and 2 corresponds to the ith and jth end of the member, respectively. EA is the axial

stiffness and EI is the flexural stiffness of the member. The stiffness matrix terms of

a rod and a beam are represented by k̂Rij and k̂Bij, respectively.

Since the elements of a plane frame are oriented arbitrarily, each spectral ele-

ment matrix is constructed in the local coordinate system of the concerned member.

Before the assemblage process, spectral element matrices of each individual element in

local coordinate system must be transformed into global coordinate system in order to

express the nodal DOFs in global coordinates. The global transformation is done by

using the following transformation matrix

T =



cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

0 0 0 0 0 1


(3.56)

Spectral element matrix in global coordinates is then obtained as,

K̂g = TT K̂T (3.57)

Spectral element matrix of the structure is constructed by assembling global dy-

namic stiffness matrices of each individual element at each frequency. Spectral element

matrix of the system should be rearranged and renumbered in order to account for

the boundary conditions and prescribed forces. Then, the spectral element matrices

corresponding to each element of the structure are assembled. If the displacements at

a node are known to be equal to zero, then the rows and columns related to these zero

DOFs can be eliminated from the spectral element matrix and the reduced spectral

element matrix can be formed using the non-zero DOFs. In some cases, the displace-
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ments at a node are known and not equal to zero. Thus, the known terms cannot be

eliminated from the stiffness matrix. In spite of eliminating the known terms, they are

grouped as known and unknown displacements / forces as seen below.

 F̂k

F̂u

=

 K̂guu K̂guk

K̂gku K̂gkk

 ûu

ûk

 (3.58)

In equation 3.58, subscript k refers to known quantities and u refers to unknown quan-

tities. Unknown displacements and forces can be found by solving the system of equa-

tion given above. In case of base excitation, penalty method is adopted to impose the

displacement produced by the excitation to the related DOFs. This method is imple-

mented by adding a spring with a large stiffness to the related DOFs and defining a

load that produces the required displacement at that DOFs [20].

Displacement response at an arbitrary point of a member at any frequency can

be found by the multiplication of the frequency dependent shape functions and the

nodal displacements of the concerned element at the related frequency.

The damping can be introduced in the form of hysteretic damping. It can be

done by replacing the elasticity modulus of the system with a complex-valued one as

follows,

Ed = E(1 + 2iζ) (3.59)

Hysteretic damping is also referred as the rate-independent damping, or structural

damping, and it can easily be applied in the frequency domain analysis. It represents

both the elastic and damping forces at the same time [21].
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3.4. Numerical Example

As an example, the dynamic response of a five-story, two-bay plane frame is

calculated by using both FEM and SEM. The aim is to demonstrate the accuracy of

SEM in the medium to high frequency range. Since, it is known that the accuracy

of FEM analysis increases with the decreasing mesh size, two different FEM models

are used in the analysis. In the first FEM model, structural elements without any

kind of discontinuity are modeled as a single element. In the second FEM model,

each structural member is divided into 100 segments. Moreover, two SEM models are

constructed in order to see the effect of adopting higher order theories on the calculated

dynamic response. In the first SEM model, structural elements are formulated based

on elementary theories. In the second SEM model higher order theories, namely Love

rod and Timoshenko beam theories, are adopted. Mindlin-Herrmann and Three-Mode

rod theories are not employed in the analyses, since they introduce extra DOFs, and

the frequency range considered does not cover the cut-off frequency. A MATLAB-

based code [22] is prepared for the SEM analysis. SAP2000 v.19 [23] is utilized for

FEM analysis. The dynamic response is calculated under the effect of the self-weight

of the structure and the applied base excitation. The structure is excited in the global

x direction through its base. The time and the frequency domain properties of the

applied base excitation is given in Figure 3.10 and Figure 3.11, respectively.

Figure 3.10. Time domain representation of applied base acceleration.
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Figure 3.11. Frequency domain representation of applied base acceleration.

Figure 3.12 shows the geometric properties and the assigned DOF numbers. The

story height and the bay width of the plane frame are 3m and 5m, respectively. The

dimensions of the columns are identical at 0.60*0.60 m. The beam dimensions are

selected as 0.30*0.60 m. The material is selected as C25 concrete class whose Young’s

modulus, mass density and Poisson’s ratio of the material are given as, 30 GPa, 2.4

g/cm3 and 0.2, respectively.

The structural damping with 5% damping ratio (ζ) is introduced to the system.

It is applied by replacing the elasticity modulus of the system with a complex value as

given in the Eq. 3.59.

The Fourier Amplitude Spectra (FAS) of the dynamic response at DOF= 52,

which corresponds to the top displacement in the direction of the excitation, is pre-

sented in Figure 3.13. In this figure, FAS of the calculated response within the fre-

quency range of 0-50 Hz is shown by using the first FEM, the second FEM, the first

SEM and the second SEM models. In the low frequency range, the responses calculated

from the four analyses are almost identical. However, as the frequency increases, the

calculated responses start diverging.

For a better understanding, the dynamic response calculated from the four anal-
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Figure 3.12. Geometry and DOFs numbers of the example structure.

Figure 3.13. FAS of the response at DOF= 52 between 0-50 Hz.
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yses between the frequency ranges of 0-10 Hz., 10-15 Hz. and 15-20 Hz. are illustrated

in Figure 3.14, Figure 3.15 and Figure 3.16, respectively.

Figure 3.14. FAS of the response at DOFs 50 between 0-10 Hz.

Figure 3.15. FAS of the response at DOF= 52 between 10-15 Hz.

In the low frequency range, which is presented in Figure 3.14, the dynamic re-

sponse calculated at DOF= 52 from the four of the analysis are approximately identical.

As can be seen from Figure 3.15, in the vicinity of 12 Hz. the response calculated from

the first FEM analysis starts diverging from the others. As the frequency increases,

the response obtained from the second SEM model is also diverges from the response

obtained from the second FEM and the first SEM. In the vicinity of 16 Hz. the dy-

namic response at DOF= 52 calculated from the first SEM deviate from the second
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Figure 3.16. FAS of the response at DOF= 52 between 15-20 Hz.

FEM. Beyond 18 Hz., the responses calculated from the SEM and FEM models differ

significantly.

The time-domain response can be calculated by taking the inverse Fourier trans-

form of the response calculated in the frequency domain. Figure 3.17 and Figure 3.18

illustrates the comparison of the calculated time domain responses obtained from the

four analyses. The response is band-pass filtered between 0.1-5 Hz. and 15-20 Hz. in

order to reflect the differences in the low and high frequency ranges. The response in

the low frequency range is identical for four of the analysis. However, as the frequency

increases they differ considerably.

Resultant forces can also be calculated both in the frequency and time domains

using SEM. Figure 3.19, Figure 3.20, Figure 3.21 and Figure 3.22 show the variation

in the base shear with respect to time between 8-17 s., 17-26 s., 26-35 s. and 35-44

s., respectively. The base shear calculated from the four models differ from each other

throughout the time interval.
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Figure 3.17. Band pass filtered between 0.1-5 Hz. time domain response at DOF= 52

between 5-20 sec.

Figure 3.18. Band pass filtered between 15-20 Hz. time domain response at DOF= 52

between 5-20 sec.
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Figure 3.19. Variation in base shear with respect to time (between 8-17 sec.).

Figure 3.20. Variation in base shear with respect to time (between 17-26 sec.).



46

Figure 3.21. Variation in base shear with respect to time (between 26-35 sec.).

Figure 3.22. Variation in base shear with respect to time (between 35-44 sec.).
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4. TRAVELLING WAVE METHOD

The propagation properties of waves through the elements (i.e., waveguides) of

a structure can be utilized to study its dynamic behavior. In the medium to high

frequency ranges, this method yields accurate results. In contrast to SEM, the prop-

agation path of the disturbance can also be tracked. Wave propagation solutions are

based on the propagation, reflection, transmission and generation properties at the

discontinuities. A discontinuity, such as a joint, can be treated as a filter. It changes

the amplitudes of the incident waves and can generate additional waves. Thus, the

reflection, transmission, and the wave generation characteristics of joints are the vital

elements of the wave propagation analysis. Assemblage of these properties provides

a concise method to analyze dynamic behavior of structures. The amplitudes of the

reflected and transmitted waves are related to the incident waves by means of the

transmission and reflection coefficients. Any type of incident wave can generate a new

type of different waves at the discontinuities. For instance, a flexural wave can generate

a longitudinal wave, or conversely, a longitudinal wave can generate a flexural wave.

The propagation of waves in structures have been extensively studied more than

half a century. Graff [24] and Cramer, Heckl and Petersson [25] described vibration of

elastic structures in terms of the reflections and transmissions of the incident wave at

discontinuities. Doyle [14] derived solutions for wave propagation in one-dimensional

waveguides. The transmission and reflection coefficients at different types of joints

are studied by many researchers. Mace [26] and Milne [27] presented reflection and

transmission properties at a joint based on the Bernoulli-Euler beam theory. Mei and

Mace [28] considered wave propagation in Timoshenko beams, and transmission and

reflection properties at an L type junction. The effect of structural joints on the wave

propagation is studied by Doyle and Kamle [29, 30], based on experiments. Mei [31]

studied wave propagation in space frames.

Nagem and Williams [32] developed a matrix methodology for planar structures.

In their method, system matrices are constructed using the transfer matrices of the
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elements and joint coupling matrices. Howard and Pao [33] introduced reverberation

ray matrix method. The method uses dual coordinate system to form system matrix

in global coordinates and Fourier transforms. Mace, Duhamel, Brennan and Hinke [34]

utilized wave finite element method. A vast amount of literature on this method can

be found in the paper published by Waki, Mace and Brennan [35]. Von Flotow [36],

and Miller and Von Flotow [37] developed a method called as Travelling Wave Method

(TWM). According to Mei and Mace [28], the TWM has proved to be powerful for an-

alyzing vibrations in complex structural networks. Beale and Accorsi [38], generalized

the TWM to apply it in two and three-dimensional frames.

In TWM, the wave guide equations are derived in terms of the left and right

propagating waves. Left and right directions of a member are arbitrary. The waves

traveling in the direction of increasing spatial coordinate with respect to the member’s

corresponding local coordinate system are referred as the right propagating, and the

waves traveling in the opposite direction are referred as the left propagating.

The waveguide equation, which relates the wave mode amplitudes to the gener-

alized displacements and forces, is expressed as follows:

 U

F

 =

 YuR YuL

YfR YfL

 uR

uL

 (4.1)

where, U and F represent the generalized displacement and force vectors, respectively,

and uR and uL are the vectors of right and left propagating waves. The generalized

positive displacements have the same direction at both ends of the member. However,

positive forces have opposite directions. Basic steps of the general procedure for TWM

is illustrated in Figure 4.1.

In the following sections, waveguide equations for longitudinal and flexural wave

propagation are obtained based on various element theories.
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Figure 4.1. General procedure for TWM.

4.1. Longitudinal Wave Propagation

In this section, wave propagation equations for the four element theories men-

tioned earlier are obtained to derive reflection, transmission and generation relations.

4.1.1. Elementary Rod Theory

Wave solution to the governing differential equation in terms of spectral repre-

sentation is given by Eq. 3.6. The same equation can be rewritten in terms of left and

right propagating wave modes, as shown below:

ũ(x) = uRe
−ikRx + uLe

ikRx (4.2)

Using force-displacement relationship given by Eq. 2.4, internal forces developed at an

arbitrary point is derived as follows,

F̃ (x) = EA(−ikRuRe−ikRx + ikRuLe
ikRx) (4.3)
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Waveguide equations for the longitudinal wave modes, based on elementary rod

theory, become

 ũ(x)

F̃ (x)

 =

 1 1

−ikREA ikREA

 uR

uL

 (4.4)

4.1.2. Love Rod Theory

Spectral representation of the solution to the governing differential equation of

motion based on Love rod theory is given by Eq. 3.11. In terms of right and left

propagating waves, the equation becomes,

ũ(x) = uRe
−ikRx + uLe

ikRx (4.5)

Using the force displacement relationship, internal force is described as,

F̃ (x) =
(
−ikREA− ν2ω2ρJ

)
uRe

−ikRx +
(
ikREA− ν2ω2ρJ

)
uLe

ikRx (4.6)

Waveguide equations for the longitudinal wave modes, based on elementary rod

theory, become

 ũ(x)

F̃ (x)

 =

 1 1

−ikREA− υ2ω2ρJ ikREA− υ2ω2ρJ

 uR

uL

 (4.7)

4.1.3. Mindlin-Herrmann Rod Theory

Wave solution to governing differential equations in terms of spectral representa-

tion is given by the equations 3.16 and 3.17. The same equation, in terms of the left
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and right propagating wave modes, is rewritten by the following equations:

ũ(x) = R1uR1e
−ikR1x +R2uR2e

−ikR2x −R1uL1e
ikR1x −R2uL2e

ikR2x (4.8)

ψ̃(x) = uR1e
−ikR1x + uR2e

−ikR2x + uL1e
ikR1x + uL2e

ikR2x (4.9)

Using the force-displacement relationship given by equations 3.19 and 3.20, internal

forces developed in the section are calculated as,

F̃ (x) = (−ikR1R1T1 + T2)uR1e
−ikR1x + (−ikR2R2T1 + T2)uR2e

−ikR2x

+ (−ikR1R1T1 + T 2)uL1e
ikR1x + (−ikR2R2T1 + T2)uL2e

ikR2x
(4.10)

Q̃(x) = T3

(
−ikR1uR1e

−ikR1x − ikR2uR2e
−ikR2x + ikR1uL1e

ikR1x + ikR2uL2e
ikR2x

)
(4.11)

where, T1, T2 and T3 are given in Eq. 3.15. T7 and T8 of Eq. 4.13 are calculated as:

T7 = ikR1R1;T8 = ikR2R (4.12)

Waveguide equations for the longitudinal wave modes, based on Mindlin-Herrmann

rod theory, become:



ũ(x)

ψ̃(x)

F̃ (x)

Q̃(x)


=


R1 R2 −R1 −R2

1 1 1 1

−T7T1 + T2 −T8T1 + T2 −T7T1 + T2 −T8T1 + T2

−ikR1T3 −ikR2T3 ikR1T3 ikR2T3





uR1

uR2

uL1

uL2


(4.13)

4.1.4. Three-Mode Rod Theory

Spectral representation of the solution to the governing differential equation of

motion based on Three-Mode rod theory is given by the equations from 3.22 to 3.24.
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In terms of the right and left propagating waves, the equations become:

ũ(x) = R4uR1e
−ikR1x +R5uR2e

−ikR2x +R6uR3e
−ikR3x +R4uR1e

ikR1x

+R5uR2e
ikR2x +R6uR3e

ikR3x

(4.14)

ψ̃(x) = R1uR1e
−ikR1x +R2uR2e

−ikR2x +R3uR3e
−ikR3x −R1uR1e

ikR1x

−R2uR2e
ikR2x −R3uR3e

ikR3x

(4.15)

φ̃(x) = uR1e
−ikR1x + uR2e

−ikR2x + uR3e
−ikR3x + uR1e

ikR1x + uR2e
ikR2x + uR3e

ikR3x

(4.16)

Using the relation between forces and displacements, given by equations 3.27 to 3.29,

waveguide equations can be obtained in an analogous way to the Mindlin-Herrmann

rod theory.

4.2. Flexural Wave Propagation

Flexural behavior of beams can be expressed in terms of propagating and evanes-

cent wave components. Near field waves are generally ignored since their amplitudes

decrease rapidly with respect to distance [26]. However, they could generate transmit-

ted and reflected waves of both propagating and evanescent types.

In this section, waveguide equations for flexural vibrations of a beam element is

presented both for the Bernoulli-Euler and Timoshenko beam theories. In the high

frequency range, adopting Bernoulli-Euler beam theory cause erroneous results. Thus,

adopting Timoshenko beam theory in wave propagation analysis could be more appro-

priate.
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4.2.1. Bernoulli-Euler Beam Theory

Wave solution to governing differential equations in terms of spectral representa-

tion is given by the equations 3.39 and 3.40. They can be rewritten in the form of the

left and right propagating wave modes, as shown by the following equations:

ṽ(x) = vR1e
−ikBx + vR2e

−kBx + vL1e
ikBx + vL2e

kBx (4.17)

φ̃(x) = −ikBvR1e
−ikBx − kBvR2e

−kBx + ikBvL1e
ikBx + kBvL2e

kBx (4.18)

Using the force displacement relationship, internal forces developed in the section are

calculated as,

Ṽ (x) = EI
(
−ikB3vR1e

−ikBx + kB
3vR2e

−kBx + ikB
3vL1e

ikBx − kB3vL2e
kBx
)

(4.19)

M̃(x) = EI
(
−kB2vR1e

−ikBx + kB
2vR2e

−kBx − kB2vL1e
ikBx + kB

2vL2e
kBx
)

(4.20)

Waveguide equations for the flexural wave modes for the Bernoulli-Euler beam

theory are represented by the following equations:



ṽ(x)

φ̃(x)

Ṽ (x)

M̃(x)


=


1 1 1 1

−ikB −kB ikB kB

−EIikB3 EIkB
3 EIikB

3 −EIkB3

−EIkB2 EIkB
2 −EIkB2 EIkB

2





vR1

vR2

vL1

vL2


(4.21)

4.2.2. Timoshenko Beam Theory

Spectral representation of the solution to the governing differential equations for

the Timoshenko beam theory is given by the equations 3.45 and 3.46. In terms of right
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and left propagating waves, the equations become:

ṽ(x) = R1vR1e
−ikB1x +R2vR2e

−ikB2x −R1vL1e
ikB1x −R2vL2e

ikB2x (4.22)

φ̃(x) = vR1e
−ikB1x + vR2e

−ikB2x + vL1e
ikB1x + vL2e

ikB2x (4.23)

Waveguide equations for the flexural wave modes for the Timoshenko beam theory

are represented by the following equations:



ṽ(x)

φ̃(x)

Ṽ (x)

M̃(x)


=


R1 R2 −R1 −R2

1 1 1 1

EIkB1
2 − T9 EIkB2

2 − T9 EIkB1
2 − T9 EIkB2

2 − T9

−EIikB1 −EIikB2 EIikB1 EIikB2





vR1

vR2

vL1

vL2


(4.24)

where,

T9 = ρIK2ω
2 (4.25)

4.3. Evaluation of Scattering and Generation Matrices

In order to evaluate dynamic response, the propagation properties of the waves

through the waveguides, and the reflection and transmission properties at a joint should

be defined. Scattering matrices cover the reflection and transmission properties at

the discontinuity. After defining waveguide equation of the wave mode in the local

coordinate system, they should be converted into global coordinate system using the

rotation matrix as it is done in SEM.

The reflection and transmission coefficients at a joint are calculated based on

the equilibrium, compatibility and the prescribed boundary conditions. For n number

of elements that are connected to the same joint, (n − 1) compatibility conditions

can be written for each degrees of freedom (DOFs). Thus, compatibility conditions
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give (n − 1) ∗ m equations for m number of DOFs prescribed at each member end.

Equilibrium conditions give m equations. Figure 4.2 illustrates the resultants at the

member ends. In the figure, L and R represent the left and right ends of the beam,

which are selected arbitrarily, θ is the angle between the local coordinates system of

the member and the global coordinate systems, and subscripts 1, 2 and 3 stand for the

element indices.

Figure 4.2. Sample joint.

Transmission and reflection coefficients at a joint, which form the junction scat-

tering matrix, are calculated based on the amplitudes of the incoming and outgoing

waves. Left propagating waves become incoming waves for a member that is connected

to the joint at its left end. The outgoing waves are the waves travelling in the opposite

direction. Considering the positive sign convention, resultant forces at the left end are

assumed to be negative. The waveguide equations in global coordinates, based on the

incoming (ui) and outgoing (uo) waves can be rewritten as:

 U

F

=

 di do

fi fo

 ui

uo

=

 TYuL TYuR

−TYfL −TYfR

 uL

uR

 (4.26)

For the members connected to the joint at its right end, the wave guide equations

in global coordinates, based on the incoming and outgoing waves are:

 U

F

=

 di do

fi fo

 ui

uo

=

 TYuR TYuL

TYfR TYfL

 uR

uL

 (4.27)



56

In equations 4.26 and 4.27, T is the rotation matrix, which converts the displacements

and forces from local to global coordinates. U and F are the displacement and force

vectors, respectively.

Scattering matrix is obtained by substituting displacements and forces generated

by the incoming and outgoing wave modes into the equilibrium and compatibility

equations, and boundary conditions. System of equations for the joint given in Figure

4.2 is obtained as follows,


αfo1+βdo1 αfo2 αfo3

do1 −do2 0

do1 0 −do3

 {uo}=


−αfi1−βdi1 −αfi2 −αfi3

−di1 di2 0

−di1 0 di3

 {ui}+ {βδ + Q}

(4.28)

where, δ and Q are the prescribed displacement and force vectors at the joint, re-

spectively. Equilibrium and boundary conditions are substituted into the system of

equations via α and β matrices, which are square matrices with size equal to number

of DOFs. The values are assigned to α and β matrices in accordance with the support

and displacement boundary conditions. The detailed information on these matrices

can be found in Beale and Accorsi [38]. Then, the scattering matrix, S, is obtained as:

S =


αfo1+βdo1 αfo2 αfo3

do1 −do2 0

do1 0 −do3


−1 

−αfi1−βdi1 −αfi2 −αfi3

−di1 di2 0

−di1 0 di3

 (4.29)

The amplitudes of the waves generated by the applied external excitation is cal-

culated using the generation matrix, G, which is given as:

G =


αfo1+βdo1 αfo2 αfo3

do1 −do2 0

do1 0 −do3


−1

(4.30)
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4.4. Assemblage of Waveguides

In order to obtain dynamic response of the whole structure to a given excitation,

scattering and generation matrices obtained at each joint are assembled to form the

structural system. Then, the scattering and generation matrices of a structure that

comprises N number of elements are derived as:

S =


S1

S2

. . .

SN

 (4.31)

G =


G1

G2

. . .

GN

 (4.32)

The amplitudes of the generated waves at adjacent joints are calculated through

system transmission matrices, which are diagonal matrices. The exponential part of the

waveguide equations, which correspond to the waves travel in the direction of increasing

spatial coordinate with respect to member’s corresponding local coordinate system, is

substituted into the diagonal of the system transmission matrix (ST). To assign the

amplitude of the wave at a joint caused by the wave generated at an adjacent joint,

a permutation matrix (P) is defined. For instance, the outgoing wave uo11 at joint 1

in Figure 4.3 becomes incoming wave ui21 at joint 2. The amplitude of the incoming

waves can be related to the outgoing waves by means of the system transmission and

permutation matrices.

(ST) and (P) matrices based on elementary rod and Bernoulli-Euler beam the-
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Figure 4.3. Travelling waves through an element.

ories can be defined as:



ui11

vi11

vi12

ui21

vi21

vi22


= [ST] [P]



uo11

vo11

vo12

uo21

vo21

vo22


(4.33)

where,

[ST] =



e−ikRx

e−ikBx

e−kBx

e−ikRx

e−ikBx

e−kBx


; [P] =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


For a structure that comprises N number of elements, the incoming and outgoing waves

are related to each other as:



Ui1

Ui2

...

UiN


=


ST1P1

ST2P2

. . .

STNPN





Uo1

Uo2

...

UoN


(4.34)



59

Amplitude of the outgoing waves is calculated as:

{Uo}=[I− S ∗ ST ∗P]−1[G] {βδ + Q} (4.35)

where, (I) is the identity matrix.

The displacements and forces acting at the joint and/or at an arbitrary location

through the member length is calculated by substituting the incoming and outgoing

wave amplitudes into the wave solution of the governing differential equation.

4.5. Numerical Example

As an example, the dynamic response of a five-story, two-bay plane frame, which

is given in Section 3.4, is calculated by using both FEM and TWM. It is aimed to

demonstrate the accuracy of TWM in the medium to high frequency range. Since, it

is known that the accuracy of FEM analysis increases with the decreasing mesh size,

two different FEM models are used in the analysis. In the first FEM model, structural

elements without any kind of discontinuity are modeled as a single element. In the

second FEM model, each structural member is divided into 100 segments. Moreover,

two TWM models are constructed in order to see the effect of adopting higher order

theories on the calculated dynamic response. In the first TWM model, structural

elements are formulated based on elementary theories. In the second TWM model,

higher order theories, namely Love rod and Timoshenko beam theories, are adopted.

Mindlin-Herrmann and Three-Mode rod theories are not employed in the analyses,

because they introduce extra DOFs and the frequency range of interest does not cover

the cut-off frequency. A MATLAB-based code [22] is prepared for the TWM analysis.

SAP2000 v.19 [23] is utilized for the FEM analysis. The dynamic response is calculated

under the effect of the self-weight of the structure and the applied base excitation.

The same base excitation, which is defined in the Section 3.4 is applied in the

longitudinal direction.
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The Fourier Amplitude Spectra (FAS) of the dynamic response at DOF= 52,

which corresponds to the top displacement in the direction of excitation, is presented

in Figure 4.4. The figure shows FAS of the response calculated by using the first and the

second FEM models, and the first and the second TWM models in the frequency range

of 0-50 Hz. In the low frequency range, the responses calculated from the four analyses

are almost identical. However, as the frequency increases, the calculated responses

start diverging.

Figure 4.4. FAS of the response at DOF= 52 between 0-50 Hz.

For a better understanding, the dynamic response calculated from the four anal-

yses between the frequency ranges of 0-10 Hz., 10-15 Hz. and 15-20 Hz. are illustrated

in Figure 4.5, Figure 4.6 and Figure 4.7, respectively. In the low frequency range, which

is presented in Figure 4.4, the dynamic response calculated at DOF= 52 from the four

analyses are approximately identical. As can be seen from Figure 4.6, in the vicinity

of 12 Hz. the response calculated from the first FEM analysis starts diverging from

the others. As the frequency increases the response obtained from the second TWM

model is also diverges from the response obtained from the second FEM and the first

TWM. In the vicinity of 16 Hz. the dynamic response at DOF= 52 calculated from

the first TWM deviate from the second FEM. Beyond 18 Hz., the responses calculated

from the TWM and FEM models differ significantly.

The time-domain response can be calculated by taking the inverse Fourier trans-
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Figure 4.5. FAS of the response at DOF= 52 between 0-10 Hz.

Figure 4.6. FAS of the response at DOF= 52 between 10-15 Hz.
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Figure 4.7. FAS of the response at DOF= 52 between 15-20 Hz.

form of the response calculated in the frequency domain. Figure 4.8 and Figure 4.9

illustrate the comparison of the calculated time domain response obtained from the

four analyses. In Figure 4.8 and Figure 4.9, the response is band-pass filtered between

0.1-5 Hz. and 15-20 Hz, respectively. It is aimed to reflect the differences in the low

and high frequency ranges. The response in the low frequency range is identical for

four of the analysis. However, as the frequency increases they differ considerably.

Figure 4.8. Band pass filtered between 0.1-5 Hz. time domain response at DOF= 52

between 5-20 sec.

Resultant forces can also be calculated both in the frequency and time domains
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Figure 4.9. Band pass filtered between 15-20 Hz. time domain response at DOF= 52

between 5-20 sec.

using TWM. Figure 4.10, Figure 4.11 and Figure 4.12 show the variation in the base

shear with respect to time between 8-17 s., 17-26 s. and 26-35 s., respectively. The

base shear calculated from the four models differ from each other throughout the time

interval.

Figure 4.10. Variation in base shear with respect to time (between 8-17 sec.).
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Figure 4.11. Variation in base shear with respect to time (between 17-26 sec.).

Figure 4.12. Variation in base shear with respect to time (between 26-35 sec.).
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5. ENERGY FLUX

Seismic design and assessment of the structures are most commonly carried out

using Finite Element Method (FEM). However, FEM becomes insufficient in the mid

to high frequency range. Thus, energy-based methods can be utilized as an alternative

methodology to perform dynamic analysis of structures. Housner [39] was the first

who introduced energy-based approach in seismic analysis of structures. The energy

input to a structure is a stable parameter since it mainly depends on the mass and the

natural period of the structure, and scarcely effected by the strength and the type of

restoring force characteristics [40].

Statistical Energy Analysis (SEA) have emerged as a robust methodology to

carry out dynamic analysis of structures, especially in the high frequency range. In

SEA, a complex structure is modeled as a statistical set of subsystems or mode groups

[41]. It only provides information about the average dynamic response of the system.

The spatial distribution of the dynamic response is lost. According to Carcaterra

and Sestieri [42], statistical energy analysis produces poor output against significant

qualitative and quantitative input data. Moreover, it is only valid for broadband

excitations. As an alternative methodology, Wave Intensity Analysis (WIA) is proposed

by Langley (1992). Energy Finite Element Analysis (EFEA) was introduced by Nefske

and Sung (1987). According to their methodology, mechanical energy flow through an

element can be assumed as a heat conduction problem. Wohlever and Bernhard [43]

and Carcaterra and Sestieri [42] have proved that, the heat conduction analogy is not

valid for the general case of energy flow in structures. Lase, Ichchou and Jezequel [44],

proposed two methods, namely general energy and simplified energy methods, to obtain

the behavior of energy in beams and bars. General energy method corresponds to the

total energy density and the active energy flow. Simplified energy method complies

with the Lagrangian energy density and reactive energy flow. Ichchou, Le Bot and

Jezequel [45] proposed energy models for one-dimensional multi propagative systems.

Mace and Shorter [46] suggested a new methodology, which splits the model into global

and local subsystems. Both are treated by classical finite element methods. Park and
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Hong [47] derived vibrational energy flow in Timoshenko beams in terms of space and

time averaged energy of far field waves. According to Carcaterra and Sestieri [42], the

kinetic energy seems to be more convenient, because this is the quantity that is more

relevant in dynamic problems and more related to acoustic radiation.

Energy flux is a dynamic measure of energy for base excitations, which is defined

as the kinetic energy due to seismic shaking multiplied by the propagation velocity

of seismic waves. It gives the amount of seismic energy transmitted per unit time

through a cross-section of a medium [3]. In this manner, characteristics of energy flow

and dissipation throughout the structure with respect to frequency can be obtained.

Thus, this method provides a new tool to evaluate dynamic response of structures.

Energy flux propagates as the waves travel through the waveguides. As in the wave

propagation formulation, at the discontinuities, some portion of the incident energy

transmitted into the adjacent members and some part is reflected. The reflection and

transmission coefficients for the energy flux are independent of the direction of the

propagation. The sum of the reflected and transmitted energy flux is equal to the

incident energy flux due to the principle of conservation of energy.

5.1. Transmission and Reflection Coefficients

Transmission and reflection coefficients for energy flux are equal to the ratio of

transmitted and reflected energy flux, respectively, to the incident energy flux. These

coefficients are derived based on the transmission and the reflection coefficients of the

waves, and characteristic impedances of waveguides. Thus, the scattering matrix at

a joint is derived as the first step in the calculation of transmission and reflection

coefficients of the energy flux. The scattering matrix is constructed based on the

methodology presented by Beale and Accorsi [38]. The scattering matrix for n number
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of elements that are connected to same joint are derived as:

S =


r11 t21 · · · tn1

t12 r22 · · · tn2
...

...
. . .

...

t1n t2n · · · rnn

 (5.1)

Where, t and r represent the transmission and reflection matrices, respectively. The

subscript shows the direction of the wave. The size of the reflection and transmission

matrices depends on the number of wave modes that travel through the member. For

a better understanding, the scattering matrix at the joint where the wave experience

material and/or cross-section change, is obtained based on elementary rod theory. The

properties of the rods and the wave modes are presented in Figure 5.1.

Figure 5.1. Energy flux between collinear rods.

In Figure 5.1, E, A, ρ and ν stand for the Young’s modulus, area of the section,

mass density of unit volume and Poisson’s ratio, respectively. Subscripts 1 and 2 are

the element numbers and 1, t and r are the incident, transmitted and reflected waves.

Scattering matrix is obtained as:

S =

 r11 t21

t12 r22

 =

 E1A1kR1−E2A2kR2

E1A1kR1+E2A2kR2

2E2A2kR2

E1A1kR1+E2A2kR2

2E1A1kR1

E1A1kR1+E2A2kR2

−(E1A1kR1−E2A2kR2)
E1A1kR1+E2A2kR2

 (5.2)

In Eq. 5.2, r11 and r22 stands for the reflected wave coefficients for the first and second

elements, respectively. t12 is the coefficient of the wave transmitted from the first to

the second element. Conversely, t21 is the coefficient of the wave transmitted from

the second to the first element. kR1 and kR2 correspond to the wavenumber related

to the first and second elements respectively. Group velocity of the waves based on
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Elementary rod theory is given in Eq. 3.31.

The reflection and transmission coefficients for energy flux is derived as:

SEF=

 rEF11 tEF21

tEF12 rEF22


=

 (
E1A1kR1−E2A2kR2

E1A1kR1+E2A2kR2

)2
ρ1A1cgR1

ρ2A2cgR2

(
2E2A2kR2

E1A1kR1+E2A2kR2

)2

ρ2A2cgR2

ρ1A1cgR1

(
2E1A1kR1

E1A1kR1+E2A2kR2

)2 (
−(E1A1kR1−E2A2kR2)
E1A1kR1+E2A2kR2

)2

 (5.3)

In Eq. 5.3, rEF11 and rEF22 stands for the reflected energy flux coefficients for the first

and second elements, respectively. tEF12 is the coefficient of the energy flux transmitted

from the first to the second element. Conversely, tEF21 is the coefficient of the energy

flux transmitted from the second to the first element. cgR1 and cgR2 correspond to the

group velocities related to the first and second elements, respectively.

The reflection and transmission coefficients based on the Bernoulli-Euler beam

theory for both wave propagation and energy flux are calculated for the beams are

shown in Figure 5.2.

Figure 5.2. Energy flux between collinear beams.

In Figure 5.2, E, G, A, I, ρ and ν stand for the Young’s modulus, shear modu-

lus, area of the section, second moment of inertia, mass density per unit volume and

Poisson’s ratio, respectively. Subscripts 1 and 2 are the element numbers and 1, tF ,

tN , rF and rN are the incident, transmitted far field, transmitted near field, reflected

far field and reflected near field waves.
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Flexural behavior of a beam can be expressed in terms of propagating and evanes-

cent waves. Evanescent waves are generally ignored, since the amplitudes decrease

rapidly. However, they can generate significant transmitted and reflected waves of

both propagating and evanescent types [26]. The scattering matrix is obtained as

follows:

S =

 r11 t21

t12 r22

 =



 r1111 r1112

r1121 r1122

  t2111 t2112

t2121 t2122

 t1211 t1212

t1221 t1222

  r2211 r2212

r2221 r2222



 (5.4)

In Eq. 5.4, the size of the transmission and reflection matrices are two, since two

wave modes, namely far-field and near-field wave modes, characterize the behavior of

the beam. The off-diagonal terms in reflection and transmission matrices represent

the ratio of the transformed waves from evanescent to propagating and propagating to

evanescent. The explicit form of the reflection and transmission matrices are presented

in Eqs. 5.5 to 5.8.

r11 =

 −−2β1+iχ1−2iβ1χ1+iβ2
1χ1+2β1χ2

1

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1
− (−1−i+(1+i)β2

1)χ1

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1

− (−1+i+(1−i)β2
1)χ1

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1

2β1+iχ1−2iβ1χ1+iβ2
1χ1−2β1χ2

1

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1

 (5.5)

t12 =

 2(1+β1)(1+χ1)

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1
− 2i(−1+β1)(i+χ1)

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1

2(−1+β1)(1+iχ1)

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1

2(1+β1)(1+χ1)

2β1+χ1+2β1χ1+β2
1χ1+2β1χ2

1

 (5.6)

t21 =

 2(1+β2)(1+χ2)

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2
− 2i(−1+β2)(i+χ2)

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2

2(−1+β2)(1+iχ2)

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2

2(1+β2)(1+χ2)

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2

 (5.7)

r22 =

 −−2β2+iχ2−2iβ2χ2+iβ2
2χ2+2β2χ2

2

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2
− (−1−i+(1+i)β2

2)χ2

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2

− (−1+i+(1−i)β2
2)χ2

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2

2β2+iχ2−2iβ2χ2+iβ2
2χ2−2β2χ2

2

2β2+χ2+2β2χ2+β2
2χ2+2β2χ2

2

 (5.8)

The terms β1, β2, χ1 and χ2 are calculated as:

β1 =
E2I2kB2

2

E1I1kB1
2 ; β2 =

E1I1kB1
2

E2I2kB2
2 ;χ1 =

kB2

kB1

;χ2 =
kB1

kB2

(5.9)

kB1 and kB2 are the wavenumbers of the propagating wave mode of the first and the
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second beams, respectively. Wave numbers corresponding to second mode of the beams

are equal to ikB1 and ikB2. For the undamped case, wavenumber related to the second

mode becomes purely imaginary. The group velocity considering only the first mode

(cgFB) of the beam is derived as given in Eq. 3.51. The group velocity for the second

mode (cgFN) is equal to icgFB. For the undamped case, it becomes purely imaginary,

which means the second mode wave does not propagate.

The reflection and transmission coefficients for energy flux is derived as:

SEF=

 rEF11 tEF21

tEF12 rEF22

 =



 rEF1111 rEF1112

rEF1121 rEF1122

  tEF2111 tEF2112

tEF2121 tEF2122

 tEF1211 tEF1212

tEF1221 tEF1222

  rEF2211 rEF2212

rEF2221 rEF2222



 (5.10)

where,

rEF11 =

 rEF1111
rEF1112

rEF1121
rEF1122

 =

 |r1111
|2 cgFB1

cgNB1
|r1112

|2

cgNB1

cgFB1
|r1121

|2 |r1122
|2

 (5.11)

tEF12 =

 tEF1211
tEF1212

tEF1221
tEF1222

 =

 ρ2A2cgFB2

ρ1A1cgFB1
|t1211

|2 ρ2A2cgFB2

ρ1A1cgNB1
|t1212

|2

ρ2A2cgNB2

ρ1A1cgFB1
|t1221

|2 ρ2A2cgNB2

ρ1A1cgNB1
|t1222

|2

 (5.12)

tEF21 =

 tEF2111
tEF2112

tEF2121
tEF2122

 =

 ρ1A1cgFB1

ρ2A2cgFB2
|t2111

|2 ρ1A1cgFB1

ρ2A2cgNB2
|t2112

|2

ρ1A1cgNB1

ρ2A2cgFB2
|t2121

|2 ρ1A1cgNB1

ρ2A2cgNB2
|t2122

|2

 (5.13)

rEF22 =

 rEF2211
rEF2212

rEF2221
rEF2222

 =

 |r2211
|2 cgFB2

cgNB2
|r2212

|2

cgNB2

cgFB2
|r2221

|2 |r2222
|2

 (5.14)

In case of undamped collinear beams, the real part of the off-diagonal terms of

the reflection and transmission matrices are equal to zero. When the elements are

non-collinear, size of the reflection and transmission matrices become three, which cor-

respond to longitudinal and flexural wave modes. Thus, the reflection and transmission
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matrices for energy flux are obtained as:

rEFij =


rEFij11 rEFij12 rEFij13

rEFij21 rEFij22 rEFij23

rEFij31 rEFij32 rEFij33

 tEFij =


tEFij11 tEFij12 tEFij13

tEFij21 tEFij22 tEFij23

tEFij31 tEFij32 tEFij33

 (5.15)

where, subscripts i and j corresponds to the direction of the waves, the diagonal terms

stands for the reflected or transmitted waves without mode conversion. Subscripts 11,

22 and 33 stand for the longitudinal to longitudinal, far-field flexural to far-field flexural

and near-field flexural to near-field flexural waves. The off-diagonal terms indicate the

energy flux transmitted and reflected with mode conversion.

In case of undamped structures formed by non-collinear elements, the real part

of the off-diagonal terms corresponding to evanescent waves is equal to zero. Thus, the

energy flux carried by the evanescent waves becomes equal to zero. However, if some

amount of damping is introduced to the structure, the real part of the off-diagonal terms

corresponding to evanescent waves becomes different than zero and negative valued.

The diagonal terms are purely real for damped or undamped structures formed by the

collinear or non-collinear elements.

The energy flux reflection and transmission coefficients for an ’L’ type joint shown

in Figure 5.3 are plotted in Figure 5.4 through Figure 5.9. In Figure 5.3, 1, t, tn, tf ,

r, rn and rf stand for the incident, longitudinal transmitted wave, transmitted far

field flexural wave, transmitted flexural near field wave, reflected longitudinal wave,

reflected far field flexural wave and reflected nearfield flexural wave. It is assumed that

the properties of the sections are identical. The effects of the 90-degree angle at the

joint on energy flux reflection and transmission coefficients are investigated.

Figure 5.4 through Figure 5.9 show the absolute value of the real part of the

energy flux reflection and transmission coefficients, and their sum (to show that the

sum is equal to one). The reflection and transmission coefficients corresponding to the

undamped structure are given in Figure 5.4 through 5.6. When damping is introduced
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Figure 5.3. Reflected and transmitted waves at an L joint.

to the system by replacing the Young’s modulus by a complex value, the off-diagonal

terms related to the evanescent waves become different than zero. Figure 5.7 to Figure

5.9 correspond to the damped structure. Sum of the absolute values of the real parts

are equal to unity due to the conservation of energy.

Figure 5.4 represents the transmitted and reflected energy flux related to the in-

cident longitudinal wave. The incident energy flux in the longitudinal direction mostly

reflected as longitudinal energy flux and its contribution decreases as the frequency

increases. The energy flux transmitted into the second element as the far-field energy

flux is the other major mechanism, which becomes dominant as the frequency increases.

Moreover, some part of the energy flux is reflected as far-field flexural energy flux. Neg-

ligibly small amount of energy flux is transmitted to the second element as longitudinal

energy flux. The sum of the reflected and transmitted energy fluxes are equal to unity.

In accordance with Figure 5.5, the far-field flexural energy flux incident from the

first element is mostly reflected as far-field energy flux, transmitted into the adjacent

member as far-field and longitudinal energy fluxes. The portion of the reflected and

transmitted energy fluxes depend on the frequency. Small amount of energy flux is

reflected as longitudinal wave. Their sum is equal to unity and the evanescent waves

do not carry any amount of energy flux.
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Figure 5.4. Absolute value of the real part of the reflection and transmission

coefficients of longitudinal energy flux at an L joint (undamped case).

Figure 5.5. Absolute value of the real part of the reflection and transmission

coefficients of far-field energy flux at an L joint (undamped case).
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Figure 5.6 shows that the energy flux related to the evanescent waves reflected

and transmitted without mode conversion.

Figure 5.6. Absolute value of the real part of the reflection and transmission

coefficients of near-field energy flux at an L joint (undamped case).

When damping is introduced to the system, the transportation mechanism of the

energy flux mainly remains the same. Evanescent waves carry negligibly small amount

of energy flux. In case of identical elements either with damping or not, tEF12 and

tEF21, and rEF11 and rEF22 are symmetric matrices, which are equal.

Figure 5.10, represents the transmitted and reflected waves at a T joint corre-

sponding to an incident wave from the first element. The members are assumed to be

identical.

Figures 5.11 to 5.16 show the absolute values of the real parts of the energy

flux coefficients of transmitted and reflected waves at a T joint. Figure 5.11 to 5.13

illustrate the reflection and transmission coefficients for the undamped case whereas

Figure 5.14 to 5.16 stand for the damped case. When damping is introduced to the

system, negligibly small amount of energy flux is carried by the evanescent waves.

Figure 5.11 shows that, the major part of the energy flux, incident from the first

element as longitudinal wave, is transmitted into the third element as longitudinal
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Figure 5.7. Absolute value of the real part of the reflection and transmission

coefficients of longitudinal energy flux at an L joint (damped case).

Figure 5.8. Absolute value of the real part of the reflection and transmission

coefficients of far-field energy flux at an L joint (damped case).
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Figure 5.9. Absolute value of the real part of the reflection and transmission

coefficients of near-field energy flux at an L joint (damped case).

Figure 5.10. Transmitted and reflected waves at a T joint corresponding to the

incident wave from the first element.
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Figure 5.11. Absolute value of the real part of the reflection and transmission

coefficients of longitudinal energy flux at a T joint (undamped case).

Figure 5.12. Absolute value of the real part of the reflection and transmission

coefficients of far-field energy flux at a T joint (undamped case).
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Figure 5.13. Absolute value of the real part of the reflection and transmission

coefficients of near-field energy flux at a T joint (undamped case).

wave. Some amount is transmitted into the second element as far-field flexural energy

flux. Negligibly small amount is transmitted into the third element as far-field flexural

energy flux, reflected as far-field flexural and longitudinal energy flux.

Figure 5.12 illustrates the transfer mechanism of the far-field energy flux, incident

from the first element. Major part of the energy flux is reflected and transmitted as

flexural energy flux. The amount of the energy flux, transmitted as longitudinal energy

flux increases with the frequency.

The evanescent waves are transmitted and reflected as evanescent waves, as can

be seen from Figure 5.13.

Figure 5.14, Figure 5.15 and Figure 5.16 show that, when damping is introduced,

negligibly small amount of the incident energy flux is transmitted and reflected by

evanescent waves.

The energy flux reflection and transmission coefficients at a cross-joint is pre-

sented as the last example. It is assumed that the members are identical, and the wave

is initiated from the first element.
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Figure 5.14. Absolute value of the real part of the reflection and transmission

coefficients of longitudinal energy flux at a T joint (damped case).

Figure 5.15. Absolute value of the real part of the reflection and transmission

coefficients of far-field energy flux at a T joint (damped case).
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Figure 5.16. Absolute value of the real part of the reflection and transmission

coefficients of near-field energy flux at a T joint (damped case).

Figure 5.17. Transmitted and reflected waves at a cross joint corresponding to the

incident wave from the first element.
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The reflection and transmission coefficients at a cross-joint for the undamped case

are presented in Figure 5.18 through Figure 5.20. Figure 5.21 to Figure 5.23, shows

the energy flux reflection and transmission coefficients for the damped case.

Figure 5.18. Absolute value of the real part of the reflection and transmission

coefficients of longitudinal energy flux at a cross joint (undamped case).

According to Figure 5.18, the incident longitudinal energy flux from the first

element is transmitted into the third element as longitudinal energy flux, and into the

second and fourth elements as far-field flexural energy flux. Some amount of energy

flux is reflected as longitudinal energy flux.

Figure 5.19. Absolute value of the real part of the reflection and transmission

coefficients of far-field energy flux a cross joint (undamped case).

Figure 5.19 reveals that, the incident far field flexural energy flux is reflected as
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far-field flexural energy flux. Some amount is transmitted into the adjacent members

as longitudinal and far-field flexural energy fluxes. In case of undamped structures,

the evanescent waves are transmitted and reflected without mode conversion at a cross

joint.

Figure 5.20. Absolute value of the real part of the reflection and transmission

coefficients of near-field energy flux at a cross joint (undamped case).

Figure 5.21. Absolute value of the real part of the reflection and transmission

coefficients of longitudinal energy flux at a cross joint (damped case).

When damping is introduced, evanescent waves become travelling waves, which

carry energy flux throughout the structure. The amount of the energy flux carried by

the evanescent waves is negligibly smaller than the energy flux carried by the longitu-

dinal and far-field flexural waves.
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Figure 5.22. Absolute value of the real part of the reflection and transmission

coefficients of far-field energy flux at a cross joint (damped case).

Figure 5.23. Absolute value of the real part of the reflection and transmission

coefficients of near-field energy flux at a cross joint (damped case).
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5.2. Input Energy Flux

The energy flux that enters the system is calculated using the generation ma-

trix presented by Beale and Accorsi [38]. The amplitudes of the displacement wave

modes that cause system to vibrate are the product of the generation matrix and the

forces/displacements that excite the system. Then, the amplitudes of velocity wave

modes are calculated by multiplying the displacement wave modes by iω. Since the

energy flux is the product of the kinetic energy and the velocity of seismic waves, the

input energy flux is calculated as;

EFin = R


1

2


ρAcgR|u̇|2

ρAcgFB|v̇F |2

ρAcgNB|v̇N |2


 (5.16)

In Eq. 5.16, superscript dot corresponds to the first derivative of the displacement with

respect to time.

5.3. Assemblage Procedure

In order to obtain dynamic response of a structure in terms of energy flux, the

reflection and transmission matrices calculated at each joint must be assembled to form

the structure. Then, the scattering matrix of a structure that comprises N number of

elements are derived as:

SEF=R


SEF1

SEF2

O

SEFN

 (5.17)

The amplitudes of the generated energy flux at adjacent joints are calculated

through system transmission matrices, which are diagonal matrices. The square of the
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exponential part of the waveguide equations, which corresponds to the waves traveling

in the direction of increasing spatial coordinate with respect to member’s corresponding

local coordinate system, is substituted into diagonal of the system transmission matrix

(STEF). To assign the amplitude of the energy flux at a joint caused by the energy flux

generated at an adjacent joint, a permutation matrix (PEF) is defined. For instance,

the outgoing energy flux uEFo11 at joint 1 in Figure 5.24 becomes incoming energy flux

uEFi21 at joint 2. The amplitude of the incoming energy flux can be related to the

outgoing energy flux by means of the system transmission and permutation matrices.

Figure 5.24. Energy flux through an element.

STEF and PEF matrices based on elementary rod and Bernoulli-Euler beam

theories are defined as:



uEFi11

vEFi11

vEFi12

uEFi21

vEFi21

vEFi22


= [STEF] [PEF]



uEFo11

vEFo11

vEFo12

uEFo21

vEFo21

vEFo22


(5.18)

where,

[STEF] =



e−2ikRx

e−2ikBx

e−2kBx

e−2ikRx

e−2ikBx

e−2kBx


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[PEF] =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



For a structure that comprises N number of elements, the incoming and outgoing

energy fluxes are related to each other as:



UEFi1

UEFi2

...

UEFiN


=


STEF1PEF1

STEF2PEF2

. . .

STEFNPEFN





UEFo1

UEFo2

...

UEFoN


(5.19)

Amplitude of the outgoing energy flux is calculated as:

{UEFo}=
{

[I−SEF∗STEF∗PEF]−1EFin

}
(5.20)

where, I is the identity matrix. Then, the net energy flux is calculated as:

{UEFnet}=R {{UEFo}−{UEFi}} (5.21)
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6. SOIL STRUCTURE INTERACTION

The dynamic response of a structure is influenced by the interactions between the

superstructure, the foundation, and the soil medium surrounding the foundation. The

motion of the foundation deviates from the free field motion due to the deformations

occur while the incident waves travelling through the soil medium into the structure.

Besides the response of the soil, generation of the base shear and moments cause dis-

placements and rotations at the foundation-soil interface, as well as additional waves

in the soil, as the waves travel through the superstructure. In literature, this process is

referred as ‘Soil-Structure Interaction (SSI)’ and comprises two successive mechanisms.

Modification of the free field motion is referred to ‘Kinematic Interaction’. Superstruc-

ture induced vibrations are influenced by the flexibility of the soil-foundation system

and referred to as ‘Inertial Interaction’. ‘Foundation Impedance Functions (FIF)’ de-

fine the stiffness and damping properties of the soil-foundation system. FIF depend

on the frequency and mode of the vibration, the properties of the foundation system

(geometry, embedment, etc.) and the properties of the soil (shear wave velocity, Pois-

son’s ratio, etc.). For structures susceptible to SSI (e.g. heavy structures founded

on soft soil), it is important that seismic forces and displacements are calculated by

considering the effects of SSI [4]”.

In this chapter, we demonstrate the applicability of the existing foundation

impedance functions in SEM, TWM and Energy Flux analysis. Detailed informa-

tion on the past studies can be found in the papers by Kausel [48], Gazetas [49] and

Stewart, Fenves and Seed [50]. Various numerical example on SSI can be found in

the papers by Gazetas [51] and Mylonakis, Nikolaou and Gazetas [52]. These two

papers also provide foundation impedance functions for various types of foundations

with different soil properties. The foundation impedance functions for different type

of foundations can be found in the handbook by Sieffert and Cevaer [53].

FIM for a surface foundation subjected to vertically propagating S waves are
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given as [52],

UFFM ∼= UFIM (6.1)

φFIM ∼= 0 (6.2)

where, UFFM , UFIM and φFIM are respectively the translational component of the free

field motion, the translational component of the FIM and the rocking component of

the FIM. FIFs are expressed by using one of the two forms given below:

Kj = KSj [Kj (a0) + ia0Cj (a0)] (6.3)

Kj = Kj1 (a0) + iKj2 (a0) (6.4)

where, Kj or Kj1 are the frequency dependent dynamic stiffness and Cj or Kj2 are the

radiation damping coefficient of jth wave mode, a0 is the dimensionless frequency and

Ksj is the static stiffness. Dimensionless frequency a0 is defined by,

a0 =
ωB

Vs
(6.5)

where, ω is the circular frequency, B is the half-width of the foundation, and Vs is the

shear wave velocity. Shear wave velocity of the soil is calculated as,

Vs =

√
G

ρ
(6.6)

where, G is the shear modulus of the soil and ρ is the mass density of per unit volume

of the soil.

Figures below represent the impedance functions for a rectangular footing resting

on a homogenous half-space with Poisson’s ratio of 0.33 [53]. In the figures, Kv is the

normalized stiffness in the vertical direction, Kh is the normalized stiffness in the

horizontal direction, Kr is the normalized stiffness about the horizontal direction and

Khr is the normalized coupling stiffness. Impedance functions for foundations with
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different foundation types and soil properties can be found in [51–53].

Figure 6.1. Normalized stiffness terms.

Figure 6.2. Normalized damping terms.

6.1. Coupling the Soil and the Structure

In soil-structure interaction analysis, the foundation represented by springs and

dashpots. The foundation impedance functions reflect the properties of the spring and

dashpot system in accordance with the soil and foundation properties and the mode

of the vibration. The soil structure system is idealized as demonstrated in the Figure

6.3.
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Figure 6.3. Representation of soil-structure system.

Foundation impedance function in matrix form is written as follows,


F

V

M

 =


Kh 0 Khr

0 Kv 0

Khr 0 Kr




u

v

φ

 (6.7)

In Eq. 6.7, u and v represent the displacements in the global x and y directions,

respectively, and F and V are the forces related to them. φ is the rotation about z axis

and M is the moment. Kh is the impedance function in the longitudinal direction, Kv

is in the vertical direction, Kr is the rocking impedance and Khr is the coupling term.

In case of shallow foundations, the coupling term can be neglected.

In spectral element method, foundation impedance functions can be directly su-

perimposed to the spectral element matrix of the superstructure.

In travelling wave method, soil structure interaction is defined by imposing the

foundation impedance function into the equilibrium and boundary conditions. The

load that produces the required displacement at that degree of freedom is added as an

applied load and the internal force produced due to the imposed displacement is added

to the force equilibrium. This is done by replacing the related terms of β matrix given

in Eq. 4.28 by the foundation impedance.
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In the calculation of energy flux, soil structure interaction is incorporated in the

analysis as it is done for the TWM.

6.2. Numerical Examples

In this section the same plane frame presented in the Section 3.4 is analyzed under

the effect of the same base excitation considering the soil structure interaction using

SEM and TWM. In the SEM model, the soil is modeled as springs having the stiffness

equal to the foundation impedance functions. The stiffness of the soil is superimposed

to the stiffness of the superstructure. In the TWM model, the β matrix given by Eq.

4.28 is replaced with the foundation impedance function.

Two SEM and two TWM models are used in order to see the effects of adopting

higher order theories on the dynamic response. In the first SEM and TWM models,

elementary theories are adopted. In the second SEM and TWM models, higher order

theories, namely, Love rod and Timoshenko beam theories, are used in the formulation

of structural elements.

The foundation impedance functions are calculated for a square base with 1.0*1.0

m. dimensions. Normalized stiffness and damping terms are presented in the Figure

6.1 and Figure 6.2, respectively. Foundation impedance functions are derived using

these charts, dimensions of the base and properties of the soil. In order to demonstrate

the effect of the soil class on the calculated response, soils with the average shear wave

velocities of 250 m/s. and 1000 m/s., which correspond to stiff soil and rock, are

selected.

Frequency domain response calculated at the DOF= 52 of Figure 3.12, which

corresponds to the top displacement in the global x direction. The response calculated

from the first and the second SEM models with and without considering SSI are pre-

sented in Figure 6.4 and Figure 6.5, respectively. If the stiff soil case is considered, with

the introduction of SSI the calculated displacement is both amplified and de-amplified

at certain frequencies. On the other hand, when the soil class is assumed to be rock,
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the calculated displacement becomes closer to the rigid base case. Besides the effects

on the calculated displacement response, the modal properties of the structure are also

changed by the SSI.

Figure 6.4. Frequency domain response at DOF= 52 calculated from the first SEM

model with and without considering SSI.

Figure 6.5. Frequency domain response at DOF= 52 calculated from the second SEM

model with and without considering SSI.

Figure 6.6 and Figure 6.7 illustrate the response at DOF= 52 in the time domain.

When the soil class is assumed to be stiff soil, SSI causes to increase the displacement

considerably.
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Figure 6.6. Time domain response at DOF= 52 calculated from the first SEM model

with and without considering SSI.

Figure 6.7. Time domain response at DOF= 52 calculated from the second SEM

model with and without considering SSI.
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Figure 6.8 and Figure 6.9 show the calculated base shear from the first and the

second SEM models with and without considering the SSI. Introduction of SSI causes

to decrease in the base shear whether the soil class is decided as stiff soil or rock.

Figure 6.8. Base shear in the time domain calculated from the first SEM model with

and without considering SSI.

Figure 6.9. Base shear in the time domain calculated from the second SEM model

with and without considering SSI.

The response calculated from the first and the second TWM models with and

without considering SSI are presented in Figure 6.10 and Figure 6.11, respectively.

If the stiff soil is selected, introduction of SSI causes both amplification and de-
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amplification of the response at certain frequencies. Besides the effects on the cal-

culated displacement response, the modal properties of the structure are also changed

by the SSI.

Figure 6.10. Frequency domain response at DOF= 52 calculated from the first TWM

model with and without considering SSI.

Figure 6.11. Frequency domain response at DOF= 52 calculated from the second

TWM model with and without considering SSI.

Figure 6.12 and Figure 6.13 illustrate response at DOF= 52 in the time domain.

When the SSI is considered, in case of stiff soil, the displacement is amplified consid-

erably.
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Figure 6.12. Time domain response at DOF= 52 calculated from the first TWM

model with and without considering SSI.

Figure 6.13. Time domain response at DOF= 52 calculated from the second TWM

model with and without considering SSI.
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The response calculated based on SEM and TWM analysis for both with and

without considering SSI are approximately identical. Thus, the figures related to the

base shear is not presented.
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7. CONCLUSIONS

This thesis presents the methodology and the applications of the Spectral Ele-

ment, Travelling Wave, and Energy Flux methods in the dynamic analysis of engineer-

ing structures. These methods are highly efficient in analyzing the dynamic response

and identifying the dynamic characteristics of engineering structures in the frequency

domain. Conventional Finite Element Method is not able to capture the dynamic re-

sponse accurately in the medium to high frequency range, unless the mesh size used

in modeling is smaller than the shortest wavelength. Thus, these new techniques are

more reliable for the dynamic analysis and damage detection in structures at high

frequencies.

The procedure to assemble arbitrarily oriented members, and the formulation

of the spectral element matrices based on elementary and higher order theories are

presented for planar frames. This assembly procedure can be extended to space frames.

However, the space frame case is not covered in this thesis for simplicity. The dynamic

response results obtained from the SEM analyses are compared with the FEM analyses’

results. The FEM analysis predicts erroneous results in the medium to high frequency

range, according to the given examples. The mesh size used in the FEM analysis is

reduced in order to improve the accuracy. However, the improved FEM results are not

as accurate as the SEM results. On the other hand, SEM cannot be applied directly to

nonlinear systems since it is based on the superposition of the wave modes of different

frequencies. Various techniques to implement SEM in non-linear analysis of structures

can be found in the literature. Even if the method is presented only for one dimensional

elements in this document, it can be extended to two dimensional elements. However,

if the governing differential equation of the wave solution of an element does not exist,

SEM cannot be used in the analysis of structures with such elements.

The TWM analysis, based on the elementary and higher order element theories,

is presented in this document. The construction of the reflection, transmission and

generation matrices are outlined. The assemblage procedure to handle two-dimensional
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plane frame structures are also presented. This method can be extended to the analysis

of three-dimensional plane frame elements, as well as to the analysis of two-dimensional

waveguides, such as plates. Nonlinear dynamic analysis of structures can be done by

using this method. However, since it is based on the superposition of the modes, it

cannot be applied directly.

Reflection and transmission coefficients for the energy flux are obtained based only

on the elementary theories. The procedure to assemble the elements for a structure is

outlined. They can be derived for the higher order theories and assembled to construct

a structural system. The derivation of the scattering and generation matrices, and

assemblage process are analogous to TWM. Since the incoming and outgoing kinetic

energies are stable parameters, energy flux becomes a convenient and reliable method

in the dynamic analysis of structures. Moreover, it can be used both in linear and non-

linear analysis. By means of the energy flux, the energy demand and energy absorption

through a structure can be tracked with respect to frequency or time.

Another advantage of these methods is that Soil-Structure Interaction (SSI) ef-

fects can easily be incorporated in the analysis. SSI represents the influence of soil flexi-

bility around the foundation on the response of a structure, and can change the dynamic

response substantially. It is a critical factor controlling damage during earthquakes.

SSI must be considered in the analysis of structures founded on soft soils. Foundation

Impedance Functions (FIF), which represent the stiffness and damping properties of

the soil-foundation system, are frequency dependent. Although, impedance functions

can be approximated in time domain in the form of recursive filters [4], it is much easier

to incorporate them in the frequency domain directly in SEM, TWM and Energy Flux

analyses.
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4. Şafak, E., “Time-Domain Representation of Frequency-Dependent Foundation

Impedance Functions”, Soil Dynamics and Earthquake Engineering , Vol. 26, No. 1,

pp. 65–70, 2006.

5. Clough, R. W. and J. Penzien, Dynamics of Structures , Computers & Structures,

Inc., Berkeley, CA, USA, 2003.

6. Doyle, J. F., Static and Dynamic Analysis of Structures: with an Emphasis on Me-

chanics and Computer Matrix Methods , Kluwer Academic Publishers, Dordrecht,

Netherlands, 1991.

7. Love, A. E., A Treatise on the Mathematical Theory of Elasticity , Dover Publica-

tions, New York, NY, USA, 1927.

8. Mindlin, R. D. and G. Herrmann, “A One Dimensional Theory of Compressional

Waves in an Elastic Rod”, In Proceedings of the First U.S. National Congress on

Applied Mechanics , p. 187–191, 1951.

9. Viktorow, I. A., Rayleigh and Lamb Waves in Physical Theory and Applications ,



101

Plenum Press, New York, NY, USA, 1967.

10. Krawczuk, M., J. Grabowska and M. Palacz, “Longitudinal Wave Propagation.

Part I— Comparison of Rod Theories”, Journal of Sound and Vibration, Vol. 295,

No. 3–5, pp. 461–478, 2006.

11. Martin, M., S. Gopalakrishnan and J. F. Doyle, “Wave Propagation in Multiply

Connected Deep Waveguides”, Journal of Sound and Vibration, Vol. 174, No. 4,

pp. 521–538, 1994.

12. Doyle, J. F., Wave Propagation in Structures: Spectral Analysis Using Fast Dis-

crete Fourier Transforms , Springer Science & Business Media, LLC, New York,

NY, USA, 1997.

13. Timoshenko, S. P., “On the Correction for Shear of the Differential Equation for

Transverse Vibrations of Prismatic Bars”, Philosophical Magazine, Vol. 41, pp.

744–746, 1921.

14. Doyle, J. F., Wave Propagation in Structures: an FFT-Based Spectral Analysis

Methodology , Springer-Verlag, New York, NY, USA, 1989.

15. Gopalakrishnan, S., Spectral Analysis of Wave Propagation in Connected Waveg-

uides , Ph.D. Thesis, Purdue University, 1992.

16. Rizzi, S. A. and J. F. Doyle, “A Spectral Element Approach to Wave Motion in

Layered Solids”, Journal of Vibration and Acoustics , Vol. 114, No. 4, pp. 569–577,

1992.

17. Rizzi, S. A. and J. F. Doyle, “Spectral Analysis of Wave Motion in Plane Solids

with Boundaries”, ASME, Transactions, Journal of Vibration and Acoustics , Vol.

114, No. 2, pp. 133–140, 1992.

18. Rose, J. L., Ultrasonic Guided Waves in Solid Media, Cambridge University Press,



102

Cambridge, UK, 2014.

19. Usik, L., Spectral Element Method in Structural Dynamics , Wiley, Singapore, 2009.

20. Bathe, K. J., Finite Element Procedures in Engineering Analysis , Prentice Hall,

Englewood Cliffs, NJ, USA, 1996.

21. Chopra, A. K., Dynamics of Structures , Prentice Hall, Englewood Cliffs, NJ, USA,

1995.

22. The MathWorks, I., MATLAB , 2018, http://www.mathworks.com.

23. Computers and Structures, I., SAP2000 , 2018, https://www.csiamerica.com.

24. Graff, K. F., Wave Motion in Elastic Solids , Ohio State University Press, Colum-

bus, OH, USA, 1975.

25. Cremer, L., M. Heckl and B. A. T. Petersson, Structureborne Sound: Structural

Vibrations and Sound Radiation at Audio Frequencies , Springer-Verlag, Berlin,

2005.

26. Mace, B. R., “Wave Reflection and Transmission in Beams”, Journal of Sound and

Vibration, Vol. 97, No. 2, pp. 237––246, 1984.

27. Milne, H. K., “A Note on Beam Reflection Matrices and Reciprocity”, Journal of

Sound and Vibration, Vol. 114, No. 1, pp. 149–151, 1987.

28. Mei, C. and B. R. Mace, “Wave Reflection and Transmission in Timoshenko Beams

and Wave Analysis of Timoshenko Beam Structures”, Journal of Vibration and

Acoustics , Vol. 127, No. 4, pp. 382–394, 2005.

29. Doyle, J. F. and S. Kamle, “An Experimental Study of the Reflection and Transmis-

sion of Flexural Waves at Discontinuities”, Journal of Applied Mechanics , Vol. 52,

No. 3, pp. 669–673, 1985.



103

30. Doyle, J. F. and S. Kamle, “An Experimental Study of the Reflection and Trans-

mission of Flexural Waves at an Arbitrary T-Joint”, Journal of Applied Mechanics ,

Vol. 54, No. 1, pp. 136–140, 1987.

31. Mei, C., “Comparison of the Four Rod Theories of Longitudinally Vibrating Rods”,

Journal of Vibration and Control , Vol. 21, No. 8, pp. 1639–1656, 2015.

32. Nagem, R. J. and J. H. W. Jr., “Dynamic Analysis of Large Space Structures Using

Transfer Matrices and Joint Coupling Matrices”, Journal of Structural Mechanics ,

Vol. 17, No. 3, pp. 349–371, 1989.

33. Howard, S. M. and Y.-H. Pao, “Analysis and Experiments on Stress Waves in

Planar Trusses”, Journal of Engineering Mechanics , Vol. 124, No. 8, pp. 884–891,

1998.

34. Mace, B. R., D. Duhamel, M. J. Brennan and L. Hinke, “Finite Element Prediction

of Wave Motion in Structural Waveguides”, The Journal of the Acoustical Society

of America, Vol. 117, No. 5, pp. 2835–2843, 2005.

35. Waki, Y., B. R. Mace and M. J. Brennan, “Free and Forced Vibrations of a Tyre

Using a Wave/Finite Element Approach”, Journal of Sound and Vibration, Vol.

323, No. 3–5, pp. 737–756, 2009.

36. Flotow, A. H. V., “Disturbance Propagation in Structural Networks”, Journal of

Sound and Vibration, Vol. 106, No. 3, pp. 433–450, 1986.

37. Miller, D. V. and A. H. V. Flotow, “A Travelling Wave Approach to Power Flow

in Structural Networks”, Journal of Sound and Vibration, Vol. 128, No. 1, pp.

145–162, 1989.

38. Beale, L. S. and M. L. Accorsi, “Power Flow in Two- and Three Dimensional Frame

Structures”, Journal of Sound and Vibration, Vol. 185, No. 4, pp. 685––702, 1995.



104

39. Housner, G. W., “Limit Design of Structures to Resist Earthquakes”, Proceedings

of the First World Conference on Earthquake Engineering , pp. 5.1–5.13, 1956.

40. Akiyama, H., “Earthquake Resistant Design Based on the Energy Concept”, Pro-

ceedings of 9th WCEE , 1988.

41. Lyon, R. H., Statistical Energy Analysis , MIT Press, Cambridge, MA, USA, 1975.

42. Carcaterra, A. and A. Sestieri, “Energy Density Equations and Power Flow in

Structures”, Journal of Sound and Vibration, Vol. 188, No. 2, pp. 269–282, 1995.

43. Wohlever, J. C. and R. J. Bernhard, “Mechanical Energy Flow Models of Rods

and Beams”, Journal of Sound and Vibration, Vol. 153, No. 1, pp. 1–19, 1992.

44. Lase, Y., M. N. Ichchou and L. Jezequel, “Energy Flow Analysis of Bars and Beams:

Theoretical Formulations”, Journal of Sound and Vibration, Vol. 192, No. 1, pp.

281–305, 1996.

45. Ichchou, M. N., A. L. Bot and L. Jezequel, “Energy Models of One-Dimensional,

Multi-Propagative Systems”, Journal of Sound and Vibration, Vol. 201, No. 5, pp.

535–554, 1997.

46. Mace, B. R. and P. J. Shorter, “Energy Flow Models From Finite Element Analy-

sis”, Journal of Sound and Vibration, Vol. 233, No. 3, pp. 369–389, 2000.

47. Park, Y.-H. and S.-Y. Hong, “Vibrational Energy Flow Analysis of Corrected Flex-

ural Waves in Timoshenko Beam–Part I: Theory of an Energetic Model”, Shock

and Vibration, Vol. 13, No. 3, pp. 137–165, 2006.

48. Kausel, E., “Early History of Soil–Structure Interaction”, Soil Dynamics and

Earthquake Engineering , Vol. 30, No. 9, pp. 822–832, 2010.

49. Gazetas, G., “Analysis of Machine Foundation Vibrations: State of the Art”, In-

ternational Journal of Soil Dynamics and Earthquake Engineering , Vol. 2, No. 1,



105

pp. 2–42, 1983.

50. Stewart, J. P., G. L. Fenves and R. B. Seed, “Seismic soil-structure interaction in

buildings. I: Analytical methods”, Journal of Geotechnical and Geoenvironmental

Engineering , Vol. 125, No. 1, pp. 26–37, 1999.

51. Gazetas, G., “Formulas and Charts for Impedances of Surface and Embedded

Foundations”, Journal of Geotechnical Engineering , Vol. 117, No. 9, pp. 1363–

1381, 1991.

52. Mylonakis, G., S. Nikolaou and G. Gazetas., “Footings Under Seismic Loading:

Analysis and Design Issues with Emphasis on Bridge Foundations”, Soil Dynamics

and Earthquake Engineering , Vol. 26, No. 9, pp. 824–853, 2006.

53. Sieffert, J. G. and F. Cevaer, Manuel des Fonctions d’Impedance, Fondations Su-

perficielles , Ouest Editions, Presses Academiques, France, 1992.




