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ABSTRACT 

 

 

A METHOD TO CALIBRATE ANALYTICAL MODELS OF MULTI-

STORY BUILDINGS FROM EARTHQUAKE RECORDS 

 

 

For multi-story buildings, the standard approach to develop analytical models from 

earthquake records is to match the modal characteristics (i.e., modal frequencies, damping 

ratios and mode shapes) of the model with those identified from the data. Typically, the 

response of the building is recorded in the basement, roof and a few intermediate floors. 

When the number of the instrumented floors is less than the total number of floors, an 

analytical model cannot be constructed uniquely. In other words, more than one model can 

match the recorded response.  

 

   This study presents a new method based on the transfer matrix formulation of the 

response. The method requires that vibration time histories are known at every floor. Since 

they are typically not recorded at every floor, we first present a methodology to estimate 

vibration time histories at non-instrumented floors from those of the instrumented floors. 

We assume that, at each modal frequency, the mode shape of a multi-story building can be 

approximated as a linear combination of the corresponding mode shapes of a shear beam 

and a bending beam. We determine the combination factors by using the least-squares 

approximation to the mode shapes identified from the records. The accuracy of the 

methodology is tested by using recorded motions from two buildings that have instruments 

at every floor. Assuming that only a few floors had instruments, the vibration time histories 

at other floors are calculated and compared with the recorded time histories. The results of 

the methodology are also compared with those from other approximation techniques, such 

as linear or cubic interpolations, and found to be much superior.   

 

Once the vibration time histories are known at every floor, we present a new approach 

to calibrate analytical models of multi-story buildings based on the transfer matrix 

formulation of the response. The methodology utilizes top-to-bottom spectral-ratios at each 
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story and shows that these spectral ratios are not influenced by any structural changes in 

the stories below. Thus, starting from the top story, the stiffnesses of each story can be 

determined uniquely by matching the dominant frequencies of the spectral ratios, assuming 

that the mass of each floor is known or estimated. A numerical example is presented to 

confirm the validity of the approach.  

   

The study proves that the story stiffnesses of a multi-story building can be determined 

uniquely by using vibration records taken from only a few floors.  
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ÖZET 

 

 

ÇOK KATLI BİNALARIN ANALİTİK MODELLERİNİN DEPREM 

KAYITLARI KULLANILARAK KALİBRASYONU İÇİN BİR 

YÖNTEM 
 

 

Çok katlı binaların analitik modellerinin deprem kayıtlarından geliştirilmesi için 

kullanılan standart yaklaşım, modelin modal karakteristiklerinin (örneğin, modal frekans, 

sönüm oranı ve mod şekilleri) kayıttan tanımlanmış olan modal karakteristikleriyle 

eşleştirilmesidir.  Binaların tepkisi, tipik olarak bodrum katı, çatı ve bir kaç ara katta kayıt 

edilmektedir. Enstrümante edilmiş kat sayısının, toplam kat sayısından az olduğu 

durumlarda, analitik modellerin kalibrasyonu ilgili binanın analitik modeline özgün 

olmamaktadır. Diğer bir değişle, birden fazla analitik model kayıt edilmiş bina tepkisiyle 

eşleşebilir. 

  

Bu çalışma, tepkinin transfer matrisi formülasyonunu kullanarak yeni bir yöntem 

sunmaktadır. Bu metotda, titreşimin zaman tanım alanındaki kayıtlarının her katta 

bilinmesi gerekmektedir. Ancak, kayıtlar genelde her katta alınmadığı için, öncelikle, 

enstrümante edilmemiş katlardaki titreşim kayıtlarının, enstrümante edilmiş katlardaki 

kayıtlardan hesaplanabilmesi için bir yöntem sunulmuştur. Bu yöntemde, çok katlı 

yapıların, her bir modal frekanstaki mod şekillerinin, kesme ve eğilme kirişi mod 

şekillerinin doğrusal bir kombinasyonu olarak elde edilebileceği varsayılmıştır. 

Kombinasyon çarpanları, kayıtlardan belirlenen mod şekillerine en küçük kareler yaklaşımı 

kullanılarak belirlenmiştir. Yöntemin doğruluğu, tüm katları enstrümante edilmiş olan iki 

yapı kullanılarak test edilmiştir. Sadece birkaç katta enstrüman olduğu varsayılarak, diğer 

katların titreşim kayıtları hesaplanmış ve ölçülen titreşim kayıtlarıyla karşılaştırılmıştır. Bu 

çalışmada geliştirilen yöntem, kullanılan diğer yaklaşık hesap yöntemleri (örneğin, 

doğrusal ve kübik interpolasyon) ile de karşılaştırılmış, ve sunulan yöntem ile daha iyi 

sonuçlar elde edildiği gösterilmiştir. 
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Her kattaki titreşimlerin zaman tanım alanındaki değerleri elde edildikten sonra, 

analitik modellerin kalibrasyonu için, tepkinin transfer matrisi formülüne dayalı yeni bir 

yöntem sunulmuştur. Bu yöntemle, her katın üst ve alt döşemelerindeki kayıtlarının 

spektral oranlarının, sadece o ve üstündeki katların yapısal karakteristiklerine bağlı olduğu, 

ve bu spektral oranların alt katta oluşacak olan hiç bir yapısal değişimden etkilenmediği 

gösterilmiştir. Bu nedenle, en üst kattan başlanılarak, birbirini izleyen katlar arasındaki 

spectral oranların hakim frekansları belirlenip, katlardaki kütle değerlerinin de bilindiği 

veya hesaplandığı varsayılarak, her bir katın hakim frekansına karşı gelen rijitliği bağımsız 

bir şekilde tayin edilebilir. Bu yaklaşımın geçerliliği örneklerle doğrulanmıştır.  

 

Bu çalışma, çok katlı binalarda sadece bir kaç kattan elde edilmiş titreşim kayıtlarını 

kullanarak, her katın rijitlik değerlerinin bağımsız olarak belirlenebileceğini 

kanıtlamaktadır. 
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1. INTRODUCTION 

 

 

1.1. Objectives of the Study 

 

The objective of the study is to introduce a new method to calibrate analytical 

models of multi-story buildings from their vibration records. The accuracy of calibrated 

analytical models is directly related to the proper identification of the dynamic properties 

of the structure from vibration records. In general, records are available at a limited 

number of floors. As a result, calibration of analytical models from a limited number of 

records can cause non-unique models. The method introduced here requires that the 

vibration time histories are known at every floor. Since this is not typically the case, we 

first develop a methodology to estimate the vibration time histories at the non-instrumented 

floors by using the recorded vibrations at the instrumented floors, assuming that the real 

mode shape is a linear combination of the mode shapes of a bending beam and a shear 

beam. We call this approach the Mode Shape Based Estimation (MSBE) method.  

 

Once the vibration time histories are known at every floor, we then present a 

calibration approach based on the transfer matrix formulation of the response, and use top-

to-bottom spectral ratios of the records at each story to identify story stiffnesses uniquely.  

 

1.2. Justification for the Study 

 

For multi-storey buildings, analytical models are commonly developed from 

earthquake records by matching the identified modal characteristics from the records (i.e., 

modal frequencies, damping ratios, and mode shapes) with those of the model. However, 

as mentioned earlier, records in most cases are available only at a limited number of floors. 

Models cannot be calibrated uniquely if they are based on records from a limited number 

of floors. In other words, more than one model can match the recorded properties of the 

structure. Moreover, modal properties can be influenced by environmental factors, as well 

as soil-structure interaction. Doebling et al. (1996) and Clinton et al. (2006) give examples 

of the effects of environmental factors (namely, temperature and rain) on modal 

frequencies. Similarly, soil-structure interaction also alters (i.e., reduces) the fundamental 

frequency (Jennings and Bielak, 1973; Şafak, 1995; Stewart and Fenves, 1998; Trifunac et 
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al., 2010).  Ideally, we would like to calibrate our model based on the fixed-base properties 

of the structure.  It would be much harder to calibrate it with soil-structure interaction 

because of the frequency dependence of soil behaviour. Furthermore, it was shown that the 

fundamental frequency is not very sensitive to the changes in the physical characteristics of 

the structure. Trifunac et al. (2010) have investigated a threshold change in the building 

fundamental frequency that is associated with structural damage and they concluded that a 

drop off 20–30% in the fundamental frequency of a building may not necessarily lead to 

damage. Similarly, Şafak (2005) has shown, by using a 10-story analytical model that for a 

10% reduction in the fundamental frequency, more than 40% reduction in the story 

stiffness is required.  

 

More accurate analytical models can be developed, if we knew the vibration time 

histories at every floor. The common way to estimate vibration time histories at non-

instrumented floors is to interpolate the calculated displacement time histories over the 

height of the building by using various interpolation techniques, such as linear, cubic, 

spline, etc. However, as will be explained in detail at Section 2, the accuracy of the 

interpolation is strongly dependent on where the instruments are placed (Goel, 2008). The 

MSBE (Mode Shape Based Estimation) methodology proposed in this study overcomes the 

limitations of the interpolation approaches.  

 

Once the motions of every floor are known, a methodology based on the transfer 

matrix formulation of the response is introduced to calibrate analytical models from the 

recorded response.  

 

1.3. Organization of the Study 

 

Chapters 2 and 3 provide literature reviews on the estimation of building motions at 

non-instrumented floors, and the development of analytical models from vibration records, 

respectively.  

 

Chapter 4 presents the theoretical background and the application of MSBE method. 

Equations for the least-squares approximation of the mode shapes of a building as a linear 

combination of the mode shapes of a shear beam and a bending beam are developed. The 
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methodology introduced are tested by using earthquake records from two densely 

instrumented buildings, the Factor Building at UCLA Campus in Los Angeles and the 

Millikan Library at Caltech in Pasadena, both of which have sensors at every floor.  

 

Chapter 5 presents the new approach to develop analytical models from vibration 

records by using transfer matrix formulation of the response.  A ten-story building model is 

used to illustrate the new approach.  

  

 Chapter 6 presents the conclusions of the study.  
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2. LITERATURE REVIEW 

 

 

2.1.   Estimation of Motions at Non-Instrumented Floors 

 

For estimation of building motions at non-instrumented floors, the commonly used 

technique is the interpolation between the instrumented floors over the height of the 

building. The cubic and linear polynomial interpolation approaches have been used in 

many studies (De la Llera and Chopra, 1997; Goel, 2005, 2007; Skolnik et al., 2006, 

Naeim et al., 2006).  

 

For the performance evaluations of 17 instrumented buildings after the January 17, 

1994 Northridge Earthquake, Naeim (1997) has used a cubic spline interpolation, which 

results in smooth change between recorded data points, assuming that the recorded points 

are the knots of the cubic spline.  He noted that cubic-spline interpolation is not suitable for 

base-isolated buildings. In Naeim et al. (2004), both cubic-spline and linear interpolations 

are used to predict the displacement response at each floor. The authors recommend that 

linear interpolation may be used for sub-basement levels of a tall building, but it should be 

combined with cubic interpolation for the floors above. The combination of cubic-linear 

interpolation procedure is also recommended for base-isolated buildings. 

 

Limongelli (2003) proposed a criterion for the optimal location of sensors for 

structural health monitoring. The criterion relies on the reconstruction of seismic response, 

where no sensors are available. It is assumed that the recorded floors are the knots of cubic 

splines. An error function has been defined to measure the effectiveness of the cubic spline 

method. Optimal sensor locations are determined as those corresponding to the minimum 

value of the global error.  

 

Goel (2008) discussed the accuracy of cubic polynomial interpolation approach in 

buildings with significant stiffness discontinuities. Using computer models, response time 

histories are calculated for selected buildings to simulate the motions at each floor. A 

limited number of simulated motions are used to test the accuracy of the cubic polynomial 



5 
 

interpolation. The results showed that the cubic interpolation is accurate if the building is 

instrumented at regular intervals over its height, and additional instruments are located in 

the building where stiffness changes significantly. Two reinforced-concrete buildings have 

been analysed to investigate the procedure. The results showed clearly that the accuracy of 

the method depends on the location of instrumented floors.   

 

2.2.   Developing Analytical Models from Vibration Records 

 

A large number of studies have been conducted for the identification of the dynamic 

properties of structures from their vibration records. Consequently, different approaches 

and methodologies have been introduced to calibrate analytical models from the records. 

Beck and Katafygiotis (1998) suggested a model updating procedure, which is based on the 

coherency of the response of a finite-element model with the recorded response. Rahmani 

and Todorovska (2014) constructed analytical models based on the recorded wave 

propagation characteristics of the building.  

 

Development of analytical models has been included in several review papers on 

SHM- Structural Health Monitoring (e.g., Mottershead and Friswell, 1993). Chang et al. 

(2003) presented a review, which focused on the global health monitoring methods and the 

inaccuracies in the results. The paper states that the dynamic characteristics of structures 

may change due to environmental factors, such as temperature, moisture, and other 

environmental factors, and also some damage may not affect the natural frequencies. 

Another category of methods, known as Matrix Update Method, relies on updating the 

mass, damping and stiffness matrices of the model optimally to match the measured data. 

However, result of this optimization is not unique. Another review paper by Shon et al. 

(2004) covers the studies between 1996 and 2001. The authors point out that constructed 

analytical models are often uncertain and not fully validated with experimental data. 

Carden and Fanning (2004) provided a review that included various algorithms in time, 

frequency and modal domains. The authors explained that, in case of limited amount of 

measured data coupled with a large number of individual parameters, model updating 

methods can result in non-unique solutions.  
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Kunnath et al. (2004) is carried out an evaluation of the four analytical methods 

recommended in FEMA-356 for the estimation of seismic demands on two instrumented 

steel buildings. A 6-story building with no visible signs of damage was calibrated by using 

records from three earthquakes. The calibration first aimed to match the fundamental 

period identified from the Northridge Earthquake. The model was further calibrated by 

using the data from the Whittier-Narrows Earthquake, which required an increase in the 

stiffness.  The results showed that Whittier-Narrows calibrated model is too stiff to re-

produce the Northridge response, and Northridge calibrated model is too soft to re-produce 

Whittier-Narrows response. The main reason for the difference is the participation of non-

structural members in the latter one. They concluded that calibrating structural models to 

observed response is sensitive to the assumptions in modelling the mass and the stiffness, 

and indirectly, to the intensity of ground motion.   

 

Goel (2005) has investigated the FEMA-356 Nonlinear Static Procedure (NSP) and 

Modal Pushover Analysis (MPA) procedure by using the recorded motions of four 

buildings that were damaged during the 1994 Northridge Earthquake. The author pointed 

out that recorded motions of buildings, especially those deformed into the inelastic range, 

provide a unique opportunity to evaluate calibration procedures. The analytical models are 

calibrated by matching the fundamental period of the model and the elastic period obtained 

from the system identification.  The accelerations recorded at the base are used as the input 

motion to the model in order compute the time histories of floor displacements and story 

drifts.  
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3. ESTIMATION OF MOTIONS AT NON-INSTRUMENTED 

FLOORS 

 

 

Multi-story buildings deform in shear and bending. In short buildings and buildings 

with no shear walls; the response is dominated by shear-type deformations, whereas in tall 

buildings and buildings with shear walls, the response is dominated by bending-type 

deformations. Therefore, we can reasonably assume that the response of a typical multi-

story building is a combination of shear and bending-type deformations. 

   

Several researchers have considered only shear-type deformations for the equivalent 

model of buildings (e.g., Westergaard 1933, Jennings and Newmark, 1960, Iwan 1997). 

Some researchers used Bernoulli-Euler beams to model flexural-type deformations (e.g., 

Foutch and Jennings, 1978). Miranda (1999) and Miranda and Akkar (2006) have used an 

equivalent continuum model, which is a combination of flexural and shear cantilever 

beams, to estimate the maximum roof displacements and inter-story drifts of buildings 

responding mainly in the first mode. Figure 3.1, adopted from Miranda (1999), shows 

schematically the bending and shear deformations, and the total deformation.  

 

                         

  

Figure 3.1. Deformations of buildings: (a) bending, (b) shear, and (c) total. 

 

Based on the arguments above, we propose that the behaviour of a multi-story 

building at each mode (i.e., the mode shape) can be approximated as a linear combination 

of the corresponding mode shapes of a shear beam and a bending beam. 

 

(a) (b)  (c) 
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3.1.   Mode Shapes of a Shear Beam 

 

The natural frequencies and the corresponding mode shapes of shear beam can be 

identified through the solution of the following differential equation (Chapter 67, Jennings, 

2003): 

 

                                                                    
𝜕2𝑢

 𝜕𝑡2
−

𝐺

𝜌

𝜕2𝑢

𝜕𝑥2
=  𝑓(𝑥, 𝑡)                                          (3.1) 

 

here, G is the shear modulus and ρ is the density. Boundary conditions are:  

  

At the clamped end:  u= 0;   at the free end:  𝜕𝑢/𝜕𝑥 = 0                    (3.2) 

 

with these boundary conditions, the equations for the natural frequencies and the mode 

shapes are found to be (Chapter 67, Jennings, 2003):                      

                                                                                                                                                                                  

                                                𝜔𝑛 = √
𝐺

𝜌
∙
(2𝑛 − 1)𝜋

2ℎ
,     𝑛 = 1,2,3…                             (3.3) 

                                              

                                       𝜙𝑛(𝑥) = 𝑠𝑖𝑛
(2𝑛 − 1)𝜋 ∙ 𝑥

2ℎ
,    𝑛 = 1,2,3…                      (3.4) 

 

where h is the height of the beam.  

 

3.2.   Mode Shapes of a Bending Beam 

 

Deformations of a bending beam occur as extensions on the convex side (due to 

lengthening) and compressions on the concave side (due to shortening). The natural 

frequencies and the corresponding mode shapes of a bending beam can be obtained by 

solving the following differential equation (Chopra, 2007): 

 

    𝑚
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
 = 𝑓(𝑥, 𝑡)                                  (3.5) 
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Here, u(x,t) is the transverse deflections of the beam under the external dynamic 

forces f(x,t), x is span wise coordinate, m is mass per unit length, EI is the flexural rigidity 

of the beam, where E is the Young’s Modulus of elasticity and I is the moment of inertia. 

The general solution for the spatial function is: 

                                  

𝜙(𝑥) = 𝐶1𝑠𝑖𝑛𝛽𝑥 + 𝐶2𝑐𝑜𝑠𝛽𝑥 + 𝐶3𝑠𝑖𝑛ℎ𝛽𝑥 + 𝐶4𝑐𝑜𝑠ℎ𝛽𝑥               (3.6) 

 

where                                                   

                     𝛽4 =
𝜔2 𝑚

𝐸𝐼
                                                             (3.7) 

  

The four unknown constants, 𝐶1, 𝐶2, 𝐶3 and  𝐶4, are determined from the following four 

boundary conditions:  

 

At the clamped end 𝑢 = 0    and    
𝜕𝑢

𝜕𝑥
= 0                                (3.8a)   

 

                                      At the free end:    
𝜕2𝑢

𝜕𝑥2 = 0   and   
𝜕3𝑢

𝜕𝑥3 = 0                                (3.8b)  

 

Based on these, the modal equations for a cantilever bending beam becomes: 

                                                          

1 + 𝑐𝑜𝑠𝛽𝐿 𝑐𝑜𝑠ℎ𝛽𝐿 = 0                                               (3.9) 

 

By solving numerically, we find the following for the first four modes:  

                                           

       𝛽𝑛𝐿 =  1.8751, 4.6941, 7.8548 and 10.996                      (3.10) 

 

For n>4, 𝛽𝑛𝐿 ≅ (2𝑛 − 1)𝜋/2. The corresponding natural frequencies and the mode shapes 

for a bending beam are: 

                                                             

                                                       𝜔𝑛
2 =

  𝛽𝑛
4(𝐸𝐼)

𝑚
                                                  (3.11) 
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 𝜙𝑛(𝑥) = 𝐶𝑛 [𝑐𝑜𝑠ℎ𝛽𝑛𝑥 − 𝑐𝑜𝑠𝛽𝑛𝑥 −
𝑐𝑜𝑠𝛽𝐿 + 𝑐𝑜𝑠ℎ𝛽𝐿

𝑠𝑖𝑛𝛽𝐿 + 𝑠𝑖𝑛ℎ𝛽𝐿
(𝑠𝑖𝑛ℎ𝛽𝑥 − 𝑠𝑖𝑛𝛽𝑥)]           (3.12) 

 

The comparisons of the first six modes of a shear beam and a bending beam are 

shown in Figure 3.2. The mode shapes are normalized by the amplitude of top floor. 

 

      

            

Figure 3.2.  The comparisons of first six modes of the shear beam and the bending beam. 
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It can be observed from Figure 3.2 that the slopes of mode shapes are different and 

the peaks occur at different heights. More detail on the modal characteristics of shear and 

bending beams can be found elsewhere (e.g., Chopra, 2007; Chapter 67, Jennings, 2003). 

 

3.3.   Least-Squares Approximation of Mode Shapes 

 

 For an N-story linearly elastic multi-story building subjected to earthquake loads, 

the displacements relative to ground can be calculated by the superposition of modal 

displacements, as  

                                               

𝑢𝑗,𝑘(𝑡) = Γ𝑗 ∙ 𝜙𝑗,𝑘 ∙ 𝑞𝑗(𝑡)                                                   (3.13a) 

                                             

𝑢𝑘(𝑡) = ∑ Γ𝑗 ∙ 𝜙𝑗,𝑘 ∙ 𝑞𝑗(𝑡)
𝑁

𝑗=1
                                       (3.13b) 

 

where: 

 

𝑢𝑗,𝑘(𝑡)  : time variation of the j
th

 mode relative displacement at k
th

 floor;  

𝑢𝑘(𝑡)    : time variation of the total relative displacement at k
th

 floor;  

Γ𝑗          : modal participation factor for the j
th 

mode;  

𝜙𝑗,𝑘      : amplitude of the j
th

 mode at k
th

 floor; and 

𝑞𝑗(𝑡)    : time-variation of the displacement of j
th

 mode. 

 

𝑞𝑗(𝑡)    is calculated from the following modal equation:  

 

                                                �̈�𝑗(𝑡) + 2𝜁𝑗𝜔𝑗�̇�𝑗(𝑡) + 𝜔𝑗
2𝑞(𝑡) = −�̈�𝑔(𝑡)                               (3.14) 

    

where 𝜁𝑗  and 𝜔𝑗 are damping ratio and frequency, respectively, for the j
th

 mode; �̈�𝑔(𝑡) is 

the time variation of ground accelerations. Denoting the j
th

 modal displacement as 𝐷𝑗(𝑡) =

Γ𝑗 ∙  𝑞𝑗(𝑡), the Equations 3.13a and 3.13b will lead to, 
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𝑢𝑗,𝑘(𝑡) = 𝜙𝑗,𝑘 ∙ 𝐷𝑗(𝑡)                                                    (3.15a) 

                                                 

 𝑢𝑘(𝑡) = ∑ 𝜙𝑗,𝑘 ∙ 𝐷𝑘(𝑡)
𝑁

𝑗=1
                                        (3.15b) 

 

The MSBE (Mode Shape Based Estimation) method proposed in this study assumes 

that the mode shape of a building can be approximated as the linear combination of the 

corresponding mode shapes of a shear beam and a bending beam as shown below: 

 

                                                      𝜙𝑗,𝑘 = 𝐶𝑠,𝑗 ∙ 𝜙𝑠,𝑗,𝑘 + 𝐶𝑏,𝑗 ∙ 𝜙𝑏,𝑗,𝑘                                   (3.16) 

  

where 𝜙𝑠,𝑗,𝑘 and 𝜙𝑏,𝑗,𝑘 are the amplitudes of the j
th

 mode shapes of a shear beam and a 

bending beam, respectively, at k
th

 floor; 𝜙𝑗,𝑘 is the amplitude of the j
th

 mode shape of the 

multi-storey building at k
th

 floor; 𝐶𝑠,𝑗 and 𝐶𝑏,𝑗 are the unknown weighting factors (i.e., 

shear and bending contributions) for the j
th

 mode. For each mode and each time instant, the 

error in the approximation can be expressed as the square sum of the differences over the 

instrumented floors between the recorded modal displacements, 𝑦𝑗,𝑘(𝑡), and the calculated 

modal displacements, 𝑢𝑗,𝑘(𝑡): 

 

                                                       𝜀𝑗(𝑡) = ∑ [𝑦𝑗,𝑘(𝑡) − 𝑢𝑗,𝑘(𝑡)]
2𝑁𝐼𝐹

𝑖=1
                               (3.17) 

 

where 𝜀𝑗(𝑡) is the error function for the j
th

 mode; NIF is the number of instrumented floors.  

 

In order to calculate the recorded modal displacements, 𝑦𝑗,𝑘(𝑡), the recorded 

accelerations at each instrumented floors are first band-pass filtered around each modal 

frequency and then double integrated. The summation in the error function (Equation 3.17) 

is over the instrumented floors. The coefficients 𝐶𝑠,𝑗 and 𝐶𝑏,𝑗 can be estimated by 

minimizing the error function as: 

 

                                                                    
𝜕𝜀𝑗

𝜕𝐶𝑠,𝑗
= 0,           

𝜕𝜀𝑗

𝜕𝐶𝑏,𝑗
= 0                                     (3.18) 
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which leads to,  

 

𝜕𝜀𝑗

𝜕𝐶𝑠,𝑗
= ∑ −2𝜙𝑠,𝑗,𝑘

𝑁𝐼𝐹

𝑖=1
𝑦𝑗,𝑘(𝑡)𝐷𝑗(𝑡) + 2𝐶𝑠,𝑗𝜙𝑠,𝑗,𝑘

2 𝐷𝑗
2(𝑡) + 2𝐶𝑏,𝑗𝜙𝑠,𝑗,𝑘𝜙𝑏,𝑗,𝑘𝐷𝑗

2(𝑡) 

 

𝜕𝜀𝑗

𝜕𝐶𝑏,𝑗
= ∑ −2𝜙𝑏,𝑗,𝑘

𝑁𝐼𝐹

𝑖=1
𝑦𝑗,𝑘(𝑡)𝐷𝑗(𝑡) + 2𝐶𝑏,𝑗𝜙𝑏,𝑗,𝑘

2 𝐷𝑗
2(𝑡) + 2𝐶𝑠,𝑗𝜙𝑠,𝑗,𝑘𝜙𝑏,𝑗,𝑘𝐷𝑗

2(𝑡) 

 

 

 

[
 
 
 ∑ 𝜙𝑠,𝑗,𝑘

2
𝑁𝐼𝐹

𝑖=1
∑ 𝜙𝑠,𝑗,𝑘 ∙ 𝜙𝑏,𝑗,𝑘

𝑁𝐼𝐹

𝑖=1

∑ 𝜙𝑠,𝑗,𝑘 ∙ 𝜙𝑏,𝑗,𝑘

𝑁𝐼𝐹

𝑖=1
∑ 𝜙𝑏,𝑗,𝑘

2
𝑁𝐼𝐹

𝑖=1 ]
 
 
 

∙ (
𝐶𝑠,𝑗 ∙ 𝐷𝑗(𝑡)

𝐶𝑏,𝑗 ∙ 𝐷𝑗(𝑡)
) =

[
 
 
 ∑ 𝜙𝑠,𝑗,𝑘 ∙ 𝑦𝑗,𝑘(𝑡)

𝑁𝐼𝐹

𝑖=1

∑ 𝜙𝑏,𝑗,𝑘 ∙ 𝑦𝑗,𝑘(𝑡)
𝑁𝐼𝐹

𝑖=1 ]
 
 
 

 

 

Equation 3.20 can be simplified for j
th

 mode as,  

                                                        

𝑀𝑗 ∙ 𝑊𝑗(𝑡) = 𝑌𝑗(𝑡)                                                  (3.21) 

 

where Mj is a constant time-invariant matrix, and its elements are a linear function of the j
th

 

mode shapes of a bending and a shear beam only; Wj(t) is the contributions from the shear 

beam and the bending beam into the j
th

 modal displacement at time t; and Yj(t) is the input 

matrix containing recorded responses at the instrumented floors at time t. Equation 3.21 

has to be satisfied at every time step, t. Note that the matrix Mj is time-independent and, 

therefore, needs to be calculated only once. However, the matrix Yj(t) is time-dependent 

and must be calculated at every time step, t.  

 

Using Equations 3.15 and 3.21, j
th

 modal displacement at k
th

 floor, 𝑢𝑗,𝑘(𝑡) can be 

calculated by multiplying Wj(t) by [𝜙𝑠,𝑗,𝑘 𝜙𝑏,𝑗,𝑘 ] as, 

                                         

𝑢𝑗,𝑘(𝑡) = [𝜙𝑠,𝑗,𝑘 𝜙𝑏,𝑗,𝑘 ] ∙ [
𝐶𝑠,𝑗 ∙ 𝐷𝑗(𝑡)

𝐶𝑏,𝑗 ∙ 𝐷𝑗(𝑡)
]                          (3.22) 

 

  (3.19) 

(3.20) 
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The unknown weighting coefficient of 𝐶𝑠,𝑗 and 𝐶𝑏,𝑗 for a specific time instant, can be 

calculated as, 

 

𝐶𝑠,𝑗 =
[∑ 𝜙𝑠,𝑗,𝑘

2𝑁𝐼𝐹
𝑖=1 ][∑ 𝜙𝑠,𝑗,𝑘

 𝑦𝑗,𝑘
𝑁𝐼𝐹
𝑖=1 ] − [∑ 𝜙𝑏,𝑗,𝑘𝜙𝑠,𝑗,𝑘

 𝑁𝐼𝐹
𝑖=1 ][∑ 𝜙𝑏,𝑗,𝑘

 𝑦𝑗,𝑘
𝑁𝐼𝐹
𝑖=1 ]

[∑ 𝜙𝑠,𝑗,𝑘
2𝑁

𝑖=1 ][∑ 𝜙𝑏,𝑗,𝑘
2𝑁

𝑖=1 ] − [∑ 𝜙𝑏,𝑗,𝑘𝜙𝑠,𝑗,𝑘
 𝑁𝐼𝐹

𝑖=1 ][∑ 𝜙𝑠,𝑗,𝑘
 𝜙𝑏,𝑗,𝑘

𝑁𝐼𝐹
𝑖=1 ]

 

 

 

 𝐶𝑏,𝑗 =
[−∑ 𝜙𝑠,𝑗,𝑘

 𝜙𝑏,𝑗,𝑘
𝑁𝐼𝐹
𝑖=1 ][∑ 𝜙𝑠,𝑗,𝑘

 𝑦𝑗,𝑘
𝑁𝐼𝐹
𝑖=1 ] + [∑ 𝜙𝑠,𝑗,𝑘

2𝑁𝐼𝐹
𝑖=1 ][∑ 𝜙𝑏,𝑗,𝑘

 𝑦𝑗,𝑘
𝑁𝐼𝐹
𝑖=1 ]

[∑ 𝜙𝑠,𝑗,𝑘
2𝑁𝐼𝐹

𝑖=1 ][∑ 𝜙𝑏,𝑗,𝑘
2𝑁𝐼𝐹

𝑖=1 ] − [∑ 𝜙𝑏,𝑗,𝑘𝜙𝑠,𝑗,𝑘
 𝑁𝐼𝐹

𝑖=1 ][∑ 𝜙𝑠,𝑗,𝑘
 𝜙𝑏,𝑗,𝑘

𝑁𝐼𝐹
𝑖=1 ]

 

 

The k
th

 floor displacement then becomes:  

 

                                                          𝑢𝑘(𝑡) = ∑ 𝑢𝑗,𝑘

𝑁

𝑗=1
(𝑡)                                                     (3.24) 

 

where NIM is the number of identified modes.  

 

3.4. Confirmation of the MSBE method 

 

The accuracy of the MSBE method is tested by utilizing the earthquake records from 

the UCLA’s Factor Building in Los Angeles, California and from the Caltech’s Millikan 

Library in Pasadena, California.  

 

Both buildings are densely instrumented with accelerometers at every floor. To test 

the methodology, it is assumed that the accelerations were available only from a few 

floors. The accelerations from the remaining floors are estimated by using the MSBE 

method, and then compared with the recorded ones. The results are also compared with 

those calculated by using linear and cubic polynomial interpolation methods.  

 

3.4.1.  The UCLA Factor Building 

 

The UCLA’s Doris and Louis Factor building, a 17-story moment resisting steel 

frame, is one of the most densely instrumented buildings in the world. The building is the 

    (3.23) 
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tallest structure on the campus with standing approximately 74.52 meters from its base. 

After 1994 Northridge, California Earthquake, the Factor Building was instrumented by 

the U.S. Geological Survey with 72-channel accelerometer operating in real time. Since 

then, large amount of earthquake and ambient vibration data have been collected. More 

information about the structure and the instrumentation can be found in Kohler et al. 

(2005). Figure 3.3 shows a picture of the building, taken from the north-east side, and 

sensor layout.  

 

 

Figure 3.3. (a) Northeast side of The UCLA Factor Building (b) Sensor layout of the 

structure and arrows show the polarities of sensors on each floor (Kohler et al., 2005). 

 

3.4.1.1. Selected Earthquake Data. To test the accuracy of the MSBE method on the Factor 

Building, we have used data from two earthquakes: M=6.0 Parkfield, California 

Earthquake of 28 September 2004 and M=4.8 Yorba Linda, California Earthquake of 3 

September 2002. The epicentral distances of the earthquakes from the building were 262 

km for the former and 64 km for the latter.  The Yorba Linda Earthquake differs from the 

Parkfield Earthquake for having more energy in high frequencies, and consequently greater 

influence in higher modes of the building. 

 

 

(a)
(b)
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Figure 3.4. Map showing the location of Parkfield Earthquake and the Factor Building. 

 

        

Figure 3.5. Map showing the location of Yorba Linda Earthquake and the Factor Building. 

 

3.4.1.2. Identification of Modal Properties and Application of the MSBE Method. The 

accuracy of the method is demonstrated by using two different sensor configurations for 

each selected earthquake. The first configuration (C1) assumes that the sensors are located 

on the 1
st 

and the 7
th

 floors, and the roof, while in the second sensor configuration (C2) the 

sensors are located on the 1
st
 and the 13

th
 floors, and the roof.  

 

Figure 3.6 shows the east-west and north-south components of the recorded 

accelerations at Factor Building from the Parkfield Earthquake.   
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Figure 3.6. Recorded accelerations at Factor Building during the M=6.0 Parkfield 

Earthquake of 28 September 2004: (a) the north-south component of the accelerations 

recorded on the east side, and (b) the east-west components of the accelerations recorded 

on the south side. 

 

Results of the MSBE approximation for the C1 and C2 sensor configurations will be 

shown by using the east-west components of the south-side sensors. The same tests have 

been performed by using the records from other sensors and component, and the results 

were found to be similar. 
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The first step in the application of MSBE method is to identify the modal frequencies 

from the records of instrumented floors. Modal frequencies of building-type structures can 

be identified by using simple spectral techniques given in Şafak and Çaktı (2014). Before 

the calculation of Fourier Amplitude Spectra (FAS), the records are band-pass filtered 

between 0.05-5.0 Hz, and a Hanning window is applied to reduce spectral leakage. The 

calculated FAS are then smoothed by using running triangular smoothing windows with 

optimum lengths. The optimum lengths of smoothing windows are determined as 

suggested in Şafak (1997). The Smoothed FAS (SFAS) are given in Figure 3.7 for the C1 

sensor configuration and in Figure 3.8 for the C2 sensor configuration. The identified 

frequencies are given in Table 3.1. The values in the table are in good agreement with the 

values calculated by others (e.g., Skolnik et al., 2006).    

 

Table 3.1. Identified translational modal frequencies of the Factor Building. 

Direction 
First Horizontal 

Mode (Hz) 

Second Horizontal 

Mode (Hz) 

Third Horizontal 

Mode (Hz) 

East-West 0.4-0.5 1.4-1.5 2.6-2.7 

North-South 0.5-0.6 1.6-1.7 2.8-2.9 
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Figure 3.7. Smoothed Fourier Amplitude Spectrum of the Parkfield Earthquake records For 

C1 sensor configuration. (a) East-west direction records (b) North-south direction records. 
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Figure 3.8. Smoothed Fourier Amplitude Spectrum of the Parkfield Earthquake, records for 

C2 sensor configuration. (a) East-west direction records (b) North-south direction records. 

 

The recorded accelerations from the Parkfield Earthquake are first narrow band-pass 

filtered around the identified frequencies in Table 3.1. They are then double integrated to 

obtain modal displacements at corresponding floors. Dominant directions of each mode are 

determined by plotting roof configuration, assuming rigid floors. The plots show mainly 

uni-directional modes with not much torsion. Roof configurations for the fundamental 

modes in each direction are illustrated in Figure 3.9 for the consecutive three peaks (each 

colour represents the successive peaks).  
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Figure 3.9. Roof displacements. (a) First east-west mode (b) First north-south mode. 

 

For each mode, the modal displacements at the non-instrumented floors are estimated 

from the modal displacements at the instrumented floors by using the MSBE methodology 

discussed earlier. The time-history of the total displacement at a non-instrumented floor is 

calculated by adding the time histories of the modal displacements.  

 

The comparison of recorded and MSBE (i.e., least-squares) calculated modal 

displacements along the height (i.e., the mode shapes) for the Parkfield Earthquake are 

shown in Figures 3.10 and 3.11 for the C1 and C2 sensors configurations, respectively. 

Also shown in the figures are the shapes that a linear or a cubic spline interpolation would 

give. 
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Figure 3.10. Mode shapes are normalized by the roof displacement. Blue lines represent 

the estimated mode shapes for the C1 sensor configuration while red squares are the actual 

mode shapes calculated by using the records from all floors. The dashed-green and dashed-

pink lines demonstrate the spline and linear interpolations, respectively. 

  

Figure 3.11. Mode shapes are normalized by the roof displacement. Blue lines represent 

the estimated mode shapes for the C2 sensor configuration while red squares are the actual 

mode shapes calculated by using the records from all floors. The dashed-green and dashed-

pink lines demonstrate the spline and linear interpolations, respectively. 
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The modal displacements for the second mode indicate that second mode can be 

divided approximately into two linear segments around the 8
th

 floor level. As the middle 

sensor moves to the upper or lower floors, estimation of the second mode for the linear 

interpolation method will decrease. It can be also inferred from the Figure 3.10 and Figure 

3.11 that both cubic-spline and linear interpolation methods fail to give a good estimation 

for the third mode shape.  

 

Figures 3.12 and 3.13 show, for the C1 configuration, the comparison of the recorded 

and predicted displacement-time histories by the three approximation techniques at the 4th 

and 10
th

 floors, which were assumed to be non-instrumented. Figures 3.14 and 3.15 show 

the same for the C2 configuration. All three estimation techniques give a good estimate of 

the displacement-time histories at the 4
th

 and 10
th

 floors. The reason for this is that the first 

mode dominates the response, and all three methods give a very good approximation of the 

first mode shape. The matches were equally good for the other assumed to be non-

instrumented floors.  The accuracy of the linear or cubic-spline interpolation estimations 

get worse as the contribution from higher modes become significant. This will be shown 

below by using the records from the Yorba Linda Earthquake.   

 

 

Figure 3.12. Comparison of recorded and estimated displacement time histories at the 4
th

 

floor for the C1 sensor configuration. (a) MSBE method (b) Linear interpolation (c) Cubic-

spline interpolation. 

(a) 

(b) 

(c) 
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Figure 3.13. Comparison of recorded and estimated displacement time histories at the 10
th

 

floor for the C1 sensor configuration. (a) MSBE method (b) Linear interpolation (c) Cubic-

spline interpolation. 

 

 

                

Figure 3.14. Comparison of recorded and estimated displacement time histories at the 4
th

 

floor for the C2 sensor configuration. (a) MSBE method (b) Linear interpolation (c) Cubic-

spline interpolation. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 3.15. Comparison of recorded and estimated displacement time histories at the 10
th

 

floor for the C2 sensor configuration. (a) MSBE method (b) Linear interpolation (c) Cubic-

spline interpolation. 

 

The frequency content of the Yorba Linda Earthquake is richer in high frequencies, 

and therefore it has greater influence on the higher modes of the Factor Building.      

 

                           

Figure 3.16. Acceleration time histories of the Factor Building after the Yorba Linda 

Earthquake of 3 September 2002. 

(a) 

(b) 

(c) 
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Figure 3.16 shows the acceleration-time histories of the Yorba Linda Earthquake 

over the height of the building. Fourier amplitude spectrum of both C1 and C2 sensor 

configurations are calculated and plotted in Figure 3.17 and Figure 3.18, respectively. 

Modal frequencies identified are listed in Table 3.2. 

                     

Table 3.2. Identified translational modal frequencies of the Factor Building. 

Direction 
First Horizontal 

Mode (Hz) 

Second 

Horizontal Mode 

(Hz) 

Third 

Horizontal 

Mode (Hz) 

Fourth 

Horizontal 

Mode (Hz) 

East-West 0.4-0.6 1.4-1.6 2.6-2.8 3.9-4.1 

North-South 0.5-0.7 1.65-1.92 2.8-3.2 - 

 

 

              

Figure 3.17. Smoothed Fourier Amplitude Spectrum of the Yorba Linda Earthquake 

records for C1 sensor configuration. (a) East-west direction records (b) North-south 

direction records. 
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Figure 3.18. Smoothed Fourier Amplitude Spectrum of the Yorba Linda Earthquake 

records for C2 sensor configuration. (a) East-west direction records (b) North-south 

direction records. 

 

Acceleration time histories are band-pass filtered around each identified modal 

frequency, listed in the table, and then double integrated to obtain corresponding modal 

displacement time histories. Directions of the modes are confirmed by examining the 

particle motions of the roof. Figures 3.19 and 3.20 show the first four-mode shapes of the 

Factor building that are calculated by using the MSBE method, as well as the linear and 

cubic interpolations approximations for comparison, for the C1 and C2 sensor 

configurations. Amplitudes of the mode shapes at each floor level correspond to the modal 

displacement at that floor. Mode shapes are plotted for the east-west components of the 

sensors on the south wall only. 
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Figure 3.19. Amplitudes of the recorded and estimated mode shapes for the C1 sensor 

configuration. Blue lines represent the estimated mode shapes using MSBE method, while 

red squares are the recorded mode shapes.The dashed green and pink lines show the spline 

and linear interpolations, respectively. 
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Figure 3.20. Amplitudes of the recorded and estimated mode shapes for the C2 sensor 

configuration. Blue lines represent the estimated mode shapes using MSBE method, while 

red squares are the recorded mode shapes.The dashed green and pink lines show the spline 

and linear interpolations, respectively. 

 

As expected, in both sensor configurations, the MSBE, cubic spline and linear 

interpolation methods all give a good estimation of the first mode shape, since it is closer 

to a straight line.  

 

For the second mode, the spline and linear interpolation methods underestimate the 

modal displacements for floor levels above and below the middle sensor, while the MSBE 

method gives better estimation for both configurations. The spline interpolation performs 

better than linear interpolation.  
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For the third and fourth mode shapes, the linear and spline interpolation methods fail 

to give a good estimation of the modal amplitudes in both sensor configurations, while the 

MSBE method provides a reasonably good estimation. This is mainly because of the more 

frequent change of the sign of the slope in higher modes along the height of the structure. 

Mode shapes of a multi-story building can usually be divided into several linear segments 

between points where the slope changes its sign. Therefore, unless one middle sensor is 

placed at each of these locations (e.g., the 8
th

 floor level for the second mode shape; or the 

4
th

 and the 11
th

 floor levels for the 3
rd

 mode shape), linear and cubic spline interpolation 

methods will always fail to give a good estimation of the amplitudes in higher modes.   

 

In order to have a reasonable good estimation from the interpolation methods, a 

sensor has to be placed at each level where the sign of the slope changes. In other words, 

more sensors are needed for the interpolation methods to accurately capture the higher 

mode shapes. This is not the case for the MSBE method, because it does not interpolate the 

recorded data at instrumented floors over the height of the building. Instead, it uses the 

combination of mode shapes of shear and bending beams to provide the best-fit mode 

shape in a least square sense with minimum instrumentation.  

 

It is clear from Figures 3.19 and 3.20 that the MSBE method has advantages over 

both interpolation methods at higher modes. It also holds true for the cases where there is 

minimum instrumentation. The utilization of the MSBE method becomes important when 

the modal participation factor for higher modes are significant (e.g., tall buildings), since 

the contribution of a mode to total response is proportional to the modal participation 

factor as shown in Equation 3.13.  Therefore, the more mode-shapes with significant modal 

participation factors contribute to total response, the more accurate the MSBE method. 

Only four modes of the Factor building are considered in Equation 3.24.  

 

Figures from 3.21 to 3.24 show the comparison of the recorded and the calculated 

total displacements at the 4
th

 and 10
th

 floors for the C1 and C2 sensor configurations, 

respectively. Even tough, the MSBE method slightly underestimates the recorded motions 

at the instrumented floors; the calculated total displacements are still in very good 

agreement with the recorded motions at the 4
nd

 and 10
th

 floors. 
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Figure 3.21. Comparison of recorded and calculated displacement time histories for C1 

configuration at 10th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

               

Figure 3.22. Comparison of recorded and calculated displacement time histories for C1 

configuration at 4th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 3.23. Comparison of recorded and calculated displacement time histories for C2 

configuration at 10th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

                

Figure 3.24. Comparison of recorded and calculated displacement time histories for C2 

configuration at 4th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

(a) 

(b) 

(c) 

(c) 

(a) 

(b) 
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According to above results, it is clear that the MSBE method gives a better 

estimation of the response than the linear and cubic spline polynomial interpolation 

methods.  

  

3.4.2. The Robert A. Millikan Library 

 

The accuracy of the MSBE method has also been tested by using earthquake records 

from for the Millikan Library, which is another building with sensors at every floor. 

 

The Millikan Library has been instrumented and studied since 1966 (Kuroiwa, 1967; 

Trifunac, 1972; Udwadia and Trifunac, 1974; Luco et al., 1987; Foutch, 1976; Foutch and 

Jennings, 1978; Chopra, 1995). Clinton (2006) summarize the data collected from the 

Millikan Library under forced and ambient vibrations, as well earthquakes.  

 

3.4.2.1. Structural Description and Instrumentation. The Robert A. Millikan Library 

located on the campus of California Institute of Technology in Pasadena, California. The 

Library is a nine-story reinforced concrete building with a basement. The building is 21.0 

m by 22.9 m in plan, and extends 43.9 m above grade, and 48.2 m above the basement 

level. The building has reinforced-concrete moment-resisting frames in both E-W and N-S 

directions. There are shear walls on the East and West sides of the building that provide 

most of the stiffness in the north-south direction (Bradford, 2006). Shear walls in the 

central core provide added stiffness in the east-west direction. More detailed descriptions 

of the structural system can be found in Kuroiwa (1967), Foutch et al. (1975), Foutch 

(1976), Luco et al. (1987), and Clinton (2006).  

 

Millikan Library was first instrumented in 1968 with two permanent tri-axial 

accelerometers located on the roof and the basement. After the 1994 Northridge, California 

Earthquake, the instrumentation was enhanced to 36-channel, real-time system with three 

horizontals at each floor and three verticals in the basement.  
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Figure 3.25. (a) North-west side of The Millikan Library (b) Sensor layout of the structure 

and arrows show the polarities of sensors on each floor. 

 

3.4.2.2. Selected Earthquake Data. To test the accuracy of the MSBE method on the Robert 

A. Millikan Library, we have used data from M=4.8 Yorba Linda, California Earthquake 

of 3 September 2002 (Figure 3.26). The epicentral distance of the earthquake from the 

building was 40 km.   

 

           

Figure 3.26. Map showing the location of the epicenter of Yorba Linda Earthquake and the 

Robert A. Millikan Library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

(a) (b)
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3.4.2.3. Identification of Modal Properties and Application of the MSBE Method. Again, 

although the building had sensors at every floor, we considered two configurations, 

assuming only three floors had sensors, to test the accuracy of the MSBE method: 

Configuration C1 with sensors at 1
st
 and 7

th
 floors, and the roof; and Configuration C2 with 

sensors at 1
st
 and 5

th
 floors, and the roof. Fourier Amplitude Spectra of the records from 

the instrumented floors are plotted in Figures 3.27 and 3.28 for the C1 and C2 

configurations, respectively. The identified modal frequencies are given in Table 3.3. 

    

Figure 3.27. Smoothed Fourier Amplitude Spectrum of the Yorba Linda Earthquake, 

records for the C1 configuration. (a) North-south direction accelerations (b) East-west 

direction accelerations. 
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Figure 3.28. Smoothed Fourier Amplitude Spectrum of the Yorba Linda Earthquake, 

records for the C2 configuration. (a) North-south direction accelerations (b) East-west 

direction accelerations. 

 

Table 3.3. Modal frequencies of the Millikan Library. 

 First Mode (Hz) Second Mode (Hz) 

East-West 1.11 4.7-4.9 

North-South 1.6-1.7 6.5-6.9 

 

To test the MSBE method, acceleration time histories are bandpass filtered around 

the identified modal frequencies and then double integrated to obtain modal displacement 

time histories. Figures 3.29 and 3.30 show the recorded first two-mode shapes of Millikan 

Library that are calculated by using records from all the floors, and their match by the 
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mode shapes approximated, based on the records from only three floors, by using the 

MSBE method and the linear and cubic interpolations for the sensor configurations C1 and 

C2.  The figures are given for the East-West components of the records only.   

                               

Figure 3.29. Amplitudes of the identified and estimated mode shapes for the C1 sensor 

configuration: Blue lines represent the estimated mode shapes using the MSBE method; 

red squares denote the recorded mode shape; and the dashed green and pink lines show the 

spline and linear interpolations, respectively. 
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Figure 3.30. Amplitudes of the identified and estimated mode shapes for the C2 sensor 

configuration: Blue lines represent the estimated mode shapes using the MSBE method; 

red squares denote the recorded mode shape; and the dashed green and pink lines show the 

spline and linear interpolations, respectively. 

 

Since the first mode shape of the building is closer to a straight line, all three 

methods give a good estimation of the first mode shape in both sensor configurations. The 

second mode shape is badly matched by the linear interpolation. Again, the location of the 

middle sensor is the key to the accuracy of the interpolation approaches.  

 

Figures from 3.31 to 3.34 show the comparison of the recorded and calculated total 

displacements of the 4
th

 and the 9
th

 floors for the C1 and C2 sensor configurations, 

respectively. Even tough, the MSBE method slightly underestimates the recorded motion 

at instrumented floors; the calculated total displacements are still in very good agreement 

with the recorded motions at the 4
nd

 and 9
th

 floors. 
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Figure 3.31. Comparison of recorded and calculated displacement time histories for C1 

configuration at 4th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

               

Figure 3.32. Comparison of recorded and calculated displacement time histories for C1 

configuration at 9th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 3.33. Comparison of recorded and calculated displacement time histories for C2 

configuration at 4th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

                 

Figure 3.34. Comparison of recorded and calculated displacement time histories for C2 

configuration at 9th floor. a) The MSBE, b) linear interpolation and c) cubic spline 

interpolation methods. 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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4. DEVELOPMENT OF ANALYTICAL MODELS FROM 

VIBRATION RECORDS 

 

 

One of the advantages of knowing vibration time histories at all the floors of a multi-

story building is that more accurate analytical models of the building can be developed. 

For multi-storey buildings, analytical models are usually developed from earthquake 

records by matching the modal characteristics (i.e., modal frequencies, damping ratios, 

mode shapes) of the data and the model. However, as mentioned in Chapter 1, records are 

available usually at a limited number of floors and calibration of analytical models by 

using limited data can cause non-unique results. In other words, more than one model can 

match the modal properties of the structure with the data.  

 

It can also be shown that modal properties are not very sensitive to the changes in 

structural properties. As an example, we study the sensitivity of the natural frequencies of a 

building to the changes in one of the story stiffness’s. Consider a 10-story building with the 

following properties: 𝑚𝑖 = 12𝑥104 kg and 𝑘𝑖 = 20.504𝑥107 N/m for all the stories, and 

the damping is assumed to be Rayleigh damping. The damping ratios for the first two 

modes are 2%. To investigate the sensitivity of modal frequencies to a structural 

parameter, we gradually reduced the 6
th

 story stiffness down to 10% of its original value 

with 10% increments, and observed the changes in structural frequencies. Figure 4.1 shows 

the per cent changes in the first three modal frequencies of the structure with percent 

reduction in the 6
th

 story stiffness.  
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Figure 4.1. Comparison of percent changes in first three frequencies of the structure with 

per cent reduction in the 6
th

 story stiffness. 

  

Figure 4.1 clearly shows that first two modes are more sensitive to the change, and in 

order to see a 5% reduction in these frequencies, more than 50% reduction in the 6
th

 story 

stiffness is required. Experiments with stiffness changes in other stories gave similar 

results. Therefore, it can be concluded that modal frequencies are not a good indicator of 

damage, because large reductions in story stiffnesses are required to see any significant 

change in modal frequencies.    

 

As an alternative to matching modal properties, we will present a calibration method 

for multi-storey buildings based on the transfer matrix formulation of the response. The 

method requires that the vibration time histories of the building are measured or estimated 

at every floor.  

 

The Transfer Matrix method, also known as the Holzer’s Method, is an alternative 

approach to study the dynamic response of chain-type structures, such as multi-story 

buildings (Clough and Penzien, 1975).  A transfer matrix gives the relationship between 

the forces and displacements in two adjacent sections of chain-like structures. The 

complete force and displacement relationship between any two points of the structure can 

be obtained through a sequence of transfer matrices. With this approach, a large system is 

separated into simple subsystems.  
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A brief description of the transfer matrix method for an N-story shear building is 

discussed below. Consider an N-story shear building excited by ground acceleration �̈�𝑔(t), 

as shown in Figure 4.2.  Forces and displacements that define the motions  of  two adjacent 

floors, floors i and i+1, are shown in Figure 4.3, where y represents the displacement 

relative to the base of the building and  fi=-mi�̈�𝑔,  the inertial load due to base acceleration.  

For the moment, we are neglecting the damping forces for simplicity in the formulation.  

 

      

Figure 4.2. An N-story shear building under base excitation �̈�𝑔(t). 
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Figure 4.3. Forces and displacements for two adjacent floors. 
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From the equilibrium of the forces acting on the floor mass mi+1, we can write: 

                                       

𝑚𝑖+1�̈�𝑖+1 = 𝐹𝑖+1 − 𝐹′
𝑖+1 + 𝑓𝑖+1                                     (4.1) 

 

where 𝑓𝑖+1 = −𝑚𝑖+1 ∙ �̈�𝑔 , and a dot over a variable denotes the derivative with respect to 

time. 𝐹𝑖+1 and 𝐹′
𝑖+1 represent the internal forces above and below the mass i+1, 

respectively. Since the displacement on either side of 𝑚𝑖+1 is the same, we can also write: 

                                                      

𝑦𝑖+1 = 𝑦′𝑖+1                                                             (4.2) 

 

where 𝑦𝑖+1  and 𝑦′𝑖+1 denote the displacements, relative with respect to base, above and 

below the mass i+1 , respectively. By using Equations 4.1 and 4.2, and also noting that for 

a harmonic excitation with frequency ω,  �̈�𝑖+1 = −𝜔2𝑦𝑖+1 , we can write the following 

matrix equation (i.e., the point matrix) for level i+1: 

                             

[
𝑦𝑖+1

𝐹𝑖+1
] = [

1 0
−𝜔2𝑚𝑖+1 1

] [
𝑦′𝑖+1

𝐹′𝑖+1
] + [

0
𝑚𝑖+1 ∙ �̈�𝑔

]                         (4.3) 

 

From the equilibrium of the forces acting on the segment between the two floors, we can 

write: 𝐹′𝑖+1= 𝐹𝑖 . These forces are generated by the relative motions between floors i and 

i+1, and are equal to 

                                               

𝐹′𝑖+1 = 𝐹𝑖 = 𝑘𝑖+1(𝑦
′
𝑖+1

− 𝑦𝑖)                                    (4.4) 

 

where 𝑘𝑖+1 is the stiffness of the i+1’th story. Equation 4.4 can be put into the following 

matrix form (i.e., the field matrix):  

                                             

[
𝑦′𝑖+1

𝐹′𝑖+1
] = [

1 1/𝑘𝑖+1

0 1
] [

𝑦𝑖

𝐹𝑖
]                                        (4.5) 

 

By inserting Equation 4.5 in Equation 4.3 we can write the following transfer matrix 

equation for the transfer of displacements and forces from floor i to floor i+1:  

 

[
𝑦𝑖+1

𝐹𝑖+1
] = [

1 0
−𝜔2𝑚𝑖+1 1

] [
1 1/𝑘𝑖+1

0 1
] [

𝑦𝑖

𝐹𝑖
] + [

0
𝑚𝑖+1 ∙ �̈�𝑔

]                (4.6a) 
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[
𝑦𝑖+1

𝐹𝑖+1
] = [

1 1/𝑘𝑖+1

−𝜔2𝑚𝑖+1 1 − 𝜔2/𝜔𝑖+1
2 ] [

𝑦𝑖

𝐹𝑖
] + [

0
𝑚𝑖+1 ∙ �̈�𝑔

]                (4.6b) 

 

where  𝜔𝑖+1
2 = 𝑘𝑖+1/𝑚𝑖+1.  

 

Note that, for the top story (i.e., i+1=N): FN=0. Thus, Equation 4.6 for the top story 

becomes: 

                                                 

𝑦𝑁 = 𝑦𝑁−1 +
𝐹𝑁−1

𝑘𝑁
                                                   (4.7a) 

    

  0 = 𝑚𝑁(−𝜔2𝑦𝑁−1 + �̈�𝑔) + (1 −
𝜔2

𝜔𝑁
2 )𝐹𝑁−1                 (4.7b) 

                                                

Let 𝑥𝑖  denote the total displacement of the i’th floor (i.e., 𝑥𝑖 = 𝑦𝑖 + 𝑥𝑔 ) and note that 

−𝜔2𝑦𝑁−1 + �̈�𝑔 = �̈�𝑁−1 .  by extracting FN-1 from Equation 4.7b, and inserting it in 

Equation 4.7a, we get the following for FN-1, and the ratio of the total displacements, xN / 

xN-1: 

                                                              

 𝐹𝑁−1 =
𝑘𝑁�̈�𝑁

𝜔2−𝜔𝑁
2                                                     (4.8a) 

                                                              

𝑥𝑁

𝑥𝑁−1
=

𝜔𝑁
2

𝜔𝑁
2 − 𝜔2

                                                 (4.8b) 

 

This ratio Equation 4.8b is also valid for the corresponding total velocities and 

accelerations, as well as their Fourier Amplitude Spectra. Thus, we can write for the 

spectral ratio, SRN(ω), of total accelerations at the top two floors: 

      

 𝑆𝑅𝑁(𝜔) =
|�̈�𝑁(𝜔)|

|�̈�𝑁−1(𝜔)|
=

𝜔𝑁
2

𝜔𝑁
2 − 𝜔2

                                (4.9a) 

 

Equation 4.9a shows that the spectral ratio of the total accelerations for the top two 

floors is a function of the individual frequency ωN of the top floor (i.e.,  𝜔𝑁
2 = 𝑘𝑁/𝑚𝑁), 
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and has its peak at ω=ωN (i.e., by making the denominator equal to zero). It is not 

influenced by the dynamic characteristics of the stories below, as well as the excitation. 

Thus, by taking the spectral ratio of accelerations recorded at floors N and N-1, we can 

determine the natural frequency of the top floor, and consequently the stiffness of the top 

floor (assuming that the mass of the top floor is known or estimated).  

 

If we include damping, Equation 4.9a takes the following form (Şafak, 1995): 

                                         

[𝑆𝑅𝑁(𝜔)]2 =
𝜔𝑁

4 + (2𝜉𝑁𝜔𝑁𝜔)2

(𝜔𝑁
2 − 𝜔2)2 + (2𝜉𝑁𝜔𝑁𝜔)2

                            (4.9b) 

 

where ξN is the damping ratio for the N’th floor (i.e., ξN=cN /(2mNωN)). It can be shown, by 

making the derivative of  Equation 4.9b with respect to ω equal to zero, that SRN (ω) has its 

peak at frequency ωmax , which is given by (Şafak, 1995) 

                                                      

    𝜔𝑚𝑎𝑥 =
[−1 + √1 + 8𝜉𝑁

2]
1/2

2𝜉𝑁
𝜔𝑁                                 (4.9c) 

 

For low damping values (e.g., ξ < 0.30), the coefficient of ωN on the right hand side is 

close to 1.0 and it can be approximated that ωmax≈ωN . 

 

We can write Equations 4.7a and 4.7b for the next floor, floor N-1, similarly. By 

replacing, the subscripts N and N-1 with N-1 and N-2, respectively, and also noting that the 

left-hand side of Equation 4.7b is no longer zero, the equations for the N-1’th floor 

become:                                       

                   

𝑦𝑁−1 = 𝑦𝑁−2 +
𝐹𝑁−2

𝑘𝑁−1
                                            (4.10a) 

                                

𝐹𝑁−1 = 𝑚𝑁−1(−𝜔2𝑦𝑁−2 + �̈�𝑔) + (1 −
𝜔2

𝜔𝑁−1
2 )𝐹𝑁−2                    (4.10b) 

                                                 

By extracting FN-2 from Equation 4.10b and inserting it in Equation 4.10a, and also using 

the values of FN−1  and  ẍN from Equations 4.8a and 4.8b, we can show that the ratio 
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|�̈�𝑁−1(𝜔)|/|�̈�𝑁−2(𝜔)| is a function of the properties of stories N and N-1 only (i.e., 

function of 𝜔𝑁
2 =

𝑘𝑁

𝑚𝑁
,   𝜔𝑁−1

2 =
𝑘𝑁−1

𝑚𝑁−1
, and  𝑚𝑁/𝑚𝑁−1). Again, this ratio is a function of 

the physical properties of the story N-1 and the stories above; it does not depend on the 

properties of the stories below. Since we have already determined ωN and kN earlier from 

the spectral ratio XN(ω)/XN-1(ω), we can now determine ωN-1 and kN-1 from the spectral ratio 

XN-1(ω)/XN-2(ω) (again, we are assuming that the mass mN-1 is known or estimated). We 

keep doing this until we cover all the stories.  

 

        To demonstrate this concept, a numerical example is presented below. Consider the 

ten-story building that is used earlier (Figure 4.2). We computed the seismic response of 

the building twice, first assuming no damage (i.e., the original stiffness values), and next 

by reducing the 5
th 

story stiffness by 50%. We used one of the acceleration records from 

the M=7.4, 17 August 1999 Kocaeli Earthquake as the ground motion. The modal 

frequencies for the undamaged and damaged cases are given in Table 4.1 and Figure 4.4 

presents the comparison of spectral ratios of successive floors for the undamaged and 

damaged cases. As clearly seen from the figure, the stiffness change on the 5
th

 story 

changes the spectral ratios only for the 5
th

 story and the stories below. The ratios for the 

stories above do not change. Therefore, any adjustment at a story stiffness made by using 

spectral ratios does not have any effect on the spectral ratios for the stories above. Note 

that this does not mean the responses of the stories above do not change, but only their 

ratios. Thus, we can start the model calibration from the top story, knowing that the 

calibration of the stories below will not change the calibrations already made for the stories 

above.  

 

 

 

 

 

 

 

 

 

 



48 
 

Table 4.1. Modal frequencies of the 10-story building before and after damage on 5
th

 story. 

Mode Number 

Modal Frequency 

Undamaged 

(Hz) 

Damaged 

(Hz) 

Difference 

(%) 

1 0.9833 0.9298 5.4 

2 2.9279 2.8755 1.8 

3 4.8071 4.4334 7.8 

4 6.5789 6.5789 - 

5 8.2037 7.6003 7.4 

6 9.6453 9.5111 1.4 

7 10.8714 10.4199 4.2 

8 11.8547 11.5322 2.7 

9 12.5732 12.4369 1.1 

10 13.0108 12.7486 2.0 

 

 

         The calibration approach presented above can also be used for damage detection and 

damage location in multi-story buildings from their earthquake records. By comparing the 

spectral ratios of adjacent floors that are calculated from the pre- and post-earthquake 

records, the stories with stiffness changes can easily be identified.    
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5. CONCLUSION 

 

 

Analytical models of multi-story buildings can be calibrated uniquely by using 

vibration records taken from only a few floors. The first step in the calibration is to 

estimate vibration time histories at the non-instrumented floors. This is done by assuming 

that each mode shape of the building can be approximated as a linear combination of mode 

shapes of a shear beam and a bending beam.   

 

Once the vibration time histories are known at every floor, the story stiffnesses can be 

determined uniquely by matching the dominant frequencies of the top-to-bottom spectral-

ratios at each story.  The spectral ratio of a story is not influenced by any structural 

changes in the stories below. Therefore, the calibration has to start from the top story.  

 

Numerical examples by using real and simulated records confirm the validity and the 

superiority of the approach.  
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