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ABSTRACT 

WEB MINING ISSUES:  

Topic Finding and Focused Crawling Evaluation 

by 

Eray Uluhan 

Web mining is defined as the process of using data mining techniques to 

automatically discover and extract information from semi- or unstructured Web 

documents and services. This study on Web mining consists of two sections, 

covering Web structure mining and Web content mining. In the first section, most 

widely accepted focused crawling algorithms and simple tree traversing algorithms 

are compared based on their page relevance, keyword predicate satisfaction and hit 

ratio criteria. Using the URL tokens as an input resulted in higher performances for 

all criteria. In the second part, an automatic topic finding methodology through Web 

pages is proposed. Processing only list items on HTML pages returned from a search 

engine, it is expected to find related key concepts on a user-defined topic. The 

methodology is experimented using different parameters, such as number of pages, 

different keywords, stemming implementations, etc. The candidate concepts ordered 

in relevancy scores represent a high precision on user-defined topic. 
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ÖZET 

ÖRÜN MADENCİLİĞİ KONULARI: 

Konu Bulma ve Odaklanmış Arama Değerlendirmesi 

 

Eray Uluhan 

 

Örün madenciliği, veri madenciliği ve düzyazı madenciliği teknikleri 

kullanılarak yarı yapılanmış ya da hiç yapılanmamış örün dökümanları ve 

servislerinden otomatik olarak bilgi ortaya çıkarmak ve elde etmektir. Örün 

madenciliği hakındaki bu çalışma iki bölümden oluşmaktadır; örün yapı madenciliği 

ve örün içerik madenciliği. İlk bölümde, en çok kabul görmüş olan odaklanmış 

arama algoritmaları ile basit ağaç izleme algoritmaları, sayfa ilgililik derecelerine, 

anahtar kelime içermelerine ve isabet oranlarına göre karşılaştırılmışlardır. URL 

içerikleri girdi olarak kullanıldıklarında tüm kriterler için en yüksek performans 

değerlerine ulaşılmıştır. İkinci bölümde, örün sayfaları üzerinden bir otomatik konu 

bulma metodolojisi önerilmiştir. Bir ara motorundan dönen HTML sayfalarındaki 

sadece liste maddelerinin işlenmesiyle, kullanıcı tarafından belirlenmiş olan bir konu 

ile ilgili önemli başlıklar bulunabilir Bu metodoloji farklı parametreler – sayfa sayısı, 

farklı konular, kök bulma uygulaması, vb.- kullanılarak test edilmiştir. Bulunan aday 

kelimeler ilgililik puanlamalarına göre sıralandıklarında kullanıcının belirlediği 

kelime ile yüksek doğruluk oranları göstermişlerdir. 
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PREFACE 

The World Wide Web is the largest information repository that has become a 

shared global resource of information, knowledge and a means of collaboration 

among countless people and communities around the world. However, the largest 

information repository in existence lacks a schema, i.e. information on WWW has 

been characterized as either unstructured, meaning that it has no schema, or semi-

structured, meaning that it has a very primitive structure (e.g., such as that induced 

by the HTML tags on each page). The use of data mining and text mining techniques 

to discover resources, patterns and knowledge from this ill-structured repository is 

called Web mining. With the increase in popularity of Internet and diversifications in 

its usage, implementations of Web mining techniques became a necessity.  

My thesis is based on two important sub domains of Web mining, focused 

crawling techniques, and automatic discovery of information through Web pages. 

The two areas are handled separately throughout this study. Focused crawling 

algorithms will be an important concept in the coming years, especially as the 

specialized Web portals become popular. Internet users will try to stay away from 

unnecessary information chunks and will favor on high quality, informative pages. In 

addition, specialized applications that use Web pages as their databases will become 

more popular.  

The main problem on working with the Web pages is their lack of structure. 

Although widely used HTML standard offers some structure through tags, it is rarely 



 x 

intended to be used for building logical corpus on Web pages. Most of the Web site 

administrators use HTML tags just to decorate their pages, not considering the 

informative structure of a topic. In addition, browsers, which are fault tolerant to 

HTML, such as Internet Explorer, make Web designing task is easier, but also gave 

rise to increase in unstructured pages.  

As long as satisfactory information can be found on Internet (using search 

engines, forums, blogs, or other applications), its popularity will not decrease. To 

overcome the problems with the unstructured nature of the Web documents new 

standards are being developed, such as XHTML, but still none of these are being 

used as much as HTML. 
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CHAPTER I. 

INTRODUCTION 

This thesis consists of two parts. First part is about evaluation of focused 

crawling algorithms, and the second part deals with finding topic specific 

information from Web documents. Both of these works are related to Web mining, 

defined as the process of using data mining techniques to automatically discover and 

extract information from Web documents and services.  

With the exponential growth of Internet in the last ten years, World Wide 

Web has become one of the largest repositories of information available to people. 

When the Internet was first introduced and Web pages were small in quantity, 

information finding, categorizing and sorting was done mainly by humans, and there 

were no need for automated Web search engines.  

Today, the main problem that the search engines face is the size and the rapid 

change of the Web. As the number of pages grows, it will be increasingly important 

to focus on the most “valuable” pages, as no search engine will be able to index the 

complete Web. Also, with the increase of information on the Web, need for 

dedicated search engines come out. To be able to create dedicated search engines, 

crawlers should not visit each link they encounter, but only those which are related to 

their goal.  
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This study focus on two main topics of Web mining, namely Web crawling 

and Web content mining. Firstly, we implemented most widely known focused 

crawling algorithms in the literature and analyzed their performances according to 

different criteria. Secondly, we developed a topic finder system that searches for 

most related concepts to a given keyword. Different parameters were selected and 

their effects were evaluated. 

The following is an outline of the contents of this thesis. Both result and 

methodologies of topic finding and focused crawling evaluation studies are described 

in different chapters. 

• Chapter 2 reviews selected publications related to both topics, including 

Web mining implementations, Web crawling infrastructures and 

algorithms, topic and definition finding. 

• Chapter 3 introduces the methods of our focused crawler algorithm 

implementations and the problems faced in general crawling processes, as 

well as our solutions. 

• Chapter 4 compares the results of the focused crawling algorithms. 

• Chapter 5 details implementation issues related to the design of the topic 

finding application. 

• Chapter 6 presents the results of topic finder with different parameters and 

discusses their effects on the results. 

• Finally, Chapter 7 summarizes our contributions and provides guidelines 

for future work in this area. At the end, the bibliography includes over 35 

references to publications in this area.  

The next chapter is a literature survey about the most important ones in the context of 

this thesis. 
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CHAPTER II. 

LITERATURE SURVEY 

Internet was first introduced in the late 1960s (at that time called as 

ARPANET) for allowing computers to share information on a highly decentralized 

network for research development and military areas. As interest in wide spread 

networking grew and new applications for it arrived, the Internet’s technologies 

spread throughout the rest of the world. In last ten years, the amount of information 

published through Web pages has grown so much that its sheer volume makes 

finding relevant information difficult. With the exponential growth of the Internet, 

collecting all the Web pages became nearly impossible even for search engines 

because of limitations in indexing and search technologies. (Broder, 2002), 

(Henzinger, et al. 2003) and (Tirri, 2003) summarizes some of the current challenges 

of search engines as fresh and complete indexing, malicious content, search engine 

spam, identifying good quality of pages, exploiting user feedback and identifying 

real need of the user, mirroring of Web sites, better query languages and ranking 

algorithms, classification of Web sites.  

Today, the most widely used language in Web pages is HTML (Hypertext 

Markup Language), which first introduced in 1993 and accepted as a standard in 

1995. Although HTML is still popular for disseminating informal documents and is 

designed for stepwise exploration and easy navigation through links, it is being used 
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to do things it was never designed for, such as formatting and displaying data. In 

addition, although Web pages are mainly used for information sharing, HTML 

provides little or no semantic structure at all. In contrast, most Web applications 

would benefit from an ability to represent data by meaning rather than by layout, 

where a more useful markup language would represent information in terms of its 

meaning, e.g. XML.  

Traditional Information Retrieval (IR) is concerned with retrieving 

information about a subject from a collection of data objects. (Huang, 2000) 

compares classical information retrieval systems and Web information retrieval 

systems and summarizes the differences as size, dynamic structure of Internet, 

heterogeneity, variety of languages, duplication, high linkage, ill-formed queries, 

wide variance of users and specific user behaviors. 

Web Mining 

The large size and the dynamic nature of the Web made “Web mining” a 

necessity. Web mining is firstly defined in (Etzioni, 1996), as “the use of the data 

mining techniques to automatically discover and extract information from Web 

documents and services. It states a hypothesis that the information on the Web is 

sufficiently structured to facilitate effective Web mining. (Cooley, et al. 1997) 

categorizes the Web mining into two categories, Web usage mining and Web content 

mining, whereas (Madria, et al. 1999) and (Borges, et al., 1999), add one more 

category, Web structure mining. 

Web Usage Mining 

Web usage mining focuses on the techniques for finding general access 

patterns of people through Web pages. The data used in Web usage mining are 



 5 

collected on Web logs and consist of user clicks, visited sites, referrer pages, time 

spent on a site, entry and exit pages to a domain, etc. According to (Cooley, et al. 

1997), Web usage mining can help organizations “to determine the life time value of 

customers, cross marketing strategies across products, and effectiveness of 

promotional campaigns, as well as provide information on how to restructure Web 

site to create a more effective organizational presence”. 

Web Structure Mining 

The goal of Web structure mining is to generate structural summary about the 

Web sites and Web pages. Technically Web content mining mainly focuses on the 

structure of inner-document, while Web structure mining tries to discover the link 

structure of the hyperlinks at the inter-document level. Based on the topology of the 

hyperlinks, Web structure mining try to categorize the Web pages and generate 

information using the similarities and relationships of different Web sites. Web 

structure mining can also be used for discovering the structure of Web documents 

rather than Web sites. This type of structure mining can be used to reveal the 

structure of Web pages, to make it possible to compare / integrate Web page 

schemes, and would serer for introducing database techniques for accessing 

information in Web pages by providing a reference schema. 

Web Content Mining 

Web content mining aims to extract/mine useful information or knowledge 

from Web page contents. Web content mining is related but different from data 

mining and text mining. It is related to data mining because many data mining 

techniques can be applied in Web content mining. It is related to text mining because 

much of the Web contents are texts. However, it is also quite different from data 
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mining because Web data are mainly semi-structured and/or unstructured, while data 

mining deals primarily with structured data. Web content mining is also different 

from text mining because of the semi-structure nature of the Web, while text mining 

focuses on unstructured texts. Web content mining thus requires creative applications 

of data mining and/or text mining techniques and also its own unique approaches.  

In (Liu, 2003), it is intended to extract topic-specific knowledge, such as 

subtopics or definitions from the Web; a highly challenging task on an ill-structured 

domain area. The motivation behind automatic discovery of salient concepts or 

subtopics on the Web is guiding people to learn in-depth knowledge of a topic on the 

Web easily. Traditionally, when someone wants to learn about a particular topic, 

reads a book or a survey paper. The rapid growth of the Web, popularity and richness 

of information published on Web sites made learning in-depth knowledge about a 

topic from the Web very easy and also even essential because of the fast changing 

world, constant and rapid emerging of topics. Many Web pages often contain 

intuitive descriptions of the topic. To find such Web pages, one typically uses a 

search engine. However, current search techniques are not designed for in-depth 

learning. Top ranking pages from a search engine may not contain any description of 

the topic. Even if they do, the description is usually incomplete since it is unlikely 

that the owner of the page has good knowledge of every aspect of the topic.  

Web Crawlers 

A Web crawler is a program that automatically downloads pages from the 

Web, parse their context information and extract links for future crawling. A typical 

crawler starts with a seed of set pages. It then downloads these pages, extracts 

hyperlinks and crawls pages pointed to by these new hyperlinks. The crawler repeats 

this step until there are no more pages to crawl or some resources (e.g. time or 
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network bandwidth) are exhausted (Brandman, et al. 2000). Web crawlers are also 

called wanderers, robots, spiders, fish and worms (Pant, et al. 2004). 

Framework / Crawler Infrastructure 

(Menczer, et al. 2002), (Pant, et al. 2004) discuss general framework for 

crawlers. First of all, a general crawler has to have access to Internet to download 

Web pages for data gathering, a HTML parser to extract information and links to 

follow, and a queue to put links to be visited. Depending on the goal of the crawler, a 

database may be used for storing downloaded pages and querying them easily, or just 

for caching purposes. 

To start crawling, a crawler needs to have seed pages, i.e. starting pages. Seed 

pages can be given by the user (Brin and Page, 1998), (Menczer, 2002a), or can be 

gathered via querying search engines (Srinivasan, et al., 2002), or using backlink 

queries of search engines (Srinivasan, et al., 2005). Backlinks refer to incoming links 

to a Web site and also called incoming links, inbound links, inlinks and inward links. 

Backlink pages can be obtained from search engines, such as Google – using the 

keyword “link:”. In (Srinivasan, et al., 2005), the user sets a depth value and queries 

the search engine with the keyword. The pages returned by the search engine sent 

again back to the search engine as backlink queries, and pages that have links to 

these pages are returned. This process continues iteratively as long as the predefined 

depth value.  

The goal of the crawling process may differ according to the need of the user. 

For example, a crawler may run until a predefined number of pages are downloaded, 

until some time is elapsed, no more memory / space available left, or a more general 

goal is completed. While crawling, the crawler maintains a list of unvisited URLs in 

a queue. Each time a page is downloaded by the crawler, it is parsed to extract URLs 



 8 

and application specific information. The unvisited URLs on that page are added to 

the queue ordered depending on the goal of the crawler and queue implementation. 

Before the URLs are added to the queue they may be assigned scores according to an 

algorithm, and then put the queue in order, so that higher scoring links are fetched 

first. If, in any time, the queue is empty and the crawler has finished fetching all the 

links encountered, than the situation signals a dead-end for the crawler.  

Crawlers are mostly used by search engines to index and refresh their 

database information. Also, there are specific purpose crawlers (Srinivasan, et al., 

2005), (Menczer, et al., 2001), (Diligenti, et al., 2000), (Chakrabarti, et al., 1999a). In 

(Chakrabarti, et al., 1999a), crawlers are used for classification of pages into 

categories using an existing document taxonomy and seed documents. For 

classification purposes, (Chakrabarti, et al., 1999b) builds a model with crawlers that 

online pre-trained by samples consisting of source page features and the relevance of 

the target page. The training process results in significant decrease of false positives 

in classification.  

(Ehrig, et al., 2003) considers an ontology-based algorithm for relevance 

computation. After preprocessing, entities are extracted from page and counted. 

Relevance of the page with regard to user selected entities of interest is then 

computed by using several measures on ontology graph. The harvest rate is improved 

and compared to the baseline focused crawler (that decides on page relevance by a 

simple binary keyword match). 

Focused crawlers are firstly introduced by (Chakrabarti, et al., 1999a), 

(Chakrabarti, 2003).  The basic idea of the crawler was to classify crawled pages 

with categories in topic taxonomy. At the beginning, the crawler requires a topic 

taxonomy such as Yahoo and ODP (Open Directory project a.k.a. DMOZ – 
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Directory.MOZilla.org). In addition, the user provides example URLs of interest. 

The example URLS get automatically classified onto various categories of the 

taxonomy. Through an interactive process, the user can correct the automatic 

classification, add new categories to the taxonomy and mark some of the categories 

as “of interest of the user”.  

(Aggarwal, et al., 2001) introduce a concept of “intelligent crawling” where 

the user can specify an arbitrary predicate (e.g. keywords, document similarity – 

anything that can be implemented as a function which determines documents and 

relevance to the crawl based on URL and page content) and the system adapts itself 

in order to maximize the percentage of the Web pages crawled satisfying the 

predicate. It is suggested that for some types of predicates the topical locality 

assumption of (Chakrabarti, et al., 1999a), (i.e. relevant pages are located close 

together) might not hold. A probabilistic model for URL priority prediction is trained 

using information about content of in-linking pages, URL tokens, short-range 

locality information and sibling information. 

Crawler Algorithms 

There are many different crawling algorithms in the literature, and most of 

them are not only specific to Web mining but also used in traditional information 

retrieval. The most common algorithms are explained below, briefly.  

Breadth-First Algorithm  

One of the earliest algorithms used in Web information retrieval, breadth-first 

algorithm is firstly explored in WebCrawler (Pinkerton, 1994). In most of the crawler 

performance studies such as (Cho, et al., 1998) and (Najork and Wiener, 2001) 

breadth first algorithm is used as the simplest and baseline crawler algorithm for 
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comparisons. In breadth-first algorithm, crawler visits every link of a single page, 

before moving to a next page, such that it does not use any information collected 

over the page, anchor texts etc. 

Fish-Search Algorithm 

Proposed by (De Bra, et al., 1994), fish-search algorithm tries to crawl those 

areas in the Web more extensively, in which relevant pages have been found. At the 

same time, the algorithm discontinues, if it does not encounter any important page 

along the path with a prespecified depth. That is, after following a number of links in 

a direction without finding a relevant document the search stops investigating that 

direction.  

Relevancy of a document in fish-search algorithm refers to a binary 

evaluation, whether the document contains the predicate of not.  

Shark-Search Algorithm 

(Hersovici, et al., 1998) Shark-search is an improved version of Fish-Search 

algorithm. First of all, it uses “similarity measure” to evaluate the relevance of 

documents, instead of binary evaluation of fish-search algorithm. A document is 

relevant if its similarity is above a predefined threshold. In addition, links’ potential 

scores are affected by the anchor text, text around the link tags, and also inherited 

score from ancestors.  

Best-First Algorithm 

In Best-First algorithm, a crawler fetches links from a page and gives all of 

the links the cosine similarity scores of the extracted page. In basic terms, cosine 

similarity is computed as the lexical similarity between a topic’s keywords and the 

page, where both keywords and pages are treated as vectors.  
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(1) 

 When computing cosine similarities between two documents (q, d), both are 

seen as a pair of vectors in a space with as many dimensions as terms (t) as the 

vocabulary. In a space defined in this way, the similarity of two documents is cosine 

of the angle between these two document vectors (see Equation 1).  

The crawler fetches the highest valued links first, so that the probability of 

fetching unrelated Web pages decreases significantly. Best-First Algorithm is used in 

(Hersovici, et al., 1998) and (Cho, et al., 1998). 

HITS Algorithm 

First proposed by (Kleinberg, 1998), Hypertext Induced Topic Search (HITS) 

algorithm is a query dependent ranking technique, in which the different (hub and 

authority) scores are produced. Authority page are those pages which have relevant 

information and discussions about a topic. Hub pages do not need to have in-depth 

information about a topic but have links to many authoritative pages. The relation 

between authoritative and hub pages are mutually reinforcing, while an authority 

page is a page that is pointed by many hubs and hubs are pages that point to many 

authorities. 

PageRank 

In (Brin and Page, 1998), the simple PageRank algorithm is introduced also 

became the basis of Google (http://www.google.com) search engine. PageRank is 

based on the link structure of the Web pages, and an “importance ranking” computed 

with iterative Web crawls. The importance of a page is represented as the probability 

that a random surfer (one who follows links randomly from page to page) will be on 
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that page at any given time. The ranking of the Web pages in PageRank algorithm is 

based completely on their location in the Web’s graph structure. The more important 

and central Web pages are given higher rankings, whereas backlinks from 

“important” pages are more significant than backlinks from average pages. 

Performance Evaluation Metrics 

Crawling algorithms are evaluated using many different types of criteria, such 

as efficiency, harvest rate, hit ratio, recall, precision etc. We can categorize these 

criteria into two types of categories for a crawl process, i.e. importance of pages’ 

crawled and general crawling performance (e.g. recall or precision).  

For page relevance measures lexical criteria and link based criteria are taken 

into account. A page is considered relevant if it contains some or all of the keywords 

in the query. In addition, if the frequency with which the keywords appear on the 

body of the page exceeds a frequency threshold, the page may be considered relevant 

(Cho, et al., 1998). In (Amento, et al., 2000), a combined word set is created from the 

contents of target documents. This word set is used to compute relevancy (page 

quality) of each crawled page as the cosine similarity between the page’s vector and 

the word set. (Chakrabarti, et al., 1999a) apply classifiers built using positive and 

negative example pages to determine page importance. (Aggarwal, et al., 2001) adopt 

a more generic framework that allows for user designed plug-in modules specifying 

relevance criteria. The modules that they use in their test require the presence of pre-

specified words in particular parts of the page, such as the URL. Similarity to the 

topic measured using page text (Bharat and Henzinger, 1998) or the words 

surrounding a link (Chakrabarti, et al., 1998) may also be used to augment what are 

primarily link based relevance measures.  
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In-degree, out-degree, PageRank (Brin and Page, 1998), hubs and authorities 

are commonly used link based page importance measures (Amento, et al., 2000), 

(Ben-Shaul, et al., 1999), (Bharat and Henzinger, 1998), (Chakrabarti, et al., 1998), 

(Chakrabarti, et al., 1999a), (Cho, et al., 1998). (Cho, et al., 1998) consider pages 

with PageRank above a specified threshold as being relevant to the query. 

(Kleinberg, 1998) recursive notion of hubs and authorities has been extended by 

several others. For example, edge weights are considered important (Chakrabarti, et 

al., 1999a) and so are edges that connect different sites (Amento, et al., 2000), 

(Bharat and Henzinger, 1998), (Chakrabarti, et al., 1999a). Link based quality 

metrics rely on the generally reasonable notion of link reflecting the credibility of the 

target pages. (Amento, et al., 2000) show that in-degree, authority and PageRank are 

effective at identifying high quality pages as judged by human experts. 

The literature shows a wide variety of summarization methods. Given a 

particular measure of page importance, (Cho, et al., 1998) examine the percentage of 

important pages retrieved over the progress of the crawl. (Menczer, et al., 2000) 

measure search length, i.e., the number of pages crawled until some predetermined 

fraction of important pages have been visited. (Chakrabarti, et al., 1999a), 

(Chakrabarti, et al., 1999b) compute the average “harvest rate,” which is a running 

average, over different time slices of the crawl, of page relevance assessed using 

classifiers. (Aggarwal, et al., 2001) also use harvest rate, similarly defined as the rate 

at which crawled pages satisfy a given predicate; if a classifier is used to give 

numeric relevance values then a page is said to satisfy a predicate if the relevance 

value exceeds a certain threshold. (Rennie and McCallum, 1999) compute the 

percentage of relevant pages found. 
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In this chapter, we have surveyed selected publications from the related work 

that are relevant for this thesis. We discussed Web mining concepts and focused on 

the Web crawling algorithms, frameworks and evaluation metrics.  

The next chapter starts the main part of this thesis by presenting the focused 

crawler implementation. 
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CHAPTER III. 

FOCUSED CRAWLING METHODOLOGY 

A simple Web crawler works as follows; crawler starts with a set of seed 

pages (given by the user or retrieved from an external source such as a search 

engine), and then uses external links of these pages to attend to other pages. The 

process continuously iterates with new pages offering more external links to follow, 

until a sufficient number of pages are retrieved or some higher level goal is reached. 

Iterations involve picking the next URL to crawl from the queue, fetching the page 

corresponding to the URL through HTTP, parsing the retrieved page to extract the 

URLs and application specific information, and finally adding the unvisited URLs to 

the crawl queue (see Figure 1). A topical crawler’s goal is to fetch only those pages 

which are relevant to a query or topic, rather than downloading all accessible Web 

pages. 

The main difference between a simple and a topical crawler is the 

implementation of crawl queue - priority queue. In topical crawlers, retrieved pages 

are evaluated for topic relevance; the extracted links are given scores and put into 

priority queues in order. This evaluation may range from a simple keyword matching 

to complex machine learning algorithms, may use information of previous runs, or 

even update score calculation weights during a crawl process.  
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Fig. 1. A general crawling algorithm 

Before getting into detail, we need to emphasize some limitations related to 

the crawling algorithms. First of all, memory size prohibits crawl queues to be 

infinitely large. Although it is possible to store the queue completely on a disk, for 

performance reasons this is not preferred, especially if a multi-thread crawler runs. 

Alternatively, we can limit queue size by specifying a maximum number. In that 

case, we need to implement a decision mechanism to choose which URLs to remove 

or ignore when the size limit is reached. For a priority queue, it is obvious that 

whenever the queue is full and new URLs needs to be added, then URLs with the 

lowest priorities in the queue should be removed. In our study, we set the priority 

queue size to 512. 

In addition, due to the limited size of the queue, we need to make sure that we 

do not add duplicate URLs to crawl queue. Considering a linear search – O(n) - to 

find out if a newly extracted URL is already in the queue is costly. So hash tables are 

preferred for holding unvisited URLs in the queue and also another hash table should 

be used for processed URLs, because search performance in hash tables is much 

more better – O(1), for unique hash keys – than linear and binary search. Once the 

Input: u1, u2, ..., un starting URLs, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = , visited URLs. 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7:  Parse p to extract text and extract outgoing links ux 
8:  for each ux in p do 

9:   if ux not in V then 

10:   Compute priority cp of ux for t 
11:   Add ux into PQ with cp 
12:   end if 
13:  end for 
14: end while 
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crawl queue's maximum size is exceeded, only URLs with highest priorities shall be 

kept in the queue. The problem with hash tables is that they can not store the keys in 

a specified order. Hence, we used Vectors to store URLs in priority order. If at any 

time the crawler finds the queue empty, when it needs the next URL, the process 

comes to a dead-end. However, with a large value of queue size and a set of seed 

URLs the crawl process will hard to encounter a dead-end.  

In order to fetch a Web page, we need an HTTP client which sends an HTTP 

request for a page and reads the response. The client needs to have timeouts to make 

sure that an unnecessary amount of time is not spent on slow servers or in reading 

large pages. The client needs to parse the response headers for status codes and 

redirections. Error checking and exception handling is important during the page 

fetching process since we need to deal with millions of remote servers using the 

same code. Modern programming languages such as Java and Perl provide very 

simple and often multiple programmatic interfaces for fetching pages from the Web. 

In our applications we used ready-made java.net.HttpURLConnection class for our 

HTTP client.  

Crawler Problems 

Whenever a page has been fetched by the crawler, its content has to be 

parsed, URLs encountered has to be extracted and put into the crawl queue, which 

will ensure that the crawling process will continue. However, there are several 

problems, which need to be solved in a crawling process, related to network 

connections, spider traps, canonicalizing URLs, parsing HTML pages, and the ethics 

of dealing with remote Web servers. 
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Canonicalizing URLs  

In order to extract hyperlink URLs from a Web page, we need a parser to find 

the anchor tags and extract their associated href attribute values. However, the 

structure of these attribute values can differ a lot, so that same page can be linked by 

different encoded URLs. So we have to convert all URLs encountered according to 

some criteria, in order to avoid fetching the same page many times. The conditions 

we applied are as follows: 

• Converting each URL to lowercase. For example, 

HTTP://www.BOUN.edu.tr is converted to http://www.boun.edu.tr. 

• Removing the ‘anchor’ or ‘reference’ part of the URL, because reference 

does not affect the output of a page and it is only used for navigational 

purposes. http://www.boun.edu.tr/calendar/index_tur.html#takvim2006 is 

reduced to http://www.boun.edu.tr/calendar/index_tur.html. 

• HTML encoding of some commonly used characters such as ‘~’ to ‘%7E’, or 

‘ ’ ‘%20’. http://www.boun.edu.tr/~mis is transformed to 

http://www.boun.edu.tr/%7Emis. 

• Adding ‘/’s to the end of an URL, if it ends with a directory name, so that 

“http://www.boun.edu.tr” and “http://www.boun.edu.tr/” are treated as the 

same URLs. 

• If the host part of an URL does not have www prefix, we retrieve the page 

with the original URL but put it into the visited URL list by adding www as 

prefix, because nearly for all Websites both “www.xyz.com” and “xyz.com” 

names resolve to the same IP address, and have the same contents. So we do 

not download the same content twice.  
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Stoplisting and Stemming 

Stoplisting and stemming are two common techniques also used in traditional 

information retrieval for working with higher quality text data. Removing commonly 

used words or stopwords from text is called stoplisting.  

In addition to stoplisting, word stemming is also used to find the roots of 

words found in a page. The stemming helps to normalize the words by removing 

commonly used suffixes, and converting morphologically similar words to a single 

root form or stem. The most common stemming algorithm used in information 

retrieval is Porters algorithm and its implementation can be easily found in many 

programming languages (Porter, 1980).  

Network and CPU - Multithreading 

A sequential crawling loop spends a large amount of time in which either the 

CPU is idle (during network/disk access) or the network interface is idle (during 

CPU operations). Multi-threading, where each thread follows a crawling loop, can 

provide reasonable speed-up and efficient use of available bandwidth. Each thread 

starts by locking the queue to pick the next URL to crawl. After picking a URL it 

unlocks the queue allowing other threads to access it. The queue is again locked 

when new URLs are added to it. The locking steps are necessary in order to 

synchronize the use of the queue that is shared among many crawling loops 

(threads). In addition to crawl queue, a typical multithreaded crawler would also 

maintain a shared history data structure for a fast lookup of URLs that have been 

crawled. Hence, in addition to queue it would also need to synchronize access to the 

history.  

The multi-threaded crawler model needs to deal with an empty queue just like 

a sequential crawler. However, if a thread finds the queue empty, it does not 
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automatically mean that the crawler as a whole has reached a dead-end. It is possible 

that other threads are fetching pages and may add new URLs in the near future. One 

way to deal with the situation is by sending a thread to a sleep state when it sees an 

empty queue. Whenever a thread access to the queue and put a new URL in it, also a 

wake signal is sent all of the sleeping threads. When the thread wakes up, it checks 

again for URLs. A global monitor keeps track of the number of threads currently 

sleeping. Only when all the threads are in the sleep state does the crawling process 

stop.  

Spider Traps 

The Web is usually considered as a collection of pages, in the same sense as 

in traditional Information Retrieval collections. The Web graph has a finite number 

of nodes in which measures such as diameter are well defined. However, the amount 

of information in the Web at any given time is certainly finite, but when a dynamic 

page leads to another dynamic page, the number of pages can be potentially infinite. 

Take for instance a dynamic page that implements a calendar, you can always click 

on “next month” and from some point on there will be no more data items in the 

calendar; humans can be reasonably sure that it is very unlikely to find events 

scheduled 50 years in advance, but a crawler can not. A second example would be a 

calculator, such as a dynamic page that calculates approximations of using an 

iterative method. A crawler cannot tell when two pages reflect the same information. 

To eliminate the effects of a spider trap, we can limit the number of pages the 

crawler sequentially accesses from a given domain. The code associated with the 

queue can make sure that every consecutive sequence of k (say 100) URLs, picked 

by the crawler, contains only one URL from a fully qualified host name (e.g. 
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www.cnn.com). As side-effects, the crawler is polite by not accessing the same Web 

site too often, and the crawled pages tend to be more diverse. 

Another solution can be limiting the URL sizes to a number of characters, 

such 150 or 200. Most of the time the “dummy” URLs created by spider traps often 

become increasingly larger in size. In addition, a list of pages and sites can be 

supplied to crawler for excluding from the process to avoid infinitely large 

automatically generated crawler traps 

HTML Parsing  

HTML coding, when done by hand, tends to be syntactically very relaxed. 

Most HTML coders only check if the page can be seen in their browsers, without 

further checking for compliance. These result in malformed markups, and pose 

serious problem for HTML parsing. The parsing problems we have faced during our 

crawler implementation are as follows:  

• Mixing single quotes, double quotes, and no quotes in attributes, e.g.: <IMG 

ALT="This is a photo" SRC=‘photo.jpg’ border=1>. 

• Mixing empty tags in HTML form (such as <BR>) and in XHTML form 

(such as <BR/>). 

• Unbalanced tags, e.g.: <SMALL><B>...</SMALL></B>. 

• Mixed case in tags and attributes, e.g.: <IMG src="...">. For HTML, the tags 

should be written in uppercase, and for XHTML, in lowercase. 

• Unterminated strings, e.g.: <IMG ALT="...>. This can be very problematic, 

because it will cause a buffer overflow if the parser is not properly written. 

These unterminated or long strings can also appear in HTTP response codes. 
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HTTP Requests 

In some cases, it is impossible to tell the type of a file just by looking at its 

URL. Some URLs have no extensions, and some URL have extensions that are 

ambiguous, e.g.: links to files ending in .exe could be either links to dynamically 

generated HTML pages in the server side, or links to programs that should be 

downloaded. 

A user agent, such as a Web browser or a Web crawler, can have limited 

capabilities and only be able to handle some data types. If it cannot handle a file 

(e.g.: an image), then it should not download it. For instance, a Web crawler 

searching only for plain text and HTML pages should issue a request of the form: 

GET /page.html HTTP/1.1 

Accept: text/plain, text/html 

... 

This indicates that the Web crawler can only handle plain text or HTML 

documents. According to the HTTP specification, the server should send a 406 (not 

acceptable) response code, when a valid object of the desired type is not present at 

the given URL. 

Several Web browsers simply issue a header of the form “Accept: */*”, so 

some Web server implementations do not check the “accept” header at all. It has 

somehow lost relevance, and today a Web server can send a response with almost 

any data type. A related concern is that some Web sites return a header indicating 

content-type HTML, but the information returned is a large binary file (such as a ZIP 

archive, etc.). The crawler can waste bandwidth downloading such a file. 

We check the returned content-type header in the downloaded pages, as it 

might not be a data type that the Web crawler can handle. A download limit is 
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necessary because potentially any file type can be returned by the Web server, even 

when it is indicating HTML content type. 

To ensure a good coverage of the Web, we must limit the amount of data that 

is downloaded from every Web server. This can be done by limiting both the 

maximum page size, and the number of Web pages that are downloaded from a 

single Web site. We set the maximum number of pages to download from a Web site 

to 100, and maximum page size to 400KB. In case the maximum page size is 

exceeded, the Web crawler must disconnect from the Web server and continue its 

process. 

Dead links 

It is hard to build a Web site without internal broken links, and the message 

shown by Web servers when a page is not found, i.e.: when the Web server returns a 

404 (not found) response, is considered by many Web site administrators as too 

annoying for users. Indeed, the default message looses the context of the Web site, so 

the Web site administrators of some Web sites prefer to build error pages that 

maintain visual and navigational consistency with the rest of their Web sites. 

The problem is that in many cases the response for a page that does not exists 

is just a normal redirect to a custom-built error page, without the response header 

signaling the error condition. These pages are called “soft-404”. The indexing 

process could consider a redirect to a “soft-404” error page as a link between the 

URL in which the page was not found and the error page, and this can increase the 

score of the later. For a generic crawler it is very hard to mark “soft-404” pages, but 

in a topic crawler, it is expected that the relevance of these pages would be very low, 

so that they would be omitted in the result. Also their outgoing links would have 
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small priorities, and most probably do not even added to the crawl queue for further 

processing. 

Robot Exclusion Protocol 

“Robot Exclusion Protocol” provides a mechanism for Web server 

administrators to communicate their file access policies; more specifically to identify 

files that may not be accessed by a crawler. This is done by keeping a file named 

robots.txt under the root directory of the Web server (such as 

http://www.biz.uiowa.edu/robots.txt). This file provides access policy for different 

User-agents (robots or crawlers). A User-agent value of ‘*’ denotes a default policy 

for any crawler that does not match other User-agent values in the file. A number of 

Disallow entries may be provided for a User-agent. Any URL that starts with the 

value of a Disallow field must not be retrieved by a crawler matching the User-agent. 

When a crawler wants to retrieve a page from a Web server, it must first fetch the 

appropriate robots.txt file and make sure that the URL to be fetched is not 

disallowed. More details on this exclusion protocol can be found at 

http://www.robotstxt.org/wc/norobots.html. It is efficient to cache the access policies 

of a number of servers recently visited by the crawler. This would avoid accessing a 

robots.txt file each time you need to fetch a URL. Although compliance with ‘Robots 

Exclusion Protocol’ is not mandatory and can be administratively overridden on the 

crawler, we have implemented in our study.  

Crawler Implementation 

In this study, we developed a Web crawler and implemented several 

algorithms to analyze their efficiencies in focused crawling. These algorithms differ 

only in assigning priorities to new extracted links.  



 25 

Fig. 2. Depth First Algorithm 

Depth First 

Depth first is a general algorithm for traversing or searching a tree, tree 

structure, or graph. Starting from a seed, depth first search tries to crawl as deep as 

possible. Depth first is not an algorithm suitable for focused crawling, because it is 

Fig. 3. Breadth First Algorithm 

Input: u1, u2, ..., un starting URLs, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = visited URLs, a = some constant 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7:  Parse p to extract text and extract outgoing links ux 
8:  for each ux in p do 

9:   if ux not in V then 
10:   if ux in PQ then 
11:    ux.cp = max(ux.cp, u.cp + a); 
12:   else 
13:    ux.cp = u.cp + a; 
14:    Add ux into PQ with cp; 
15:   end if 
16:   end if 
17:  end for 
18: end while 

Input: u1, u2, ..., un starting URLs with cp = 0, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = visited URLs, a = some constant 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7:  Parse p to extract text and extract outgoing links ux 
8:  for each ux in p do 

9:   if ux not in V then 
10:   if ux in PQ then 
11:    ux.cp = max(ux.cp, u.cp - a); 
12:   else 
13:    ux.cp = u.cp - a; 
14:    Add ux into PQ with cp; 
15:   end if 
16:   end if 
17:  end for 
18: end while 
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not interested neither with the content of the page visited nor with the URL it 

extracted (Figure 2).  

Breadth First 

Breadth first is also a simple tree traversing algorithm, but in contrast it is 

used to prove topical locality of pages in literature. It uses the priority queue as 

FIFO, and crawl the links in the order in which they are encountered. Whenever the 

crawl queue gets full, only one more link can be added for each page. Since both 

breadth first and depth first do not use any knowledge about the topic, we expect 

their performance to provide a lower bound for any of the more complex algorithms 

(Figure 3). 

Fig. 4. In Degree Algorithm 

In Degree 

Indegree algorithm is another graph based algorithm and each time a link is 

extracted from a page, the link is checked on the priority queue and if found its 

Input: u1, u2, ..., un starting URLs with cp = 0, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = visited URLs, a = some constant 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7:  Parse p to extract text and extract outgoing links ux 
8:  for each ux in p do 

9:   if ux not in V then 
10:   if ux in PQ then 
11:    ux.cp = ux.cp + a; 
12:   else 
13:    Add ux into PQ with cp = a; 
14:   end if 
15:   end if 
16:  end for 
17: end while 
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priority is incremented. This is somewhat similar but much more basic version of 

PageRank algorithm (Figure 4). 

Fig. 5. Best First Algorithm 

Best First 

In best first algorithm, the links are ordered according to some estimation 

criterion. Typically an initial representation of the topic, in our case words collected 

from top 10 pages returned from Google for the keyword, is used to guide the crawl. 

For each page downloaded lexical similarity is computed between a topic’s keywords 

and the downloaded page. Every link extracted from this page have assigned this 

similarity value as their priority and then added to the queue (Figure 5).  

Shark Search 

In Shark search, crawlers search more extensively in areas of the Web in 

which relevant pages have been found. At the same time, the algorithm discontinues 

searches in regions that do not yield relevant pages. In addition, it is capable of 

giving every link on a page separate priority values, since the potential score of links 

Input: u1, u2, ..., un starting URLs with cp = 0, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = , visited URLs 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7:  Parse p to extract text and extract outgoing links ux 
8:  for each ux in p do 

9:   if ux not in V then 

10:   if ux in PQ then 
11:    ux.cp = max(ux.cp, cos_sim (description, p)); 
12:   else 
13:    ux.cp = cos_sim (description, p); 
14:    Add ux into PQ with cp; 
15:   end if 
16:  end if 
17:  end for 
18: end while 
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is influenced by anchor text, text surrounding the links, and the page content it is 

extracted from. (Figure 6) 

Fig. 6. Shark Search Algorithm 

 

SharkSearchN / BestFirstN 

SharkSearchN and BestFirstN algorithms differ from SharkSearch and 

BestFirst only by selecting the links from priority queue in batches, not one at a time. 

The reason is that good quality links are commonly encountered in early phases of 

the crawl, because if a link is first encountered at a later step, then it also means there 

are not many pages linking to it (Figure 7).   

 

Input: u1, u2, ..., un starting URLs with cp = 0 and depth d = max_d,  t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = visited URLs, 
3: max_d = depth, r = relative imporance, 
3: while PQ != empty && overall goal is not reached do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7: if u.d > 0 then 
8:   Parse p to extract text and extract outgoing links ux 

9:   for each ux in p do 

10:    if ux not in V then 

11:    if (cos_sim (description, p) > 0) then 

12:     ux.d = d; 

13:    else 
14:     ux.d = u.d – 1; 

15:    end if 
16:    if ux in PQ then 
17:     ux.cp = max(ux.cp, (1-r) * neighborhood_score (ux)  

+ r * neighborhood_score (ux)); 
18:    else 
19:     ux.cp = (1-r) * neighborhood_score (ux)  

+ r * neighborhood_score (ux); 
20:     Add ux into PQ with cp; 
21:    end if 
22:   end if 
23:   end for 
24: end if 
25: end while 
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URL Combined 

URL Combined algorithm is similar to Shark Search by assigning each link 

encountered a different priority, but also uses the URL tokens rather than the 

neighbor words of the link. For each outgoing link, page similarity, anchor text 

similarity and URL token similarity are used to compute priorities (Figure 8).  

Fig. 7. Best First N Algorithm 

Algorithm Comparisons 

Our goal in this study is to evaluate different algorithms in a focused crawler 

process. For this reason we have implemented all of the algorithms explained in this 

section. We used both Google and Open Directory (dmoz.org) for creating 

descriptions for the keywords. Keyword descriptions from Google were collected 

from top 10 pages returned from Google, whereas Open Directory descriptions were 

collected from the search page, since these pages contain descriptive human entries.  

 

Input: u1, u2, ..., un starting URLs with cp = 0, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = visited URLs, N = size of batch queue, Vu = batch priority queue 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue N times u from PQ, into Vu, select u in top N highest priority. 
5:  for each u in Vu do 
6 :   Fetch u as Page p. 
7:   Add u into V. 
8:   Parse p to extract text and extract outgoing links ux 
9:   for each ux in p do 

10:   if ux in PQ then 
11:    ux.cp = max(ux.cp, cos_sim (description, p)); 
12:   else if ux not in V then 
13:    ux.cp = cos_sim (description, p); 
14:    Add ux into PQ with cp; 
15:   end if 
16:   end for 
17: end for 
18: end while 
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Fig. 8. URL Combined 

In addition seed sets and target sets were created by querying Google. Seed 

sets differ from depth 1 to depth 3 backlink pages and target set is the top 100 pages. 

For each run 3000 pages are crawled and information on target set encounters, 

predicate satisfaction and lexical similarity between crawled pages and Google / 

DMOZ keyword descriptions. 

Our target sets consist of top 100 links returned by the Google for the 

specified keyword. It is important to say that some of these top 100 links were pdf, or 

ppt files. Our crawler implementation does not follow or download pdf or ppt links 

but assign them priorities just like a page link and add to the queue. However, each 

time a link is dequeued it is checked on the target set. Whether the link will be 

further processed or not if it is in our target set, we count it as a successful encounter. 

Input: u1, u2, ..., un starting URLs with cp = 0, t topic 
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit. 
2: V = visited URLs 
3: while PQ != empty && overall goal is not reached  do 

4:  Dequeue u from PQ, select u with highest priority. 
5:  Fetch u as Page p. 
6:  Add u into V. 
7:  Parse p to extract text and extract outgoing links ux 
8:  for each ux in p do 

9:   if ux not in V then 

10:   if ux in PQ then 
11:    ux.cp = cos_sim (description, p) * 0.5  

+ cos_sim(description, anchor_text) * 0.25  
+ cos_sim(description, url) * 0.25; 

 
12:   else 
13:    ux.cp = cos_sim (description, p) * 0.5  

+ cos_sim(description, anchor_text) * 0.25  
+ cos_sim(description, url) * 0.25; 

14:    Add ux into PQ with cp; 
15:   end if 
16:  end if 
17:  end for 
18: end while 
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All algorithms are compared at which steps they could encounter target links, and 

with what percentage. 

Predicate satisfaction refers to whether the keyword passes on a page. It is 

used to show whether the downloaded pages are related with the keyword. The page 

may not be a target page, and also it may not have a high similarity with the 

descriptions, but satisfy the predicate, i.e. we can say that a search engine returns this 

page as a result of the keyword query. 

In this chapter, we give general characteristics and problems of crawlers, and 

explained our crawler implementation in detail. In the next chapter, Chapter 4, we 

present the results of our focused crawling algorithms  
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CHAPTER IV. 

FOCUSED CRAWLING RESULTS 

We have seen in Chapter 3 several crawling algorithms we have implemented 

for our performance evaluation,  as well as the methods to compare the algorithms. 

For each visited page we collected information on the cosine similarity between its 

content and keyword description, whether the page satisfies our predicate and 

whether it is a target page. All of the algorithms have been run with the same 

keyword “artificial intelligence”, description, seed and target pages. In addition, 

combined URL algorithm’s performance checked with “data mining”, as well.  

In Table 1, the predicate satisfied number of pages and number of pages in 

target set which have been crawled are listed. For each algorithm, moving average of 

cosine similarity between page contents and Google and DMOZ descriptions are also 

presented in Figures 1-6. 

According to Table 1, it is observable that the best performance in terms of 

predicate satisfaction and target set occurrence is in “Combined URL” algorithms. 

The main reason we can think of is that the descriptions created by Google and 

DMOZ also includes some domain names, such that the crawler assigns high 

priorities to the links with these domain names. In addition, we have observed that 
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for data mining keyword, most of the Web sites’ URLs includes at least “data” or 

“mining” that have been visited. 

Table 1. Predicate Satisfaction and Target Set Results 

Algorithm Predicate Satisfaction Target Set 
Breadth First 172 1 

Depth First 60 0 

InDegree 143 3 

Best First 127 3 

Best FirstN 179 9 

SharkCrawler 158 3 

SharkNCrawler 261 4 

Combined URL – AI 264 9 

Combined URL – DM 1283 18 

 

The number of predicate satisfactory pages is lower than we had expected. 

About only 0.03% - 0.06% percentage of pages satisfy the predicates for the keyword 

“artificial intelligence”. The depth and the distance of the seed set from the target 

pages can affect the numbers. We can say that depth 3 seed set collected from 

Google contains little information on “artificial intelligence”. For “data mining” 

combined URL algorithm has found more than 40% satisfactory pages. First of all, 

the seed pages, and secondly, the overall topic and its general structure on the Web 

affect the percentage of satisfactory pages. This is also discussed in Chapter 6, 

“artificial intelligence” occurs ten times more than “data mining” on the Web (based 

on the Google estimated results). Although it may look like an advantage, weak 

connections over the graph may lead the crawler to undesirable paths. 

We need also emphasize the number of pages found in target set for InDegree 

algorithm, since it is as good as a focused crawling algorithm. InDegree is a basic 

descendent of PageRank algorithm, and the pages in our target set are those pages 

with the highest PageRank values. Both PageRank and InDegree use similar logic 

when assigning scores to links. InDegree algorithm increments the importance of a 
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link by one whenever it finds the same link, whereas PageRank assigns the 

importance value according to the importance of the page itself. 

 
Fig. 9. Best First Algorithm – Cosine Similarity (moving average) 

 
Fig. 10. Best First N Algorithm – Cosine Similarity (moving average) 

Next, we compare the page similarity performances of the algorithms. It is 

important that during the crawling process, when assigning priorities to new 

extracted links, we computed cosine similarities with Google descriptions. DMOZ 

similarity only collected for informative purposes. Figure 9, Figure 10, Figure 11, 

and Figure 12 show performances of focused crawling algorithms, Best First, Best 

First N, Shark Search, Shark Search N, respectively. URL combined similarities for 

“data mining” and “artificial intelligence” is shown in Figure 13 and Figure 14, 

respectively. Lastly, performances of general tree traversing algorithms are shown. 
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Fig. 11. Shark Crawler Algorithm – Cosine Similarity (moving average) 

 
Fig. 12. Shark Crawler N Algorithm – Cosine Similarity (moving average) 

Comparing the focused crawling algorithms, we can see the N batch queue 

algorithms have different behaviors, than their original versions. Overall page 

similarities are higher, and also at the beginning of the crawling process they crawl 

higher quality pages. This verifies the statement that the good quality pages are 

encountered at the early stages of the crawl. Other observation we make is that the 

SharkNCrawler, have higher similarity values than the BestNCrawler. The main 

reason is that the SharkNCrawler assign each link encountered different priorities 

according to their anchor text or words near the link. 
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Fig. 13. Combined URL “Artificial Intelligence” – Cosine Similarity (moving average) 

 
Fig. 14. Combined URL “Data Mining” – Cosine Similarity (moving average) 

Combined URL algorithm has been run for “artificial intelligence” and “data 

mining” keywords. It is notable that all graphs on “artificial intelligence” start with a 

jump in few hundred pages and they fall back thereafter. However, as seen in Figure 

14, this jump is not as sharp as it is in “artificial intelligence”, and also similarity 

values are higher, reflecting the effect of the seed pages. In Figures 15-17, results of 

simple tree traversing algorithms are shown.  

In this chapter we have presented the performance evaluations we have found 

during our crawler process. Most of the strategies tested were able to download 

important pages first. Generally, even a random strategy can perform well on the 

Web, i.e. a random walk on the Web is biased towards pages with high PageRank.  
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Fig. 15. Breadth First Algorithm – Cosine Similarity (moving average) 

 
Fig. 16. InDegree Algorithm – Cosine Similarity (moving average) 

 
Fig. 17. Depth First Algorithm – Cosine Similarity (moving average) 

All of the algorithms have been run several times to find comparable results, 

especially when the crawler encountered dead ends. The main reason of dead ends 

was that we have limited 100 pages to fetch from one domain to prevent spider traps. 

However, sometimes during our crawls the queue become full with the same domain 
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URLs, and to prevent falling into a spider trap all of the URLs skipped, resulting in a 

dead end. Although increasing the number of pages to download from the same 

domain may prevent dead ends, our goal was to visit as many different domains as 

possible, and do not want get in to a circle in a site, if even it is not a spider trap. 

In the next chapter we present our automatic topic finding methodology using 

web pages.  
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CHAPTER V. 

TOPIC FINDING METHODOLOGY 

The motivation behind sub-topic or topic specific keyword discovery through 

Web pages is helping a user, who is insufficient in knowledge and experience about a 

topic, to find important concepts without much effort. Intuitively, a Web user would 

start searching the Web via querying search engines, and visiting some of the 

returned pages, reading and scanning, spending a lot of time on deciding what is 

important about the topic and what is not. In this study, we aim to develop an easy 

and systematic way of extracting key concepts from Web pages.  

In general, when trying to extract information from Web pages automatically, 

one faces several problems. First of all, one of the most important limitations of 

automatic discovery of information through Web is that a portion of the Web, called 

as “the hidden Web” or the “deep Web”, can not be accessed by automated agents 

such as the crawlers used by search engines. This portion of the Web mainly consists 

of pages that require previous registration or some special authorization such as a 

password, or are only available when visited from within a certain network, such as a 

corporate intranet. In addition, there are also dynamic pages, which are only 

generated after a request has been made, and are inaccessible without certain 

parameters as input, e.g. query terms. With the above limitations all of the crawling 

and indexing of the search engines are done whether on static pages, or on dynamic 
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pages which do not require unknown parameters, or has an ingoing link with correct 

parameters. 

Another problem is that Web content resides in a variety of formats, not just 

HTML, - e.g. text document formats such as .pdf, .ps, .doc or images, .gif, .jpg. An 

ideal Web crawler would parse all type of text documents successfully (even would 

process images); however, perfect parsing is not sufficient for extracting useful 

information from a set of documents. That is, only parsing a few Web pages may not 

provide sufficient information to a user, because these pages may not contain all the 

required information, in our case key concepts and/or sub-topics of the topic. For 

example, a good descriptive page about a topic may not include information about 

sub-topics, or the page might have not been created by the area experts, or in-depth 

researchers, and may only include unsatisfactory information, if even not any. In 

addition, the authors of the page may be only interested in only a small area of the 

topic.  

Because of the above considerations searching only a few pages may not give 

satisfactory results to the users. There is need to search a lot of pages, which has to 

be related to the subject, has to be an informatory page, and contain subtopics or key 

concepts. Existing search engines are extremely useful for finding top ranked pages, 

containing related information about a topic. However, for a user, trying to extract 

information through all pages means, visiting each page, scanning if not reading the 

page, and get the basic idea, concepts, and key topics of the topic. 

In this study, we try to mine important sub-topics or key concepts of a given 

topic automatically, through HTML based Web pages. Starting with a search query 

(a topic given by the user), the system gathers the set of top ranking pages returned 

from a search engine, and processes them further to discover sub-topics or keywords 
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of the search topic. Following that, the system filters those pages, which are unlikely 

to have sub-topic information, and identifies those informative pages, which may 

contain keywords, key concepts of the topic. These pages are processed further for 

extracting important phrases and then applied data mining techniques on these 

phrases to find candidate sub-topics. At the end, each candidate phrase are given 

scores based on the relevance with the input topic over the Web space, such that 

unrelated candidates can be filtered out in a post-processing step. Using the proposed 

technique, the user should be able to quickly learn sub-topics or key concepts about a 

topic without going through the ordeal of browsing through a large number of non-

informative pages, e.g. commercial or promotional Web sites (which give little 

useful knowledge), returned by the search engine. 

It is important to clarify that, although our main goal is finding sub-topics or 

important concepts of a topic, we do not use natural language processing techniques. 

The reason is that we also try to analyze tag information of Web pages, which the 

common text documents are lack of. HTML tags serve two general purposes on Web 

pages. First, they are used for designing the outline of Web pages, and second they 

are also used specifically to emphasize important information. The emphasized texts 

do not only highlight the important concepts to the reader, but also organize the 

information on a page. Consequently, both information and its format on the Web 

have great diversity.  

There are several problems that need to be solved before working with Web 

pages: 

• Web pages returned by the search engine may be published not for 

informative purposes, but for promotions, or commercials, etc. Only a small 

amount of pages contain definitions, descriptions or related academically 
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information about topics. Even in our case, only some of these descriptive, 

informative pages contain sub-topics or key concepts. 

• Web pages are often very noisy; they typically contain many pieces of 

unrelated information. Thus, many unrelated text segments may be 

emphasized. 

• Web page authors may emphasize those phrases or even long text segments 

that are not key concepts of the domain. For example, they tend to emphasize 

text segments that are related to their work or products, which may not be 

important sub-topics or key concepts of the domain. 

To find those true sub-topics or key concepts of the domain, we need to deal 

with the above problems. Data mining techniques come to help naturally because 

they are able to find those frequent occurring word phrases, i.e., those phrases that 

appear in many pages. Thus, we can eliminate those peculiar ones that appear rarely. 

Those frequent word phrases form the candidate sub-topics or key concepts of the 

topic or the domain.  

The proposed system consists of four main parts, namely “Data Gatherer”, 

“Data Extraction / Preprocessing”, “Data Processing”, and “Post Processing” which 

are explained in detail below:  

Data Gatherer  

Data Gatherer is responsible for collecting all necessary data to process. The 

system can work with data both from Internet and from a database which can be used 

for caching and fast retrieval purposes. The user specifies the main topic (keyword) 

to be searched for, decides whether a domain limitation would be applied, such as 

only .edu, or .com sites, when retrieving the list of pages, and the number of pages to 

be searched. In this study, we use Google (http:www.google.com/) as the search 
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engine to query Internet. Google provides GoogleWebApi1 for research purposes. 

Using this API, the system collects links of top ranking pages from the search 

engine. Google API returns at most 10 links for every query, so that the system 

recursively requests more pages, until the user specified amount is retrieved.  

In data gathering phase, if a page downloaded does not have HTML based 

information, i.e. the page does not contain <HTML> or <BODY> tags, or the page is 

a .pdf, or .ps formatted document or any error occurs during the preprocessing steps 

then that page is omitted, and a new page is requested from the search engine.  

Data Extraction / Preprocessing: 

Before starting to work with the pages downloaded, some filtering is applied. 

The pages, which generally do not contain sub-topics or key concepts, such as 

publication listing pages of researchers, forum discussion pages, university or 

departmental pages, do not need to be processed. For this reason, if any of the 

following phrases (“in proceeding”, “journal”, “next message”, “previous message”, 

“reply to”) exists more than three times in any of the pages, than that page is 

considered to be a noisy document, and its contents are skipped entirely. The 

resulting documents serves as the source for sub-topic or key concept discovery.  

If a page is not filtered out in result of above filtering conditions, then the 

page content needs to be parsed. The parsing of an HTML document is both 

extracting the tag information and also textual information. Web page authors use 

several HTML markup tags to emphasize important terms or concepts in their 

documents. Examples of these emphasizing tags include: 

<h1>,<h2>,<h3>,<h4>,<b>,<strong>,<big>,<i>,<em>,<u>,<li>,<dt>.  

                                                
1 For detailed information, http://www.google.com/apis/. 
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We suggest that among these tags, the most important tag for our task is “list” 

<li> tag, because HTML supports changing the visualization of header tags 

(<h1>,...,<h4>), or font tags (<b>, <i>) using cascading style sheets. However, list 

tags are used to organize the structure of the Web page, not only for visualization 

purposes. Also, we propose that, if a page contain in-depth information about a topic, 

it also contains a list of important topics in anywhere of the page. 

As a last step in data preprocessing; the extracting of list items is not 

sufficient to start processing. We also ignore some of the list items that can not be 

sub-topic or key concepts of a topic. A list item is removed if it contains:  

• A salutation title (e.g., Mr., Dr, Professor) 

• An URL or an email address 

• Terms related to a publication (conference, proceedings, journal) 

• Digits (e.g., WWW10, KDD2003, SIGMOD99) 

• Too lengthy (that is it is unlikely to describe a sub-topic), we use 15 

words as the upper limit for a useful list item. 

Data Processing 

We perform two different analyses on list items. Firstly, considering that we 

are looking for the sub-topics or key concepts, they are complete phrases and 

accepted in all of the topic area as they are. So, we may not need to apply stemming 

to the words, and also each list item indicates may be a candidate for our sub-topic. 

We collect list items from Web pages and check their overall frequency with our 

threshold, and those who pass the threshold represent our candidates. 

Secondly, we split all the list item phrases into words, and perform stopwords 

removal and word stemming, and at the end obtain a word list. Stopwords are words 

that occur too frequently in documents and have little informational meanings. 
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Stemming finds the root form of a word by removing its suffix. We use Porter’s 

algorithm for stemming. 

Mine frequent occurring phrases: Each piece of texts extracted in data 

preprocessing step is stored in a dataset called a transaction set. We then apply an 

association rule mining algorithm (which is based on the Apriori algorithm) to find 

frequent itemsets.  

When using each word separately, than our itemsets can be defined as a set of 

words those occur together in list items. In both ways, we apply Apriori algorithm to 

our itemsets, and also analyze the effects of the number of pages, or site domain 

restrictions, etc, to our findings. 

The Apriori algorithm works in two steps. In the first step, it finds all frequent 

itemsets 2 from a set of transactions that satisfy a user-specified minimum support. 

In the second step, it generates rules from the discovered frequent itemsets. For our 

task, we only need the first step, i.e., finding frequent itemsets, which are candidate 

sub-topics. In addition, we only need to find frequent itemsets with three words or 

fewer in this work as we believe that a salient concept contains no more than three 

words. 

Post Processing 

After applying Apriori algorithm, we perform some post-processing steps to 

clear out the unrelated / unnecessary findings and results.  

We need to explain that when using separate words in itemsets, then another 

problem arises after applying association, namely the order of the words. The reason 

is that the Apriori algorithm handles each transaction and frequent itemset as a bag of 

items (or words) without the notion of sequence. To overcome this problem, we 

check our list items and get the most frequent usage as our order. 
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The list of candidate phrases are checked with the entire list items. The 

following heuristic is applied thereafter: If there is not any list item that is equal to 

the candidate phrase, then this candidate phrase is unlikely to be a main sub-topic 

and it is thus removed. This heuristic is obvious because if the words in the itemset 

always appear with some other words together as list items, it is unlikely to be an 

important concept. 

Another step to eliminate itemsets that are unlikely to be sub-topics, we 

perform a scoring rule to the itemsets. Unlike (Liu, 2003), who removed some 

generic frequent words heuristically such as, “abstract”, “introduction”, “summary”, 

“acknowledgement”, “conclusion”, “references”, “projects”, and “research”, we try 

to give topic-relevancy scores to candidate sub-topics and list them in order to the 

user.  

The scoring process works as follows; using Google Web API, we collect the 

number of estimated pages containing the keyword, the candidate phrases, and both. 

If the number of pages containing a candidate phrase is more than the number of 

pages containing the keyword, then these candidate phrases are removed. By this 

way, we systematically remove frequent, generic words used in Internet from our 

candidate list. Moreover, by default Google Web API also throws exceptions if a 

search query is a common word used in Web pages. In results chapter, we explain the 

scoring and candidate elimination process more in detail. 

Additionally, in this study, we build HTML tag tree for the pages containing 

any of the resulting candidate phrases, so that we are able to give some more 

emphasis on those phrases whose parent nodes includes the query keyword. 

Basically, an HTML tag tree consists of a root <html> tag, and different tags and text 

as tree nodes. However, many Web pages contain ill-structured HTML tags, of 
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which the problem is explained in detail on our previous methodology. The process 

of converting a “dirty” HTML document into a well-formed one is called tidying an 

HTML page2. It includes insertion of missing tags and reordering of tags in the 

“dirty” page. In our study, we use HTML tag tree just another reference for 

emphasizing some of the candidate phrases. 

 

                                                
2 http://www.w3.org/People/Raggett/tidy/ and http://tidy.sourceforge.net  
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CHAPTER VI. 

TOPIC FINDING RESULTS 

In this study, our main goal is finding important keywords or sub-topics 

related to a given query. We experimented our proposed model with different 

queries, different number of pages, different domains and also with and without 

stemming implementations. The queries used in the experiments are selected from 

both traditional and new emerging computer science related topics, such as “artificial 

intelligence”, “bioinformatics”, “data mining”, “Web mining” and “computer 

vision”.  

All query words are experimented in 100 pages without domain limitations, 

stemming implementations, and in word based associations. In addition, to analyze 

the effects of variables such as domain selection, stemming and word / phrase based 

associations, “artificial intelligence” is selected as our base case. Table 2 shows our 

test cases in detail. Appendix A consists of the candidate phrases founded for 

“artificial intelligence” with different parameters. 

Both as a candidate removal post-processing step and as a way to order the 

candidates in order of importance, we compute different relevance scores (S) using 

number of pages returned from search engine for keyword query (k), for candidate 

phrase (CP), and both combined (b). Using these three numbers, we computed six 
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different relevance scores shown in Table 3. S5 and S6 computed as the together 

occurrence probabilities of phrases. In S1, “sqrt (n(CP) * n(k))”, and in S3, “n(b)2”, is 

used to eliminate the effects of units, and compared to the equation S2 the computed 

scores were more reliable. 

Table 2. Topic Finding Test Cases 

Table No  Keyword Word/Phrase Stemming # of Pages Domain 

4 Artificial Intelligence W N 100 all 

5 Bioinformatics W N 100 all 

6 Artificial intelligence W N 100 .com 

7 Artificial intelligence W N 100 .edu 

8 Data mining W N 100 all 

9 Web mining W N 100 all 

10 Computer vision W N 100 all 

11 Artificial intelligence W N 200 all 

12 Artificial intelligence W N 50 all 

13 Artificial intelligence W Y 100 all 

14 Artificial intelligence P N 100 all 

15 Data mining P N 100 all 

 

In Table 4, all candidate phrases for artificial intelligence collected from 100 

pages without stemming implementations and using word based associations are 

listed. This list is divided into three parts. Type III candidates are those phrases 

which occur more than query keyword and thus eliminated at first step. Google does 

not even return an estimated number of pages for the candidates at the bottom of the 

list. Since we are looking for key concepts or related sub-topics, we do not want to 

include more general domains into our results. For example, robotics is a highly 

related concept with artificial intelligence (relevance scores are also high), but we 

can say that it is a more general research area than the AI. 
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Table 3. Scoring Measures CP (# candidate phrase), k (# keyword), b (# both) 

S1 =  n(b) / sqrt (n(CP) * n(k)) (2) 

S2 =  n(b) / n(CP) * n(k) (3) 

S3 =  n(b)2 / n(CP) * n(k) (4) 

S4 = n(b) / max (n(k) , n(CP)) (5) 

S5 =  n(CP) / n(k) (6) 

S6 =  n(b) / n(CP) (7) 

 

The difference between the Type I and Type II phrases are determined by the 

relevance scores. After our experiments are completed, we analyzed the relevancy 

scores and concluded that using a 0.005 threshold score in S1 would give results with 

high precision. For Type II candidates we can say that, most of them are not widely 

accepted as a relevant topic, and thus their relevance scores are low. Although 

“example systems” may be a related topic, our selection system removes it from our 

result set. Type I candidates are high occurring phrases, especially related to the 

keyword. These Type I candidates are listed in relevance score S1 descending order. 

According to our results in Table 4, a total of 14 candidates are available, and 

machine learning is the most related and used topic in artificial intelligence with the 

given experimental conditions. All of these 14 Type I candidates are related concepts 

of “artificial intelligence”. For Type I candidate phrases, we observe that they have 

high precision. However, we can not know all concepts related to “artificial 

intelligence”, so that we are not able to comment on the recall of these results, but in 

our opinion, 10 or more Type I candidate phrases of a topic would be satisfactory for 

our study. 
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Table 4. Artificial intelligence – Word based – w/o stemming - 100 pages / n(k) = 76,700,000 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

knowledge representation * 8,590,000 3,080,000 0.1199931495 0.0000000047 0.0143983559 0.0401564537 0.0401564537 0.3585564610 

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263 

İnference 43,000,000 5,170,000 0.0900240679 0.0000000016 0.0081043328 0.0674054759 0.0674054759 0.1202325581 

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370 

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061 

Cybernetics * 9,460,000 1,270,000 0.0471476956 0.0000000018 0.0022229052 0.0165580183 0.0165580183 0.1342494715 

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873 

turing test 925,000 363,000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.3924324324 

speech recognition * 14,800,000 1,140,000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0770270270 

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104 

Prolog 19,000,000 1,050,000 0.0275052006 0.0000000007 0.0007565361 0.0136897001 0.0136897001 0.0552631579 

fuzzy set theory 323,000 81,500 0.0163741463 0.0000000033 0.0002681127 0.0010625815 0.0010625815 0.2523219814 

T
Y

P
E

 I
 

procedural knowledge 325,000 60,700 0.0121576414 0.0000000024 0.0001478082 0.0007913950 0.0007913950 0.1867692308 

example systems 165,000 13,800 0.0038791755 0.0000000011 0.0000150480 0.0001799218 0.0001799218 0.0836363636 

formatting instructions 269,000 16,200 0.0035664915 0.0000000008 0.0000127199 0.0002112125 0.0002112125 0.0602230483 

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033 

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951 

artificial life faq 1,520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.1256578947 T
Y

P
E

 I
I 

remaining topics 46,000 438 0.0002331833 0.0000000001 0.0000000544 0.0000057106 0.0000057106 0.0095217391 

Automation * 258,000,000 6,820,000 0.0484815883 0.0000000003 0.0023504644 0.0264341085 0.0889178618 0.0264341085 

Bibliography 214,000,000 1,670,000 0.0130350260 0.0000000001 0.0001699119 0.0078037383 0.0217731421 0.0078037383 

Courses 1,030,000,000 5,920,000 0.0210622815 0.0000000001 0.0004436197 0.0057475728 0.0771838331 0.0057475728 

Dates 764,000,000 1,640,000 0.0067748469 0.0000000000 0.0000458986 0.0021465969 0.0213820078 0.0021465969 

Discussion 1,910,000,000 16,800,000 0.0438929647 0.0000000001 0.0019265924 0.0087958115 0.2190352021 0.0087958115 

Exercises 151,000,000 718,000 0.0066717273 0.0000000001 0.0000445119 0.0047549669 0.0093611473 0.0047549669 T
Y

P
E

 I
II

 

Generation 926,000,000 14,500,000 0.0544082587 0.0000000002 0.0029602586 0.0156587473 0.1890482399 0.0156587473 
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Groups 1,850,000,000 9,170,000 0.0243436553 0.0000000001 0.0005926136 0.0049567568 0.1195567145 0.0049567568 

Materials 1,690,000,000 11,000,000 0.0305528446 0.0000000001 0.0009334763 0.0065088757 0.1434159061 0.0065088757 

Membership 1,010,000,000 1,280,000 0.0045988750 0.0000000000 0.0000211497 0.0012673267 0.0166883963 0.0012673267 

Philosophy 491,000,000 7,500,000 0.0386476272 0.0000000002 0.0014936391 0.0152749491 0.0977835724 0.0152749491 

Robotics 80,300,000 6,390,000 0.0814226820 0.0000000010 0.0066296531 0.0795765878 0.0833116037 0.0795765878 

Sponsors 601,000,000 870,000 0.0040521390 0.0000000000 0.0000164198 0.0014475874 0.0113428944 0.0014475874 

Summary 1,150,000,000 5,180,000 0.0174414729 0.0000000001 0.0003042050 0.0045043478 0.0675358540 0.0045043478 

Workshops 530,000,000 1,340,000 0.0066461354 0.0000000000 0.0000441711 0.0025283019 0.0174706649 0.0025283019 

Article ---               

Publications ---               

Print ---               

Resources ---               

Help ---               

History ---               

Home ---               

Links ---               

Search ---               

Software ---               

News ---               

Code ---               

Events ---               
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It is observable in Table 4, that some related concepts are not 

considered even as a Type II concept, such as “robotics”, and “philosophy”, 

although they are highly related to artificial intelligence in many sub 

domains. However, considering our main goal is to find sub-topics or sub-

concepts, it does not pose any problem. We can just imagine them as being 

more general concepts, having artificial intelligence as a sub-domain. 

In Table 5, Table 6, Table 7, and Table 8, Type I and Type II results 

for keywords, “bioinformatics”, “data mining”, “Web mining” and 

“computer vision” is given respectively. Those candidate phrase lists have 

similar characteristics. First of all it is notable that number of Type I and 

Type II phrases for “bioinformatics”, “Web mining” and “data mining” 

keywords are very low. There are two main reasons we can think of. First, 

the keyword domain is quite small compared to artificial intelligence. 

Hence, some of the related concepts are easily eliminated by the first 

removal step as being a more general concept. Secondly, the pages retrieved 

by the system may not contain many informative lists, and those who have 

lists may not contain common concepts. If we would increase the number of 

pages to crawl than more candidates could be found; we can see that 

candidates from 200 pages for AI in Table 11, is about two times more than 

the candidates from 100 pages, Table 4. 

In addition, “data mining” Type II results ‘zerosum game theory’ 

display another fact. Because of the parser implementation in our study, the 

‘-‘ character is removed from candidates and thus, search engine results 

only 2 pages for our candidate. 
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Table 5. Bioinformatics – Word – w/o stemming - no domain limitations / n(k) = 92,600,000 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

sequence analysis * 15,000,000 5,340,000 0.1432815049 0.0000000038 0.0205295896 0.0576673866 0.0576673866 0.3560000000 

Genomes 27,900,000 2,220,000 0.0436762536 0.0000000009 0.0019076151 0.0239740821 0.0239740821 0.0795698925 

Motif * 40,000,000 1,170,000 0.0192242928 0.0000000003 0.0003695734 0.0126349892 0.0126349892 0.0292500000 
Genome databases 283,000 82,800 0.0161745284 0.0000000032 0.0002616154 0.0008941685 0.0008941685 0.2925795053 

Matlab 30,800,000 318,000 0.0059545133 0.0000000001 0.0000354562 0.0034341253 0.0034341253 0.0103246753 T
Y

P
E

 I
 

biomolecular modeling 29,900 9,430 0.0056672270 0.0000000034 0.0000321175 0.0001018359 0.0001018359 0.3153846154 

gcg help page 23 11 0.0002383545 0.0000000052 0.0000000568 0.0000001188 0.0000001188 0.4782608696 

new technology search 76,200 130 0.0000489396 0.0000000000 0.0000000024 0.0000014039 0.0000014039 0.0017060367 

safari books online 399,000 920 0.0001513547 0.0000000000 0.0000000229 0.0000099352 0.0000099352 0.0023057644 

biotechnology information resources 422 345 0.0017452489 0.0000000088 0.0000030459 0.0000037257 0.0000037257 0.8175355450 

Networ 1,360,000 649 0.0000578322 0.0000000000 0.0000000033 0.0000070086 0.0000070086 0.0004772059 

academic solutions 2,600,000 580 0.0000373797 0.0000000000 0.0000000014 0.0000062635 0.0000062635 0.0002230769 

home networking 15,400,000 16,700 0.0004422325 0.0000000000 0.0000001956 0.0001803456 0.0001803456 0.0010844156 

resources home 7,100,000 78,700 0.0030693051 0.0000000001 0.0000094206 0.0008498920 0.0008498920 0.0110845070 

dsc form 263 23 0.0001473820 0.0000000009 0.0000000217 0.0000002484 0.0000002484 0.0874524715 

ncbi repository * 283 206 0.0012725314 0.0000000079 0.0000016193 0.0000022246 0.0000022246 0.7279151943 

genbank overview 710 155 0.0006045010 0.0000000024 0.0000003654 0.0000016739 0.0000016739 0.2183098592 

T
Y

P
E

 I
I 

account request 1,060,000 817 0.0000824639 0.0000000000 0.0000000068 0.0000088229 0.0000088229 0.0007707547 
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Table 6. Data Mining – Word – w/o stemming – no domain limitations / n(k) = 61,000,000 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

Clustering 49,000,000 4,340,000 0.0793828656 0.0000000015 0.0063016393 0.0711475410 0.0711475410 0.0885714286 

neural networks * 19,700,000 1,370,000 0.0395205097 0.0000000011 0.0015618707 0.0224590164 0.0224590164 0.0695431472 

Datamining 2,510,000 327,000 0.0264268850 0.0000000021 0.0006983802 0.0053606557 0.0053606557 0.1302788845 

bayesian networks * 1,390,000 185,000 0.0200909009 0.0000000022 0.0004036443 0.0030327869 0.0030327869 0.1330935252 T
Y

P
E

 I
 

search algorithms 1,900,000 71,400 0.0066321829 0.0000000006 0.0000439858 0.0011704918 0.0011704918 0.0375789474 

nonlinear regression methods * 776 87 0.0003998743 0.0000000018 0.0000001599 0.0000014262 0.0000014262 0.1121134021 

zerosum game theory 2 0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

collection development 11,600,000 23,200 0.0008721558 0.0000000000 0.0000007607 0.0003803279 0.0003803279 0.0020000000 

Gaussians 793,000 26,100 0.0037526581 0.0000000005 0.0000140824 0.0004278689 0.0004278689 0.0329129887 

T
Y

P
E

 I
I 

Crossvalidation 56,500 839 0.0004519317 0.0000000002 0.0000002042 0.0000137541 0.0000137541 0.0148495575 

 

Table 7. Web mining – Word – w/o stemming – no domain limitations / n(k) = 708,000 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

Web usage mining * 132,000 49700 0.1625746375 0.0000005318 0.0264305128 0.0701977401 0.0701977401 0.3765151515 

user profiling 208,000 12900 0.0336156423 0.0000000876 0.0011300114 0.0182203390 0.0182203390 0.0620192308 

T
Y

P
E

 
I 

Web information extraction * 28,300 769 0.0054327096 0.0000000384 0.0000295143 0.0010861582 0.0010861582 0.0271731449 

bamshad mobasher usa 12 12 0.0041169348 0.0000014124 0.0000169492 0.0000169492 0.0000169492 1.0000000000 

intelligent agent links 134 6 0.0006160021 0.0000000632 0.0000003795 0.0000084746 0.0000084746 0.0447761194 

traditional data mining 14,600 241 0.0023704128 0.0000000233 0.0000056189 0.0003403955 0.0003403955 0.0165068493 

selected pdfs 606,000 90 0.0001374009 0.0000000002 0.0000000189 0.0001271186 0.0001271186 0.0001485149 

multimedia elements 676,000 72 0.0001040741 0.0000000002 0.0000000108 0.0001016949 0.0001016949 0.0001065089 T
Y

P
E

 I
I 

xml pages 231,000 135 0.0003338191 0.0000000008 0.0000001114 0.0001906780 0.0001906780 0.0005844156 
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Table 8. Computer vision – Word – w/o stemming – no domain limitations 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

object recognition * 2,390,000 532,000 0.0876904546 0.0000000145 0.0076896158 0.0345454545 0.0345454545 0.2225941423 

feature extraction 2,540,000 483,000 0.0772271330 0.0000000123 0.0059640301 0.0313636364 0.0313636364 0.1901574803 

machine vision 6,720,000 554,000 0.0544583862 0.0000000054 0.0029657158 0.0359740260 0.0359740260 0.0824404762 

medical image analysis 281,000 106,000 0.0509556499 0.0000000245 0.0025964783 0.0068831169 0.0068831169 0.3772241993 

digital image processing * 2,180,000 246,000 0.0424567259 0.0000000073 0.0018025736 0.0159740260 0.0159740260 0.1128440367 

random sample consensus 29,500 22,300 0.0330851795 0.0000000491 0.0010946291 0.0014480519 0.0014480519 0.7559322034 

geometric hashing 52,400 28,900 0.0321715391 0.0000000358 0.0010350079 0.0018766234 0.0018766234 0.5515267176 

Egomotion 57,200 30,000 0.0319641294 0.0000000341 0.0010217056 0.0019480519 0.0019480519 0.5244755245 

particle filtering 126,000 35,100 0.0251977338 0.0000000181 0.0006349258 0.0022792208 0.0022792208 0.2785714286 

scene interpretation 67,500 24,200 0.0237357587 0.0000000233 0.0005633862 0.0015714286 0.0015714286 0.3585185185 

Preprocessing 6,180,000 222,000 0.0227561284 0.0000000023 0.0005178414 0.0144155844 0.0144155844 0.0359223301 

Convolution 6,520,000 219,000 0.0218554602 0.0000000022 0.0004776611 0.0142207792 0.0142207792 0.0335889571 

hough transforms 30,800 15,000 0.0217798829 0.0000000316 0.0004743633 0.0009740260 0.0009740260 0.4870129870 

sobel operator 41,400 16,100 0.0201634733 0.0000000253 0.0004065657 0.0010454545 0.0010454545 0.3888888889 

image acquisition * 2,460,000 117,000 0.0190089421 0.0000000031 0.0003613399 0.0075974026 0.0075974026 0.0475609756 

morphological image processing  40,900 12,700 0.0160022742 0.0000000202 0.0002560728 0.0008246753 0.0008246753 0.3105134474 

multiresolution analysis 235,000 27,300 0.0143505437 0.0000000075 0.0002059381 0.0017727273 0.0017727273 0.1161702128 
fourier transform 10,700,000 171,000 0.0133212157 0.0000000010 0.0001774548 0.0111038961 0.0111038961 0.0159813084 

affective computing 161,000 13,700 0.0087005613 0.0000000055 0.0000756998 0.0008896104 0.0008896104 0.0850931677 

T
Y

P
E

 I
 

optical character recognition * 3,040,000 50,600 0.0073952586 0.0000000011 0.0000546898 0.0032857143 0.0032857143 0.0166447368 

vision list digest 16,900 670 0.0013133216 0.0000000026 0.0000017248 0.0000435065 0.0000435065 0.0396449704 

extracting corner features 22 20 0.0010865715 0.0000000590 0.0000011806 0.0000012987 0.0000012987 0.9090909091 

medical image faq 708 95 0.0009098014 0.0000000087 0.0000008277 0.0000061688 0.0000061688 0.1341807910 

stereo matching notes 3 3 0.0004413674 0.0000000649 0.0000001948 0.0000001948 0.0000001948 1.0000000000 

detecting blob features 10 9 0.0007252407 0.0000000584 0.0000005260 0.0000005844 0.0000005844 0.9000000000 

second order methods 40,400 230 0.0002915928 0.0000000004 0.0000000850 0.0000149351 0.0000149351 0.0056930693 

mmvl mediawiki 18 15 0.0009009375 0.0000000541 0.0000008117 0.0000009740 0.0000009740 0.8333333333 

phd theses 1,150,000 15,300 0.0036356507 0.0000000009 0.0000132180 0.0009935065 0.0009935065 0.0133043478 

T
Y

P
E

 I
I 

pixelwise thresholding 22 15 0.0008149286 0.0000000443 0.0000006641 0.0000009740 0.0000009740 0.6818181818 
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create project 11,300,000 501 0.0000379785 0.0000000000 0.0000000014 0.0000325325 0.0000325325 0.0000443363 

general resources 6,150,000 1,060 0.0001089201 0.0000000000 0.0000000119 0.0000688312 0.0000688312 0.0001723577 

priority support 12,000,000 266 0.0000195673 0.0000000000 0.0000000004 0.0000172727 0.0000172727 0.0000221667 

masters theses 184,000 395 0.0002346539 0.0000000001 0.0000000551 0.0000256494 0.0000256494 0.0021467391 
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For “Bioinformatics” keyword, we have found 6 Type I candidate phrases 

and 12 Type II candidate phrases. “Sequence analysis” is found to be the most 

related concept with bioinformatics. In my opinion, using S1 score with a threshold 

0.005 eliminated unrelated concepts successfully. We think that the candidate 

“Matlab” shows that it is the most widely used application in “bioinformatics”, and 

thus come out to be a Type I candidate. 

The Type I candidate phrases for “Data mining” and “Web mining” (shown 

in Table 6 and Table 7, respectively) are found to be related with their respective 

concepts. We can also see that some related phrases in Type II candidates, but with 

S1 score threshold we were able to eliminate those candidates, such as “gaussians” 

and “crossvalidation”. Candidate phrase lists of these keywords also do not contain 

some very important concepts like “classification”, “association” for “data mining”, 

and “web structure mining”, “web content mining” for “web mining”. We can say 

that for some cases, although high precision is observed, the candidate phrases may 

have low recall. The main reason is that the web pages processed do not contain 

many list items. 

“Computer vision” resulted in 20 Type I candidate phrases and 13 Type II 

candidate phrases. Again, our 0.005 threshold resulted in successful elimination 

unrelated candidates. In my opinion, all of Type I candidates are highly related to 

“computer vision”.  

According to the Table 9 and Table 10 shown in Appendix A, .edu domain 

have quite different candidate phrases compared to the .com domain. While 

educational sites have information about agent related topics about AI, the 

commercial sites have more candidates in cybernetics, speech recognition or neural 
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networks. Most probably the commercial sites advertise either their tools for speech 

recognition security etc., or neural network application for knowledge discovery.  

With the increase of the number of pages processed, the number of candidate 

phrases is also increased, because the proposed system uses the same support count 

for both cases. However, still the results are satisfactory and most of the candidates 

are highly relevant with artificial intelligence. The same reasoning applies when 

small number of pages is crawled. We can see that when only 50 pages processed the 

resulting list does not contain any Type II candidates.  

In tables, starred (*) candidates are those list items, whose parent nodes 

include the keyword. That is, HTML tag trees are created for pages containing any of 

the candidate phrases, and on this tree it is checked whether any of the list’s parent 

nodes have the queried keyword. Those candidates can be emphasized more for user 

notice. However, the ill-structured tags on pages make it difficult to create clean 

HTML tag trees, and even enforce to skip some. 

 In this chapter, we presented the results of our topic finding methodology. 

The relevance scoring used was very successful in eliminating unrelated concepts. 

These results show the methodology result in high precision, i.e. Type I of candidate 

phrases are found to be highly related to the keywords. However, only a few Type I 

candidate phrases could be found for some keywords, such as “Web mining”, 

“bioinformatics” or “data mining”.  

In the last chapter, we conclude our results and give some general suggestions 

for future work, on both topic-finding methods and focused crawler evaluations. 

 



 60 

 

 

 

 

 

CHAPTER VII. 

CONCLUSIONS 

In this thesis, we studied focused crawling algorithm performances and topic 

finding through Web pages. In the first part, we implemented several algorithms in 

the literature and compared their overall performances at different levels. In the 

second part, an automatic topic discovery methodology have developed and checked 

its consistency for different parameters. This section points out what we have done 

and what could be done as future work, for each of the parts separately. 

We started by surveying related work to our thesis in Chapter 2, and then 

explained our two studies in detail. The first study dealt with focused crawling and 

we worked in a series of problems that appeared during the design and 

implementation of a Web crawler. In Chapter 3, we described Web crawling in the 

context of information retrieval, and the problems we have solved for the crawler 

process and given the algorithms we have implemented. 

In Chapter 4, we presented our performance results and explained our 

observations and conclusions. For future work in focused crawling algorithm 

evaluation, we can observe the performance of adaptive or intelligent crawlers, or 

pre-trained algorithms. In addition, different keywords, different seed and target sets, 

network and CPU usage can be included into the test cases. In literature, several 

studies have been done on the comparison of short and long running crawls.  
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For topic crawling study we have developed and implemented an automatic 

discovery methodology. The results are presented in Chapter 6, and highly 

satisfactory in terms of their precision. For finding importance of candidate phrases 

we used Google’s estimations of results, and computed several scores. Small domain 

areas did not result well in terms of number of candidates, but again with high 

precision. This study can be improved, by using a recursive approach for candidate 

finding, such that each candidate phrase’s list can be queried on Google. That would 

improve the number of candidate phrases overall. In addition, rather than using 

limitation to number of pages, we can use number of lists to be processed, such that 

more candidate phrases can be evaluated. 

There are also some general problems for Web mining, such as the high 

amount of information on the Web, but only few in quality information. Web search 

is difficult today and likely that Web crawling will continue to be a difficult problem, 

at least in the next years, and we expect several challenges. Multimedia information 

usage increases over the Web sites and number of Web posting blogs, forums will be 

larger than the number of informative Web pages, further reducing the signal-to-

noise ratio of the Web. Finally, pages with semantic markup could become a 

significant fraction of Web pages, radically changing the problem of Web search.  
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APPENDIX A 

 

Table 9. Artificial intelligence – Word – w/o stemming – .com domain 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

knowledge representation * 8,590,000 3,080,000 0.1199931495 0.0000000047 0.0143983559 0.0401564537 0.0401564537 0.3585564610 

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263 

İnference 43,000,000 5,170,000 0.0900240679 0.0000000016 0.0081043328 0.0674054759 0.0674054759 0.1202325581 

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370 

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061 

Cybernetics * 9,460,000 1,270,000 0.0471476956 0.0000000018 0.0022229052 0.0165580183 0.0165580183 0.1342494715 

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873 

speech recognition * 14,800,000 1,140,000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0770270270 

T
Y

P
E

 I
 

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104 

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951 

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033 

artificial life faq 1,520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.1256578947 

T
Y

P
E

 
II

 

remaining topics 46,000 438 0.0002331833 0.0000000001 0.0000000544 0.0000057106 0.0000057106 0.0095217391 

 



 66

Table 10. Artificial intelligence – Word – w/o stemming - .edu 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

expert systems * 8,810,000 3,530,000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.4006810443 

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370 

multiagent systems 702,000 406,000 0.0553298886 0.0000000075 0.0030613966 0.0052933507 0.0052933507 0.5783475783 

virtual reality 37,200,000 2,720,000 0.0509213316 0.0000000010 0.0025929820 0.0354628422 0.0354628422 0.0731182796 

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104 

object recognition 2,610,000 259,000 0.0183055098 0.0000000013 0.0003350917 0.0033767927 0.0033767927 0.0992337165 

intelligent software agents 148,000 53,500 0.0158790765 0.0000000047 0.0002521451 0.0006975228 0.0006975228 0.3614864865 

distributed computing 32,400,000 661,000 0.0132596259 0.0000000003 0.0001758177 0.0086179922 0.0086179922 0.0204012346 

Chess 68,800,000 956,000 0.0131603061 0.0000000002 0.0001731937 0.0124641460 0.0124641460 0.0138953488 

information integration 11,100,000 192,000 0.0065802449 0.0000000002 0.0000432996 0.0025032595 0.0025032595 0.0172972973 

T
Y

P
E

 I
 

program committee 31,300,000 307,000 0.0062656845 0.0000000001 0.0000392588 0.0040026076 0.0040026076 0.0098083067 

research overview 888,000 13,000 0.0015752126 0.0000000002 0.0000024813 0.0001694915 0.0001694915 0.0146396396 

Knowledgebased systems 12,400 597 0.0006121612 0.0000000006 0.0000003747 0.0000077836 0.0000077836 0.0481451613 

formatting instructions 303,000 16,200 0.0033604390 0.0000000007 0.0000112926 0.0002112125 0.0002112125 0.0534653465 

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951 

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033 

java version 5,650,000 23,800 0.0011432864 0.0000000001 0.0000013071 0.0003102999 0.0003102999 0.0042123894 

biological motion 90,000 885 0.0003368405 0.0000000001 0.0000001135 0.0000115385 0.0000115385 0.0098333333 

intelligent transportation systems 2,650,000 61,400 0.0043067311 0.0000000003 0.0000185479 0.0008005215 0.0008005215 0.0231698113 

deepak kumar homepage 15 1 0.0000294820 0.0000000009 0.0000000009 0.0000000130 0.0000000130 0.0666666667 

T
Y

P
E

 I
I 

lisa meeden homepage 8 4 0.0001614795 0.0000000065 0.0000000261 0.0000000522 0.0000000522 0.5000000000 
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Table 11. Artificial intelligence – Word – w/o stemming – 200 pages 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

machine learning * 16300000 6670000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

expert systems * 8810000 3530000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.4006810443 

neural networks * 19000000 3880000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263 

Aaai 4330000 1610000 0.0883454619 0.0000000048 0.0078049206 0.0209908735 0.0209908735 0.3718244804 

natural language processing * 9450000 2240000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370 

natural language 38700000 3730000 0.0684629593 0.0000000013 0.0046871768 0.0486310300 0.0486310300 0.0963824289 

fuzzy logic 5280000 956000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061 

image processing 48400000 2790000 0.0457913914 0.0000000008 0.0020968515 0.0363754889 0.0363754889 0.0576446281 

case based reasoning * 793000 355000 0.0455191431 0.0000000058 0.0020719924 0.0046284224 0.0046284224 0.4476670870 

artificial life 3160000 700000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873 

automated reasoning * 685000 314000 0.0433198237 0.0000000060 0.0018766071 0.0040938722 0.0040938722 0.4583941606 

cognitive science * 22800000 1810000 0.0432826128 0.0000000010 0.0018733846 0.0235984355 0.0235984355 0.0793859649 

turing test 925000 363000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.3924324324 

artificial neural networks 2250000 563000 0.0428567717 0.0000000033 0.0018367029 0.0073402868 0.0073402868 0.2502222222 

Ontology 43900000 2100000 0.0361900641 0.0000000006 0.0013097207 0.0273794003 0.0273794003 0.0478359909 

speech recognition * 14800000 1140000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0770270270 

data mining * 54900000 2190000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104 

intelligent agent * 1040000 268000 0.0300068524 0.0000000034 0.0009004112 0.0034941330 0.0034941330 0.2576923077 

alan turing 1060000 171000 0.0189646790 0.0000000021 0.0003596590 0.0022294654 0.0022294654 0.1613207547 

fuzzy set theory 323000 81500 0.0163741463 0.0000000033 0.0002681127 0.0010625815 0.0010625815 0.2523219814 

procedural knowledge 325000 60700 0.0121576414 0.0000000024 0.0001478082 0.0007913950 0.0007913950 0.1867692308 

optical character recognition * 2090000 93200 0.0073611402 0.0000000006 0.0000541864 0.0012151239 0.0012151239 0.0445933014 

program committee 31300000 307000 0.0062656845 0.0000000001 0.0000392588 0.0040026076 0.0040026076 0.0098083067 

T
Y

P
E

 I
 

graph searching 46100 9910 0.0052701807 0.0000000028 0.0000277748 0.0001292047 0.0001292047 0.2149674620 

intelligent transportation systems 2650000 61400 0.0043067311 0.0000000003 0.0000185479 0.0008005215 0.0008005215 0.0231698113 

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951 

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033 

T
Y

P
E

 
II

 

artificial life faq 1520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.1256578947 
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example systems 165000 13800 0.0038791755 0.0000000011 0.0000150480 0.0001799218 0.0001799218 0.0836363636 

technical reports 67700000 269000 0.0037330195 0.0000000001 0.0000139354 0.0035071708 0.0035071708 0.0039734121 

formatting instructions 303000 16200 0.0033604390 0.0000000007 0.0000112926 0.0002112125 0.0002112125 0.0534653465 

course home 3930000 14200 0.0008178890 0.0000000000 0.0000006689 0.0001851369 0.0001851369 0.0036132316 

discussion group 38400000 84800 0.0015625451 0.0000000000 0.0000024415 0.0011056063 0.0011056063 0.0022083333 

Website game 43000 1520 0.0008369734 0.0000000005 0.0000007005 0.0000198175 0.0000198175 0.0353488372 

remaining topics 46000 438 0.0002331833 0.0000000001 0.0000000544 0.0000057106 0.0000057106 0.0095217391 

Syllabus 58300000 279000 0.0041722685 0.0000000001 0.0000174078 0.0036375489 0.0036375489 0.0047855918 

Webbased 1500000 11300 0.0010535014 0.0000000001 0.0000011099 0.0001473272 0.0001473272 0.0075333333 

İdo 77300000 57200 0.0007428628 0.0000000000 0.0000005518 0.0007399741 0.0007457627 0.0007399741 

 

Table 12. Artificial intelligence – Word – w/o stemming – 50 pages 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263 

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370 

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061 

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873 T
Y

P
E

 I
 

turing test 925,000 363,000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.3924324324 
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Table 13. Artificial intelligence – Word – Stemming – 100 pages 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

expert systems * 8,810,000 3,530,000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.2165644172 

knowledge representation * 8,590,000 3,080,000 0.1199931495 0.0000000047 0.0143983559 0.0401564537 0.0401564537 0.1889570552 

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2380368098 

İnference 43,000,000 5,170,000 0.0900240679 0.0000000016 0.0081043328 0.0674054759 0.0674054759 0.3171779141 

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.1374233129 

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.0586503067 

Cybernetics * 9,460,000 1,270,000 0.0471476956 0.0000000018 0.0022229052 0.0165580183 0.0165580183 0.0779141104 

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.0429447853 

turing test 925,000 363,000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.0222699387 

Ontology 43,900,000 2,100,000 0.0361900641 0.0000000006 0.0013097207 0.0273794003 0.0273794003 0.1288343558 

speech recognition * 14,800,000 1,140,000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0699386503 

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.1343558282 

Prolog 19,000,000 1,050,000 0.0275052006 0.0000000007 0.0007565361 0.0136897001 0.0136897001 0.0644171779 

T
Y

P
E

 I
 

face recognition * 2,720,000 193,000 0.0133621141 0.0000000009 0.0001785461 0.0025162973 0.0025162973 0.0118404908 

formatting instructions 269,000 16,200 0.0035664915 0.0000000008 0.0000127199 0.0002112125 0.0002112125 0.0009938650 

example systems 165,000 13,800 0.0038791755 0.0000000011 0.0000150480 0.0001799218 0.0001799218 0.0008466258 

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.0000101840 

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.0000211656 T
Y

P
E

 I
I 

artificial life faq 1,520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.0000117178 
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Table 14. Artificial intelligence – Phrase – w / o Stemming – 100 pages 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

optical character recognition * 2,090,000 93,200 0.0073611402 0.0000000006 0.0000541864 0.0012151239 0.0012151239 0.0445933014 

information integration 6,580,000 226,000 0.0100599961 0.0000000004 0.0001012035 0.0029465450 0.0029465450 0.0343465046 

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370 

expert systems * 8,810,000 3,530,000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.4006810443 

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540 

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104 

T
Y

P
E

 I
 

program committee 31,300,000 307,000 0.0062656845 0.0000000001 0.0000392588 0.0040026076 0.0040026076 0.0098083067 

 

Table 15. Data Mining – Phrase – w / o Stemming – 100 pages 

  Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6 

text mining * 2,600,000 590,000 0.0468490102 0.0000000037 0.0021948298 0.0096721311 0.0096721311 0.2269230769 

neural networks 19,700,000 1,370,000 0.0395205097 0.0000000011 0.0015618707 0.0224590164 0.0224590164 0.0695431472 

Datamining 2,510,000 327,000 0.0264268850 0.0000000021 0.0006983802 0.0053606557 0.0053606557 0.1302788845 

lecture notes * 27,000,000 465,000 0.0114579297 0.0000000003 0.0001312842 0.0076229508 0.0076229508 0.0172222222 

about spss 66,300 17,800 0.0088511219 0.0000000044 0.0000783424 0.0002918033 0.0002918033 0.2684766214 T
Y

P
E

 I
 

software and solutions 584,000 31,500 0.0052776333 0.0000000009 0.0000278534 0.0005163934 0.0005163934 0.0539383562 

course home * 1,840,000 844 0.0000796652 0.0000000000 0.0000000063 0.0000138361 0.0000138361 0.0004586957 

nonlinear regression methods 776 87 0.0003998743 0.0000000018 0.0000001599 0.0000014262 0.0000014262 0.1121134021 

visualizing text mining 24 24 0.0006272500 0.0000000164 0.0000003934 0.0000003934 0.0000003934 1.0000000000 

T
Y

P
E

 
II

 

study materials * 2,710,000 791 0.0000615215 0.0000000000 0.0000000038 0.0000129672 0.0000129672 0.0002918819 

 

 




