
 

ANALYSIS AND APPLICATIONS OF DATA MINING ALGORITHMS 

 

 

 

 

 

 

 

 

 

 

 

NESLĠHAN DOĞAN 

 

 

 

 

 

 

 

 

 

BOĞAZĠÇĠ UNIVERSITY 

 

2010



 

ANALYSIS AND APPLICATIONS OF DATA MINING ALGORITHMS 

 

 

 

 

 

 

Thesis submitted to the 

Institute for Graduate Studies in the Social Sciences 

in partial fulfillment of the requirements for the degree of 

 

 

Master of Arts 

in 

Management Information Systems 

 

 

by 

NESLĠHAN DOĞAN 

 

 

 

 

 

Boğaziçi University 

2010



 

 

i 

 

 

Thesis Abstract 
 

Neslihan Doğan, “Analysis and Applications of Data Mining Algorithms” 

 
 

Classification algorithms are the most commonly used Data Mining models that are 

widely used to extract valuable knowledge from huge amounts of data. Comparing the 

classification algorithms has been interesting the data mining community for many 

years. The criteria to evaluate the classifiers are mostly the accuracy, complexity, 

robustness, scalability, integration, comprehensibility, stability and interestingness 

abilities of it. This thesis study is concerned with the accuracy, complexity and 

robustness of the classifiers. The data miner selects the model mostly with respect to 

its classification accuracy; therefore, the performance of each classifier plays a very 

crucial role. As complexity, the cpu time consumed by each classifier is implied in the 

study. The study firstly discusses the application of some classification models on 

multiple datasets in 3 stages: firstly implementing the algorithms on pure datasets, 

secondly implementing the algorithms on the same datasets where continuous 

numerical variables are discretised, thirdly implementing the algorithms on the same 

datasets where Principal Component Analysis is applied. On the results, the accuracies 

and complexities are compared. The relationship of dataset characteristics and 

implementation attributes between accuracy and complexity is also debated, and 

finally, a regression model is introduced for predicting the classifier accuracy and 

complexity with given dataset and implementation conditions. Finally, the study is 

also concerned with the robustness of the classifiers which is measured by repetitive 

experiments on noisy and cleaned datasets. 
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Tez Özeti 
 

Neslihan Doğan, “Veri Madenciliği Algoritmalarının Analizi ve Uygulanması“ 

 

Sınıflandırma algoritmaları büyük veri setlerinden kıymetli bilginin elde edilmesi 

amacıyla kullanılan Veri Madenciliği modellerinden en yaygınıdır. Yıllardır, 

sınıflandırma algoritmalarının birbirleriyle karşılaştırılması veri madenciliği 

toplumunun ilgisini çekmektedir. Genel olarak modelleri karşılaştırma kriterleri 

modelin doğruluğu, karmaşıklığı, sağlamlığı, ölçeklenebilirliği, entegrasyonu, 

anlaşılabilirliği, istikrarlılığı ve ilgi çekiciliğidir.  Bu çalışma sınıflandırma 

modellerinin doğruluk, zorluk ve sağlamlık özellikleriyle ilgilenmektedir. Veri 

madencisi genellikle modelini seçerken sınıflandırma doğruluk oranına göre karar 

verir, dolayısıyla her modelin doğruluğu önemli rol oynar. Bu çalışmada zorluk ile 

modelin harcadığı işlemci zamanı kastedilmektedir. Çalışma bazı sınıflandırma 

algoritmalarının çoklu veri setleri üzerinde 3 aşamalı deney sonuçlarını sunmaktadır: 

1. Algoritmaların ham veri setleri üzerinde uygulanması, 2. Aynı algoritmaların veri 

setlerindeki sürekli sayıların münferit aralıklara dönüştürülmesinden sonra tekrar 

edilmesi, 3.Aynı algoritmaların veri setlerinde Ana Bileşenler Çözümlemesi 

yapılmasından sonra tekrar edilmesidir. Ortaya çıkan sonuçlara göre algoritmaların 

farklı deney aşamalarındaki doğruluk ve karmaşıklık dereceleri karşılaştırılmıştır. 

Ayrıca veri setlerinin karakteristikleri, ya da uygulama detayları ile doğruluk ya da 

zorluk arasındaki ilişkiler de incelenmiş ve son olarak da veri seti ve uygulama 

özellikleri ışığında bir sınıflandıma algoritmasının doğruluk ve karmaşıklık derecesini 

tahmin edebilecek bir regresyon modeli kurulmaya çalışılmıştır. Son olarak tez 

çalışması temizlenmiş ve temizlenmemiş veri setleri üzerinde tekrarlı deneylerle 

ölçülebilen sınıflayıcıların sağlamlığı kriteriyle de ilgilenmiştir. 



 

 

iii 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my thesis advisor Assoc. Prof. Dr. Zuhal Tanrıkulu for guiding 

and facilitating my research activities. Her assistance in matters of both research and 

university bureaucracy has been greatly helpful.  I would also like to thank to my thesis 

committee members: Assoc. Prof Dr. Sevinç Gulsecen and Asst. Prof. Dr. Özgür 

Döğerlioğlu for their contributions to my study. Also my special thanks go to Aylin 

Birsen Yılmas for her kindness and great work as the format editor. Lastly, I further 

would like to thank to all of my friends, my family and my spouse Çağrı Doğan for 

their continuous encouragement and support. 



 

 

iv 

 

 

 

CONTENTS 

 

CHAPTER I.  INTRODUCTION ................................................................................ 1 
 

Data Mining Standards ............................................................................................. 2 
Classification Algorithm Assessment ....................................................................... 4 
Data Preprocessing ................................................................................................... 5 
Literature Review ..................................................................................................... 6 

 

CHAPTER 2. PURPOSE AND METHOD ................................................................. 9 
 

Research Questions ................................................................................................. 10 
Method .................................................................................................................... 11 
Data collection ........................................................................................................ 13 
Algorithms .............................................................................................................. 16 
Implementation ....................................................................................................... 18 

 

CHAPTER 3. EXPERIMENTAL RESULTS AND DISCUSSIONS ....................... 21 
 

Research question 1: Does implementing the same classification algorithm on 

multiple datasets and with different implementation techniques result in 

different performance indicators? .................................................................. 22 
Research question 2: Do the characteristics of the datasets affect the performance 

results of the classification algorithms? ......................................................... 38 
Research question 3: Does binning the continuous numerical variables in the dataset 

into discreet intervals affect the classifier accuracy? ..................................... 43 
Research question 4: Does applying principal component analysis in the dataset 

affect the classifier accuracy? ........................................................................ 44 
Research question 5: Based on the results derived from the empirical results of this 

study (applying classifiers on various dataset with different implementation 

techniques), can a model to predict the performance of the classification 

algorithm be built? ......................................................................................... 46 
Research question 6: Does implementing the same classification algorithm on 

multiple datasets and with different implementation techniques result in 

significantly different complexity? ................................................................ 48 
Research question 7: Do the characteristics of the datasets affect the complexity of 

the classification algorithms? ......................................................................... 53 
Research question 8:  Does binning the continuous numerical variables in the dataset 

into discreet intervals affect the classifier complexity? ................................. 56 
Research question 9: Does applying principal component analysis in the dataset 

affect the classifier complexity? .................................................................... 57 
Research question 10: Based on the results derived from the empirical results of this 

study (applying classifiers on various dataset with different implementation 

techniques), can a model to predict the complexity (consumed CPU time in 

seconds) of the classification algorithm be built? .......................................... 59 
Research question 11: Are the abilities of classifiers to handle missing or noisy data 

different? ........................................................................................................ 62 
 



 

 

v 

 

 

CHAPTER 4. CONCLUSION ................................................................................... 64 
 

REFERENCES .......................................................................................................... 70 
 



 

 

vi 

 

 

TABLES 

Table 1. Dataset Characteristics ................................................................................. 14 
Table 2. Accuracy Results / Pure Implementation and 10-Fold Cross Validation .... 24 
Table 3. Accuracy Results / Pure Implementation and 66% Train-Test Split ........... 24 
Table 4. Accuracy Results / After Discretisation and 10-Fold Cross Validation ...... 25 
Table 5. Accuracy Results / After Discretisation and 66% Train-Test Split ............. 25 
Table 6. Accuracy Results / After PCA and 10-Fold Cross Validation ..................... 26 
Table 7. Accuracy Results / After PCA and 66% Train-Test Split............................ 26 
Table 8. Complexity Results / Pure Implementation and 10-Fold Cross Validation . 27 
Table 9. Complexity Results / Pure Implementation and 66% Train-Test Split........ 27 
Table 10. Complexity Results / After Discretisation and 10-Fold Cross Validation . 28 
Table 11. Complexity Results / After Discretisation and 66% Train-Test Split........ 28 
Table 12. Complexity Results / After PCA and 10-Fold Cross Validation ............... 29 
Table 13. Complexity Results / After PCA and 66% Train-Test Split ...................... 29 
Table 14. Overall Best Accuracy Results .................................................................. 30 
Table 15. Best Accuracy Results for Each Dataset / Pure Implementations ............. 31 
Table 16. Best Accuracy Results for Each Dataset / After Discretisations ............... 32 
Table 17. Best Accuracy Results for Each Dataset / After PCA ............................... 34 
Table 18. Overall Distribution of Classifiers Across Performance Intervals ............ 35 
Table 19. One Way Anova / Based on Pure Implementation Step Results ............... 36 
Table 20. One Way Anova / Based on Discretization Step Results .......................... 36 
Table 21. One Way Anova / Based on PCA Step Results ......................................... 36 
Table 22. An Excerpt From the Results Dataset ........................................................ 39 
Table 23. Correlation Between Accuracy and Number of Variables ........................ 40 
Table 24. Correlation Between Accuracy and Number of Nominal Variables ......... 40 
Table 25. Correlation Between Accuracy and Number of Numerical Variables....... 41 
Table 26. Correlation Between Accuracy and Number of Target Class Types ......... 41 
Table 27. Correlation Between Accuracy and Number of Instances ......................... 41 
Table 28. Correlation Between Accuracy and Algorithm Type ................................ 42 
Table 29. Correlation Between Accuracy and Validation Methods .......................... 42 
Table 30. Correlation Between Accuracy and Discretisation .................................... 43 
Table 31. Anova Results of Performance and Discretisation .................................... 43 
Table 32. Correlation Between Accuracy and PCA .................................................. 44 
Table 33. Correlation Between Accuracy and Cumulative Variance in PCA ........... 44 
Table 34. Correlation Between Accuracy and Number of Components in PCA ....... 45 
Table 35. Anova Results of Performance and PCA ................................................... 45 
Table 36. Regression Results / Accuracy................................................................... 47 
Table 37. One Way Anova / Based on Pure Implementation Step Results ............... 49 
Table 38. One Way Anova / Based on Discretisation Step Results ........................... 50 
Table 39. One Way Anova / Based on PCA Implementation Step Results ............... 50 
Table 40. One Way Anova / Based on Overall Implementation Step Results........... 52 
Table 41. Overall Distribution of Classifiers Across Complexity Intervals .............. 53 
Table 42. Correlation Between Complexity and Number of Variables ..................... 54 
Table 43. Correlation Between Complexity and Number of Nominal Variables ...... 54 
Table 44. Correlation Between Complexity and Number of Numerical Variables ... 55 
Table 45. Correlation Between Complexity and Number of Target Class Types ..... 55 
Table 46. Correlation Between Complexity and Number of Instances ..................... 55 
Table 47. Correlation Between Complexity and Validation Method ........................ 56 
Table 48. Correlation Between Complexity and Algorithm Type ............................. 56 
Table 49. Correlation Between Complexity and Discretisation ................................ 57 



 

 

vii 

 

 

Table 50. Anova Results of Complexity and Discretisation ...................................... 57 
Table 51. Correlation Between Complexity and Number of Principal Components. 58 
Table 52. Correlation Between Complexity and % of Cumulative Variance in PCA 58 
Table 53. Correlation Between Complexity and PCA ............................................... 59 
Table 54. Anova Results of Complexity and PCA .................................................... 59 
Table 55. Regression Results / Complexity ............................................................... 61 
Table 56. Robustness Comparison ............................................................................. 63 



 

 

viii 

 

 

FIGURES 

 

Fig. 1 CRISP-DM phases ............................................................................................. 4 
Fig. 2 Determining which test to use ......................................................................... 14 
Fig. 3 Methodological framework ............................................................................. 15 
Fig. 4 Anova mean plots / pure stage ......................................................................... 35 
Fig. 5 Anova mean plots / discretisation stage .......................................................... 37 
Fig. 6 Anova mean plots / PCA stage ........................................................................ 37 
Fig. 7Anova mean plots / all trials ............................................................................. 38 
Fig. 8 Anova mean plots / pure implementations ...................................................... 50 
Fig. 9 Anova mean plots / after discretisations .......................................................... 51 
Fig. 10 Anova mean plots / after PCA ....................................................................... 51 
Fig. 11 Anova mean plots / all trials .......................................................................... 52 



 

 

1 

 

 

CHAPTER I.  

INTRODUCTION 

 

Classification or prediction tasks are the most widely used types of data mining 

algorithms. Classification algorithms are supervised methods that discover the hidden 

associations between the target class and the independent variables (Maimon & 

Rokach, 2008). Supervised learning algorithms allow tags to be assigned to the 

observations so that an unobserved data can be categorized based on the training data 

(Han & Kamber, 2005). A task, a model structure, a score function, a search method 

and a data management method are the main components of each algorithm (Hand, 

Mannila & Smyt, 2001). Image and pattern recognition, medical diagnosis, loan 

approval, detecting faults or financial trends are among the well known examples of 

classification tasks are (Dunham, 2002). 

 

In literature, it is obvious to see many example case studies in which the 

classification algorithms are utilized. Limanto, Cing and Watkins introduces a study 

where they use AIRS algorithm to understand the basic customer profiles and predict 

the customers who will most likely subscribe to 3G thus they aim to help 

telecommunication companies create a strategy for gaining customers (Limanto, Cing 

& Watkins, 2007). Another recent study introduces the implementation of large scale 

learning algorithms to estimate the bounce rate that is the fraction of customers who 

click on an advertisement but go on another task thus results in a poor return on 

investment (Sculley, Malkin, Basu, & Bayardo, 2009). The advantages and benefits of 

utilizing Artificial Neural Networks are debated on a study where authors try to predict 

the financial information manipulations (Küçükkocaoğlu, Benli & Küçüksözen, 
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2009). A similar research is proposed by authors who state the usefulness of Decision 

Trees, Neural Network and Bayesian Belief Network in determining the fraudulent 

financial statements (Kirkos, Spathis & Manolopoulos, 2007).  Harper, Moy and 

Konstan proposes an interesting study where they compare the prediction abilities of 

learning algorithms and human beings on classifying the question types on certain 

question and answer websites as conversational or informational. Their algorithms are 

claimed to approach human performance (Harper, Moy & Konstan, 2009). The effects 

of product mix, personnel, physical conditions, and services on the customer 

satisfaction in large shopping areas are analysed by Artificial Neural Networks in 

another study (Tolon & Tosunoğlu, 2008).  

Data Mining Standards 

During the data mining projects different technologies and tools are used 

frequently for distinct purposes. This fact brings the importance of the integration and 

communication abilities of the tools. Emerging standards are also necessary for testing 

or comparing models. In the recent years a couple of data mining standards have 

matured and data mining tools and products are utilizing these standards. The main 

reason why many different standards exist today is that data mining is used in so many 

different ways and in so many different systems that each of these often require its own 

standards.  

 

As Tang and Jamie state that there were no relational databases or SQL many 

years ago, and no standard to query different data sources (Tang & MacLennan, 2005). 

One of the first standards in the data mining space is the Predictive Model Markup 

Language (PMML) developed by Data Mining Group (DMG). PMML described 

standards of interchanging of data mining models among systems in a vendor-neutral 
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format. (Data Mining Group, 2010). Another emerging standard is web services for 

developing remote and distributes data mining applications by XMLA (Simba, 2010).  

MDX (Multidimensional Expression) is the most commonly used multi-dimensional 

expression language used by OLAP servers and BI communities (Tang & MacLennan, 

2005). Privacy-preserving data mining (PPDM) is another emerging standard which is 

interested in the definition of privacy in data mining. Definitions of privacy can vary 

according to context, culture, and environment (Oliveira and Zaiane, 2004). Common 

Warehouse Metadata (CWM) is a widely accepted object oriented data mining 

standard which provides a model for representing data mining metadata in XML. 

Information and data mining tasks are represented in the form of form objects that are 

reusable, scalable and portable (Object Management Group, 2010). Java Data Mining 

(JDM) is another well-known and well-established object oriented data mining 

standard (Hornick, Marcade & Venkayala, 2007). The Cross Industry Standard 

Process for Data Mining (CRISP-DM) was a project to develop an industry- and 

tool-neutral data mining process model. It aims to make data mining tasks more 

manageable and reliable by standardizing the data mining phases, integrating and 

validating best practices from experts in diverse industries. In CRISP-DM standard 

life cycle of a data mining project consists of six phases as shown in Figure 1 (Cross 

Industry Standard Process for Data Mining, 2010). 

 

 

 



 

 

4 

 

 

 

Fig. 1 CRISP-DM phases 
 

 

Classification Algorithm Assessment 

Before utilizing a model produced by a classification algorithm, it is assessed 

with respect to some criterion. The model will probably result in some errors therefore 

the data miner should take it into account while selecting a model (Cios, Pedrycz & 

Swiniarski, 2007). Accuracy, which is the percentage of instances that are correctly 

classified by the model, is the most commonly used decision criteria for model 

assessments (Han & Kamber, 2005). 

 

However, there is also other criterion used to compare and evaluate the models. 

Berson defines the assessment concepts as accuracy, explanation and integration 

abilities (Berson, Smith & Thearling, 1999). Rokach introduces the comparison 

criterion as the generalization error of the model, the computational complexity that is 

the amount of CPU consumed by inducer, the comprehensibility that is the ability to 
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understand the model, the scalability that is the ability to run efficiently on larger 

databases, the robustness that is the ability to handle missing or noisy data, the stability 

that is the ability to produce repeatable results on different datasets and lastly the 

interestingness that is the ability to generate valid and new knowledge (Maimon & 

Rokach, 2008). 

Data Preprocessing 

Before implementing the classification algorithms it is recommended that the 

incomplete, noisy or inconsistent datasets are pre-processed to make the knowledge 

discovery process easier and more qualified. The most well known steps are 

summarization, cleaning, integrations and transformations, data and dimensionality 

reduction and discretization (Han & Kamber, 2005). Discretization and dimension 

reduction are within the scope of this study.  

 

Data discretization techniques can be used to reduce the number of values for a 

given continuous variable by splitting the range of the variable into intervals. Binning, 

for example, is a type of discretization technique where variable is splitted into a 

particular number of bins. Dimension reduction is another pre-processing technique to 

obtain a reduced dataset representing the original dataset. The most commonly used 

dimension reduction technique is the PCA (Principal Component Analysis). “PCA 

searches for k n-dimensional orthogonal vectors that can best be used to represent the 

data where k<=n. The original data are thus projected onto a smaller space.” (Han & 

Kamber, 2005) 
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Literature Review 

As data volume boosts in real life, it is becoming harder to make valuable and 

significant decisions, with respect to it. In those situations, Data Mining, that is used to 

extract the concealed knowledge from large amounts of data, is commonly used (Han 

& Kamber, 2005). The predictive power of the data mining classification algorithms 

has been appealing for many years. Many studies are concentrated on proposing a new 

classification model, comparing the models or important factors affecting the model‟s 

performance.  

 

The literature contains many studies about algorithm comparisons. Quinlan 

states that it is not an easy task to declare that one algorithm is always superior to 

others, and links the abilities of models to task dependency. The study compares the 

decision tree with network algorithms and concludes that parallel type problems are 

not common for decision trees and sequential type problems are not suited to 

back-propagation (Quinlan, 1994). In an additional study, some algorithms as 

LARCKDNF, IEKDNF, LARC, BPRC and IE are compared on three tasks, and 

different results are stated for each task (Kaelbling, 1994). Hacker and Ahn have done 

another comparative experiment which is about eliciting user preferences. They 

compare many methods and recommend a new classifier called relative SVM, which 

outperforms others (Hacker & Ahn, 2009). The authors point at the useful data mining 

implications and try to understand “whether meaningful relationships can be found in 

the soil profile data at different locations”. They use the data collected from the WA 

Department of Agriculture and Food (AGRIC) soils database and they also compare 

those data mining methods to existing statistical methods (Armstrong, Diepeveen & 

Maddern, 2007). The importance of feature selection is emphasised on a study where 
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the decision tree and regression methods are applied on a breastfeeding survey data 

(He et al., 2006). Another research implements Naïve Bayesian, Decision tree, KNN, 

NN and M5 to predict the lifetime prediction of metallic components, and it is stated 

that methods which can directly deal with continuous variables are performing better 

(Ge, Nayak, Xu & Li, 2006). AIRS algorithm is compared to other algorithms by 

Putten, Meng and Kok, and no significant evidence that it consistently outperforms the 

others has been found (Putten, Meng & Kok, 2008). Maindonald points at the 

difficulties and complexities about comparing the algorithms. He underlines the fact 

that users who are more expert with a specific model will have a tendency to have the 

best results with that model therefore the published performance results are very broad 

indicators and dependent on datasets. Moreover, he states the insufficiency of datasets 

from several of years to be compared about the changes in algorithm performances 

(Maindonald, 2006). Lastly Lim, Loh & Shih makes an experimental study about 

comparing classification type of algorithm accuracy and training times. They conclude 

in such a way that the mean of accuracies of algorithms are not significantly different 

from each other but the there is a huge difference between the mean of training times 

of classifiers (Lim, Loh & Shih, 2000) 

 

In retrospect, some researchers tried to show the importance of datasets in 

classifications. A crucial point is introduced about the danger of using a single dataset 

for performance comparison, and tests are carried out for dynamic modifications of 

penalty and network architectures (Finnoff, Hergert & Zimmermann, 1995). A similar 

finding is stated as the performance results of learning algorithms are expected to 

deviate across different datasets; the study discussed data and implementation bias on 

time series datasets (Keogh & Kasetty, 2002 ).  
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The importance of implementation settings while running the algorithms have 

also been underlined by some authors in the literature. Keogh emphasizes the 

importance of implementation details such as parameter selections in algorithms and 

claims that algorithms should have few parameters or none (Keogh, Stefano & 

Ratanamahatana, 2004). Pitt points at a factor affecting the accuracy in their study that 

“the use of feature reduction algorithms on a large population survey database has 

shown that the use of the subset and attribute evaluation methods mostly results in an 

improvement in accuracy despite a reduction in the number of attributes” (Pitt & 

Nayak, 2007). And finally Howley has studied about the effects of data preprocessing 

steps on classifier accuracies. They compared the results of classifiers where no 

preprocessing step was applied, when techniques like normalisation or PCA was 

applied (Howley, Madden, O‟Connell & Ryder, 2005). 

 

As seen in the literature review, the data mining community is very interested 

in comparing different classification algorithms. As an example, Dogan and Tanrikulu 

proposes a comparative framework for evaluating classifier accuracies and they claim 

that classifier accuracies are not always the same on every dataset and performance is 

therefore significantly affected by dataset characteristics such as variable types or 

number of instances (Doğan & Tanrıkulu, 2010). This study is also concerned with 

classification performance and other factors affecting the accuracy with new 

perspectives and also concerned with other quality indicators such as the classifier 

complexity or robustness.  
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CHAPTER 2.  

PURPOSE AND METHOD 

 

 

The purpose of this study is to have a general idea about the accuracy and 

complexity of classification algorithms under given circumstances.  

 

In literature, data mining community has been very interested in comparing 

classification type of algorithms but they usually compare the classifiers on a single 

dataset or they compare only a few of the algorithms not including the recent ones. It is 

not easy to find empirical results of how classifiers perform on different multiple 

datasets; therefore the basic concern about this study is the repetitive algorithm 

implementations on multiple datasets thus some idea about the effects of dataset 

characteristics on the performance can be derived from the study. The same concern is 

also valid for the complexity comparison that is the consumed cpu time by each 

classifier. Knowledge discovery process of data mining projects include the data 

pre-processing stage and recommends steps such as data cleaning, reductions, 

discretisations or component analysis  if necessary. This study aims to find out if those 

data pre-processing activities have any effect on the classifier accuracy or model 

development time.  Lastly the study aims to figure how robust the selected classifiers 

are. In order to understand their robustness, iterative implementations are done before 

and after cleaning noise in the datasets. 

 

The details of the research questions and the methodological framework can be 

found in the following sections.  
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Research Questions 

 

 

This study aims to compare the classification algorithm accuracies, 

complexities and robustness with respect to various datasets and implementation 

techniques. The research questions of this study are as follows:  

 

1. Does implementing the same classification algorithm on multiple datasets and 

with different implementation techniques result in significantly different 

performance indicators? 

 

2. Do the characteristics of the datasets affect the performance results of the 

classification algorithms?  

 

3. Does binning the continuous numerical variables in the dataset into discreet 

intervals affect the classifier accuracy? 

 

4. Does applying principal component analysis in the dataset affect the classifier 

accuracy? 

 

5. Based on the results derived from the empirical results of this study (applying 

classifiers on various dataset with different implementation techniques), can a 

model to predict the performance of the classification algorithm be built? 

 

6. Does implementing the same classification algorithm on multiple datasets and 

with different implementation techniques result in significantly different 

complexity? 
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7. Do the characteristics of the datasets affect the complexity of the classification 

algorithms?  

 

8. Does binning the continuous numerical variables in the dataset into discreet 

intervals affect the classifier complexity? 

 

9. Does applying principal component analysis in the dataset affect the classifier 

complexity? 

 

10. Based on the results derived from the empirical results of this study (applying 

classifiers on various dataset with different implementation techniques), can a model 

to predict the complexity (consumed CPU time in seconds) of the classification 

algorithm be built? 

 

11. Are the abilities of classifiers to handle missing or noisy data different 

(robustness)? 

Method 

 

In the implementation phase, 10 sample datasets have been used because 

research study is interested in application in multiple datasets. 13 classification 

algorithms have been selected to be implemented on the experimental datasets. 

WEKA (Waikato Environment for Knowledge Analysis) a popular suite of machine 

learning software has been used as a tool to run Naïve Bayesian, AIRS, Logistics, 

MLP, J48, AIRS2, AIRS2P, Clonogal and CSCA algorithms. SPSS has been used as a 

tool to run the Chaid, Ex-Chaid, CRT and Quest algorithms since they are available in 

SPSS. Data pre-processing steps have also been applied on the sample datasets. The 
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results of the implementations have been tabulated. Afterwards, a descriptive analysis 

and a one-way Anova test have been carried out to find answers to the first and sixth 

research questions. Correlation analysis has been conducted to answer the second, 

third, fourth, seventh, eighth and ninth research questions and lastly, regression 

models have been built to deal with the fifth and tenth research questions. In order to 

answer the eleventh research question, algorithms have been implemented on a noisy 

dataset before and after data cleaning and results containing the variances have been 

tabulated to see the robustness of the classifiers. 

 

It is important to understand which statistical method is applied for answering 

which research question. The research questions of the thesis study can be classified in 

3 groups. The first group of questions (Research Questions 1 and 6) are interested in 

finding some difference between algorithm types. The second group of questions 

(Research Questions 2, 3, 4, 7, 8, 9) are related to finding a possible relationship 

between a dependent variable (accuracy or complexity) and independent variables 

(dataset characteristics, dicretisation or PCA application). The last group of questions 

(Research Questions 5 and 10) are concerned with making up a dependent variable 

based on some independents. Once the nature of the research questions are deeply 

understood, it is crucial to choose the most appropriate statistical analysis method to 

find the answers. As Gamble states that the nature of the variables should be stated 

firstly. Are the variables numerical, ordinal, or nominal? Then the analyst needs to 

understand what is being looked for while choosing a test to use. For example, the 

statistical test could be helping about finding differences between some groups 

(difference tests) or relationship between variables (correlation tests) or a regression 

(regression tests) to make prediction. If difference tests are required, there is one more 
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step to decide on the necessary steps; is the difference looked for between or within 

groups? For example if it is a „between‟ groups test then each participant belongs to 

only one of the groups; if it is a „within‟ group test then each participant occurs in all of 

the groups. After deciding on variable type (numerical, ordinal, nominal), type of test 

(difference, correlation, regression), and within or between groups difference then the 

possible statistical tests come to the scene. Figure 2 shows this decision path very 

clearly (Gamble, 2001).  

 

Considering the decision tree in Figure 2, the fact that all variables will be 

numerical after the experiments and the nature of the research questions of this study, 

it is obvious to see that the research questions 1 and 6 are trying to find any difference 

between algorithm types therefore conducting a one way Anova suits this need best. 

Research questions 2, 3, 4, 7, 8 and 9 are trying to find some correlations between 

dependent variables (accuracy or complexity) and independents (dataset or 

implementation specific attributes) therefore the best test seems to be Pearson‟s 

Correlation. Finally, research questions 5 and 10 are trying to make a model to predict 

accuracy or complexities therefore a Linear Regression will fit this type of question 

perfectly.  Figure 3 summarizes the methodological framework maintained during the 

research study. 

Data collection 

 

From the UCI Machine Learning Repository (UCI, 2010), sample datasets 

have been collected. The experimental datasets are Acute, Breast Cancer, CPU, 

Credits, Iris, Letters, Red wine, Segment, White wine and Wine. Table 1 summarises 

the attributes of each dataset. 
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Table 1. Dataset Characteristics  

Dataset 

Name 

Number of 

Variables 

Number of 

Nominal 

Variables 

Number of 

Numerical 

Variables 

Target 

Class 

Types 

Number of 

Instances 

Acute 7 6 1 2 120 

Breast 

Cancer 9 0 9 2 684 

Cpu 6 0 6 3 210 

Credits 15 9 6 2 653 

Iris 4 0 4 3 150 

Letters 16 0 16 26 20000 

Segment 19 0 19 7 1500 

Wineall 11 0 11 7 6497 

Wine red 11 0 11 6 1599 

Wine white 11 0 11 7 4898 

 

 

 

 
Fig. 2 Determining which test to use 
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Fig. 3 Methodological framework 
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Algorithms 

 

13 classification algorithms have been selected among many existing 

classification models within the scope of this study. The selected algorithms are Naïve 

Bayesian algorithm; J48, CHAID, Ex-CHAID, CRT and Quest decision tree 

algorithms; Multilayer perceptron (MLP); AIRS, AIRS2, AIRS2P, CSCA and Clonalg 

Artificial Immune Recognition Systems algorithms and Logistics Regression. 

 

The Naïve Bayesian algorithm identifies the classification problem in 

accordance with to probabilistic phrases, and provides statistical methods to categorize 

the instances with respect to probabilities (Cios, Pedrycz & Swiniarski, 2007). 

 

In Decision Tree algorithms, the classification procedure is condensed by a 

tree. After the model is constructed, it is applied to the whole database (Dunham, 

2002). The CHAID algorithm cultivates the tree by locating the optimal splits until the 

stopping criteria is encountered with respect to the chi-squares (Berson, 1999). Chaid 

can deal with missing values and the outputs of the target function are discrete 

(Mitchell, 1997). Splitting and stopping steps in Exhaustive CHAID algorithm that 

was proposed by Biggs in 1991 are the same as those in CHAID. Merging step uses an 

exhaustive search process to merge any similar pair until a single pair remains. Also 

like CHAID, only nominal or ordinal categorical predictors are allowed, continuous 

predictors are first converted into ordinal predictors before using the algorithm 

(CART, 2010). J48 algorithm is a version of an earlier algorithm developed by J. Ross 

Quinlan, the very popular C4.5. J48 employs two pruning methods. The first is known 

as sub-tree replacement and the second is known as sub-tree raising (SPSS, 2010). 

QUEST is a binary-split decision tree algorithm for classification and data mining. 
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The objective of QUEST is similar to that of the CART algorithm. It uses an unbiased 

variable selection technique by default, uses imputation instead of surrogate splits to 

deal with missing values and can easily handle categorical predictor variables with 

many categories (Shih, 1997). CRT (Classification and Regression Trees) is another 

decision tree classifier which uses binary splits, first grows then prunes and uses Gini 

Index as splitting criteria and surrogates missing values (MONK, 2010). Badulescu 

points at the difficulty in selecting the best attribute while splitting the decision tree at 

the model induction phase and compares the performance of 29 different splitting 

measures claiming that the FSS Naïve Bayesian splits the attributes best (Badulescu, 

2007). 

 

Multilayer Perceptron is a type of artificial neural network algorithm which 

considers the human brain as the modelling tool (Cios, Pedrycz & Swiniarski, 2007). It 

provides a generic model for learning real, discrete and vector target values. The 

ability to understand the concealed model is tough and training times may be extensive 

(Mitchell, 1997). 

 

As the human natural immune system differentiates and recalls the intruders, 

the AIRS algorithm is a cluster-based approach that understands the structure of the 

data and performs a k-nearest neighbour search. AIRS2 and AIRS2P are the 

extensions of existing AIRS algorithm with some technical differences (Putten, Meng 

& Kok, 2009). Another artificial immune system technique that is inspired by the 

functioning of the clonal selection theory of acquired immunity is Clonalg algorithm. 

It is inspired by “maintenance of a specific memory set, selection and cloning of most 

stimulated antibodies, death of non-stimulated antibodies, affinity maturation 
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(mutation), re-selection of clones proportional to affinity with antigen, and generation 

and maintenance of diversity”. A variant implementation of Clonalg is called as 

Clonal Selection Classifier Algorithm (CSCA) that aims to maximize classification 

accuracy and minimize misclassification accuracy (Brownlee, 2005).  

 

Logistic regression utilizes of independent variables to predict the probability 

of events by fitting the data to a logistic curve (Hand, Mannila,& Smyth, 2001). Each 

algorithm can make use of both numerical and categorical variables as inputs. They 

can handle target classes with more than two class types. Algorithms can also be 

referred to as classifiers or models. 

 

Implementation 

 

Before the implementation of algorithms, datasets were firstly cleaned from 

missing, noisy and incorrect data. Firstly, according to the missing data analysis, 

missing data have been removed from the datasets. Datasets were also cleaned to 

remove noisy data.  Unnecessary space characters or other spelling mistakes were also 

cleaned in the datasets. 

 

All 10 datasets (Acute, Breast Cancer, CPU, Credits, Iris, Letters, Red wine, 

Segment, White wine and Wine) have been used to run the 13 classification algorithms 

(Naïve Bayesian, CHAID, Ex-CHAID, CRT, Quest, J48, MLP, AIRS, AIRS2, 

AIRS2P, CSCA, Clonalg and Logistics algorithms). For all algorithms, splitting the 

data into train and test splits has been selected as the validation method. 66% of the 

data has been set as the training part and the rest has been set as the testing part since 

1/3 of the dataset is commonly suggested to be split as the testing part. Then 10-fold 
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cross validation has been implemented on the same datasets for the selected 

algorithms. In other words, both splitting and 10-fold cross validation methods have 

been applied. This stage of the experiment referred as “pure implementation” resulted 

in 260 (10 datasets * 13 algorithms * 2 Validation methods) rows of accuracy and 

complexity values. 

 

After the pure implementation phase, all continuously numerical variables in 

the datasets have been put into binned intervals within +/-1 standard deviation and 

saved as new variables. 13 algorithms again have been implemented on the 

pre-processed datasets made up of dicretised numerical variables. The second stage of 

the experiment referred as “after discretisation” resulted in another 260 rows of 

accuracy and complexity values (10 datasets * 13 algorithms * 2 Validation methods).  

 

Following the second stage, principal components analysis has been conducted 

on the dataset. Components with eigenvalues over 1 have been set as components and 

saved as new variables. 13 algorithms again have been implemented on the 

pre-processed datasets that are made up of principal components. The third stage of the 

experiment referred as “after PCA” resulted in another 260 rows of accuracy and 

complexity values (10 datasets * 13 algorithms * 2 Validation methods).  

 

In total, a dataset called as “results” have been obtained by those 780 rows of 

performance and complexity values derived from those 3 stages of the experiment. 

The 780 row dataset has been used to answer the first 10 research questions.  
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In order to answer the final research question, the „breast cancer‟ dataset has 

been selected and algorithms have been run on it before and after cleaning the noisy 

instances and then the results have been compared. 

 

WEKA and SPPS are the main components to run the selected algorithms. MS 

Excel also has been utilised to make some data pre-processing activities before 

implentations. SPPS has also been used to conduct all the statistical tests such as 

correlations, regression, Anova or descriptives. The result tables and figures are 

mostly extracted from the SPSS output files. 

 

The environmental facts are also important for the nature of the experiments. 

All data mining algorithms and statistical tests have been conducted on a personal 

computer with the following configuration: 

 

 Microsoft XP Professional Operating System with Service Pack 3 

 Intel Core 2 Duo CPU 

 2.10 GHz 

 3 GB RAM 

 150 GB Harddisk 
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CHAPTER 3.  

EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

 

In this section the performance and complexity results of each algorithm in 

each case will be discussed and research questions will be answered accordingly. 

 

The percentage of instances correctly classified helps calculating the accuracy 

(Dunham, 2002) that is referred as the performance of classifiers throughout the study. 

Costs for wrong assignment, in other words, misclassification costs are not within the 

scope of this study.  

 

The accuracy values of the multiple dataset implementations according to each 

classifier can be seen in Tables 2-7.  

 

As Rokach and Maimon describes, complexity of a classifier is the 

computational resources used to train or test the model (Maimon & Rokach, 2008). In 

this study, complexity is referred as the CPU amount used by the classifiers during 

model building, in other words, the time observed in seconds to generate the classifier. 

The higher the values of time spent during modelling, the more complex the classifier 

is. 

 

The complexity values of the multiple dataset implementations according to 

each classifier can be seen in Tables 8-13.  
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Research question 1: Does implementing the same classification algorithm on multiple 

datasets and with different implementation techniques result in different performance 

indicators? 

 

Based on the findings of the empirical study, it can be seen in Tables 14-17 that 

the same classifier is not the best one for all datasets and always outperforms the other 

classifiers. For each dataset the best predictive classifier has been defined for each 

stage of the experiment. As Dogan and Tanrıkulu also claims in their study, a classifier 

cannot be said to outperform the others in every dataset (Doğan & Tanrıkulu, 2010). 

 

 According to Table 14, the overall best accuracy is obtained as 100% in the 

“Acute” dataset. The classifiers producing that rate of accuracy are Logistics, all 

immune system algorithms, MLP, Naive Bayesian, and only J48 from Decision tree 

algorithms.  

Table 15 displays the detailed accuracy results for the best result cases of each 

dataset in pure implementations step. Logistics has the best performance for „Acute‟ 

dataset; AIRS has the best accuracy for „Acute‟, „Iris‟, „Letters‟ and „Wine all‟ 

datasets; MLP has the best accuracy for „Acute‟, „Cpu‟, „Segment‟ and „Wine red‟ 

datasets. CHAID produces better performance only for the „Credits‟ dataset; J48 has 

the best accuracy for „Acute‟, „Letters‟ and „Wine white‟ datasets; AIRS2 has the best 

accuracy for „Acute‟, and „Segment‟ datasets; AIRS2P has the best accuracy for 

„Acute‟ and „Iris‟ datasets; CSCA has the best accuracy for only „Acute‟ dataset; 

Clonalg has the best accuracy for „Acute‟ and „Breast cancer‟ datasets. Interestingly, 

Naïve Bayesian, Ex-CHAID, CRT and Quest have never produced the best result for a 

dataset from those classifiers which may mean they cannot handle continuous integer 
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variables and dense dimensionality as well as MLP, logistics or other immune system 

algorithms. 

Table 16 displays the detailed accuracy results for the best result cases of each 

dataset after discretisation step. MLP has the best accuracy for „Acute‟, „Cpu‟ ,„Iris‟ 

and „Segment‟ datasets; J48 has the best accuracy for „Acute‟, „Iris‟ , „Letters‟, „Wine 

all, „Wine red‟ and  „Wine white‟ datasets; AIRS2 has the best accuracy for „Acute‟ 

and „Breast cancer‟ datasets; CHAID has the best accuracy for again „Credits‟ dataset; 

Clonalg has the best accuracy for „Acute‟ and „Breast cancer‟ datasets; AIRS, 

Logistics, Naive Bayesian, AIRS2P and CSCA has the best accuracy for only „Acute‟ 

dataset. When the continuous variables are binned into intervals, J48 and Naive 

Bayesian started to predict better, it may depend on its ability to handle discrete values 

better. However Ex-CHAID, CRT or Quest still cannot predict as well as others. 

 

Table 17 displays the detailed accuracy results for the best result cases of each 

dataset after PCA step. J48 has the best accuracy for „Acute‟, „Letters‟, „Segment‟, 

‟Wine all‟, „Wine white‟ datasets; MLP has the best accuracy for „Acute‟ and „Iris‟ 

datasets; CRT has the best accuracy for „Breast cancer‟ and „Wine red‟ dataset; Naive 

Bayesian has the best accuracy for „Acute‟, „Cpu‟ and „Credits‟ datasets; Logistics, 

AIRS, AIRS2, AIRS2P, Clonalg, CSCA has the best accuracy for only „Acute‟ 

datasets. After PCA application, Naive Bayesian and CRT started to predict better thus 

they may be handling less amount of data and dimensions better. Decision tree 

algorithms other than CRT and J48 did not predict the best in any dataset. 
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Table 2. Accuracy Results / Pure Implementation and 10-Fold Cross Validation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 3. Accuracy Results / Pure Implementation and 66% Train-Test Split  
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 100.0 96.1 94.4 78.5 98.0 83.6 87.1 83.6 51.8 46.0 

AIRS2 100.0 96.6 90.3 82.5 94.1 82.1 97.3 47.4 50.7 49.2 

AIRS2P 100.0 97.0 94.4 82.5 98.0 82.1 87.5 49.9 50.9 49.0 

CHAID 61.9 93.2 74.2 88.1 23.5 54.5 57.4 54.5 57.7 53.9 

Clonalg 100.0 97.4 86.1 58.3 96.1 10.4 64.3 43.3 41.7 28.3 

CRT 58.1 87.7 81.2 81.1 30.0 25.4 81.8 52.5 44.4 53.8 

CSCA 100.0 97.0 83.3 59.6 96.1 64.6 84.7 43.5 51.3 42.9 

ExCHAID 60.4 94.0 76.1 85.9 29.5 54.4 57.4 49.5 54.2 51.3 

J48 100.0 95.7 94.4 82.1 96.1 86.5 95.1 56.6 58.5 56.3 

Logistics 100.0 97.0 94.4 83.0 92.2 77.0 95.5 77.0 57.9 52.3 

MLP 100.0 96.6 97.2 79.7 98.0 82.8 97.3 56.3 62.5 51.2 

Naïve bayes 95.1 96.1 87.3 75.3 94.1 64.4 81.4 64.4 52.0 43.2 

Quest 58.1 87.7 76.3 81.1 30.0 25.4 80.6 52.5 44.4 44.0 

 

 

 

 

  

  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 100.0 96.2 94.7 82.5 95.3 86.5 88.0 86.5 51.3 48.3 

AIRS2 100.0 97.1 97.1 85.6 95.3 83.8 86.5 48.9 51.4 51.1 

AIRS2P 100.0 96.8 95.7 84.2 94.7 84.7 89.5 49.3 54.3 51.0 

CHAID 91.7 93.0 80.9 86.4 66.7 53.8 78.7 53.8 59.4 54.6 

Clonalg 98.3 95.9 90.0 53.4 95.3 12.5 64.7 38.0 45.5 39.8 

CRT 91.7 92.7 80.9 87.4 66.7 36.8 89.3 56.4 62.0 54.1 

CSCA 100.0 96.3 93.3 65.4 95.3 67.7 84.6 46.5 50.9 45.7 

ExCHAID 91.7 93.0 80.9 86.4 66.7 54.1 78.7 54.8 59.1 54.7 

J48 100.0 96.0 96.2 85.3 96.0 87.9 95.7 58.7 62.0 58.2 

Logistics 100.0 96.8 97.1 86.1 96.0 77.4 95.9 77.4 59.8 53.7 

MLP 100.0 96.0 97.2 82.7 97.3 82.2 96.7 54.9 60.7 55.2 

Naïve bayes 95.8 96.3 89.5 78.3 96.0 64.0 81.1 64.0 55.0 44.3 

Quest 85.0 91.2 74.6 84.8 66.7 23.7 83.0 53.2 46.3 52.0 
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Table 4. Accuracy Results / After Discretisation and 10-Fold Cross Validation  
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 100.0 96.5 94.7 83.0 76.7 82.9 85.0 52.6 55.7 53.7 

AIRS2 100.0 95.9 97.1 83.9 82.7 75.2 83.5 49.9 53.9 51.5 

AIRS2P 100.0 95.8 95.7 84.1 86.0 75.1 85.1 50.3 53.2 51.6 

CHAID 86.7 93.0 80.9 86.4 66.7 40.1 79.1 53.1 58.3 52.9 

Clonalg 98.3 94.7 90.0 65.4 84.0 10.0 60.3 42.6 49.6 40.9 

CRT 86.7 93.0 81.2 86.4 66.7 35.3 75.5 53.5 58.4 52.9 

CSCA 100.0 96.5 93.3 81.2 86.7 62.8 86.7 50.5 54.3 50.5 

ExCHAID 83.3 93.0 76.1 86.4 66.7 40.1 79.1 52.2 58.3 52.9 

J48 100.0 95.5 96.2 85.8 90.7 83.6 89.5 55.7 59.3 55.5 

Logistics 100.0 96.0 97.1 85.3 90.7 67.5 86.5 51.8 59.0 52.2 

MLP 100.0 96.2 97.2 84.2 89.3 71.9 88.7 51.5 57.5 53.9 

Naïve bayes 95.0 95.9 89.5 83.0 86.0 58.1 79.0 48.3 57.1 46.8 

Quest 86.7 91.2 75.1 81.0 66.7 31.1 71.1 52.3 58.9 52.8 

 

 

 

Table 5. Accuracy Results / After Discretisation and 66% Train-Test Split 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 100.0 96.1 94.4 81.2 76.5 81.5 86.3 50.8 54.2 52.7 

AIRS2 100.0 97.4 90.3 81.2 74.5 73.3 82.9 48.4 53.7 51.4 

AIRS2P 100.0 96.1 94.4 83.0 88.2 72.6 85.1 48.5 55.0 52.3 

CHAID 55.6 93.2 74.2 88.1 25.5 39.4 80.4 51.8 58.1 51.9 

Clonalg 100.0 97.4 86.1 75.8 82.4 11.1 68.4 41.4 46.0 32.8 

CRT 56.8 94.2 81.2 86.3 28.6 33.0 73.3 51.5 57.1 49.8 

CSCA 100.0 95.3 83.3 80.7 84.3 57.3 85.5 48.4 52.4 48.7 

ExCHAID 55.6 91.9 76.1 85.9 55.6 39.1 75.2 49.3 57.3 51.9 

J48 100.0 96.1 94.4 85.7 94.1 82.8 89.0 52.7 59.6 55.6 

Logistics 100.0 97.0 94.4 82.5 94.1 66.5 88.4 52.6 56.8 51.1 

MLP 100.0 97.0 97.2 76.6 94.1 70.2 89.8 51.7 58.1 49.5 

Naïve bayes 100.0 94.8 87.3 82.5 86.3 57.0 80.0 48.6 55.9 46.3 

Quest 58.1 87.7 76.3 83.4 25.0 28.6 71.5 51.7 57.4 51.1 
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Table 6. Accuracy Results / After PCA and 10-Fold Cross Validation 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 100.0 92.8 88.5 75.5 78.0 50.7 74.3 41.1 50.0 41.1 

AIRS2 100.0 92.2 89.0 77.3 82.7 50.1 74.2 40.8 51.6 40.8 

AIRS2P 100.0 94.3 89.0 77.0 80.0 54.5 78.0 44.2 53.6 44.5 

CHAID 58.3 94.7 85.6 81.5 33.3 42.2 68.7 50.4 56.7 50.8 

Clonalg 100.0 97.2 90.0 70.1 81.3 11.4 52.9 41.5 52.0 41.5 

CRT 58.3 97.5 86.6 81.6 66.7 31.0 68.2 50.3 58.4 51.6 

CSCA 100.0 97.2 87.1 79.8 84.0 52.0 79.0 47.6 56.3 47.6 

ExCHAID 58.3 94.7 85.6 81.5 33.3 42.1 69.5 49.5 56.8 51.3 

J48 100.0 97.5 88.5 80.7 84.7 64.7 84.7 51.9 56.8 51.9 

Logistics 100.0 96.3 90.4 82.5 84.7 38.3 72.2 48.4 57.8 48.4 

MLP 100.0 97.2 91.4 81.3 86.7 52.4 77.4 48.1 58.1 48.1 

Naïve bayes 100.0 96.9 90.4 81.5 84.0 37.3 66.7 48.6 56.7 48.6 

Quest 58.3 96.9 86.1 81.5 33.3 27.6 64.5 43.7 42.6 44.9 

 

 

 

 

 

Table 7. Accuracy Results / After PCA and 66% Train-Test Split 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 100.0 91.8 84.7 74.9 82.4 49.8 74.7 41.9 52.4 41.9 

AIRS2 100.0 97.0 90.3 71.7 86.3 48.5 73.5 41.4 51.7 41.4 

AIRS2P 100.0 94.4 83.3 78.0 76.5 52.9 80.6 43.1 55.7 44.5 

CHAID 55.6 95.3 74.2 71.5 25.5 35.0 58.9 47.8 52.2 47.0 

Clonalg 100.0 96.6 93.1 76.2 80.4 10.6 58.6 44.3 46.7 44.3 

CRT 58.1 97.8 81.2 80.7 28.6 29.4 73.3 47.3 52.0 48.2 

CSCA 100.0 97.0 81.9 75.8 84.3 49.1 78.4 46.7 55.0 46.7 

ExCHAID 56.8 95.7 76.1 75.3 24.4 38.0 56.9 44.9 53.7 49.5 

J48 100.0 97.0 91.7 79.4 84.3 62.2 83.9 50.1 55.9 50.1 

Logistics 100.0 97.0 86.1 80.7 86.3 38.1 73.9 48.9 57.7 48.9 

MLP 100.0 97.4 93.1 80.2 88.2 52.8 74.7 48.7 54.8 48.7 

Naïve bayes 100.0 96.6 93.1 84.3 86.3 37.1 66.3 48.6 55.7 48.6 

Quest 46.7 95.6 76.3 81.6 25.0 25.8 56.6 48.1 41.0 45.1 
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Table 8. Complexity Results / Pure Implementation and 10-Fold Cross Validation 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 0.1 0.6 0.2 0.7 0.3 290.7 3.0 18.6 2.2 11.7 

AIRS2 0.2 0.4 0.2 466.7 0.0 180.9 1.6 15.4 1.5 9.4 

AIRS2P 0.1 0.3 0.1 696.6 0.2 145.3 1.3 11.8 1.0 6.7 

CHAID 2.0 2.0 1.0 2.0 2.0 50.0 3.0 8.0 2.0 6.0 

Clonalg 0.1 0.2 0.1 0.9 0.1 12.2 1.1 2.4 0.6 1.7 

CRT 3.0 8.0 6.0 8.0 4.0 93.0 35.0 62.0 32.0 40.0 

CSCA 0.0 2.6 0.3 15.6 0.0 14210.3 17.8 291.7 16.1 159.2 

ExCHAID 2.0 2.0 1.0 1.0 1.0 87.0 3.0 8.0 3.0 7.0 

J48 0.0 0.0 0.1 0.0 0.0 5.0 0.2 1.2 0.3 0.9 

Logistics 0.0 0.0 0.1 0.1 0.0 427.7 35.0 5.2 0.9 4.1 

MLP 0.4 1.9 0.6 23.0 0.4 1966.8 20.1 101.7 12.5 45.9 

Naïve bayes 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.1 

Quest 2.0 2.0 1.0 2.0 1.0 13.0 3.0 5.0 3.0 2.0 

 
 

 

 

 

Table 9. Complexity Results / Pure Implementation and 66% Train-Test Split 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 0.1 0.7 0.2 0.7 0.2 1460.4 2.9 18.1 2.2 11.8 

AIRS2 0.2 3.4 0.1 1432.0 0.1 683.7 19.2 15.3 1.4 9.4 

AIRS2P 0.1 0.5 0.1 961.5 0.1 686.2 1.2 11.5 1.0 6.8 

CHAID 1.0 1.0 1.0 1.0 1.0 12.0 2.0 3.0 2.0 3.0 

Clonalg 0.1 0.2 0.1 1.2 0.1 36.6 0.8 2.3 0.7 1.8 

CRT 2.0 2.0 1.0 2.0 2.0 13.0 8.0 6.0 4.0 7.0 

CSCA 0.0 2.8 0.3 13.5 0.0 21296.4 18.4 434.2 15.1 164.5 

ExCHAID 1.0 1.0 1.0 1.0 1.0 14.0 2.0 4.0 2.0 3.0 

J48 0.0 0.0 0.0 0.0 0.0 16.6 0.1 1.3 0.1 0.8 

Logistics 0.0 0.0 0.1 0.1 0.1 365.0 46.7 5.2 0.7 3.8 

MLP 0.3 1.8 0.6 49.3 0.4 981.6 19.2 105.1 21.7 56.9 

Naïve bayes 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.0 0.1 

Quest 1.0 1.0 1.0 1.0 1.0 3.0 2.0 2.0 2.0 3.0 
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Table 10. Complexity Results / After Discretisation and 10-Fold Cross Validation  
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 0.1 0.6 0.2 0.7 0.3 3355.5 3.8 136.5 11.2 56.0 

AIRS2 0.2 0.5 0.2 358.1 0.1 61.7 1.6 87.6 4.9 48.1 

AIRS2P 0.1 0.3 0.1 556.1 0.2 1955.1 1.3 51.1 3.8 36.4 

CHAID 2.0 1.0 2.0 1.0 1.0 12.0 2.0 3.0 2.0 3.0 

Clonalg 0.1 0.4 0.1 1.1 0.0 61.7 0.8 18.8 1.5 4.5 

CRT 2.0 7.0 8.0 17.0 2.0 105.0 60.0 52.0 26.0 40.0 

CSCA 0.0 2.5 0.3 9.7 0.2 47240.6 16.2 2862.8 52.6 639.6 

ExCHAID 1.0 1.0 2.0 1.0 1.0 14.0 2.0 3.0 2.0 3.0 

J48 0.0 0.1 0.1 0.1 0.0 47240.0 0.1 1.9 0.4 1.6 

Logistics 0.0 0.2 0.1 0.2 0.1 3863.3 3.6 18.1 1.4 9.3 

MLP 0.3 1.7 0.6 26.1 0.5 2518.8 19.3 102.9 46.2 169.8 

Naïve bayes 0.0 0.1 0.0 0.0 0.0 1.8 0.1 0.1 0.0 0.1 

Quest 1.0 1.0 1.0 11.0 1.0 13.0 2.0 4.0 3.0 3.0 

 

 
 

 

Table 11. Complexity Results / After Discretisation and 66% Train-Test Split 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 0.1 0.5 0.2 1.0 0.2 3058.2 3.6 64.6 9.5 71.2 

AIRS2 0.3 0.5 0.1 869.0 0.1 2108.3 1.6 45.7 5.3 39.6 

AIRS2P 0.1 0.3 0.1 556.1 0.1 2007.1 1.2 64.1 3.6 30.3 

CHAID 1.0 1.0 1.0 1.0 1.0 3.0 1.0 2.0 1.0 2.0 

Clonalg 0.0 0.4 0.1 0.8 0.1 60.2 0.8 7.4 1.7 3.7 

CRT 1.0 1.0 3.0 2.0 1.0 13.0 8.0 6.0 3.0 7.0 

CSCA 0.0 2.6 0.3 10.4 0.2 45713.7 16.0 2997.1 51.1 652.5 

ExCHAID 1.0 1.0 1.0 1.0 1.0 4.0 1.0 2.0 1.0 2.0 

J48 0.0 0.0 0.0 0.0 0.0 29.6 0.2 4.3 0.2 2.4 

Logistics 0.0 0.1 0.1 0.1 0.0 3748.6 3.6 9.1 1.4 7.5 

MLP 0.3 1.8 0.6 44.5 0.3 1856.4 18.4 172.3 29.6 75.3 

Naïve bayes 0.0 0.1 0.0 0.0 0.0 0.9 0.0 0.1 0.0 0.0 

Quest 1.0 1.0 1.0 1.0 1.0 3.0 1.0 2.0 2.0 2.0 
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Table 12. Complexity Results / After PCA and 10-Fold Cross Validation 
  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 0.1 2.6 0.2 2.2 0.2 2066.7 1.9 269.5 19.7 39.2 

AIRS2 0.1 0.3 0.1 0.7 0.0 998.6 0.7 201.3 6.7 48.1 

AIRS2P 0.2 0.2 0.1 1.6 0.1 816.3 0.5 166.3 5.7 52.0 

CHAID 1.0 0.5 1.0 1.0 1.0 15.0 3.0 3.0 2.0 2.0 

Clonalg 0.0 0.5 0.1 0.5 0.0 28.5 0.6 33.1 1.5 7.6 

CRT 3.0 3.0 2.0 15.0 2.0 61.0 12.0 34.0 16.0 30.0 

CSCA 0.0 5.2 0.2 11.1 0.2 37362.0 11.4 3796.4 114.0 223.6 

ExCHAID 1.0 0.5 1.0 1.0 1.0 19.0 1.0 4.0 2.0 2.0 

J48 0.0 0.0 0.0 0.0 0.0 36.6 0.1 12.3 0.5 1.5 

Logistics 0.0 0.1 0.1 0.0 0.0 1135.2 0.6 11.2 1.4 3.1 

MLP 0.2 0.5 0.3 1.0 0.3 446.1 6.3 50.2 9.6 45.9 

Naïve bayes 0.1 0.1 90.4 0.0 0.0 0.4 0.0 0.1 0.3 0.0 

Quest 1.0 0.8 1.0 1.0 1.0 90.0 1.0 3.0 2.0 2.0 

 

 

 

 

Table 13. Complexity Results / After PCA and 66% Train-Test Split 

  Acute Breast cancer CPU Credit Iris Letter Segment Wine all Wine red Wine white 

AIRS 0.1 1.4 0.2 2.1 0.3 2113.4 1.9 174.5 11.0 43.8 

AIRS2 0.0 0.4 0.1 1.1 0.0 1021.4 0.7 206.8 5.3 54.5 

AIRS2P 0.1 0.3 0.1 1.0 0.0 822.9 0.6 176.9 6.8 51.6 

CHAID 1.0 0.4 0.9 0.8 0.9 6.0 1.0 2.0 1.0 1.0 

Clonalg 0.0 0.2 0.1 0.5 0.0 33.2 0.3 9.9 1.5 9.3 

CRT 0.5 1.0 1.0 2.0 1.0 9.0 2.0 4.0 2.0 3.0 

CSCA 0.0 4.5 0.2 10.8 0.1 33975.8 11.3 3715.3 125.9 2840.0 

ExCHAID 0.5 0.4 0.9 0.8 0.9 7.0 1.0 2.0 1.0 1.0 

J48 0.0 0.0 0.0 0.0 0.0 45.8 0.2 9.4 0.5 1.3 

Logistics 0.0 0.0 0.0 0.0 0.0 3659.1 0.6 26.2 1.4 3.3 

MLP 0.2 0.5 0.3 1.1 0.3 559.5 6.2 25.1 8.1 63.5 

Naïve bayes 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Quest 0.7 0.4 0.9 0.8 1.0 12.0 1.0 1.0 1.0 1.0 
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Table 14. Overall Best Accuracy Results 

Dataset Algorithm  

Validation 

Method 

Integer 

Variables 

Binned PCA Performance 

Acute Logistics 10fold NO N 100 

Acute AIRS 10fold NO N 100 

Acute MLP 10fold NO N 100 

Acute J48 10fold NO N 100 

Acute AIRS2 10fold NO N 100 

Acute AIRS2P 10fold NO N 100 

Acute CSCA 10fold NO N 100 

Acute logistics traintestsplit NO N 100 

Acute AIRS traintestsplit NO N 100 

Acute MLP traintestsplit NO N 100 

Acute J48 traintestsplit NO N 100 

Acute AIRS2 traintestsplit NO N 100 

Acute AIRS2P traintestsplit NO N 100 

Acute CSCA traintestsplit NO N 100 

Acute Clonalg traintestsplit NO N 100 

Acute Logistics 10fold YES N 100 

Acute AIRS 10fold YES N 100 

Acute MLP 10fold YES N 100 

Acute J48 10fold YES N 100 

Acute AIRS2 10fold YES N 100 

Acute AIRS2P 10fold YES N 100 

Acute CSCA 10fold YES N 100 

Acute Naïve bayes traintestsplit YES N 100 

Acute Logistics traintestsplit YES N 100 

Acute AIRS traintestsplit YES N 100 

Acute MLP traintestsplit YES N 100 

Acute J48 traintestsplit YES N 100 

Acute AIRS2 traintestsplit YES N 100 

Acute AIRS2P traintestsplit YES N 100 

Acute CSCA traintestsplit YES N 100 

Acute Clonalg traintestsplit YES N 100 

Acute Naïve bayes 10fold YES Y 100 

Acute Logistics 10fold YES Y 100 

Acute AIRS 10fold YES Y 100 

Acute MLP 10fold YES Y 100 

Acute J48 10fold YES Y 100 

Acute AIRS2 10fold YES Y 100 

Acute AIRS2P 10fold YES Y 100 

Acute CSCA 10fold YES Y 100 

Acute Clonalg 10fold YES Y 100 

Acute Naïve bayes traintestsplit YES Y 100 

Acute Logistics traintestsplit YES Y 100 

Acute AIRS traintestsplit YES Y 100 

Acute MLP traintestsplit YES Y 100 

Acute J48 traintestsplit YES Y 100 

Acute AIRS2 traintestsplit YES Y 100 

Acute AIRS2P traintestsplit YES Y 100 

Acute CSCA traintestsplit YES Y 100 

Acute Clonalg traintestsplit YES Y 100 
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Table 15. Best Accuracy Results for Each Dataset / Pure Implementations 

Dataset Name 

Algorithm 

Name 

Validation 

Method Performance 

Acute 
Logistics 10fold 100.0 

Acute 
AIRS 10fold 100.0 

Acute 
MLP 10fold 100.0 

Acute 
J48 10fold 100.0 

Acute 
AIRS2 10fold 100.0 

Acute 
AIRS2P 10fold 100.0 

Acute 
CSCA 10fold 100.0 

Acute 
Logistics traintestsplit 100.0 

Acute 
AIRS traintestsplit 100.0 

Acute 
MLP traintestsplit 100.0 

Acute 
J48 traintestsplit 100.0 

Acute 
AIRS2 traintestsplit 100.0 

Acute 
AIRS2P traintestsplit 100.0 

Acute 
CSCA traintestsplit 100.0 

Acute 
Clonalg traintestsplit 100.0 

Breast cancer Clonalg traintestsplit 97.4 

CPU MLP 10fold 97.2 

Credits CHAID traintestsplit 88.1 

Iris AIRS traintestsplit 98.0 

Iris AIRS2P traintestsplit 98.0 

Letters J48 10fold 87.9 

Segment MLP traintestsplit 97.3 

Segment AIRS2 traintestsplit 97.3 

Wine all AIRS 10fold 86.5 

Wine red MLP traintestsplit 62.5 

Wine white J48 10fold 58.2 

 

 
 

 

The performance variable has been binned into intervals as LOW, MIDDLE, 

GOOD and VERY GOOD. Table 18 shows the distribution of each classifier across 

those performance intervals with respect to all stages of the experiment. Table 18 

shows that the distribution of algorithms as AIRS, AIRS2, AIRS2P, J48, Naive 

Bayesian, Logistics, MLP and CSCA are mostly in Good or Very Good interval. 
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Table 16. Best Accuracy Results for Each Dataset / After Discretisations 
Dataset 

Name 

Algorithm 

Name 

Validation 

Method Performance 

Acute Logistics 10fold 100.0 

Acute AIRS 10fold 100.0 

Acute MLP 10fold 100.0 

Acute J48 10fold 100.0 

Acute AIRS2 10fold 100.0 

Acute AIRS2P 10fold 100.0 

Acute CSCA 10fold 100.0 

Acute Naïve bayes traintestsplit 100.0 

Acute Logistics traintestsplit 100.0 

Acute AIRS traintestsplit 100.0 

Acute MLP traintestsplit 100.0 

Acute J48 traintestsplit 100.0 

Acute AIRS2 traintestsplit 100.0 

Acute AIRS2P traintestsplit 100.0 

Acute CSCA traintestsplit 100.0 

Acute Clonalg traintestsplit 100.0 

Breast 

cancer AIRS2 traintestsplit 97.4 

Breast 

cancer Clonalg traintestsplit 97.4 

CPU MLP 10fold 97.2 

Credits CHAID traintestsplit 88.1 

Iris MLP traintestsplit 94.1 

Iris J48 traintestsplit 94.1 

Letters J48 10fold 83.6 

Segment MLP traintestsplit 89.8 

Wine all J48 10fold 55.7 

Wine red J48 traintestsplit 59.6 

Wine white J48 traintestsplit 55.6 

 

 

The basic concern of the first research question is to find if the classifiers have 

significantly different accuracies on multiple datasets. Even though the tables above 

show that none of the classifiers is dominant and different classifiers predict better in 

different circumstances; a one-way Anova test can help visualise the differences 

between classifier accuracies better. Table 19 shows that the mean of the prediction 

abilities of the classifiers on pure datasets are significantly different from each other 

and Figure 4 demonstrates this finding perfectly. According to Figure 4, the best 
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classifiers are Logistics, J48, AIRS, and MLP; the worst classifiers are Quest, Clonalg, 

CRT, Ex-CHAID and CHAID. Table 20 shows that the mean of the prediction abilities 

of the classifiers after discretisations are still significantly different from each other 

and Figure 5 demonstrates this finding perfectly. According to Figure 5, the top 

classifiers are J48, MLP, Logistics, AIRS, AIRS2P and AIRS2; the worst classifiers 

are still Quest, Clonalg, CRT, CHAID and Ex-CHAID. In the second stage of the 

experiment, a general tendency of the performance to drop is observable; however 

CSCA and Clonalg shows a tendency to increase and Quest is the most stabilized one. 

Table 21 shows that the mean of the prediction abilities of the classifiers after PCA are 

not significantly different from each other anymore since the mean of classifiers 

becomes closer to each one and Figure 6 demonstrates this finding perfectly. 

According to Figure 6, the top classifiers are J48, MLP, CSCA, Logistics, Naive 

Bayesian, AIRS2P, AIRS2 and AIRS; the worst classifiers are Quest, CHAID, 

Ex-CHAID, CRT and Clonalg. In the third stage of the experiment, still a general 

tendency of the performance to drop is observable; however Clonalg shows a tendency 

to increase; Naive Bayesian and CSCA are affected by PCA less. Although it was 

claimed that a classifier cannot be said to outperform the others in every dataset; with 

respect to all experimental trials, J48 shows the best performance on average of all 

datasets.  

 

As it can be estimated, when all 780 trials are taken into account, the means of 

algorithms will be significantly different. Figure 7 shows this finding well and the best 

classifiers out of all trials are J48, MLP and Logistics. Some immune system type of 

algorithms (AIRS, AIRS2, AIRS2P, CSCA) and Naive Bayesian are also predicting 
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well. However Quest, Ex-CHAID, Clonalg, CHAID and CRT are the ones with the 

lowest predictive power. 

 
 

 

 

Table 17. Best Accuracy Results for Each Dataset / After PCA 

Dataset Name 

Algorithm 

Name 

Validation 

Method Performance 

Acute Naïve bayes 10fold 100.0 

Acute Logistics 10fold 100.0 

Acute AIRS 10fold 100.0 

Acute MLP 10fold 100.0 

Acute J48 10fold 100.0 

Acute AIRS2 10fold 100.0 

Acute AIRS2P 10fold 100.0 

Acute CSCA 10fold 100.0 

Acute Clonalg 10fold 100.0 

Acute Naïve bayes traintestsplit 100.0 

Acute Logistics traintestsplit 100.0 

Acute AIRS traintestsplit 100.0 

Acute MLP traintestsplit 100.0 

Acute J48 traintestsplit 100.0 

Acute AIRS2 traintestsplit 100.0 

Acute AIRS2P traintestsplit 100.0 

Acute CSCA traintestsplit 100.0 

Acute Clonalg traintestsplit 100.0 

Breast cancer CRT traintestsplit 97.8 

CPU Naïve bayes traintestsplit 93.1 

Credits Naïve bayes traintestsplit 84.3 

Iris MLP traintestsplit 88.2 

Letters J48 10fold 64.7 

Segment J48 10fold 84.7 

Wine all J48 10fold 51.9 

Wine red CRT 10fold 58.4 

Wine white J48 10fold 51.9 
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Table 18. Overall Distribution of Classifiers Across Performance Intervals 

    Performance (Binned) 

Total 
    

Low Middle Good 

Very 

Good 

Algorithm 

Name 

AIRS 8 10 25 17 60 

AIRS2 10 10 24 16 60 

AIRS2P 8 12 22 18 60 

CHAID 10 27 17 6 60 

Clonalg 23 11 11 15 60 

CRT 13 22 20 5 60 

CSCA 11 15 18 16 60 

ExCHAID 12 25 18 5 60 

J48 0 20 19 21 60 

Logistics 6 14 20 20 60 

MLP 5 16 17 22 60 

Naïve 

bayes 

12 14 19 15 60 

Quest 20 17 21 2 60 

Total 138 213 251 178 780 

 

 
Fig. 4 Anova mean plots / pure stage 
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Table 19. One Way Anova / Based on Pure Implementation Step Results 

Performance 

  
Sum of Squares df 

Mean 

Square F Sig. 

Between 

Groups 

16120.371 12 1343.364 3.267 .000 

Within Groups 101552.733 247 411.145 

    

Total 117673.104 259 
      

 

 

 

Table 20. One Way Anova / Based on Discretization Step Results 

Performance 

  

Sum of Squares df 

Mean 

Square F Sig. 

Between Groups 10599.287 12 883.274 2.272 .009 

Within Groups 96029.646 247 388.784 

    

Total 106628.933 259 
      

 

 

 

Table 21. One Way Anova / Based on PCA Step Results 

Performance 

  

Sum of Squares df 

Mean 

Square F Sig. 

Between 

Groups 

9726.389 12 810.532 1.766 .054 

Within Groups 113371.250 247 458.993 

    

Total 123097.639 259 
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Fig. 5 Anova mean plots / discretisation stage 

 

 
Fig. 6 Anova mean plots / PCA stage 
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Fig. 7Anova mean plots / all trials 

 

 

 

Research question 2: Do the characteristics of the datasets affect the 

performance results of the classification algorithms? 

 

Once all of the iterations have been completed in the implementation step, a 

dataset of 780 rows including the combinations of the datasets, the algorithms, the 

validation methods, discretisation and pca application options with 13 columns for the 

variables have been obtained.  

 

The first 13 fields except for the „Trial ID‟ in Table 22 have been set as input 

variables, which are „dataset name‟, „algorithm name‟, „validation method‟, „number 

of variables‟, „number of nominal variables‟, „number of numerical variables‟, 
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„number of target class types‟, „number of instances‟, „Is PCA applied‟, „integer 

variables binned‟, „number of principal components‟ and „% of cumulative var. 

obtained in PCA‟ . The last fields in Table 22 shows the performance and complexity 

(cpu time used) variables, which are set as the dependent variable. Since the second 

research question is interested in dataset characteristics, independent variables have 

been defined based on dataset attributes such as number of variables, number of 

nominal variables, number of numerical variables, number of target class types and 

number of instances. 

 

 

Table 22. An Excerpt From the Results Dataset 

  
TrialID 1 2 ... 780 

 

 
Dataset Name Acute Iris   Cpu 

 

 

Algorithm Name AIRS CSCA   CSCA 

 

Validation 

Method 10fold 10fold   10fold 

 

Integer Variables 

Binned YES YES   NO 

im
p

le
m

en
ta

ti
o

n
 

at
tr

ib
u

te
s 

PCA_Applied Y Y   N 

 

No Of Principal 

Components 3 1   0 

 

% of Cumulative 

Var. Obtained in 

PCA 83.198 70.99   0 
 

 

No Of Variables 7 4   6 

 

No Of Nominal 

Variables 6 0   0 

d
at

as
et

 

at
tr

ib
u

te
s 

No Of Numerical 

Variables 1 4   6 

 

No Of Target 

Class Types 2 3   3 

 

No Of Instances 120 150   210 

class 

 
Performance 100% 84%   93.3% 

  
CPU Time 0.09sec 0.05sec 

 

0.3sec 
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On the newly created dataset, which is referred to as the Results dataset, some 

kind of correlation analysis can be conducted in order to determine if any of the input 

variables affect the performance results significantly.  

 

Firstly, in order to conduct the correlation analysis, all variables have been 

coded into numerical variables, and Z-score normalisations have been applied to them. 

SPSS has been used for implementation. 

 

 

Table 23. Correlation Between Accuracy and Number of Variables 

    

Performance Number 

of 

Variables 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Number of Variables Pearson 

Correlation 

-.237
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 

 

 

 

Table 24. Correlation Between Accuracy and Number of Nominal Variables 

    

Performance Number of 

Nominal 

Variables 

Performance Pearson 

Correlation 

Sig. (2-tailed) 

N 780 780 

Number of 

Nominal 

Variables 

Pearson 

Correlation 

.290
**

 1 

Sig. (2-tailed) .000 
  

N 780 780 
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Table 25. Correlation Between Accuracy and Number of Numerical Variables 

    

Performance Number of 

Numerical 

Variables 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Number of 

Numerical 

Variables 

Pearson 

Correlation 

-.378
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 

 

 

 

Table 26. Correlation Between Accuracy and Number of Target Class Types 

    

Performance Number of 

Target Class 

Types 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Number of 

Target Class 

Types 

Pearson 

Correlation 

-.340
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 

 
 

 

Table 27. Correlation Between Accuracy and Number of Instances 

    

Performance Number of 

Instances 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Number of 

Instances 

Pearson 

Correlation 

-.480
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 
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Table 28. Correlation Between Accuracy and Algorithm Type 

    

Performance Algorithm 

Name 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Algorithm 

Name 

Pearson 

Correlation 

-.021 1 

Sig. 

(2-tailed) 

.552 
  

N 780 780 

 

Table 29. Correlation Between Accuracy and Validation Methods 

    

Performance Validation 

Method 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Validation 

Method 

Pearson 

Correlation 

-.064 1 

Sig. 

(2-tailed) 

.075 
  

N 780 780 

 

 

According to Tables 23 to 29, some of the input variables have been found to 

be significantly correlated to the dependent variable, which is the performance of the 

classifier. Based on these results, the number of variables in the dataset (-.237 Pearson 

value), the number of numerical variables in the dataset (-.378 Pearson value), the 

number of instances in the dataset (-.480 Pearson value), the number of nominal 

variables in the dataset (.290 Pearson value) and the number of target class types (-.340 

Pearson value) in the dataset have been found to go hand in hand with the classifier 

performance. On the other hand, algorithm name and validation method have been 
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found not to be significantly correlated to classifier accuracy. As a result, the answer to 

the second question can be concluded in such a way that most of the dataset 

characteristics can affect the classifier performance. 

Research question 3: Does binning the continuous numerical variables in the 

dataset into discreet intervals affect the classifier accuracy? 

 

Table 30. Correlation Between Accuracy and Discretisation 

    

Performance Integer 

Variables 

Binned 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Integer 

Variables 

Binned 

Pearson 

Correlation 

-.091
*
 1 

Sig. 

(2-tailed) 

.011 
  

N 780 780 

 

 

According to Table 30, the input variable „the integers are binned into 

intervals‟ has been found to be significantly correlated to the dependent variable, 

which is the performance of the classifier (-.091 Pearson value). As a result, the 

answer to the third question can be concluded in such a way that discretisation of the 

continuous variables in the dataset can affect the classifier performance. 

 

Table 31. Anova Results of Performance and Discretisation 

Performance 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

5829.0 1 5829.0 13.042 .000 

Within 

Groups 

347729.9 778 447.0 
    

Total 353559.0 779       
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Moreover, Table 31 shows that the performance means of instances of which 

continuous variables have been discretised and the ones of which continuous variables 

have not been discretised are found to be significantly different with respect to the 

significance level of the one-way Anova test (.000). 

 

Research question 4: Does applying principal component analysis in the 

dataset affect the classifier accuracy? 

 

 

Table 32. Correlation Between Accuracy and PCA 

    

Performance PCA 

applied 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

PCA applied Pearson 

Correlation 

-.128
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 

 

 

Table 33. Correlation Between Accuracy and Cumulative Variance in PCA 

    

Performance % of 

Cumulative 

Variance 

Obtained in 

PCA 

Performance Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

% of Cumulative 

Variance 

Obtained in PCA 

Pearson 

Correlation 

-.133
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 
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Table 34. Correlation Between Accuracy and Number of Components in PCA 

    

Number of 

Principal 

Components 

Performance 

Number of 

Principal 

Components 

Pearson 

Correlation 

Sig. 

(2-tailed) 

N 780 780 

Performance Pearson 

Correlation 

-.282
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 

 

 

According to Tables 32 to 34, the input variables „PCA applied‟ (-.128 Pearson 

value), „% of cumulative variance obtained in PCA‟ (-.133 Pearson value) and 

„number of principal components‟ (-.282 Pearson value) has been found to be 

significantly correlated to the dependent variable, which is the performance of the 

classifier. As a result, the answer to the forth question can be concluded in such a way 

that applying PCA in the dataset can affect the classifier performance. 

 

Table 35. Anova Results of Performance and PCA 

Performance 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

2906.5 1 2906.5 6.449 .011 

Within 

Groups 

350652.5 778 450.7 
    

Total 353559.0 779       

 

On the other hand, Table 35 shows that the performance means of instances of 

which PCA has not been applied and the ones of which PCA has applied found to be 

significantly different with respect to the significance level of the one-way Anova test 

(.011). 
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Research question 5: Based on the results derived from the empirical results of 

this study (applying classifiers on various dataset with different implementation 

techniques), can a model to predict the performance of the classification algorithm be 

built? 

 

Since there is a Results dataset containing the algorithm, dataset and 

implementation specific attributes in Table 22, it is possible to use these in a regression 

model and see their causal effects on the dependent performance variable. Due to 

finding the correlations between some of the selected independent and dependent 

performance variable in the previous research questions, it is essential to design a 

regression mode; therefore, a regression model has been developed to answer the last 

research question. According to the regression results, it is possible to build a model to 

predict the performance result. Equation 1 shows the regression function for predicting 

the performance. 

 

  The purpose of conducting a regression is to understand whether the 

coefficients on the independent variables are really different from 0; in other words, 

whether the independent variables are having an observable effect on the dependent 

variable. If coefficients are different than 0, this means the null hypothesis (the 

dependent not affected by the independents) can be rejected (Doğan & Tanrıkulu, 

2010). Based on the regression function (1), some of the independent variables have 

been found to affect the dependent variable‟s performance. As a result, the number of 

principal components, % of cumulative variance obtained in PCA, number of target 

class types, number of instances, algorithm name, validation method and discretisation 

have a negative effect on performance. On the other hand, the number of variables, 
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number of nominal variables and PCA application has a positive effect on the 

performance. 

 

 Within a 95% confidence interval, p values in Table 36 should be close to or 

lower than 0.05 in order to be accepted as significant enough. With respect to p values 

(sig. column), the effect of the number of principal components, number of nominal 

variables, number of instances, validation method, and PCA application on 

performance is said to be more certain. 

 

Table 36. Regression Results / Accuracy 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B 

Std. 

Error Beta 

1 Constant .000 .029   .000 1.000 

Number of 

Principal 

Components 

-.537 .065 -.537 -8.285 .000 

% of Cumulative 

Variance Obtained 

in PCA 

-.260 .229 -.260 -1.136 .256 

Number of 

Variables 

.044 .041 .044 1.063 .288 

Number of 

Nominal Variables 

.299 .045 .299 6.712 .000 

Number of Target 

Class Types 

-.150 .083 -.150 -1.797 .073 

Number of 

Instances 

-.219 .074 -.219 -2.951 .003 

Algorithm Name -.025 .029 -.025 -.845 .398 

Validation Method -.064 .029 -.064 -2.194 .029 

Discretisation -.035 .034 -.035 -1.050 .294 

PCA application .608 .231 .608 2.633 .009 
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Research question 6: Does implementing the same classification algorithm on 

multiple datasets and with different implementation techniques result in significantly 

different complexity? 

 

The basic concern of the sixth research question is to find if the classifiers have 

significantly different complexities on multiple datasets. A one-way Anova test can 

help visualise the differences between classifier accuracies perfectly. Table 37 shows 

that the mean of the complexitities of the classifiers on pure datasets are significantly 

different from each other  (sig. 0.02) and Figure 8 demonstrates this finding perfectly. 

According to Figure 8, the most complex classifier is CSCA; MLP is slightly more 

complex than the rest of the classifiers and the remaining classifiers are all in low 

complexity nature.  

 

Performance = 

 

-.537 * Number of Principal Components 

 

-.260* % of Cumulative Variance Obtained in PCA  

 

+.044* Number of Variables 

 

+ .299* Number of Nominal Variables   

 

-.150* Number of Target Class Types 

 

-.219* Number of Instances 

 

-.025* Algorithm Name 

 

-.064* Validation Method 

 

-.035* Discretisation 

 

+.608* PCA application 
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Table 38 shows that the difference in the mean of the complexities of the 

classifiers after discretisations are not as significant as it was anymore and Figure 9 

demonstrates this finding perfectly. According to Figure 9, an overall increase in the 

time spent is observable for all classifiers. The most complex classifier is still CSCA 

and the complexity of J48 is increased more as well; the rest of the classifiers are in 

similar low complexities. In the second stage of the experiment, a general tendency of 

the complexity to increase is observable. 

 

Table 39 shows that the mean of the complexities of the classifiers after PCA 

are significantly different from each other and Figure 10 demonstrates this finding 

perfectly. According to Figure 10, the most complex classifiers is still CSCA and the 

other classifiers are in lower complexity. In the third stage of the experiment, a general 

tendency of the comlexity to increase is observable.  

 

As it can be estimated, when all 780 trials are taken into account, the means of 

algorithms will be significantly different. Figure 11 and Table 41 shows this finding 

well and the most complex classifier is always CSCA out of all trials. Different 

implementation techniques do not significantly change the overall picture about the 

classifier complexities. 

 

Table 37. One Way Anova / Based on Pure Implementation Step Results 

CPUTime 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

59519064 12 4959922 2 0.02 

Within 

Groups 

599185463 247 2425852 
    

Total 658704526 259 
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Fig. 8 Anova mean plots / pure implementations 

 

Table 38. One Way Anova / Based on Discretisation Step Results 

CPUTime 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between Groups 503022223 12 41918519 2 0.06 

Within Groups 6021358944 247 24377971 
    

Total 6524381167 259       

 

 

Table 39. One Way Anova / Based on PCA Implementation Step Results 

CPUTime 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between Groups 303576295 12 25298025 3 0.00 

Within Groups 2273411220 247 9204094 
    

Total 2576987514 259       
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Fig. 9 Anova mean plots / after discretisations 

 
Fig. 10 Anova mean plots / after PCA 
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Fig. 11 Anova mean plots / all trials 

 
 

Table 40. One Way Anova / Based on Overall Implementation Step Results 

CPUTime 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

713800388 12 59483366 5 0.00 

Within 

Groups 

9078189767 767 11835971 
    

Total 9791990156 779       

 

The complexity variable has been binned into intervals as LOW (up to 415 

seconds), MIDDLE (415-3960 seconds) and HIGH (more than 3960 seconds). Table 

41 shows the distribution of each classifier across those complexity intervals with 

respect to all stages of the experiment. Table 41 shows that only the CSCA and J48 

appears to be in the high complexity part (HIGH cpu time interval) and algorithms are 

mostly in MIDDLE or LOW intervals. 
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Table 41. Overall Distribution of Classifiers Across Complexity Intervals 

    CPU Time (seconds) 

Total 
    -3130 

- 415 

415- 

3960 3960+ 

Algorithm 

Name 

AIRS 55 5 0 60 

AIRS2 53 7 0 60 

AIRS2P 51 9 0 60 

CHAID 60 0 0 60 

Clonalg 60 0 0 60 

CRT 60 0 0 60 

CSCA 46 8 6 60 

ExCHAID 60 0 0 60 

J48 59 0 1 60 

Logistics 55 5 0 60 

MLP 54 6 0 60 

Naïve bayes 60 0 0 60 

Quest 60 0 0 60 

Total 733 40 7 780 

 

Research question 7: Do the characteristics of the datasets affect the 

complexity of the classification algorithms? 

 

According to Tables 42 to 48, some of the input variables have been found to 

be significantly correlated to the dependent variable, which is the complexity of the 

classifier. Based on these results, the number of variables in the dataset (.124 Pearson 

value), the number of numerical variables in the dataset (.137 Pearson value), the 

number of target class types (.260 Pearson value) and the number of instances in the 

dataset (.300 Pearson value) have been found to go hand in hand with the classifier 

complexity. On the other hand, algorithm name, validation method and number of 

nominal variables have been found not to be significantly correlated to classifier 

complexity. As a result, the answer to the seventh question can be concluded in such a 

way that most of the dataset characteristics can affect the classifier complexity. Based 

on the results, the density of the instances, variables, target classes and numerical 
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variables in the dataset are expected to increase the cpu time consumed during the 

model implementation ultimately increasing the complexity of the classifiers. 

 

Table 42. Correlation Between Complexity and Number of Variables 

    CPU 

Time 

Number of 

Variables 

CPU Time Pearson 

Correlation 

1 .124
**

 

Sig. 

(2-tailed)   
.001 

N 780 780 

Number of Variables Pearson 

Correlation 

.124
**

 1 

Sig. 

(2-tailed) 

.001 
  

N 780 780 

 

 

 

Table 43. Correlation Between Complexity and Number of Nominal Variables 

    CPU 

Time 

Number of 

Nominal 

Variables 

CPU Time Pearson 

Correlation 

1 -.051 

Sig. 

(2-tailed)   
.158 

N 780 780 

Number of Nominal 

Variables 

Pearson 

Correlation 

-.051 1 

Sig. 

(2-tailed) 

.158 
  

N 780 780 
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Table 44. Correlation Between Complexity and Number of Numerical Variables 

    
CPU 

Time 

Number 

of 

Numerical 

Variables 

CPU Time Pearson 

Correlation 

1 .137
**

 

Sig. (2-tailed) 
  

.000 

N 780 780 

Number of 

Numerical 

Variables 

Pearson 

Correlation 

.137
**

 1 

Sig. (2-tailed) .000 
  

N 780 780 

 

Table 45. Correlation Between Complexity and Number of Target Class Types 

    

CPU 

Time 

Number 

of 

Target 

Class 

Types 

CPU Time Pearson 

Correlation 

1 .260
**

 

Sig. 

(2-tailed)   
.000 

N 780 780 

Number of Target 

Class Types 

Pearson 

Correlation 

.260
**

 1 

Sig. 

(2-tailed) 

.000 
  

N 780 780 

 

Table 46. Correlation Between Complexity and Number of Instances 

    CPU 

Time 

Number 

of 

Instances 

CPU Time Pearson 

Correlation 

1 .300
**

 

Sig. (2-tailed) 
  

.000 

N 780 780 

Number of 

Instances 

Pearson 

Correlation 

.300
**

 1 

Sig. (2-tailed) .000 
  

N 780 780 
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Table 47. Correlation Between Complexity and Validation Method 

    

CPU Time 

Validation 

Method 

CPU Time Pearson 

Correlation 

1 -.013 

Sig. (2-tailed) 
  

.711 

N 780 780 

Validation 

Method 

Pearson 

Correlation 

-.013 1 

Sig. (2-tailed) .711 
  

N 780 780 

 

 
 

Table 48. Correlation Between Complexity and Algorithm Type 

    CPU 

Time 

Algorithm 

Type 

CPU Time Pearson 

Correlation 

1 .001 

Sig. 

(2-tailed) 
  

.981 

N 780 780 

Algorithm Type Pearson 

Correlation 

.001 1 

Sig. 

(2-tailed) 

.981 
  

N 780 780 

 

Research question 8:  Does binning the continuous numerical variables in the 

dataset into discreet intervals affect the classifier complexity? 

 

According to Table 49, the input variable „the integers are binned into 

intervals‟ has not been found to be significantly correlated to the dependent variable, 

which is the complexity of the classifier. As a result, the answer to the eighth question 

can be concluded in such a way that discretisation of the continuous variables in the 

dataset does not significantly affect the classifier modelling time. 
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Moreover, Table 50 shows that the complexity means of instances of which 

continuous variables have been discretised and the ones of which continuous variables 

have not been discretised are not found to be significantly different with respect to the 

significance level of the one-way Anova test (.21). 

 

 

Table 49. Correlation Between Complexity and Discretisation 

    CPU 

Time 

Integers are 

binned 

CPU Time Pearson 

Correlation 

1 .045 

Sig. (2-tailed) 
  

.206 

N 780 780 

Integers are 

binned 

Pearson 

Correlation 

.045 1 

Sig. (2-tailed) .206 
  

N 780 780 

 

Table 50. Anova Results of Complexity and Discretisation 

  Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

20148280 1 20148280 2 0.21 

Within 

Groups 

9771841876 778 12560208 
    

Total 9791990156 779       

 

Research question 9: Does applying principal component analysis in the 

dataset affect the classifier complexity? 

 

According to Tables 51 to 53, none of the input variables „PCA applied‟, „% of 

cumulative variance obtained in PCA‟ or „number of principal components‟ has been 

found to be significantly correlated to the dependent variable, which is the complexity 

of the classifier. As a result, the answer to the ninth question can be concluded in such 
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a way that applying PCA in the dataset cannot affect the classifier complexity 

significantly. 

 

On the other hand, Table 54 shows that the complexity means of instances of 

which PCA has not been applied and the ones of which PCA has applied found to be 

not significantly different with respect to the significance level of the one-way Anova 

test (0.8). 

 

Table 51. Correlation Between Complexity and Number of Principal Components 

    CPU 

Time 

Number of Principal 

Components 

CPU Time Pearson 

Correlation 

1 .025 

Sig. 

(2-tailed) 
  

.484 

N 780 780 

Number of 

Principal 

Components 

Pearson 

Correlation 

.025 1 

Sig. 

(2-tailed) 

.484 
  

N 780 780 

 

Table 52. Correlation Between Complexity and % of Cumulative Variance in PCA 

    
CPU 

Time 

% Of Cumulative 

Variance Obtained in 

PCA 

CPU Time Pearson 

Correlation 

1 -.007 

Sig. 

(2-tailed)   
.844 

N 780 780 

% Of 

Cumulative 

Variance 

Obtained in 

PCA 

Pearson 

Correlation 

-.007 1 

Sig. 

(2-tailed) 

.844 
  

N 780 780 
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Table 53. Correlation Between Complexity and PCA 

    CPU 

Time PCA Applied 

CPU Time Pearson 

Correlation 

1 -.007 

Sig. 

(2-tailed)   
.838 

N 780 780 

PCA Applied Pearson 

Correlation 

-.007 1 

Sig. 

(2-tailed) 

.838 
  

N 780 780 

 

 

Table 54. Anova Results of Complexity and PCA 

  

Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

527949 1 527949 0 0.8 

Within 

Groups 

9791462207 778 12585427 
    

Total 9791990156 779       

 

 

Research question 10: Based on the results derived from the empirical results 

of this study (applying classifiers on various dataset with different implementation 

techniques), can a model to predict the complexity (consumed CPU time in seconds) 

of the classification algorithm be built? 

 

Due to finding the correlations between some of the selected independent and 

dependent performance variable in the previous research questions, it is essential to 
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design a regression mode; therefore, a regression model has been developed to answer 

the tenth research question. 

 

According to the regression results, it is possible to build a model to predict the 

complexity result. Equation 2 shows the regression function for predicting the 

complexity. 

 

Based on the regression function (2), some of the independent variables have 

been found to affect the complexity of the dependent variable. As a result, the number 

of principal components, the number of variables in datasets, validation method and 

PCA application has a negative effect on complexity. On the other hand, number of 

instances, algorithm name, discretisation, the number of target class types, % of 

cumulative variance obtained in PCA and number of nominal variables have a positive 

effect on the performance. However the negative effect here implies a reduction in 

complexity which means less time to build the model, and positive effect on the 

complexity means increased time to build the model. 

 

 Within a 95% confidence interval, p values in Table 55 should be close to or 

lower than 0.05 in order to be accepted as significant enough. With respect to p values 

(sig. column), only the effect of the number instances on complexity is said to be more 

certain. 
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Table 55. Regression Results / Complexity 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B 

Std 

Error Beta 

1 (Constant) .000 .034   .000 1.000 

Number of 

Principal 

Components 

-.073 .076 -.073 -.953 .341 

% Of 

Cumulative 

Varience 

Obtained in PCA 

.110 .270 .110 .407 .684 

Number of 

Variables 

-.032 .049 -.032 -.660 .509 

Number of 

Nominal 

Variables 

.006 .052 .006 .110 .913 

Number of 

Target Class 

Types 

.099 .098 .099 1.012 .312 

Number of 

Instances 

.248 .087 .248 2.833 .005 

Validation 

Method 

-.013 .034 -.013 -.388 .698 

Integers are 

binned 

.065 .040 .065 1.652 .099 

PCA Applied -.086 .272 -.086 -.318 .751 

Algorithm Name .003 .034 .003 .090 .929 
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      (2) 

 

        

        

         

 

 

 

 

 

 

 

 

 

 

 

Research question 11: Are the abilities of classifiers to handle missing or noisy 

data different? 

 

 

In order to answer the last research question, „Breast cancer‟ dataset has been 

selected to make the experiments. This dataset has some noise such as missing values. 

Firstly, all 13 algorithms with 10 fold cross validation have been applied on the „Breast 

cancer‟ dataset and accuracy results are tabulated. Then, missing values were cleaned 

from „Breast cancer‟ and the same algorithms were implemented over. The results of 

the two different steps can lead to determine which algorithms are more robust and 

which are not.  

 

The first column in Table 56 shows the performance of classifiers before 

missing value analysis and the second column shows the accuracies after missing 

Complexity = 

 

-0.953* Number of Principal Components 

 

+0.407* % of Cumulative Variance Obtained in PCA  

 

-0.660* Number of Variables 

 

+0.110* Number of Nominal Variables   

 

+1.012* Number of Target Class Types 

 

+2.833* Number of Instances 

 

-0.388* Validation Method 

 

+1.652* Discretisation 

 

-0.318* PCA application 

 

+0.090* Algorithm Name 
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values cleaned. It is obvious to see that most of the algorithms are able to handle 

missing values since the accuracies are quite better and only very slight increase in the 

performance is observed after missing value analysis. Moreover, AIRS and CSCA 

shows a different tendency to reduce the accuracy when missing values are cleaned. 

Certainly, more experiments should be conducted to draw more certain conclusions 

about classifier robustness. 

 

 

Table 56. Robustness Comparison 

  before MVA afterMVA Difference 

Naïve bayes 96.0 96.3 -0.3 

Logistics 96.6 96.8 -0.2 

CHAID 92.7 93.0 -0.3 

AIRS 97.0 96.2 0.8 

MLP 95.3 96.0 -0.7 

ExCHAID 92.7 93.0 -0.3 

CRT 92.4 92.7 -0.3 

Quest 91.0 91.2 -0.2 

J48 94.6 96.0 -1.4 

AIRS2 96.6 97.1 -0.5 

AIRS2P 96.1 96.8 -0.6 

CSCA 96.7 96.3 0.4 

Clonalg 95.6 95.9 -0.3 
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 CHAPTER 4.  

CONCLUSION  

 

 

Classification type of algorithms have been very popularly used by the data 

mining community and the prediction abilities of them or their complexities have been 

discussed for many years.  When implemented efficiently and correctly data mining 

systems can be very crucial in many areas such as customer relationship management, 

fraud detection, credit evaluation, risk evaluations, medical treatment or disease 

detection, etc. Therefore the quality criterion like accuracy and complexity plays a 

crucial role in data mining projects while selecting a proper classifier. 

 

In this study, CHAID, Ex-CHAID, CRT, Quest, J48, MLP, Logistics, AIRS, 

AIRS2, AIRSP, CSCA, Clonalg and Naïve Bayesian classification algorithms have 

been implemented on 10 different datasets.  

 

According to the accuracy results, „Acute‟ dataset is the easiest one to be 

predicted since most of the algorithms have their highest accuracy value on it. 

However none of the algorithms outperform the others in each dataset; therefore a 

algorithm may not be dominantly predicting the best in all domains and data miner 

should think about dataset bias as well.  

 

J48, MLP and Logistics are the best predicting classifiers out of all trials on 

average. Immune system type of algorithms and Naive Bayesian are also predicting 

well. However CHAID, Ex-CHAID, CRT, Quest and Clonalg are the ones with the 
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lowest predictive power. Therefore they may not be suitable for datasets with high 

dimensionality and continuous integers.  

 

The mean of the prediction abilities of the classifiers before and after 

discretisations are significantly different from each other. After discretisations, a 

general tendency of the performance to drop is observable; however CSCA and 

Clonalg shows a tendency to increase so that they are able to handle discrete values 

better and Quest is not affected a lot by the discretisation. After PCA, the mean of the 

prediction abilities of the classifiers are not significantly different from each other 

since the mean of classifiers becomes closer to each one. There is still a general 

tendency of the performance to drop; however Clonalg shows a tendency to increase; 

Naive Bayesian and CSCA are affected by PCA less. Considering the experimental 

results, J48 shows the best prediction ability for all stages on average.  Thus, data 

analysts should be aware that some data pre-processing attempts may reduce the 

accuracy for some classifiers.  

 

Therefore, conducting similar experiments may help data miners about which 

classifier to choose when. Based on the empirical findings, J48, MLP, Logistics and 

most immune system algorithms are producing quite robust accuracies following a 

similar pattern whether the dataset is pre-processed or not.  

 

Another interest has been to find out the correlations between the accuracy 

results of classifiers and the dataset attributes. Based on the correlation analysis, the 

number of variables in the dataset, the number of numerical variables in the dataset 

and the number of instances in the dataset, the number of nominal variables in the 
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dataset and the number of target class types in the dataset have been found to go hand 

in hand with the classifier performance. The correlations between the accuracy results 

of classifiers and whether to discretise the continuous variables or not were also within 

the scope of the study. Based on the correlation analysis, the input variable „the 

integers are binned into intervals‟ has been found to be significantly correlated to the 

dependent variable, which is the performance of the classifier. Another interest has 

been to find out the correlations between the accuracy results of classifiers and 

whether to apply PCA or not. Based on the correlation analysis, the input variable the 

input variables „PCA applied‟, „% of cumulative variance obtained in PCA‟ and 

„number of principal components‟ has been found to be significantly correlated to the 

dependent variable, which is the performance of the classifier. The statistical results 

show the fact that dataset characteristics, discretisation and PCA affect the classifier 

accuracy. 

 

On the other hand, accuracy is not the only concern of the data analysts. The 

complexity that is the amount of cpu consumed by the classifier is another concern. 

The other research questions are related to the complexities of the algorithms. By 

complexity, the cpu time consumed has been implied in the study. Based on the Anova 

mean plots, CSCA algorithm has always found to be the most complex algorithm and 

J48 is a little bit more complex than the other algorithms and the rest are in similar 

complexity. Discretisation of continuous variables into intervals or PCA 

implementation has a general tendency to increase the cpu time but the mean of all cpu 

times are not changed significantly in either case. This part of the study gives a clear 

idea about the model development times, since the data analyst can understand that 

training time will last longer with CSCA based on these findings. Classifiers run at 
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times measured by seconds or minutes; however CSCA runs by hours or days 

sometimes. Moreover data analysts should also consider the fact that pre-processing 

may increase the complexity of the classifiers. 

 

 With respect to correlations between dataset characteristics and complexity; 

number of variables, number of numerical variables, number of target classes and 

number of instances can be said to significantly affect the complexities of classifiers. 

However discretisation or PCA implementation has no significant effect on the 

classifier complexity. 

 

Based on the findings of this study, it can also be said that a regression model 

can be built to predict the performance and the complexity of a classifier on a given 

dataset with given implementation conditions. Lastly a robustness comparison 

conducted on a dataset before and after the missing values has been cleaned. Results 

show that the accuracy of algorithms does not reduce dramatically when noise is 

included too. Certainly, more experiments should be conducted to conclude more 

precisely about classifier robustness. 

 

In this study, the factors affecting the classification algorithm performance and 

complexity have been underlined based on the empirical results of difference tests, 

correlation and regression studies. The fact that dataset characteristics and 

implementation details influence the accuracy or complexity of the algorithm cannot 

be denied. The deviation of algorithm accuracies across different datasets is 

observable. The means of accuracies with respect to discretisation or PCA also are 

significantly different. The business and academic community should take these 
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results into consideration, since establishing a knowledge discovery process on the 

same algorithm with the same implementation details may not always be certain and 

efficient. The model assessment and selection phase should be paid the utmost 

attention in an iterative manner, because any difference in dataset characteristics or 

pre-processing techniques can affect the model‟s accuracy or complexity, and 

switching to another classifier or changing the pre-processing technique may be a 

better decision. The regression model also gives some hints about the importance of a 

dataset, and that the accuracy or complexity can be predicted based on the instances or 

the field attributes of the dataset.  This study can give idea about the expected accuracy 

and complexity of classifiers based on given dataset or pre-processing characteristics. 

 

It is not an easy task to decide which classifier to use in a data mining problem; 

thus this study shows the importance of model selection and explains that an algorithm 

and a data pre-processing technique is not the best choice for all datasets. As Rokach & 

Maimon also claim that “no induction algorithm can be best in all possible domains” 

and they introduce the concept of “No Free Lunch Theorem” which says that “if one 

inducer is better than another in some domains, then there are necessarily other 

domains in which this relationship is reversed.” (Maimon & Rokach, 2008). Data 

miners face the dilemma of which classifier to use and the situation gets harder when 

other criteria like comprehensibility or complexity are also concerned. 

 

Certainly, conclusions are based on the scope of this study; therefore, 

increasing the scope may help to develop an extended framework for predicting the 

accuracy or the complexity of classifiers better. Obviously, there may be other factors 

influencing the accuracy or complexity of a model, thus input variables of the 
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regression function should be increased in the future. Moreover, there are other quality 

factors of classifiers to be discovered such as scalability, interestingness or 

comprehensibility. It is suggested that those other quality factors can be included to the 

study in the future. For example, if larger databases can be found then scalability of the 

classifiers can be tested in another study as well.  Or some rule based or rule producing 

algorithms can be compared with respect to the interestingness measure, whether the 

models can produce new and valid knowledge or not.  
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