

WEB MINING ISSUES:

TOPIC FINDING AND FOCUSED CRAWLING EVALUATION

by

Eray Uluhan

Submitted to

The Institute of Graduate Studies in Social Science

in partial fulfillment of the requirements

for the degree of

Master of Arts

Boğaziçi University

2006

 iii

ABSTRACT

WEB MINING ISSUES:

Topic Finding and Focused Crawling Evaluation

by

Eray Uluhan

Web mining is defined as the process of using data mining techniques to

automatically discover and extract information from semi- or unstructured Web

documents and services. This study on Web mining consists of two sections,

covering Web structure mining and Web content mining. In the first section, most

widely accepted focused crawling algorithms and simple tree traversing algorithms

are compared based on their page relevance, keyword predicate satisfaction and hit

ratio criteria. Using the URL tokens as an input resulted in higher performances for

all criteria. In the second part, an automatic topic finding methodology through Web

pages is proposed. Processing only list items on HTML pages returned from a search

engine, it is expected to find related key concepts on a user-defined topic. The

methodology is experimented using different parameters, such as number of pages,

different keywords, stemming implementations, etc. The candidate concepts ordered

in relevancy scores represent a high precision on user-defined topic.

 iv

ÖZET

ÖRÜN MADENCİLİĞİ KONULARI:

Konu Bulma ve Odaklanmış Arama Değerlendirmesi

Eray Uluhan

Örün madenciliği, veri madenciliği ve düzyazı madenciliği teknikleri

kullanılarak yarı yapılanmış ya da hiç yapılanmamış örün dökümanları ve

servislerinden otomatik olarak bilgi ortaya çıkarmak ve elde etmektir. Örün

madenciliği hakındaki bu çalışma iki bölümden oluşmaktadır; örün yapı madenciliği

ve örün içerik madenciliği. İlk bölümde, en çok kabul görmüş olan odaklanmış

arama algoritmaları ile basit ağaç izleme algoritmaları, sayfa ilgililik derecelerine,

anahtar kelime içermelerine ve isabet oranlarına göre karşılaştırılmışlardır. URL

içerikleri girdi olarak kullanıldıklarında tüm kriterler için en yüksek performans

değerlerine ulaşılmıştır. İkinci bölümde, örün sayfaları üzerinden bir otomatik konu

bulma metodolojisi önerilmiştir. Bir ara motorundan dönen HTML sayfalarındaki

sadece liste maddelerinin işlenmesiyle, kullanıcı tarafından belirlenmiş olan bir konu

ile ilgili önemli başlıklar bulunabilir Bu metodoloji farklı parametreler – sayfa sayısı,

farklı konular, kök bulma uygulaması, vb.- kullanılarak test edilmiştir. Bulunan aday

kelimeler ilgililik puanlamalarına göre sıralandıklarında kullanıcının belirlediği

kelime ile yüksek doğruluk oranları göstermişlerdir.

 v

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the enthusiastic supervision of my

thesis advisor Bertan Badur, who encouraged me to choose this topic and began the

thesis. Most of this thesis work has been done while working as the research assistant

at the MIS department. I am grateful to everyone in the department, for helping and

assisting me in many different ways, especially to my research assistant colleagues

(especially Gonca Gülser for her support and motivation during all phases of this

thesis).

Furthermore, I would like to thank Deniz Akay for his great friendship, over

15 years now and also Tolga Silivri, both for always being ready to help, for all the

emotional support, entertainment, and the other whole nonsense time spent together!

Also thanks to all my close friends – especially to mention “Kotkazak Camia”, for

their encouragement and motivation they have given during this thesis.

Lastly, and most importantly, I wish to thank my parents Ayla Uluhan and

Sabit Uluhan, and my brother, Koray Uluhan. They raised me, supported me, taught

me, and loved me. To them I dedicate this thesis.

 vi

TABLE OF CONTENTS

WEB MINING ISSUES: Topic Finding and Focused Crawling Evaluation i
ABSTRACT ... iii
ACKNOWLEDGEMENTS ..v
LIST OF TABLES... vii
LIST OF FIGURES .. viii
PREFACE .. ix
CHAPTER I. INTRODUCTION ..1
CHAPTER II. LITERATURE SURVEY ..3

Web Mining..4
Web Crawlers ...6
Performance Evaluation Metrics ...12

CHAPTER III. FOCUSED CRAWLING METHODOLOGY.................................15
Crawler Problems ...17
Crawler Implementation..24
Algorithm Comparisons ..29

CHAPTER IV. FOCUSED CRAWLING RESULTS..32
CHAPTER V. TOPIC FINDING METHODOLOGY ...39

Data Gatherer..42
Data Extraction / Preprocessing: ...43
Data Processing ..44
Post Processing ...45

CHAPTER VI. TOPIC FINDING RESULTS ...48
CHAPTER VII. CONCLUSIONS...60
BIBLIOGRAPHY...62
APPENDIX A ..65

 vii

LIST OF TABLES

Table 1. Predicate Satisfaction and Target Set Results...33
Table 2. Topic Finding Test Cases ..49
Table 3. Scoring Measures - CP (# candidate phrase), k (# keyword), b (# both)..................50
Table 4. Artificial intelligence (Word based – w/o stemming – 100 pages)51
Table 5. Bioinformatics (Word – w/o stem - no domain limitations)54
Table 6. Artificial intelligence (Word – w/o stemming – .com domain)65
Table 7. Artificial intelligence (Word – w/o stemming - .edu) ...66
Table 8. Data Mining (Word – w/o stemming – no domain limitations)55
Table 9. Web mining (Word – w/o stemming – no domain limitations)55
Table 10. Computer vision (Word – w/o stemming – no domain limitations)56
Table 11. Artificial intelligence (Word – w/o stemming – 200 pages)67
Table 12. Artificial intelligence (Word – w/o stemming – 50 pages)68
Table 13. Artificial intelligence (Word – Stemming – 100 pages)69
Table 14. Artificial intelligence (Phrase – w/o Stemming – 100 pages)70
Table 15. Data Mining (Phrase – w/o Stemming – 100 pages) ..70

 viii

LIST OF FIGURES

Fig. 1.A general crawling algorithm..16
Fig. 2. Depth First Algorithm..25
Fig. 3. Breadth First Algorithm ...25
Fig. 4. In Degree Algorithm ..26
Fig. 5. Best First Algorithm ..27
Fig. 6. Shark Search Algorithm...28
Fig. 7. Best First N Algorithm...29
Fig. 8. URL Combined..30
Fig. 9. Best First Algorithm – Cosine Similarity (moving average)34
Fig. 10. Best First N Algorithm – Cosine Similarity (moving average)..............................34
Fig. 11. Shark Crawler Algorithm – Cosine Similarity (moving average)35
Fig. 12. Shark Crawler N Algorithm – Cosine Similarity (moving average)35
Fig. 13. Combined URL “Artificial Intelligence” – Cosine Similarity (moving average) ...36
Fig. 14. Combined URL “Data Mining” – Cosine Similarity (moving average).................36
Fig. 15. Breadth First Algorithm – Cosine Similarity (moving average)37
Fig. 16. InDegree Algorithm – Cosine Similarity (moving average)37
Fig. 17. Depth First Algorithm – Cosine Similarity (moving average)...............................37

 ix

PREFACE

The World Wide Web is the largest information repository that has become a

shared global resource of information, knowledge and a means of collaboration

among countless people and communities around the world. However, the largest

information repository in existence lacks a schema, i.e. information on WWW has

been characterized as either unstructured, meaning that it has no schema, or semi-

structured, meaning that it has a very primitive structure (e.g., such as that induced

by the HTML tags on each page). The use of data mining and text mining techniques

to discover resources, patterns and knowledge from this ill-structured repository is

called Web mining. With the increase in popularity of Internet and diversifications in

its usage, implementations of Web mining techniques became a necessity.

My thesis is based on two important sub domains of Web mining, focused

crawling techniques, and automatic discovery of information through Web pages.

The two areas are handled separately throughout this study. Focused crawling

algorithms will be an important concept in the coming years, especially as the

specialized Web portals become popular. Internet users will try to stay away from

unnecessary information chunks and will favor on high quality, informative pages. In

addition, specialized applications that use Web pages as their databases will become

more popular.

The main problem on working with the Web pages is their lack of structure.

Although widely used HTML standard offers some structure through tags, it is rarely

 x

intended to be used for building logical corpus on Web pages. Most of the Web site

administrators use HTML tags just to decorate their pages, not considering the

informative structure of a topic. In addition, browsers, which are fault tolerant to

HTML, such as Internet Explorer, make Web designing task is easier, but also gave

rise to increase in unstructured pages.

As long as satisfactory information can be found on Internet (using search

engines, forums, blogs, or other applications), its popularity will not decrease. To

overcome the problems with the unstructured nature of the Web documents new

standards are being developed, such as XHTML, but still none of these are being

used as much as HTML.

 1

CHAPTER I.

INTRODUCTION

This thesis consists of two parts. First part is about evaluation of focused

crawling algorithms, and the second part deals with finding topic specific

information from Web documents. Both of these works are related to Web mining,

defined as the process of using data mining techniques to automatically discover and

extract information from Web documents and services.

With the exponential growth of Internet in the last ten years, World Wide

Web has become one of the largest repositories of information available to people.

When the Internet was first introduced and Web pages were small in quantity,

information finding, categorizing and sorting was done mainly by humans, and there

were no need for automated Web search engines.

Today, the main problem that the search engines face is the size and the rapid

change of the Web. As the number of pages grows, it will be increasingly important

to focus on the most “valuable” pages, as no search engine will be able to index the

complete Web. Also, with the increase of information on the Web, need for

dedicated search engines come out. To be able to create dedicated search engines,

crawlers should not visit each link they encounter, but only those which are related to

their goal.

 2

This study focus on two main topics of Web mining, namely Web crawling

and Web content mining. Firstly, we implemented most widely known focused

crawling algorithms in the literature and analyzed their performances according to

different criteria. Secondly, we developed a topic finder system that searches for

most related concepts to a given keyword. Different parameters were selected and

their effects were evaluated.

The following is an outline of the contents of this thesis. Both result and

methodologies of topic finding and focused crawling evaluation studies are described

in different chapters.

• Chapter 2 reviews selected publications related to both topics, including

Web mining implementations, Web crawling infrastructures and

algorithms, topic and definition finding.

• Chapter 3 introduces the methods of our focused crawler algorithm

implementations and the problems faced in general crawling processes, as

well as our solutions.

• Chapter 4 compares the results of the focused crawling algorithms.

• Chapter 5 details implementation issues related to the design of the topic

finding application.

• Chapter 6 presents the results of topic finder with different parameters and

discusses their effects on the results.

• Finally, Chapter 7 summarizes our contributions and provides guidelines

for future work in this area. At the end, the bibliography includes over 35

references to publications in this area.

The next chapter is a literature survey about the most important ones in the context of

this thesis.

 3

CHAPTER II.

LITERATURE SURVEY

Internet was first introduced in the late 1960s (at that time called as

ARPANET) for allowing computers to share information on a highly decentralized

network for research development and military areas. As interest in wide spread

networking grew and new applications for it arrived, the Internet’s technologies

spread throughout the rest of the world. In last ten years, the amount of information

published through Web pages has grown so much that its sheer volume makes

finding relevant information difficult. With the exponential growth of the Internet,

collecting all the Web pages became nearly impossible even for search engines

because of limitations in indexing and search technologies. (Broder, 2002),

(Henzinger, et al. 2003) and (Tirri, 2003) summarizes some of the current challenges

of search engines as fresh and complete indexing, malicious content, search engine

spam, identifying good quality of pages, exploiting user feedback and identifying

real need of the user, mirroring of Web sites, better query languages and ranking

algorithms, classification of Web sites.

Today, the most widely used language in Web pages is HTML (Hypertext

Markup Language), which first introduced in 1993 and accepted as a standard in

1995. Although HTML is still popular for disseminating informal documents and is

designed for stepwise exploration and easy navigation through links, it is being used

 4

to do things it was never designed for, such as formatting and displaying data. In

addition, although Web pages are mainly used for information sharing, HTML

provides little or no semantic structure at all. In contrast, most Web applications

would benefit from an ability to represent data by meaning rather than by layout,

where a more useful markup language would represent information in terms of its

meaning, e.g. XML.

Traditional Information Retrieval (IR) is concerned with retrieving

information about a subject from a collection of data objects. (Huang, 2000)

compares classical information retrieval systems and Web information retrieval

systems and summarizes the differences as size, dynamic structure of Internet,

heterogeneity, variety of languages, duplication, high linkage, ill-formed queries,

wide variance of users and specific user behaviors.

Web Mining

The large size and the dynamic nature of the Web made “Web mining” a

necessity. Web mining is firstly defined in (Etzioni, 1996), as “the use of the data

mining techniques to automatically discover and extract information from Web

documents and services. It states a hypothesis that the information on the Web is

sufficiently structured to facilitate effective Web mining. (Cooley, et al. 1997)

categorizes the Web mining into two categories, Web usage mining and Web content

mining, whereas (Madria, et al. 1999) and (Borges, et al., 1999), add one more

category, Web structure mining.

Web Usage Mining

Web usage mining focuses on the techniques for finding general access

patterns of people through Web pages. The data used in Web usage mining are

 5

collected on Web logs and consist of user clicks, visited sites, referrer pages, time

spent on a site, entry and exit pages to a domain, etc. According to (Cooley, et al.

1997), Web usage mining can help organizations “to determine the life time value of

customers, cross marketing strategies across products, and effectiveness of

promotional campaigns, as well as provide information on how to restructure Web

site to create a more effective organizational presence”.

Web Structure Mining

The goal of Web structure mining is to generate structural summary about the

Web sites and Web pages. Technically Web content mining mainly focuses on the

structure of inner-document, while Web structure mining tries to discover the link

structure of the hyperlinks at the inter-document level. Based on the topology of the

hyperlinks, Web structure mining try to categorize the Web pages and generate

information using the similarities and relationships of different Web sites. Web

structure mining can also be used for discovering the structure of Web documents

rather than Web sites. This type of structure mining can be used to reveal the

structure of Web pages, to make it possible to compare / integrate Web page

schemes, and would serer for introducing database techniques for accessing

information in Web pages by providing a reference schema.

Web Content Mining

Web content mining aims to extract/mine useful information or knowledge

from Web page contents. Web content mining is related but different from data

mining and text mining. It is related to data mining because many data mining

techniques can be applied in Web content mining. It is related to text mining because

much of the Web contents are texts. However, it is also quite different from data

 6

mining because Web data are mainly semi-structured and/or unstructured, while data

mining deals primarily with structured data. Web content mining is also different

from text mining because of the semi-structure nature of the Web, while text mining

focuses on unstructured texts. Web content mining thus requires creative applications

of data mining and/or text mining techniques and also its own unique approaches.

In (Liu, 2003), it is intended to extract topic-specific knowledge, such as

subtopics or definitions from the Web; a highly challenging task on an ill-structured

domain area. The motivation behind automatic discovery of salient concepts or

subtopics on the Web is guiding people to learn in-depth knowledge of a topic on the

Web easily. Traditionally, when someone wants to learn about a particular topic,

reads a book or a survey paper. The rapid growth of the Web, popularity and richness

of information published on Web sites made learning in-depth knowledge about a

topic from the Web very easy and also even essential because of the fast changing

world, constant and rapid emerging of topics. Many Web pages often contain

intuitive descriptions of the topic. To find such Web pages, one typically uses a

search engine. However, current search techniques are not designed for in-depth

learning. Top ranking pages from a search engine may not contain any description of

the topic. Even if they do, the description is usually incomplete since it is unlikely

that the owner of the page has good knowledge of every aspect of the topic.

Web Crawlers

A Web crawler is a program that automatically downloads pages from the

Web, parse their context information and extract links for future crawling. A typical

crawler starts with a seed of set pages. It then downloads these pages, extracts

hyperlinks and crawls pages pointed to by these new hyperlinks. The crawler repeats

this step until there are no more pages to crawl or some resources (e.g. time or

 7

network bandwidth) are exhausted (Brandman, et al. 2000). Web crawlers are also

called wanderers, robots, spiders, fish and worms (Pant, et al. 2004).

Framework / Crawler Infrastructure

(Menczer, et al. 2002), (Pant, et al. 2004) discuss general framework for

crawlers. First of all, a general crawler has to have access to Internet to download

Web pages for data gathering, a HTML parser to extract information and links to

follow, and a queue to put links to be visited. Depending on the goal of the crawler, a

database may be used for storing downloaded pages and querying them easily, or just

for caching purposes.

To start crawling, a crawler needs to have seed pages, i.e. starting pages. Seed

pages can be given by the user (Brin and Page, 1998), (Menczer, 2002a), or can be

gathered via querying search engines (Srinivasan, et al., 2002), or using backlink

queries of search engines (Srinivasan, et al., 2005). Backlinks refer to incoming links

to a Web site and also called incoming links, inbound links, inlinks and inward links.

Backlink pages can be obtained from search engines, such as Google – using the

keyword “link:”. In (Srinivasan, et al., 2005), the user sets a depth value and queries

the search engine with the keyword. The pages returned by the search engine sent

again back to the search engine as backlink queries, and pages that have links to

these pages are returned. This process continues iteratively as long as the predefined

depth value.

The goal of the crawling process may differ according to the need of the user.

For example, a crawler may run until a predefined number of pages are downloaded,

until some time is elapsed, no more memory / space available left, or a more general

goal is completed. While crawling, the crawler maintains a list of unvisited URLs in

a queue. Each time a page is downloaded by the crawler, it is parsed to extract URLs

 8

and application specific information. The unvisited URLs on that page are added to

the queue ordered depending on the goal of the crawler and queue implementation.

Before the URLs are added to the queue they may be assigned scores according to an

algorithm, and then put the queue in order, so that higher scoring links are fetched

first. If, in any time, the queue is empty and the crawler has finished fetching all the

links encountered, than the situation signals a dead-end for the crawler.

Crawlers are mostly used by search engines to index and refresh their

database information. Also, there are specific purpose crawlers (Srinivasan, et al.,

2005), (Menczer, et al., 2001), (Diligenti, et al., 2000), (Chakrabarti, et al., 1999a). In

(Chakrabarti, et al., 1999a), crawlers are used for classification of pages into

categories using an existing document taxonomy and seed documents. For

classification purposes, (Chakrabarti, et al., 1999b) builds a model with crawlers that

online pre-trained by samples consisting of source page features and the relevance of

the target page. The training process results in significant decrease of false positives

in classification.

(Ehrig, et al., 2003) considers an ontology-based algorithm for relevance

computation. After preprocessing, entities are extracted from page and counted.

Relevance of the page with regard to user selected entities of interest is then

computed by using several measures on ontology graph. The harvest rate is improved

and compared to the baseline focused crawler (that decides on page relevance by a

simple binary keyword match).

Focused crawlers are firstly introduced by (Chakrabarti, et al., 1999a),

(Chakrabarti, 2003). The basic idea of the crawler was to classify crawled pages

with categories in topic taxonomy. At the beginning, the crawler requires a topic

taxonomy such as Yahoo and ODP (Open Directory project a.k.a. DMOZ –

 9

Directory.MOZilla.org). In addition, the user provides example URLs of interest.

The example URLS get automatically classified onto various categories of the

taxonomy. Through an interactive process, the user can correct the automatic

classification, add new categories to the taxonomy and mark some of the categories

as “of interest of the user”.

(Aggarwal, et al., 2001) introduce a concept of “intelligent crawling” where

the user can specify an arbitrary predicate (e.g. keywords, document similarity –

anything that can be implemented as a function which determines documents and

relevance to the crawl based on URL and page content) and the system adapts itself

in order to maximize the percentage of the Web pages crawled satisfying the

predicate. It is suggested that for some types of predicates the topical locality

assumption of (Chakrabarti, et al., 1999a), (i.e. relevant pages are located close

together) might not hold. A probabilistic model for URL priority prediction is trained

using information about content of in-linking pages, URL tokens, short-range

locality information and sibling information.

Crawler Algorithms

There are many different crawling algorithms in the literature, and most of

them are not only specific to Web mining but also used in traditional information

retrieval. The most common algorithms are explained below, briefly.

Breadth-First Algorithm

One of the earliest algorithms used in Web information retrieval, breadth-first

algorithm is firstly explored in WebCrawler (Pinkerton, 1994). In most of the crawler

performance studies such as (Cho, et al., 1998) and (Najork and Wiener, 2001)

breadth first algorithm is used as the simplest and baseline crawler algorithm for

 10

comparisons. In breadth-first algorithm, crawler visits every link of a single page,

before moving to a next page, such that it does not use any information collected

over the page, anchor texts etc.

Fish-Search Algorithm

Proposed by (De Bra, et al., 1994), fish-search algorithm tries to crawl those

areas in the Web more extensively, in which relevant pages have been found. At the

same time, the algorithm discontinues, if it does not encounter any important page

along the path with a prespecified depth. That is, after following a number of links in

a direction without finding a relevant document the search stops investigating that

direction.

Relevancy of a document in fish-search algorithm refers to a binary

evaluation, whether the document contains the predicate of not.

Shark-Search Algorithm

(Hersovici, et al., 1998) Shark-search is an improved version of Fish-Search

algorithm. First of all, it uses “similarity measure” to evaluate the relevance of

documents, instead of binary evaluation of fish-search algorithm. A document is

relevant if its similarity is above a predefined threshold. In addition, links’ potential

scores are affected by the anchor text, text around the link tags, and also inherited

score from ancestors.

Best-First Algorithm

In Best-First algorithm, a crawler fetches links from a page and gives all of

the links the cosine similarity scores of the extracted page. In basic terms, cosine

similarity is computed as the lexical similarity between a topic’s keywords and the

page, where both keywords and pages are treated as vectors.

 11

(1)

 When computing cosine similarities between two documents (q, d), both are

seen as a pair of vectors in a space with as many dimensions as terms (t) as the

vocabulary. In a space defined in this way, the similarity of two documents is cosine

of the angle between these two document vectors (see Equation 1).

The crawler fetches the highest valued links first, so that the probability of

fetching unrelated Web pages decreases significantly. Best-First Algorithm is used in

(Hersovici, et al., 1998) and (Cho, et al., 1998).

HITS Algorithm

First proposed by (Kleinberg, 1998), Hypertext Induced Topic Search (HITS)

algorithm is a query dependent ranking technique, in which the different (hub and

authority) scores are produced. Authority page are those pages which have relevant

information and discussions about a topic. Hub pages do not need to have in-depth

information about a topic but have links to many authoritative pages. The relation

between authoritative and hub pages are mutually reinforcing, while an authority

page is a page that is pointed by many hubs and hubs are pages that point to many

authorities.

PageRank

In (Brin and Page, 1998), the simple PageRank algorithm is introduced also

became the basis of Google (http://www.google.com) search engine. PageRank is

based on the link structure of the Web pages, and an “importance ranking” computed

with iterative Web crawls. The importance of a page is represented as the probability

that a random surfer (one who follows links randomly from page to page) will be on

 12

that page at any given time. The ranking of the Web pages in PageRank algorithm is

based completely on their location in the Web’s graph structure. The more important

and central Web pages are given higher rankings, whereas backlinks from

“important” pages are more significant than backlinks from average pages.

Performance Evaluation Metrics

Crawling algorithms are evaluated using many different types of criteria, such

as efficiency, harvest rate, hit ratio, recall, precision etc. We can categorize these

criteria into two types of categories for a crawl process, i.e. importance of pages’

crawled and general crawling performance (e.g. recall or precision).

For page relevance measures lexical criteria and link based criteria are taken

into account. A page is considered relevant if it contains some or all of the keywords

in the query. In addition, if the frequency with which the keywords appear on the

body of the page exceeds a frequency threshold, the page may be considered relevant

(Cho, et al., 1998). In (Amento, et al., 2000), a combined word set is created from the

contents of target documents. This word set is used to compute relevancy (page

quality) of each crawled page as the cosine similarity between the page’s vector and

the word set. (Chakrabarti, et al., 1999a) apply classifiers built using positive and

negative example pages to determine page importance. (Aggarwal, et al., 2001) adopt

a more generic framework that allows for user designed plug-in modules specifying

relevance criteria. The modules that they use in their test require the presence of pre-

specified words in particular parts of the page, such as the URL. Similarity to the

topic measured using page text (Bharat and Henzinger, 1998) or the words

surrounding a link (Chakrabarti, et al., 1998) may also be used to augment what are

primarily link based relevance measures.

 13

In-degree, out-degree, PageRank (Brin and Page, 1998), hubs and authorities

are commonly used link based page importance measures (Amento, et al., 2000),

(Ben-Shaul, et al., 1999), (Bharat and Henzinger, 1998), (Chakrabarti, et al., 1998),

(Chakrabarti, et al., 1999a), (Cho, et al., 1998). (Cho, et al., 1998) consider pages

with PageRank above a specified threshold as being relevant to the query.

(Kleinberg, 1998) recursive notion of hubs and authorities has been extended by

several others. For example, edge weights are considered important (Chakrabarti, et

al., 1999a) and so are edges that connect different sites (Amento, et al., 2000),

(Bharat and Henzinger, 1998), (Chakrabarti, et al., 1999a). Link based quality

metrics rely on the generally reasonable notion of link reflecting the credibility of the

target pages. (Amento, et al., 2000) show that in-degree, authority and PageRank are

effective at identifying high quality pages as judged by human experts.

The literature shows a wide variety of summarization methods. Given a

particular measure of page importance, (Cho, et al., 1998) examine the percentage of

important pages retrieved over the progress of the crawl. (Menczer, et al., 2000)

measure search length, i.e., the number of pages crawled until some predetermined

fraction of important pages have been visited. (Chakrabarti, et al., 1999a),

(Chakrabarti, et al., 1999b) compute the average “harvest rate,” which is a running

average, over different time slices of the crawl, of page relevance assessed using

classifiers. (Aggarwal, et al., 2001) also use harvest rate, similarly defined as the rate

at which crawled pages satisfy a given predicate; if a classifier is used to give

numeric relevance values then a page is said to satisfy a predicate if the relevance

value exceeds a certain threshold. (Rennie and McCallum, 1999) compute the

percentage of relevant pages found.

 14

In this chapter, we have surveyed selected publications from the related work

that are relevant for this thesis. We discussed Web mining concepts and focused on

the Web crawling algorithms, frameworks and evaluation metrics.

The next chapter starts the main part of this thesis by presenting the focused

crawler implementation.

 15

CHAPTER III.

FOCUSED CRAWLING METHODOLOGY

A simple Web crawler works as follows; crawler starts with a set of seed

pages (given by the user or retrieved from an external source such as a search

engine), and then uses external links of these pages to attend to other pages. The

process continuously iterates with new pages offering more external links to follow,

until a sufficient number of pages are retrieved or some higher level goal is reached.

Iterations involve picking the next URL to crawl from the queue, fetching the page

corresponding to the URL through HTTP, parsing the retrieved page to extract the

URLs and application specific information, and finally adding the unvisited URLs to

the crawl queue (see Figure 1). A topical crawler’s goal is to fetch only those pages

which are relevant to a query or topic, rather than downloading all accessible Web

pages.

The main difference between a simple and a topical crawler is the

implementation of crawl queue - priority queue. In topical crawlers, retrieved pages

are evaluated for topic relevance; the extracted links are given scores and put into

priority queues in order. This evaluation may range from a simple keyword matching

to complex machine learning algorithms, may use information of previous runs, or

even update score calculation weights during a crawl process.

 16

Fig. 1. A general crawling algorithm

Before getting into detail, we need to emphasize some limitations related to

the crawling algorithms. First of all, memory size prohibits crawl queues to be

infinitely large. Although it is possible to store the queue completely on a disk, for

performance reasons this is not preferred, especially if a multi-thread crawler runs.

Alternatively, we can limit queue size by specifying a maximum number. In that

case, we need to implement a decision mechanism to choose which URLs to remove

or ignore when the size limit is reached. For a priority queue, it is obvious that

whenever the queue is full and new URLs needs to be added, then URLs with the

lowest priorities in the queue should be removed. In our study, we set the priority

queue size to 512.

In addition, due to the limited size of the queue, we need to make sure that we

do not add duplicate URLs to crawl queue. Considering a linear search – O(n) - to

find out if a newly extracted URL is already in the queue is costly. So hash tables are

preferred for holding unvisited URLs in the queue and also another hash table should

be used for processed URLs, because search performance in hash tables is much

more better – O(1), for unique hash keys – than linear and binary search. Once the

Input: u1, u2, ..., un starting URLs, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = , visited URLs.
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: Parse p to extract text and extract outgoing links ux
8: for each ux in p do

9: if ux not in V then

10: Compute priority cp of ux for t
11: Add ux into PQ with cp
12: end if
13: end for
14: end while

 17

crawl queue's maximum size is exceeded, only URLs with highest priorities shall be

kept in the queue. The problem with hash tables is that they can not store the keys in

a specified order. Hence, we used Vectors to store URLs in priority order. If at any

time the crawler finds the queue empty, when it needs the next URL, the process

comes to a dead-end. However, with a large value of queue size and a set of seed

URLs the crawl process will hard to encounter a dead-end.

In order to fetch a Web page, we need an HTTP client which sends an HTTP

request for a page and reads the response. The client needs to have timeouts to make

sure that an unnecessary amount of time is not spent on slow servers or in reading

large pages. The client needs to parse the response headers for status codes and

redirections. Error checking and exception handling is important during the page

fetching process since we need to deal with millions of remote servers using the

same code. Modern programming languages such as Java and Perl provide very

simple and often multiple programmatic interfaces for fetching pages from the Web.

In our applications we used ready-made java.net.HttpURLConnection class for our

HTTP client.

Crawler Problems

Whenever a page has been fetched by the crawler, its content has to be

parsed, URLs encountered has to be extracted and put into the crawl queue, which

will ensure that the crawling process will continue. However, there are several

problems, which need to be solved in a crawling process, related to network

connections, spider traps, canonicalizing URLs, parsing HTML pages, and the ethics

of dealing with remote Web servers.

 18

Canonicalizing URLs

In order to extract hyperlink URLs from a Web page, we need a parser to find

the anchor tags and extract their associated href attribute values. However, the

structure of these attribute values can differ a lot, so that same page can be linked by

different encoded URLs. So we have to convert all URLs encountered according to

some criteria, in order to avoid fetching the same page many times. The conditions

we applied are as follows:

• Converting each URL to lowercase. For example,

HTTP://www.BOUN.edu.tr is converted to http://www.boun.edu.tr.

• Removing the ‘anchor’ or ‘reference’ part of the URL, because reference

does not affect the output of a page and it is only used for navigational

purposes. http://www.boun.edu.tr/calendar/index_tur.html#takvim2006 is

reduced to http://www.boun.edu.tr/calendar/index_tur.html.

• HTML encoding of some commonly used characters such as ‘~’ to ‘%7E’, or

‘ ’ ‘%20’. http://www.boun.edu.tr/~mis is transformed to

http://www.boun.edu.tr/%7Emis.

• Adding ‘/’s to the end of an URL, if it ends with a directory name, so that

“http://www.boun.edu.tr” and “http://www.boun.edu.tr/” are treated as the

same URLs.

• If the host part of an URL does not have www prefix, we retrieve the page

with the original URL but put it into the visited URL list by adding www as

prefix, because nearly for all Websites both “www.xyz.com” and “xyz.com”

names resolve to the same IP address, and have the same contents. So we do

not download the same content twice.

 19

Stoplisting and Stemming

Stoplisting and stemming are two common techniques also used in traditional

information retrieval for working with higher quality text data. Removing commonly

used words or stopwords from text is called stoplisting.

In addition to stoplisting, word stemming is also used to find the roots of

words found in a page. The stemming helps to normalize the words by removing

commonly used suffixes, and converting morphologically similar words to a single

root form or stem. The most common stemming algorithm used in information

retrieval is Porters algorithm and its implementation can be easily found in many

programming languages (Porter, 1980).

Network and CPU - Multithreading

A sequential crawling loop spends a large amount of time in which either the

CPU is idle (during network/disk access) or the network interface is idle (during

CPU operations). Multi-threading, where each thread follows a crawling loop, can

provide reasonable speed-up and efficient use of available bandwidth. Each thread

starts by locking the queue to pick the next URL to crawl. After picking a URL it

unlocks the queue allowing other threads to access it. The queue is again locked

when new URLs are added to it. The locking steps are necessary in order to

synchronize the use of the queue that is shared among many crawling loops

(threads). In addition to crawl queue, a typical multithreaded crawler would also

maintain a shared history data structure for a fast lookup of URLs that have been

crawled. Hence, in addition to queue it would also need to synchronize access to the

history.

The multi-threaded crawler model needs to deal with an empty queue just like

a sequential crawler. However, if a thread finds the queue empty, it does not

 20

automatically mean that the crawler as a whole has reached a dead-end. It is possible

that other threads are fetching pages and may add new URLs in the near future. One

way to deal with the situation is by sending a thread to a sleep state when it sees an

empty queue. Whenever a thread access to the queue and put a new URL in it, also a

wake signal is sent all of the sleeping threads. When the thread wakes up, it checks

again for URLs. A global monitor keeps track of the number of threads currently

sleeping. Only when all the threads are in the sleep state does the crawling process

stop.

Spider Traps

The Web is usually considered as a collection of pages, in the same sense as

in traditional Information Retrieval collections. The Web graph has a finite number

of nodes in which measures such as diameter are well defined. However, the amount

of information in the Web at any given time is certainly finite, but when a dynamic

page leads to another dynamic page, the number of pages can be potentially infinite.

Take for instance a dynamic page that implements a calendar, you can always click

on “next month” and from some point on there will be no more data items in the

calendar; humans can be reasonably sure that it is very unlikely to find events

scheduled 50 years in advance, but a crawler can not. A second example would be a

calculator, such as a dynamic page that calculates approximations of using an

iterative method. A crawler cannot tell when two pages reflect the same information.

To eliminate the effects of a spider trap, we can limit the number of pages the

crawler sequentially accesses from a given domain. The code associated with the

queue can make sure that every consecutive sequence of k (say 100) URLs, picked

by the crawler, contains only one URL from a fully qualified host name (e.g.

 21

www.cnn.com). As side-effects, the crawler is polite by not accessing the same Web

site too often, and the crawled pages tend to be more diverse.

Another solution can be limiting the URL sizes to a number of characters,

such 150 or 200. Most of the time the “dummy” URLs created by spider traps often

become increasingly larger in size. In addition, a list of pages and sites can be

supplied to crawler for excluding from the process to avoid infinitely large

automatically generated crawler traps

HTML Parsing

HTML coding, when done by hand, tends to be syntactically very relaxed.

Most HTML coders only check if the page can be seen in their browsers, without

further checking for compliance. These result in malformed markups, and pose

serious problem for HTML parsing. The parsing problems we have faced during our

crawler implementation are as follows:

• Mixing single quotes, double quotes, and no quotes in attributes, e.g.: <IMG

ALT="This is a photo" SRC=‘photo.jpg’ border=1>.

• Mixing empty tags in HTML form (such as
) and in XHTML form

(such as
).

• Unbalanced tags, e.g.: <SMALL>...</SMALL>.

• Mixed case in tags and attributes, e.g.: . For HTML, the tags

should be written in uppercase, and for XHTML, in lowercase.

• Unterminated strings, e.g.: . This can be very problematic,

because it will cause a buffer overflow if the parser is not properly written.

These unterminated or long strings can also appear in HTTP response codes.

 22

HTTP Requests

In some cases, it is impossible to tell the type of a file just by looking at its

URL. Some URLs have no extensions, and some URL have extensions that are

ambiguous, e.g.: links to files ending in .exe could be either links to dynamically

generated HTML pages in the server side, or links to programs that should be

downloaded.

A user agent, such as a Web browser or a Web crawler, can have limited

capabilities and only be able to handle some data types. If it cannot handle a file

(e.g.: an image), then it should not download it. For instance, a Web crawler

searching only for plain text and HTML pages should issue a request of the form:

GET /page.html HTTP/1.1

Accept: text/plain, text/html

...

This indicates that the Web crawler can only handle plain text or HTML

documents. According to the HTTP specification, the server should send a 406 (not

acceptable) response code, when a valid object of the desired type is not present at

the given URL.

Several Web browsers simply issue a header of the form “Accept: */*”, so

some Web server implementations do not check the “accept” header at all. It has

somehow lost relevance, and today a Web server can send a response with almost

any data type. A related concern is that some Web sites return a header indicating

content-type HTML, but the information returned is a large binary file (such as a ZIP

archive, etc.). The crawler can waste bandwidth downloading such a file.

We check the returned content-type header in the downloaded pages, as it

might not be a data type that the Web crawler can handle. A download limit is

 23

necessary because potentially any file type can be returned by the Web server, even

when it is indicating HTML content type.

To ensure a good coverage of the Web, we must limit the amount of data that

is downloaded from every Web server. This can be done by limiting both the

maximum page size, and the number of Web pages that are downloaded from a

single Web site. We set the maximum number of pages to download from a Web site

to 100, and maximum page size to 400KB. In case the maximum page size is

exceeded, the Web crawler must disconnect from the Web server and continue its

process.

Dead links

It is hard to build a Web site without internal broken links, and the message

shown by Web servers when a page is not found, i.e.: when the Web server returns a

404 (not found) response, is considered by many Web site administrators as too

annoying for users. Indeed, the default message looses the context of the Web site, so

the Web site administrators of some Web sites prefer to build error pages that

maintain visual and navigational consistency with the rest of their Web sites.

The problem is that in many cases the response for a page that does not exists

is just a normal redirect to a custom-built error page, without the response header

signaling the error condition. These pages are called “soft-404”. The indexing

process could consider a redirect to a “soft-404” error page as a link between the

URL in which the page was not found and the error page, and this can increase the

score of the later. For a generic crawler it is very hard to mark “soft-404” pages, but

in a topic crawler, it is expected that the relevance of these pages would be very low,

so that they would be omitted in the result. Also their outgoing links would have

 24

small priorities, and most probably do not even added to the crawl queue for further

processing.

Robot Exclusion Protocol

“Robot Exclusion Protocol” provides a mechanism for Web server

administrators to communicate their file access policies; more specifically to identify

files that may not be accessed by a crawler. This is done by keeping a file named

robots.txt under the root directory of the Web server (such as

http://www.biz.uiowa.edu/robots.txt). This file provides access policy for different

User-agents (robots or crawlers). A User-agent value of ‘*’ denotes a default policy

for any crawler that does not match other User-agent values in the file. A number of

Disallow entries may be provided for a User-agent. Any URL that starts with the

value of a Disallow field must not be retrieved by a crawler matching the User-agent.

When a crawler wants to retrieve a page from a Web server, it must first fetch the

appropriate robots.txt file and make sure that the URL to be fetched is not

disallowed. More details on this exclusion protocol can be found at

http://www.robotstxt.org/wc/norobots.html. It is efficient to cache the access policies

of a number of servers recently visited by the crawler. This would avoid accessing a

robots.txt file each time you need to fetch a URL. Although compliance with ‘Robots

Exclusion Protocol’ is not mandatory and can be administratively overridden on the

crawler, we have implemented in our study.

Crawler Implementation

In this study, we developed a Web crawler and implemented several

algorithms to analyze their efficiencies in focused crawling. These algorithms differ

only in assigning priorities to new extracted links.

 25

Fig. 2. Depth First Algorithm

Depth First

Depth first is a general algorithm for traversing or searching a tree, tree

structure, or graph. Starting from a seed, depth first search tries to crawl as deep as

possible. Depth first is not an algorithm suitable for focused crawling, because it is

Fig. 3. Breadth First Algorithm

Input: u1, u2, ..., un starting URLs, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = visited URLs, a = some constant
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: Parse p to extract text and extract outgoing links ux
8: for each ux in p do

9: if ux not in V then
10: if ux in PQ then
11: ux.cp = max(ux.cp, u.cp + a);
12: else
13: ux.cp = u.cp + a;
14: Add ux into PQ with cp;
15: end if
16: end if
17: end for
18: end while

Input: u1, u2, ..., un starting URLs with cp = 0, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = visited URLs, a = some constant
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: Parse p to extract text and extract outgoing links ux
8: for each ux in p do

9: if ux not in V then
10: if ux in PQ then
11: ux.cp = max(ux.cp, u.cp - a);
12: else
13: ux.cp = u.cp - a;
14: Add ux into PQ with cp;
15: end if
16: end if
17: end for
18: end while

 26

not interested neither with the content of the page visited nor with the URL it

extracted (Figure 2).

Breadth First

Breadth first is also a simple tree traversing algorithm, but in contrast it is

used to prove topical locality of pages in literature. It uses the priority queue as

FIFO, and crawl the links in the order in which they are encountered. Whenever the

crawl queue gets full, only one more link can be added for each page. Since both

breadth first and depth first do not use any knowledge about the topic, we expect

their performance to provide a lower bound for any of the more complex algorithms

(Figure 3).

Fig. 4. In Degree Algorithm

In Degree

Indegree algorithm is another graph based algorithm and each time a link is

extracted from a page, the link is checked on the priority queue and if found its

Input: u1, u2, ..., un starting URLs with cp = 0, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = visited URLs, a = some constant
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: Parse p to extract text and extract outgoing links ux
8: for each ux in p do

9: if ux not in V then
10: if ux in PQ then
11: ux.cp = ux.cp + a;
12: else
13: Add ux into PQ with cp = a;
14: end if
15: end if
16: end for
17: end while

 27

priority is incremented. This is somewhat similar but much more basic version of

PageRank algorithm (Figure 4).

Fig. 5. Best First Algorithm

Best First

In best first algorithm, the links are ordered according to some estimation

criterion. Typically an initial representation of the topic, in our case words collected

from top 10 pages returned from Google for the keyword, is used to guide the crawl.

For each page downloaded lexical similarity is computed between a topic’s keywords

and the downloaded page. Every link extracted from this page have assigned this

similarity value as their priority and then added to the queue (Figure 5).

Shark Search

In Shark search, crawlers search more extensively in areas of the Web in

which relevant pages have been found. At the same time, the algorithm discontinues

searches in regions that do not yield relevant pages. In addition, it is capable of

giving every link on a page separate priority values, since the potential score of links

Input: u1, u2, ..., un starting URLs with cp = 0, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = , visited URLs
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: Parse p to extract text and extract outgoing links ux
8: for each ux in p do

9: if ux not in V then

10: if ux in PQ then
11: ux.cp = max(ux.cp, cos_sim (description, p));
12: else
13: ux.cp = cos_sim (description, p);
14: Add ux into PQ with cp;
15: end if
16: end if
17: end for
18: end while

 28

is influenced by anchor text, text surrounding the links, and the page content it is

extracted from. (Figure 6)

Fig. 6. Shark Search Algorithm

SharkSearchN / BestFirstN

SharkSearchN and BestFirstN algorithms differ from SharkSearch and

BestFirst only by selecting the links from priority queue in batches, not one at a time.

The reason is that good quality links are commonly encountered in early phases of

the crawl, because if a link is first encountered at a later step, then it also means there

are not many pages linking to it (Figure 7).

Input: u1, u2, ..., un starting URLs with cp = 0 and depth d = max_d, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = visited URLs,
3: max_d = depth, r = relative imporance,
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: if u.d > 0 then
8: Parse p to extract text and extract outgoing links ux

9: for each ux in p do

10: if ux not in V then

11: if (cos_sim (description, p) > 0) then

12: ux.d = d;

13: else
14: ux.d = u.d – 1;

15: end if
16: if ux in PQ then
17: ux.cp = max(ux.cp, (1-r) * neighborhood_score (ux)

+ r * neighborhood_score (ux));
18: else
19: ux.cp = (1-r) * neighborhood_score (ux)

+ r * neighborhood_score (ux);
20: Add ux into PQ with cp;
21: end if
22: end if
23: end for
24: end if
25: end while

 29

URL Combined

URL Combined algorithm is similar to Shark Search by assigning each link

encountered a different priority, but also uses the URL tokens rather than the

neighbor words of the link. For each outgoing link, page similarity, anchor text

similarity and URL token similarity are used to compute priorities (Figure 8).

Fig. 7. Best First N Algorithm

Algorithm Comparisons

Our goal in this study is to evaluate different algorithms in a focused crawler

process. For this reason we have implemented all of the algorithms explained in this

section. We used both Google and Open Directory (dmoz.org) for creating

descriptions for the keywords. Keyword descriptions from Google were collected

from top 10 pages returned from Google, whereas Open Directory descriptions were

collected from the search page, since these pages contain descriptive human entries.

Input: u1, u2, ..., un starting URLs with cp = 0, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = visited URLs, N = size of batch queue, Vu = batch priority queue
3: while PQ != empty && overall goal is not reached do

4: Dequeue N times u from PQ, into Vu, select u in top N highest priority.
5: for each u in Vu do
6 : Fetch u as Page p.
7: Add u into V.
8: Parse p to extract text and extract outgoing links ux
9: for each ux in p do

10: if ux in PQ then
11: ux.cp = max(ux.cp, cos_sim (description, p));
12: else if ux not in V then
13: ux.cp = cos_sim (description, p);
14: Add ux into PQ with cp;
15: end if
16: end for
17: end for
18: end while

 30

Fig. 8. URL Combined

In addition seed sets and target sets were created by querying Google. Seed

sets differ from depth 1 to depth 3 backlink pages and target set is the top 100 pages.

For each run 3000 pages are crawled and information on target set encounters,

predicate satisfaction and lexical similarity between crawled pages and Google /

DMOZ keyword descriptions.

Our target sets consist of top 100 links returned by the Google for the

specified keyword. It is important to say that some of these top 100 links were pdf, or

ppt files. Our crawler implementation does not follow or download pdf or ppt links

but assign them priorities just like a page link and add to the queue. However, each

time a link is dequeued it is checked on the target set. Whether the link will be

further processed or not if it is in our target set, we count it as a successful encounter.

Input: u1, u2, ..., un starting URLs with cp = 0, t topic
1: PQ = {u1, u2, ..., un}, priority queue of URLs to visit.
2: V = visited URLs
3: while PQ != empty && overall goal is not reached do

4: Dequeue u from PQ, select u with highest priority.
5: Fetch u as Page p.
6: Add u into V.
7: Parse p to extract text and extract outgoing links ux
8: for each ux in p do

9: if ux not in V then

10: if ux in PQ then
11: ux.cp = cos_sim (description, p) * 0.5

+ cos_sim(description, anchor_text) * 0.25
+ cos_sim(description, url) * 0.25;

12: else
13: ux.cp = cos_sim (description, p) * 0.5

+ cos_sim(description, anchor_text) * 0.25
+ cos_sim(description, url) * 0.25;

14: Add ux into PQ with cp;
15: end if
16: end if
17: end for
18: end while

 31

All algorithms are compared at which steps they could encounter target links, and

with what percentage.

Predicate satisfaction refers to whether the keyword passes on a page. It is

used to show whether the downloaded pages are related with the keyword. The page

may not be a target page, and also it may not have a high similarity with the

descriptions, but satisfy the predicate, i.e. we can say that a search engine returns this

page as a result of the keyword query.

In this chapter, we give general characteristics and problems of crawlers, and

explained our crawler implementation in detail. In the next chapter, Chapter 4, we

present the results of our focused crawling algorithms

 32

CHAPTER IV.

FOCUSED CRAWLING RESULTS

We have seen in Chapter 3 several crawling algorithms we have implemented

for our performance evaluation, as well as the methods to compare the algorithms.

For each visited page we collected information on the cosine similarity between its

content and keyword description, whether the page satisfies our predicate and

whether it is a target page. All of the algorithms have been run with the same

keyword “artificial intelligence”, description, seed and target pages. In addition,

combined URL algorithm’s performance checked with “data mining”, as well.

In Table 1, the predicate satisfied number of pages and number of pages in

target set which have been crawled are listed. For each algorithm, moving average of

cosine similarity between page contents and Google and DMOZ descriptions are also

presented in Figures 1-6.

According to Table 1, it is observable that the best performance in terms of

predicate satisfaction and target set occurrence is in “Combined URL” algorithms.

The main reason we can think of is that the descriptions created by Google and

DMOZ also includes some domain names, such that the crawler assigns high

priorities to the links with these domain names. In addition, we have observed that

 33

for data mining keyword, most of the Web sites’ URLs includes at least “data” or

“mining” that have been visited.

Table 1. Predicate Satisfaction and Target Set Results

Algorithm Predicate Satisfaction Target Set
Breadth First 172 1

Depth First 60 0

InDegree 143 3

Best First 127 3

Best FirstN 179 9

SharkCrawler 158 3

SharkNCrawler 261 4

Combined URL – AI 264 9

Combined URL – DM 1283 18

The number of predicate satisfactory pages is lower than we had expected.

About only 0.03% - 0.06% percentage of pages satisfy the predicates for the keyword

“artificial intelligence”. The depth and the distance of the seed set from the target

pages can affect the numbers. We can say that depth 3 seed set collected from

Google contains little information on “artificial intelligence”. For “data mining”

combined URL algorithm has found more than 40% satisfactory pages. First of all,

the seed pages, and secondly, the overall topic and its general structure on the Web

affect the percentage of satisfactory pages. This is also discussed in Chapter 6,

“artificial intelligence” occurs ten times more than “data mining” on the Web (based

on the Google estimated results). Although it may look like an advantage, weak

connections over the graph may lead the crawler to undesirable paths.

We need also emphasize the number of pages found in target set for InDegree

algorithm, since it is as good as a focused crawling algorithm. InDegree is a basic

descendent of PageRank algorithm, and the pages in our target set are those pages

with the highest PageRank values. Both PageRank and InDegree use similar logic

when assigning scores to links. InDegree algorithm increments the importance of a

 34

link by one whenever it finds the same link, whereas PageRank assigns the

importance value according to the importance of the page itself.

Fig. 9. Best First Algorithm – Cosine Similarity (moving average)

Fig. 10. Best First N Algorithm – Cosine Similarity (moving average)

Next, we compare the page similarity performances of the algorithms. It is

important that during the crawling process, when assigning priorities to new

extracted links, we computed cosine similarities with Google descriptions. DMOZ

similarity only collected for informative purposes. Figure 9, Figure 10, Figure 11,

and Figure 12 show performances of focused crawling algorithms, Best First, Best

First N, Shark Search, Shark Search N, respectively. URL combined similarities for

“data mining” and “artificial intelligence” is shown in Figure 13 and Figure 14,

respectively. Lastly, performances of general tree traversing algorithms are shown.

 35

Fig. 11. Shark Crawler Algorithm – Cosine Similarity (moving average)

Fig. 12. Shark Crawler N Algorithm – Cosine Similarity (moving average)

Comparing the focused crawling algorithms, we can see the N batch queue

algorithms have different behaviors, than their original versions. Overall page

similarities are higher, and also at the beginning of the crawling process they crawl

higher quality pages. This verifies the statement that the good quality pages are

encountered at the early stages of the crawl. Other observation we make is that the

SharkNCrawler, have higher similarity values than the BestNCrawler. The main

reason is that the SharkNCrawler assign each link encountered different priorities

according to their anchor text or words near the link.

 36

Fig. 13. Combined URL “Artificial Intelligence” – Cosine Similarity (moving average)

Fig. 14. Combined URL “Data Mining” – Cosine Similarity (moving average)

Combined URL algorithm has been run for “artificial intelligence” and “data

mining” keywords. It is notable that all graphs on “artificial intelligence” start with a

jump in few hundred pages and they fall back thereafter. However, as seen in Figure

14, this jump is not as sharp as it is in “artificial intelligence”, and also similarity

values are higher, reflecting the effect of the seed pages. In Figures 15-17, results of

simple tree traversing algorithms are shown.

In this chapter we have presented the performance evaluations we have found

during our crawler process. Most of the strategies tested were able to download

important pages first. Generally, even a random strategy can perform well on the

Web, i.e. a random walk on the Web is biased towards pages with high PageRank.

 37

Fig. 15. Breadth First Algorithm – Cosine Similarity (moving average)

Fig. 16. InDegree Algorithm – Cosine Similarity (moving average)

Fig. 17. Depth First Algorithm – Cosine Similarity (moving average)

All of the algorithms have been run several times to find comparable results,

especially when the crawler encountered dead ends. The main reason of dead ends

was that we have limited 100 pages to fetch from one domain to prevent spider traps.

However, sometimes during our crawls the queue become full with the same domain

 38

URLs, and to prevent falling into a spider trap all of the URLs skipped, resulting in a

dead end. Although increasing the number of pages to download from the same

domain may prevent dead ends, our goal was to visit as many different domains as

possible, and do not want get in to a circle in a site, if even it is not a spider trap.

In the next chapter we present our automatic topic finding methodology using

web pages.

 39

CHAPTER V.

TOPIC FINDING METHODOLOGY

The motivation behind sub-topic or topic specific keyword discovery through

Web pages is helping a user, who is insufficient in knowledge and experience about a

topic, to find important concepts without much effort. Intuitively, a Web user would

start searching the Web via querying search engines, and visiting some of the

returned pages, reading and scanning, spending a lot of time on deciding what is

important about the topic and what is not. In this study, we aim to develop an easy

and systematic way of extracting key concepts from Web pages.

In general, when trying to extract information from Web pages automatically,

one faces several problems. First of all, one of the most important limitations of

automatic discovery of information through Web is that a portion of the Web, called

as “the hidden Web” or the “deep Web”, can not be accessed by automated agents

such as the crawlers used by search engines. This portion of the Web mainly consists

of pages that require previous registration or some special authorization such as a

password, or are only available when visited from within a certain network, such as a

corporate intranet. In addition, there are also dynamic pages, which are only

generated after a request has been made, and are inaccessible without certain

parameters as input, e.g. query terms. With the above limitations all of the crawling

and indexing of the search engines are done whether on static pages, or on dynamic

 40

pages which do not require unknown parameters, or has an ingoing link with correct

parameters.

Another problem is that Web content resides in a variety of formats, not just

HTML, - e.g. text document formats such as .pdf, .ps, .doc or images, .gif, .jpg. An

ideal Web crawler would parse all type of text documents successfully (even would

process images); however, perfect parsing is not sufficient for extracting useful

information from a set of documents. That is, only parsing a few Web pages may not

provide sufficient information to a user, because these pages may not contain all the

required information, in our case key concepts and/or sub-topics of the topic. For

example, a good descriptive page about a topic may not include information about

sub-topics, or the page might have not been created by the area experts, or in-depth

researchers, and may only include unsatisfactory information, if even not any. In

addition, the authors of the page may be only interested in only a small area of the

topic.

Because of the above considerations searching only a few pages may not give

satisfactory results to the users. There is need to search a lot of pages, which has to

be related to the subject, has to be an informatory page, and contain subtopics or key

concepts. Existing search engines are extremely useful for finding top ranked pages,

containing related information about a topic. However, for a user, trying to extract

information through all pages means, visiting each page, scanning if not reading the

page, and get the basic idea, concepts, and key topics of the topic.

In this study, we try to mine important sub-topics or key concepts of a given

topic automatically, through HTML based Web pages. Starting with a search query

(a topic given by the user), the system gathers the set of top ranking pages returned

from a search engine, and processes them further to discover sub-topics or keywords

 41

of the search topic. Following that, the system filters those pages, which are unlikely

to have sub-topic information, and identifies those informative pages, which may

contain keywords, key concepts of the topic. These pages are processed further for

extracting important phrases and then applied data mining techniques on these

phrases to find candidate sub-topics. At the end, each candidate phrase are given

scores based on the relevance with the input topic over the Web space, such that

unrelated candidates can be filtered out in a post-processing step. Using the proposed

technique, the user should be able to quickly learn sub-topics or key concepts about a

topic without going through the ordeal of browsing through a large number of non-

informative pages, e.g. commercial or promotional Web sites (which give little

useful knowledge), returned by the search engine.

It is important to clarify that, although our main goal is finding sub-topics or

important concepts of a topic, we do not use natural language processing techniques.

The reason is that we also try to analyze tag information of Web pages, which the

common text documents are lack of. HTML tags serve two general purposes on Web

pages. First, they are used for designing the outline of Web pages, and second they

are also used specifically to emphasize important information. The emphasized texts

do not only highlight the important concepts to the reader, but also organize the

information on a page. Consequently, both information and its format on the Web

have great diversity.

There are several problems that need to be solved before working with Web

pages:

• Web pages returned by the search engine may be published not for

informative purposes, but for promotions, or commercials, etc. Only a small

amount of pages contain definitions, descriptions or related academically

 42

information about topics. Even in our case, only some of these descriptive,

informative pages contain sub-topics or key concepts.

• Web pages are often very noisy; they typically contain many pieces of

unrelated information. Thus, many unrelated text segments may be

emphasized.

• Web page authors may emphasize those phrases or even long text segments

that are not key concepts of the domain. For example, they tend to emphasize

text segments that are related to their work or products, which may not be

important sub-topics or key concepts of the domain.

To find those true sub-topics or key concepts of the domain, we need to deal

with the above problems. Data mining techniques come to help naturally because

they are able to find those frequent occurring word phrases, i.e., those phrases that

appear in many pages. Thus, we can eliminate those peculiar ones that appear rarely.

Those frequent word phrases form the candidate sub-topics or key concepts of the

topic or the domain.

The proposed system consists of four main parts, namely “Data Gatherer”,

“Data Extraction / Preprocessing”, “Data Processing”, and “Post Processing” which

are explained in detail below:

Data Gatherer

Data Gatherer is responsible for collecting all necessary data to process. The

system can work with data both from Internet and from a database which can be used

for caching and fast retrieval purposes. The user specifies the main topic (keyword)

to be searched for, decides whether a domain limitation would be applied, such as

only .edu, or .com sites, when retrieving the list of pages, and the number of pages to

be searched. In this study, we use Google (http:www.google.com/) as the search

 43

engine to query Internet. Google provides GoogleWebApi1 for research purposes.

Using this API, the system collects links of top ranking pages from the search

engine. Google API returns at most 10 links for every query, so that the system

recursively requests more pages, until the user specified amount is retrieved.

In data gathering phase, if a page downloaded does not have HTML based

information, i.e. the page does not contain <HTML> or <BODY> tags, or the page is

a .pdf, or .ps formatted document or any error occurs during the preprocessing steps

then that page is omitted, and a new page is requested from the search engine.

Data Extraction / Preprocessing:

Before starting to work with the pages downloaded, some filtering is applied.

The pages, which generally do not contain sub-topics or key concepts, such as

publication listing pages of researchers, forum discussion pages, university or

departmental pages, do not need to be processed. For this reason, if any of the

following phrases (“in proceeding”, “journal”, “next message”, “previous message”,

“reply to”) exists more than three times in any of the pages, than that page is

considered to be a noisy document, and its contents are skipped entirely. The

resulting documents serves as the source for sub-topic or key concept discovery.

If a page is not filtered out in result of above filtering conditions, then the

page content needs to be parsed. The parsing of an HTML document is both

extracting the tag information and also textual information. Web page authors use

several HTML markup tags to emphasize important terms or concepts in their

documents. Examples of these emphasizing tags include:

<h1>,<h2>,<h3>,<h4>,,,<big>,<i>,,<u>,,<dt>.

1 For detailed information, http://www.google.com/apis/.

 44

We suggest that among these tags, the most important tag for our task is “list”

 tag, because HTML supports changing the visualization of header tags

(<h1>,...,<h4>), or font tags (, <i>) using cascading style sheets. However, list

tags are used to organize the structure of the Web page, not only for visualization

purposes. Also, we propose that, if a page contain in-depth information about a topic,

it also contains a list of important topics in anywhere of the page.

As a last step in data preprocessing; the extracting of list items is not

sufficient to start processing. We also ignore some of the list items that can not be

sub-topic or key concepts of a topic. A list item is removed if it contains:

• A salutation title (e.g., Mr., Dr, Professor)

• An URL or an email address

• Terms related to a publication (conference, proceedings, journal)

• Digits (e.g., WWW10, KDD2003, SIGMOD99)

• Too lengthy (that is it is unlikely to describe a sub-topic), we use 15

words as the upper limit for a useful list item.

Data Processing

We perform two different analyses on list items. Firstly, considering that we

are looking for the sub-topics or key concepts, they are complete phrases and

accepted in all of the topic area as they are. So, we may not need to apply stemming

to the words, and also each list item indicates may be a candidate for our sub-topic.

We collect list items from Web pages and check their overall frequency with our

threshold, and those who pass the threshold represent our candidates.

Secondly, we split all the list item phrases into words, and perform stopwords

removal and word stemming, and at the end obtain a word list. Stopwords are words

that occur too frequently in documents and have little informational meanings.

 45

Stemming finds the root form of a word by removing its suffix. We use Porter’s

algorithm for stemming.

Mine frequent occurring phrases: Each piece of texts extracted in data

preprocessing step is stored in a dataset called a transaction set. We then apply an

association rule mining algorithm (which is based on the Apriori algorithm) to find

frequent itemsets.

When using each word separately, than our itemsets can be defined as a set of

words those occur together in list items. In both ways, we apply Apriori algorithm to

our itemsets, and also analyze the effects of the number of pages, or site domain

restrictions, etc, to our findings.

The Apriori algorithm works in two steps. In the first step, it finds all frequent

itemsets 2 from a set of transactions that satisfy a user-specified minimum support.

In the second step, it generates rules from the discovered frequent itemsets. For our

task, we only need the first step, i.e., finding frequent itemsets, which are candidate

sub-topics. In addition, we only need to find frequent itemsets with three words or

fewer in this work as we believe that a salient concept contains no more than three

words.

Post Processing

After applying Apriori algorithm, we perform some post-processing steps to

clear out the unrelated / unnecessary findings and results.

We need to explain that when using separate words in itemsets, then another

problem arises after applying association, namely the order of the words. The reason

is that the Apriori algorithm handles each transaction and frequent itemset as a bag of

items (or words) without the notion of sequence. To overcome this problem, we

check our list items and get the most frequent usage as our order.

 46

The list of candidate phrases are checked with the entire list items. The

following heuristic is applied thereafter: If there is not any list item that is equal to

the candidate phrase, then this candidate phrase is unlikely to be a main sub-topic

and it is thus removed. This heuristic is obvious because if the words in the itemset

always appear with some other words together as list items, it is unlikely to be an

important concept.

Another step to eliminate itemsets that are unlikely to be sub-topics, we

perform a scoring rule to the itemsets. Unlike (Liu, 2003), who removed some

generic frequent words heuristically such as, “abstract”, “introduction”, “summary”,

“acknowledgement”, “conclusion”, “references”, “projects”, and “research”, we try

to give topic-relevancy scores to candidate sub-topics and list them in order to the

user.

The scoring process works as follows; using Google Web API, we collect the

number of estimated pages containing the keyword, the candidate phrases, and both.

If the number of pages containing a candidate phrase is more than the number of

pages containing the keyword, then these candidate phrases are removed. By this

way, we systematically remove frequent, generic words used in Internet from our

candidate list. Moreover, by default Google Web API also throws exceptions if a

search query is a common word used in Web pages. In results chapter, we explain the

scoring and candidate elimination process more in detail.

Additionally, in this study, we build HTML tag tree for the pages containing

any of the resulting candidate phrases, so that we are able to give some more

emphasis on those phrases whose parent nodes includes the query keyword.

Basically, an HTML tag tree consists of a root <html> tag, and different tags and text

as tree nodes. However, many Web pages contain ill-structured HTML tags, of

 47

which the problem is explained in detail on our previous methodology. The process

of converting a “dirty” HTML document into a well-formed one is called tidying an

HTML page2. It includes insertion of missing tags and reordering of tags in the

“dirty” page. In our study, we use HTML tag tree just another reference for

emphasizing some of the candidate phrases.

2 http://www.w3.org/People/Raggett/tidy/ and http://tidy.sourceforge.net

 48

CHAPTER VI.

TOPIC FINDING RESULTS

In this study, our main goal is finding important keywords or sub-topics

related to a given query. We experimented our proposed model with different

queries, different number of pages, different domains and also with and without

stemming implementations. The queries used in the experiments are selected from

both traditional and new emerging computer science related topics, such as “artificial

intelligence”, “bioinformatics”, “data mining”, “Web mining” and “computer

vision”.

All query words are experimented in 100 pages without domain limitations,

stemming implementations, and in word based associations. In addition, to analyze

the effects of variables such as domain selection, stemming and word / phrase based

associations, “artificial intelligence” is selected as our base case. Table 2 shows our

test cases in detail. Appendix A consists of the candidate phrases founded for

“artificial intelligence” with different parameters.

Both as a candidate removal post-processing step and as a way to order the

candidates in order of importance, we compute different relevance scores (S) using

number of pages returned from search engine for keyword query (k), for candidate

phrase (CP), and both combined (b). Using these three numbers, we computed six

 49

different relevance scores shown in Table 3. S5 and S6 computed as the together

occurrence probabilities of phrases. In S1, “sqrt (n(CP) * n(k))”, and in S3, “n(b)2”, is

used to eliminate the effects of units, and compared to the equation S2 the computed

scores were more reliable.

Table 2. Topic Finding Test Cases

Table No Keyword Word/Phrase Stemming # of Pages Domain

4 Artificial Intelligence W N 100 all

5 Bioinformatics W N 100 all

6 Artificial intelligence W N 100 .com

7 Artificial intelligence W N 100 .edu

8 Data mining W N 100 all

9 Web mining W N 100 all

10 Computer vision W N 100 all

11 Artificial intelligence W N 200 all

12 Artificial intelligence W N 50 all

13 Artificial intelligence W Y 100 all

14 Artificial intelligence P N 100 all

15 Data mining P N 100 all

In Table 4, all candidate phrases for artificial intelligence collected from 100

pages without stemming implementations and using word based associations are

listed. This list is divided into three parts. Type III candidates are those phrases

which occur more than query keyword and thus eliminated at first step. Google does

not even return an estimated number of pages for the candidates at the bottom of the

list. Since we are looking for key concepts or related sub-topics, we do not want to

include more general domains into our results. For example, robotics is a highly

related concept with artificial intelligence (relevance scores are also high), but we

can say that it is a more general research area than the AI.

 50

Table 3. Scoring Measures CP (# candidate phrase), k (# keyword), b (# both)

S1 = n(b) / sqrt (n(CP) * n(k)) (2)

S2 = n(b) / n(CP) * n(k) (3)

S3 = n(b)2 / n(CP) * n(k) (4)

S4 = n(b) / max (n(k) , n(CP)) (5)

S5 = n(CP) / n(k) (6)

S6 = n(b) / n(CP) (7)

The difference between the Type I and Type II phrases are determined by the

relevance scores. After our experiments are completed, we analyzed the relevancy

scores and concluded that using a 0.005 threshold score in S1 would give results with

high precision. For Type II candidates we can say that, most of them are not widely

accepted as a relevant topic, and thus their relevance scores are low. Although

“example systems” may be a related topic, our selection system removes it from our

result set. Type I candidates are high occurring phrases, especially related to the

keyword. These Type I candidates are listed in relevance score S1 descending order.

According to our results in Table 4, a total of 14 candidates are available, and

machine learning is the most related and used topic in artificial intelligence with the

given experimental conditions. All of these 14 Type I candidates are related concepts

of “artificial intelligence”. For Type I candidate phrases, we observe that they have

high precision. However, we can not know all concepts related to “artificial

intelligence”, so that we are not able to comment on the recall of these results, but in

our opinion, 10 or more Type I candidate phrases of a topic would be satisfactory for

our study.

 51

Table 4. Artificial intelligence – Word based – w/o stemming - 100 pages / n(k) = 76,700,000

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

knowledge representation * 8,590,000 3,080,000 0.1199931495 0.0000000047 0.0143983559 0.0401564537 0.0401564537 0.3585564610

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263

İnference 43,000,000 5,170,000 0.0900240679 0.0000000016 0.0081043328 0.0674054759 0.0674054759 0.1202325581

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061

Cybernetics * 9,460,000 1,270,000 0.0471476956 0.0000000018 0.0022229052 0.0165580183 0.0165580183 0.1342494715

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873

turing test 925,000 363,000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.3924324324

speech recognition * 14,800,000 1,140,000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0770270270

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104

Prolog 19,000,000 1,050,000 0.0275052006 0.0000000007 0.0007565361 0.0136897001 0.0136897001 0.0552631579

fuzzy set theory 323,000 81,500 0.0163741463 0.0000000033 0.0002681127 0.0010625815 0.0010625815 0.2523219814

T
Y

P
E

 I

procedural knowledge 325,000 60,700 0.0121576414 0.0000000024 0.0001478082 0.0007913950 0.0007913950 0.1867692308

example systems 165,000 13,800 0.0038791755 0.0000000011 0.0000150480 0.0001799218 0.0001799218 0.0836363636

formatting instructions 269,000 16,200 0.0035664915 0.0000000008 0.0000127199 0.0002112125 0.0002112125 0.0602230483

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951

artificial life faq 1,520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.1256578947 T
Y

P
E

 I
I

remaining topics 46,000 438 0.0002331833 0.0000000001 0.0000000544 0.0000057106 0.0000057106 0.0095217391

Automation * 258,000,000 6,820,000 0.0484815883 0.0000000003 0.0023504644 0.0264341085 0.0889178618 0.0264341085

Bibliography 214,000,000 1,670,000 0.0130350260 0.0000000001 0.0001699119 0.0078037383 0.0217731421 0.0078037383

Courses 1,030,000,000 5,920,000 0.0210622815 0.0000000001 0.0004436197 0.0057475728 0.0771838331 0.0057475728

Dates 764,000,000 1,640,000 0.0067748469 0.0000000000 0.0000458986 0.0021465969 0.0213820078 0.0021465969

Discussion 1,910,000,000 16,800,000 0.0438929647 0.0000000001 0.0019265924 0.0087958115 0.2190352021 0.0087958115

Exercises 151,000,000 718,000 0.0066717273 0.0000000001 0.0000445119 0.0047549669 0.0093611473 0.0047549669 T
Y

P
E

 I
II

Generation 926,000,000 14,500,000 0.0544082587 0.0000000002 0.0029602586 0.0156587473 0.1890482399 0.0156587473

 52

Groups 1,850,000,000 9,170,000 0.0243436553 0.0000000001 0.0005926136 0.0049567568 0.1195567145 0.0049567568

Materials 1,690,000,000 11,000,000 0.0305528446 0.0000000001 0.0009334763 0.0065088757 0.1434159061 0.0065088757

Membership 1,010,000,000 1,280,000 0.0045988750 0.0000000000 0.0000211497 0.0012673267 0.0166883963 0.0012673267

Philosophy 491,000,000 7,500,000 0.0386476272 0.0000000002 0.0014936391 0.0152749491 0.0977835724 0.0152749491

Robotics 80,300,000 6,390,000 0.0814226820 0.0000000010 0.0066296531 0.0795765878 0.0833116037 0.0795765878

Sponsors 601,000,000 870,000 0.0040521390 0.0000000000 0.0000164198 0.0014475874 0.0113428944 0.0014475874

Summary 1,150,000,000 5,180,000 0.0174414729 0.0000000001 0.0003042050 0.0045043478 0.0675358540 0.0045043478

Workshops 530,000,000 1,340,000 0.0066461354 0.0000000000 0.0000441711 0.0025283019 0.0174706649 0.0025283019

Article ---

Publications ---

Print ---

Resources ---

Help ---

History ---

Home ---

Links ---

Search ---

Software ---

News ---

Code ---

Events ---

 53

It is observable in Table 4, that some related concepts are not

considered even as a Type II concept, such as “robotics”, and “philosophy”,

although they are highly related to artificial intelligence in many sub

domains. However, considering our main goal is to find sub-topics or sub-

concepts, it does not pose any problem. We can just imagine them as being

more general concepts, having artificial intelligence as a sub-domain.

In Table 5, Table 6, Table 7, and Table 8, Type I and Type II results

for keywords, “bioinformatics”, “data mining”, “Web mining” and

“computer vision” is given respectively. Those candidate phrase lists have

similar characteristics. First of all it is notable that number of Type I and

Type II phrases for “bioinformatics”, “Web mining” and “data mining”

keywords are very low. There are two main reasons we can think of. First,

the keyword domain is quite small compared to artificial intelligence.

Hence, some of the related concepts are easily eliminated by the first

removal step as being a more general concept. Secondly, the pages retrieved

by the system may not contain many informative lists, and those who have

lists may not contain common concepts. If we would increase the number of

pages to crawl than more candidates could be found; we can see that

candidates from 200 pages for AI in Table 11, is about two times more than

the candidates from 100 pages, Table 4.

In addition, “data mining” Type II results ‘zerosum game theory’

display another fact. Because of the parser implementation in our study, the

‘-‘ character is removed from candidates and thus, search engine results

only 2 pages for our candidate.

 54

Table 5. Bioinformatics – Word – w/o stemming - no domain limitations / n(k) = 92,600,000

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

sequence analysis * 15,000,000 5,340,000 0.1432815049 0.0000000038 0.0205295896 0.0576673866 0.0576673866 0.3560000000

Genomes 27,900,000 2,220,000 0.0436762536 0.0000000009 0.0019076151 0.0239740821 0.0239740821 0.0795698925

Motif * 40,000,000 1,170,000 0.0192242928 0.0000000003 0.0003695734 0.0126349892 0.0126349892 0.0292500000
Genome databases 283,000 82,800 0.0161745284 0.0000000032 0.0002616154 0.0008941685 0.0008941685 0.2925795053

Matlab 30,800,000 318,000 0.0059545133 0.0000000001 0.0000354562 0.0034341253 0.0034341253 0.0103246753 T
Y

P
E

 I

biomolecular modeling 29,900 9,430 0.0056672270 0.0000000034 0.0000321175 0.0001018359 0.0001018359 0.3153846154

gcg help page 23 11 0.0002383545 0.0000000052 0.0000000568 0.0000001188 0.0000001188 0.4782608696

new technology search 76,200 130 0.0000489396 0.0000000000 0.0000000024 0.0000014039 0.0000014039 0.0017060367

safari books online 399,000 920 0.0001513547 0.0000000000 0.0000000229 0.0000099352 0.0000099352 0.0023057644

biotechnology information resources 422 345 0.0017452489 0.0000000088 0.0000030459 0.0000037257 0.0000037257 0.8175355450

Networ 1,360,000 649 0.0000578322 0.0000000000 0.0000000033 0.0000070086 0.0000070086 0.0004772059

academic solutions 2,600,000 580 0.0000373797 0.0000000000 0.0000000014 0.0000062635 0.0000062635 0.0002230769

home networking 15,400,000 16,700 0.0004422325 0.0000000000 0.0000001956 0.0001803456 0.0001803456 0.0010844156

resources home 7,100,000 78,700 0.0030693051 0.0000000001 0.0000094206 0.0008498920 0.0008498920 0.0110845070

dsc form 263 23 0.0001473820 0.0000000009 0.0000000217 0.0000002484 0.0000002484 0.0874524715

ncbi repository * 283 206 0.0012725314 0.0000000079 0.0000016193 0.0000022246 0.0000022246 0.7279151943

genbank overview 710 155 0.0006045010 0.0000000024 0.0000003654 0.0000016739 0.0000016739 0.2183098592

T
Y

P
E

 I
I

account request 1,060,000 817 0.0000824639 0.0000000000 0.0000000068 0.0000088229 0.0000088229 0.0007707547

 55

Table 6. Data Mining – Word – w/o stemming – no domain limitations / n(k) = 61,000,000

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

Clustering 49,000,000 4,340,000 0.0793828656 0.0000000015 0.0063016393 0.0711475410 0.0711475410 0.0885714286

neural networks * 19,700,000 1,370,000 0.0395205097 0.0000000011 0.0015618707 0.0224590164 0.0224590164 0.0695431472

Datamining 2,510,000 327,000 0.0264268850 0.0000000021 0.0006983802 0.0053606557 0.0053606557 0.1302788845

bayesian networks * 1,390,000 185,000 0.0200909009 0.0000000022 0.0004036443 0.0030327869 0.0030327869 0.1330935252 T
Y

P
E

 I

search algorithms 1,900,000 71,400 0.0066321829 0.0000000006 0.0000439858 0.0011704918 0.0011704918 0.0375789474

nonlinear regression methods * 776 87 0.0003998743 0.0000000018 0.0000001599 0.0000014262 0.0000014262 0.1121134021

zerosum game theory 2 0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

collection development 11,600,000 23,200 0.0008721558 0.0000000000 0.0000007607 0.0003803279 0.0003803279 0.0020000000

Gaussians 793,000 26,100 0.0037526581 0.0000000005 0.0000140824 0.0004278689 0.0004278689 0.0329129887

T
Y

P
E

 I
I

Crossvalidation 56,500 839 0.0004519317 0.0000000002 0.0000002042 0.0000137541 0.0000137541 0.0148495575

Table 7. Web mining – Word – w/o stemming – no domain limitations / n(k) = 708,000

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

Web usage mining * 132,000 49700 0.1625746375 0.0000005318 0.0264305128 0.0701977401 0.0701977401 0.3765151515

user profiling 208,000 12900 0.0336156423 0.0000000876 0.0011300114 0.0182203390 0.0182203390 0.0620192308

T
Y

P
E

I

Web information extraction * 28,300 769 0.0054327096 0.0000000384 0.0000295143 0.0010861582 0.0010861582 0.0271731449

bamshad mobasher usa 12 12 0.0041169348 0.0000014124 0.0000169492 0.0000169492 0.0000169492 1.0000000000

intelligent agent links 134 6 0.0006160021 0.0000000632 0.0000003795 0.0000084746 0.0000084746 0.0447761194

traditional data mining 14,600 241 0.0023704128 0.0000000233 0.0000056189 0.0003403955 0.0003403955 0.0165068493

selected pdfs 606,000 90 0.0001374009 0.0000000002 0.0000000189 0.0001271186 0.0001271186 0.0001485149

multimedia elements 676,000 72 0.0001040741 0.0000000002 0.0000000108 0.0001016949 0.0001016949 0.0001065089 T
Y

P
E

 I
I

xml pages 231,000 135 0.0003338191 0.0000000008 0.0000001114 0.0001906780 0.0001906780 0.0005844156

 56

Table 8. Computer vision – Word – w/o stemming – no domain limitations

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

object recognition * 2,390,000 532,000 0.0876904546 0.0000000145 0.0076896158 0.0345454545 0.0345454545 0.2225941423

feature extraction 2,540,000 483,000 0.0772271330 0.0000000123 0.0059640301 0.0313636364 0.0313636364 0.1901574803

machine vision 6,720,000 554,000 0.0544583862 0.0000000054 0.0029657158 0.0359740260 0.0359740260 0.0824404762

medical image analysis 281,000 106,000 0.0509556499 0.0000000245 0.0025964783 0.0068831169 0.0068831169 0.3772241993

digital image processing * 2,180,000 246,000 0.0424567259 0.0000000073 0.0018025736 0.0159740260 0.0159740260 0.1128440367

random sample consensus 29,500 22,300 0.0330851795 0.0000000491 0.0010946291 0.0014480519 0.0014480519 0.7559322034

geometric hashing 52,400 28,900 0.0321715391 0.0000000358 0.0010350079 0.0018766234 0.0018766234 0.5515267176

Egomotion 57,200 30,000 0.0319641294 0.0000000341 0.0010217056 0.0019480519 0.0019480519 0.5244755245

particle filtering 126,000 35,100 0.0251977338 0.0000000181 0.0006349258 0.0022792208 0.0022792208 0.2785714286

scene interpretation 67,500 24,200 0.0237357587 0.0000000233 0.0005633862 0.0015714286 0.0015714286 0.3585185185

Preprocessing 6,180,000 222,000 0.0227561284 0.0000000023 0.0005178414 0.0144155844 0.0144155844 0.0359223301

Convolution 6,520,000 219,000 0.0218554602 0.0000000022 0.0004776611 0.0142207792 0.0142207792 0.0335889571

hough transforms 30,800 15,000 0.0217798829 0.0000000316 0.0004743633 0.0009740260 0.0009740260 0.4870129870

sobel operator 41,400 16,100 0.0201634733 0.0000000253 0.0004065657 0.0010454545 0.0010454545 0.3888888889

image acquisition * 2,460,000 117,000 0.0190089421 0.0000000031 0.0003613399 0.0075974026 0.0075974026 0.0475609756

morphological image processing 40,900 12,700 0.0160022742 0.0000000202 0.0002560728 0.0008246753 0.0008246753 0.3105134474

multiresolution analysis 235,000 27,300 0.0143505437 0.0000000075 0.0002059381 0.0017727273 0.0017727273 0.1161702128
fourier transform 10,700,000 171,000 0.0133212157 0.0000000010 0.0001774548 0.0111038961 0.0111038961 0.0159813084

affective computing 161,000 13,700 0.0087005613 0.0000000055 0.0000756998 0.0008896104 0.0008896104 0.0850931677

T
Y

P
E

 I

optical character recognition * 3,040,000 50,600 0.0073952586 0.0000000011 0.0000546898 0.0032857143 0.0032857143 0.0166447368

vision list digest 16,900 670 0.0013133216 0.0000000026 0.0000017248 0.0000435065 0.0000435065 0.0396449704

extracting corner features 22 20 0.0010865715 0.0000000590 0.0000011806 0.0000012987 0.0000012987 0.9090909091

medical image faq 708 95 0.0009098014 0.0000000087 0.0000008277 0.0000061688 0.0000061688 0.1341807910

stereo matching notes 3 3 0.0004413674 0.0000000649 0.0000001948 0.0000001948 0.0000001948 1.0000000000

detecting blob features 10 9 0.0007252407 0.0000000584 0.0000005260 0.0000005844 0.0000005844 0.9000000000

second order methods 40,400 230 0.0002915928 0.0000000004 0.0000000850 0.0000149351 0.0000149351 0.0056930693

mmvl mediawiki 18 15 0.0009009375 0.0000000541 0.0000008117 0.0000009740 0.0000009740 0.8333333333

phd theses 1,150,000 15,300 0.0036356507 0.0000000009 0.0000132180 0.0009935065 0.0009935065 0.0133043478

T
Y

P
E

 I
I

pixelwise thresholding 22 15 0.0008149286 0.0000000443 0.0000006641 0.0000009740 0.0000009740 0.6818181818

 57

create project 11,300,000 501 0.0000379785 0.0000000000 0.0000000014 0.0000325325 0.0000325325 0.0000443363

general resources 6,150,000 1,060 0.0001089201 0.0000000000 0.0000000119 0.0000688312 0.0000688312 0.0001723577

priority support 12,000,000 266 0.0000195673 0.0000000000 0.0000000004 0.0000172727 0.0000172727 0.0000221667

masters theses 184,000 395 0.0002346539 0.0000000001 0.0000000551 0.0000256494 0.0000256494 0.0021467391

 58

For “Bioinformatics” keyword, we have found 6 Type I candidate phrases

and 12 Type II candidate phrases. “Sequence analysis” is found to be the most

related concept with bioinformatics. In my opinion, using S1 score with a threshold

0.005 eliminated unrelated concepts successfully. We think that the candidate

“Matlab” shows that it is the most widely used application in “bioinformatics”, and

thus come out to be a Type I candidate.

The Type I candidate phrases for “Data mining” and “Web mining” (shown

in Table 6 and Table 7, respectively) are found to be related with their respective

concepts. We can also see that some related phrases in Type II candidates, but with

S1 score threshold we were able to eliminate those candidates, such as “gaussians”

and “crossvalidation”. Candidate phrase lists of these keywords also do not contain

some very important concepts like “classification”, “association” for “data mining”,

and “web structure mining”, “web content mining” for “web mining”. We can say

that for some cases, although high precision is observed, the candidate phrases may

have low recall. The main reason is that the web pages processed do not contain

many list items.

“Computer vision” resulted in 20 Type I candidate phrases and 13 Type II

candidate phrases. Again, our 0.005 threshold resulted in successful elimination

unrelated candidates. In my opinion, all of Type I candidates are highly related to

“computer vision”.

According to the Table 9 and Table 10 shown in Appendix A, .edu domain

have quite different candidate phrases compared to the .com domain. While

educational sites have information about agent related topics about AI, the

commercial sites have more candidates in cybernetics, speech recognition or neural

 59

networks. Most probably the commercial sites advertise either their tools for speech

recognition security etc., or neural network application for knowledge discovery.

With the increase of the number of pages processed, the number of candidate

phrases is also increased, because the proposed system uses the same support count

for both cases. However, still the results are satisfactory and most of the candidates

are highly relevant with artificial intelligence. The same reasoning applies when

small number of pages is crawled. We can see that when only 50 pages processed the

resulting list does not contain any Type II candidates.

In tables, starred (*) candidates are those list items, whose parent nodes

include the keyword. That is, HTML tag trees are created for pages containing any of

the candidate phrases, and on this tree it is checked whether any of the list’s parent

nodes have the queried keyword. Those candidates can be emphasized more for user

notice. However, the ill-structured tags on pages make it difficult to create clean

HTML tag trees, and even enforce to skip some.

 In this chapter, we presented the results of our topic finding methodology.

The relevance scoring used was very successful in eliminating unrelated concepts.

These results show the methodology result in high precision, i.e. Type I of candidate

phrases are found to be highly related to the keywords. However, only a few Type I

candidate phrases could be found for some keywords, such as “Web mining”,

“bioinformatics” or “data mining”.

In the last chapter, we conclude our results and give some general suggestions

for future work, on both topic-finding methods and focused crawler evaluations.

 60

CHAPTER VII.

CONCLUSIONS

In this thesis, we studied focused crawling algorithm performances and topic

finding through Web pages. In the first part, we implemented several algorithms in

the literature and compared their overall performances at different levels. In the

second part, an automatic topic discovery methodology have developed and checked

its consistency for different parameters. This section points out what we have done

and what could be done as future work, for each of the parts separately.

We started by surveying related work to our thesis in Chapter 2, and then

explained our two studies in detail. The first study dealt with focused crawling and

we worked in a series of problems that appeared during the design and

implementation of a Web crawler. In Chapter 3, we described Web crawling in the

context of information retrieval, and the problems we have solved for the crawler

process and given the algorithms we have implemented.

In Chapter 4, we presented our performance results and explained our

observations and conclusions. For future work in focused crawling algorithm

evaluation, we can observe the performance of adaptive or intelligent crawlers, or

pre-trained algorithms. In addition, different keywords, different seed and target sets,

network and CPU usage can be included into the test cases. In literature, several

studies have been done on the comparison of short and long running crawls.

 61

For topic crawling study we have developed and implemented an automatic

discovery methodology. The results are presented in Chapter 6, and highly

satisfactory in terms of their precision. For finding importance of candidate phrases

we used Google’s estimations of results, and computed several scores. Small domain

areas did not result well in terms of number of candidates, but again with high

precision. This study can be improved, by using a recursive approach for candidate

finding, such that each candidate phrase’s list can be queried on Google. That would

improve the number of candidate phrases overall. In addition, rather than using

limitation to number of pages, we can use number of lists to be processed, such that

more candidate phrases can be evaluated.

There are also some general problems for Web mining, such as the high

amount of information on the Web, but only few in quality information. Web search

is difficult today and likely that Web crawling will continue to be a difficult problem,

at least in the next years, and we expect several challenges. Multimedia information

usage increases over the Web sites and number of Web posting blogs, forums will be

larger than the number of informative Web pages, further reducing the signal-to-

noise ratio of the Web. Finally, pages with semantic markup could become a

significant fraction of Web pages, radically changing the problem of Web search.

 62

BIBLIOGRAPHY

Aggarwal, C., Al-Garawi, F. & Yu, P. (2001). Intelligent Crawling on the World
Wide Web with Arbitrary Predicates. Proceedings of the 10th International Word

Wide Web Conference, Hong Kong, May 2001.

Amento, B., Terveen, L. & Hill, W. (2000). Does “authority” mean quality?
Predicting expert quality ratings of Web documents. Proceedings of the 23th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2000.

Ben-Shaul, I., Herscovici, M., Jacovi, M., Maarek, Y., Pelleg, D., Shtalhaim, M.,
Soroka, V., & Ur, S. (1999). ‘Adding support for Dynamic and Focused Search with
Fetuccino’. Computer Networks 31(11–16), 1653–1665.

Bharat, K., & Henzinger, M. (1998). ‘Improved Algorithms for Topic Distillation in
Hyperlinked Environments’. Proc. 21st ACM SIGIR Conf. on Research and

Development in Information Retrieval. pp. 104–111.

Brandman, O., Cho, J., Garcia-Molina, H., & Shivkumar, N. (2000). Crawler friendly
Web Servers. Proceedings of the Performance and Architecture of Web Servers

Workshop, Santa Clara, California , June 2000.

Borges, J., & Levene, M. (1999). Data mining of user navigation patterns. In
Proceedings of the WEBKDD ’99 Workshop on Web Usage Analysis and User

Profiling, August 15, 1999, San Diego, CA, USA, pages 31-36.

Brin, S. & Page, L. (1998). The anatomy of a large-scale hypertextual Web search
engine. Computer Networks, 30 (1-7): 107-117.

Broder, A. (2002). A taxonomy of Web search. SIGIR Forum, 36 (2):3-10, 2002.

Chakrabarti, S. (2003). Mining the Web, USA, Morgan Kaufmann.

Chakrabarti, S., Van den Berg, M., & Dom, B. (1999a). Focused crawling: A new
approach to topic-specific Web resource discovery. Computer Networks, 31(11-
16):1623-1640.

Chakrabarti, S., Punera, K., & Subramanyam, M. (1999b). Accelerated focused
crawling through online relevance feedback”. Proceedings of the 8th International

WWW Conference, Toronto, Canada, May. 1999

Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., & Kleinberg, J.
(1998). ‘Automatic resource compilation by analyzing hyperlink structure and
associated text’. Computer Networks 30(1–7), 65–74.

 63

Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient crawling throuh URL
ordering. Computer Networks, 30(1-7):161-172, 1998.

Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and
pattern discovery on the world wide Web. Proceedings of the 9th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI’97).

De Bra, P.M.E., & Post , R.D.J. (1994). Information Retrieval in the World-Wide
Web: Making Client-based searching feasible. Proc. 1st International World Wide

Web Conference.

Diligenti, M., Coetzee, F., Lawrence, S., Giles, C., & Gori, M.. (2000). Focused
Crawling using Context Graphs’. In Proceedings of the 26th Internatioanl

Conference on Very Large Databases (VLDB 2000), Cairo, Egypt, September 2000.

Ehrig, M., & Maedche, A. (2003). Ontology-Focused Crawling of Web Documents.
Proceedings of the 2003 ACM symposium on Applied computing, Merlbourne,

Florida., 2003.

Etzioni, O. (1996). The world wide Web: Quagmire or gold mine. Communications

of the ACM, 39 (11): 65-68, 1996.

Hersovici, M., Jacovi, M., Maarek, Y.S., Pelleg, D., Shtalhaim, M., & Ur, S. (1998).
The shark-search algorithm – An application : Tailored Web site mapping. In

Proceedings of the WWW7, 1998.

Huang, L. (2000) A survey on Web information retrieval technologies. Tech. Rep.,
ECSL, 2000.

Henzinger, M., Motwani, R., & Siverstein, C. (2003). Challenges in Web search
engines. In Proc. 18th International Joint Conference on Artificial Intelligence,
(pp.1573-1579)

Kleinberg, J. (1998) Authoritative soruces in a hyperlinked environment. Journal of

the ACM 46, 5 (November), 604-632.

Liu, B., Chin, C. W., & Ng, H. T. (2003). Mining Topic-Specific Concepts and
Definitions on the Web, In WWW 2003, May 20-24, 2003, Budapest, Hungary.

Madria, S.K., Bhowmick, S.S., Ng, W.K., & Lim., E. P. (1999). Research issues in
Web data mining. In Proceedings of Data Warehousing and Knowledge Discovery,

First International Conference, DaWaK ’99, pages 303-312, 1999.

Menczer, F., & Belew, R. (2000), ‘Adaptive Retrieval Agents: Internalizing Local
Context and Scaling up to the Web’. Machine Learning 39(2–3), 203–242.

Menczer, F., Pant, G., Srinivasan, P., & Ruiz, M. (2001). Evaluating topic-driven
Web crawlers. Proceedings of the 24th Annual International ACM/SIGIR

Conference, New Orleans, USA, 2001.

 64

Menczer, F. (2002). Complementing search engines with online Web mining agents.
Decision Support Systems 35(2): 195-212, 2002a.

Menczer, F., Pant, G., & Srnivasan, P. (2002). Topic-driven crawlers: machine
learning issues. ACM TOIT, 2002b.

Najork, M., & Wiener, J.L. (2001) Breadth-first search crawling yields high-quality
pages. In Proc. 10th International World Wide Web Conference, 2001.

Pant, G., Srnivasan, P., & Menczer, F. (2004). Crawling the Web. Web Dynamics

2004 (pp.153-178)

Pinkerton, B. (1994). Finding what people want: Experiences with the Webcrawler.
In Proceedings of the First International World Wide Web Conference, Geneva,

Switzerland,.

Porter, M.F. (1980). An algorithm for suffix stripping. Program. 14(3) pp 130-137.

Rennie, J., & McCallum, A. (1999). ‘Using reinforcement learning to spider the Web
efficiently’. In Proc. 16th International Conf. on Machine Learning. pp. 335–343,
Morgan Kaufmann, San Francisco, CA.

Srinivasan, P., Menczer, F., & Pant, G. (2005). A general evaluation framework for
topical crawlers. Information retrieval 8(3): 417-447

Srinivasan, P., Mitchell, J., Bodenreider, O., Pant, G., & Menczer, F. Web crawling
agents for retrieving biomedical information. In Proc. Int. Workshop on Agents in

Bioinformatics (NETTAB-02), 2002.

Tirri, H. (2003). Search in vain: challenges for internet search. IEEE Computer

(January) (pp.115-116)

 65

APPENDIX A

Table 9. Artificial intelligence – Word – w/o stemming – .com domain

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

knowledge representation * 8,590,000 3,080,000 0.1199931495 0.0000000047 0.0143983559 0.0401564537 0.0401564537 0.3585564610

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263

İnference 43,000,000 5,170,000 0.0900240679 0.0000000016 0.0081043328 0.0674054759 0.0674054759 0.1202325581

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061

Cybernetics * 9,460,000 1,270,000 0.0471476956 0.0000000018 0.0022229052 0.0165580183 0.0165580183 0.1342494715

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873

speech recognition * 14,800,000 1,140,000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0770270270

T
Y

P
E

 I

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033

artificial life faq 1,520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.1256578947

T
Y

P
E

II

remaining topics 46,000 438 0.0002331833 0.0000000001 0.0000000544 0.0000057106 0.0000057106 0.0095217391

 66

Table 10. Artificial intelligence – Word – w/o stemming - .edu

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

expert systems * 8,810,000 3,530,000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.4006810443

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370

multiagent systems 702,000 406,000 0.0553298886 0.0000000075 0.0030613966 0.0052933507 0.0052933507 0.5783475783

virtual reality 37,200,000 2,720,000 0.0509213316 0.0000000010 0.0025929820 0.0354628422 0.0354628422 0.0731182796

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104

object recognition 2,610,000 259,000 0.0183055098 0.0000000013 0.0003350917 0.0033767927 0.0033767927 0.0992337165

intelligent software agents 148,000 53,500 0.0158790765 0.0000000047 0.0002521451 0.0006975228 0.0006975228 0.3614864865

distributed computing 32,400,000 661,000 0.0132596259 0.0000000003 0.0001758177 0.0086179922 0.0086179922 0.0204012346

Chess 68,800,000 956,000 0.0131603061 0.0000000002 0.0001731937 0.0124641460 0.0124641460 0.0138953488

information integration 11,100,000 192,000 0.0065802449 0.0000000002 0.0000432996 0.0025032595 0.0025032595 0.0172972973

T
Y

P
E

 I

program committee 31,300,000 307,000 0.0062656845 0.0000000001 0.0000392588 0.0040026076 0.0040026076 0.0098083067

research overview 888,000 13,000 0.0015752126 0.0000000002 0.0000024813 0.0001694915 0.0001694915 0.0146396396

Knowledgebased systems 12,400 597 0.0006121612 0.0000000006 0.0000003747 0.0000077836 0.0000077836 0.0481451613

formatting instructions 303,000 16,200 0.0033604390 0.0000000007 0.0000112926 0.0002112125 0.0002112125 0.0534653465

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033

java version 5,650,000 23,800 0.0011432864 0.0000000001 0.0000013071 0.0003102999 0.0003102999 0.0042123894

biological motion 90,000 885 0.0003368405 0.0000000001 0.0000001135 0.0000115385 0.0000115385 0.0098333333

intelligent transportation systems 2,650,000 61,400 0.0043067311 0.0000000003 0.0000185479 0.0008005215 0.0008005215 0.0231698113

deepak kumar homepage 15 1 0.0000294820 0.0000000009 0.0000000009 0.0000000130 0.0000000130 0.0666666667

T
Y

P
E

 I
I

lisa meeden homepage 8 4 0.0001614795 0.0000000065 0.0000000261 0.0000000522 0.0000000522 0.5000000000

 67

Table 11. Artificial intelligence – Word – w/o stemming – 200 pages

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

machine learning * 16300000 6670000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

expert systems * 8810000 3530000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.4006810443

neural networks * 19000000 3880000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263

Aaai 4330000 1610000 0.0883454619 0.0000000048 0.0078049206 0.0209908735 0.0209908735 0.3718244804

natural language processing * 9450000 2240000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370

natural language 38700000 3730000 0.0684629593 0.0000000013 0.0046871768 0.0486310300 0.0486310300 0.0963824289

fuzzy logic 5280000 956000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061

image processing 48400000 2790000 0.0457913914 0.0000000008 0.0020968515 0.0363754889 0.0363754889 0.0576446281

case based reasoning * 793000 355000 0.0455191431 0.0000000058 0.0020719924 0.0046284224 0.0046284224 0.4476670870

artificial life 3160000 700000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873

automated reasoning * 685000 314000 0.0433198237 0.0000000060 0.0018766071 0.0040938722 0.0040938722 0.4583941606

cognitive science * 22800000 1810000 0.0432826128 0.0000000010 0.0018733846 0.0235984355 0.0235984355 0.0793859649

turing test 925000 363000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.3924324324

artificial neural networks 2250000 563000 0.0428567717 0.0000000033 0.0018367029 0.0073402868 0.0073402868 0.2502222222

Ontology 43900000 2100000 0.0361900641 0.0000000006 0.0013097207 0.0273794003 0.0273794003 0.0478359909

speech recognition * 14800000 1140000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0770270270

data mining * 54900000 2190000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104

intelligent agent * 1040000 268000 0.0300068524 0.0000000034 0.0009004112 0.0034941330 0.0034941330 0.2576923077

alan turing 1060000 171000 0.0189646790 0.0000000021 0.0003596590 0.0022294654 0.0022294654 0.1613207547

fuzzy set theory 323000 81500 0.0163741463 0.0000000033 0.0002681127 0.0010625815 0.0010625815 0.2523219814

procedural knowledge 325000 60700 0.0121576414 0.0000000024 0.0001478082 0.0007913950 0.0007913950 0.1867692308

optical character recognition * 2090000 93200 0.0073611402 0.0000000006 0.0000541864 0.0012151239 0.0012151239 0.0445933014

program committee 31300000 307000 0.0062656845 0.0000000001 0.0000392588 0.0040026076 0.0040026076 0.0098083067

T
Y

P
E

 I

graph searching 46100 9910 0.0052701807 0.0000000028 0.0000277748 0.0001292047 0.0001292047 0.2149674620

intelligent transportation systems 2650000 61400 0.0043067311 0.0000000003 0.0000185479 0.0008005215 0.0008005215 0.0231698113

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.5442622951

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.5399061033

T
Y

P
E

II

artificial life faq 1520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.1256578947

 68

example systems 165000 13800 0.0038791755 0.0000000011 0.0000150480 0.0001799218 0.0001799218 0.0836363636

technical reports 67700000 269000 0.0037330195 0.0000000001 0.0000139354 0.0035071708 0.0035071708 0.0039734121

formatting instructions 303000 16200 0.0033604390 0.0000000007 0.0000112926 0.0002112125 0.0002112125 0.0534653465

course home 3930000 14200 0.0008178890 0.0000000000 0.0000006689 0.0001851369 0.0001851369 0.0036132316

discussion group 38400000 84800 0.0015625451 0.0000000000 0.0000024415 0.0011056063 0.0011056063 0.0022083333

Website game 43000 1520 0.0008369734 0.0000000005 0.0000007005 0.0000198175 0.0000198175 0.0353488372

remaining topics 46000 438 0.0002331833 0.0000000001 0.0000000544 0.0000057106 0.0000057106 0.0095217391

Syllabus 58300000 279000 0.0041722685 0.0000000001 0.0000174078 0.0036375489 0.0036375489 0.0047855918

Webbased 1500000 11300 0.0010535014 0.0000000001 0.0000011099 0.0001473272 0.0001473272 0.0075333333

İdo 77300000 57200 0.0007428628 0.0000000000 0.0000005518 0.0007399741 0.0007457627 0.0007399741

Table 12. Artificial intelligence – Word – w/o stemming – 50 pages

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2042105263

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.1810606061

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.2215189873 T
Y

P
E

 I

turing test 925,000 363,000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.3924324324

 69

Table 13. Artificial intelligence – Word – Stemming – 100 pages

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

expert systems * 8,810,000 3,530,000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.2165644172

knowledge representation * 8,590,000 3,080,000 0.1199931495 0.0000000047 0.0143983559 0.0401564537 0.0401564537 0.1889570552

neural networks * 19,000,000 3,880,000 0.1016382651 0.0000000027 0.0103303369 0.0505867014 0.0505867014 0.2380368098

İnference 43,000,000 5,170,000 0.0900240679 0.0000000016 0.0081043328 0.0674054759 0.0674054759 0.3171779141

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.1374233129

fuzzy logic 5,280,000 956,000 0.0475054295 0.0000000024 0.0022567658 0.0124641460 0.0124641460 0.0586503067

Cybernetics * 9,460,000 1,270,000 0.0471476956 0.0000000018 0.0022229052 0.0165580183 0.0165580183 0.0779141104

artificial life 3,160,000 700,000 0.0449631591 0.0000000029 0.0020216857 0.0091264668 0.0091264668 0.0429447853

turing test 925,000 363,000 0.0430961106 0.0000000051 0.0018572747 0.0047327249 0.0047327249 0.0222699387

Ontology 43,900,000 2,100,000 0.0361900641 0.0000000006 0.0013097207 0.0273794003 0.0273794003 0.1288343558

speech recognition * 14,800,000 1,140,000 0.0338357893 0.0000000010 0.0011448606 0.0148631030 0.0148631030 0.0699386503

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.1343558282

Prolog 19,000,000 1,050,000 0.0275052006 0.0000000007 0.0007565361 0.0136897001 0.0136897001 0.0644171779

T
Y

P
E

 I

face recognition * 2,720,000 193,000 0.0133621141 0.0000000009 0.0001785461 0.0025162973 0.0025162973 0.0118404908

formatting instructions 269,000 16,200 0.0035664915 0.0000000008 0.0000127199 0.0002112125 0.0002112125 0.0009938650

example systems 165,000 13,800 0.0038791755 0.0000000011 0.0000150480 0.0001799218 0.0001799218 0.0008466258

fuzzy logic faq 305 166 0.0010853267 0.0000000071 0.0000011779 0.0000021643 0.0000021643 0.0000101840

neural networks faq 639 345 0.0015583715 0.0000000070 0.0000024285 0.0000044980 0.0000044980 0.0000211656 T
Y

P
E

 I
I

artificial life faq 1,520 191 0.0005593890 0.0000000016 0.0000003129 0.0000024902 0.0000024902 0.0000117178

 70

Table 14. Artificial intelligence – Phrase – w / o Stemming – 100 pages

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

optical character recognition * 2,090,000 93,200 0.0073611402 0.0000000006 0.0000541864 0.0012151239 0.0012151239 0.0445933014

information integration 6,580,000 226,000 0.0100599961 0.0000000004 0.0001012035 0.0029465450 0.0029465450 0.0343465046

natural language processing * 9,450,000 2,240,000 0.0832021276 0.0000000031 0.0069225940 0.0292046936 0.0292046936 0.2370370370

expert systems * 8,810,000 3,530,000 0.1357966540 0.0000000052 0.0184407312 0.0460234681 0.0460234681 0.4006810443

machine learning * 16,300,000 6,670,000 0.1886402441 0.0000000053 0.0355851417 0.0869621904 0.0869621904 0.4092024540

data mining * 54,900,000 2,190,000 0.0337489496 0.0000000005 0.0011389916 0.0285528031 0.0285528031 0.0398907104

T
Y

P
E

 I

program committee 31,300,000 307,000 0.0062656845 0.0000000001 0.0000392588 0.0040026076 0.0040026076 0.0098083067

Table 15. Data Mining – Phrase – w / o Stemming – 100 pages

 Candidate Phrase (CP) n(CP) n(b) S1 S2 S3 S4 S5 S6

text mining * 2,600,000 590,000 0.0468490102 0.0000000037 0.0021948298 0.0096721311 0.0096721311 0.2269230769

neural networks 19,700,000 1,370,000 0.0395205097 0.0000000011 0.0015618707 0.0224590164 0.0224590164 0.0695431472

Datamining 2,510,000 327,000 0.0264268850 0.0000000021 0.0006983802 0.0053606557 0.0053606557 0.1302788845

lecture notes * 27,000,000 465,000 0.0114579297 0.0000000003 0.0001312842 0.0076229508 0.0076229508 0.0172222222

about spss 66,300 17,800 0.0088511219 0.0000000044 0.0000783424 0.0002918033 0.0002918033 0.2684766214 T
Y

P
E

 I

software and solutions 584,000 31,500 0.0052776333 0.0000000009 0.0000278534 0.0005163934 0.0005163934 0.0539383562

course home * 1,840,000 844 0.0000796652 0.0000000000 0.0000000063 0.0000138361 0.0000138361 0.0004586957

nonlinear regression methods 776 87 0.0003998743 0.0000000018 0.0000001599 0.0000014262 0.0000014262 0.1121134021

visualizing text mining 24 24 0.0006272500 0.0000000164 0.0000003934 0.0000003934 0.0000003934 1.0000000000

T
Y

P
E

II

study materials * 2,710,000 791 0.0000615215 0.0000000000 0.0000000038 0.0000129672 0.0000129672 0.0002918819

