

INTEGRATION OF A SIMULATION PLATFORM INTO A

BUSINESS PROCESS MANAGEMENT TOOL

İBRAHİM HALİL KANALICI

BOĞAZİÇİ UNIVERSITY

2008

INTEGRATION OF A SIMULATION PLATFORM INTO A

BUSINESS PROCESS MANAGEMENT TOOL

Thesis submitted to the

Institute for Graduate Studies in Social Sciences

in partial fulfillment of the requirements for the degree of

Master of Arts

in

Management Information Systems

by

İbrahim Halil Kanalıcı

Boğaziçi University

2008

 iv

Thesis Abstract

İbrahim Halil Kanalıcı, “Integration of a Simulation Patlform into a Business Process
Management Tool”

Information technology has already gone beyond being a supportive tool for

businesses. Strong competition and increased costs force businesses act more efficiently

and rapidly, so almost in every business, the operations are carried out in IT platforms

where the processes are automated. These platforms are referred to as Business Process

Management (BPM) Suites. With this motivation, most companies analyze and

reengineer their workflows. At this point, it is vital to be able to monitor current or

reengineered business processes with key performance indicators and keep the process

flows under control. This introduces a challenge for the management to evaluate how

any particular modification to any of the process workflows affects the performance

measures. Therefore simulation becomes an essence in the contemporary management

of businesses. In practice, major business process management softwares include some

kind of simulation environment either as an embedded engine within the modeling

component or through third-party integration. In this study a general purpose simulation

platform is analyzed and a mapping algorithm is developed to integrate modeling

capabilities of a BPM tool with this simulation environment.

 v

Tez Özeti

İbrahim Halil Kanalıcı, “Integration of a Simulation Platform into a Business Process
Management Tool”

Günümüzde bilgi teknolojilerinin kullanımı iș süreçlerine yardımcı olmaktan

öteye gitmiș, süreçlerin tamamiyle otomasyonunu sağlamakta kullanılmaya

bașlanmıștır. Her geçen gün artan rekabet ve maliyetler, șirketleri süreçlerinin en az

maliyetle ve en izlenebilir șekilde yönetilmesine zorlamaktadır. Bu ihtiyacı karșılamak

için İș Süreç Yönetimi yazılımları geliștirilmiștir. Bu yazılımlar üzerinde șirketler iș

süreçlerini modellemekte, bu süreçler içerisinde takip etmek istedikleri anahtar

performs göstergelerini tanımlayabilmekte, organizasyonel yapılarını süreçlere entegre

ederek manuel ișlerimlerin daha hızlı bitirilmesini sağlamakta ve anlık ya da dönemsel

raporlar alabilmektedirler. Değișen pazar șartları ve ekonomik etkenler dolayısıyla bu

platformlar üzerinde kurulmuș süreçlerde zaman zaman değișiklikler yapılması

gündeme gelmektedir. Ancak bir süreç, șirketin bir çok farklı departmanını, hatta alt

yükleniciler, iș ortakları ve servis sağlayıcılar gibi bir çok kesimi kapsayabilir. Bu

yüzden süreçler yeniden düzenlenirken ya da yeni bir süreç tasarlanırken, simülasyon

kendisine çok bu platformlar üzerinde çok önemli bir yer edinmiștir. Mevcutta bir çok iș

süreç yazılımı șirketleri, bu platformlarda yaratılan modeller için ya gömülü bir

simülasyon motoru kullanarak ya da üçüncü parti bir simülasyon yazılımıyla

entegrasyon sağlayarak müșterilerine simulasyon imkanı vermeye çalıșmaktadır. Bu

çalıșmada da, bir simülasyon yazılımı ile bir iș süreçleri yönetimi yazılımı ele alınacak

ve bu iki yazılımın beraber kullanılabilmesi için entegrasyon sağlanacaktır.

 vi

ACKNOWLEDGEMENTS

This study is supported by the Research Projects Fund (Project #08N302) of

Boğaziçi University, Istanbul, Turkey.

I’d like to thank to Assoc. Prof. Aslı Sencer Erdem for her great support and

commitment to this study.

I also would like to express my gratitude to my family for their never-ending

love and support.

 vii

CONTENTS

CHAPTER ONE: INTRODUCTION ..1

CHAPTER TWO: BACKGROUND...5

WHAT IS BPM? ..5
COMPONENTS OF BPM...6

CHAPTER THREE: LITERATURE SURVEY ...9

CHAPTER FOUR: MODELING AND SIMULATION ENVIRONMENTS OF ARENA AND

NETFLOW ..12

ROCKWELL AUTOMATION’S ARENA...12
BIZITEK’S NETFLOW...13
COMPARATIVE STUDY - SIMULATION CAPABILITIES OF ARENA AND NETFLOW......................................16

CHAPTER FIVE: INTEGRATION OF THE BPM TOOL INTO THE SIMULATION

ENVIRONMENT ..27

TECHNIQUES FOR INTEGRATING NETFLOW TO ARENA ...27
HOW INTEGRATION WORKS ...32
MAPPING SOURCE NODES ..33
MAPPING DESTINATION NODES..38

CHAPTER SIX: SIMULATION OF A SAMPLE MODEL IN ...43

NETFLOW AND ARENA ...43

THE APPLICATION IN NETFLOW’S CURRENT SIMULATION ENVIRONMENT...45
THE APPLICATION IN ARENA USING PROPOSED INTERFACE...47

CHAPTER SEVEN: DISCUSSION AND ANALYSIS ..49

SUGGESTIONS ON DEVELOPING SIMILAR INTERFACES ...49
LIMITATIONS OF THE PROPOSED METHODOLOGY..54

CHAPTER EIGHT: SUMMARY AND CONCLUSION ...57

REFERENCES...59

UNCITED REFERENCES ..60

APPENDICES ..61

A. IMPORT MODEL FROM DATABASE - TABLE STRUCTURES ..61
B. BUSINESS PROCESS DIAGRAM AS SPECIFIED BY BPMN ..69

 1

CHAPTER ONE: INTRODUCTION

The term “Business Process Management” has been out there for a long time,

but importance of the subject has recently been recognized as businesses started their

transition onto integrated systems platforms barely a decade ago. This transition took

many forms: stand-alone applications for specific purposes along with optional

middleware to help data transfer across these applications; or some kind of a

collaborative integrated software - an enterprise resource planning (ERP) software - that

offers full integration capabilities across different functions of a company.

In a typical enterprise, organizations are built around discrete business units;

such as marketing, financials, manufacturing and logistics where each unit has its own

business systems and hierarchy. With aforementioned attempts for integrated systems,

these functional units have gained automation and more control individually but the

price of this automation has been the creation of new setbacks that hinder management

of the end-to-end processes that extend across organizational and system boundaries

(Silver, 2006). To achieve desired level of efficiency, responsiveness and to tackle

compliance issues, organizations should have a good way of monitoring their processes

and take proper action when needed. BPM tools and techniques have been developed to

serve this need; to set better directions in terms of managing processes in a company.

In rapidly evolving business and technology era, BPM has emerged to handle

ever-changing interactions between different parties and applications. The critical

importance of leading organizations from old to new ways of doing business has been

well understood by managers, but the challenge remains for them to justify and

 2

accelerate this transformation. Static modeling tools like MS Visio has been widely

used in modeling and studying business processes, but exclusion of stochastic behavior

of entities within a process has always hindered the ability of process owners or analysts

to predict how performance indicators and overall performance would be affected. Once

transformed into dynamic models, static flowcharts and workflow diagrams would

serve as a much better decision support tool. As M.W. Barnett (2003) from Gensym

Corporation sets forth, “simulation in this case provides all the answers: it shows you

how the answers are derived; it enables you to trace from cause to effect; and it allows

you to generate explanations for decisions” (p.1).

Simulation obviously plays an important role in modeling and (re)designing any

business process or in any other field of study. Simulation mainly allows users to

determine how their process designs will work and provides a platform to assess risks

before design engagements. It helps to identify redundant steps, bottlenecks and

opportunities that are involved in complex business processes. Through some citations

from relevant literature, Hlupic et al. (2007) list major reasons for the introduction of

simulation into process modeling: i.e., the influence of random variables on process

development can be investigated and re-engineering effects can be anticipated in a

quantitative way by using the metrics like costs, cycle time, serviceability and resource

utilization. Furthermore, process visualization and animation are provided, allowing

multidisciplinary team members to understand the model and communicate about it. As

modeling user interfaces have become so much friendlier, simulation may be used by

those who have little or no simulation background. These reasons have all been

recognized by companies through struggles in real-world cases and BPM software

 3

vendors have started to develop simulation modeling features to meet these

requirements. In a research conducted by Hall and Harmon (2005) as cited by Hlupic, et

al. (2007), most modeling tools offer discrete event simulation (DES) capabilities either

as part of the tool supported with a simulation engine or as a separate add-on module

developed by themselves or through 3rd party software development companies.

The simulation capabilities of the BPM tools where the simulation engine is a

part of the tool are generally very limited. This is because testing a model dynamically

by using different scenarios with well-defined and approximated input distribution or

even with historical data is not the main focus of the vendors of these tools. One the

other side, users have not given as much thought and effort on getting help from

simulation when designing or reengineering a business process as they have done in

manufacturing and production systems. However, it has now been realized that

organizations need to identify cost minimizing and value added activities in designing

their processes.

The second option in incorporating simulation capabilities to a BPM tool is to

integrate separate simulation software. The most obvious shortcoming of this option is

the fact that purchasing a simulation tool increases costs. Secondly this requires the

knowledge on both platforms. Yet one should note the tradeoff between the increased

costs and the broader functionality achieved by integrating a third party simulation

software.

In this study a platform is generated that comprises the integration of BPM tool

and simulation software. The organization of the study is as follows: In the next chapter,

some background information on BPM is presented, followed by a literature survey on

 4

the use of simulation in the context of business process management. After BPM tool -

Netflow-, and simulation tool -Arena- are shortly introduced, the comparison between

modeling and simulation capabilities are compared and results are presented. Finally,

after some remarks on software integration techniques, how integration is developed

between Netflow modeling environment and Arena simulation environment is

explained. There is also an additional chapter where a sample model is implemented

both in Netflow platform and the proposed integration platform to provide better insight

to readers. Discussions on the limitations of the proposed integration environment and

suggestions regarding this kind of study are provided in the end.

 5

CHAPTER TWO: BACKGROUND

What is BPM?

In academic literature there are various definitions of BPM, all of which

converge to the same point of “improving the way of doing business and organization”.

DeToro and McGabe (1997) suggest that in a BPM perspective, organizations realize

that chain of events is horizontal across functional units. Policy and direction are still

set at the top, but the authority to examine, challenge, and change work methods are

delegated to cross-functional work teams. Consistently, Elzinga, Horak, Chung-Lee and

Bruner (1995) set forth that “many companies are engaged in assessing ways in which

their productivity, product quality, and operations can be improved. A relatively new

area of such improvements is BPM”.

There are also organizations emerged to create methodologies and provide skills

to help companies actively manage their end-to-end processes. Workflow Management

Coalition (WfMC) defines BPM as the practice of developing, running, performance

measuring, and simulating business processes to effect the continued improvement of

those processes. Simply put, BPM is concerned with the lifecycle of the Process

Definition. According to Association of BPM Professionals, ABPMP, BPM is a

systematic approach to identify, design, execute, document, monitor, control and

measure both automated and non-automated business processes to achieve consistent,

targeted results consistent with an organization's strategic goals. BPM involves the

deliberate, collaborative and increasingly technology-aided definition, improvement,

 6

innovation, and management of end-to-end business processes that drive business

results, create value, and enable an organization to meet its business objectives with

more agility.

Components of BPM

The definition given by ABPMP, along with its emphasis on innovative

management of cross-functional processes as in the case of other definitions rendered

by academia, also draws on important aspects of potential BPM suites. These aspects

can be reflected in nine automated components that are required to exist in a fully

capable, functional-wise complete BPM tool as stated in the book “Business Process

Management: Practical Guidelines to Successful Implementations” by Jeston and Nelis

(2006). These components are shown in Figure 1 along with an illustration of full

process lifecycle.

Figure 1: Components and interaction recycle in a BPM tool

Though the relationships between these components might be interpreted in

different ways with respect to the way of approach, the identification of components is

usually similar to that appears in (Jeston and Nelis, 2006). Process Modeling and

Process Modeling
 and Design

Business Acitivity
Monitoring

(BAM)

Activity Based
Costing (ABC)

Simulation

Balanced Scorecard
(BS)

Process Engine

Business Rules

Integration (EAI)

Integrated Document
Management System

 7

Design component enables many users collaboratively design process models at

different times or simultaneously from different terminals. Process Engine component

simply automates standardized tasks within a process and directs flow instances to

people with respect to organizational structure. Business Rules component provides a

pool of parameters and operands to construct constraints in a model without making

significant programming effort. Enterprise Application Integration (EAI) is especially

useful when there are other software in use and when a process necessitates sharing

information back and forth with other software. Document Management component

enables users to use documents within a workflow and store them on server with better

performance. Business Activity Monitoring (BAM) component is becoming very

popular due to the fact that it enables managers to track key performance indicators

defined in a model on customized dashboards in real time. Simulation component

provides an analysis platform in which users have the chance to see how efficient a

process workflow is and whether there are any setbacks that would create costly

problems after deployment. Activity Based Costing (ABC) component enables

managers to track activity costs more accurately and helps in taking strategic decisions

regarding cost accounting. Finally, Balanced Score Card (BS) component is important

because it provides the means of associating performance indicators with company’s

strategies and monitoring whether workflow outputs are in alignment with company’s

strategic goals.

Considering the input-output relations between these components, the five

components in the middle column are the fundamental ones that provide data for BAM.

The monitoring activities indicate opportunities to redesign the processes across the

 8

divisions. ABC, Simulation and BS components include recently added features that

enhance the process redesign capabilities of the BPM Tools. These components serve

management needs to keep daily business in alignment with strategic goals, to monitor

associated costs more accurately and to reengineer or implement new processes to meet

changing market requirements. In this picture, simulation, when used correctly,

provides great decision support and comfort in judgment of new business engagements.

 9

CHAPTER THREE: LITERATURE SURVEY

In literature, there are many studies on the use of simulation in the context of

business process modeling. Especially in the area of manufacturing and production

systems, simulation has been widely used to be able to walkthrough intricate processes

of machinery and workstations. As cited by Paul et al. (1999), Halpin (1999) indicates

the uses of simulation in various areas such as military operations, economic studies,

healthcare, computer systems design, construction applications, transportation facilities

and sociological analyses. In this study the emphasis is on dynamic modeling of

business processes where simulation has most recently surfaced. While rendering quite

a few of real life applications in this area, Paul et al. (1999) state that holistic approach

must be adopted in designing processes that have multiple organizational perspectives

(e.g. various departments in a company) and mapping of business processes to

workflows is crucial in this aspect. This statement summarizes the need for BPM

systems which would integrate process definition, modeling, administration and

evaluation under single environment. However, even with the rise of BPM systems that

would bring along executable models, Paul et al. (1999) argue that simulation will not

become a mainstream modeling tool and they identify important factors that give rise to

this fact. First one is the lack of interface capabilities between simulation software and

other modeling tools, which is still a gap that this study tries to narrow. Second one is

the requirement of a certain amount of expertise for building models with most

simulation languages, which is obsolete at the time because there are quite a few

 10

simulation packages that offer modeling capabilities without use of programming skills

(Paul et al., 1999). Therefore, interface issue remains the one to be investigated.

The lack of interface issue has been recognized by both the academia and the

industry, leading to studies on integration between modeling tools and simulation.

Harrell and Field (1996) present an integration study between Design/IDEF, a process

mapping tool and ProModel, a simulation tool. Through modifying the underlying code

of process mapping tool, they manage to add entity attributes, input buffers, ways to

model different entities and additional data fields to capture dynamic information.

Similarly, Srinivasan and Jayaraman (1997) come up with a model generator developed

in SIMAN simulation language, called EMF-SIMAN. EMF stands for Enterprise

Modeling Framework and consists of a methodology that distinguishes between the

important aspects of an organization: function, information and dynamics.

There is also a more recent work published about simulation of business process

models generated in BPM tools. In this paper, Waller et al. (2006) presents a Java based

simulation engine, L-SIM, which would be able to simulate processes constructed with

business process management notation (BPMN)
*
. This commercial product provides

specific objects to represent each BPMN shape as well as additional objects to support

simulation data analysis, enabling easy translation from a static diagram to simulation

environment. This engine may be used with any BPMN compliant modeling

environment via a BPMN compliant application programming interface (API) and

currently implemented in several BPM tools such as IDS Scheer, Telelogic and

*
 Developed by Business Process Management Initiative (BPMI) and is now being maintained by the

Object Management Group (OMG) after the merger of these organizations in 2005, Business Process

Management Notation (BPMN) offers a standardized graphical notation for drawing business processes

in a modeling environment. (Retrieved on September 30, 2008, from http://en.wikipedia.org/wiki/BPMN)

 11

PNMSoft (http://www.lanner.com/en/l-sim.cfm). The essence of this study lies within

the conversion of inexplicit dynamic behavior which may exist in complex models,

such as queuing procedures. In BPMN, there isn’t any object that represents queues and

it wouldn’t be realistic to expect all business process modelers to understand the nature

of simulation and put in the queues with appropriate procedures in simulation model

generated by L-SIM. For this reason, model generated via L-SIM would be a result of

much detailed design activity and analysis, which introduces a fundamental challenge to

making of such an interface (Simulating for Success, n.d.).

The work presented in this study aims to assist users in simulation of business

processes using a general purpose simulation tool and a BPM tool. Although the

ultimate purpose is the same as other works presented in the literature, which is

simulating process models, the methodology introduced is completely different and

obviously specific to the BPM tool at hand. In addition, different integration techniques

using this widely-implemented general purpose simulation tool are presented as well as

a thorough discussion and analysis of alternative methods using different BPM tools.

 12

CHAPTER FOUR: MODELING AND SIMULATION ENVIRONMENTS OF

ARENA AND NETFLOW

Rockwell Automation’s Arena

Arena, developed by Rockwell Automation, is a simulation and automation

software based on SIMAN processor and simulation language. In this simulation tool,

the user places different modules and data blocks (process, decision, conditions etc.)

together to build the representative model of a real business process. Connection in

between these modules specifies the flow of entities. Different modules have specific

actions relative to entities, attributes, timing and flow; however with flexible

programming such as built-in Visual Basic for Applications (VBA) events and

expression customizing capabilities, the precise representation of each module and

entity relative to real-life objects may be modified by the user. Statistical input/output

data may be recorded, analyzed and reports may be generated not only with standard

parameters, but also by parameters of the user’s own definition.

All these features place a sound ground to select Arena for a simulation

environment. But there are two other important aspects of Arena that enables it to be

selected as a simulation platform to be integrated to a BPM tool. Arena integrates very

well to Microsoft technologies as it contains VBA for specific, user-defined algorithms.

It also includes ActiveX control that provides users the ability to reference an external

application and use object variables from these external application’s object model such

as MS-Excel. On top of this, Arena supports open database connectivity (ODBC) which

 13

enables users to connect right into an SQL Server to retrieve and manipulate data. Being

Microsoft-oriented to this degree is important because the BPM software presented in

this study is designed on Microsoft technologies, specifically on .NET platform

(http://www.arenasimulation.com).

Bizitek’s Netflow

Netflow is a BPM solution developed by Bizitek Bilgisayar Yazılım ve İnternet

Teknolojileri A.Ș. in Istanbul, Turkey. It allows modeling of related workflows

according to companies needs to automate workflows, follow the actions, check status

reports, and see tangible results. This software consists of three main modules: Netflow

Web Interface where the users log onto the system and carry out their role-specific

tasks; Netflow Studio where the process owner models the process by using workflow

modules and rules without doing any programming; Netflow Admin where dedicated

personnel from IT department manages the whole system; role definitions, hard

parameters, exception handling, database processing etc. The underlying architecture of

Netflow that supports these three modules is illustrated in Figure 2:

 14

Figure 2: The Architecture of Bizitek’s Netflow

Netflow runs on Microsoft’s SQL 2005 Server and uses Windows services for

most of the functionality. It has been developed with a service oriented framework that

integrates the products with the same type of architecture and includes them into the

workflows. It is capable of integrating with a wide range of third party products and can

communicate with any OLEDB (object linking and embedding database) or ODBC

compatible databases as well as other systems through web services and/or application

programming interfaces.

In Netflow Studio model, the process owner models the process and embeds the

rules so that each instance follows through a pre-established logic. In doing so,

however, the process owner doesn’t know if the real process is mapped onto the system

 15

accurately and whether all different cases are covered. Netflow offers a “test system”

where each process can be deployed first and tested against certain scenarios customer

possesses before live deployment takes place, but this way of testing the models may

require many resources and time. Besides, testing is limited only to a number of runs of

certain scenarios which may not project accurate results for identifying bottlenecks or

utilization rates of resources.

Netflow, as a matter of fact, has built-in simulation functionality where inter-

arrival times and service times (times required by organizational resources) are

randomly generated from a normal distribution with a given mean and standard

deviation. There is also the possibility of generating these times using different

parameters (mean, standard deviation) by assigning each case discrete empirical

probabilities. However, merely randomization of input parameters would not suffice for

getting useful simulation results. Lack of elaborate data collection on different attributes

of entities and resources, lack of interfaces of data input and most importantly lack of

flexibility as compared to other simulation and general purpose programming languages

may create problems when designing complex models within different areas of business

(http://www.bizitek.com.tr)

Before presenting how integration is constructed between Netflow and Arena, it

is important to present a short comparative study of Arena’s simulation features and

Netflow’s simulation capabilities by using the framework developed by Hlupic et al.

(2007).

 16

Comparative study - Simulation capabilities of Arena and Netflow

Hlupic et al. (2007) basically put together a list of guidelines that would assist

managers in selecting a simulation package to be deployed in the context of business

process change projects. The authors in their discussions present the most important

simulation features and define the criteria for the evaluation of these features. One can

definitely pursue the very same guidelines and criteria within BPM implementations

because process change and reengineering is an essential part of managing business

processes.

These criteria were derived from previous experiences and literature survey and

were further tuned to cover only those features required for business process simulation

issues (in other words, not very exhaustive to cover manufacturing systems). Moreover,

Hlupic et al. (2007) asserted that levels of importance are vastly dependent on user

choices, level of modeling details and area of use. When modeling complex processes

or using the software for educational purposes, some criteria such as modeling

flexibility, ease of debugging and access to source code would attract more attention

than ease of learning and user friendliness or vice versa. Consistently, if top

management requires output analysis of simulation results, then visual aspects and

output capabilities would be more significant.

Hlupic et al. (2007) defined four main groups of categories and features within

each category were further classified into subcategories with respect to their character.

The main categories and the related subcategories are shown in Table 1.

 17

Table 1 - Overview of the Framework Presented by Hlupic et al. (2007)

Hardware &

Software

Considerations

Coding Aspects Software Compatibility User Support Financial and Technical Features Pedigree

Modeling

Capabilities

General Features Modelling Assistance

Simulation

Capabilities

Visual Aspects Efficiency Testability Experimental Facilities Statistical Facilities

Input / Output

Issues

Input and Output Capabilities Analysis Capabilities

Hardware and Software Considerations

Coding aspects, included in the hardware and software considerations category,

would seek whether additional possibility for programming or at least access to source

code is provided. This subcategory also would check whether global variables could be

used across the model and whether built-in functions are provided. In Arena, Visual

Basic editor comes with ThisDocument object which has a collection of standard events

that are triggered at different times by Arena; which provides great additional

programming features for users. Users are not allowed to access to source code in

neither of the simulation environments but Arena lets users utilize global variables and

many built-in functions such as TNOW to describe the current time whereas Netflow

simulation engine provides users with rule construction using available variables and

 18

attributes of an instance through which it supports basic programming concepts and

offers built-in functions.

Arena outruns Netflow in the software compatibility category in the context of

simulation capabilities. Technology exploited by Arena for application integration is the

ActiveX Automation (formerly knows as OLE automation). Fundamentally, this

technology allows applications to control each other and themselves via a programming

interface, VBA in Arena case. The user may use MS Excel or MS Access to

import/export model and operand data. Arena also has full compatibility to different

input/output statistical analyzer software where inputs into the model and outputs are

verified and validated. Netflow utilized Microsoft Office SharePoint Server features to

integrate with commonly used desktop applications; however this integration only

works during execution of workflow engine, not the simulation engine. However if this

capability was extended to cover simulation engine as well, then integration capabilities

may be comparable.

In user support category, Arena again has remarkable superiority. Rockwell

Automation offers consultancy services and training courses across the world and they

have been carrying out these activities for many years now. Obviously much expertise

has been accumulated over the years and this expertise is clearly reflected in the so

called “SMART” files; sample models each of which illustrates different modeling

techniques and simulation capabilities of Arena. Simulation in Netflow, however, has

only recently been developed and is not even included in the current version’s (version

4.9) help documentation. This statement also invokes that Arena gets much higher

points in the category of pedigree.

 19

Since the simulation platform of Netflow may not be deployed separately

without having to purchase BPM software itself, it wouldn’t make any sense to make

comparison in the financial and technical features category.

Modeling Capabilities

Regarding the modeling capabilities category, actually the comparison would

not expose useful information because the scope of this study is to keep modeling

environment within Netflow and yet transform models into Arena environment to

simulate them. Nevertheless, this comparison will shed some light on why authors have

chosen to create an interface between Netflow and Arena instead of having users do

modeling also in Arena manually and run simulation afterwards.

Experience and education required for the use of Arena needs to be much

greater than for the use of Netflow modeling and simulation features. Netflow has an

unstructured modeling environment where each node is represented with the same block

and these blocks are differentiated using codes or names. As long as the rules on the

connectors are defined accurately and nodes are connected elaborately, modeling is like

free diagramming. Due to structured modeling environment of Arena and sophistication

of simulation engine written in Siman programming language, ease of learning and

user-friendliness are obviously compromised when compared to Netflow modeling

environment. This is actually an important point in the favor of justifying the idea to

keep modeling environment within Netflow along with single user interface and total

cost of ownership.

 20

Owing to more advanced modeling capabilities of Arena, it is expected to score

higher from modeling assistance subcategory. With comprehensive online help and user

forums, many different modules to meet the requirements of end-to-end processes in

various industries and ability to allow simulation runs with different input parameters

on the same model (model and data separation), Arena steps up higher than Netflow in

this subcategory.

Simulation Capabilities

Within the visual aspects subcategory of simulation capabilities group,

animation helps people with no simulation background visualize how the model

performs and it is definitely a better representation of the process. However, visual

aspect subcategory happens to be relatively less important because in the scope of this

study, the animated simulation run is not included although Arena supports full

animation of the model and has an extensive animation library to represent different

entities, resources or activities. On the other hand, Netflow does not offer any animation

features at all.

Efficiency of simulation software is as important as any other type of software.

Although functionality (features offered) has more priority when assessing simulation

tools in the scope of this study, these tools should demonstrate the ability to recover

when exceptional inputs or situations occur. Simulation tools are also expected to have

the capability to model a variety of complex systems and show characteristics which

can save time needed for modeling and improve the quality of modeling such as

 21

reusability, reliability and time scale for model building. As a general purpose

simulation tool, Arena clearly outscores Netflow’s simulation capabilities within this

category.

Testability subcategory comprises criteria that basically seek for facilities for

model verification. Logic checks and detailed error messages are important features

Arena simulation software provides from the very first releases. Trace elements and

step command may be used in Arena to track certain variables or attributes during run

time as well as debugging by more technical users. Netflow also provides logic checks

and error messages for its limited simulation features.

Experimentation subcategory basically evaluates a simulation package’s

facilities that are required for improving the quality of simulation results and for

speeding up the process of designing experiments and of experimentation itself. Arena

provides users the ability to enter Warm-up period while setting up run time parameters

so that steady state analysis could be done. Users may also open “Breakpoint

Properties” dialogue to pause the system whenever a specific simulation time, calendar

time, condition, entity or module is reached. After a validated model has been

constructed, users have the chance to run the simulation in batch mode to collect

statistics out of the model. Speed adjustment for the flow of entities is also available

during runtime. None of these features are provided by Netflow simulation engine.

Due to the stochastic nature of the simulation models, good statistical facilities

are essential. Criteria in this subcategory observe the range and the quality of the

statistical analysis facilities offered by simulation packages. Netflow merely offers

random number generation out of a normal distribution with given mean and standard

 22

deviation and may be further randomized with discrete empirical coefficients from zero

to one. On the other hand, Arena comprises all of theoretical distributions along with

the possibility to construct user-defined distributions to generate random variables.

Input analyzer tool that comes with Arena installation provides great support for

distribution fitting for a given stream of numbers. This powerful and versatile tool can

be used to determine the quality of fit of probability distribution functions to input data.

It may also be used to fit specific distribution functions to a data file to allow you to

compare distribution functions or to display the effects of changes in parameters for the

same distribution. In addition, the Input Analyzer can generate sets of random data that

can then be analyzed using the software’s distribution-fitting features. Also Arena

generates standard reports at the end of each simulation run defining critical points and

bottlenecks along with confidence intervals if enough input data is presented into the

system.

Input / Output Issues

Regarding the input/output issues, criteria included in the subcategory -input and

output capabilities- examine how the user could provide data into the package and type

and the quality of output reports provided by the package. Criteria for the statistical

facilities subcategory above also provide sufficient evidence that Arena offers superior

statistical analysis tools.

Criteria under analysis capabilities subcategory investigate a simulation

package’s facilities to provide scenario analysis and optimization for better decision

 23

making. The scenario analysis in Netflow could only be done by changing the model for

every different set of data because there is no model-data separation. There is also no

optimization facility within Netflow. However, Arena offers an optimization add-on

facility, named OptQuest, which allows users to define various system inputs (controls

and constraints) and desired system outputs (objective functions), then guides the

process of selection of system inputs, and then executes the model by running several

scenarios for each set of inputs in order to achieve the desired system outputs.

This comparison framework is used in the scope of this study to justify the choice of a

3rd party simulation package and interface development in stead of using or enhancing

Netflow simulation capabilities within Netflow development environment. In order to

show by how much Arena outperforms Netflow in the context of modeling and

simulation, comparison tables for each category in the framework is presented in the

following tables.

 24

Table 2 - Hardware & Software Considerations Category Results

Table 3 - Modeling Capabilities Category Results

 25

Table 4 - Simulation Capabilities Category Results

 26

Table 5 - Input / Output Issues Category Results

 27

CHAPTER FIVE: INTEGRATION of the BPM TOOL into the SIMULATION

ENVIRONMENT

Techniques for Integrating Netflow to Arena

There are several techniques that may be used to build the interface to transfer

model data from Netflow modeling environment into Arena runtime environment.

Before delving into the details of these techniques, some it is vital to know automation

and integration possibilities of Arena and Netflow.

The integration environment in this study does not expect users to use Arena

modeling interface at all. Therefore automation in Arena should be utilized to make sure

that Arena model conversion and simulation run would be carried out from outside

Arena interface. For this purpose Arena comprises ActiveX Automation (the technology

formerly known as OLE Automation), which allows applications to control each other

and themselves via a programming interface. Generally, for an application to be

automated using ActiveX automation technology, it must have an object model, which

is a list of application objects that can be controlled. This object model is registered

when the application is installed; so if one uses an automation programming language

and want to utilize the application's functionality, one can establish a reference to its

object model and program its objects directly. In the case of Arena, for example, Arena

object model library may be referenced from an external application developed in

Visual Basic, C++, Excel VBA etc., and Arena may be called from within this

application without having to do anything on Arena interface.

 28

A second technology that also takes advantage of ActiveX automation

technology for integration is Visual Basic for Applications (VBA) in Arena. VBA is a

component of Arena licensed from Microsoft Corporation. It is the same language

technology that powers Microsoft Office applications, including Microsoft Word, Excel

and PowerPoint, and third-party applications like Visio (by Visio Corporation) and

Arena. It is also the same engine behind Microsoft's own Visual Basic version 6.0.

Incorporating VBA into Arena allows for tighter integration by extending the

VBA interface to include Arena’s own objects, methods, properties and events. The

interface to VBA is a separate window, integrated with Arena, in which one can edit,

design, and debug Visual Basic code and forms. With the inclusion of VBA in Arena, it

would be possible to integrate Arena with other programs that support the Microsoft

ActiveX Automation programming interface. Ultimately, users may develop their own

program within VBA to generate simulation models that is fully functional within

Arena environment or use VBA to read in operand parameter values and variable values

from external data sources for models constructed using Arena modeling interface.

There is one important advantage of using VBA over an external environment

like Visual Basic in that the VBA program has two-way communication with the model.

The code written in VBA would control the model using Arena Object Model as well as

respond to events initiated by the model such as simulation events fired during, before

or after the active simulation run.

On the Netflow side, an application programming interface (API) exits that

allows data transfer from external systems to execute transactions such start a

workflow, to advance an entity one step further into the flow or to change the status of

 29

users. It contains dynamic library link file (NetflowAPI.dll) with several object and

corresponding methods to execute different function within Netflow, COM interface

and WebServices interface. These interfaces are all intended to be used with workflow

features of Netflow, not with simulation features. Besides, Netflow simulation

environment will be replaced by Arena simulation environment in the scope of this

study; therefore this API will not be utilized in this study.

Having mentioned technologies Arena and Netflow offer for integration and

automation, the possible techniques using these technologies is listed here:

• Developing an in-process or out-of-process DLL (or EXE).

• Direct modeling in VBA using ActiveX automation

• Indirect modeling in VBA using ActiveX automation (Importing Model from

Database)

The first method of developing a DLL or EXE file first requires some

knowledge on add-in concept. An add-in is a separate program written external to Arena

to automate Arena. This external program may have “exe” as extension if it is going to

be run outside Arena, or “dll” as extension if it is going to be called from within Arena

user interface. Performance (i.e., speed) is often compromised when automating

applications externally (i.e., out-of-process), as is the case when creating an .exe that

automates Arena, rather than from inside the application (i.e., in-process) as is the case

with VBA. Depending on the program being developed, this may be more (or less) of

an issue. Arena provides a development interface, called the Arena AddOn Interface

 30

that allows external applications to be developed which run in-process to Arena, thus

eliminating the performance issue when developing add-ins. After a DLL file is built

using this development interface in an external application, it should then be moved to

the Add-Ins folder located in the Arena installation directory. Once moved into this

location, the DLL should then be registered using the regsvr32.exe supplied with your

development tools. This will make it show up on Arena's Tools menu. Unlike an .exe,

the ActiveX DLL must first be registered in this way in order for it to show up on the

Tools menu. (Retrieved from Arena help files for Arena v.10 CPR 7.0 Academic

Release)

The second method is direct modeling in VBA using ActiveX automation. In

this technique, code is developed within VBA workspace and also run from here. It

basically would retrieve data from SQL database where Netflow model data is located,

and then parse this data to extract useful information about the model conversion. For

data that is required to be manually added such as runtime parameters or any other

model values for that matter, an excel sheet may be used in which also a start button

may be placed to run the VBA code so that Arena interface is never used by users

during this process (Arena interface may be called up during run time if required, by the

way). In the same way, the reports generated after simulation run has been completed

may be downloaded into excel sheets for user viewing.

“Import Model from Database” option, as the third technique, has been

implemented via an ActiveX dynamic library link (DLL) that is installed in Arena’s

add-on folder: smImportFromDatabase.dll. The object model of this DLL is registered

 31

when files are installed. Through ActiveX, user can establish a reference to this object

model and utilize the functionality of the DLL in another program.

For example, user can write an application that converts data stored in a

particular database format to the Arena model database format. Then, as a second step,

the program can access the functionality in smImportFromDatabase.dll to automatically

import the Arena model database into Arena. This allows user to limit the coding efforts

of the new application to database conversion. By taking advantage of the functionality

in smImportFromDatabase.dll, users avoid duplicating the effort of actually creating a

model in Arena.

In this study, the second technique was chosen, direct modeling in VBA using

ActiveX automation. Because if the first technique was to be used, for DLL option users

would have to open Arena interface after modeling is done in Netflow and then run the

add-on from the menu. For EXE option, there would be performance problems which

would be problematic for large models. The third technique sounds much easier

considering limitation of coding efforts only with database conversion. However, for

this study, this technique goes beyond mere database conversion because in Netflow,

model data is kept in an XML file in a totally different format than Arena would accept

and retrieving model data and slicing it into structured model tables for Arena requires

also logic development. This logic development, as a matter of fact, would be done in

VBA in the second method and flow connections would be set easily without worrying

strict table structures if model was to be exported to database as in the second

technique.

 32

How Integration Works

As previously stated, Arena comes with an embedded VBA and Netflow’s

architecture fully supports Microsoft technology. Therefore, the mapping code is

constructed in VBA. The workflow data is kept on SQL database and most of the

necessary data retrieved is in Extensible Markup Language (XML) format. For the data

to be retrieved from SQL database directly, OLE Automation and ActiveX libraries are

enabled. When the XML data is to be parsed, then Microsoft XML library is enabled

along with VBA library in Arena visual basic workspace. For the acquisition and

manipulation of data in XML format, Document Object Model Object (DOM)*, which

serves as an Application Programming Interface (API) for XML documents is used. The

DOM basically represents XML data in a hierarchical format and provides a set of

methods to retrieve and/or update this data.

In Netflow, a business process flow is generated in the form of a network, where

the nodes are the processes and the arcs are the flows. The arcs originating from a single

node point out processes that have to be accomplished simultaneously. These parallel

processes would have to be synchronized at some point in the model, which should be

handled accordingly. Nodes that are connected in series represent the consecutive

processes that have to be accomplished one after another.

The model developed in the Netflow modeling environment is mainly split into

two parts when constructing the algorithm that will transform model in the Netflow to

*
 DOM provides a structural representation of the nodes in an XML document, which makes it easy for a

coder to visualize the data and retrieve it.

 33

an executable model in Arena environment: Mapping source nodes and mapping

destination nodes.

Mapping Source Nodes

In the mapping algorithm, the code should be developed in a way that each

connection should be defined with corresponding source and destination modules and

with rules embedded on these connectors. If more than one connection originates from a

single source node, it would mean parallel processing of a single entity in the model

(Figure 3). If this is the case, then assignments of rule parameters should be made after

this single source node so that each parallel entity is checked against rules on their path

to destination. Depending on the results of the check, the entity may be let through to

destination node or may be disposed.

Figure 3: Parallel processing of steps originating from a single source node

Steps following a single source

node:

These steps are processed in

parallel and each entity created in

the system therefore duplicated

with respect to the number of

destination nodes.

 34

An example with three steps is presented in Figure 4. To make it more clear how

model data is stored on the database, the XML file of this sample model is also

presented in the Figure 5 and highlights are elaborated.

Figure 4: Example for the parallel processing of steps with conditions

- <Steps>

- <UserStep Code="Create" Start="NR" NotAssignedBehaviour="ERR" RequestComment="true"

Help="true" Delegate="true" Iteration="1" CanSendToPool="true" StepAssignmentType="S">

- <Directions>

- <Direction Code="Yönlendirme2" To="Step1" Direction="F">

 <Condition Type="BS" Script="GT(WFDATA("MAIN", "TUTAR"),"1000")" />

 <From>Create</From>

 </Direction>

- <Direction Code="Yönlendirme3" To="Step2" Direction="F">

 <Condition Type="BS" Script="GT(WFDATA("MAIN", "TUTAR"),"5000")" />

 <From>Create</From>

 </Direction>

- <Direction Code="Direction1" To="Step3" Direction="F">

 <Condition Type="A" />

 <From>Create</From>

 </Direction>

 </Directions>

Figure 5: XML data kept in the SQL database corresponding to the example

 35

In an XML file, all the elements within < > brackets are named nodes; using a

hierarchal view these nodes may become a parent node, a child note or both. For

instance, <Steps> node is a parent node; <Condition> is a child node whereas

<Direction> becomes child node with respect to <Steps> node and a parent node with

respect to <Condition> node. Every first element (word, character etc.) within brackets

< > defines the corresponding tag and the rest are called attributes of that element. For

example, “Type” is an attribute of the <Condition> node as well as “Script”. Using

DOM interface in VBA, these nodes and their attributes are easily read and used to

transform the model.

In Figure 4, the connectors from the “Create” step to “Step 1” and “Step 3” are

associated with rules. These rules are basically conditions that each entity will be

checked against and determined to advance further into the flow or disposed. If there is

no rule, then this is indicated as “All cases” in the XML file; meaning that all attributes

will be passed through that connector without any check. If a rule is assigned on a

connector, this is kept as “basic script” condition in the XML file. In figure 6,

<Condition> element has two attributes: “Type”, which determines whether the

condition is a “Basic Script” (BS type) or “All cases” (A type) and “Script”, which

holds the logical statement with the help of system variables or attributes.

Before elaboration on the transformation method, the Arena model that

corresponds to this example is presented in Figure 6 because in the following

description of methodology, references to this figure are given.

 36

Figure 6: Model for parallel processing of steps from a single source node

The method for converting XML data into the Arena model shown in Figure 6 is

described in the following points:

• In VBA code, to transform this flow into an executable Arena model, each source

node is put through a loop to extract all the destination nodes and connectors as well

as condition types and condition scripts. Afterwards, source node is checked

whether it is the initiator step of the flow or not so that “Create” module is

determined.

• The “Create” module is always followed by an “Assign” module, which will be

used to assign values to entities. The attributes which will carry these values

assigned in this module are extracted from “Basic Script” data. This script contains

the rule operation (equation, greater than, less than etc.) and parameters and is kept

 37

as a string in the XML file within “Script” attribute. This string is parsed using

string functions in VBA with certain logic to extract the attribute to use in this

“Assign” module and equation variables to use in “Decide” modules later on.

• Each connection in the Figure 4 corresponds to a group of “Decide, Separate,

Process and Dispose” module group in Figure 6. This sequence of modules will

serve the following functions:

o “Decide” is configured differently for “A” type and “BS” type conditions.

Basically, “A” type conditions could be seen as probabilistic conditions

where the probability of true is always hundred percent. However, “BS”

type rules always impose that an entity must satisfy certain condition(s). In

this case, decision is 2-way-conditional and the condition is supplied by

parsing the string within the “Script” attributes of <Condition> element in

the XML file. If the condition is satisfied, the entity will proceed to the

“Separate” module where it will be duplicated and passed on to the

“Process” module and also to the next “Decision” module (or to the

“Dispose” module if end of the flow is reached).

o “Separate” module merely acts to duplicate the incoming entity and lets it

pass through to the “Process” module. The duplicate would be directed to

the next decision if anymore exits or to the dispose module if there is no

more parallel step to be processed.

o “Process” module may be seen as the replicate of the process step in

Netflow. If the connection rule is satisfied by the attribute of an entity, then

 38

that entity will proceed to “Process” module where it will be seized by a

resource, processed and then released back into the flow.

o “Dispose” module is mainly used to dispose entities that do not satisfy

conditions or that are loosely coupled at the end of connections.

• After the modules have been created, the connections in between them should be

completed where the “Auto-Connect” option is disabled. When all the modules are

created, they are all assigned a unique tag which contains the type of module, a

counter that represents the originating step and the name of the destination step.

Using these tags and loop constructs in VBA, the connections are completed and

this part of the model would be completed.

Mapping Destination Nodes

When more than one connection goes into a single destination module, as in the

case of an additional step after parallel processing described above, then the duplicated

entities should be batched up with a proper entity attribute (so that exact pairs are

batched up) within a batch module. Since this means more than one source nodes, there

will be assignment modules after each source step to cover any existing rules on each

connector going into the destination node. This sort of flow is represented in the

Netflow as in Figure 7. An example with three source steps connecting into one step is

presented in Figure 8. The XML data of the model is constructed in the same structure

as the single source step model; nevertheless this XML data is illustrated in Figure 9 as

well to be able to give a more comprehensive picture of data source.

 39

Figure 7: Representation of multiple connections into single destination node

Figure 8: Representation of three steps batching into one destination step

 40

- <UserStep Code="Step1" Start="N" NotAssignedBehaviour="ERR" RequestComment="true"

Help="true" Delegate="true" Iteration="1" CanSendToPool="true" StepAssignmentType="S">

- <Directions>

- <Direction Code="Yönlendirme5" To="NextStep" Direction="F">

 <Condition Type="BS" Script="EQ(WFDATA("MAIN", "ONAYRET"),"EVET")" />

 <From>Step1</From>

 </Direction>

 </Directions>

 </UserStep>

- <UserStep Code="Step2" Start="N" NotAssignedBehaviour="ERR" RequestComment="true"

Help="true" Delegate="true" Iteration="1" CanSendToPool="true" StepAssignmentType="S">

- <Directions>

- <Direction Code="Yönlendirme6" To="NextStep" Direction="F">

 <Condition Type="BS" Script="EQ(WFDATA("MAIN","ONAYRET"),"EVET")" />

 <From>Step2</From>

 </Direction>

 </Directions>

 </UserStep>

- <UserStep Code="Step3" Start="N" NotAssignedBehaviour="ERR" RequestComment="true"

Help="true" Delegate="true" Iteration="1" CanSendToPool="true" StepAssignmentType="S" >

- <Directions>

- <Direction Code="Direction1" To="NextStep" Direction="F">

 <Condition Type="A" />

 <From>Step3</From>

 </Direction>

 </Directions>

 </UserStep>

 </Steps>

Figure 9: XML data of the model with three steps batched into one destination step

 41

The method for converting XML data into the Arena model shown above is

described in the following points:

• XML data is read and parsed in exactly the same way as described in the case of

connections origination from a single source node; each node is looped around all

the other steps until each source and destination steps are determined using “From”

and “To” tags in the XML file.

• After each source-destination pairs are determined, an “Assign” module would be

assigned to each source step, which would handle any “BS” type conditions on these

connectors separately. For “A” type conditions, an “Assign” module would also be

created but no assignment procedure would be defined within this module because

all attributes without any check should be able to proceed through any connector

holding “A” type condition. At these “Assign” modules, relevant attributes would

be created and assigned to the attributes. In this example, there is one common

attribute, “ONAYRET”, between Step 1 and NextStep, and Step 2 and NextStep.

This very same attribute would be assigned to the entities coming through from Step

1 and Step 2 to set a value for “ONAYRET” attribute.

• After the attributes are assigned with values, these values should be checked with a

“Decide” module using 2-way-by-condition whether incoming entities would be

advanced to next step or disposed (which would be handled by a “Dispose” module

assigned to the “false-end” of the “Decision” node. For “A” type conditions,

“Decision” module would be created as “2-way-by-chance” where the odds of being

 42

false would be set to zero. In other words, each entity would be passed through this

“Decide” module because it is valid for “All Cases” (“A” type condition”).

• The “true-end” of the each “Decision” node should be connected to “Batch” module

to make sure that the same entity that had been duplicated for parallel processing is

now composed back into one original entity and to be advanced through the rest of

the flow.

The Arena model that is constructed following this procedure is presented in

Figure 10. When two of the mappings are composed, a complete flow would be

constructed in Arena which is presented in the following section of this study.

Figure 10: Arena model with multiple steps batched into one destination step

 43

CHAPTER SIX: SIMULATION OF A SAMPLE MODEL IN
NETFLOW AND ARENA

In chapter four, existence of an embedded simulation engine in Netflow’s

modeling module was mentioned. Using the simulation software comparison framework

of Hlupic et al. (2007), it was also concluded that Arena’s simulation capabilities were

superior to Netflow’s. Therefore, using a sample business process model already

created in Netflow modeling environment, it will be shown in this chapter that how the

interface proposed in this study generates better results than those rendered by Netflow.

The sample workflow constructed in Bizitek’s Netflow is illustrated in Figure

11. This is a typical purchasing process where goods are externally procured and the

requisition of this purchase needs to go through a few approval steps depending on the

total amount of the all required items before requisition is finally converted into a

purchase order. Each instance is created within “Procurement Demand” step and

directly sent to the “Management Approval” step regardless of the total monetary value

of the purchases. The management approval step represents the manager in the

organizational structure, of the person that creates this demand instance. The solid

direction arrow here shows that the following process is unconditional and will always

take place. If the total amount of this instance is more than 1000 system currency units,

it also goes through “Finance Manager Approval” step. If it is even more than 5000

currency units, then the process flow further asks for “General Manager Approval” step.

The dashed direction arrows indicate that the following processes are conditional, i.e.,

they are valid only if certain conditions are satisfied. When all of the approval steps are

completed, then the initial demand passes through “Procurement Manager Approval”

 44

where it is confirmed as a purchasing order upon approval. Finally, an e-mail is sent

back to the person who initiated the demand and the purchase order is recorded in the

database.

Figure 11: Sample workflow in Bizitek’s Netflow

Every simulation model requires certain input data for a successful run. With the

purpose of comparing proposed integration environment and Netflow’s simulation

environment, same set of input data is used. The data used in this chapter is presented in

Table 6. It is important to note that Netflow only allows random number generations out

of normal distribution therefore all times are assumed to be normally distributed.

However, Arena comes with all the theoretical distributions to be able to cover many

different data structures.

 “NORM” represents normal distribution, “# of res” represents the number of

resources available in the corresponding step and condition strings simply shows what

the rules are from the step on the left side of the table to the step on the top of the table.

 45

Table 6 - Simulation input data

 Steps
Proc
Demand Mng App

Finance Mng
App

Gn. Mng.
App.

Proc Mng
App

Proc Demand
- NORM(3,
0.1)

- Amount > 1000
with % 80

- Amount >
5000 with % 20

Mng App

- NORM(2,
0.1)
'- # of res = 1

 - Approved
with % 80

Finance Mng
App

- NORM(5, 0.1)
'- # of res = 1

 - Approved
with % 80

Gn. Mng. App.
- NORM(6, 0.3)
'- # of res = 1

 - Approved
with % 80

Proc Mng App
- NORM(5, 0.1)
'- # of res = 1

The simulation will run until the number of entities that have passed through the

system will reach to one thousand. Afterwards, output results will be presented.

“Bildirim” and “Finans_DB_Yaz” steps will be conveniently neglected because they

only represent secondary transactions called as soon as the flow is finished and the

amount of time spent in these activities would be measured in seconds. There is also no

way to enter simulation data for these steps in Netflow.

The Application in Netflow’s Current Simulation Environment

When the model is run using the above parameters for about one thousand

entities, the result from Netflow merely shows the average time an entity takes to get

through the entire model. This output is presented in Figure 12.

 46

Figure 12: Simulation output by Netflow after one replication

When the same model is executed once more as a second replication, than the

output data would look something like in Figure 13:

Figure 13: Simulation output by Netflow after multiple replications

This output merely represents the histogram of the distribution of the number of

entities that has passed through the model. The output is interpreted easily but it is not

very useful to determine bottlenecks or opportunities. In the next section, the same

model is simulated using the interface developed in this study and outputs are presented.

 47

The application in Arena using proposed interface

When the same process is modeled using the interface developed in this study,

the generated model would be similar to Figure 14 (omitting “Bildirim” and

“Finans_DB_Yaz” steps). Since the notation -the way the steps are represented- is

different, the workflows are not alike; however the processes are essentially the same in

terms of the underlying parameters and rules.

Figure 14: Sample model in Arena

The representation of the process, even though there are some simplifications,

looks more complex in Arena. It is because, the separation of instances for parallel

processing and decision nodes are handled at different modules, which raises the big

 48

challenge of mapping the same process from Netflow into Arena. To overcome this

challenge, the mapping methodology previously presented is developed.

When this model is run in Arena, more sophisticated outputs are generated that

would assist users in making more informed decisions. Some of the outputs generated

after three replications with the same parameters are presented in the following figures.

Figure 15: Entity time statistics generated by Arena

Figure 16: Queue statistics generated by Arena (especially useful to determine

bottlenecks)

 49

CHAPTER SEVEN: DISCUSSION and ANALYSIS

It is apparent that Arena has superior simulation capabilities than Netflow and

there are various means of integrating these platforms to take advantage of the more

advanced simulation features. The proposed interface in this study could provide a good

reference point for other similar applications. Since there are many other BPM tools

with different modeling and data storage characteristics, a few suggestions for

developing such interfaces to Arena will be given and also the limitations of the

proposed methodology and interface will be discussed.

Suggestions on Developing Similar Interfaces

As presented earlier in this study, there are a few integration techniques that

could be utilized when developing an interface between an external application, such as

Netflow, and Arena simulation software. The advantages and disadvantages of these

techniques were discussed earlier and the second technique, direct modeling in VBA

using ActiveX automation, is used for this particular study. The choice was based

entirely on the ability of two-sided communication between the development

environment and the simulation environment and also on the potential amount of effort

to be spent developing the interface. The first technique wouldn’t allow for two-way

communication and the third technique would require much more effort due to an

additional database conversion programming on top of mapping algorithm. The first

technique would allow developing much nicer interface for end users to input data or to

 50

start simulation runs however two-way communication is a more important aspect.

Using Visual Basic Editor embedded in Arena enables to extract data even after the

simulation run has begun so that further checks or logics could be placed in the events

that would be called during simulation run provides much more flexibility than just the

model conversion routines. Putting more weight on this aspect, the choice should be the

second or the third technique. At this point, it should be noted that this choice should be

entirely contingent on the circumstances: how model data is kept on the database and

modeling notation in the BPM software. Even though the second technique, developing

the mapping algorithm within the Visual Basic Editor in Arena and run the interface

using Arena model file, is used in the scope of this study, the third technique would be

more appropriate when model data in BPM software is kept in a standard tabular form

in the database.

In the “Import Model from Database” technique, Arena takes advantage of the

object model introduced with “smImportFromDatabase.dll” ActiveX dynamic link

library installed during Arena setup. This technique simply relies on a certain way of

storing model information in any particular model database. Regardless of the type of

database the model information is stored; the data should be organized in a standard set

of tables in Access or Excel database to be able to use this object model (Microsoft

products enable the use of ActiveX DLL). Each model should be divided into separate

storage containers called tables. The type of tables required to represent a model as well

as corresponding table structures are listed in appendix A.

 In order to have similar structures to store model information within any BPM

tool, there should be a standardized notation of objects used in modeling so that these

 51

objects may be divided into table structures similar to what Arena offers to fully take

advantage of the “Import Model from Database” technique. BPMN may provide a solid

basis for this method.

The primary focus of BPMN is to provide a common process modeling language

for all parties involved; from business analysts who create initial drafts of processes, to

technical developers who would be implementing the technology that will perform

those processes and finally to the business responsible for managing and monitoring

these processes (White, S. A., 2004). BPMN provides graphical elements to represent

many different flows of entities subject to many rules and conditions on the way.

BPMN defines Business Process Diagram (BPD) which is based on a flowcharting

technique to create graphical models of processes (White, S. A., 2004). BPD is made up

of a set of graphical elements. The four basic categories of elements are as follows:

• Flow objects: Events, Activities, Gateways

• Connecting objects: Sequence flow, Message flow, Association

• Swimlanes: Pool, Lane

• Artifacts: Data objects, Group, Annotation.

It is also possible to define custom type of a flow object or an artifact to make

diagrams more understandable

To see the graphical objects and a process example modeled in this notation,

please refer to appendix B. (http://en.wikipedia.org/wiki/BPMN).

OMG has great influence in BPM community and most of the BPM suite

vendors have already switched to BPMN within the modeling environment of their

 52

BPM suite offerings
*
. Modeling in such structured way would make integration much

easier because every graphical object in BPD has a counterpart in flowchart modeling

stencils which also exist in Arena modeling environment.

As previously explained, BPMN is a visual process notation standard and this

standard would create a better way to store process definition into table structures in any

suitable database. However, there are also standards defined for how to store or

interchange process definition and this is where the XML Process Definition Language

(XPDL) comes in.

XPDL is the language proposed by the WfMC to interchange process definitions

between different workflows (van der Aalst, 2003). The mission of WfMC is to

promote and develop the use of workflow through the establishment of standards for

workflow terminology, interoperability and connectivity between workflow products

(van der Aalst, 2003). For this purpose, WfMC introduces a workflow reference model

where five interfaces are identified. This reference model is presented in Figure 17.

*
 There are fifty two current implementations and four planned implementations of BPMN by the

companies who offer BPM tools in their product portfolio. A few examples of current implementations

are: IDS Scheer, ILOG, Lombardi, Savvion, Popkin and SAP. Four companies who are planning to go on

with BPMN are: Hyland Software, IBM, Staffware and webMethods. Retrieved on September 15, 2008,

from http://www.bpmn.org/BPMN_Supporters.htm

 53

Figure 17: Workflow reference model by WfMC. Retrieved from

http://www.wfmc.org/reference-model.html

The primary goal of interface 1 in the above figure is the import and export of

process definitions, which consists of network of activities and their relationships,

information about individual steps such as participants and etc. Using this reference

model, Van der Aalst (2003) explains the need for process definition interchange and

describes possible sources of this need. First of all, the connection between a design tool

and a run-time environment must be established. Another reason may be the need to

desire to use another design tool such as ARIS or Protos and transfer the model back

into the process engine of another BPM tool. It could also be the case where a link

would be created with analysis software such simulation and verification tools and a

design tool, which is the primary goal of this study. There may also be a need to transfer

a definition from one engine to another in especially automated processes. To support

the interchange of process definitions due to any of these needs, XPDL has been put

forward by WfMC as a standardized process definition language.

 54

XPDL provides a file format that supports every aspect of the BPMN process

definition notation including graphical descriptions of the diagram, as well as

executable properties used at run time. It is designed to exchange both graphics and

semantics of a workflow business process. With XPDL, a product can write out a

process definition with full fidelity, and another product can read it in and reproduce the

same diagram that was sent (http://www.wfmc.org/xpdl.html).

Bizitek’s Netflow doesn’t offer BPMN and process definition is not kept in

XPDL; however, if an integration like the one developed in this study was to be realized

with a BPM tool that does offer BPMN and XPDL, then “Import Model from Database”

option would be more suitable. This way, each module and connector would be easily

recognized and coding efforts would only be limited to database conversion.

Limitations of the proposed methodology

The interface developed in this study has been developed to work not only for a

specific model, but also for any model that could be constructed in Netflow

environment. The aim was to make this integration algorithm as generic as possible that

could map any model drawn in Netflow modeling environment into Arena environment.

Nevertheless, there are a few limitations to the model that should be explained in detail.

These points could also be seen as improvement points to be developed additionally as a

future study.

First of all, the conditions are kept as string in the XML representation of the

model. That is why this string is parsed using string functions available in VBA and the

 55

output is presented to the user in a dialog box for confirmation during mapping

algorithm runs. However, there may be many different forms of conditions, hence

different strings, which may not be divided into logical parameters by a simple string

parsing code snippet. It would also be impossible to generate a generic dialogue box for

users to enter logical parameters as there may be complex logical operations within a

condition. The current dialogue box and string parsing algorithm is suitable for single

logical operation with one parameter and one value (e.g. parameter < value, parameter >

value etc.), which wouldn’t be sufficient to cover many actual business process rules.

Therefore, it would be possible to cover this part by creating a user-defined class which

would contain the VBA version of very same methods or properties used in the

underlying code of Netflow.

There is also another shortcoming of the proposed interface in reverse flows. If a

transaction requires sending an entity back to a process or decision module, it would be

omitted in the current mapping algorithm. Inclusion of this activity would be crucial in

an interface developed for mapping business process models into Arena environment

for accurate simulation results, especially on resource and entity statistics.

Maybe the most important improvement opportunities for the interface

developed in this study are the ability of historical data feed into the model and

generation of custom reports as well as improving the comprehensibility of standard

reports generated by Arena. Historical data is essential in improving current processes

using simulation because using historical data instead of theoretical distributions for

inter-arrival times or resource service times would also form a solid base to validate the

accuracy of simulation model generated through the interface. Arena supports data input

 56

from external documents such as spreadsheets or text files so this ability may be used to

provide historical data into the Arena model. As well as having ability to read data from

external data sources, Arena may also export reports to external data files such as Excel

spreadsheet or Access database. Reports are generated on selected statistics such as

entities, queues and resources when a simulation run has been completed and this

statistical data is saved in the model Access database file. This model file is then used to

generate standard reports in Arena environment through a third party statistical package,

Crystal Reports. One may find all useful statistics in these reports; however,

interpretation of output data may not be always that easy. Therefore interface may be

further enhanced to collect many predefined statistics on given selection parameters

(entities, queues, resources etc.) and generate a spreadsheet view of requested

information with conditional color formatting of significant results such as bottlenecks.

 57

CHAPTER EIGHT: SUMMARY AND CONCLUSION

It has become clearer that organizations need to have some sort of a BPM tool to

get better control over their processes and resources. Furthermore, these processes span

across most of the entities within an organization, which requires efficient use of time,

money and resources. Noting that the real world processes are too complex to design

with mere experience and expertise to be deployed in a BPM tool, organizations need

simulation capability to successfully predict the effects of new or enhanced process

designs.

Although most commercial BPM tools nowadays have some kind of simulation

engine, the simulation capabilities of these tools happen to be limited. To overcome this

drawback, separate simulation software can be integrated to the BPM tool. However

purchasing a simulation tool increases costs and moreover, this requires the knowledge

on both platforms. Thus one should make a tradeoff between the increased costs and the

broader functionality achieved by integrating a third party simulation software.

In this study an interface is built that can be used to map the processes designed

in a BPM tool into simulation software. The problems encountered in integrating

process mapping and simulation were mainly due to unstructured modeling

environment and use of non-standard notation within Netflow. However, XML data of

models provided the basis and due to high integration and automation capabilities of

VBA environment, models could be transformed into executable Arena models.

Integration with general purpose simulation software may require high

customization and get quite costly depending on the choice of software. But if this

 58

interaction was used efficiently, the benefits obtained from using a dynamic modeling

environment that could imitate real process as accurate as possible would be substantial

considering ability to model even complex models and being able to generate very

sophisticated outputs. Therefore, this study supports that advantages of using a

simulation environment in the context of business process management would make the

efforts and money spent worthwhile.

 59

REFERENCES

Barnett, M. (2003). Modeling and simulation in business process management. White

paper retrieved from http://www.bptrends.com.

DeToro, I. & McCabe, T. (1997). How to Stay Flexible and Elude Fads. Quality

Progress, 30(3), 55-60.

Elzinga, D.J., Horak, T., Chung-Yee, L. & Bruner, C. (1995). Business Process

Management - Survey and Methodology. IEEE Transactions on Engineering

Management, 24(2), 119-28.

Harrell, C.R. & Field, K.C. (1996). Integrating Process Mapping and Simulation.

Proceedings of the 1996 Winter Simulation Conference.

Hlupic, V., Bosilj Vuksic, V. and Ceric, V. (2007). Criteria for the Evaluation of

Business Process Simulation Tools. Information, Knowledge, and Management, 2,

73-88.

Jeston, J. & Nelis, J. (2006). Business Process Management: Practical Guidelines to

Successful Implementations. Burlington: Butterworth-Heinemann Publishing.

Simulation for Success. (n.d.). Using Simulation to Enhance the Value of BPM. White

paper retrieved from http://www.lanner.com/en/l-sim.cfm

Paul, R.J., Giaglis, G.M. & Hlupic, V. (1999). Simulation of Business Processes. The

American Behavioral Scientist, 42 (10), 1551-1579.

Silver B., (2006). The 2006 BPMS Report: Understanding and Evaluating BPM Suites.

Retrieved from http://www.bpminstitute.org

Srinivasan, K. & Jayaraman, S. (1997). Integration of Simulation with Enterprise

Models. Proceedings of the 1997 Winter Simulation Conference

Van der Aalst, W.M.P. (2003). Patterns and XPDL: A Critical Evaluation of the XML

Process Definition Language. (Report No: FIT-TR-2003-06). Retrieved from

http://www.bpm.fit.qut.edu.au/about/publications/technical.jsp

Waller A., Clark M., & Enstone L. (2006). L-SIM: Simulating BPMN Diagrams with a

Purpose Built-in Engine. Proceedings of the 2006 Winter Simulation Conference

White, S.A. (2004). Introduction to BPMN. White paper retrieved from

http://www.bpmn.org/.

 60

UNCITED REFERENCES

DeFee, J.M. & Harmon, P. (2004). Business Activity Monitoring and Simulation. White

paper retrieved from http://www.bptrends.com

Everton, J.G., & Stafford, R.D. (2005). Using Workflow Business Process Tools in

Simulation Modeling. Proceedings of the 2005 Winter Simulation Conference

Henschen, D. (2005). Business Process Management is Under Construction. Intelligent

Enterprise, 8 (8), 22-27.

Hlupic, V., & Robinson, S. (1998). Business Process Modeling and Analysis Using

Discrete-Event Simulation. Proceedings of the 1998 Winter Simulation Conference

Kelton, W.D., Sadowski, R.P., & Sturrock, D.T. (2003). Simulation with Arena, third

edition. Singapore: McGraw-Hill.

Law, A.M., & Kelton, W.D. (2000). Simulation Modeling and Analysis, third edition.

Singapore: McGraw-Hill.

Lee, R.G., & Dale, B.G. (1998). Business Process Management: A Review and

Evaluation. Business Process Management Journal, 4 (3), 214-225

Lomax, P. (1998). VB & VBA in a Nutshell: The Language. California: O’Reilly &

Associates.

Luo, W., & Tung, Y.A. (1999). A Framework for Selecting Business Process Modeling

Methods. Industrial Management & Data Systems, 99 (7), 312-319

Microsoft Developer Network Library. (2008). Retrieved from

http://msdn.microsoft.com/en-us/library/default.aspx

Schneider, D.I. (1999). An Introduction to Programming Using Visual Basic 6.0, fourth

edition. New Jersey: Pearson Custom Publishing

Weyland, J.H., & Engiles, M. (2003). Towards Simulation-Based Business Process

Management. Proceedings of the 2003 Winter Simulation Conference

 61

APPENDICES

A. Import Model from Database - Table Structures

The following information is retrieved from help files of Arena simulation software

version 10.0 CPR 7.

• “ModuleTables” Table: This table keeps data about how many different modules are

to be created for the model. For example, if there is one “Create” module, two

“Process” modules and one “Dispose” module is needed to construct the model,

then the number of records within this table would be three; representing the

number of unique modules in the model.

Field Name Data Type Description

PanelName Text Name of Arena panel (e.g., "BasicProcess",

"AdvancedTransfer", "AdvancedProcess")

ModuleName Text Type of Arena module (e.g., "Create", "Process",

"Dispose")

TableName Text Name of database table that records all instances of the

module

• Module Table: This table holds the all instances of any module in the model. For the

same example used above, this table would have four records including one

“Create” module instance, two “Process” module instances and one “Dispose”

module instance. The “SerialNumber” field differentiates the different instances of

the same module. The non-repeatable operands within a module would also be

stored in this table such as “Module Name”, “Distribution type” and “time units” if

relevant. The repeatable entries such as resources in a “Process” module or

 62

attribute/variable assignments in an “Assign” module are recorded in a different

table which is also shown below.

Field Name Data Type Description

SerialNumber Long Unique object identifier

ModelLevelID Long Level in model hierarchy that the module exists

(foreign key to ModelLevels table)

X Long The X position (in world coordinates) of the module

in the model level

Y Long The Y position (in world coordinates) of the module

in the model level

UserDescription Text User-specified description (specified in module’s

Properties dialog)

Operand Name 1 Text Value of the first non-repeatable operand in the

module

Operand Name 2 Text Value of the second non-repeatable operand in the

module

Operand Name N Text Value of the Nth non-repeatable operand in the

module

• “RepeatGroupTables” Table: If a module has a repeatable set of operands such as

resources in a “Process” module, then a separate table exists to keep this data in the

database. This table merely holds data regarding the location of operands. The

values entered into these operands are kept in the next table presented.

Field Name Data Type Description

PanelName Text Name of module panel (e.g., "BasicProcess",

"AdvancedTransfer", "AdvancedProcess")

ModuleName Text Type of module (e.g., "Create", "Process",

"Dispose")

RepeatGroupName Text Name of module repeat group including parent

repeat groups separated by a "|" character (e.g.,

"Resources", "Failures", "Steps|Assignments")

TableName Text Name of database table that records all data for

the repeat group in the model

 63

• A Repeat Group Table: This table stores the data associated with a repeat group for

any of the modules whose structure includes repeat group in a model. A repeat

group table also contains one or more *|Index fields. “These fields identify the index

in the repeat group that a record pertains to. For example, suppose we are adding a

record to the Assignments repeat group table for Advanced Transfer’s Sequence

module. This repeat group table has two index fields: Steps|Index and

Assignments|Index. To enter the second assignment for the third step in the

sequence, we would enter a value of "3" in the Steps|Index field and a value of "2"

in the Assignments|Index field.”

Field Name Data

Type

Description

ModuleSerialNumber Long Serial number of module that the repeat group

record pertains to (foreign key to appropriate

module table)

Parent Repeat Group

1|Index

Long Index into first level parent repeat group (this

field may not exist if there are no parent repeat

groups)

Parent Repeat Group

2|Index

Long Index into second level parent repeat group (this

field may not exist if there is no second level

parent repeat group)

Repeat Group

Name|Index

Long Index into repeat group

Operand Name 1 Text Value of the first operand in the repeat group

Operand Name 2 Text Value of the second operand in the repeat group

Operand Name N Text Value of the Nth operand in the repeat group

• “Model Levels” Table: Model hierarchy may be used in Arena to represent

submodels, each with its own workspace for defining entity flow and animation.

These separate but interdependent workspaces are referred to as “Model Levels”. To

be able to identify this hierarchal structure, two tables exist: first is the “Model

Levels” and the second is the “Submodels” table, whose structure are given below

 64

Field Name Data Type Description

ModelLevelID Long Unique identifier

ModelLevelName Text Name of model level

• “Submodels” Table: This table basically stores all the instances of submodels

explained above. Each submodel has a unique serial number that distinguishes

submodels from each other if more than one exits in a model.

Field Name Data Type Description

SerialNumber Long Unique object identifier

ModelLevelID Long Level in model hierarchy that the submodel object

exists (foreign key to ModelLevels table)

X Long The X position (in world coordinates) of the

submodel in the model level

Y Long The Y position (in world coordinates) of the

submodel in the model level

Name Text The name of the submodel

NumEntryPoints Long Number of submodel entry points

NumExitPoints Long Number of submodel exit points

Description Text Submodel description

• “Connections” Table: This table keeps all instances of connection objects within a

model. Similar to each shape in a model, connectors in the model also have their

own unique serial numbers as identifiers. The field “ModelLevelID” indicates

whereabouts of a particular connection.

Field Name Data Type Description

SerialNumber Long Unique object identifier

ModelLevelID Long Level in model hierarchy that the connection

object exists (foreign key to ModelLevels table)

SourceSerialNumber Long Serial number of source object that is being

connected (foreign key to a module table or

Submodels table)

SourceLabel Text Identifies the exit point of the source object. If the

source object is a module, enter the name of the

module operand that defines the exit point. If the

source object is a submodel, enter a 1-based index

 65

into the submodel’s exit points

SourceRepeatIndex Long If the exit point of the source object is repeatable

(e.g., the repeatable exit of an N-way Decide

module), this field specifies the index into the exit

point

DestinationSerial

Number

Long Serial number of destination object that is being

connected (foreign key to a module table or

Submodels table)

DestinationLabel Text Identifies the entry point of the destination object.

If the destination object is a module, enter the

name of the module operand that defines the entry

point. If the destination object is a submodel, enter

a 1-based index into the submodel’s entry points

DestinationRepeat

Index

Long If the entry point of the source object is repeatable,

this field specifies the index into the entry point

UserDescription Text User-specified description (specified in module’s

Properties dialog)

• “Named Views” Table: This table records all instances of named views in a model.

Named view may be used segment a model into portions that may be easily recalled

without using scroll bars. This is helpful if a model is great in size so that it can not

be viewed at once in the screen.

Field Name Data Type Description

ViewID Long Unique identifier

ModelLevelID Long Level in model hierarchy that the named view exists

(foreign key to ModelLevels table)

Name Text View name

HotKey Text Optional hot key for view

Left Long Left-edge boundary of view (in world coordinates)

Right Long Right-edge boundary of view (in world coordinates)

Top Long Top-edge boundary of view (in world coordinates)

Bottom Long Bottom-edge boundary of view (in world coordinates)

• “Project Parameters” Table: This table records project parameters set up before

simulation run. Only one entry may be recorded in this table.

 66

Field Name Data Type Description

ProjectTitle Text Specifies the project title

AnalystName Text Specifies the analyst name

ProjectDescription Text Specifies a project description

CostingStatistics -1 for "Yes"

or 0 for "No"

Specifies whether costing statistics are recorded

during a model run

QueueStatistics -1 for "Yes"

or 0 for "No"

Specifies whether queue statistics are recorded

during a model run

TransporterStatistics -1 for "Yes"

or 0 for "No"

Specifies whether transporter statistics are

recorded during a model run

EntityStatistics -1 for "Yes"

or 0 for "No"

Specifies whether entity statistics are recorded

during a model run

ConveyorStatistics -1 for "Yes"

or 0 for "No"

Specifies whether conveyor statistics are

recorded during a model run

ProcessStatistics -1 for "Yes"

or 0 for "No"

Specifies whether process statistics are

recorded during a model run

ResourceStatistics -1 for "Yes"

or 0 for "No"

Specifies whether resource statistics are

recorded during a model run

StationStatistics -1 for "Yes"

or 0 for "No"

Specifies whether station statistics are recorded

during a model run

ActivityAreaStatistics -1 for "Yes"

or 0 for "No"

Specifies whether activity area statistics are

recorded during a model run

TankStatistics -1 for "Yes"

or 0 for "No"

Specifies whether tank statistics are recorded

during a model run

• “Replication Parameters” Table: This table records replication parameters set up

before simulation run. Only one entry may be recorded in this table.

Field Name Data Type Description

NumberOfReplications Long Specifies the number of replications to

run the model

InitializeStatisticsBetween

Replications

-1 for "Yes"

or 0 for "No"

Determines whether or not the statistics

are cleared between simulation

replications

InitializeSystemBetween

Replications

-1 for "Yes"

or 0 for "No"

Determines whether or not the system

is reinitialized between replications. If

so, all entities are removed from the

model and the system status and user

variables are restored to their default

values. This state is referred to as

"empty and idle"

 67

StartDateTime DateTime Specifies the calendar date and time

corresponding to simulation time 0.0

WarmupPeriod Text Time period after the beginning of the

run at which statistics are to be cleared

WarmupPeriodTimeUnits 0 for "Days",

1 for "Hours",

2 for

"Minutes", 3

for "Seconds"

Specifies the time units of the warm-up

period entry

ReplicationLength Text Specifies the run length of each

replication

ReplicationLengthTimeUnits 0 for "Days",

1 for "Hours",

2 for

"Minutes", 3

for "Seconds"

Specifies the time units of the

replication length entry

HoursPerDay Text Defines the number of hours to be

modeled within a simulated day

BaseTimeUnits 0 for "Days",

1 for "Hours",

2 for

"Minutes", 3

for "Seconds"

Specifies the base time units of the

simulation clock

TerminatingCondition Text Specification of an expression or

condition that is evaluated throughout

the simulation run to determine

whether or not to stop the simulation. If

the condition or expression is true (or

evaluates to 1), the simulation run will

be terminated. This is one method,

besides specifying a replication length,

in which the simulation run may be

ended.

• “Reports” Table: This table holds information about reporting options after

simulation run. This table may also contain only one record.

Field Name Data Type Description

DisplayDefaultReport 0 for "Always", 1

for "Never", 2 for

"Prompt Me"

Specifies whether report is displayed at

end of simulation run

DefaultReport Text Default report to display

 68

DisableGenerationOf

ReportDatabase

-1 for "Yes" or 0 for

"No"

Specifies whether to suppress the

generation of the report database

 69

B. Business Process Diagram as Specified by BPMN

The descriptions and figures in appendix B are retrieved from

“http://en.wikipedia.org/wiki/BPMN” in October 2008.

The four basic categories of graphical elements are presented in the following figures.

Flow objects

Flow Objects consist of only three core elements. The three Flow Objects are:

• Event: An Event is represented with a circle and is something that happens. It

could be Start, Intermediate or End. This element is a trigger or a result.

• Activity: An Activity is represented with a rounded-corner rectangle and shows

us the kind of work which must be done. It could be a task or a sub-process. A

sub-process also has a plus sign in the bottom line of the rectangle.

• Gateway: A Gateway is represented with a diamond shape and will determine

different decisions. It will also determine forking, merging and joining of paths.

 70

Connecting objects

The Flow Objects are connected to each other with Connecting Objects. There are three

different Connecting Objects:

• Sequence Flow: A Sequence Flow is represented with a solid line and arrowhead

and shows in which order the activities will be performed. A diagonal slash

across the line close to the origin indicates a default choice of a decision.

• Message Flow: A Message Flow is represented with a dashed line and an open

arrowhead. It tells us what messages flow between two process participants.

• Association: An Association is represented with a dotted line and a line

arrowhead. It is used to associate an Artifact, data or text to a Flow Object.

Swimlanes

A swim lane is a visual mechanism of organizing different activities into categories of

the same functionality. There are two different swimlanes, and they are:

 71

• Pool: A Pool is represented with a big rectangle which contains many Flow

Objects, Connecting Objects and Artifacts.

• Lane: A Lane is represented as a sub-part of the pool. The lanes organize the

Flow Objects, Connecting Objects and Artifacts more precisely.

Artifacts

Artifacts allow developers to bring some more information into the model/diagram. In

this way the model/diagram becomes more readable. There are three pre-defined

Artifacts and they are:

• Data Objects: Data Objects show the reader which data is required or produced

in an activity.

• Group: A Group is represented with a rounded-corner rectangle and dashed

lines. The Group is used to group different activities but does not affect the flow

in the diagram.

 72

• Annotation: An Annotation is used to give the reader of the model/diagram an

understandable impression.

An example process model constructed using BPMN is presented here.

