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ABSTRACT 

Developing a Dynamic Predictive Policing System 

The retrospective predictive policing techniques are atheoretical and therefore remain 

incapable of sensing the changing crime risk across the streets. In this study, we aim to 

develop a dynamic predictive policing system that capitalizes on theory-based risk 

indicators. The sample includes all the theft and robbery incidents in Chicago between 

2014-2019. In the first step, pipelining bivariate network K analysis and segmented 

regression, we introduce novel distance-aware risk functions that operationalize 

spatiotemporal crime risk around the selected urban features (i.e., bus stop, fast food 

restaurant, gas station, grocery store, pub). In the second step, we develop various 

network-based predictive policing methods using graph-based deep learning algorithms 

(i.e., GraphWavenet, Spatiotemporal Graph Convolutional Networks). These methods 

generate weekly and intraday hotspot predictions. We complement these methods with 

various theory-based risk indicators including a risk score devised from the novel risk 

functions, 311 calls, park events, and cooccurring crime incidents. The results showcase 

that crime risk around urban features varies across space, time, and crime types. 

Furthermore, this risk is found to be significantly correlated with the regional 

socioeconomic characteristics. Another important result shows that incorporating theory-

based indicators improved the performance of the retrospective methods up to 68%. 

Amongst the algorithms, GraphWavenet is found to outperform its counterparts in the 

majority of the prediction models with an accuracy as high as 80%. The proposed 

system helps law enforcement agents in planning their operations efficiently by 

pinpointing the micro geographical units with relatively higher risks in the next time 

step. 
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ÖZET 

Dinamik bir Öngörücü Polislik Sistemi Geliştirme 

Geriye dönük öngörücü polislik teknikleri teorik değildir ve bu nedenle sokaklarda 

değişen suç riskini algılamada yetersiz kalmaktadır. Bu çalışmada, teoriye dayalı risk 

göstergelerinden yararlanan dinamik bir tahmine dayalı polislik sistemi geliştirmeyi 

amaçlıyoruz. Örnek, 2014-2019 yılları arasında Chicago'daki tüm hırsızlık ve soygun 

olaylarını içermektedir. İlk adımda, ağ K analizi ve segmentli regresyon tekniklerini 

birleştirerek, seçilen kentsel özellikler (örn. otobüs durağı, fast food restoranı, benzin 

istasyonu, bakkal, pub) etrafında uzamsal-zamansal suç riskini işlevselleştiren yeni, 

mesafeye duyarlı risk fonksiyonlarını tanıtıyoruz. İkinci adımda, grafik tabanlı derin 

öğrenme algoritmalarını (yani GraphWavenet, Spatiotemporal Graph Convolutional 

Networks) kullanarak çeşitli ağ tabanlı tahmine dayalı polislik yöntemleri geliştiriyoruz. 

Bu yöntemler haftalık ve gün içi etkin nokta tahminleri üretir. Bu yöntemleri, yeni risk 

işlevlerinden, 311 çağrıdan, park olaylarından ve birlikte meydana gelen suç 

olaylarından tasarlanmış bir risk puanı dahil olmak üzere çeşitli teori tabanlı risk 

göstergeleriyle tamamlıyoruz. Sonuçlar, kentsel özellikler etrafındaki suç riskinin 

mekâna, zamana ve suç türlerine göre değiştiğini göstermektedir. Ayrıca, bu riskin 

bölgesel sosyoekonomik özelliklerle önemli ölçüde ilişkili olduğu bulunmuştur. Bir 

diğer önemli sonuç, teoriye dayalı göstergelerin dahil edilmesinin geriye dönük 

yöntemlerin performansını %68'e kadar iyileştirdiğini göstermektedir. Algoritmalar 

arasında, GraphWavenet'in tahmin modellerinin çoğunda, %80'e varan doğrulukla 

benzerlerinden daha iyi performans gösterdiği bulunmuştur. Önerilen sistem, bir sonraki 
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zaman adımında nispeten daha yüksek risklere sahip mikro coğrafi birimleri belirleyerek 

kolluk kuvvetlerinin operasyonlarını verimli bir şekilde planlamalarına yardımcı olur. 
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CHAPTER 1  

INTRODUCTION 

 

It was a decade ago when predictive policing was listed as one of the top 50 

inventions of the year by Times Magazine (Grosmann et al.,2011). Since then, this 

term has become a buzzword amongst public safety researchers and practitioners. 

Much of this excitement came from the possibility of anticipating where, when, and 

by/to whom a crime would occur. By definition, predictive policing refers to a set of 

“analytical techniques—particularly quantitative techniques—to identify likely 

targets for police intervention and prevent crime or solve past crimes by making 

statistical predictions” (Perry, 2013). These techniques entail four main targets:  

crime occurrences, offenders, perpetrators’ identities, and victims of crimes. From 

these types, the last three have thus far received bitter criticisms in many countries 

worldwide due to the violations they commit against personal data privacy. This is 

because the algorithms they used largely feed on large amounts of personal data 

(e.g., Uberti, 2021; Cockrell, 2021). As an example, a controversial case was 

reported from Israel where the national intelligence agency uses a predictive policing 

algorithm that criminalizes individuals solely based on their tweets it label as risky 

(Nashif & Fatafta, 2017). Such cases put a huge question mark on the legitimacy of 

predictive policing algorithms that often end up in profiling individuals. In this 

sense, focusing on the prediction of time and place, rather than offender, points to a 

more ethical research area. This crime-centric approach is the approach we adopted 

in developing a predictive policing system. From this point on, predictive policing 
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will thus be used to refer to the techniques that are specialized in predicting when 

and where, rather than by whom, crime will occur. 

Predictive policing techniques enable timely security interventions by pinpointing 

potential places of future crime. The predictions generated by these techniques serve 

to the optimal planning of police patrol routes in every time step by allowing the 

prioritization amongst the places on these routes based on their predicted crime risk. 

These informed routes thus help increase the presence of law enforcement agents in 

places with relatively higher crime risks. As a result, this increased presence 

decreases the overall crime rate by deterring the offenders from offending (Cohen & 

Felson, 1979). Noticing their large benefits in operational efficiency and public 

safety, police departments around the world have launched predictive policing 

projects and thus far achieved significant drops in crime rates. As a striking example, 

Santa Ana Police Department saw an 11% decrease in theft incidents within a six-

month trial period by using commercial software, PREDPOL (Huet, 2015).  In a 

more recent case, Kent Police Department reported a 6% decrease in street violence 

crime rates in the first four months of using PREDPOL (Smith, 2018). Another 

commercial software developed by Rutgers Public Security Center (RTMdx) also 

achieved significant drops in the crime rates reported across the U.S. In two 

consecutive years, 2013 and 2014, it helped police departments to reduce motor 

vehicle thefts by 43% in Colorado Springs, gun violence incidents by 35% in New 

Ark, and aggravated assault by 12% in Kansas City (Kennedy, Caplan, & Piza, 

2015). Evident from these facts and figures, predictive policing provides a data-

driven innovative technology to law enforcement agents across the world in their 

combat against crime. 
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Predicting where and when a crime will occur is also of great value in terms of 

operational efficiency. This prediction ability predicates upon a risk-based approach 

that assigns ordinal risk values to places for a specified period. This approach allows 

the prioritization amongst the places to be patrolled, hence enacting more effective 

policing practices. Instead of piling the police forces in the historical crime hotspots, 

it informs patrol dispatching decisions about where and when the next crime event is 

most likely. Having been armed with this decision support, the security agents 

achieve highly targeted security interventions with shorter patrol routes and fewer 

police officers (Perry, 2013; Kennedy, Caplan, & Piza, 2015). Largely due to the 

substantial amount of money and resource it saved, predictive policing projects have 

gained significant momentum right after the 2008 crisis in the U.S. when the 

government significantly curbed public funds that were allocated to public 

institutions.  Furthermore, the government created various incentives to promote the 

usage of predictive policing systems (Space and Naval Warfare Systems Center 

Atlantic, 2013). Having noticed the large benefits of predictive policing, many 

governments around the world followed suit and launches similar projects.  For 

example, the Japanese government has led the development of a national predictive 

policing system project to enhance public security during the 2021 Tokyo Olympics 

(South China Morning Post, 2018). Similarly, the U.K. government has embarked 

upon a similar project with a university-police collaboration (Dunning, 2017). Max 

Planck Institut in Germany has also been working on the development of a highly 

sophisticated predictive policing system (Max Planck Institut, 2018). The ever-

growing competition in developing predictive policing systems amongst countries 

showcases how influential these systems will be on the future of policing.  
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Accurately identifying existing and future crime places across a region is the most 

crucial task in predictive policing. The key factor in this task is to capture the 

nonrandom crime distribution in an area. The nonrandomness is largely ensued by 

the existence of crime hotspots accommodating highly clustered crime. In a seminal 

work, Sherman, Gartin, & Buerger (1989) found that half of the calls to police were 

placed from only 3% of the addresses in Minneapolis. Based on that insight was 

developed hotspot policing that aims to prevent crime by dispatching police forces to 

these hotspots. Despite a large body of empirical research showcasing its 

effectiveness in crime prevention (for a systematic review, (Braga, Papachristos, & 

Hureau, 2012)), hotspot policing often makes a false assumption that the locations of 

hotspots remain stable in the future. It, therefore, remains incapable of predicting the 

displacement in crime hotspots. A remarkable fix to that problem was offered by 

Prospective Hotspot Mapping (Bowers, Johnson, & Pease, 2004) that proposes to 

place a spatiotemporal crime risk bandwidth around a crime location. This idea of 

placing a spatiotemporal risk bandwidth is predicated upon a well-established near-

repeat phenomenon (Morgan, 2001) that posits that crime in one place elevates risk 

in neighboring places for a time window. Accordingly, this method fits a risk kernel 

that decays crime risk based on spatial and temporal distance from a crime location 

and time. The calculated risk values for each place then form a crime risk surface 

representing the risk values of each place within a geographical area of interest. The 

places with the highest risk in this surface are called “hotspots” and techniques that 

predict this risk surface on a map are called predictive hotspot mapping techniques 

(Bowers, Johnson, & Pease, 2004). These techniques cater to predictive policing by 

highlighting the places in an area with higher crime risks in the next time step. 
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Therefore, effort should be made towards developing predictive crime hotspot maps 

as an application of predictive policing. 

The main debate revolving around predictive crime hotspot mapping methods 

revolves around the shape of the crime hotspots. A common strategy in these 

methods is to divide an area into a series of equally sized grids. But this strategy 

brings about several problems. First, sizes of these grids are often selected 

arbitrarily, which causes Modifiable Areal Unit Problem (MAUP) that refers to 

changing outcomes of a spatial analysis based on the size of the selected units 

(Openshaw, 1981). For instance, a predictive model using the whole city as a unit of 

analysis almost always achieves 100% accuracy. But this is of little value. On the 

other hand, the models producing micro-level predictions (e.g., street segment) may 

have poor predictive accuracy but still are of higher practical value for law 

enforcement agents due to providing highly specific predictions. For this, there 

should be some rationale behind the selection of grid size selections, rather than 

arbitrary practices. Second, human activity moves through street networks in urban 

contexts rather than through unrealistic grids. Ignoring physical constraints operating 

on human activity may fail to capture the behavior of crime risk as a product of 

interactions between motivated offenders and suitable targets (Xu & Griffiths, 2017). 

Third, police patrol routes are heavily constrained to street networks. Grid-shaped 

hotspots may sometimes fall in areas beyond the reach of street networks (e.g., deep 

forests, sea, lake, etc.). These impractical units not only complicate patrol route 

planning but also distort risk calculations by artificially increasing the number of 

areas in an area (Rosser, Davies, Bowers, Johnson, & Cheng, 2017). An optimal 
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crime hotspot prediction method should thus consider these constraints and represent 

crime risk in a realistic manner. 

Another important problem in predictive crime hotspot mapping is the univariate 

analysis that assumes future hotspots can be predicted solely based on retrospective 

crime data. Despite having delivered impressive predictive performances in several 

studies (e.g., Bowers, Johnson, & Pease, 2004; Mohler, Short, Brantingham, 

Schoenberg, & Tita, 2011; Rosser, Davies, Bowers, Johnson, & Cheng, 2017), this 

type of analysis is atheoretical (Groff & La Vigne, 2002), and often fail to sense the 

looming change in crime risk levels (Gorr & Olligschlaeger, 2002). Therefore, crime 

hotspot prediction methods should be enhanced with theory-based indicators that are 

able to send early warning signals before a crime occurs (Groff & La Vigne, 2002). 

Crime opportunity theories offer a solid theoretical framework for deriving the 

theory-based indicators. These theories are grounded on three main pillars: Routine 

Activity Theory (RAT) (Cohen & Felson, 1979), Rational Choice Theory (RCT) 

(Cornish & Clarke, 1987), and Crime Pattern Theory (CPT) (Brantingham & 

Brantingham, 1995; Brantingham & Brantingham, 1981). At the base level, the RAT 

formulates crime opportunity as a spatiotemporal convergence of three factors: a 

suitable target, a motivated offender, and the absence of a capable guardian. The 

RCT argues that this opportunity does not always lead to a crime event. Rather, it 

posits that this offending decision involves a rational calculation between risk and 

reward associated with the existing crime opportunity. Followingly, the CPT 

spatializes this calculated crime opportunity near two groups of urban features. The 

first group (i.e., crime generators) attracts crime by drawing larger crowds that 

probably contain larger numbers of offenders and victims. The second group of 
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features is known to provide a fertile ground for motivated offenders due to 

particular characteristics promoting criminal behavior.  Supporting evidence for the 

elevated crime risk around these features was provided by a large volume of 

empirical research (e.g., Caplan, Kennedy, & Miller, 2011; Groff & Lockwood, 

2014; Ratcliffe, 2012). At this point, we need to explicate the conceptual relationship 

between crime opportunity and crime risk to avoid any confusion amongst the 

readers in the future sections. To distinguish the opportunity surrounding an urban 

feature from the opportunity as offenders’ subjective interpretation of a crime 

situation, Caplan et al. (2011) proposed to replace the former with a more objective 

one, crime risk. In a similar vein, we will use “risk” to refer to the opportunity 

surrounding an urban feature. In sum, an auxiliary risk surface that captures the 

environmental crime risk around urban features may improve the predictive ability 

of crime hotspot mapping methods. Therefore, an environmental crime risk surface 

should be integrated into these methods. 

The degree of crime risk in an environment is quantified by the spatial influence of 

urban features on crime. A stylized fact in spatial crime research (Vandeviver & 

Bernasco, 2017) states that this influence is inversely related to distance: it is highest 

at the origin (i.e., local effect) and decays thereafter until it totally dissipates at some 

distance (i.e., spatial diffusion effect) (Wheeler, 2019). The total distance stretching 

to this dissipation point demarcates the spatial extent of an urban feature (Ratcliffe, 

2012). Another determinant of spatial influence is human activity that, to a large 

extent, determines the magnitude of spatial influence and spatial extent. 

Accordingly, being exposed to greater levels of human activity not only magnifies 

the spatial influence of urban features but also extends their spatial extent (Groff, 
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2011). As a result, the environmental crime risk landscape throughout an area 

dynamically changes based on displacing human activity concentration in space and 

time. Previous research has reported significant spatial (e.g., Barnum, Caplan, 

Kennedy, & Piza, 2017) and temporal fluctuations (e.g., Haberman & Ratcliffe, 

2015; (Bernasco, Ruiter, & Block, 2017) in the spatial influence of urban features.  

Additionally, this dynamic spatial influence also changes across crime types due to 

differential risk and reward definitions for different crime types (Clarke, 1995). For 

example, although large crowds may represent a fertile ground for theft, they may 

act as a shield against robbery that often takes the form of a physical struggle 

between the involved parties. As a result, a proper environmental risk indicator 

should capture spatiotemporal fluctuations in the spatial influence of urban features 

across crime types. 

Using machine learning is not a new phenomenon in predicting crime hotspots. Over 

the last three decades, researchers have utilized various techniques including 

Artificial Neural Networks (ANN) (e.g., Corcoran, Wilson, & Ware, 2003, SVM 

(e.g., Kang & Kang, 2017), decision trees (e.g., Bogomolov et al., 2014) and random 

forests (e.g., Cavadas, Branco, & Pereira, 2015). After proving their worth in 

bringing innovative solutions to a wide range of real-world problems, the last decade 

has witnessed the rise of Deep Learning (DL) algorithms due to being widely 

adopted by researchers who would like to leverage their impressive predictive 

abilities (e.g, Zhuang et al., 2017; Duan et al., 2017; Kang & Kang, 2017).  What 

was mainly found in these studies was the superiority of DL models over their 

traditional counterparts. However, a common problem in these studies is the grid-

like units of analysis they use for crime prediction. These grid-based units are 
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problematic due to several reasons listed earlier in this chapter.  Thus, employing 

network-based DL algorithms rather than grid-based ones in the task of crime 

hotspot prediction is highly needed.  

This study consists of two independent yet interacting parts. The first part aims to 

develop a method that quantifies dynamic environmental crime risk around urban 

features across space, time, and crime types. To do so, we proposed a conceptual 

framework that views urban features as crime risk stations. These stations act like 

base stations. Different from the base stations, they broadcast crime risk signals, 

rather than radio signals, through street networks. The broadcasted signals represent 

the spatial influence and exist at varying strength levels throughout a coverage area 

(i.e., spatial extent). The strength is highest at the center (i.e., local effect) and 

recedes through nearby areas. The broadcasting performance of a crime risk station 

can be evaluated by the strength of its signal strength throughout a coverage area as 

well as how much of the signal strength is retained throughout the same area (i.e., 

spatial diffusion effect). Higher retention rates show higher signal strength. This 

framework hypothesizes that urban features have a crime-specific spatiotemporal 

influence manifesting itself in varying signal strength levels across space, time, and 

crime types. Based on that conceptual framework, we defined our novel Distance-

aware Risk Signal Functions (DRSF). These functions operationalize the spatial 

influence of an urban feature on crime by calculating different types of crime density 

across various spatiotemporal models. From these functions, we devised two novel 

risk scores, namely Risk Signal Intensity Score (RSIS) and Risk Signal Strength 

Score (RSSS) to make within and between comparisons of spatiotemporal influences 

of urban features on different crime types. The former indicates the cumulative crime 
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density at a given spatial extent, the latter quantifies how much of the local effect is 

retained throughout the same spatial extent. Then, a spatiotemporal influence 

analysis tested the differences in these scores across various spatiotemporal models 

and crime types. Lastly, we examined the relationship between RSIS, RSSS, and 

socioeconomic characteristics through a correlation analysis. 

In the second part, we first proposed a novel theory-based risk surface that consists 

of environmental crime risks of each street segment. This surface enhances DL-

based prospective hotspot mapping methods by capturing dynamic environmental 

risk with a novel indicator Street Segment Risk Score (SSRS). Here, SSRS is a key 

component that bridges the first and second parts of the study. Based on DRSFs from 

the first part, SSRS captures the dynamic spatial influence of urban features on crime 

by aggregating their local effects at the street segment level. These local effects are 

operationalized by another novel risk indicator, the Local Risk Signal Score (LRSS). 

which is directly obtained from DRSFs. This indicator takes on the value of DRSF at 

the exact location of an urban feature. To capture the dynamic spatial influence, we 

calculated separate LRSS values for each selected crime type across temporal 

models. Next, we multiply these LRSS values of urban features (i.e., multiplicative 

effect) on a street segment to obtain the SSRS of that segment in a temporal model. 

For example, on weekdays, theft SSRS of a street segment that contains one grocery 

store and two pubs having LRSS values of 3 and 4 respectively would be 3x4x4=48. 

Similarly, on weekends, this value would increase to 196 as a result of the same 

values increasing to 4 and 7 (4x7x7) respectively. We then use these values to create 

an environmental risk surface to be incorporated into the DL-based predictive crime 

hotspot mapping methods. For the hyperparameter tuning, we described a two-step 



11 

 

procedure that gradually optimizes data representation and model performance. After 

finding the optimal crime data representation through a grid search approach, we 

experimented with various learning rates to optimize the model performance. In the 

last step, to highlight the impact of SSRS on predictive accuracy, we compared the 

performance of the model with SSRS with the autoregressive model and a static risk 

surface that only counts the number of selected urban features in the street segment. 

In addition to SSRS, we also created additional theory-driven event surfaces that can 

be incorporated into the predictive crime hotspot mapping algorithms. Included in 

these surfaces are the other crime, 311 calls, and park events. Each of these surfaces 

aims to capture the crime risk from a different aspect. Lastly, we performed a 

comparative performance analysis amongst the models complemented by theory-

driven event surfaces to identify the surface that best senses the looming crime risk 

in an area.  The contribution of this study can be summarized as follows: 

- We introduced the Distance-Aware Risk Signal Function (DRSF) to model the 

dynamic spatial influence of an urban feature on crime within a given spatial extent. 

-  From these functions, we devised two novel spatial influence scores (i.e., RSIS 

and RSSS) that allow within and between urban features comparisons in terms of 

spatial influences across space, time, and crime types. 

- This study fills an empirical gap in the methods using graph-based DL 

algorithms to predict crime hotspots by introducing two graph learning algorithms 

that were not adapted to the crime hotspot forecasting domain before. 

- To the best of our knowledge, this is the first attempt to make shiftly crime hotspot 

predictions using network-based DL algorithms.   
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- We enhance the graph-based predictive crime hotspot algorithms with many 

theory-driven event surfaces including the novel SSRS, 311 requests, park events, 

and the other crime type. 

- We propose a novel two-step hyperparameter tuning procedure that optimizes 

data representation and model performance gradually.  

- It uses a novel squared quantile loss function to overcome the imbalance in the 

sparse crime dataset. 

  



13 

 

CHAPTER 2  

LITERATURE REVIEW 

This chapter is an extensive literature review that aims to provide answers to the 

research problems described in the previous chapter. First, we focus on the existing 

spatial units in the literature in that determining a suitable unit is of crucial importance 

for the validity of a crime hotspot prediction method. Second, we lay the theoretical 

groundwork for environmental crime risk across places. Third, we provide an overview 

of the existing crime hotspot prediction methods in the literature. Fourth, we summarize 

the DL-based crime prediction methods with a special emphasis on graph learning 

algorithms. Lastly, we position our study in the extant literature to highlight its 

contribution to the knowledge. 

2.1. Spatial units in predictive policing 

Selecting the optimal spatial unit is of paramount importance in predictive crime hotspot 

mapping algorithms since it draws the geographical boundaries of hotspots. In spatial 

crime research, spatial units are often categorized under three main groups: macro-level 

(e.g., cities, counties), meso-level (e.g., police beats, community areas, etc.), micro-level 

(e.g., parcels, households, etc.) (Johnson, Bowers, Birks, & Pease, 2009). In the first 

group, the primary concern is to provide the top managers with useful insights into the 

long-term planning of law enforcement activities across an area. The second group helps 

with the effective allocation of resources amongst the regional law enforcement units. 

The third group provides a micro understanding of why offenders prefer particular 

environmental settings over others. In an attempt to identify how these groups explain 

the crime variability in a city, Steenbeek & Weisburd (2016) addressed micro-units as 

having explained the most variability in crime incidents that occurred between 2001 and 
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2009 in Hague. This is a finding that can guide the unit selection in predictive crime 

hotspot mapping algorithms.  Given the necessity of making predictions as specific as 

possible to increase the effectiveness of the security interventions, micro units appear to 

be the most suitable group to be used in crime prediction techniques. 

Past researchers mainly employ grids as the units of analysis in their crime predictions 

(e.g., Cheng & Adepeju, 2014; Bowers, Johnson, & Pease, 2004; Steenbeek & Kreis, 

2015; Caplan, Kennedy, & Miller, 2011; Rummens, Hardyns, & Pauwels, 2017; 

Malleson, Steenbeek, & Andresen, 2019). An open question in these units concerns the 

size at which crime should be aggregated (i.e., scale problem) (Weisburd, Bruinsma, & 

Bernasco, 2009). The answer to that question bears great importance for crime 

prediction models to avoid the MAUP (Openshaw, 1981) that refers to unstable model 

outcomes based on the selected unit size. If the size is too large, the crime risk will be 

distributed homogeneously across the area of interest, which may result in missing 

important localized crime risks. Furthermore, crime predictions in that area would be of 

very little practical value for predictive policing due to the lack of specificity.  Likewise, 

if it is too small, data becomes so scarce that the prediction models cannot generate any 

unit-specific crime predictions (Oberwittler & Wikström, 2009). Additionally, the 

variability amongst the unit sizes inflicts the validity and comparability of the predictive 

models. Hunt (2016) reported significantly changing Predictive Accuracy Indexes (PAI), 

a measure frequently employed in evaluating the performance of crime prediction 

models, based on different unit sizes.  

Existing research has thus far come up with various methods to overcome the unit 

selection problem. One line of research has circumvented the problem by proposing a 

data-driven approach that uses spatial crime clusters as spatial units instead of 
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predefined units. In one of the earliest studies, Ratcliffe (2005) proposed a method 

involving Random Nearest Neighbor and Monte Carlo Simulation. This method creates 

spatial crime clusters in a study area and monitors them for each and every time period. 

Similarly, Steenbeek & Kreis (2015) applied space-bounded Hierarchical Agglomerative 

Clustering Analysis to identify the boundaries of homogenous disorder subregions to be 

used as spatial units. In the same vein, (Johnson, Taylor, & Groff, 2015) analyzed the 

violent clusters through LISA (Anselin, 1995) and used the resulting clusters as the unit 

of analysis. The problem with adopting these units is their highly irregular shapes 

heavily dependent on the data. A potential problem arising from this irregularity would 

be to organize police patrol routes given the units that cover multiple police 

jurisdictions. Another problem would be the changing unit sizes based on crime density 

in a region. Dynamically changing cluster sizes may hamper meaningful comparisons 

between predictive models used in different periods. 

Street segments (to two-sided street sections between intersections) have recently 

become a popular micro-unit amongst spatial crime researchers. The reason behind this 

growing popularity is that they are found small enough to capture spatial variations and 

large enough to avoid geocoding errors (Weisburd, Groff, & Yang, 2012). Furthermore, 

they are fairly realistic in terms of representing the true daily interactions between 

individuals in microsocial systems.   Therefore, instead of “arbitrarily-shaped” grids 

(Rosser, Davies, Bowers, Johnson, & Cheng, 2017), researchers widely steered towards 

the street segments as the unit of analysis in their studies (e.g., Groff, 2011; Groff & 

Lockwood, 2014; Schnell, Grossman, & Braga, 2019). Using street segments as spatial 

units has a great advantage: it tracks human activity more accurately by utilizing 

network distance, rather than unrealistic euclidean distance. In addition, it accurately 
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reflects the constraints operating on the human movement. On the other hand, a potential 

challenge in selecting street segments as units of analysis may be data scarcity. As 

Weisburd (2015) describes in his well-known Law of Crime Concentration at Places, 

“for a defined measure of crime at a specific microgeographic unit, the concentration of 

crime will fall within a narrow bandwidth of percentages for a defined cumulative 

proportion of crime.” (pp. 138). This law implies that most of the units will be “crime 

free”. Testing how this situation affects the calculation of crime concentration, Levin, 

Rosenfeld, & Deckard (2017) noted a significant effect of including “crime free” places 

into the model on the calculated concentration. In sum, despite the potential data 

scarcity, street segments still appear to be the most suitable spatial unit in crime 

prediction amongst others. 

2.2.  Criminological background 

The criminological background of the current study is built upon three main theory 

groups each explaining a different aspect of crime. The first group, repeat-near repeat 

victimization, discusses how crime incidents are interdependent in space and time. The 

second group, opportunity theories, explains how crime opportunity shapes 

spatiotemporal crime patterns across an area. In this group, a subsection will be devoted 

to explaining how urban features influence crime opportunity (risk) in near areas. The 

last group focuses on the role of social context in shaping crime opportunities in an area. 

2.2.1. Repeat -Near repeat victimization 

Repeat victimization theory hypothesizes a small number of individuals or households 

are exposed to a disproportionate amount of crime. Moreover, it posits that having been 

victimized in the past increases the chance of being victimized in the future (Pease, 

1998). Past research has well documented the elevated victimization risks for one-time 
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victims compared to non victimized others (e.g., Polvi, Looman, Humphries, & Pease, 

1990, Polvi, Looman, Humphries, & Pease, 1991; Kleemans, 2001; Short, D’orsogna, 

Brantingham, & Tita, 2009 ; Lantz & Ruback, 2017). What makes one-time victims far 

more vulnerable to further victimization has two different explanations: event 

dependence (Tseloni & Pease, 1996) and opportunity. The former views repeat 

victimization simply as a result of past victimization without giving much of a thought 

on the potential causes behind the victimization recurrence. The latter explains this 

repeat victimization as a consequence of the associated crime opportunity that a target 

represents for offenders. A number of qualitative studies that delve into the modus 

operandi of the offenders addressed a strong perceived opportunity in their risk-reward 

calculation before making offense decisions (e.g., Rengert & Wasilchick, 1985; Piquero 

& Rengert, 1999). Supporting evidence for this opportunity-based explanation was 

provided by a large volume of research that highlighted the target similarity, rather than 

identity, as the main factor in target selection (i.e., Bernasco & Nieuwbeerta, 2005; 

Bernasco, 2010). In sum, these findings support an opportunity-based explanation of 

repeat victimization patterns. This means that victimization risk may not necessarily be 

directed at the same individual or household but can be directed at similar others.  

Based on that opportunity-based explanation, Morgan (2001) defined near repeat 

victimization that refers to an elevated crime risk around a crime location for a time 

window. Followingly, using an infectious disease metaphor,  Townsley, Homel & 

Chaseling (2003) tested this hypothesis across burglary incidents in Brisbane. What they 

found is more pronounced near-repeat patterns in neighborhoods with higher 

homogeneity in terms of building infrastructure. This is a finding that supports the view 

that the target similarity is what dominates offenders’ decisions.  Although burglary is 
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the most widely tested crime type, many other crime types were also found to exhibit 

these near-repeat patterns to varying degrees. Included in these types are motor vehicle 

thefts (e.g., Lockwood, 2012), robbery, and shooting (e.g., Youstin, Nobles, Ward, & 

Cook, 2011). The differential near repeat patterns across crime types have important 

implications for predictive policing methods that feed on spatiotemporal crime 

regularities. As an example, an elevated risk around a burglary location may continue to 

exist for two weeks within a 400 meters bandwidth in an area whereas the same elevated 

risk may be to exist only for one week within a 1000 meters bandwidth for motor 

vehicle thefts. This difference underlines the necessity of placing crime-specific 

spatiotemporal crime risk bandwidths around crime locations.  In short,crime-specific 

near repeat victimization can capture spatiotemporal regularities better than a merely 

repeat victimization model does.   

2.2.2. Opportunity theories 

Opportunity theories explain crime incidents by focusing on the interactions of offenders 

with the environments in which they operate.  The existing literature notes three main 

theories that form the theoretical basis of the opportunity theories. At the base lies the 

Routine Activity Theory (RAT) (Cohen & Felson, 1979) that formulates crime 

opportunity as a convergence of a suitable target with a motivated offender in space and 

time without a capable guardian present. Although this triangular formulation implies 

spatiotemporal crime patterns, it does not explicate when and where crime is likely to 

occur. Noting the possibility of situations where this formulation does not hold, the RCT 

(Cornish & Clarke;1987) addresses a rational risk-reward calculation made by offenders 

in their offending decisions. Accordingly, offenders will only offend when they reckon 

the associated reward would exceed the associated risk. Despite offering a plausible 
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explanation as to why not all crime opportunities result in actual crime incidents, the 

RCT still fails to explain where and when a crime is more likely to occur. On top of 

these theories, CPT (Brantingham & Brantingham, 1981; Brantingham & Brantingham, 

1995) positions the crime opportunity onto an environmental backcloth that refers to a 

collection of external factors of the social environment, physical environment, people, 

behavior, activities, and timing (Groff, 2017). Then it continues to link the offending 

decision to the way an offender interprets the opportunity in this environmental 

backcloth. These interpretations are a product of a mental template that an offender 

builds on the familiarity with an environment he/she develops over time. The more an 

offender spends time in this environment traversing from one place to another, the more 

aware he/she becomes aware of the residing crime opportunities. In other words, they 

create an awareness space in that environment (Brantingham & Brantingham, 1981, 

Brantingham & Brantingham, 1995) A key factor that reinforces the indicated mental 

templates is past successful offending experiences of offenders and/or their peers. 

Deciphering these awareness spaces has always been of great scholarly interest. (e.g., 

Bernasco & Nieuwbeerta, 2005; Bernasco, 2010; Bernasco, Ruiter, & Block, 2017). This 

is because it promises large benefits in terms of characterizing the spatial preferences of 

offenders. Having detailed knowledge on the residing opportunities and risks as well as 

the escape routes, the offenders pose the greatest risk for the suitable targets in their 

awareness spaces (Curtis-Ham, Bernasco, Medvedev, & Polaschek, 2020). The CPT 

flags these encounters on pathways (i.e., streets) between activity nodes (i.e., the places 

people frequently visit to perform their daily routines). It further identifies two groups of 

activity nodes around which the chance of an encounter is much greater compared to 

others. The first group (i.e., crime generators) increases the crime opportunity by 
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attracting larger crowds that often contain a larger number of offenders and targets. The 

second group (i.e., crime attractors) does so due to having particular features promoting 

criminal behaviors. Past research has confirmed the elevated crime risk surrounding 

what can be considered either a crime generator or a crime attractor such as pub (e.g., 

Roncek & Maier, 1991; Roncek & Pravatiner, 1989; Ratcliffe, 2012; Xu & Griffiths, 

2017; Groff & Lockwood, 2014), fast food restaurant (e.g., Bernasco & Block, 2011; 

Haberman & Ratcliffe, 2015), and grocery store (e.g., Barnum, Caplan, Kennedy, & 

Piza, 2017; Demeau & Parent, 2018). How these features attract crime to their vicinities 

is to be discussed in the following section that will detail the underlying mechanisms 

behind the spatial influence of urban features on crime. 

2.2.3 The characteristics of spatial influence 

The spatial influence of urban features on crime can be measured by the size and density 

of the surrounding crime clusters around them. Accordingly, crime clusters spreading 

across larger areas with greater crime densities indicate stronger spatial influences. 

Spatial extent refers to the size of indicated crime clusters and it demarcates the area 

where crime density can be formulated as a function of the distance from an urban 

feature. Human activity is a key factor in spatial influence: the exposure to higher levels 

of human activity for lengthened periods leads to higher exposure to potential offenders, 

which not only expands spatial extent but also increases its strength (Groff,2011). A 

large body of research has revealed that spatial influence decays with distance and 

entirely disappears at some point (e.g., Ratcliffe,2012; Groff, 2013; Groff & 

Lockwood,2014) as a consequence of the decreasing spatial interactions between urban 

features and crime ( Rengert, Piquero, & Jones, 1999). 
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Past researchers have proposed different bandwidth sizes for spatial extents including 

census blocks (Roncek & Maier, 1991), a quarter-mile (Weisburd et al.,2012), or a 

completely arbitrary distance (Newton & Hirschfield, 2009). The problem with these 

disk-like bandwidths is that they often miss the fluctuations in crime density due to 

assuming a static spatial influence throughout a spatial extent. To characterize spatial 

influence more accurately, the subsequent researchers have brought different solutions to 

this problem by trying multiple bandwidths at finer resolution levels. They first placed 

ring-like spatial buffers of various sizes from 1.7 m to 457.2 m (Ratcliffe,2012; 

Groff,2011; McCord & Ratcliffe,2007; Xu & Griffiths,2017) around urban features. 

Next, they calculate the cumulative crime density at each buffer. Lastly, they selected 

the buffer that marks the end of the elevated crime density as the spatial extent of the 

urban feature.  Comparing an average street block length (i.e., 122 m) and one-quarter 

mile as spatial buffers, Groff (2011) identified the threshold for the spatial influence of 

drinking places at 366 m for the first bandwidth and 402 m for the second. She also 

underlined the role of shorter bandwidths in characterizing spatial influence in that they 

better capture dynamically changing crime risk throughout an extent. Based on that 

insight, Xu and Griffith (2017) used bandwidths as small as 1.7 m and found 

diminishing crime density levels within a spatial extent of 304.8 m. 

There are two main types of distance measurement in spatial influence analysis: 

euclidean distance (Felson & Boivin,2015; Bernasco & Block, 2010) or street network 

distance (Groff & Lockwood,2014; Xu & Griffiths,2017). Given the fact that human 

activity is heavily constrained to street networks in urban settings, the latter type is more 

suitable for representing distances between urban features and crime locations. 

Moreover, using Euclidean distance causes false-positive spatial relationships (Yamada 
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& Thill, 2004; Lu & Chen, 2007) or over-smoothed crime clusters (Tompson, Partridge, 

& Shepherd, 2009). In an attempt to examine the statistical significance between 

euclidean and network distance in an urban context, Maki & Okabe (2005) detected 

significant differences in distance calculations under 400 m. Also, a similar hypothesis 

was tested by Groff (2011) who examined the magnitude of association between bars 

and crime locations.  She determined that the association by street distance was nearly 

three times higher than the ones identified by Euclidean distance. The studies using 

network distance have some limitations. First and foremost, they often aggregate crimes 

with relevant street segments (Groff &Lockwood,2014). This may be a huge problem 

depending on the length of a street segment. The distance difference between an urban 

feature at the center and a crime event at the edge would equal the midlength of the 

street segment given the crime is represented by the segment centroid. To improve 

spatial precision, Xu and Griffiths (2017) proposed a continuous network space where 

urban features and crime locations are represented by their exact locations. This 

approach significantly improved the accuracy of the spatial influence analysis by 

providing more precise distance measures. 

2.2.4. Spatial influence in environmental backcloth 

Spatial influence resides in an environmental backcloth (Brantingham & Brantingham, 

1981;1993) that refers to a multitude of factors involving the social environment, 

physical environment, people, behavior, activities, and timing (Groff,2017). This 

backcloth points to the interplay between the physical environment (i.e., urban features 

and street networks) and human activity as the key driver of crime opportunities in an 

urban context. The physical environment routes human activity to different places 

throughout the day or the week, and thus dynamically changes the crime opportunity 
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landscape of a city. This fluctuating activity level validates a time geography 

perspective: the spatiotemporal rhythm of urban life (Pred, 1981) constrains individuals 

in many ways (Ratcliffe,2006) and regulates their movements in space and time. 

Accordingly, individuals have to be present at places (e.g., government offices, clothing 

stores) within their operating times to complete their tasks. These constraints lead 

individuals, regardless of being an offender or a target, to track common routes between 

activity nodes (e.g., home, work, shop). The dynamic change in the number of people on 

these common routes throughout a day or week is the underlying cause behind a 

periodical crime opportunity pattern around urban features (e.g., 

Haberman&Ratcliffe,2015; Bernasco, Ruiter, & Block, 2017; Corcoran, Zahnow, 

Kimpton, Wickes, & Brunsdon, 2021). The existing literature has reported a set of urban 

features that accommodate such periodical opportunities, such as schools, bus stops, and 

fast-food restaurants (e.g., Haberman&Ratcliffe,2015; Irvin-Erickson & La Vigne, 2015; 

Hart & Miethe, 2015; MacDonald, Nicosia, & Ukert, 2018). 

Previous research has highlighted the localized spatial influence of urban features on 

crime (Barnum, Caplan, Kennedy, & Piza, 2017). This is a fact that manifests itself in a 

citywide j-shaped crime distribution (Eck, Clarke, & Guerette, 2007) that accrues from a 

highly asymmetrical crime exposure amongst urban features while controlling their 

types. To address this heterogeneity, Kinney, Brantingham, Wuschke, Kirk, & 

Brantingham (2008) utilizes the concept of” urban mosaics” (Timms, 1975) that 

characterizes cities as a set of mosaics having unique urban layouts, activities, and 

sociodemographic structures. Similarly, Hipp & Kim (2019) found that robbery risk is 

significantly smaller in the commercial district of Southern California in daytime than at 

night due to the presence of employees. Another important finding is the elevated 
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robbery risk in segments with a larger restaurant density on weekends. In a similar 

study, Stucky & Ottensmann (2009) revealed an increased spatial influence of retail 

stores on robbery risk in disadvantaged neighborhoods.  These findings suggest the fact 

that that crime risk demonstrates a clear spatiotemporal pattern across a city. Therefore, 

an accurate crime risk operationalization should adopt a spatiotemporal approach. 

The peculiar situational characteristics condition the periodical crime opportunity 

patterns across crime types. The primary situational crime prevention principle 

recommends differential security interventions to different crime types because of the 

obvious differences existing in associated crime opportunities (Clarke,1995). A 

straightforward example would be the crime opportunity represented by a vacant house 

with an open window. Here, the opportunity level would be completely irrelevant to 

robbers whereas it sets the ideal scene for a burglar. This conditioned opportunity 

implies differential spatial influences for urban features across crime types. In an 

empirical study, Groff & Lockwood (2014) reported the spatial influence of bars on 

disorder crimes to have nearly 1.5 times of what it has on violent and property crime 

within a short bandwidth. Within a 100 m bandwidth, Breetzke & Edelstein (2020) 

similarly showed that schools are exposed to two times more assault incidents than it is 

exposed to robbery incidents within the same bandwidth. In short, spatial influence 

operates differently on different crime types. Therefore, spatial influence should be 

quantified by crimes-specific indicators. 

2.2.5. Ecological theories 

The ecological theories explain crime variability across city regions based on the 

observed social and physical disorganization. Focusing on the former, Social 

Disorganization Theory (Shaw & McKay, 1942) views crime as an inevitable result of 
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dissolved social bonds amongst the members of a community. By undermining the trust 

and solidarity amongst the members, social disorganization weakens informal social 

control that acts as an important natural surveillance mechanism against criminal 

behavior. The deepened fear of victimization causes the members of this community to 

avoid any kind of social interaction with others (Kitchen & Williams, 2010). In her 

seminal work, Jacobs (1961) cited the social interactions between community members 

in shared movement spaces as the backbone of maintaining the public order. Therefore, 

the damaged social ties in a neighborhood impair the social order by deactivating the 

informal social control mechanism. 

Social disorganization is often measured by sociodemographic indicators such as 

unemployment rate, education rate, and inverted median house income (e.g., Jones & 

Pridemore, 2019). The problem with using these indicators in crime prediction 

algorithms is their likelihood to calculate higher risks for disadvantaged areas. These 

inflated risk values may trigger biased security interventions resulting in 

disproportionate patrol concentration. This biased risk calculation is the most 

controversial issue that receives bitter criticisms from scholars questioning the ethics of 

predictive policing (e.g., Bennett Moses & Chan, 2018, Browning & Arrigo, 2021). Less 

controversial are the indicators derived from the Broken Windows Theory (Wilson & 

Kelling, 1982) that views broken windows and other unresolved social and physical 

disorders as serious signs of future crime incidents. The authors consider the 

indifference from the residents of a neighborhood to physical disorganization as a sign 

of a common disinterest of its residents in keeping their neighborhood decent. In 

conclusion, this indicated disinterest is hypothesized to represent social disorganization, 

hence causing higher crime risks. The broken windows theory is often measured by set 
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visible cues of disorganization such as 311 calls (e.g., Zhao & Tang, 2020) or 

misdemeanors (e.g., Cerdá et al., 2009).  

A more recent theoretical endeavor is to reconcile ecological and opportunity theories. 

The CPT points to the effects of social environment on crime opportunity in the 

environmental backcloth (Brantingham & Brantingham, 1993; Brantingham & 

Brantingham, 1995). However, it was Wilcox, Land, & Hunt (2003) who first elaborated 

on the idea of crime contextualization by supplementing the traditional routine activity 

triangle with a multi contextual dynamic perspective. In their Multicontextual/Multilevel 

Criminal Opportunity Theory (MCOT), they posit that neighborhood opportunity 

context renders convergence of victims and offenders more likely in space and time. 

This opportunity context is heavily influenced by aggregate exposure to offenders, the 

concentration of suitable targets, and levels of collective guardianship. Similarly, Place 

in Neighborhood (PIN)  framework underlines this interplay between place and 

neighborhood in crime (Wilcox & Tillyer, 2017). The main premises of this framework 

are (1) offenders make their decisions based on perceived risk, effort, and reward (2) this 

rational calculation is influenced by the general context of the surrounding 

neighborhood. These theories accentuated the hierarchical perspective towards crime 

risk by identifying possible neighborhood effects. 

Briefly, crime demonstrates spatiotemporal regularities that enable the prediction of 

future incidents. At the base level, repeat near repeat theories provides a theoretical 

rationale in using past crime events to predict future events. Further explanations 

regarding what drives near-repeat patterns come from opportunity theories that ground 

crime in an urban context. Lastly, ecological theories bring a reasonable explanation to 
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cross-regional crime opportunity differences through the incorporation of physical and 

social disorganization.   

2.3 The methods used in predictive policing  

Fed by various data sources, predictive policing models are able to identify crime 

hotspots across an area before they emerge. The primary sources are crime datasets that 

describe a crime event with a set of features such as time, location, crime type. 

Multivariate prediction models incorporate external datasets about environmental 

configurations (e.g., land use) and sociodemographic characteristics (e.g., 

unemployment rate, education level). After data preprocessing, the researchers aggregate 

these datasets at various spatial levels such as equal-sized grids ( Garnier, Caplan, & 

Kennedy, 2018), neighborhoods (e.g., Gerber, 2014), or street segments (e.g., Rosser, 

Davies, Bowers, Johnson, & Cheng, 2017). The goal is to predict the crime outcomes in 

each unit in the next time step. In this study, we follow a categorization that groups the 

models based on these outcomes. This categorization includes:  Estimation of Crime 

Intensity based on Space-Time Interaction, Surveillance of Space-Time Clusters of 

Crime, Prediction of Crime Based on Environmental Factors, Prediction of Crime 

Counts and Possibilities (Ohyama & Amemiya, 2018).  

2.3.1 Estimation of crime intensity based on space-time interaction 

The beginning of empirical crime hotspot research was often marked by the seminal 

work of Sherman, Gartin, & Buerger (1989). In this study, Sherman and his colleagues 

found that nearly 50% of the total 323979 calls to the Minneapolis police department 

during 1985 came from only 3% of all addresses in the city. Although it opens up a 

whole new research avenue, the study is mostly criticized by following researchers for 

its basic assumptions on the stability and independence of hotspots ( Kennedy, Caplan, 
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& Piza, 2015). As a matter of fact, empirical research has repeatedly shown that these 

hotspots demonstrate displacement and diffusion over time (e.g., Bowers & Johnson, 

2003; Weisburd et al., 2006; Short, Brantingham, Bertozzi, & Tita, 2010). Based on the 

near-repeat phenomenon, Bowers, Johnson, & Pease (2004) proposed a fix to that 

problem with a prospective hotspot approach that postulates past crime locations can 

predict the future ones. In this approach, researchers use Kernel Density Estimation 

(KDE) method to predict crime intensity across units in the next time step.  The crime 

intensity in a unit is calculated based on retrospective crime data. Then, these intensity 

values at units are placed onto a “risk surface”. The units ranked at the top in terms of 

the calculated risk value are predicted to be crime hotspots in the next time step. The 

most popular methods in this group are ProMap (Johnson, Bowers, Birks, & Pease, 

2009) and Self Exciting Point Process (SEPP) (Mohler, Short, Brantingham, 

Schoenberg, & Tita, 2011).  Both methods calculate a crime risk surface based on 

retrospective crime data. They only differ in their risk calculations. The former utilizes 

spatiotemporal kernels that decay crime risk around crime locations in space and time. 

Based on the Epidemic Type Aftershock Sequence (ETAS) which is a widely popular 

method in earthquake prediction (Ogata, 1988), the latter calculates risk based on a 

function that takes the predecessor-successor relationship between crime occurrences 

into consideration. The main problem with these methods is that they only rely upon 

retrospective data in their risk calculations and do not incorporate any contextual factors. 

A group of subsequent research attempted to improve these methods through the 

inclusion of external variables such as tweets (e.g., Gerber, 2014), weather (e.g., Wang, 

2015), or coexisting crime incidents (e.g., Mohler, 2014). Another problem in these 

methods is the grid-like spatial units whose sizes are often selected arbitrarily. The only 
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existing solution to that problem was proposed by Rosser, Davies, Bowers, Johnson, & 

Cheng (2017) who developed a method called Network KDE (NTKDE). Instead of 

using arbitrarily shaped grids, they propose street segments as units of analysis.  In the 

same study, they reported a 20% improvement from using network-based KDE over the 

grid-based KDE.  In the extant literature, there does not exist any study that brought a 

complete solution that both problems. 

2.3.2 Surveillance of space–time clusters of crime  

Past research widely used clustering techniques (e.g., k-means, nearest-neighbor 

hierarchical clustering) to identify the existing crime hotspots across an area (e.g., 

Andresen, Curman, & Linning, 2017; Mazeika & Kumar, 2017). Although these 

techniques are quite suitable for descriptive inferences; they are not well-suited for the 

crime prediction tasks.  Being able to predict crime by dynamically tracking 

spatiotemporal crime clusters, Space-Time Scan Statistics (STSS) ( (Kulldorff, Athas, 

Feurer, Miller, & Key, 1998)) and Prospective Scan Statistics (PSTSS) (Kulldorff, 

Heffernan, Hartman, Assunçao, & Mostashari, 2005) demonstrate two exceptions. The 

main idea behind these models is to scan the overlapping time windows across a 

geographic area. They identify significant emerging crime clusters when overlapping 

windows exceed the threshold at a specified intensity level (Ohyama and Amemiya, 

2018). The clusters with unusual intensity can be interpreted as potential crime hotspots. 

These techniques allow the monitoring of crime risk in real-time. Yet, the shape of 

emerging clusters is not stable and change dynamically. As a result, these unstructured 

spatial units pose a great challenge to planning patrol routes. 
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2.3.3 Prediction of crime based on environmental factors 

The most popular method in this category is Risk Terrain Modeling (RTM) (Caplan, 

Kennedy, & Miller, 2011).  This method basically strives to incorporate the 

environmental backcloth (Brantingham & Brantingham, 1981) into crime prediction 

with the help of a multilayered map component. To do so, it operationalizes and 

standardizes each physical risk factor of environmental backcloth at a common terrain. 

Its main working principle is to calculate a Relative Risk Value (RRV) for each spatial 

unit by overlapping risk layers stacked on a map. Then it uses this RRV as a predictor of 

a logistic regression equation that predicts the probability of crime in that unit. As a 

result, the areas having higher probabilities are predicted to be crime hotspots. Empirical 

evidence has highlighted the superiority of RTM to other methods in terms of predictive 

accuracy (e.g., Drawve, Thomas, & Walker, 2016; Ohyama & Amemiya, 2018). In order 

to enhance RTM with sociodemographic indicators, Drawve, Thomas, & Walker, (2016) 

developed an Aggregated Neighborhood Risk Index (ANROC). This indicator is a 

composite score of RRVs and sociodemographic indicators in a neighborhood. It is used 

to monitor the crime risk in an area in each time step. In another complementary study, 

Chillar & Drawve (2018) extend RTM to examine how calculated RRVs change based 

on police division and shifts. The main problem with using RTM concerns its monolithic 

risk indicator. This indicator does not capture the fluctuating spatial influence of urban 

features on crime within a spatial extent. Furthermore, this indicator is not sensitive to 

spatiotemporal crime risk differences. For example, it assumes a citywide spatial 

influence of a pub. However, the magnitude of this spatial influence may significantly 

vary from one region to another (Wheeler & Steenbeek, 2021). Therefore, a proper 
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indicator of spatial influence should capture the localized spatial influence during the 

day or week. 

2.3.4 Prediction of crime counts and possibilities 

Spatiotemporal General Additive Model (ST-GAM) (Wang & Brown, 2012) is the 

primary method of this category. This method is unique in terms of its ability to 

incorporate both environmental and societal factors into crime prediction models. Its 

basic premise is that the probability of crime occurring in a spatial unit in the next time 

step can be calculated given all the crime-related features are provided to the model. In 

addition, ST-GAM allows the development of local models for subregions- Local 

Spatiotemporal General Additive Model (LST-GAM).  A common problem with using 

LST-GAM, however, is the lack of an explanation regarding how to determine the 

optimal number of subregions.  

In addition to ST-GAM, the regression-based methods may also be included in this 

group. These methods aggregate the indicators of the social and physical environment, 

and selected crime counts at selected spatial units. They then quantify the effects of 

these block attributes (e.g., number of bars, schools, concentrated disadvantage, etc.) on 

crime by their estimated coefficients in the fitted regression equations (e.g., Bernasco & 

Block, 2011; Bernasco, Ruiter, & Block, 2017; Jones & Pridemore, 2019). A general 

problem with the methods in this group is its incapability of reflecting intertwined 

relationships between the included factors.  

2.4 DL-based crime prediction methods 

Using machine learning techniques in crime hotspot prediction is not a new phenomenon 

(Olligschlaeger, 1997; Corcoran, Wilson, & Ware, 2003). Over the last three decades, 

researchers have leveraged various techniques within the realm of crime hotspot 
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prediction. The majority of these techniques exploit conventional machine learning 

algorithms such as ANN, SVM, logistic regression, and ensemble methods (e.g., 

Random Forest) (e.g., Kadar, Maculan, & Feuerriegel, 2019; Rummens, Hardyns, & 

Pauwels, 2017; Zhang, Liu, Xiao, & Ji, 2020). Recently, deep learning algorithms have 

also been added to the toolbox of the researchers and practitioners who are interested in 

predicting the future crime hotspots (e.g., Zhuang, Almeida, Morabito, & Ding, 2017; 

Kang & Kang, 2017; Huang, Zhang, Zheng, & Chawla, 2018; (Jin, Sha, Feng, Cheng, & 

Huang, 2021). The DL-based algorithms were often used to predict grid-shaped crime 

hotspots. These algorithms employ covariates by aggregating external factors (e.g., 311 

calls, POI) at these grids. The problem with this approach is threefold. First, the sizes of 

these grids are often selected arbitrarily (Rosser, Davies, Bowers, Johnson, & Cheng, 

2017). This arbitrary selection results in one of the most notorious problems in spatial 

analysis, MAUP (Cheng & Adepeju, 2014) that leaves the performance of these models 

unstable based on the grid size. Second, these units do not match with real world police 

patrolling practices that are constrained to street networks. The grids that do not fit into 

these networks complicate the patrol route planning (Rosser, Davies, Bowers, Johnson, 

& Cheng, 2017). Lastly, human movement in the urban context is heavily constrained to 

street networks as well (Groff & Lockwood, 2014). Placing unrealistic grids above a 

constrained network space does not reflect the actual behavior of crime risk. 

Acknowledging the need to accommodate the crime risk on street networks, Zhang & 

Cheng (2020) proposed a graph learning approach to predictive crime hotspot mapping. 

In the first step, they created a graph consisting of the midpoints of street segments 

located on a street network. To weight the edges in this graph, they used a Gaussian 

kernel weighting function that assigns inverse weights to the edges based on their length 
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in network distance. To overcome the challenges associated with learning from the 

sparse datasets in Deep Learning (DL), they smoothed crime counts recorded in 

segments in a way that they can be fed into graph-based DL models. Lastly, they 

interpreted these smoothed crime counts as graph signals that can be learned through 

graph learning algorithms. The predictive hotspot mapping then became the task of 

predicting crime hotspot in the form of graph signals in the next time step. This 

translation renders graph learning algorithms applicable to the field of predictive crime 

hotspot mapping. Surprisingly, the studies using graph learning algorithms in crime 

hotspot prediction are nonexistent, except GLDNet developed by Zhang & Cheng 

(2020). 

2.4.1. Reformulating crime prediction as a graph learning task 

Spatiotemporal graph learning algorithms have thus far proved efficient in solving a 

wide range of real-world problems across many domains. While many researchers have 

used it in traffic speed prediction (e.g., Shleifer, McCreery, & Chitters, 2019; Chen et 

al., 2020); others have focused on taxi demand prediction (e.g.,), exchange rate 

forecasting (e.g., Wu et al., 2020), and wind speed forecasting (e.g., Khodayar & Wang, 

2018). Their applicability to the spatiotemporal crime prediction on street networks, 

however, remains underexplored, except a remarkable study (i.e., Zhang & Cheng, 

2020). Given the commonalities existing between the aforementioned tasks and 

spatiotemporal crime prediction in terms of predicting graph-based data, examining the 

applicability of graph learning algorithms is not a trivial task. Because, in both cases, 

predictions are made for the spatial units that are located on a graph. Furthermore, the 

values to be predicted participate in spatiotemporally interdependent relationships with 
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each other. That is to say, the prediction of a unit in each timestep influences the 

predictions of its neighbors in the current and next time steps.  

By contrast, the main difference between these studies exists in the input structures.  The 

graph learning datasets often consist of observations with continuous values collected 

through sensors on a network with a certain time interval. For example, a popular 

benchmark dataset, METR-LA, stores traffic speed measurements at the sensors located 

on the Los Angeles highways with 5-minute intervals. On the other hand, crime datasets 

tally the event counts in each segment within a time interval. Unsurprisingly, most 

observations in these datasets are zero, producing extremely sparse datasets. The main 

challenge here is that DL algorithms are ill-suited to the prediction of sparse datasets. A 

viable solution was proposed by Zhang&Cheng (2020) who reframe crime hotspot 

prediction on a street network as a task of Graph Signal Processing (GSP). GSP is an 

umbrella term that encapsulates a set of related tasks for processing data on irregular 

graphs (Ortega, Frossard, Kovačević, Moura, & Vandergheynst, 2018). Zhang & Cheng 

(2020) described a clear mapping from the components of GSP to the problem of crime 

prediction on street networks. For the first component, a street network can be 

represented as a Graph (i.e., G): G= (V,E,W). The second refers to the values to be 

predicted (e.g., crime risk, traffic speed), and the last one involves the task of learning 

these signals. One challenge in crime hotspot prediction domain  is to represent sparse 

crime time series in a way that they can be fed into GSP algorithms. Therefore, data 

representation is of paramount importance in terms of integrating graph learning 

algorithms into predictive crime hotspot mapping. 
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2.5. This study 

The contribution of the current study can be grouped under two main fields. First, it 

develops novel Distance-Aware Risk Signal Functions (DRSF) that model the dynamic 

spatial influence of urban features on different crime types within a spatial extent across 

the day and week. Second, by using these functions, the current study proposes a novel 

network-based environmental risk surface that can inform the network-based predictive 

crime hotspot mapping methods using DL. The first group has contributed to the third 

group of predictive policing methods by developing nonmonolithic crime risk indicators. 

These indicators capture spatiotemporal fluctuations in spatial influence across crime 

types. The second group has filled an empirical gap in the first group by complementing 

predictive crime hotspot maps with an auxiliary risk surface that represents the dynamic 

environmental crime risk around urban features across street networks. In addition, we 

proposed three additional theory-based event surfaces to enhance the predictive ability 

of the models: 311 service calls, park events, and other crime types. It thus overcomes 

the main challenges that were mentioned in the first group of predictive policing 

methods. The following sections will detail the contributions in both groups. 

2.5.1. Distance-aware risk signal functions 

In this study, we introduced the concept of the "crime risk station". Using a base station 

analogy, this concept models the spatial influence of urban features on crime as 

broadcasted risk signals at changing strength levels (i.e., distance decay effect) 

throughout a coverage area (i.e., spatial extent). In doing so, we adopted a crime-specific 

spatiotemporal approach to illustrate how the signal strength changes based on space, 

time, and crime type. Our methodology coupled the methods of network K analysis with 

segmented regression. The former helped us identify the significant network-based 
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spatiotemporal crime clusters around urban features.  The latter models the spatial 

influence for each significant spatiotemporal cluster as a function of street network 

distance. Xu and Griffiths (2017) previously used a similar methodology in their study 

where they attempted to measure the spatial influence of a set of urban features on gun 

violence in Newark, NJ. In this study, we have built upon this study by examining how 

the spatial influence of a wide set of selected urban features (i.e., bus stop, fast food 

restaurant, gas station, grocery store, pub) on robbery and theft risk varies across various 

spatiotemporal configurations in Chicago, IL. 

The urban layout differences within and between cities complicate the selection of 

suitable spatial extents and pose one of the greatest challenges for comparative spatial 

influence analysis amongst urban features. A tenable solution to that problem was 

proposed by McCord and Ratcliffe (2009) who developed the Intensity Value Analysis 

(IVA). The IVA operationalizes spatial influence within a given radial bandwidth that 

can be considered as an assumed spatial extent. The intensity values were calculated by 

inversely weighting counts based on the distance from the center. Using fixed 

bandwidths then enacts comparative analysis of spatial influence between regions. In a 

similar way, we proposed fixed network bandwidths. In these bandwidths, we 

operationalize the spatial influence through the distance-aware risk signal functions. The 

risk signal functions are the fitted segmented regression equations that estimate the 

crime risk in near areas. Past researchers utilized segmented regression to identify the 

inflection points in the spatial influence of urban features (Ratcliffe,2012; Xu 

&Griffiths,2017). Differently, we used it to estimate the crime density at each point 

within the given network bandwidth. From these functions, we devised two risk 

indicators: risk signal intensity score (RSIS) and risk signal strength score (RSSS). The 
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former represents cumulative crime density at the assumed spatial extent. The latter 

quantifies the spatial diffusion effect with the percentage change between a local effect 

(i.e., crime density at the exact location) and the RSIS. For a local effect of four and a 

RSIS of three, the RSSS is -33.3. This value shows a 33.3% decrease in spatial 

influence. Next, we compared these scores for each crime type across various 

spatiotemporal models with nonparametric statistical tests, Kruskal-Wallis, and 

Wilcoxon Signed-Rank test. Lastly, we examined how spatial influence interacts with 

the socieconomic characteristics across the regions with a correlation analysis between 

the regional risk scores and concentrated disadvantages of these regions. 

This study makes several contributions to the existing literature. First, it filters 

insignificant crime clusters around urban features with a novel approach using network 

K analysis. Thus, it ensures the validity of the spatial influence. Second, it introduces 

"Distance Aware Risk Signal Functions (DRSF)" that models spatial influence on a 

network-constrained space rather than representing it with a monolithic value in a 

euclidean space. Third, it develops two novel network-based risk scores (i.e., RSIS and 

RSS) that characterize spatial influence within an assumed spatial extent. Fourth, it 

brings a crime-specific spatiotemporal approach to the comparative spatial influence 

analysis. Lastly, it proposes a correlation analysis that tests the relationship between 

spatial influence and social context across space, time, and crime types. 

2.5.2. Developing a predictive crime hotspot mapping method 

This study introduces several network-based auxiliary event surfaces that enhance 

retrospective crime hotspot prediction techniques with theory-based crime risk 

indicators. The first surface developed represents the dynamic environmental crime risk 

across street segments. To capture the risk, we developed a novel score, Segment 
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Segment Risk Score (SSRS). This score is calculated by multiplying (i.e., multiplicative) 

the local effects of the urban features located on a street segment. The reason we chose a 

multiplicative model is to incorporate existing spatial interactions between the urban 

features within the same spatial neighborhood (He et al.,2020). For example, the spatial 

influence of an ATM will be much higher in closer proximities to a pub than its 

influence when it is located nearby a police station. We quantified the individual local 

effects through a novel indicator, Local Risk Score (LRS). This score measures the 

cumulative crime density at 1.7 m (5.5 feet) away from the urban feature. We obtained 

the LRSs from DRSFs that we described above. We calculated multiple LRS values for 

each selected urban feature across the selected crime types at two different temporal 

aggregation levels: intraday (i.e., First Shift (FS) (00:00-07:59), Second Shift (SS) 

(08:00-15:59), and Third Shift (TS) (16:00-23:59) and weekly (i.e., weekday and 

weekend). To calculate these values, we fitted five different DRSFs for each urban 

feature-crime pair at the temporal levels. These values then represent the dynamically 

changing local effects of urban features on selected crime types. Lastly, these values are 

used to calculate a cyclical SSRSs that recur on a daily or weekly basis. As an 

illustrative example, the weekday theft SSRS of a street segment that hosts one grocery 

store and two pubs having LRS values of 3 and 4 respectively would be 48 (3x4x4). On 

the other hand, the weekend theft SSRS for the same segment would be 196 given the 

values of grocery stores and pubs increase to 4 and 7 respectively.   

In addition to an environmental risk surface, we have developed three theory-based 

auxiliary event surfaces: 311 calls, park events, and the coexisting crime incidents. The 

first surface represents the number of 311 service calls from a street segment in a given 

time step. The second surface represents the park events that take place on street 
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segments. To add temporal extent to these public events that increase the crime risk 

across units by concentrating human activity around particular areas (e.g., Ristea, 

Kurland, Resch, Leitner, & Langford, 2018), we smoothed the number of these events in 

a way that the crime risk spans the event duration. For example, a park event that would 

last the whole weekend will be smoothed into two days. The last surface tallies the 

counts of other crimes in a street segment during a period.  For example, in predictive 

hotspot mapping for robbery, theft incidents are used to create an auxiliary event 

surface. Or vice versa. Other crime risk surface serves to improve the performance of 

crime hotspot prediction due to existing spatiotemporal dependencies between different 

types of crime patterns (Mohler,2014). 

In the second step, we incorporated our auxiliary event surfaces into a set of graph 

learning algorithms (i.e., GraphWavenet, Spatiotemporal Graph Convolutional Network-

STGCN) and a baseline (i.e., LSTM). For each algorithm, we created eight models for 

each crime type that produced daily and shift predictions with or without auxiliary event 

surfaces. We measured the predictive performance of these models with Mean Hit Rate 

(MHR) (Zhang & Cheng, 2020). This indicator denotes the mean percentage of crime 

incidents that fall in the predicted hotspots during test days. For hyperparameter tuning, 

we described a two-step procedure that involves optimizations of data representation and 

model parameters respectively. In the first step, we experimented with three different 

parameters related to data representation: time window, smoothing coefficient, and 

spatial bandwidth. The first parameter simply determines how many previous time steps 

should be used to predict the next one, the second and the third parameters adjust the 

extent of crime risk in space and time. In the second step, we experimented with 11 

different values of learning rate (ρ) which is maybe the most important parameter in 
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hyperparameter tuning of deep learning algorithms (Bengio, 2012). Lastly, we compared 

the results. The current study defines itself as a graph-based predictive crime hotspot 

mapping method using DL algorithms. Differently, we enhanced graph DL-based crime 

prediction algorithms with theory-based auxiliary event surfaces that can inform the 

models on the upcoming changes in different crime risks across a day and week. Also, it 

adapted two different graph learning algorithms from the traffic speed forecasting 

domain into the predictive crime hotspot mapping.  Another novelty is the shift model 

developed to predict intraday crime hotspots in an area of interest. Lastly, it introduced a 

hyperparameter tuning procedure that optimizes data representation and model 

parameters in two steps. In sum, this study is the first attempt to enhance graph-based 

predictive crime hotspot mapping algorithms with a set of theory-based auxiliary event 

surfaces. 
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Table 1.   The Key Research 

Study Method 
Unit of 

Analysis 
External Variable 

Prediction 

Horizon(s) 

(Bowers, 

Johnson, 

& Pease, 

2004) 

KDE Grid - 2-days 

Gerber 

(2014) 
KDE Grid Topics derived from the tweets Daily 

(Rosser, 

Davies, 

Bowers, 

Johnson, 

& Cheng, 

2017) 

Network KDE 
Street 

Segment 
- Daily 

(Huang, 

Zhang, 

Zheng, & 

Chawla, 

2018) 

Deep Crime Police District  POI, 311 calls Daily 

Zhang 

&Cheng 

(2020) 

GLDNet 
Street 

Segment 
- Daily 

This study 
Graph Wavenet, 

STGCN 

Street 

Segment 
SSRS, 311 Calls, Park Events, Other Crime Daily, Shift 
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CHAPTER 3  

METHODOLOGY 

 

This chapter starts with a brief description of the study setting. Next, we outline how we 

extract the unit of analysis in this study. Then, we describe the procedure that we used to 

create graphs consisting of the extracted units of analysis. The following section 

describes the methodologies of two main parts in subsequent subsections. The first 

subsection details the methodology that we follow to develop our DRSFs. We begin by 

starting with the description of the datasets and continues with the introduction of the 

techniques we used (i.e., bivariate network K analysis and segmented regression). It 

concludes with the analytical framework that explains how we apply these techniques to 

these datasets in creating DRSFs. The second section concerns the methodological steps 

in developing a dynamic predictive crime hotspot mapping method enhanced with a set 

of theory-based auxiliary event surfaces. In the first step, we describe how we create the 

auxiliary event surfaces that will be incorporated into the crime hotspot prediction 

models. In the second step, we provide the details on the graph learning algorithms that 

we used to predict crime hotspots on a map. The following section is where we 

explained how we measured the performance of the selected algorithms. After 

explaining the two-step hyperparameter tuning procedure, the last section will detail the 

the experimental setup. 

3.1. Study setting 

With a population of approximately 3 million, Chicago is one of the largest cities in the 

U.S. The city’s land coverage is 606.1 km2. Within this area are 200 neighborhoods and 

77 community areas (About Chicago: Facts and Statistics, 2021). An additional regional 
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division are the sides of Chicago (i.e., administrative districts used for urban planning 

purposes). There are nine sides of Chicago: Center Side (CS), Far North Side (FNS), Far 

Southeast Side (FSES), Far Southwest Side (FSWS), North Side (NS), Northwest Side 

(NWS), South Side (SS), SouthWest Side (SWS), and West Side (WS). These sides have 

often been characterized by unique sociodemographic characteristics. As an example, 

the CS is the heart of the city accommodating the main business, shopping, and 

entertainment districts of the city. The FNS hosts the liveliest neighborhoods mainly 

populated by immigrants. And the NS contains the most affluent neighborhoods in the 

city.  On the other end of the spectrum, WS and SS are the sides that chronically suffer 

from the highest social disadvantage levels in Chicago (Keating, 2008; Sampson, 2012). 

These dramatic differences amongst the sides bring about notable differences in terms of 

crime levels. In one of the earliest studies that examine the crime variability at the side 

level, Block (1993) found that 55% of gang-related homicide and 35% of nonlethal 

gang-related offenses occurred on the WS. Similarly, Schnell, Braga, & Piza, (2017) 

identified the largest violent crime hotspots on the WS and SS of the city.  In a recent 

study, Rosser & Cheng (2019) revealed that a citywide crime prediction algorithm (i.e., 

SEPP) is not robust to localized crime patterns across the sides of Chicago. The citywide 

crime hotspot predictions, therefore, remain invalid on most of the sides. This is a study 

that underlines the necessity of developing regional crime hotspot prediction methods 

that can make realistic crime predictions across the sides. Therefore, we selected the 

sides of Chicago as our study area where we can implement our regional crime 

predictions. Figure 1 displays the sides and the related community areas of Chicago. 
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Figure 1.  The sides of Chicago (Adapted from City of Chicago Data Portal) 

3.2. Unit of analysis 

The unit of analysis of the current study is the street segment that refers to the two-sided 

street part between two intersections (Weisburd, Groff, & Yang, 2012). Street segments 

represent optimal microsocial systems that truly reflect the daily interactions between 

the residents in an area. Also, they are small enough to avoid spatial aggregation errors 

and large enough to have a measurable and detectable variability in the number of 

crimes (Vandeviver & Steenbeek, 2019).  

We extracted the street segments through the use of an open-source Geographical 

Information System Software, QGIS 3.6.2. First, we created an Open Street Map canvas 
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for Chicago. Figure 2 illustrates a sample street network retrieved from the Open Street 

Map. 

 

Figure 2.  A snapshot of the city of Chicago on Open Street Map 

Second, we retrieved the street center lines in a shapefile format from City of Chicago 

Open Data portal and create another layer on top of the open street map. This layer 

basically consists of the line features that correspond to what we defined as street 

segments above. These features have many attributes such as segment ID, object IDs, 

GPS coordinates of involved intersections, length, community area, and type of the 

segment (e.g., street, alleyway, boulevard etc.). When illustrated on a map, this layer 

represents the street network of Chicago. Using this layer, we build a graph where each 

node corresponds to a street intersection. After enumerating the node numbers, we 

simplified the graph by removing the redundant edges between the nodes. This 

procedure produced a total of 36446 nodes. Then, we encoded each line (i.e., segment) 
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by the IDs of its start and end nodes. (e.g., 2333- 432). For this, we extracted the 

locations where the nodes and street network intersect, overlap, or cross with each other. 

This procedure resulted in a total of 56334 street segments with labels. In the last step, 

we enumerated the resulting street segments to be referred to later. For example, the ID 

of the segment with the label of 15895-22890 is 1, 23684-7643 is 2, so on so forth. 

Figure 3 displays a street network with enumerated intersections. 

 

Figure 3.  A sample street network with enumerated intersections 

3.3. Creating graphs from the street network 

A street network can be represented as a graph, G= (V, E, W). Here, V (i.e., vertices), 

V= {v1, v2,….. vn}, corresponds to the street intersections, E refers to the edges 

between these intersections (i.e., street segments), W is the edge weight and can be 

assigned to the length of the segment. If there exists order information between the 

edges (i.e., directionality), the network is “directed”, otherwise it is called “undirected”. 

The directionality could be an issue for the cars moving along a street network since all 

the streets may not be two ways in a street network. On the other hand, such limitations 
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do not apply to pedestrian movement in an urban context where people freely ebb and 

flow. Therefore, we created an undirected weighted graph to represent the street network 

in this study. Figure 4 illustrates the difference between directed and undirected graphs.

 

Figure 4.  An example of (a) undirected graph and (b) directed graph (adapted from 

Fionda & Palopoli, 2011) 

 

In the first step, we eliminated the duplicate segments to ensure the uniqueness of the 

street segments in the street network. In doing so, we retrieved the segments with the 

same start and end nodes. Their length is our criterion for selecting redundant segments. 

Accordingly, we randomly select from redundant segments having equal lengths. In case 

there are two different length values for the same segment, we selected the one with a 

shorter length since we observe the longer ones are often inputted with unreasonable 

values such as 8000 meters. Also, we removed many segments with a length of zero. 

Lastly, we eliminated the segments with self-recurring loops where the start and end 

nodes are the same. This preprocessing resulted in a street network with 56310 valid 

segments. 
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To create a graph from these segments, we used networkX (Hagberg et al., 2008), a 

python library specifically developed for creation, manipulation, and analysis of the 

networks. Based on the reviewed street segments that we labeled with the start and end 

intersections (i.e., nodes), we created an initial street network. One important point here 

is to make sure we have a fully connected network. This is because the disconnected 

networks amount to the existence of some nodes that are not accessible to some other 

nodes. These nodes together represent an independent subnetwork that can be called 

“components” of a network. Having a network with independent components may 

severely complicate the distance calculations (Okabe & Sugihara, 2012). Therefore, we 

extracted the largest component that accommodates most of the street segments to 

represent the street network. While examining the graph we initially created with 36446 

street intersections and 56310 edges, we found 46 components. From these components, 

we selected the largest one that includes 36232 nodes. Table 2. summarizes the resulting 

graph. 

Table 2..  The Summary of the Resulting Street Graph of Chicago 

Measure Value 

#Nodes 36232 

#Edges 56130 

#Average 

Degree 
3.0984 

 

Linear referencing 

After creating the main graph, we geocoded the point features (e.g., crime locations). 

One challenge we faced in this task was the features that do not reside on the graph. As a 

solution, we used linear referencing that simply refers to a convention to store point 
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features in line segments. This method snaps all the GPS coordinates to the nearest 

segment of the graph. In the first step, we found the projection of a given coordinates on 

a line segment. Then we interpolated its coordinates on that segment. As a result, we 

obtained the corresponding coordinate of a point on that segment. This procedure 

allowed the calculation of network distances between different kinds of point features 

(e.g., crime, urban features). Figure 5 visualizes the snapping of a point. 

 

Figure 5. Snapping a point to a segment (Diener,2015) 

3.3.1. Creating subgraphs for each side 

In the current study, we extracted the subgraphs that represent the street networks of the 

sides of Chicago. To do so, we first performed spatial join operations on the street 

segments and the community areas. We retrieved the boundaries of community areas 

from the community areas boundary shapefile. As illustrated in Figure 1, one 

community area can only belong to one side. In that case, mapping street segments to the 
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community areas amounts to mapping them to the sides. Using these associations 

between the spatial units, we created separate side graphs. The spatial join operation was 

performed by using NNQGIS plug-in of QGIS 3.6.0 Software. Like what we did in 

creating the main graph, we obtained fully connected networks by eliminating all the 

street segments fallen outside the main component. Descriptive information is provided 

in Table 3. The resulting subgraphs are displayed in Figure 6. 

 

 Table 3.  The Statistics for the Resulting Subnetworks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sides #Nodes #Edges Bounding Box Coordinates 
Bounding 

Radius (m) 

Network K 

Distance Chunks 

(m)  

C 1680 2459 (41.91, −87.60; 41.84, −87.65) 9977.9 19.4 

FN 5407 8151 (42.02, −87.63; 41.93, −87.93) 29611.9 57.7 

FSE 4873 7227 (41.75, −87.52; 41.64, −87.66) 20438.6 39.8 

FSW 3509 5308 (41.75, −87.63; 41.66, −87.74) 15932.5 31.0 

N 2691 4145 (41.96, −87.62; 41.91, −87.73) 14001.2 27.2 

NW 2693 4423 (41.96, −87.69; 41.91, −87.83) 16737.1 32.6 

S 4040 6023 (41.85, −87.54; 41.74, −87.66) 15770 30.7 

SW 5032 7976 (41.78, −87.62; 41.75, −87.80) 17380.9 33.8 

W 6762 10395 (41.92, −87.63; 41.81, −87.80) 20760.5 40.4 
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Figure 6. The side street networks (a) CS, (b) FSES, (c) FNS, (d) NWS, (e) FSWS, (f) SWS, (g) NS, (h) SS, and (i) WS. 

 

 

(a) 

 

(b) 
(c) (d) 

(e) (f) (g) (h) (i) 
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3.4. Developing distance-aware risk signal functions (DRSFs) 

This subsection summarizes the methodology of DRSFs that capture spatiotemporal 

fluctuations in crime risk around urban features across crime types. The datasets in this 

part are different from the ones we used in the second part. Therefore, this section starts 

with describing the first part datasets and continues with the introduction of the main 

techniques that we used to develop our DRSFs. 

3.4.1. Data 

3.4.1.1. Chicago Crime dataset 

In this study, we used a sample from Chicago Crime dataset1 that records all the crime 

incidents since 2001. Each record in this dataset defines a crime incident with 22 

attributes including crime ID, date-time, x and y coordinates, the primary description of 

the crime, the neighborhood, and the community area. Our sample consists of all theft (n 

= 64024) and robbery (n = 9685) incidents in 2018. To examine the spatiotemporal 

behavior of crime risk around urban features, we created spatiotemporal models by 

aggregating selected crime incidents at sides and three temporal levels. In the first level, 

we mapped the crime incidents to the relevant side street networks without any temporal 

dimension (default). In the second level, based on the hour of occurrence, the incidents 

were distributed across the shifts during a day, the first shift (FS) from 00:00 to 07:59, 

the second shift (SS) from 08:00 to 15:59, and the third shift (TS) from 16:00 to 23:59. 

These shifts were defined based on the working watches of Chicago police officers 

(Payroll and Timekeeping—Attendance, 1996). In the last level, we grouped the 

incidents as weekend (WE) and weekday (WD). The WD included all the incidents that 

occurred between third shift of Friday and the first shift of Monday(excluded). All the 

 
1 Retrieved from https://data.cityofchicago.org/ 
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others were assigned to WE group. These divisions result in a total of 54 spatiotemporal 

models (9 default + 9 × 3 intraday levels + 9 × 2 weekly levels). Crime distribution 

across these models is displayed in Figure 7. 

 

Figure 7. Crime distribution across the spatiotemporal model 

3.4.1.2. Location of urban features 

Geolocating the urban features on the subgraphs that we created in the first section 

required a careful procedure. The procedure starts with retrieving the Chicago business 

licenses dataset. This dataset contains the GPS locations of the applicant businesses. It 

also provides a definition of the business activity of license applicant. A problem with 

using this dataset is the multiple license applications submitted by the same business. As 

a solution, we randomly selected one record from these multiple applications.  Lastly, 

using activity definitions, of the unique instances, we obtained the locations of four 
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different urban features: fast-food restaurants, pubs, grocery stores, and gas stations. The 

locations of bus stops were obtained from the CTA bus stops shapefile. The resulting 

dataset contains fast-food restaurants (n = 402), grocery stores (n = 1330), gas stations (n 

= 350), pubs (n = 810), and bus stops (n = 10900). We selected these urban features 

based on a volume of empirical support derived from Chicago studies that showcased 

their significant influences on crime risk (e.g., Bernasco & Block, 2009;Bernasco & 

Block, 2011; Bernasco, Ruiter, & Block, 2017; Barnum, Caplan, Kennedy, & Piza, 

2017; Kennedy, Caplan, Piza, & Buccine-Schraeder, 2016). Figure 8 displays the spatial 

distribution of these urban features across the sides of Chicago. 

 

Figure 8. The distribution of the selected urban features across the sides of Chicago 



55 

 

3.4.1.3. Concentrated Disadvantage  

Concentrated disadvantage (CD) is a popular indicator of social disorganization in a 

neighborhood (e.g., Jones & Pridemore, 2019; Nobles, Ward, & Tillyer, 2016). Past 

research has repeatedly confirmed its linkage to the spatial influence of urban features 

on crime in various settings (e.g., Stucky & Ottensmann, 2009). CD of a neighborhood 

is not directly measurable. Rather it is often measured by observable indicators. 

Therefore, we used four disadvantage indicators in this study: the percentage under 15 

and above 64 years of age, the percentage of unemployed residents, the percentage of 

households below the poverty line, and the median income. Next, we performed a 

Principal Component Analysis (PCA) to examine whether these indicators could be 

loaded to a single factor: CD. Then, since the calculated CDs were not available at the 

side level, we used a weighted apportioning method (Kim, 2018) to impute the side-level 

CD data. This method calculates a population-weighted mean CD value from the values 

of the included community areas as the side CD. Table 4 summarizes the results for CD. 

 

Table 4.  The PCA Results of CD 

 Mean SD 
Eigen 

Value 

Factor 

Loadings 

Cronbach’s 

Alpha 

Concentrated Disadvantage 

(CD) 
0.000 1 3.105  0.901 

% under 15 above 64 years 38.074 6.545  0.753  

% unemployed 5.973 3.075  0.907  

% less than poverty 29.936 13.964  0.925  

Inverted median income 
51038.79

8 
23754.78  0.926  
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3.4.2 Network K function 

Network K function (Okabe & Yamada, 2001) is a network variant of Ripley's K 

function that summarizes and analyses a point pattern on a homogenous infinite plane 

with the Euclidean distance. Differently, the network K function handles the point 

patterns residing on a finite irregular network with the shortest path distance. There are 

two types of Network K function: auto and bivariate. While the former examines the 

spatial association within the elements of the same point pattern, the latter tests whether 

the spatial distribution of a point pattern influences the distribution of another. Given the 

aim of the study, we selected the latter to examine how the selected urban features 

influence different types of spatial crime distribution in near areas across space and time.  

An advantage of using this function is its ability to quantify the degree of crime 

clustering around an urban feature at a given distance. Theoretically, it can be 

formulated as: 

Kba(t) =
1

ρa
E(the number of points A within network distance t of a point bi in B) (1)  

where E(.) denotes the expected value with respect to bi, bi, …bn (bi Є B). bi is obtained 

from a binomial point process, and 𝛒𝐚 is the density of points a, 𝛒𝐚 = (
𝐧𝐚

|𝐋𝐓|
). Here, |𝐋𝐓| is 

the total length of the street segments in a network. For observed point processes of 

different types, the observed network cross K function of A (i.e., crime) relative to B 

(i.e., urban feature) can be formulated as: 

ba
(t) =

|LT| 

nanb
∑ (the number of points of A on Lbi

(t)) (2)

nb

i=1
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That �̂�𝒃𝒂(𝐭) >  𝐊𝐛𝐚(𝐭)indicates a cluster of a around b. The opposite shows that a is 

dispersed around b. The comparison of 𝑲𝒃𝒂and  �̂�𝒃𝒂  is only possible with the 

calculation of the expected value in (1). This value can be calculated by an analytical 

evaluation method testing the complete spatial randomness (CSR) hypothesis. This 

hypothesis assumes independent and identical distributions for different types of point 

patterns based on a binomial distribution over a network space. In this study, we adopted 

a Monte Carlo simulation approach to test CSR. This simulation generates 39 complete 

spatial random point patterns for crimes and urban features located on a network, 𝐋𝐓. For 

each pattern, it calculates the crime counts on a network distance t from an urban 

feature. The minimum and maximum values at distance t amongst these simulated 

patterns are the critical upper and lower values at the α = 0.05 significance level 

(Baddeley et al., 2014). A value above the upper value indicates a significant clustering, 

below the lower value indicates a significant dispersion, all other values indicate 

insignificant clusters. We performed this analysis for each of 54 spatiotemporal models 

using the spatstat package (Baddeley & Turner, 2005) on R. Thus, we were able to 

exclude all the insignificant spatial crime clusters around the selected urban features 

before moving on to the DRSFs. 

3.4.2 DRSFs, RSIS and RSSS 

Segmented regression is a special form of regression analysis that is developed to model 

the dynamic relationships between an independent (x) and a dependent (y) variable 

across different intervals of x values. This analysis identifies the change points beyond 

which the coefficients in the regression equation cannot be preserved. This equation is 

formulated as: 
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E[y|x] = β0 + β1x + δ1(x − τ1)+ + ⋯ . +δk(x − τk)+ (3) 

where τ_k denotes the unknown changepoints whereby (𝐱𝐢 − 𝛕𝐤)+ = (𝐱𝐢 − 𝛕𝐤if (𝐱𝐢 −

𝛕𝐤)>0. 𝛃𝟎, 𝛃𝟏, 𝛅𝟏… 𝛅𝐤are coefficients obtained from a method of permutation test (Kim 

et al., 2000).  

In this study, each observation (xi, yi) consisted of a network distance and a 

corresponding cumulative crime density. The linear K cross function that we used in 

network K analysis outputs expected number of events at 513 equal bandwidths, 

marking equal distances within a bounding radius (i.e., maximum shortest path distance 

between any two points in a linear network). The bounding coordinates, radius, and 

distance chunks corresponding to the distance between these 513 points are reported in 

Table 3. To estimate the segmented regression models, we used an adequate number of 

these observations that cover at least 400 m in a side network. For example, it uses 10 

observations for the West side (40.4 × 10 = 404 m) with a chunk distance of 40.4 m. We 

used Joinpoint Regression program to estimate segmented regression equations that are 

the working DRSFs. An observation here consists of a distance and cumulative crime 

density pair that correspond to x and y respectively.  A sample DRSF is displayed in 

Figure 9. The accuracies of the DRSFs are measured by RMSE and MAE. 
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Figure 9. A sample DRSF. 

 

In the next step, we devised two novel risk indicators (i.e., RSIS and RSSS) that allow a 

comparative analysis between DRSFs across spatiotemporal models. The first indicator 

denotes the estimated cumulative crime density at a maximum distance from an urban 

feature (i.e., spatial extent). In this study, we determined this maximum distance as 

402.4 m (i.e., a quarter-mile). This value is borrowed from the transportation research 

that attempts to demarcate the maximum distance people would be willing to walk until 

the nearest public transport stations (Nelessen, 1994). Crime research interpreted this 

value as a boundary for the spatial interactions between urban features and crime (Groff, 

2011). Accordingly, many researchers anchor the spatial extent at this distance 

(Weisburd, Groff, & Yang, 2012; Hart & Miethe, 2015; Caplan, 2011; He et al., 2020). 

RSSS can be calculated by the following formula: 
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RSSS =
RSIS − E[y|Origin]

E[y|Origin]
∗ 100 (4) 

Here, E[y|Origin] quantifies the magnitude of the local effect of an urban feature on 

crime with the estimated crime density at 5.5 feet (1.7 m), E[y|1.7], Geocoding crime 

incidents at 1.7 m is a common practice amongst law enforcement agents due to 

identification purposes (Ratcliffe,2012). RSSS can be interpreted as an indicator of how 

much of the local effect could be retained throughout a spatial extent (i.e., spatial 

diffusion effect). Its values lie within (−∞, ∞) interval. Negative values confirm the 

distance decay, and positive values showed an increasing crime density throughout the 

spatial extent. We imputed zeros into RSSS and RSIS values of urban features in case of 

insignificant crime clusters since the observed clustering is not significantly different 

from the one that would be obtained if the crime is distributed randomly.  

3.4.3 Analytical procedure 

We begin our analysis by creating 54 different samples on the side street networks for 

each spatiotemporal model that we described above. Next, we test the significance of 

crime clusters in these models by using a bivariate network K analysis testing CSR with 

a 39 steps Monte Carlo simulation. Then, we fit separate segmented regression equations 

for each significant crime cluster. These equations model the spatiotemporal influence of 

an urban feature on crime and embody our DRSFs. Next, we characterize the DRSFs in 

each model through novel indicators: RSIS and RSSS. Then we compared these values 

across spatiotemporal models for each crime type by using nonparametric statistical tests 

(i.e., Wilcoxon signed-rank and Kruskal-Wallis test). In the last step, we examined the 

linkage between the spatial influence of an urban feature and the CD of the surrounding 

neighborhood across the spatiotemporal models through a correlation analysis.  
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3.5 Developing DL-based predictive crime hotspot prediction models, 

The next section of the study aims to develop predictive crime hotspot mapping methods 

enhanced by theory-based auxiliary event surfaces. First, we introduce the unique 

datasets that are used throughout this part. Second, we describe how we created the 

proposed event surfaces. Third, we provide an overview of the selected graph DL 

algorithms. Lastly, we mention the details of the parameter tuning phase and 

experimental setups. 

3.5.1. Study setting  

We implemented our crime hotspot prediction models on the Center Side (CS) of 

Chicago. There are several reasons for this selection. First, CS is the epicenter of the city 

with the main business and entertainment districts as well as historical sites. Maintaining 

public safety in the CS is, therefore, not only increases the overall public safety but also 

ensures uninterrupted urban functioning of the city. Second, although this side covers 

only 2.5% of the total area, it accommodates nearly 6% of the total population. The 

population density in the CS (11049.69 person/km2) is much higher than the average 

value for Chicago (4664.303 person/km2). These numbers point to the large benefits 

derived from increasing public safety by only focusing on a relatively smaller area. 

Lastly, in the 2014-2019 period, the 5-year crime count per 1000 person was 466.6542 

on this side, much higher than the city average (374.868). For the selected crime types 

on the CS, these values were 18.10006 for robbery and 300.4349 for theft. While the 

robbery value remained slightly below the city average (19.58536), this value is much 

higher for the theft (113.7040). Thus, any crime hotspot prediction method may yield a 

leveraged benefit to decreasing overall crime levels across the city. Lastly, we were 

severely limited by the available computational resources. We ran our experiments on 
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Google Colab Pro that provides its users with a GPU of 15 GB, and 147.15 GB RAM. 

From the nine sides of Chicago, the CS is the only side on which we managed to 

implement our crime hotspot prediction algorithms for it consists of a relatively smaller 

number of segments.  

3.5.2. Creating theory-based auxiliary event surfaces 

This section describes how we created theory-based auxiliary event surfaces that 

enhance the predictive crime hotspot mapping. These surfaces keep the records of the 

event intensity in street segments during a period in tabular format. The auxiliary event 

surfaces include environmental risk surface, feature counts, other crime risk surface, 

park event surface, and 311 event surfaces.  

3.5.2.1. Environmental risk surface 

Environmental risk surface consists of crime specific SSRS values of segments in each 

time step. We obtained these values by quantifying the dynamic local effects of the 

selected urban features segments through a new risk indicator (LRS). LRS values are 

calculated by the value of the related DRSFs at 1.7 meters. We used a sample of 2015 

robbery and theft incidents in the CS in fitting DRSFs. Different from the first part, we 

excluded the default model from the analysis since it does not have any predictive value 

to our model given dynamically changing environmental risk in time. The resulting 

crime distribution across intraday and weekly models is displayed in Figure 10. In the 

last step, we calculated crime specific SSRS of a street segment across temporal models 

by multiplying LRSS values of urban features residing in a street segment. Calculating 

SSRS is illustrated in Figure 11. 
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3.5.2.2. 311 calls 

311 is a public reporting platform where citizens can file a request for non-emergency 

city services. Upon a request, the system dispatches responsible workforces to the place 

of request and provides continuous updates about its latest status until the request is 

completed.  Previous research has shown that incorporating 311 calls improved the 

predictive accuracy of spatiotemporal crime prediction models (e.g., Duan et al., 2017).  

 A typical City of Chicago 311 service request form includes information about the time 

of the request, address, service type, and GPS coordinates. Each service request has a 

timestamp. We obtained the street segment information by geocoding the GPS 

coordinates of the request to the CS street network. The timestamp and street segment 

information then help us create spatiotemporal datasets that include the daily and shiftly 

311 requests for each street segment in the CS between 2016 and 2018. 
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                                                      (b) 

Figure 10. Temporal crime distribution a) Robbery, b) Theft 
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Based on a large volume of empirical research showcasing their significant impacts on 

crime occurrence (e.g., Wheeler, 2018; Chalfin, Kaplan, & LaForest, 2020), we selected 

five different types of 311 requests: Graffiti Removals, Potholes, Street Lights Out, 

Abandoned buildings, and Ordinance Violations. Next, we created separate transaction 

tables that tally the requests filed from each segment in each time step. Due to the 

extreme data sparsity in many tables, we decided to aggregate all the selected types in a 

single dataset, Total 311 dataset. In this dataset, each row represents a time step (i.e., day 

or shift), each column represents a street segment, and each field thus shows the total 

count of 311 requests in a segment at a time step. We aggregated this table at two 

temporal levels, creating two different 311 transaction tables to be used in predictive 

crime hotspot mapping methods. 

3.5.2.3. Park events  

Public events that draw large groups of people in limited areas act as temporary crime 

generators. These large groups escalate crime risk near parks for a short period. This is 

because a large crowd poses a fertile ground for motivated offenders who feed on the 

other people’s distraction in these crowds (Cohen & Felson, 1979; Brantingham & 

Brantingham, 1981). Previous research has provided sufficient empirical evidence for 

these pop-up crime generators (e.g., Ristea, Kurland, Resch, Leitner, & Langford, 2018).  

We, therefore, decided to create an auxiliary event surface that represents the number of 

park events on street segments in a period. Similar to the 311 transaction tables, we 

created a park event transaction table. There is one major difference in the way we 

incorporate this external factor. Evidently, parks accommodate multiple segments. 

Meaning that in each time step, all the included segments should take up values that 

equal the number of ongoing events. This formulation is predicated upon an assumption 
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that the crime risk in a park event is positively related to the number of participants and 

events.  Another important point is the duration of an event. If a park event spans the 

whole weekend, then the number of ongoing events in relevant segments should be 

represented by their intensity. They, therefore, should be smoothed into continuous 

values. The reason is that the elevated crime risk in areas near parks should be 

highlighted during the park events. In addition, this elevated crime risk tends to decay 

due to the decreasing number of attendants as the park events progress. Capturing this 

fluctuating risk may serve to predictive crime hotspot maps that by providing a leading 

indicator that informs predictions with the upcoming crime events. As a result, we 

created a park event surface where each row represents the smoothed number of events 

in park-related segments in a time step. 

3.5.3. Representing the predictive hotspot mapping as a graph signal processing task 

In this study, we followed the procedure proposed by Zhang & Cheng (2020) who 

reformulate the predictive crime hotspot mapping as a task of Graph Signal Processing 

(GSP). GSP is an umbrella term that encapsulates a set of related tasks for processing 

data on irregular graphs (Ortega, Frossard, Kovačević, Moura, & Vandergheynst, 2018). 

In that sense, we used this term to refer to the task of crime hotspot prediction on street 

networks. As illustrated in Figure 12, we achieved this reformulation in three main steps. 

Each step concerns a different component of GSP. First, we extracted a segment graph 

from the street network: G= (V, E, W) 

Here, V (i.e., vertices), denotes the street segments, and the second E (i.e., edges) 

denotes the connection between two adjacent segments, and the last, W (i.e., weight),  

denotes the weight of this edge b.  Next, signal (i.e., S) refers to the crime counts on 
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each segment in a period. Processing (i.e., P) addresses the task of spatiotemporal crime 

prediction.    

 

Figure 12.  Reformulating crime prediction on a street network as a task of GSP (Zhang 

& Cheng, 2020) 

 

Creating a graph requires a conversion of street segments into nodes on the suggested 

graph. In this graph, each street segment is represented by its midpoint. Edge stores the 

connection information between adjacent segments. At a time step, crime count 

represents signals. We modeled the spatial dependence between graph signals with a 

Gaussian kernel weighting function. Based on the first law of geography (Tobler, 1970) 

that assumes greater levels of relationships between near things than distinct ones, these 

weights are assigned inversely to street network distance between the neighboring 

segments. The following describes the Gaussian kernel weighting function that 

quantifies the weight of a particular edge like, 𝑒𝑖𝑗. 

wij = e
(−

[dist(i,j)]2

2α2 )
(5) 

Here, 𝑤𝑖𝑗 represents the weight between the segments i and j, and 𝑑𝑖𝑠𝑡(𝑖, 𝑗) is the 

network distance between two adjacent cells, α is the bandwidth. 
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After creating the graph, Zhang & Cheng (2020) continues with a Simple Exponential 

Smoothing (SES) operation that extends crime counts into periods instead of 

representing them as sudden spikes on a crime count- time plot. The explanation for this 

representation comes from the near-repeat phenomenon. This phenomenon posits that a 

crime occurrence elevates the crime risk in near areas for a short period before the risk 

totally dissipates (Pease, 1998). Here determining the smoothing coefficient is of 

particular importance because this value adjusts the temporal extent of elevated crime 

risk in an area: the extent increases as the coefficient decreases. Evidently, a smoothing 

operation transforms crime counts into what can be interpreted as crime risk values. 

Using a continuous crime risk, rather than crime count, as a graph signal serves better to 

the graph learning algorithms. Figure 13 illustrates the impact of the smoothing 

coefficient on the temporal extent of crime risk. 

 

(a)                                          (b)                                            (c)                                                                               

Figure 13. The impact of smoothing coefficient on crime count representation: (a) 0.1 

(b) 0.5 (c) 0.9 

 

These preprocessing steps enact the usage of a wide range of graph learning algorithms 

that produce network-based crime hotspot prediction. In this study, we have selected two 

popular graph learning algorithms, the Graph Wavenet(Wu et al., 2019) and 
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Spatiotemporal Graph Convolutional Network (i.e., STGCN) (Yu, Yin, & Zhu, 2018), to 

predict crime hotspots in the next time step.  

3.5.2 Graph learning algorithms 

3.5.2.1. Graph wavenet algorithm 

This study adapts the Graph Wavenet algorithm (Wu et al., 2019) into the context of 

predictive crime hotspot mapping on street networks. This algorithm brings two main 

innovations to spatiotemporal graph modeling: self-adaptive adjacency matrix and 

stacked dilated 1D convolution component. The former can identify the hidden spatial 

dependencies by using node embeddings. This approach is plausible due to the 

circumstances where either two nodes are interdependent, but a connection does not 

exist, or a connection exists but there is not an interdependency between these nodes 

(Shleifer, McCreery, & Chitters, 2019). Such circumstances exist in the criminal context 

as well given the observed spatial lag between crime locations. More clearly, a crime in 

one street segment may trigger the crime in a second even a third-degree neighbor. This 

spatial lag can partly be explained by the intensity zones (Angel, 1968) that refer to the 

elevated crime risk in areas a few blocks away from a criminogenic place. The latter 

innovation helps capture long temporal dependencies between crime occurrences. 

Because 1D convolution layers with receptive fields that grow exponentially in parallel 

with increasing layers overcome the problem of learning sparse sequences in recurrent 

neural networks. The ability to capture such dependencies is crucial given the sparsity of 

a typical crime datasets that consist of mostly zero values. 

Graph Wavenet operates on a graph that can be formulated as: 

𝐺 = (𝑉, 𝐸, 𝑊)(6) 
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is a graph where V denotes its nodes (i.e. street segments) , E signifies its edges, and W 

is the set of weights. An adjacency matrix derived from G is A є 𝑅𝑁𝑋𝑁. N is the number 

of vertices. If 𝑒𝑖,𝑗 exists, then 𝐴𝑖,𝑗 is equal to 𝑊𝑖,𝑗. The dynamic feature matrix (i.e., 

Graph Signals) of G is represented by 𝑋(𝑡)є 𝑅𝑁𝑋𝐷, D is the number of input features. 

Given a graph, G, and time step S, the problem is to forecast the graph signals for each 

segment in the next time step by learning a function, f.  

[𝑋(𝑡−𝑆):𝑡, 𝐺]
𝑓
→ 𝑋(𝑡+1) (7)  

Here 𝑋(𝑡−𝑆):𝑡є 𝑅𝑁𝑥𝐷𝑥𝑆, and 𝑋(𝑡+1)є 𝑅𝑁𝑥𝑀. M is the output dimension  

Graph Wavenet algorithm is built upon two main components: Graph Convolution 

(GCN)layer and Temporal Convolution (TCN) layer. The former models spatial 

dependence whereas the latter handles temporal dependence.  The next two sections will 

detail these components. 

The main function of GCN is to extract node features residing on a graph structure. This 

study used Chebyshev Spectral Filtering (Defferrard, Bresson, & Vandergheynst, 2016) 

to smooth a node’s signal by aggregating and transforming its neighbors’ information 

based on spatial dependence. This technique supports multidimensional inputs. Kipf & 

Welling (2016) formulated GCN as follows: 

𝑍 = �̃�𝑋𝑊(8) 

Where 𝑋𝑁𝑋𝐷 represents the input signal, 𝑍𝑁𝑋𝑀 is the output, �̃� є 𝑅𝑁𝑋𝑁 is the normalized 

adjacency matrix. Based on the diffusion convolution layer (Li, Yu, Shahabi, & Liu, 

2017) that models the diffusion of graph signals with K finite steps, the layer can be 

reformulated as: 
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𝑍 = ∑ 𝑃𝑘

𝐾

𝑘=0

𝑋𝑊𝑘

̃

 (9) 

𝑃𝑘 here is the power series of the transition matrix that is equal to P =A/rowsum(A) 

The algorithm proposes a self-adaptive adjacency matrix (�̃�𝑎𝑑𝑝) that helps discover 

hidden spatial dependency in the graph. To do this, two node-embedding dictionaries 

with learnable parameters, 𝐸1, 𝐸2є 𝑅𝑁𝑋𝑐, were initialized: 

�̃�𝑎𝑑𝑝 = SoftMax (ReLU(𝐸1𝐸2
𝑇) (10) 

𝐸1 is the source node embedding, and 𝐸2 is the target node embedding. Multiplying 

them gives us the degree of their spatial dependence. The ReLU here eliminates weak 

connections, and SoftMax normalizes the remaining weights. The predefined spatial 

dependencies and self-learned hidden graph dependencies then create the ultimate GCN: 

𝑍 = ∑ �̃�𝑎𝑑𝑝
𝑘=0

𝐾

𝑘=0

𝑋𝑊𝑘

̃

 (11) 

This model can be interpreted as an aggregation of transformed feature information from 

different orders, K. 

Temporal dependency in nodes’ features is captured by dilated causal convolution 

networks (Yu & Koltun, 2016). These networks overcome the gradient explosion 

problems by handling long-range sequences in a non-recursive manner through their 

exponentially growing receptive fields. The dilated causal convolution keeps causal 

order by means of padding zeros to the inputs to restrict the predictions to historical 

information. Dilated convolutions iterate over inputs by skipping some values with a 

certain step. A dilated convolution can be formulated as follows: 
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𝑥 ∗ 𝑓(𝑡) = ∑ 𝑓(𝑠)𝑥(𝑡 − 𝑑𝑥𝑠)

𝐾−1

𝑠=0

(12) 

x є 𝑅𝑇  is 1D sequence input, f є 𝑅𝑘 is a filter. d here is the dilation factor that 

determines the skipping distance. Stacking these dilated causal convolutions with the 

dilation factor is what exponentially expands the receptive field. 

In Recurrent Neural Networks, gating mechanism is an important control structure that 

determines how much of historical information is forwarded to the next time steps. 

Dauphin, Fan, Auli, & Grangier (2016) have showcased its applicability to temporal 

convolution networks. Given an input of X є 𝑅𝑁𝑥𝐷𝑥𝑆, the gate is: 

ℎ = 𝑔(𝛩1 ∗ 𝜒 + 𝑏) ⊙ σ(𝛩2 ∗ 𝜒 + 𝑐) (13)  

𝛩1, 𝛩2, b, and c are all model parameters. ⊙ is element-wise product, g(.) is the output 

activation function, σ(. ) is the sigmoid function that determines the ratio of information 

to the next layer. This gated mechanism serves to model temporal dependencies.  

Graph Wavenet consists of stacked spatiotemporal layers and an output layer. A 

spatiotemporal layer sits atop two main structures described above: GCN and Gated 

TCN. The latter consists of two separate temporal layers (TCN-a and TCN-b). Stacking 

spatiotemporal layers help process spatial data at various temporal levels. The former 

receives short-term information at a lower level whereas the top layers deal with longer 

sequences. Inputs to a GCN is a three-dimensional tensor, [N, C, L], N is the number of 

nodes, C is the hidden dimension, and L is the sequence length.  

Different from a regular Mean Absolute Error (MAE) used in the original version of 

Graph Wavenet (Wu, Pan, Long, Jiang, & Zhang, 2019), we used a squared quantile loss 
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function that intentionally explodes the cost of missing a nonzero observation (i.e., crime 

occurrence). This weighted loss function is given below: 

𝐿(�̂�𝑖−, 𝛩) =
1

𝑁𝐷
∑ ∑ 𝑤𝑖 ∗ (�̂�𝑖−𝑦𝑖)

2

𝑘=𝐷

𝑘=1

𝑗=𝑁

𝑗=1

 (14) 

Here, �̂�𝑖 and 𝑦𝑖are predicted and actual values respectively. 𝑤𝑖 is an asymmetric weight 

changing based on the value of 𝑦𝑖. Inspired from quantile loss functions, we formulated 

this weight as: 

𝑤𝑖 = {
𝑞 𝑖𝑓 𝑦𝑖 > 0 

(𝑞 − 1)𝑖𝑓 𝑦𝑖 = 0
 (15) 

 

Here q є [0,1] is the quantile. For larger values, it severely penalizes underpredictions 

which corresponds to missing a crime event. This function helps the selected algorithms 

focus on predicting rare crime events by sharpening the contrast between the costs of 

missing zero and nonzero observations. 

Figure 14 illustrates Graph Wavenet framework. 
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Figure 14. Graph Wavenet framework (Source: Shleiffer et al.,2019) 

 

3.5.2.2. Spatiotemporal graph convolutional neural network (STGCN) 

STGCN is another DL algorithm that models spatiotemporal dependence using only 

convolutional units rather than recurrent units (Yu, Yin, & Zhu, 2018). The suggested 

design is made up of spatiotemporal convolutional blocks, each of which contains one 

graph convolution layer and two gated CNN layers (Defferrard, Bresson, & 

Vandergheynst, 2016). These blocks are capable of extracting spatial connections while 

capturing temporal dependencies. Using entirely convolutional layers also enables for 

faster training durations and fewer parameters. 
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From graph-structured data, the graph convolution layer extracts spatial dependency. In 

graph convolution layers, there are two techniques to kernel  approximation, which 

modifies the depth of the spatial dependence. 

The first is the approximation of Chebyshev polynomials, which can be written as 

follows: 

Θ(Λ) = ∑ 𝜃𝑘Λ𝑘(16)

𝐾−1

𝑘=0

 

 

K is the kernel size that adjusts the order of the spatial dependence, θ є Rk represents 

polynomial coefficients. The graph convolution is formulated as: 

Θ ∗ Ҁχ = Θ(L)χᵙ ≈  ∑ 𝜃𝑘𝑇𝑘(𝐿)̃

𝐾−1

𝑘=0

χ(17) 

𝑇𝑘(𝐿)̃  є Rnxn is the Chebyshev polynomial order of k. 

The second is the 1st order approximation, which uses the first order approximation of 

graph laplacian to stack numerous localised graph convolutional layers. It may design 

deeper network structures without explicit parameterization defined by the polynomials. 

It can be formulated as: 

Θ ∗ Ҁχ =  𝜃(𝐼𝑛 +  𝐷−
1

2𝑊𝐷−
1

2) χ (18) 

 

Here W є Rnxn represents the weighted adjacency matrix, D є Rnxn is the diagonal degree 

matrix, and θ is the kernel parameter. 

A generalized graph convolutional layer can then be generalized as: 

𝑦𝑗 = ∑ Θ𝑖,𝑗(𝐿)

𝐶𝑖

𝑖=1

χ𝑖є𝑅𝑛, 1 ≤ 𝑗 ≤ 𝐶𝑂 (19) 
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𝐶𝑖 x 𝐶𝑂  vectors of Chebyshev coefficients Θ𝑖,𝑗є𝑅𝑘. The input for 2D can be denoted as 

Θ ∗ Ҁχ. But it can be extended to 3D since each input consists of M frame that can be 

represented by the values of an external variable at each node.  That means χ can be 

reformulated as χ ЄrMxnxC
i. 

Gated CNN layer involves a 1-D causal convolution of width K, kernel complemented 

with Gated Linear Unit (GLU) as a non-linearity. The input to temporal convolution for 

each node is M-length sequence with Ci channels as Y є𝑅𝑀𝑥𝐶𝑖. The convolution kernel Ґ 

є𝑅𝐾𝑡𝑥𝐶𝑖𝑥2𝐶0maps the multichannel input into a single output. The temporal gated 

convolution can be described as: 

Ґ ∗ ƬY = P ⊙ σ(Q)є𝑅(𝑀−𝐾𝑡+1)𝑥𝐶𝑂(20) 

P and Q are input gates of GLU, ⊙ signifies the Hadamard product. σ gate determines 

which P input serves to discover compositional structures and dynamic variances in time 

series. Similar to graph convolution layer, it can be extended to 3D convolutions. 

Joining both structures is the Spatiotemporal Convolutional block that process the graph-

structured time-series data. The sandwich structure (i.e., gated CNN layers on both ends 

and a bridging graph convolution layer in the middle) allows to apply bottleneck 

strategy. This strategy enacts scale compression and feature squeezing by increasing or 

decreasing the size of the channels. The blocks accept and produce 3D tensors. An 

output, υl+1, for an input υl is formulated as: 

υ𝑙+1 =  Ґ 1
𝑙 ∗ ƬReLU (Θ𝑙 ∗ Ҁ(Ґ0

𝑙 ∗ Ƭυ𝑙)) (21) 

Here  Ґ 1
𝑙  and Ґ0

𝑙  are upper and lower temporal kernel respectively, Θ𝑙 is the spectral 

kernel of graph convolution, ReLU is the rectified linear unit. Lastly the predictions are: 

υ̂ = 𝑍𝑤 + 𝑏 (22) 
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Where Z є𝑅𝑛𝑥𝑐 is the final output from the model, w is the weight, and b is the bias. The 

following illustrates the STGCN framework. 

 

Figure 15. STGCN framework (Yu, Yin, & Zhu, 2018) 

3.5.3. Baseline 

In this study, we used LSTM to highlight the performance of the proposed graph 

learning algorithms. LSTM is a conventional DL technique that was widely used in 

crime prediction domain (e.g., Zhang, Liu, Xiao, & & Ji, 2020). Long Short-Term 

Memory (Hochreiter & Schmidhuber, 1997), or shortly LSTM, is a Recurrent Neural 

Network (RNN) variant that is developed to overcome the notorious problem of long-

term dependencies.  This problem refers to the RNN’s growing inefficiency to learn 

temporal dependencies between the increasing number of data points. Past research has 

offered LSTM-based techniques to bring solutions to a multitude of real-world problems 

such as speech recognition (e.g., Graves, Jaitly, & Mohamed, 2013), time series 
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forecasting (e.g., Sagheer & Kotb, 2019), trajectory prediction (e.g., Alahi et al., 2016), 

and video classification (e.g., Ogawa, Sasaka, Maeda, & Haseyama, 2018).  

Unlike standard RNNs, which use a primitive repeating module, LSTM uses a 

sophisticated repeating module with four primary components that interact with one 

another. Figure 16 depicts the internal construction of an LSTM module. 

The cell state, ct, is the key distinction between an LSTM and a regular RNN. This 

factor essentially controls how much of information from the past will be carried 

forward into the future. This is accomplished through the use of gates, which determine 

the quantity of data to be kept/passed. 

The first gate in LSTM is the forget gate. This is a sigmoid layer that generates a number 

between 0 and 1 by looking at the input (i.e., xt) and hidden state (i.e., ht-1). Zero keeps 

the state as is, and 1 completely changes it. Next, LSTM decides what information 

should be stored in ct  in two main steps. In the first step, input gate layer (it) selects the 

values to be updated through a sigmoid layer. In the second step, a vector with candidate 

values (�̂�𝑡)is created by a tanh function. Then, LSTM combines these two to update the 

state. To actually do that, LSTM multiplies the old cell state, ct-1, with forget gate ft adds 

this to the multiplication of candidate state and input gate (�̂�𝑡 ∗  𝑖𝑡). In the last section, 

LSTM determines which parts of the ct  through another sigmoid layer and passes the 

resulting cell state to a tanh function, and multiply this state with output of the previous 

sigmoid layer. The following equations outline the LSTM working principle: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 (23) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 (24) 

�̂�𝑡 = tanh (𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐  (25) 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 +  𝑖𝑡 ∗ �̂�𝑡 (26) 

𝑜𝑡 =  𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜(27) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh(𝐶𝑡) (28) 

 

 

Figure 16. Internal structure of LSTM (Olah, 2015) 

3.5.3 Performance measurement 

We evaluated the performance of the selected algorithms with Mean Hit Rate (MHR) 

(Zhang & Cheng,2020). This measure calculates the mean percentage of crime incidents 

occurred in the predicted hotspots. At each time step, the segments are ranked by their 

predicted risk values in descending order. Next, we select segments from the top in a 

way that their total length does not exceed the specified coverage area. In this study, we 

used a coverage area of 20%.  Meaning that we selected segments from the top in each 

time step whose total length will cover at most 20% of the total segment length. For 

example, an MHR of 0.7 indicates that 70% of crime incidents on average occurred in 

the predicted hotspots during the test days.  
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3.5.4 Experimental setup 

In this study, we train our crime hotspot prediction models with a dataset that includes 

all the robbery (n=1555) and theft (n=22596) incidents reported on the CS between 1st 

January 2016 and 1st January 2018. We split the dataset into 70% training, 10% 

validation, and 20% test. For fine-tuning, we adopted a two-step strategy that performed 

a grid search on the parameters related to the data representation and the model. In the 

first step, we experimented with different train windows, smoothing coefficients, and 

spatial bandwidth values. In the second step, we experimented with 10 different learning 

rates that are considered as the most crucial parameters amongst others (Bengio,2012). 

We performed both steps on each selected crime type (i.e., robbery, theft) at each 

temporal level. Table 5 illustrates the experimental setup. 

Table 5. Experimental Setup 

   Daily    Shift 

Data 

representation 

          

Train Window          7,10,14,30,42    3,21,30,42 

Smoothing 

coefficients 

 0.05, 0.1, 0.5, 0.9  

Spatial 

Bandwidth 

 0.1, 0.2, 0.3 

Model   

Learning rate  0.001,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1 

 

   

In the representation parameter tuning, we first created separate datasets for each pair of 

train window size and smoothing coefficient in daily and shift models. Next, we run our 

models with a default learning rate (e.g., 0.01) for each dataset with three separate 

adjacency matrices each weighted by different spatial bandwidths. This strategy 
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produces a total of 60 daily models (i.e., 5 train window size x 4 smoothing coefficient x 

3 spatial bandwidth), and 48 shift models (i.e., 4 train window size x 4 smoothing 

coefficient x 3 spatial bandwidth). We then calculate MHR for each model and select the 

parameters from the model with the highest MHR as the optimal data representation. In 

the second step, we create a single dataset with optimal parameters for data 

representation. We then perform model-related parameter tuning with 11 different 

learning rates that are displayed in Table 5. Lastly, the learning rate of the highest  

achieving models is selected as the best model. 

Table 6. The Chicago Crime Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Time Steps Crime Counts  

 #Nodes # Edges Daily Shift Robbery Theft 

Center 

Side 
1680 2459 731 2192 1555 22596 
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CHAPTER 4  

RESULTS 

This chapter presents the results of the current study. We begin this chapter with the 

results of a descriptive analysis that provides an overview of crime in Chicago. Next, we 

report the results of DRSFs, and following spatiotemporal influence analysis. We 

conclude this chapter with the comparative analysis of the results of the developed 

predictive crime hotspot mapping models. 

4.1. Descriptive analysis 

This section summarizes the results of a descriptive analysis using the Chicago crime 

dataset that includes all incidents between 2015 and 2019(excluded). In the first step, we 

performed a frequency analysis that shows yearly, shift, and weekly total crime 

distribution across Chicago and its sides. In the second step, we did the same analysis for 

the selected crime types to establish an initial understanding of how the robbery and 

theft displace across the streets of Chicago. Lastly, we performed a micro-level analysis 

of street segments that illustrates the degree of crime concentration across Chicago and 

its sides. 

4.1.1. Total crime distribution 

Crime in Chicago has shown a slightly decreasing trend after it hits the top in 2016. One 

interesting result is that the total crime count does not exhibit much variation during the 
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analysis period. Figure 17 illustrates the yearly total crime counts in Chicago.

 

Figure 17.  Total crime incidents in Chicago between 2015 and 2019 

At the weekly level, Figure 18a shows that crime events concentrate in weekdays 

between 2015 and 2018. On the other hand, Figure 18b indicated an intraday crime 

concentration during the TS (i.e., 16:00-23:59). We also observed a similar level of 

crime concentration during SS (i.e., 08:00-15:59). 

 

 

 

 

 

 

 

(a)      (b) 

Figure 18. Crime distribution across (a) a week (b) day 
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Figure 19 revealed a much higher crime concentration on WS with an average crime 

count of 51796.5. We observed a consistently increasing trend for the CS during the 

analysis period. Likewise, the numbers indicated a 38.8% increase in crime counts 

between 2015 and 2018. 

Similar to the citywide level, the crime concentration occurs during the weekdays. 

Although we calculate similar WE/WD ratios near 0.4 across the sides, this ratio is 0.49 

in NS, indicating a more balanced crime distribution. The crime concentration occurs in 

the TS in all sides of Chicago. The distinguishing characteristic between the intraday 

crime distributions of the sides is the degree of increase between the shifts. The most 

dramatic difference occurred in WS between the FS and the others. We also observed 

more similar patterns in SS and SWS.  
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                                                    (a) 

 

                                                    (b) 

 

                   (c) 

Figure 19. Total crime counts across the sides of Chicago (a) between the years 2015 

and 2019 (b) across week (c) day 
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4.1.2. Selected crime counts 

The robbery and theft incidents demonstrate different trends in the analysis period. 

While the former showed a slight bell-shaped trajectory that reaches its climax at 2016, 

the latter showed an ever-increasing trend that culminates in a 12% increase in incidents 

between 2015 and 2018. Figure 20 illustrates these trends. 

 

Figure 20. Yearly trends of the selected crime types 

Figure 21 did not display a notable difference between robbery and theft incidents in 

terms of weekly distributions. The crime concentrations are similarly on weekdays.  

 

 

 

 

 

(a)                                                              (b) 

Figure 21. Weekly crime distribution (a) robbery (b) theft 
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The shift distribution in Figure 22 for the selected crime types showed an important 

difference in the crime counts that occurred during the FS, and SS. Although both types 

have a concentration in the TS, the degree of crime concentration is much balanced 

between FS and SS in robbery than it is in theft.  

 

 

 

 

 

 

 

(a)                                                      (b) 

Figure 22. Shift crime distribution (a) robbery (b) theft 

An interesting pattern in Figure 23 is the evident increase in the years in between the 
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theft incidents, CS replaced SS as the side having the second most crime concentration.

 

                                                         (a) 

 

     (b) 

Figure 23. Yearly (a) robbery (b) theft counts 

Figure 24 suggested that NS and CS, amongst others, stood out as the sides having more 

homogenous weekly robbery concentrations with the WE/WD ratios of 0.55 and 0.52 
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respectively. For theft, the CS is ranked at the top with a value of 0.42. The values for 

the other sides lie in a narrow interval between 0.33 and 0.39.  

 

          (a) 

 

        (b) 

Figure 24. Weekly (a) robbery (b) theft distribution across the sides 

Figure 25 illustrates a more balanced robbery distribution between the FS and SS. For all 
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an interesting pattern occurred in the form of a switch between SS and TS. While the 

concentration is consistently higher in the TS on the northern sides, it shifts towards the 

SS on the southern sides. 

 

           (a) 

 

     (b) 

Figure 25. Shift (a) robbery (b) theft distribution across the sides of Chicago 

0

1000

2000

3000

4000

5000

6000

FNS NWS NS WS C SS SWS FSW FSE

Robbery Shift Distribution

FS SS TS

0

5000

10000

15000

20000

25000

FNS NWS NS WS C SS SWS FSW FSE

Theft Shift Distribution

FS SS TS



92 

 

4.1.3.  Characterizing crime concentration at street segment level 

We characterized the crime concentration across and its sides through two measures: 

percentage of crime-free segments and percentage of segments accommodating 50% of 

the crime incidents. These measures serve to highlight the degree of heterogeneity in the 

spatial crime distribution and were thus widely used in the past research (e.g., Weisburd, 

2015; Steenbeek & Weisburd, 2016; Levin, Rosenfeld, & Deckard, 2017). Figure 26 

exemplifies a sample crime distribution across street networks. 

 

Figure 26.  A sample crime distribution across the street networks 

We calculated these measures for each year in our analysis period. As a result, we 

illustrate street segments crime variability in the citywide and side-level crime 

concentration over the years. Figure 27 shows the number of street segments across the 

sides. 
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Figure 27.  Number of street segments across the sides of Chicago 

For the first measure, larger values indicate greater crime concentration. For instance, a 

value of 50 % means that one of each two units is crime-free. Accordingly, we observed 

the greatest crime concentration on the FNS with an average value of 52.55% over the 

four years period. NS, on the other hand, was found to have the most homogenous crime 

distribution across the street segments with an average of 31.38%. One interesting result 

here is the homogeneous crime distribution in the CS, and the concentrating crime 

distributions in the SWS and the FSW. 
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Figure 28. % of crime-free segments across the sides of Chicago between 2015 and 2019 

Unlike the first measure, the smaller values of the second measure suggest greater crime 

concentration in areas. For the second measure, we found the CS to be the side having 

the least percentage of segments (4.92%) accounting for half of the crime incidents. By 

contrast, NWS is found to have the highest average value with an average of 12.48%. 

An interesting pattern that we observed was that the values of the CS in the second 

measure showed a decrease during the 2015-2019 period. Along with the first measure, 

this paints an interesting picture where crime incidents appear to be mitigated across the 

street network, and the number of segments accounting for half of the incidents 

decreases. One possible interpretation would be an increasing volume of crime incidents 

in the top crime hotspots along with a crime diffusion to crime-free segments from other 

crime hotspots below. 
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Figure 29. Yearly segments % having 50% of total incidents 

4.2. DRSFs  

This section summarizes the results of the DRSFs. First, we report the results for the 

Network K analysis that shows insignificant spatiotemporal crime clusters around the 

selected urban features. Then we continue our analysis with a spatiotemporal influence 

analysis that compares the calculated crime-specific RSIS and RSSS values across 

spatiotemporal models. In the last section, we conclude this part with the results of the 

correlation analysis that examines the relationships between these indicators and 

Concentrated Disadvantage (CD). 

4.2.1. Bivariate network K analysis 
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spatial influence of pubs on the robbery in FSWS.

 

Figure 30. Network K result of the default model for robbery and pubs in FSW   

 
 

(a) (b) 

Figure 31. Network K result of the (a) weekday (b) weekend model for robbery and pubs 

in FSW   
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(a) (b) 

 
(c) 

           Figure 32. Network K result of the (a) FS (b) SS (c) TS model for robbery and pubs in FSW   

 

The continuous black lines in these figures show the cumulative crime (i.e., robbery) 

counts within a 1200 m bandwidth around urban features (i.e., pub). Figure 32 indicates 

that the observed cumulative robbery count exceeds the expected count under the CSR 

hypothesis after nearly 100 m. Here, the boundaries of the insignificance area for each 

distance are drawn by the gray band running through the middle of the figure. An 

observed count falling between the maximum and minimum values in this band signifies 

insignificant spatial association. These values on the extremes are obtained from a 

Monte Carlo simulation with 39 steps. The dashed line passing through the band is the 
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mean cumulative crime density values at each distance generated by 39 simulations for 

each point. Shortly, a continuous black line above the gray band shows significant 

clusters, within the gray band shows insignificant clusters, and below the gray band 

shows significant dispersions. For instance, Figure 32 can be interpreted as a significant 

robbery cluster around pubs. 

In the default model, we found no notable robbery and theft clusters within a quarter 

mile of gas stations on the CS. 

The weekly model also revealed that gas stations had a different spatial influence on 

robbery and theft. While its impact on the robbery was nonexistent on both weekdays 

and weekends in the NS, it was only present on weekends in the CS. In weekly models, 

there were additional inconsistencies between pub and robbery. On the SS and SWS, 

pubs did not draw robbery on weekends, and they did not attract robbery on the FSWS 

and WS on weekdays. 

Intraday models revealed many nuanced spatial influences. Grocery stores on the NWS, 

for example, and pubs on the SS and SWS did not significantly draw robberies during 

the first shift. Similarly, no significant number of robberies occurred near gas stations on 

the CS, FNS, or NS during the second shift. 

Intraday models identified many complex spatial influences. During the first shift, for 

example, we did not find any robbery clusters near grocery stores on the NWS or pubs 

on the SS and SWS. During the second shift, there were no significant robbery clusters 

around gas stations on the CS, FNS, or NS. 

4.2.2. Spatiotemporal influence analysis 

The mean MAE and RMSE values of the fitted risk functions (n = 509) were determined 

to be 0.119 and 0.13675, respectively, as overall performance indicators. Significant 
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disparities in RSIS and RSSS were discovered in spatiotemporal influence analysis 

across different crime categories (Appendix B). 

The RSIS and RSSS values of the bus stop in robbery and theft incidents are displayed 

in Figure 33 across spatiotemporal models. The Wilcoxon signed-rank test revealed that 

in the default model, theft RSIS of bus stations grew significantly in the second shift (p-

value <0.01) and reduced significantly in the first shift (p-value <0.05). During the first 

shift, it also suggested a greater robbery RSIS (p-value <0.05). In the first shift, the theft 

RSSS was significantly greater than that of robbery. The RSIS of theft and robbery was 

lower at fast-food restaurants and grocery stores in general, according to the Kruskal-

Wallis test. In the case of RSSS values, the relationship was flipped, with the majority of 

bus stops having positive RSSS values. The theft and robbery RSISs of bus stops in the 

FNS, FSES, and FSWS were found to be significantly higher. In both the CS and NS, 

bus stations were found to have the lowest values in both crime types for RSSS. 
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                                   (a) (b) 

 

 

 

 

 

 

 

                                   (c)                                                                                                              (d) 

Figure 33. Bus stops RSIS on (a) robbery and (c) theft, and their RSSS on (b) robbery and (d) theft across spatiotemporal models. 
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Figure 34 depicts the spatial-temporal theft and robbery RSIS and RSSS of fast-food 

restaurants. The key results revealed that the default model's RSIS for both theft and 

robbery is significantly higher than the first shift models (p-value< 0.01). A Kruskal-

Wallis test for intraday differences found that theft intensity near fast-food restaurants 

was significantly lower in the first shift than in the other shifts (p-value< 0.01). For 

robbery, we found significant RSSS differences between the default and weekday 

models (p-value<0.05) as well as between the weekend and weekday models (p-

value<0.01). The results also revealed that during the second and third shifts, the 

robbery intensity of fast-food restaurants was much higher than that of pubs. Except for 

the first shift model, all temporal models showed that fast-food restaurants had greater 

theft intensity values than gas stations and pubs. The tests found that fast-food 

restaurants in the FNS, FSES, and FSWS had significantly higher robbery RSISs. 

Significantly larger values were generally reported on the FSES for theft incidents. In 

the case of RSSS, the CS and FSES sides were shown to have higher values. 

 

 

 

 

 

 

 

 

 

 



102 

 

 

 

 

 

 

(a)                                                                                                                (b) 

 

 

 

 

 

 

 

(c)           (d) 

Figure 34. Fast-food restaurant RSIS on (a) robbery and (c) theft, and their RSSS on (b) robbery and (d) theft across spatiotemporal 

models. 
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Figure 35 shows the results of the analysis for the gas station. When compared to theft 

values, the Wilcoxon signed-rank test showed that robbery RSIS was significantly 

higher on weekends (p-value < 0.05). We also discovered that robbery RSSSs were 

greater on weekdays. Across all temporal models, a comparative analysis using other 

features revealed significant theft intensity variations between gas stations and fast-food 

restaurants. This difference in the robbery was significant for RSSS reported across the 

default, weekday, and second shift models. Further tests revealed a significant increase 

in robbery intensity around gas stations on the FSES and FSWS sides, as well as a 

significant increase in theft on the FSES, FSWS, and SWS sides. The SWS was 

consistently found to have the smallest values for theft RSSS. 
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                                          (a)                                                                                                                 (b) 

 

 

 

 

 

 

 

      (c) (d) 

Figure 35. Gas station RSIS on (a) robbery and (c) theft, and their RSSS on (b) robbery and (d) theft across spatiotemporal models. 
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The results of grocery stores across spatiotemporal models are shown in Figure 36. The 

results showed that theft RSIS of grocery stores was significantly greater in the default 

model than in the first shift (p-value 0.05). During the second shift, robbery RSISs were 

also higher than their theft equals (p-value 0.05). In the default (p-value <0.01), weekday 

(p-value <0.01), and third shift (p-value< 0.05) models, robbery RSSS values were 

significantly higher than theft values. In second shift models, theft and robbery intensity 

were much greater around grocery stores than around pubs, according to a comparative 

analysis with other features. On the FNS, FSES, and FSWS, the side difference tests 

revealed significantly higher theft and robbery RSISs. Grocery stores were found to have 

the highest values on the FSES for theft RSSS. 
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(a)                                                                                                               (b) 

 

 

 

 

 

 

 

(c)                                                                                                                                        (d) 

Figure 36. Grocery store RSIS on (a) robbery and (c) theft, and their RSSS on (b) robbery and (d) theft across spatiotemporal models.  
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Figure 37 shows the results of a pub's spatiotemporal influence analysis. The theft RSISs 

of pubs in the default and weekday models were significantly higher than the weekday 

(p-value< 0.05) model and significantly lower than the weekend (p-value<0.05) model. 

In the first shift, we also discovered lower robbery RSSS values than in the default 

model. Also in the second shift, there were greater robbery RSSSs. The results also 

showed that robbery and theft RSSSs in pubs were much lower than those in fast-food 

restaurants throughout weekdays, second shift, and third shift. The Kruskal-Wallis test 

found that robbery RSISs in pubs on the SW and SWS were much lower, as were theft 

RSISs on the SS. 
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   (a)                                                                                                                (b) 

 

 

 

 

 

 

 

                                                  (c)                           (d) 

Figure 37. Pub RSIS on (a) robbery and (c) theft, and their RSSS on (b) robbery and (d) theft across spatiotemporal models.

  

  



109 

 

 

4.2.3. Correlation analysis with concentrated disadvantage (CD) 

The key findings discovered that some RSIS and RSSS values of urban features for 

various crime types were moderately correlated with each other as well as the 

concentrated disadvantage of the sides. In all temporal models, we found strongly 

correlated theft and robbery RSISs around bus stops. In the case of gas stations, the 

correlation analysis revealed an increase in crime intensity in the disadvantaged 

neighborhoods (Figures 38 and 39). In the second shift models, there was a strong 

correlation between CD and the intensity of theft (ρ Theft, CD = 0.92) and robbery (ρ Robbery, 

CD = 0.76). 

For readers’ convenience, the cell labels follow the naming convention of: urban feature 

risk score_ temporal model. For example, GS_TI_Default refers to theft RSIS of gas 

stations in the default model). CD, on the other hand, had a negative correlation with 

robbery RSSS during the first shift (ρ Robbery, CD =0.69), as well as theft and robbery 

RSSS during the weekend (ρ Robbery, CD =0.79 and ρ Theft, CD =0.68). In the first and second 

shift models, the only significant correlations with CD were reported in the theft (ρ Theft, 

CD = 0.89) and robbery (ρ Robbery, CD = 0.72) intensities, respectively. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 38.  Correlograms between concentrated disadvantage (CD) and the RSIS values 

of gas stations in (a) default, (b) weekday, (c) weekend, (d) FS, (e) SS, and (f) TS 

models.  
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(a) (b) 

 
 

(c) (d) 

  

(e) 
(f) 

 

Figure 39. Correlograms between concentrated disadvantage (CD) and the RSSS values 

of gas stations in (a) default, (b) weekday, (c) weekend, (d) FS, (e) SS, and (f) TS 

models. 
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4.3. Predictive crime hotspot mapping algorithms 

This section will report the results of the developed predictive crime hotspot mapping 

algorithms. The subsections were divided based on the theory-based auxiliary event 

surfaces that enhance the performance of the retrospective models. We begin each 

subsection by reporting the optimal hyperparameters regarding data representation and 

the model. Next, we present the MHRs of the DL algorithms using these 

hyperparameters in daily and shift models. Lastly, a comparative analysis highlights the 

relative performance improvement upon the autoregressive crime hotspot prediction 

models achieved by the incorporation of each theory-based auxiliary event surfaces. 

4.3.1. Autoregressive model 

As displayed in Table 7., the autoregressive models highlighted the differences between 

models in both data representation and model. For the robbery, Graphwavenet 

outperformed the others with an MHR of 0.562 in daily models whereas STGCN 

achieved the best predictive performance with 0.603 in shift models. In general, graph-

based algorithms achieved nearly twice MHR compared to LSTM that produced 

traditional sequence-to-sequence predictions without considering spatial dependence 

between the street segments. 

Table 7. The Daily and Shift Results of the Autoregressive Robbery Models 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

42 0.05 0.1 0.05 0.562 42 0.05 0.1 0.05 0.495 

STGCN 14 0.05 0.3 0.04 0.528 42 0.9 0.3 0.05 0.584 

LSTM 42 0.5 - 0.01 0.232 3 0.1 - 0.02 0.228 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 
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The performance of the selected algorithms in theft models is much higher than their 

performances in robbery models (see Table 8). From the daily prediction models, 

STGCN is the best one with an MHR of 0.776. For the shift models, Graphwavenet is 

the best performer that identifies 59.6% of the theft incidents on average in the next 

shift. One interesting point is the reversed values of optimal training windows between 

the theft and robbery models. While optimal TWs are 42, 14, 42 for GraphWavenet, 

STGCN, and LSTM respectively for the robbery models, these values change to 

14,42,14 for the theft models. 

Table 8. The Daily and Shift Results of the Autoregressive Robbery Models 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

14 0.05 0.2 0.03 0.764 21 0.05 0.3 0.1 0.596 

STGCN 42 0.05 0.1 0.02 0.776 30 0.3 0.3 0.05 0.561 

LSTM 14 0.05 - 0.04 0.245 3 0.9 - 0.04 0.245 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

4.3.2. SSRS 

As displayed in Table 9, the robbery results indicated that Graph Wavenet is the best 

performer in daily models with an MHR of 0.580. For the shift models, however, 

STGCN outperformed the others with an MHR of 0.599. The results also indicate a 

shorter TW for GraphWavenet with a value of 10 in daily models compared to others 

both having TWs of 30. The optimal SBW for both graph learning algorithms is found at 

0.3. For shift models, TWs are quite narrow for GraphWavenet and LSTM with values 

of 3. 
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Table 9. The Daily and Shift Results of the Robbery Models with SSRS  

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

10 0.1 0.3 0.05 0.580 3 0.5 0.3 0.07 0.513 

STGCN 30 0.1 0.3 0.02 0.554 30 0.05 0.3 0.08 0.599 

LSTM 30 0.9 - 0.05 0.239 3 0.9 - 0.03 0.267 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

For daily theft predictions with SSRS (see Table 10), GraphWavenet and STGCN 

achieved comparable results with MHRs of 0.80, and 0.79 respectively, nearly three and 

a half times higher than that of what LSTM achieved. The ratio is nearly two and a half 

times for shift predictions with MHRs 0.605, 0.608, and 0.240 for GraphWavenet, 

STGCN, and LSTM respectively. One last important point here is that 0.05 is found as 

the optimal SC in all daily models, indicating a larger temporal extent. 

 

Table 10. The Daily and Shift Results of the Theft Models with SSRS 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

30 0.05 0.2 0.02 0.800 3 0.5 0.3 0.02 0.605 

STGCN 14 0.05 0.3 0.06 0.799 30 0.3 0.3 0.04 0.608 

LSTM 14 0.05 - 0.05 0.242 21 0.05 - 0.07 0.240 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

4.3.3. Feature counts 

The results of the robbery models (see Table 11) with feature counts marked Graph 

Wavenet as the best performing algorithms in both daily and shift models with MHRs of 
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0.514 and 0.496 respectively. The second-best model is STGCN with extremely reduced 

performances in both levels, 0.374 and 0.309 respectively. One important result is the 

reliance of STGCN on larger training windows in robbery shift models.  

 

Table 11. The Daily and Shift Results of the Robbery Models with Feature Counts 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

10 0.9 0.3 0.08 0.514 3 0.1 0.2 0.01 0.496 

STGCN 30 0.05 0.3 0.07 0.374 42 0.05 0.2 0.08 0.309 

LSTM 30 0.5 - 0.04 0.211 3 0.5 - 0.04 0.233 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

Similar to robbery models, GraphWavenet was found superior to the other two selected 

algorithms with MHRs of 0.686 across daily models. For the shift model, STGCN 

achieved an MHR of 0.607, which is even higher than the one obtained in the 

autoregressive model.  An important result found that the optimal TW and SC values 

across GraphWavenet and LSTM are the same (TW=3, and SC=0.5). Differently, 

STGCN needed the greatest number of timesteps. The results are displayed in Table 12. 

 

Table 12. The Daily and Shift Results of the Theft Models with Feature Counts 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

42 0.5 0.2 0.01 0.686 3 0.5 0.2 0.09 0.505 

STGCN 30 0.05 0.3 0.07 0.538 42 0.05 0.2 0.06 0.607 

LSTM 10 0.05 - 0.04 0.232 3. 0.5 - 0.05 0.229 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 
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4.3.4. Other crime 

Table 13 indicated that Graph Wavenet outperformed the other algorithms in robbery 

models by achieving a nearly two times higher daily and shift MHR with values of 0.607 

and 0.584. We noted larger SBW values for graph learning algorithms in daily models, 

which indicates a much smaller spatial dependence between the neighboring segments. 

 

Table 13. The Daily and Shift Results of the Robbery Models with Other Crime (I.E., 

Theft) 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

42 0.05 0.3 0.02 0.607 21 0.1 0.2 0.1 0.584 

STGCN 30 0.05 0.3 0.08 0.360 42 0.9 0.1 0.05 0.280 

LSTM 42 0.5 - 0.05 0.274 42 0.5 - 0.06 0.268 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

Table 14 shows that, for daily theft models, the Graph Wavenet algorithm achieved a 

much greater performance (MHR= 0.791) with a much shorter TW of 7 whereas 

STGCN has an MHR of 0.485 and a TW of 14, and LSTM has an MHR of 0.247 and a 

TW of 42. The theft shift models also showcased a sharp MHR difference in favor of the 

selected graph learning algorithms. While GraphWavenet achieved an MHR of 0.58, 

LSTM only predicted 22.9% of the hotspots in the next shift. 
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Table 14. The Daily and Shift Results of the Theft Models with Other Crime (i.e., 

Robbery) 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

7 0.1 0.1 0.05 0.791 3 0.5 0.2 0.001 0.580 

STGCN 14 0.9 0.3 0.04 0.485 30 0.5 0.2 0.04 0.576 

LSTM 42 0.1 - 0.05 0.247 3 .0.1 - 0.07 0.229 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

4.3.5. 311 calls 

As displayed in Table 15, the best daily and shift robbery models were achieved by the 

Graphwavenet algorithm that achieved MHRs of 0.618 and 0.534 respectively. Using a 

week as a TW in the daily model and a day in shift models, this algorithm achieved the 

best performance with an LR of 0.03 and 0.001 respectively. The second-best algorithm 

is the other graph learning algorithm, STGCN. An interesting point here is that STGCN 

performed better in the shift model.  Lastly, LSTM delivered a similar performance 

around 0.20 with a value of 0.24. Another notable point here is that robbery shift models 

with LSTM achieved a better performance in the shift models with a nearly 10% 

increase in the MHR.  

 

Table 15. The Results of Daily and Shift Robbery Models with 311 Calls 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

7 0.05 0.1 0.03 0.618 3 0.05 0.1 0.001 0.534 

STGCN 30 0.1 0.3 0.08 0.494 30 0.05 0.2 0.05 0.524 

LSTM 10 0.05 - 0.04 0.240 42 0.5 - 0.005 0.266 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 
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For theft models (see Table 16), GraphWavenet achieved the best MHR with a value of 

0.794 and STCGN is the best performer with an MHR of 0.626. GraphWavenet 

algorithm used the minimum TWs from the experimented values (i.e., 7 for daily, and 3 

for shift models). STGCN used 30-time steps as the training window in both models. On 

the other hand, LSTM again delivered a performance not much different from what it 

delivered in other models with MHRs of 0.261 and 0.255 in daily and shift models 

respectively. 

 

Table 16. The Results of Daily and Shift Theft Models with 311 Calls  

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

7 0.05 0.1 0.001 0.794 3 0.05 0.1 0.03 0.573 

STGCN 30 0.9 0.3 0.05 0.538 30 0.3 0.3 0.05 0.626 

LSTM 30 0.1 - 0.04 0.261 3 0.05 - 0.04 0.255 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

4.3.6. Park events 

For the robbery models (see Table 17), the results of park events largely indicated an 

inferior performance for the selected algorithms. The most dramatic decrease occurred 

in the robbery shift models that output MHRs of 0.398, and 0.257 much lower than these 

algorithms delivered in the previous models with different auxiliary event surfaces. 
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Table 17. The Results of Daily and Shift Robbery Models with Park Events 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

30 0.05 0.1 0.08 0.593 3 0.05 0.3 0.01 0.398 

STGCN 30 0.05 0.3 0.07 0.404 30 0.05 0.2 0.09 0.392 

LSTM 14 0.05 - 0.07 0.235 42 0.5 - 0.08 0.257 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

The most striking result in the theft shift models (see Table 18) is the MHR obtained 

from the Graph Wavenet algorithm.  It is 0.745, much higher than the previous models. 

The algorithms needed longer TWs for the daily models, whereas these values were 

relatively shorter in the shift models that use a TW of three shifts. One last point worth 

noting here is the relatively smaller values of SCs. These values indicate the daily and 

shift theft models require the data to be represented with a larger temporal extent. 

 

Table 18. The Results of Daily and Shift Theft Models with Park Events 

   Daily    Shift 

 TW SC SBW LR MHR TW SC SBW LR MHR 

Graph 

Wavenet           

30 0.05 0.1 0.001 0.796 3 0.1 0.3 0.004 0.745 

STGCN 14 0.05 0.1 0.06 0.710 30 0.05 0.3 0.005 0.606 

LSTM 42 0.1 - 0.02 0.247 3 0.05 - 0.006 0.256 

Note: TW=Train Window, SC= Smoothing Coefficient, SBW= Spatial BandWidth, 

           LR= Learning rate 

 

4.3.7. Comparative performance analysis 

The main results suggest that GraphWavenet is the best performing algorithm. Across 24 

models (i.e.,6 daily and 6 shift models for each selected crime type), we found the 
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highest   MHR for GraphWavenet in 17 models. The maximum reported MHR value of 

Graph Wavenet was reported at the daily theft model enhanced by SSRS with an MHR 

of 0.80. This means that it predicted the locations on average 80% of theft incidents the 

next day. For the theft shift models, we calculated an MHR of 0.745 in the model 

enhanced by the park events. We found the highest robbery MHR in the daily model 

enhanced by the 311 calls surface with a value of 0.618.  The best robbery shift model is 

the one with the theft surface (MHR= 0.584).  A comparative analysis with the 

autoregressive model found that the daily robbery model was best improved by the 

incorporation of 311 calls with an increase of 9.9%.  For the shift models, it is the other 

crime that achieved an 18% improvement on the MHR of the autoregressive model.    

Our novel SSRS is found as the surface that most improves the performance of the 

autoregressive theft daily model with a 4.7% increase in MHR. For theft shift models, it 

is the incorporation of park events that improves the MHR of the autoregressive model 

most by 68%. 

The other graph learning algorithm, STGCN, is the second-best algorithm in terms of 

MHR. The maximum MHR value of STGCN is reported at the daily theft model with 

SSRS with an MHR of 0.799. For the theft shift models, we calculated the highest MHR 

with a value of 0.626 in the model with 311 calls. We found the highest daily and shift 

robbery MHRs in the model with SSRS surface values of 0.554 and 0.599 respectively.  

A comparative analysis with the autoregressive model found that daily and shift robbery 

models were best improved by the incorporation of SRSS with increases of 4.8% and 

2.5% respectively. One striking result indicated that all the auxiliary event surfaces, 

except for our SSRS, led to a decrease in the performance of the autoregressive models 

across all the model configurations except for the theft shift model. The model that 
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benefits most from our novel SSRS was the theft shift model. However, it is not SSRS 

that most improved the autoregressive theft shift model. The event surface that led to the 

greatest increase was 311 calls with an 11% increase in MHR. All the results are 

displayed in Table 19.
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Table 19. The Results of Predictive Crime Hotspot Mapping Algorithms 

                                Autoregressive                                            SSRS                                       Feature Count Other Crime            311 Calls Park Events 

         Robbery Theft        Robbery        Theft        Robbery  Theft  Robbery    Theft  Robbery  Theft  Robbery  Theft 

 DM SM DM SM DM   SM DM SM DM SM DM SM DM SM DM SM DM SM DM SM DM SM DM SM 

GWN 0.562 0.492 0.764 0.596 0.58 0.513 0.8 0.605 0.514 0.496 0.686 0.505 0.607 0.584 0.791 0.58 0.618 0.534 0.794 0.573 0.593 0.398 0.796 0.745 

STGCN 0.528 0.584 0.776 0.561 0.554 0.599 0.799 0.608 0.374 0.309 0.538 0.607 0.360 0.283 0.485 0.600 0.494 0.524 0.538 0.626 0.404 0.392 0.710 0.606 

LSTM 0.232 0.228 0.245 0.245 0.239 0.267 0.242 0.24 0.211 0.233 0.232 0.229 0.274 0.268 0.247 0.229 0.24 0.266 0.261 0.255 0.235 0.257 0.247 0.256 

Note: DM= Daily Model, SM= Shift Model, GWN=Graph Wavenet, STGCN= Spatiotemporal Graph Convolution Neural Network  
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CHAPTER 5  

DISCUSSION 

This chapter will heavily discuss the findings of the study in two parts. While the first 

part emphasizes how DRSFs contributed to the understanding of the spatial influence of 

urban features on different crime types, the second will elaborate on how and why the 

theory-injected predictive crime hotspot mapping methods are different from the 

previously developed methods. These parts will mostly touch on our theoretical and 

empirical interpretations of the results. The focus is placed on how (mis)aligned the 

current study is with the previous research that we overviewed in the literature review. 

5.1. DRSF 

The bivariate network K analysis revealed potential spatial influence dead zones. These 

zones ensue from specific spatiotemporal configurations in which urban features do not 

broadcast any crime risk signals in their environs. Furthermore, we discovered that 

crime clusters near urban features differed across the sides throughout a day or week. 

The default model, for example, discovered minor theft and robbery clusters around gas 

stations around the CS. However, a weekly model revealed that robberies occurred in a 

significant cluster on the same side on weekdays. Similarly, while all of the temporal 

models except the default model showed insignificant robbery clusters near gas stations 

on the NS, they all found significant theft clusters on the same side. Similar to what past 

research documented (Corcoran, Zahnow, Kimpton, Wickes, & Brunsdon, 2021; Hipp & 

Kim, 2019; Andresen & Malleson, 2015; Yue, Zhu, Ye, & Guo, 2017; Feng, Piza, 

Kennedy, & Caplan, 2019), we found distinct intraday and weekly crime patterns near 

urban features across different regions. Another significant finding was that theft 

clusters were more consistent around all urban features than robbery clusters, with the 
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exception of insignificant clusters around gas stations in a few spatiotemporal models. 

This underscores the situational crime opportunity by stressing offenders' differing 

reward definitions across different crime types (Clarke, 1995). Evident from more 

consistent spatiotemporal crime clusters around urban features, thieves appear to be less 

impacted by contextual circumstances than robbers. Robbers, on the other hand, use 

violence and intimidation against their victims, which may lead to a physical struggle 

between the individuals involved. Outsiders who can act as capable guardians may pay 

more attention to this struggle (Cohen & Felson, 1979), thus deterring the robbers from 

offending.  

When compared to other urban features, such as fast-food restaurants, bus stops had 

much less spatial influence in nearly all temporal models, according to the RSIS findings 

(Song et al., 2019). On the contrary, numerous positive RSSS on all sides, except the CS 

and FNS, demonstrated that they actually had a stronger spatial diffusion effect 

throughout a spatial extent, especially in theft. This discovery stands in contrast with 

prior research that had empirically established the distance decay effect (Ratcliffe,2012; 

Groff, 2013; Groff, 2011; Xu & Griffiths,2017; McCord & Ratcliffe, 2009). As one 

possible explanation, the presence of other persons waiting for or getting off the bus who 

can function as informal security agents could make a bus stop a safe space for potential 

victims (Jacobs, 1961). Potential offenders are drawn to more deserted regions (i.e., 

alleyways and connector roads, etc.) as a result of the increasing number of capable 

guardians, generating a spatial spillover effect into neighboring areas (Angel, 1968).  

However, some urban features (e.g., schools and bars) were reported to have a 

differential spatial influence across regions, by a body of research (Wheeler, 2019; 

Breetzke & Edelstein, 2020).  This provides supporting evidence to the MCOT (Wilcox, 



125 

 

Land, & Hunt, 2003) that delineates a tight relationship between social and physical 

context. Accordingly, the changing crime risk around urban features across the sides of 

Chicago may accrue from the differential exposure levels to the offenders in areas. 

Another intriguing finding was that all temporal models showed positive robbery RSSSs 

of pubs on the SS. Their theft RSSSs, on the other hand, significantly backed the 

distance decay effect on the same side. In conclusion, our findings demonstrated that 

risk intensity and strength varied considerably depending on location, time, and crime 

type. 

The results of comparative RSSS analysis through the Wilcoxon signed-rank and 

Kruskal-Wallis test provided mixed support for spatiotemporal differences conditioned 

by crime type (de Melo, Pereira, Andresen, & Matias, 2018). The insignificant intraday 

differences were consistent with the findings of Bernasco, Ruiter, & Block (2017) who 

found only limited intraday crime level differences around urban features during 

weekdays and the time of day. We identified an intraday RSIS difference only for fast-

food restaurants in this study. This difference occurred between the first shift than 

others, the former being significantly lower. Given that the majority of fast-food 

restaurants were closed between 00:00 to 07:59 a.m., this result was not unexpected. 

However, we found a lot of evidence for RSIS and RSSS temporal differences near 

urban features. For example, a Wilcoxon signed-rank test found that robberies around 

pubs were more intense on weekends than on weekdays. These findings suggest cyclic 

crime opportunity patterns that recur on a weekly basis around certain locations 

(Corcoran, Zahnow, Kimpton, Wickes, & Brunsdon, 2021; Hipp&Kim,2019; Andresen 

& Malleson,2015). 
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Spatiotemporal RSIS and RSSS study revealed that urban features have a greater spatial 

influence on FNS, FSWS, and FSES, which are located on Chicago's north and south 

borders. The correlation analysis indicated a strong positive link between theft and 

robbery RSISs of gas stations and concentrated disadvantage when looking at the 

various interactions between side-level variables and the degree of spatial influence. 

Theft and robbery RSISs of pubs and CD, on the other hand, were found to have an 

inverse relationship, although only in the first shift model. The increasing robbery and 

theft intensity near pubs is not surprising, given that the CS is the most affluent side of 

Chicago, IL, and is the city's core in terms of commerce, nightlife, and entertainment. 

This is because offenders are far more likely to encounter an intoxicated person who 

may be unable to protect themselves well in these situations (Roncek & Maier, 1991; 

Roncek & Pravatiner, 1989). The results provide mixed support to previous studies 

(Stucky & Ottensman, 2009; Browning et al., 2010) that found a negative relationship 

between concentrated disadvantage and spatial influence. The effect of concentrated 

disadvantage on spatial influence is mediated by the type of urban feature, according to 

these contradictory findings. 

5.2. Enhancing DL-based predictive crime hotspot mapping with theory-based event 

surfaces 

This study has provided empirical evidence to the superiority of graph-based deep 

learning (i.e., Graph Wavenet, STCGN) algorithms to a traditional counterpart in crime 

hotspot prediction. The results revealed graph learning algorithms attained performances 

as higher as nearly four times in some models. The key factor here is the ability of the 

graph-based algorithms to capture the spatial dependency between the street segments 

by incorporating the street network topology through adjacency matrices. Predicated 
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upon the spatial aspect of the near-repeat phenomenon that assigns an elevated crime 

risk area around a crime incident, these algorithms diffuse the existing crime risk in 

segments across the neighbors. We determined the optimal value by experimenting with 

three different Gaussian kernels having different spatial bandwidths.  

Another reason behind the contrasting predictive performances between the graph-based 

algorithms and LSTM may be their approach to model temporal dependency. The 

traditional LSTM works with the recurrent units that suffer from prolonged training 

times and exploding/vanishing gradients with longer time series (Wu, Pan, Long, Jiang, 

& Zhang, 2019; Shleifer, McCreery, & Chitters, 2019). On the other hand, the selected 

graph-based algorithms exploit fully convolutional units that are much less 

computationally expensive, faster in training, and have lower memory requirements. In 

sum, this study is well-aligned with a large body of empirical research that reported the 

superiority of graph-based DL algorithms traditional DL algorithms across many 

domains (e.g., Geyer, 2017; Wang et al., 2018). One last point worth noting here is the 

performance differences between the graph learning algorithms. The results showed that 

Graph Wavenet was found as the best model in 17 out of 24 models. The most important 

difference between Graph Wavenet and STGCN is the self-adaptive adjacency matrices 

that eliminate the connection between the nodes with weak spatial dependence by using 

the ReLU function (Wu, Pan, Long, Jiang, & Zhang, 2019). Limiting the shared weights 

only to the nodes with strong connections might improve the predictive performance of 

the models by avoiding the impacts of the insignificant connections on the training 

weights. 

The proposed two-step parameter tuning procedure underlines the importance of a data-

driven approach in determining the optimal parameters for crime hotspot prediction 
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models. First and foremost, the crime data should be represented in a way that it can 

recognize the spatiotemporal patterns ingrained in the crime incidents. This is crucial 

because these represented datasets are then fed to the DL algorithms for producing crime 

hotspot predictions. An inaccurate representation may inflict the performance of the DL-

based crime hotspot prediction algorithms. In that sense, training window (i.e., time lag),  

SC, and SBWs should reflect the behavior of crime risk across street networks as 

accurately as possible. The results to a large extent supported the differing 

spatiotemporal risk extent across the selected crime types and time. For instance, TWs in 

the theft daily models are 14, 42, and 14 for GraphWavenet, STCGCN, and LSTM 

respectively. On the other hand, the same TWs are 42,14, and 42 for the daily robbery 

models. A similar difference also occurs in other parameters related to data 

representations (i.e., smoothing coefficient and spatial bandwidth). These differential 

parameters can be ascribed to the unique spatiotemporal patterns observed  

in the crime types (Youstin, Nobles, Ward, & Cook, 2011). In contrast with the 

expectations, the learning rate was found to have only a weak impact on the predictive 

performance of the selected algorithms. While the parameters related to data 

representation have a substantial impact on the predictive performance of the algorithms, 

the learning rate could only lead to a weak improvement. As a result, this study has 

clearly shown the importance of data representation in increasing the performance of the 

crime hotspot prediction models. 

The autoregressive prediction models delivered differential performances across the 

crime types. While the daily theft models achieved MHRs as high as 0.776, the highest 

reported MHR amongst the robbery models is 0.562. Likewise,  0.596 is the MHR of the 

best theft shift model whereas it is 0.584 for the best robbery shift model. The difference 
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between the MHR values particularly in the daily models may accrue from the number 

of crime incidents within the selected period. While there were 22596 theft incidents in 

the center side of Chicago between 2016 and 2018, the number of robbery incidents was 

much lower (n=1555), making it an even more sparse event dataset. Given the 

significant impact of sample sizes on train and test accuracies, we can argue that theft 

models exploiting larger datasets produce more accurate results (Ng, Minasny, Mendes, 

& Demattê, 2020).  For comparative purposes, we do not have any direct baseline study 

that used the same sample as the current study. The only study that can give a sense of 

how well our models performed is the study of Zhang & Cheng (2020) (GLDNet) where 

they developed network-based DL models for predictive crime hotspot mapping. 

Included in the selected crime types is the theft where they reported an MHR of 0.635 at 

20% coverage of the street network in another side of Chicago (i.e., SS). In a smaller 

land coverage, our autoregressive model achieved an MHR of 0.8. In sum, the selected 

DL algorithms can be argued to have delivered comparable results with the existing 

methods. 

Achieving noticeably higher MHRs by incorporating our novel environmental risk 

surface (i.e., SSRS) is the most important contribution of the current study. The SSRS 

captures the dynamic environmental crime risk levels of different types during day and 

week by aggregating the changing local effects of residing urban features residing in the 

street segments. Including SRSS improved the performances of the DL algorithms that 

produce daily and shift autoregressive robbery models across the selected algorithms by 

3.6% and 7.9% respectively on average. For the daily and shift theft models,  these 

values are 2.1% and 14.5% respectively. To highlight the effectiveness of the SSRS, we 

used a static indicator that only counts the selected urban features on a street segment. 
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Except for the robbery shift model, including this indicator led to a decrease in the 

performance of autoregressive models up to 50%. This indicates that what determines 

the crime risk score in a street segment is the historical crime exposure level, rather than 

the mere existence of the selected features.  This conclusion lends support to a dynamic 

interpretation of the CPT (Brantingham & Brantingham, 1981; Brantingham & 

Brantingham, 1995) that points to the daily and weekly fluctuations in the spatial 

influence of urban features on crime (Haberman&Ratcliffe,2015; Irvin-Erickson & La 

Vigne, 2015) On the contrary, assuming a static spatial influence of urban features on 

different crime types has a negative impact on the performance of the autoregressive 

hotspot prediction models. A possible reason may be that an unchanging environmental 

crime risk in a street segment may make the models blind to the displacements of 

different crime risks that recur on a daily or weekly basis. In their vulnerability and 

exposure framework,  Kennedy, Caplan, Piza, & Buccine-Schraeder (2016) posited that 

the existence of a criminogenic urban feature is a source of crime vulnerability in an 

area. However, its mere existence does not suffice to cause higher crime rates. In fact, 

this vulnerability should be supplemented with an indicator of exposure that 

continuously updates the vulnerability based on the past crime levels. For example, 

although pubs are known to make a place more vulnerable to crime, there could be some 

pubs that have not been exposed to any crime incidents before. In that case, we can not 

assume a spatial influence of that pub on crime in near areas.  By excluding the 

insignificant crime clusters around the urban features in the first step of developing 

DRSF, we ensured the selection of vulnerable urban features that have a significant 

spatial influence on different crime types during a week and day. We were thus able to 

reduce the false-positive crime risks that hurt the predictive performance of the selected 
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algorithms. In short, our novel SSRS achieved to improve upon the base model by 

capturing the dynamic environmental crime risk in street segments. 

Including other crimes proved effective in improving the performances of the 

autoregressive models in most of the models. Having created an auxiliary theft event 

surface for robbery hotspot prediction and vice versa, we obtained greater MHRs in both 

daily and shift models. Its contribution is much more evident in shift prediction models. 

For instance, it improved the performance of GraphWavenet in the robbery and theft 

models by 18.6% and 31.5% respectively. A similar result was previously reported by 

Mohler (2014) who applied a marked point process to the violent crimes in Chicago. By 

including other crime types (e.g., robbery, assault), he managed to increase the accuracy 

of daily homicide predictions by up to 33%. The improved predictive accuracy can be 

explained by distinctive yet interacting spatiotemporal crime patterns of different types 

(Grubesic & Mack, 2008; He et al., 2020). For the current sample, the developed DL 

algorithms might have captured spatiotemporal associations where theft incidents trigger 

robbery in near areas or vice versa. All these spatiotemporal associations imply a joint 

opportunity field where different crime opportunities dynamically change in time. For 

example, pubs demonstrate a fertile ground for thieves in early evening hours when 

people rush into those places in large groups after a workday. After midnight,  they 

become the places conducive to robbery when the number of intoxicated patrons who 

can not defend themselves properly increases in an area. Therefore, theft incidents that 

occurred in the second shift (i.e., 16:00-23:59) could usher robbery incidents in the 

following shift (i.e., 00:00-07:59).  In sum, the predictive value of spatiotemporal 

interactions between different crime types manifested itself in the increased predictive 

accuracies in the developed models. 
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One striking result we’d like to note here is the contradicting contribution of 

incorporating park events to the shift models using graph-based algorithms. While it 

substantially improved the performance of the autoregressive theft shift model using 

Graph Wavenet with a 68% increase, we observed a significant drop in the performance 

of the robbery shift model with a 19% decrease in MHR. Although park events provided 

a similar contribution to the daily models across crime types (i.e., 5% and 4% 

respectively), the contrasting performances in the shift models invoke further 

explanation. One possible explanation here is that public events are makeshift crime 

attractors that gather large people groups within a limited space. The increased people 

density in these areas, like public transit stations in the rush hours, create an 

environment where people become pretty much distracted while trying to find their ways 

to their final destinations in the middle of a moving crowd(Song et al., 2019).  Given the 

number of unattended belongings of the distracted people increase, these events may be 

a gold mine for the theft offenders. But, the same can not be said for the robbers. Since a 

typical robbery involves a physical struggle between a target and offender, the chances 

are much higher for intervention from formal or informal guardians (i.e., attendants, 

security) that deter the robber from offending. Additionally, these public events are the 

events where fortified security measures are mostly in effect. The increased presence of 

the law enforcement agents in these areas is thus another preventive mechanism that 

“hardens the target” (Clarke, 1995). This explanation may also serve to explain why 

including park events lead to a performance decrease in the robbery models. 

Accordingly, elevating the robbery risk in the street segments hosting park events might 

have resulted in inflated scores for these areas where robbers would not normally prefer 

to offend. Placing a risk on these areas seriously causes risk false positive predictions, 
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thus decreasing the accuracies. One important conclusion that can be drawn from the 

inconsistent impact of park events on crime risk predictions would be that one needs to 

be careful of selecting the theory-based indicators to be used as covariates in the crime 

hotspot prediction models. One covariate that proved to be extremely predictive of the 

risk of one crime type may remain completely irrelevant to another. Therefore, a crime-

specific approach should be adopted to select the auxiliary event surfaces to enhance the 

crime hotspot prediction models. 

The event surface of 311 calls achieved moderate improvements in the performances of 

daily and shift models. We noted its greatest contribution in theft shift models. There are 

several studies in the previous research that lends empirical support to its predictive 

value in crime prediction (e.g., Duan, Hu, Cheng, Zhu, & Gao, 2017). What we captured 

here is one of the urban pulses that function in various domains. The benefit of this pulse 

comes from its ability to send early warning signals about the looming crime risk in 

future time steps (Groff & La Vigne, 2002). In this study, we aggregated five different 

types of 311 calls in different domains under a single category due to the data sparsity 

we face in some of the categories. Also included in these types are the calls related to 

street lights complaints. There exists a large volume of research that has highlighted the 

predictive value of street lights in predicting future crime incidents in an area (e.g., Xu, 

Fu, Kennedy, Jiang, & Owusu-Agyemang, 2018; Chalfin, Kaplan, & LaForest, 2020; 

Bappee, Petry, Soares, & Matwin, 2021). Combining our results with the ones that are 

listed above, we can argue that the urban indicators that were obtained from a Broken 

Windows Theory (Wilson & Kelling,1982) perspective may serve to the predictive 

crime hotspot mapping in that they provide important physical cues regarding the overall 

crime risk level in an area.  As a result, the indicators that capture various facets of urban 
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life may be of great predictive value for the methods that aim to predict the location of 

crime incidents in the next time step. 

In general, this study has made an important contribution not only to crime hotspot 

prediction methods but also to the understanding of how differential factors play out to 

form these hotspots. For the former, it clearly shows the superiority of graph-based 

algorithms that incorporate the spatial dependence between the prediction units into the 

crime prediction models. Another important contribution to the former is to show how 

important it is to represent the datasets accurately. Through a multistep parameter tuning 

procedure, it showed that the performances of the selected algorithms can be greatly 

improved by feeding them with the datasets with the optimal data representation. In that 

sense, determining suitable values for the parameters that were emphasized in the 

procedure of Zhang & Cheng (2020) that reformulated crime hotspot prediction as a 

graph signal processing task is of paramount importance. For the latter, it showed that 

how these factors contribute to changes based on the crime type,  the horizon of the 

crime hotspot predictions, and the selected algorithm. For instance, our novel SSRS 

attained an average improvement of 14% in theft shift models, but its contribution to 

daily predictions remained at 2.1%. Similarly, while park events largely contributed to 

the performances of theft predictions generated by graph-learning algorithms,  its impact 

on the performance of the same group of algorithms was found to be negative. In short, 

this study developed various theory-driven network-based predictive crime hotspot 

mapping methods using different DL algorithms. The results are quite promising as 

evident from the improved predictive performances of the models. 
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CHAPTER 6  

CONCLUSION 

In this study, we developed a dynamic predictive policing system in two distinctive yet 

interacting parts. The first part focuses on developing a method that captures the 

dynamic environmental crime risk across street networks with novel DRSFs. For this, 

we first introduce a crime-specific spatiotemporal approach that conceptualizes urban 

features as base stations broadcasting signal-like spatial influence on crime. We tested 

this approach on a Chicago sample that includes all the theft (n=64024) and robbery 

(n=9685) incidents in 2018. The methodology starts with creating 54 spatiotemporal 

models where we examine the spatial influence of the selected urban features on robbery 

and theft incidents at various spatial (i.e., sides of Chicago) and temporal (default, 

intraday, and weekly models) configurations. Next, we fitted distance-aware risk signal 

functions with a segmented regression technique to characterize this spatial influence 

within a spatial extent after eliminating insignificant spatiotemporal crime clusters 

through a bivariate network K analysis. Two new scores, RSIS and RSSS, were 

developed from these functions to quantify the intensity and strength of the hypothesized 

spatial influence signals. The major findings of the spatiotemporal influence analysis 

showed that spatial influence demonstrates significant fluctuations across space, time, 

and crime types. For example, we discovered potential dead zones, where we observed 

no spatiotemporal influence of urban features on certain crime types. Another important 

result revealed that the type of urban feature and spatiotemporal context are key 

determinants of the distance decay effect. On the CS and FNS, for example, bus stops 

had a distance decay effect on robbery and theft across all temporal levels, but not on the 

other sides. According to our findings, the direction of the association between spatial 
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influence and concentrated disadvantage may be affected by the type of urban features. 

Also, we noted significant temporal fluctuations in the associations between spatial 

influence and CD.   

The second part proposes a theory-driven predictive crime hotspot mapping method 

using graph-based DL algorithms. The novelty of this part lies in the incorporation of 

many theory-based auxiliary event surfaces into the DL algorithms that have not been 

applied to the predictive crime hotspot mapping domain before. These surfaces were 

found to improve upon the performance of the autoregressive models that solely use 

retrospective crime data to generate crime risk predictions. One of the developed event 

surfaces is the environmental crime risk surface that captures the dynamic environmental 

crime risk through a novel indicator, SSRS. This indicator is derived from the DRSFs 

that we developed in the first part. To test the contribution of our theory-based event 

surface, we created another static surface that represents the counts of the selected urban 

features in the street segments. The other auxiliary event surfaces include park events, 

other crimes, and 311 calls. We used a sample from the center side of Chicago that 

includes all the robbery (n=1555) and theft (n=22596) incidents between 2016 and 2018. 

Following the procedure described by Zhang & Cheng (2020) that translates predictive 

crime hotspot mapping into a graph signal processing task, we performed many data 

preprocessing steps: create a graph whose nodes are street segments, smooth the crime 

counts to convert sparse event time series into a format suitable for deep learning, 

weight the edges between the nodes (i.e., street segments) by using a gaussian kernel 

function. In addition to the procedure, we described another two-step procedure where 

we gradually optimized the parameters related to data representation and model learning. 

In the first step, we experimented with a set of values for each parameter. After ensuring 
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the data is represented in an optimal manner by experimenting with various training 

windows, smoothing coefficient, and spatial bandwidth values, we performed model 

parameter tuning by experimenting with a set of learning rate values. In both steps, we 

measure the performance of the models based on MHR that refers to how much of the 

crime incidents on average are captured in the predicted crime hotspots by the model 

throughout the test days. An important result indicated the differential parameters across 

crime types as well as the prediction horizons (i.e., daily, shift). This simply underscores 

the necessity of a data-driven approach in determining the optimal data representation. 

Another important result illustrated the efficiency of the proposed auxiliary surfaces in 

improving the performance of crime prediction models. Amongst these surfaces, SSRS, 

other crime, and park events were the surfaces that stood out due to achieving the 

highest predictive values for the autoregressive model. Another surface, park events, has 

clearly shown the necessity of a feature selection process driven by crime theories. This 

is because of the inconsistent performance that the shift models with park events 

delivered across the crime types. While it substantially improves the predictive 

performance of the theft shift models, it was found to have an adverse impact on the 

robbery shift models. In short, we developed a theory-driven predictive policing system 

in this study. The results we obtained were quite promising in terms of enhancing the 

existing methods that are heavily reliant upon historical data. In that sense, the 

developed system caters to law enforcement agencies that both strive to understand the 

spatiotemporal dynamics of a crime risk and to make accurate crime risk predictions 

accordingly for increasing public safety as well as achieving operational efficiency. 
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6.1. Research implications 

The first part of the study has several research implications. For example, it offered solid 

empirical support for the requirement of spatial influence analysis with a crime-specific 

spatiotemporal approach, as implied by the concept of environmental backcloth 

(Brantingham & Brantingham, 1981; Brantingham & Brantingham, 1995). Likewise, an 

urban feature may be a significant crime attractor or generator in one context for one 

type, but it can be completely irrelevant for another type in another context. 

Furthermore, the results demonstrated that the type of urban features had the greatest 

impact on the distance decay effect. We discovered dynamic spatial diffusion effects for 

urban features on Chicago's four sides. This conclusion was consistent with Feng, Piza, 

Kennedy, & Caplan (2019) who similarly found changing spatial influence levels of 

urban features in New York City's five boroughs. These findings emphasize the need of 

using a dynamic spatiotemporal approach to operationalize spatial influence within a 

spatial extent. Lastly, our research found that CD affected spatial influence only for 

particular urban features in some intervals. 

We can also articulate many research implications for the second part of the current 

study. First and foremost, it suggests that univariate crime hotspot prediction methods 

may be enhanced by the inclusion of theory-based auxiliary event surfaces that show 

significant interactions with the crime risk surface. One important point here emphasizes 

a careful selection as not all kinds of surfaces may interact with every crime type. 

Putting the datasets into the analysis just because of their availability rather than seeking 

a theoretical rationale may lead to deteriorated prediction performances. Therefore, 

selecting the surfaces should be established upon a theoretical foundation. Failure to do 

so may result in significant performance reductions in the prediction model due to the 
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inflated crime risks that cause false-positive predictions. Another research implication is 

the superiority of the selected graph-based deep learning algorithms, Graph Wavenet 

and STGCN, over their traditional counterpart, LSTM in predicting crime hotspots. The 

key difference between these methods is the fully convolutional units that the first group 

of algorithms utilizes to model temporal dependence. Using convolutional units, rather 

than recurrent units for that purpose yielded better results. Another important point 

places the emphasis on spatial dependence. The ability to model spatial dependence 

through the adjacency matrices is what puts the first group one step ahead of the second 

group. A further division between the first group algorithms concerns the way they 

incorporate spatial dependence into the algorithm. While Graph Wavenet used a self-

adaptive adjacency matrix, STGCN used the weights as is. The result supported the 

former approach that eliminates the weak connections between the nodes. One 

implication would be to use lower-order neighbors in modeling spatial dependence as 

including higher-order neighbors distorts the training weights, hence the performance. 

As a result, this study emphasized the efficiency of convolution-based graph learning 

algorithms sparse time series such as crime. Fourth, the proposed representation tuning 

underlines the importance of a data-driven approach in crime hotspot prediction models. 

Given unique crime datasets as a result of unique interactions between crime and urban 

configurations, it is of crucial importance to ensure optimal data representation. Only 

with optimally represented data will it be possible to obtain models that produce the 

most accurate predictions. One last research implication is that this study has shown the 

applicability of many graph signal processing algorithms that were originally developed 

to forecast traffic speed across street networks into crime hotspot prediction context. 

After translating a sparse crime count dataset into a continuous crime risk dataset, the 
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researchers can harness any network-based DL algorithms to produce spatiotemporal 

crime predictions. 

6.2. Practical implications 

For law enforcement agents, the current study entails a wealth of information. First, 

depending on the situation, a preliminary spatiotemporal clustering method may help 

organize patrol routes by allowing the prioritization of the routes with the highest crime 

risk. Second, by modeling cumulative crime densities within a spatial extent, the DRSFs 

allow for the quantification and comparison of the spatial influence of urban features on 

different crime types within any spatial extent across selected spatiotemporal units. 

Third, when combined at the street segment level, RSIS and RSSS values can 

operationalize the whole environmental crime risk across a street network. Various 

spatiotemporal crime hotspot maps on street networks could be created using aggregated 

statistics. By alerting decision-makers about optimal patrol routes for any given period 

across the regions of a city, it enables for more targeted interventions and efficient use of 

resources. Furthermore, a more in-depth examination of these sites that are frequently 

ranked at the top by RSIS and RSSS may reveal further information about these 

criminogenic environments. These values may lead to safety improvements through 

environmental modifications such as streetlights (Xu, Fu, Kennedy, Jiang, & Owusu-

Agyemang, 2018) or more CCTV cameras as possible crime prevention through 

environmental design (CPTED) (Jeffery, 1977) application (Corcoran, Zahnow, 

Kimpton, Wickes, & Brunsdon, 2021). 

For the second part, including theory-based surfaces improved the performance of the 

predictive crime hotspot mapping algorithms up to 68%. This means that using a 

multilayered predictive crime hotspot mapping technique enhanced by auxiliary event 
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surfaces warrants a great increase in the operational efficiency by predicting the future 

crime hotspots more accurately. The increasing availability of the urban datasets brings 

new opportunities to further improve the univariate crime hotspot prediction methods. 

The police departments should therefore embark upon developing a predictive policing 

system fed by various urban datasets. Grounded in theory, these systems go beyond the 

predictive limitations of the existing retrospective techniques. Another practical 

implication would be to create crime-specific predictive crime hotspot maps on a daily 

or shift basis to be complemented with different sets of features. Monitoring the crime 

risk across street segments with as many datasets as possible can capture the crime risk 

from many aspects. Therefore, it better characterizes the crime risk across street 

networks. With a reference to the first part, crime hotspot maps should consider regional 

differences in terms of spatial influence. To know which types of urban features are 

exposed to which types of crime risk during which periods across the regions is of great 

practical value.  Limiting predictive crime hotspot maps to the regional level may 

provide more manageable patrol routes than the ones obtained from the citywide maps 

that may be located too scattered across the city. 

6.3. Limitations 

This study is not without its limitations. First and foremost, the accuracy of risk signal 

functions was strongly dependent on the geographical and temporal precision of crime 

data, as lower precision levels could threaten the estimated functions' validity. Second, 

the modifiable areal unit problem (Wong, 2004) and the modifiable temporal unit 

problem (Cheng & Adepeju, 2014) both represent significant challenges to the analysis' 

validity. Third, the computational complexity of network K analysis, as well as the 

exponentially growing number of space x time x crime x urban feature configurations, 
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impeded the use of spatiotemporal units at higher resolution levels.  Fourth, the list of 

urban features included in the spatiotemporal analysis might be expanded to include 

more features. For example, Fox, Trolard, Simmons, Meyers, & Vogel (2021)identified 

vacancy as a major contributor to violent crime on both the north and south sides of St. 

Louis, Missouri. Finally, the sample is limited to Chicago, IL, which confines the study's 

generalizability to other cities. As a result, we strongly encourage replication studies in 

different urban settings. The biggest challenge for the second part is the computational 

complexity of the selected graph-based deep learning algorithms. Due to exponentially 

growing complexity, we were unable to implement citywide crime prediction models. 

Furthermore, the growing complexity in parallel with the number of nodes also impeded 

all the models at the side level, except the center side. We, therefore, had to apply our 

predictive models to a sample obtained from the center side. A similar issue ensues 

when we attempt to apply various popular RNN-based graph learning algorithms (e.g., 

DCRNN) to our datasets. Each attempt produced an out-of-memory error due to 

intractable complexity. For this reason, we had to utilize convolution-based graph 

learning algorithms that are far less memory demanding than their RNN-based 

counterparts (Wu, Pan, Long, Jiang, & Zhang, 2019). Another limitation for the second 

part is the number of the selected crime types. Since an additional crime type could 

mean an additional twelve models each taking days to fine-tune, we decided to limit the 

crime types to theft and robbery. The number of model-related parameters we 

experimented is another limitation of our study. The exponentially growing number of 

model configurations in our analysis is the main reason why we did not choose to 

experiment with additional parameters such as dropout rate, batch size, etc. Lastly, the 

sample is only limited to the center side of Chicago. Therefore, the generalizability of 
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our dynamic predictive policing system to other regional or even city contexts is 

unknown. 

6.4. Future research 

Although we used appropriate spatial and temporal units to overcome data sparsity 

(Bernasco, Ruiter, & Block, 2017)and computational intractability of the K-function (He 

et al., 2020), a study with a finer spatiotemporal granularity level could still reveal 

interesting relationships and provide useful insights for future research. Examining 

different versions of the proposed risk signal function is another possible research 

direction. For example, rather than a linear function like the one used in this work, a 

non-linear function could better capture a curvilinear spatial influence within a spatial 

extent. Researchers can now assess the level of human activity along streets with better 

accuracy because of the increased availability of GPS data. An investigation based on 

this metric would also provide interesting details regarding the interaction of spatial 

influence and ambient population in terms of crime risk across streets. For the second 

part, the primary research direction would be an endeavor to examine further auxiliary 

risk surfaces that contribute to the performances of the predictive crime hotspot mapping 

algorithms.  A secondary direction involves examining the adaptability of various graph-

learning algorithms into the task of crime hotspot prediction.  A third direction would be 

to apply the developed predictive policing algorithms to other crime types with different 

sets of auxiliary event surfaces. One last possible direction would be to use even shorter 

prediction horizons due to the large benefits of specificity of the hotspot predictions in a 

timely manner. 
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APPENDIX A. 

THE SPATIOTEMPORAL NETWORK K RESULTS MATRIX 

 

 

 

 

 

 

  Robbery Theft 

 Sides Default WD WE FS SS TS Default WD WE FS SS TS 

B
u

s 
S

to
p

 

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

F
as

t-
fo

o
d

 R
es

ta
u

ra
n

t 

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

G
as

 S
ta

ti
o

n
 

C x ✓ x x x x x x x x x x 

FN ✓ ✓ ✓ ✓ x x ✓ ✓ ✓ ✓ ✓ ✓ 

FSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

N ✓ x x x x x ✓ x ✓ ✓ x x 

NW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

G
ro

ce
ry

 S
to

re
 

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NW ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

P
u

b
 

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FSW ✓ x ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

S ✓ ✓ x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SW ✓ ✓ x x ✓ x ✓ ✓ ✓ ✓ ✓ ✓ 

W ✓ x ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Note: WD= Weekday, WE:Weekend, FS= First Shift (00:00- 7:59), SS= Second Shift (08:00-15:59), TS= Third 

Shift (16:00-23:59),  ✓ = significant relationship, x = non-significant relationship at α=0.05 level 
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APPENDIX B. 

THE SPATIOTEMPORAL RSIS RESULTS MATRIX. 

 

 

 

 

 

 

  Robbery Theft 

 Sides Default WD WE FS SS TS Default WD WE FS SS TS 

B
u

s 
S

to
p

 

C 1.74 1.81 1.73 1.80 1.94 1.69 1.62 1.63 1.58 1.56 1.62 1.62 

FN 2.21 2.43 1.83 2.45 2.07 2.12 1.77 1.76 1.78 1.69 1.92 1.64 

FSE 2.15 2.12 2.20 2.06 2.30 2.10 2.09 2.12 2.05 1.59 2.28 2.09 

FSW 2.07 2.10 2.01 2.03 1.99 16.56 1.79 1.75 1.93 1.51 1.94 13.00 

N 1.58 1.52 1.65 1.71 1.51 1.48 1.56 1.54 1.59 1.52 1.58 1.56 

NW 1.43 1.42 1.46 1.40 1.84 1.38 1.56 1.57 1.54 1.41 1.74 1.48 

S 1.38 1.35 1.37 1.37 1.38 1.34 1.39 1.39 1.39 1.30 1.43 1.38 

SW 1.42 1.42 1.48 1.38 1.49 1.49 1.51 1.49 1.56 1.25 1.62 1.51 

W 1.40 1.45 1.32 1.36 1.40 1.42 1.29 1.31 1.26 1.21 1.36 1.26 

F
as

t-
fo

o
d

 R
es

ta
u

ra
n

t 

C 2.77 2.85 2.62 2.24 3.23 2.94 2.56 2.73 2.26 1.91 2.87 2.39 

FN 3.56 3.72 3.32 2.87 4.01 3.89 3.52 3.48 3.59 3.80 3.94 2.98 

FSE 5.13 4.55 6.08 3.87 5.96 5.04 6.48 6.15 6.69 3.50 7.05 6.92 

FSW 4.07 4.49 3.99 3.79 6.38 2.96 3.05 2.97 3.06 2.25 3.19 3.31 

N 2.82 2.77 2.91 2.80 2.91 2.85 3.11 3.07 3.23 2.61 3.37 3.07 

NW 2.32 2.34 2.35 1.95 3.11 2.15 4.95 4.80 5.33 2.41 6.07 4.83 

S 2.08 1.97 2.22 2.04 1.90 2.20 2.42 2.44 2.52 1.99 2.63 2.36 

SW 2.41 2.45 2.46 2.19 2.75 2.43 3.71 3.59 3.98 1.84 4.27 3.92 

W 3.56 1.92 1.60 1.55 2.00 1.77 4.83 3.04 2.77 2.27 3.47 2.68 

G
as

 S
ta

ti
o

n
 

C 0.00 1.46 1.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FN 1.86 1.91 1.77 2.46 0.00 0.00 1.63 1.62 1.65 1.96 1.51 1.61 

FSE 3.23 3.16 3.59 4.04 3.03 2.83 2.65 2.69 2.54 2.99 2.81 2.37 

FSW 3.76 3.70 4.25 3.33 3.56 4.40 2.66 2.65 2.67 2.64 2.76 2.52 

N 1.51 0.00 0.00 0.00 0.00 0.00 1.13 1.05 1.39 1.80 0.00 0.00 

NW 2.21 2.21 2.19 1.90 2.47 2.30 2.08 2.09 2.07 2.01 1.73 2.16 

S 1.82 1.76 1.92 2.15 1.89 1.69 1.92 1.91 1.95 1.47 2.04 1.90 

SW 2.12 1.85 2.36 1.94 2.09 2.14 2.30 2.29 2.33 2.28 2.25 2.32 

W 4.01 2.29 2.28 2.54 1.93 2.30 4.32 1.62 1.71 1.76 1.65 1.60 

G
ro

ce
ry

 S
to

re
 

C 1.74 1.75 0.00 1.81 1.80 1.67 1.81 1.84 1.84 1.85 1.88 1.71 

FN 4.28 4.39 4.07 4.22 4.80 4.03 3.22 3.12 3.40 3.08 3.43 3.05 

FSE 3.72 3.57 4.03 3.22 4.21 3.87 3.19 3.29 2.99 2.32 3.61 3.11 

FSW 4.43 4.31 4.53 4.64 4.26 4.19 3.62 3.33 4.27 1.92 4.19 3.82 

N 1.90 0.00 0.00 2.18 2.16 1.66 1.90 1.83 2.05 1.98 1.97 1.91 

NW 1.89 1.71 2.22 0.00 2.39 2.05 1.92 1.83 2.19 1.52 2.12 1.93 

S 2.17 2.22 2.05 2.11 2.41 2.05 2.13 2.11 2.19 1.88 2.23 2.12 

SW 2.42 2.44 2.41 1.91 2.54 2.60 2.21 2.11 2.21 1.84 2.31 2.15 

W 5.37 1.79 1.77 1.67 1.93 1.73 5.22 2.03 2.13 1.71 2.11 2.15 

P
u

b
 

C 2.61 2.16 3.23 4.09 1.71 1.97 2.22 1.90 2.76 4.69 1.76 2.03 

FN 2.37 2.76 1.67 2.30 3.26 2.00 2.20 2.04 2.63 2.39 2.15 2.23 

FSE 2.33 2.26 2.48 2.51 2.50 2.27 2.43 2.26 2.09 1.62 2.19 2.42 

FSW 2.20 0.00 3.50 2.27 0.00 2.83 2.04 2.00 2.15 2.45 2.03 1.86 

N 2.25 2.00 2.58 2.83 1.44 1.94 2.36 2.00 2.99 3.75 1.84 2.29 

NW 1.92 1.66 2.30 2.05 1.79 1.87 1.53 1.51 1.56 1.72 1.51 1.56 

S 1.58 1.65 0.00 0.00 1.70 1.48 1.48 1.36 1.70 1.34 1.53 1.52 

SW 1.22 1.33 0.00 0.00 1.55 0.00 1.47 1.47 1.48 1.27 1.52 1.52 

W 3.66 0.00 1.28 1.23 0.00 1.11 4.58 2.34 3.14 2.76 2.18 2.98 

Note: WD= Weekday, WE:Weekend, FS= First Shift (00:00- 7:59), SS= Second Shift (08:00-15:59), TS= Third 

Shift (16:00-23:59) 
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APPENDIX C. 

THE SPATIOTEMPORAL RSSS RESULTS MATRIX. 

 

 

 

 

 

 

  Robbery Theft 

 Sides Default WD WE FS SS TS Default WD WE FS SS TS 

B
u

s
 S

to
p

 

C -2.62 -1.22 3.41 -1.07 -20.70 2.41 -30.84 -30.4 -32.21 33.36 -32.39 -34.54 

FN -4.66 -4.44 -5.26 -22.4 -12.34 20.02 -10.14 -6.55 -16.79 -26.61 -7.34 -4.87 

FSE -0.46 7.13 -67.90 1.20 1.93 -3.09 20.17 27.04 7.40 38.63 18.16 18.05 

FSW 16.73 13.16 -2.97 6.22 5.05 128.43 76.50 96.62 89.63 316.88 91.26 113.40 

N 11.19 20.36 -3.95 -18.5 64.16 53.11 54.39 49.89 42.75 23.82 41.99 70.11 

NW 84.68 74.59 109.42 51.56 6.97 66.47 53.25 54.50 51.28 53.17 70.69 46.34 

S 20.46 33.65 5.01 7.55 10.43 26.56 90.14 81.51 110.47 69.86 102.87 85.03 

SW 2.64 2.33 14.15 -32.4 27.52 12.37 76.78 79.00 53.71 114.18 59.62 48.66 

W 9.24 5.47 16.69 15.41 12.57 3.71 36.81 37.29 36.17 47.36 43.92 25.46 

F
a

s
t-

fo
o

d
 R

e
s
ta

u
ra

n
t 

C -38.22 -48.14 -36.47 -33.3 -29.65 -50.03 2.49 0.36 7.98 31.00 -3.79 -8.63 

FN -61.38 -64.72 -52.40 -31.4 -57.54 -67.63 -41.16 -41.2 -41.31 -44.27 -43.51 -35.58 

FSE -56.32 -55.54 -48.06 -2.09 -69.18 -42.66 -58.00 -54.3 -62.67 -11.16 -56.44 -63.04 

FSW -89.52 -91.61 -35.55 -89.4 -91.24 -81.75 -77.55 -79.3 -75.71 -72.70 -76.12 -80.33 

N -67.75 -71.90 -57.39 -60.6 -70.45 -72.05 -59.12 -59.3 -56.99 -53.63 -61.06 -62.41 

NW -59.02 -64.90 -0.95 -46.8 -79.89 40.81 -75.37 -71.9 -79.16 -66.64 -74.75 -77.33 

S -51.79 -57.37 -42.05 -72.0 1.23 -45.67 -35.22 -39.0 -33.20 -32.70 -51.69 21.65 

SW -81.63 -80.83 -80.97 -85.0 -75.58 -80.77 -86.57 -86.5 -86.71 -76.33 -86.68 -87.87 

W 74.57 -58.19 -7.47 -46.5 -67.34 -16.09 7.60 -53.8 -84.38 -54.67 -58.38 -51.37 

G
a

s
 S

ta
ti

o
n

 

C 0.00 89.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FN -33.12 -36.37 -25.50 -26.6 0.00 0.00 -23.11 -28.7 -7.66 -36.94 -18.50 -17.84 

FSE -51.37 -48.28 -55.81 -67.1 534.04 -56.54 -7.98 -3.75 -19.27 -53.44 12.69 -3.63 

FSW 98.39 418.20 -7.03 3.38 247.40 54.44 -10.97 -15.5 0.14 12.23 0.11 -28.61 

N -37.71 0.00 0.00 0.00 0.00 0.00 -3.47 5.24 36.65 39.62 0.00 0.00 

NW -9.27 116.58 -47.44 -11.1 -52.88 44.49 -22.21 -18.1 -29.51 -33.05 142.11 -29.71 

S -12.06 70.96 -58.32 -33.0 -46.92 -56.72 -46.96 -45.7 -49.11 43.43 -45.57 -49.97 

SW -41.10 -31.14 -56.32 -53.8 -62.11 -56.02 -68.11 -67.9 -68.41 -73.24 -61.46 -70.17 

W 10.53 -60.42 -67.64 -72.1 93.28 -61.87 5.16 -55.2 -59.49 -70.87 -52.09 -53.18 

G
ro

c
e

ry
 S

to
re

 

C -38.82 -30.43 -47.26 -34.9 -11.55 -50.02 -57.06 -54.5 -57.07 -64.00 -55.43 -35.39 

FN -44.10 -44.09 -44.07 -42.2 -59.23 -30.88 -55.96 -54.7 -58.15 -61.85 -54.28 -55.08 

FSE 7.66 36.23 -23.35 -38.5 -16.73 46.00 2.97 -0.41 12.39 42.60 0.70 -1.86 

FSW -35.46 -43.76 2.67 3.42 -12.62 -45.93 -78.20 -73.7 -83.50 -55.05 -78.63 -81.33 

N -35.67 -36.30 -42.33 -13.9 -78.56 -67.46 -50.99 -48.9 -53.94 -54.75 -43.71 -63.92 

NW -47.19 -44.30 -52.40 0.00 -53.02 -45.29 -74.30 -75.5 -66.95 -69.98 -74.77 -74.21 

S -55.03 -52.92 -56.25 -57.6 -58.44 -50.46 -64.66 -65.5 -59.17 -43.02 -68.37 -65.18 

SW -35.86 -46.74 -11.97 -15.9 -46.97 -37.08 -69.82 -61.3 -71.04 -52.61 -70.72 -63.83 

W 129.55 -33.88 -50.45 -20.0 -47.05 -42.43 23.75 -64.9 -62.82 -38.87 -69.00 -63.67 

P
u

b
 

C -45.66 -22.87 -53.52 -52.0 -41.13 -32.50 -64.51 -60.4 -66.64 -68.30 -61.48 -61.47 

FN -38.69 -40.99 -30.96 -46.7 -32.97 -27.13 -41.93 -32.5 -57.66 -65.24 -30.36 -40.95 

FSE 8.73 91.32 -37.52 -40.0 677.99 -23.79 36.42 10.31 105.73 251.67 119.07 5.60 

FSW -32.01 0.00 -22.26 -71.8 0.00 89.16 -51.35 -35.8 -69.66 -73.16 -21.81 -33.89 

N -36.62 -9.79 -57.76 -50.4 -54.80 -16.92 -51.75 -43.1 -60.49 -67.54 -34.46 -47.46 

NW -65.86 -71.38 -56.39 -71.8 43.83 -73.14 21.96 34.09 1.73 -42.16 8.97 120.68 

S 129.35 112.56 0.00 0.00 30.94 304.44 -27.92 11.37 -57.40 -35.98 -17.83 -36.72 

SW -9.44 -35.20 0.00 0.00 -30.61 0.00 -81.58 -81.0 -82.51 -85.09 -80.62 -80.81 

W 188.85 0.00 -57.35 -18.9 0.00 -38.86 38.08 -35.2 -63.97 -66.79 -35.91 -50.76 

Note: WD= Weekday, WE:Weekend, FS= First Shift (00:00- 7:59), SS= Second Shift (08:00-15:59), TS= Third 

Shift (16:00-23:59) 
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