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ABSTRACT 

A Machine Learning Based 

Capacity Management System for Mainframe Resources 

 

 

The goal of this study is to design a capacity planning tool for resource consumption 

of application servers which are running on mainframes, also known as Z systems, 

by using machine learning algorithms. This tool is aimed to ensure adequate 

resources are available in order to meet current and future workload demands. The 

desired system is intended to have capability to determine and then forecast how 

much additional capacity will be needed based on increasing demands. In this study, 

IBM Cloud Pak for Data as a Service is used to create capacity planning model by 

using data analysis, data engineering, data governance and Artificial Intelligence 

modeling services which are provided by the platform. The data is prepared outside 

of the platform and imported to the platform in order to perform analysis and 

refinement. After the data refinement step is completed, machine learning models are 

trained by using several algorithms. Then, functional tests are performed in order to 

check accuracy and performance of the models by using the test interface of the 

platform. Results of these tests, comments and further research opportunities are also 

provided. It is observed that the designed capacity planning tool is capable of making 

consistent predictions with acceptable error rates. 
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ÖZET 

Ana Bilgisayar Kaynakları için 

Makine Öğrenimi Tabanlı Kapasite Yönetim Sistemi 

 

 

Bu çalışmanın amacı, Z sistemleri olarak da bilinen ana bilgisayarlar üzerinde çalışan 

uygulama sunucularının makine öğrenmesi algoritmaları kullanarak kaynak tüketimi 

için bir kapasite planlama aracı tasarlamaktır. Bu araç, mevcut ve gelecekteki iş yükü 

taleplerini karşılamak için yeterli kaynakların mevcut olmasını sağlamayı 

amaçlamaktadır. Arzu edilen sistemin, artan taleplere göre ne kadar ek kapasiteye 

ihtiyaç duyulacağını belirleme ve daha sonra tahmin etme yeteneğine sahip olması 

amaçlanmıştır. Bu çalışmada, platform tarafından sağlanan veri analizi, veri 

mühendisliği, veri yönetişimi ve Yapay Zeka modelleme hizmetlerini kullanarak 

kapasite planlama modeli oluşturmak için IBM Cloud Pak for Data as a Service 

kullanılmıştır. Veriler, platform dışında hazırlanıp analiz ve iyileştirme yapmak için 

platforma aktarılmıştır. Veri iyileştirme adımı tamamlandıktan sonra, makine 

öğrenme modelleri çeşitli algoritmalar kullanılarak eğitilmiştir. Ardından, platformun 

test arayüzü kullanılarak modellerin doğruluğunu ve performansını kontrol etmek 

için fonksiyonel testler yapılmıştır. Bu testlerin sonuçları, yorumlar ve daha fazla 

araştırma fırsatları da paylaşılmıştır. Tasarlanan kapasite planlama aracının kabul 

edilebilir hata oranları ile tutarlı tahminler yapabildiği gözlemlenmiştir. 
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CHAPTER 1 

INTRODUCTION 

 

 

The business transaction counts increase constantly with respect to the technological 

developments and public recognition level improvements. As the number of 

transactions increases, the hardware and software requirements for the servers and 

the computers are changing as well. One of the most important changing 

requirements is the capacity needs of these systems. 

Capacity means “the ability to hold or contain people or things”, “the largest 

amount or number that can be held or contained” or “the ability to do something: a 

mental, emotional, or physical ability” as it is defined in An Encyclopædia 

Britannica Company Merriam-Webster (Merriam-Webster, 2022). Capacity can also 

be defined as the maximum throughput that a service is able to deliver while meeting 

service-level objectives over time if capacity management perspective is considered. 

Capacity planning, on the other hand, can simply be defined as “an estimation of the 

computer resources required to meet service-level objectives of an application over 

time.” The primary goal of capacity planning is to maintain a well-balanced 

computer system that will meet performance goals set by the company. A system is 

balanced when all its resources are working together to allow the system to handle 

the maximum amount of workload while meeting certain goals. Capacity planning is 

used to estimate the number of computing resources required to fulfill the future 

processing needs of a workload that is currently in production (Hahn et al., 2000). 
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Capacity planning is an important concept because it may have an effect on 

client satisfaction, external image of the company, productivity, investments and 

income and cost levels. These effects can be explained as follows: 

• It is possible that there can be some situations like performance problems 

or high response times in services in systems without any capacity 

planning so the desired service level agreements (SLAs) may be violated. 

• It may take significant time to solve these situations and to re-stabilize the 

entire system. In the meantime, clients may have to deal with an unstable 

and unresponsive system. This situation may lead to client dissatisfaction, 

damage on the external image of the company, decrease in the income 

levels and increase in the maintenance costs. Moreover, this situation may 

also affect project schedules and it may even lead to project failures so it 

may directly affect the productivity (Menascé et al., 1994). 

Capacity planning, also known as capacity modeling, techniques range from 

estimating capacity based on current resource consumption and experience to 

developing prototypes, full-scale benchmarks, and pilot studies. All of these have 

advantages and disadvantages, and they are suitable for various applications. All 

methods of modeling can achieve similar degrees of accuracy, but it is dependent on 

the information that is used to create it (Great Britain Cabinet Office, 2011). 

Trending, simulation modeling, and analytical modeling are the three most used 

capacity modeling techniques (Grummitt, 2009). 

Trending, often called trend analysis, is a modeling technique that uses 

historical data on resource utilization and service performance to predict future 

behavior. Historical data is usually analyzed in a spreadsheet with graphical, 

trending, and forecasting tools to indicate resource utilization over time and how it is 
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likely to change in the future, as well as define expected growth (Great Britain 

Cabinet Office, 2011; Grummitt, 2009). When there are a few variables and a linear 

relationship between them, trending is the most effective technique. It is a relatively 

inexpensive modeling technique, however it just provides estimates of future 

resource usage, therefore it is not very accurate (Great Britain Cabinet Office, 2011). 

Simulation modeling is a technique in which simulation models are created 

using computer programs that simulate static structure of a system as well as its 

various dynamic features (Menascé et al., 2004). Simulation modeling employs a 

traffic model that is compared to a simulation of the configuration until a solution is 

found (Grummitt, 2009). Simulation modeling provides a comprehensive perspective 

of present and future operations and can be quite precise for estimating the effects of 

changes on existing applications or sizing new ones. The disadvantage of this 

technique is that it takes a long time to create and execute the model, so it is a 

relatively expensive modeling technique (Great Britain Cabinet Office, 2011). 

Analytical modeling uses mathematical tools to represent the behavior of a 

computer system (Great Britain Cabinet Office, 2011). Analytical models are made 

up of formulas that specify the traffic and configuration, and algorithms that solve 

the formulas to produce the answers. Analytical models can be used to analyze 

present performance and predict future performance (Grummitt, 2009). In order to be 

mathematically adaptable, analytical models often include a little amount of detail, 

making them more efficient to operate but less accurate than other modeling 

techniques (Menascé et al., 2004). 

The concept of capacity planning can either be approached in an informal 

manner or in a very structured and disciplined fashion. The more accurate results can 

be obtained when the methodology is taken in a more disciplined way (Hahn et al., 
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2000). Because of this situation, organizations rely on capacity management tools to 

manage various types of workloads in the business environment and to help ensuring 

computer capacity that is utilized to meet business goals in an efficient way. 

Moreover, these tools are also helpful to meet SLAs consistently. However, these 

tools usually require a license which is high-priced. Therefore, organizations either 

have other organizations do their capacity plans or create their own capacity planning 

tool themselves. 

The objective of this study is to design a capacity planning tool for Central 

Processing Unit (CPU) consumption of application servers which are running on 

mainframes, also known as Z systems. Z systems have a CPU resource which is 

measured by Central Processors (CPs). Therefore, there is a limit on the CPs of these 

systems like storage and memory limitations. The system belongs to one of the 

greatest banks of Turkey. This tool is aimed to ensure adequate resources are 

available in order to meet current and future workload demands. The desired system 

is intended to have capability to determine and then forecast how much additional 

capacity will be needed based on increasing demands. 

In this study, IBM Cloud Pak for Data as a Service is used in order to create 

capacity planning model by using data analysis, data engineering, data governance 

and Artificial Intelligence (AI) modeling services which are provided by the 

platform. The data, which includes all the variables that can be used to perform 

capacity planning, is prepared outside of the platform. After the preparation, the data 

is imported to the platform for analysis and refinement. Then, machine learning 

models are built and deployed by using several algorithms and enhanced training 

features. 
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In this chapter, the main purpose of this study has been introduced. Moreover, 

problem definition, possible solution approaches and contributions made by this 

study have been explained. To mention other parts of this thesis, Chapter 2 mentions 

the previous works related to capacity planning. Chapter 3 gives brief explanation 

about the platform, IBM Cloud Pak for Data as a Service, which is used in this study. 

Chapter 4 explains data preparation and refinement steps for the data which is used 

in this study. Chapter 5 shows machine learning model generation details. Chapter 6 

presents the details of the conducted tests and the performance results obtained in 

these tests. Finally, Chapter 7 provides conclusions and further research 

opportunities to point out the possible improvement areas in this study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

The goal of this study is to design a capacity planning tool for CPU consumption of 

application servers which are running on Z systems by using machine learning 

algorithms. In this chapter, previous works in the literature for the capacity planning 

by using machine learning techniques topic are mentioned. 

Capacity planning is a crucial topic and there are several studies on how to 

approach this topic by using machine learning algorithms. 

Le Duc et al., (2019) performed a survey on this subject. They reviewed how 

the issue of reliable sourcing in joint edge cloud environments has been investigated 

in the scientific literature. Their main interest was on what methods have been used 

to increase the reliability of distributed applications in diverse and heterogeneous 

network environments. They have realized that there has been a significant increase 

in the number of studies applying machine learning techniques to the characterization 

and prediction of workload and application behavior, as well as the control of 

complex distributed applications in recent years. Moreover, they have observed that 

machine learning techniques yield better results than traditional methods on average. 

They also discovered that it was even better when dealing with large and complex 

environment. 

In a more technical study, Baldán et al., (2016) built an elastic cloud system 

which is able to manage CPU usage in an elastic manner. The system has taken the 

real time monitoring values and forecast values for the following states as input. 

These forecast values were produced by workload forecasting module which uses 
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historical data in order to perform forecasting. They employed different forecasting 

algorithms while building the workload forecasting module such as Auto-Regressive 

Moving Average (ARIMA), Exponential Smoothing etc. They also used some 

general regression methods for comparison purposes such as Linear auto-regression 

(AR), Lasso and Multi-adaptive regression splines (MARS). They evaluated the 

models by using different error measures such as Symmetric Mean Absolute 

Percentage Error (SMAPE) and RelMAE, which is the Mean Absolute Error (MAE), 

normalized by the MAE of a benchmark method. When the forecasts were produced 

by the workload forecasting module, they were sent to the resource provisioning 

system in order to make decisions. Then, the decisions were forwarded to the 

resource management component to take actions. The architecture of the elastic 

cloud system is provided in Figure 1. 

 

 

Figure 1.  Elastic cloud system (Baldan et al., 2016) 

 

In another study, Le Anh (2016) performed a study to find a solution to 

increase resource utilization in data centers by using workload prediction for 

resource management. He focused on predicting CPU core and memory consumption 

for both short- and long-term resource allocation in the Google cluster trace. He 

predicted CPU cores and memory consumptions with both short time units of 1, 2 

and 5 minutes and longtime unit of 1 hour by using different prediction methods such 
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as Linear Regression, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and 

Nonlinear autoregressive network with exogenous inputs (NARX). He also 

compared these methods and their results in terms of accuracy and execution time 

since the usage areas of the predictions might vary depending on the application. If 

predictions were to be used for elasticity, they must be produced within a few 

seconds. On the other hand, if they were to be used for scheduling decisions, it might 

take longer to produce. He used Mean Absolute Percentage Error (MAPE) to 

compute prediction error of the models since it is easy to use, and it gives reliable 

results. He performed different experiments in order to compare the performance of 

the models by using different workloads. 

In a different work, Kumar et al., (2021) proposed a novel self-directed 

workload forecasting method in order to predict the future workload on cloud 

servers. The proposed framework was able to learn from the past forecasts to 

improve future predictions. The primary contributions of this study were twofold. 

Firstly, they introduced forecast error feedback, which allows the model to learn 

from the last prediction model. The forecast module has received feedback to take 

advantage of it in the next forecast. The model has caught the error in the last l 

estimates and calculated the average deviation. Secondly, they developed a 

population-based meta-heuristic optimization algorithm, i.e., black hole algorithm, 

for better learning of network weights to get more accurate predictions. They were 

able to organize the population into multiple clusters or subpopulations with the help 

of the new learning algorithm. Moreover, unlike the standard algorithm, which only 

considers global best information to generate new solutions, local and global best 

information were included in the process of generating new solutions. They have 

found the incorporation of the local best information beneficial in maintaining 
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population diversity, which prevents early convergence. They also analyzed the 

forecast accuracy of the proposed model on different time interval forecasts over 

multiple real world data traces. They have found that the model is able to reduce the 

mean squared forecasting errors up to 99.99% over existing models. The prediction 

model workflow is provided in Figure 2. 

 

 

Figure 2.  Prediction model workflow (Kumar et al., 2021) 

 

There are also some studies about database workload capacity planning by 

using different techniques. In one of which, Higginson et al., (2020) applied different 

forecasting techniques to Online Transaction Processing (OLTP) and Online 

Analytical Processing (OLAP) workloads which make up the database workload. 

They aimed to capture key metrics, such as CPU, Input/ Output Operations per 

Second (IOPS) and Memory, which are applicable to monitoring and capacity 

planning through an agent. There were some specific commands that were executed 

on the hosts by the agent in order to retrieve the metric values. Then, these values 

were stored in a central repository where they were aggregated into hourly values. 

They executed this process for a period of 30 days in the experiments. Their data 

collection techniques were quite similar to the techniques used in this study which 

are explained in Chapter 4. They performed different experiments by using different 
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machine learning algorithms. The experiments were done hourly, daily, and weekly 

by using Seasonal Auto-Regressive Moving Average with exogenous factors 

(SARIMAX) and Holt-Winters Exponential Smoothing (HES) algorithms. In the 

flow of the experiments, data features such as stationarity, seasonality, multiple 

seasonality, and shocks were understood, where each model was calculated to obtain 

a Root Mean Squared Error (RMSE). They have chosen the best model by 

comparing RMSE values just like done in this thesis in Total CPU Consumption 

AutoAI Experiment which is explained in Chapter 5. 

In another study, Müller et al., (2019) examined the applicability of machine 

learning techniques to the service capacity management process for commercial off-

the-shelf enterprise applications. In order to train performance models for standard 

business functions, they used real monitoring data from more than 18,000 SAP 

applications and database samples running on more than 16,000 different servers. In 

their study, three scenarios were addressed in order to show the utility of machine 

learning-based techniques using performance counters. The first scenario was server 

sizing which was about estimation of the capacity demands of the enterprise 

applications before the deployment. For this reason, appropriate hardware 

components should be determined for the workload characteristics given in the 

business layer. Second scenario was about load testing, and it refers to workload 

changes. The following questions were tried to get an answer in this scenario: “What 

if the throughput [of a service] doubles?” or “What will be the effect on the response 

times?”. The last scenario was server consolidation, and which was about the 

management of existing enterprise applications includes optimizing the allocation of 

running services to servers on a periodic (offline) or continuous (online) basis. They 

used the following machine learning algorithms in their models: Support vector 
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machines (SVM) with Radial basis function (RBF) and with Polynomial kernel (PK), 

Random forests as representative of Bagging strategy, and AdaBoost as 

representative of Boosting strategy. They applied the trained models with these 

algorithms in three capacity management scenarios in order to investigate the utility 

and applicability. 

In a different work, Cortez et al. (2017) introduced a system that collects 

virtual machine (VM) telemetry, learns from these behaviors, and produces models 

that can make predictions to various resource managers, so this system has been 

named as Resource Central (RC). They have provided several use cases for RC. In 

one of these use cases, RC can be used for predictions of the expected resource 

utilization of VMs before the selection of servers to run a set of new VMs. This 

information helps the scheduler to be able to reduce the chance of physical resource 

exhaustion on oversubscribed servers. In another use case, the service can suggest 

deployments where VMs that are predicted to be delay-insensitive would be sized 

tighter than interactive VMs by using RC predictions of workload class and resource 

utilization. In addition to these, the system can select a cluster which would likely 

have enough resources with the help of the prediction of maximum deployment size 

produced by RC, before the selection of a cluster in which to create a VM 

deployment. In the design of RC, Cortez et al. used different machine learning 

algorithms. They used Random Forests and Extreme Gradient Boosting Trees as 

classifiers and Fast Fourier Transform (FFT) to detect periodicity in the utilization 

time series. They trained the models with two months of data and tested them in the 

third month of their dataset. They performed experiments by using feature 

engineering, feature selection, normalization, and regularization techniques in order 

to improve quality. These types of techniques are also used in this thesis in AutoAI 
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experiments which are explained in Chapter 5. They have calculated the prediction 

accuracy of RC in the range of 79% and 90% depending on the metric. The accuracy 

values were also similar to the results which are provided in Chapter 6. 
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CHAPTER 3 

ABOUT IBM CLOUD PAK FOR DATA 

 

 

Cloud Pak for Data as a Service is used to perform data analysis, data engineering, 

data governance and AI modeling operations. It is a platform which offers a cloud 

native modular service. Users are able to collect, organize and perform some specific 

operations securely by means of an integrated data fabric to the Cloud Pak for Data 

as a Service. Data fabric is also provide Cloud Pak for Data as a Service to have a 

suite of data science and AI tools for performing data analysis and application 

development with AI in order to improve business outcomes (IBM, 2021c). 

The benefits of Cloud Pak for Data as a Service can be listed as follows (IBM, 

2021c): 

• It is a fully managed cloud service platform which requires no installation, 

management, or updates 

• Scalability 

• Security 

• Compliance 

• Combinable services architecture 

 

3.1  Data fabric 

A data fabric is an architectural model to manage highly distributed and utterly 

different data. It supports the decoupling of data storage, data processing and data 

use since it is designed for hybrid and multi-cloud data environments. Users can 

transform data to business assets which are governed globally regardless of the 
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storage or usage location of the data with the help of intelligent knowledge catalog 

capabilities. Users are also able to provide business-ready data for their applications 

and services by means of the automatically assigned catalog assets to the metadata 

which describes logical connections between data sources and enriches them with 

semantics. Data fabric architecture provides users to perform data analysis easily and 

quickly and this is one the reasons why Cloud Pak for Data as a Service is chosen to 

be used (IBM, 2021c). 

Cloud Pak for Data as a Service data fabric architecture enables users to be able 

to (IBM, 2021c): 

• Access to the data in a simple and automated way across multi-cloud and on-

premises data sources without moving it. 

• Protect the use of all data. 

• Have a self-service experience for finding and using data. 

• Organize and automate the data lifecycle by using AI-powered capabilities. 

There are five main capabilities of the data fabric and Figure 3 shows them and 

their connectivity between the platform and data source. 

 

 

Figure 3.  Data fabric in Cloud Pak for Data (IBM, 2021c) 
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These capabilities and their facilities can be summarized as follows (IBM, 

2021c): 

• Metadata-based knowledge core enables the exploration of the data 

sources and catalogs, enriches data assets, and performs analysis to obtain 

insight for more automation by using AI. It is utilized to control the 

marketplace with semantic search. 

• Self-service data marketplace is the next-generation data catalog which 

helps data consumers to recover data from across the data landscape of 

the enterprise. 

• Automated data integration is integrated with the knowledge core in order 

to automate data integration. It has the intelligence to choose which 

integration approach is best suited based on workloads and data policies. 

It enables data consumption by extracting, virtualizing, transforming and 

streaming data. 

• Unified governance, security and compliance layer is able to comprehend 

the data format and data significance and apply the best policies to each 

bit of data and each prospective user. This capability enables to apply 

standards and rules to the data at the organizational level and propagate 

throughout the various data resources as needed. 

• Unified lifecycle provides a unified development and operations to 

arrange and run all the aspects of the data platform in live environment. 

 

3.2  Data science and AI tools of Cloud Pak for Data as a Service 

Users are able to participate in finding and sharing insights with the help of the data 

science and AI tools on Cloud Pak for Data as a Service. By using these tools, users 
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are able to prepare and train models, deploy models in their applications and evaluate 

models for performance, quality and bias. These tools include a comprehensive tool 

set in which users are able to code in Python or R, visually code by creating a flow of 

steps on a graphical canvas or automatically build a ranked list of model candidates. 

Users can choose one of these methods depending on their skill levels or individual 

preferences (IBM, 2021c). In this thesis, the third option has been followed in which 

a ranked list of model candidates was built in order to focus on the output and the 

insights. 

Data science and AI tools of Cloud Pak for Data as a Service also provides 

users to promote trained models to deployment spaces, deploy and score the models, 

review prediction scores and insights, and monitor deployment jobs in a dashboard. 

After the deployment, users are able to evaluate deployments for bias or drift, update 

data and retrain deployed models to maintain quality goals. Models are easy to 

understand by business units and also auditable in business transactions (IBM, 

2021c). 

 

3.3  Services architecture of the Cloud Pak for Data as a Service 

The architecture of Cloud Pak for Data as a Service includes core services, related 

services, and a gallery of samples. Figure 4 shows the services architecture of The 

Cloud Pak for Data as a Service (IBM, 2021c). 
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Figure 4.  Services architecture of the Cloud Pak for Data as a Service (IBM, 2021c) 

 

Core services are mainly using for analyzing and governing data and running, 

deploying and evaluating models. The supplementary services of the core services 

are responsible for adding tools, workspaces, or computation power. IBM Cloud 

database service is used to store data that users are able to use it in the entire 

platform. Watson Assistant and other Watson services provides User Interfaces (UIs) 

or Application Programming Interfaces (APIs) to users for analyzing data. The 

gallery of samples includes sample data assets, notebooks, and projects. Sample data 

assets and notebooks provide some samples for data science and machine learning 

code. Sample projects include a set of assets and detailed instructions on how to 

solve a particular business problem (IBM, 2021c). 

 

3.4  Functionality in the core services and the common platform 

Figure 5 shows the common platform and the core services functionality. 
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Figure 5.  Functionality in the core services and the common platform (IBM, 2021c) 

 

The common platform functionality includes account level administration 

including user management, storage for projects, catalogs, and deployment spaces in 

IBM Cloud Object Storage. It also provides common infrastructure for assets, 

projects, catalogs and deployment spaces (IBM, 2021c). 

Watson Studio provides users to choose the tools to analyze and visualize 

data, to cleanse and shape data and to build machine learning models. Figure 6 shows 

how the architecture of Watson Studio is centered on the project (IBM, 2021g). 

 

 

Figure 6.  Architecture of Watson Studio (IBM, 2021g) 

 

A project is a workspace where users organize their resources and work with 

data. Collaborators, assets, and tools are the types of resources in a project. 
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Collaborators are the members of a team who work with the data in different ways 

such as data scientist and data engineer. Assets are divided into two groups as data 

assets and operational assets. Data assets point to data which can be in uploaded files 

or accessed through connections to data sources. Operational assets, on the other 

hand, are the objects that users create which run code to work with the data such as 

models and scripts. Tools are the software that enables users to work with data. Data 

Refinery, Jupyter notebook editor, RStudio, SPSS modeler and Decision 

Optimization model builder are included with the Watson Studio service (IBM, 

2021g). 

Watson Machine Learning provides a vast variety of tools and services so that 

users are able to build, train, and deploy machine learning models. Users can choose 

the tool or service with the level of autonomy that matches their needs from a fully 

automated process to writing their own code. In this thesis, a fully automated process 

was proceeded in order to focus on the output and the insights. AutoAI experiment 

builder, Deep Learning experiments, Federated Learning and notebooks are some 

tools which are available on Watson Machine Learning service. AutoAI experiment 

builder provides automatically processing structured data to generate model-

candidate pipelines. The best-performing pipelines can be saved as a machine 

learning model and deployed for scoring. Deep Learning experiments automates 

running hundreds of trainings runs while tracking and storing results. Federated 

Learning is used to train models using remote or disconnected data sources. 

Notebooks provide an interactive programming environment in order to work with 

data, test models and prototype rapidly. There are also other tools which can be used 

to view and manage model deployments (IBM, 2021f). 
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Watson Knowledge Catalog is an essential part of the data fabric. It provides 

a metadata-based knowledge core, data self-service, and unified governance. A 

secure enterprise catalog management platform is provided by the Watson 

Knowledge Catalog, and it is supported by a data governance framework. The 

compliance of the data access with the business rules and standards is ensured by the 

data governance framework (IBM, 2021e). 

In this thesis, these functionalities of the Cloud Pak for Data as a Service have 

been used where compute usage is measured in capacity unit hours (CUH) in the 

platform. A capacity unit hour is a specific amount of compute capability with a set 

cost. There is a lite plan which includes 50 CUH per month and a lite plan has been 

used for this thesis. 
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CHAPTER 4 

DATA PREPARATION 

 

 

4.1  Data collection 

In this thesis, one of the most important steps is the data preparation. Since the aim is 

to estimate capacity need of a system, a dataset covering the past few years is 

needed. There are some historical data in the data warehouse of the bank. Before 

using this raw data, it is examined and analyzed in order to see whether it is 

appropriate for the needs or not. After the examination, the variables used in the 

model are decided. 

First of all, the variable which is related with the CPU consumption per day is 

chosen in order to reflect capacity need of the system and it is named as 

‘TOTCPUTIME’. Secondly, another variable which shows transaction count per day 

is used since it is known that CPU consumption is directly related with the 

transaction count, so the name of the second variable is ‘TRANCOUNT’. Then, the 

variable which is related with the average response time per day is chosen, namely 

‘AVGRESPTIME’, because it is one of the most important metrics of a system. The 

effect of response time is wanted to see in the model since it may have some drastic 

changes in busy days although it generally follows a stable trend. Lastly, another 

variable which stores the date information is used in order to have an opportunity to 

see historical effect in the model and it is named as ‘DATE’. In addition to the raw 

date information, another variable, namely ‘DATE_TYPE’, which shows the type of 

day in terms of weekday (W), holiday (H) and special weekdays (WS), which are the 

busy days in which workload and the transaction counts generally higher, is also 
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added. There are some other variables in the raw data which indicates memory usage, 

IOPS, resource manager statistics etc. However, these variables do not contribute to 

the prediction of CPU usage, so they are omitted. 

The data is prepared outside of the IBM Cloud Pak for Data as a Service. 

After the preparation, it is imported to the project which is created in the platform 

such that the data can be analyzed and refined afterwards. 

 

4.2  Data refinement 

The Data Refinery tool of IBM Cloud Pak for Data as a Service enables users to 

cleanse and shape tabular data with a graphical flow editor. Users are also able to use 

interactive templates to code operations, functions, and logical operators (IBM, 

2021d). 

A data refinery flow is created in order to cleanse and shape the data. When 

the data is cleansed, incorrect, incomplete, improperly formatted, or duplicated data 

is fixed or removed. When the data is shaped, it is customized by changing data 

types.  

When the dataset is imported to IBM Cloud Pak for Data as a Service, the 

platform recognized data types of all variables as ‘String’. In data refinement step, 

the data type of ‘TRANCOUNT’ variable is changed to ‘Integer’, ‘AVGRESPTIME’ 

variable is changed to ‘Decimal’, ‘TOTCPUTIME’ variable is changed to ‘Decimal’ 

and ‘DATE’ variable is changed to ‘Date’ in an appropriate date format. The data 

types of the variables are configured as it can be seen in Table 1 as a data sample at 

the beginning of the data refinement step.  
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Table 1.  Data Types of the Variables in the Data Sample 

DATE 

Date 

DATE_TYPE 

String 

TRANCOUNT 

Integer 

AVGRESPTIME 

Decimal 

TOTCPUTIME 

Decimal 

01/01/2020 H 595,244,883 0.0268 957,183.0785 

02/01/2020 WS 1,039,277,770 0.0294 2,174,019.2310 

03/01/2020 W 1,021,869,535 0.0279 2,169,866.9563 

04/01/2020 H 628,199,857 0.0265 994,790.4582 

05/01/2020 H 537,185,176 0.0211 764,919.8450 

06/01/2020 WS 1,134,440,427 0.0322 2,225,460.0350 

07/01/2020 W 1,022,492,232 0.0278 2,079,691.9653 

08/01/2020 W 929,120,286 0.0284 1,927,726.2314 

09/01/2020 W 909,692,406 0.0280 1,929,968.8540 

10/01/2020 W 986,448,225 0.0268 1,986,145.1328 

 

At the data refinement step, some statistics about the data are produced. The 

dataset includes data from the beginning of 2009 to the end of 2020 i.e., 4382 days of 

data. There are 578 special weekdays which are labeled as ‘WS’, 1365 holidays 

which are labeled as ‘H’ and 2440 weekdays which are labeled as ‘W’. 

In Table 2, minimum, median, maximum, interquartile range, and standard 

deviation values of the ‘TRANCOUNT’ variable are provided. This variable 

represents the transaction counts per day as mentioned previously. The values of the 

‘TRANCOUNT’ variable show a dispersed appearance.  
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Table 2.  Statistics of the ‘TRANCOUNT’ Variable 

Interquartile Range 375,616,848 

Minimum 18,593,644 

Maximum 1,383,027,406 

Median 342,330,018 

Standard Deviation 286,068,559.012 

 

Histogram for ‘TRANCOUNT’ with respect to ‘DATE_TYPE’ is provided in 

Figure 7. The distribution of transaction counts in different date types can be 

followed from this table. Transaction counts of holidays are generally smaller than 

weekdays or special weekdays as expected. Therefore, the intensity of ‘H’ values is 

higher at the left of the graph. Similarly, the intensity of ‘WS’ values are higher at 

the right of the graph since transaction counts of special weekdays are generally 

greater than holidays or weekdays as expected. 
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Figure 7.  Histogram for ‘TRANCOUNT’ with respect to ‘DATE_TYPE’ 
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In Table 3, minimum, median, maximum, interquartile range, and standard 

deviation values of the ‘AVGRESPTIME’ variable are provided. This variable 

represents the average response time values, in seconds, of all transactions which run 

in a day. It is expected that average response time values generally follow a stable 

trend and the findings in Table 3 satisfies this expectation. ‘AVGRESPTIME’ 

variable values have shown intensity between certain values, which are 0.0162s and 

0.139s. 

 

Table 3.  Statistics of the ‘AVGRESPTIME’ Variable 

Interquartile Range 0.0188 

Minimum 0.0162 

Maximum 1.2413 

Median 0.0288 

Standard Deviation 0.0298 

 

In Table 4, minimum, median, maximum, interquartile range, and standard 

deviation values of the ‘TOTCPUTIME’ variable are provided. This variable 

represents the total CPU consumption per day, in seconds, as mentioned previously. 

The values of this variable show a dispersed appearance as it does for 

‘TRANCOUNT’ variable as expected.  
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Table 4.  Statistics of the ‘TOTCPUTIME’ Variable 

Interquartile Range 750,937.092 

Minimum 4209.824 

Maximum 2,606,006.326 

Median 812,492.163 

Standard Deviation 560,566.863 

 

Histogram for ‘TOTCPUTIME’ with respect to ‘DATE_TYPE’ is provided 

in Figure 8. The distribution of total CPU time in different date types can be 

followed from this figure. This figure follows similar trend with the histogram for 

‘TRANCOUNT’ as expected since CPU consumption is directly related with the 

transaction count. Total CPU consumption in holidays is generally smaller than 

weekdays or special weekdays as expected. Therefore, the intensity of ‘H’ values is 

higher at the left of the graph. Similarly, the intensity of ‘WS’ values are higher at 

the right of the graph since total CPU consumption special weekdays are generally 

greater than holidays or weekdays as expected. 

When the data refinement step is completed, the data is ready to be used in 

order to build, train, and deploy Machine Learning models. 
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Figure 8.  Histogram for ‘TOTCPUTIME’ with respect to ‘DATE_TYPE
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CHAPTER 5 

ANALYZING DATA AND BUILDING MODELS 

 

In this thesis, the AutoAI graphical tool of Watson Studio is used as mentioned 

previously. AutoAI graphical tool enables analysis of the data automatically and 

generation of candidate model pipelines which are customized for the predictive 

modeling problems. Machine learning models are built and deployed with enhanced 

training features without coding. By this means, it is aimed to focus more on the 

output and the insights. The tool performs most of the work for users. The workflow 

diagram of AutoAI tool is provided Figure 9. 

 

 

Figure 9.  The workflow diagram of AutoAI tool (IBM, 2021b) 

 

In this workflow, AutoAI automatically runs data pre-processing, automated 

model selection, automated feature engineering and hyper-parameter optimization 

tasks to build and evaluate candidate model pipelines. These model pipelines are 
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created iteratively when AutoAI analyzes the dataset and discovers the data 

transformations, algorithms, and parameter settings best suited to the problem 

identification (IBM, 2021b). 

In data pre-processing step, AutoAI applies various algorithms in order to 

analyze, clean and prepare the raw data for machine learning. The data which is used 

in this thesis has no missing or incorrect values since a data refinement is performed 

and these kinds of values are fixed or removed. However, AutoAI performs another 

analysis on data in order to guarantee the best results from the machine learning 

algorithms since they work with numbers and no missing values. AutoAI 

automatically detects and categorizes features based on data type, such as categorical 

or numerical. Then, it employs hyper-parameter optimization to determine the best 

combination of strategies for missing value imputation, feature encoding, and feature 

scaling for the data, depending on the categorization (IBM, 2021b). 

In automated model selection step, AutoAI utilizes a clever methodology that 

empowers testing and ranking candidate algorithms against small subsets of the data, 

gradually increasing the size of the subset for the most encouraging algorithms to 

show up at the best match. This methodology saves time without any performance 

issues. It provides ranking several candidate algorithms and choosing the best match 

for the data (IBM, 2021b). 

Feature engineering endeavors to transform the raw data into the combination 

of features which best represents the problem to achieve the most accurate 

prediction. In automated feature engineering step, AutoAI utilizes an extraordinary 

methodology that investigates different feature development decisions in a 

structured, non-exhaustive way, while continuously maximizing model accuracy 

using reinforcement learning. This results in an optimized sequence of 
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transformations for the data that best match the algorithms of the model selection 

step (IBM, 2021b). 

As a final step, a hyper-parameter optimization step refines the best 

performing model pipelines. AutoAI utilizes a novel hyper-parameter optimization 

algorithm enhanced for expensive function evaluations such as model training and 

scoring that are common in machine learning. This methodology empowers quick 

combination to a decent arrangement notwithstanding long evaluation times of each 

iteration (IBM, 2021b). 

In this thesis, two different machine learning models are trained in order to 

predict capacity needs of the system. In the first model, it is aimed to predict 

transaction count by using a time series forecast algorithm. In this first model, a 

dataset which contains only date and transaction count information i.e., ‘DATE’ and 

‘TRANCOUNT’ variables, is used. In this sub dataset, ‘DATE’ variable is also 

divided into 2 groups in such a way that first group contains only weekdays and 

special weekdays, and the second group contains only holidays. The reasons beyond 

this choice are to prevent deviations in forecast values because there is a significant 

difference in transaction counts between weekdays and holidays, to get more 

accurate forecast results and to focus more on the capacity needs in weekdays and 

special weekdays. 

In the second and the actual model, it is aimed to predict total CPU 

consumption by using a regression algorithm. In this model, the actual dataset that 

contains all the variables, which are ‘DATE’, ‘DATE_TYPE’, ‘TRANCOUNT’, 

‘AVGRESPTIME’ and ‘TOTCPUTIME’, is used. When both of these models are 

trained, it is aimed to give the output of the first model as an input for the 
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‘TRANCOUNT’ variable of the second model. By this means, it is wanted to predict 

two unknowns at the same time and produce more realistic results.  

 

5.1  Configurations of Transaction Count Forecasting AutoAI Experiment 

A time series forecast algorithm is used in order to predict future transaction counts. 

For this reason, the AutoAI experiment is configured in such a way that the 

prediction type is appropriate for this model after the sub dataset which contains only 

date and transaction count information, i.e., ‘DATE’ and ‘TRANCOUNT’ variables, 

is imported. ‘DATE’ variable is the independent and ‘TRANCOUNT’ is the 

dependent variable for this experiment. Therefore, in this AutoAI experiment, the 

prediction variable is ‘TRANCOUNT’. There are four available metrics for time 

series forecast prediction type in order to optimize the experiment, namely 

Symmetric Mean Absolute Percentage Error (SMAPE), R2, Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE). The recommended metric, which is 

SMAPE, is chosen for this model because SMAPE is one of the most widely used 

metrics for evaluating the performance of the forecast model. Mean Absolute 

Percentage Error (MAPE) is asymmetric version of SMAPE, and it is more sensitive 

to negative errors, when forecast values are higher than the actual values, than the 

positive ones because of the fact that percentage error is not able to go beyond 100% 

for forecasts which are too low while there is no upper limit for the forecasts which 

are too high. Therefore, MAPE is most useful for models which perform under-

forecast rather than over-forecast. SMAPE, on the other hand, overcomes this 

asymmetry and it has both the lower (0%) and the upper (200%) bounds. 

There are seven different algorithms for time series forecast prediction type. 

These algorithms are ARIMA, Box-Cox Transformation, Autoregressive moving 



33 
 

average residuals (ARMA), Trend and Seasonality (BATS), Ensembler, Holt-

Winters, Linear Regression, Random Forest and SVM. Brief explanations of these 

algorithms are provided as follows: 

• ARIMA: Autoregressive integrated moving average is a statistical analysis model 

which uses time series data in order to comprehend a data set or to forecast future 

trends. ARIMA is a type of regression analysis that gauges the strength of a 

dependent variable relative to other varying variables. The goal of ARIMA is to 

forecast future trends by analyzing the differences between the values in the 

series rather than the actual values. There are three components that make up 

ARIMA. Auto regression (AR) component refers to a model that represents a 

changing variable that regresses relative to its lagging or previous values. This 

component is represented by parameter p in the ARIMA function as the number 

of lag observations in the model. Integrated (I) component represents the 

difference of raw observations to allow the time series to become stationary. This 

component is represented by parameter d in the ARIMA function as the number 

of times that the raw observations are differenced. Lastly, moving average (MA) 

component includes the dependence between an observation and a residual error 

from a moving average model applied to lagged observations. This component is 

represented by parameter q in the ARIMA function as the size of the moving 

average window (Hayes, 2021). 

• BATS: It is an algorithm consisting of a combination of Exponential Smoothing 

Method, Box-Cox Transformation and ARMA model for residuals. In BATS, 

Box-Cox Transformation deals with the non-linear data and ARMA model for 

residuals can be correlated with the time series data (De Livera, 2010; De Livera 

et al., 2011). 
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• Ensembler: An ensemble is made up of two or more forecasts that attempt to 

realize possible uncertainties in a numerical forecast (Cheung, 2001).  A well 

designed, reliable ensemble prediction system should aim to represent random 

errors in trends. This can be accomplished by utilizing alternative numerical and 

physical formulations in each integration, by including a stochastic part intended 

to address the difference between alternative, physically reasonable 

representations of a given process, or by doing both. There are four main 

approaches in ensemble prediction to represent model uncertainties. In 

multimodel approach, different models are used in each ensemble members. In 

perturbed parameter approach, all ensemble integrations are prepared with the 

same model but with different parameters that define the settings of the model 

components. In perturbed tendency approach, stochastic schemes designed to 

simulate the random model error component are used to simulate the fact that 

tendencies are known only approximately. In stochastic backscatter approach, for 

the processes that the model is not able to resolve, a Stochastic Kinetic Energy 

Backscatter (SKEB) scheme is used (Robertson & Frédéric, 2019). 

• Holt-Winters: It is an algorithm which is used to forecast future trends. This 

algorithm is used to smooth a time series data and make predictions by using that 

data. Exponential smoothing assigns exponentially decreasing weights and values 

against historical data in order to reduce the value of the weight for the older 

data. There are three types of exponential smoothing methods used in Holt-

Winters. Single Exponential Smoothing is used to forecast data without trend or 

seasonal patterns. Double Exponential Smoothing is used to forecast data with a 

trend. Lastly, Triple Exponential Smoothing is used to forecast data with trend 

and/or seasonality (Smarten, 2018). 
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• Linear Regression: In this algorithm, the dependent variable is continuous, but 

the independent variable can be continuous or discrete. The regression line is in 

the form of linear. In linear regression algorithm, a relationship is created 

between the dependent variable (y) and independent variable or variables (x) by 

using the best fit straight line. This relationship is defined by the following 

equations: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑒 

𝑦 = 𝑎 +  𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑒 

In these equations, a represents the intercept, b represents the slope of the line 

and e represents the error term (Sarker, 2021). 

• Random Forest: A random forest is a classifier which includes a set of decision 

trees. In this set, each tree is built by applying an algorithm on a training set and 

an additional random vector. This random vector is sampled independently and 

identically distributed from some distribution. The prediction of the random 

forest is acquired by majority vote over the predictions of the individual trees 

(Shalev-Shwartz & Ben-David, 2014). 

• SVM: Support Vector Machine builds a hyper-plane or set of hyper-planes in 

high or infinite dimensional space. Intuitively, the hyperplane with the largest 

distance from the nearest training data points in any given class achieves strong 

separation because in general the larger the margin, the lower the generalization 

error of the classifier. This algorithm is effective in high dimensional spaces and 

its behavior may change depending on different mathematical functions known 

as kernels (Sarker, 2021). 

All the available algorithms are selected in order to be considered when the 

experiment is run. AutoAI experiment is configured to select top three performing 
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pipelines to complete because more pipelines increase the runtime and use more 

resources.  

Since the dataset is sufficiently large and there are enough records to cover all 

possible cases, the experiment is adjusted to use 80% of the data as training data and 

20% of the data as holdout data in order to optimize and validate pipelines. The 

reason beyond this splitting operation is to estimate the performance of the machine 

learning model on the new data. 

Furthermore, the number of hyper-parameter optimization iterations to apply to 

pipelines after model selection per algorithm is set to 10, number of feature 

engineering iterations per algorithm is set to 30 and number of hyper-parameter 

optimization iterations after feature engineering per algorithm is set to 25 as runtime 

settings. In this experiment, Watson Machine Learning service of IBM Cloud Pak for 

Data as a Service is used, and the runtime is configured to have 8 CPU and 32GB 

RAM and to consume 20 capacity units per hour.  

Each flow in the Transaction Count Forecasting AutoAI Experiment is started 

with reading the dataset. Then dataset splitting operation takes place followed by 

reading the training data. Afterwards, lookback window is generated before the 

pipeline selection. Then the model starts to run with all the available algorithms that 

are chosen in the experiment configuration. AutoAI selects top three performing 

pipelines to complete at the pipeline evaluation step since it is configured to do so. 

At the final step, back testing is performed with the holdout data after these pipelines 

are generated. 

The results of AutoAI experiment are provided in Table 5. It shows the 

automatically generated model pipelines ranked according to the problem 

optimization objective which is SMAPE. SMAPE is an accuracy measure based on 
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percentage errors. Percentage error is nothing but the absolute error as a percentage 

of the average of the forecast and the actual values. The lower the SMAPE value of a 

prediction, the higher its accuracy. The pipeline which uses the Ensembler algorithm 

performs the best result based on SMAPE value, which is 5.487% in back test, and it 

is a quite good error for this AutoAI experiment. This pipeline is selected by AutoAI, 

and it is now ready to be deployed as a machine learning model. 

 

Table 5.  Pipeline Leaderboard of Transaction Count Forecasting AutoAI Experiment 

Rank Name Algorithm SMAPE Enhancements Build Time 

1 Pipeline 5 Ensembler 5.487% HPO, FE 00:00:01 

2 Pipeline 3 
Linear 

Regression 

6.009% HPO, FE 00:00:02 

3 Pipeline 2 SVM 6.219% HPO, FE 00:00:03 

 

Pipelines other than the top three were discarded in favor of better performing 

pipelines even if they were considered during the experiment. The list of the 

discarded pipelines is provided in Table 6. 
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Table 6.  Table of Discarded Pipelines 

Name Algorithm Projected SMAPE Training Data Used 

Pipeline 1 Random Forest 6.385% 79% 

Pipeline 10 BATS 7.710% 79% 

Pipeline 4 Ensembler 7.205% 79% 

Pipeline 6 Ensembler 7.127% 79% 

Pipeline 7 Holt-Winters 7.423% 79% 

Pipeline 8 Holt-Winters 7.443% 79% 

Pipeline 9 ARIMA 7.291% 79% 

 

In Figure 10, actual and predicted values for the ‘TRANCOUNT’ variable is 

visualized for a period of 4.5 months.  



39 

 

 

 

Figure 10.  Predictions over time for ‘TRANCOUNT’ variable 
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5.2  Configurations of Total CPU Consumption AutoAI Experiment 

A regression algorithm is used in order to predict future CPU consumptions. For this 

reason, the AutoAI experiment is configured in such a way that the prediction type is 

appropriate for this model after the actual dataset which contains all the variables 

namely ‘DATE’, ‘DATE_TYPE’, ‘TRANCOUNT’, ‘AVGRESPTIME’ and 

‘TOTCPUTIME’ is imported. ‘DATE’, ‘DATE_TYPE’, ‘TRANCOUNT’ and 

‘AVGRESPTIME’ variables are the independent variables and ‘TOTCPUTIME’ is 

the dependent variable for this regression experiment. Therefore, in this AutoAI 

experiment, the prediction variable is ‘TOTCPUTIME’. There are eight available 

metrics for regression prediction type in order to optimize the experiment, namely 

Root Mean Squared Error (RMSE), Mean Squared Error (MSE), Mean Absolute 

Error (MAE), Median Absolute Error (MedAE), Root Mean Squared Log Error 

(RMSLE), Mean Squared Log Error (MSLE), Explained Variance and R2. The 

recommended metric, which is RMSE, is chosen for this model because RMSE is 

one of the most widely used metrics for evaluating the performance of the model. 

RMSE values can be calculated by using the following formula: 

𝑅𝑀𝑆𝐸𝑓𝑜 =  [∑
(𝑧𝑓𝑖− 𝑧𝑜𝑖)

2

𝑁

𝑁
𝑖=1 ]

1/2

, where f represents expected values or unknown 

results and o represents observed values or known results (Barnston, 1992). 

The formula is put into words, RMSE values are being calculated by taking 

square of the difference between estimated and corresponding observed values and 

then taking the average over the sample. Then, the square root of the average gives 

the RMSE value. The RMSE is more sensitive to the large errors since the errors are 

squared before they are averaged. Therefore, RMSE is most useful when these types 

of errors are particularly undesirable, and it is not wanted the model which is created 

in this thesis to have significant errors. 
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The algorithm selection is also optimized so that AutoAI selects the algorithms 

with the highest score in the shortest run time. The reason beyond this selection is 

that it is aimed the model to have high performance and low response time. There are 

11 different algorithms for regression prediction type. These algorithms are Decision 

Tree Regressor, Extra Trees Regressor, Gradient Boosting Regressor, Light Gradient 

Boosting Machine (LGBM) Regressor, Linear Regression, Random Forest 

Regressor, Ridge, Snap Boosting Machine Regressor, Snap Decision Tree Regressor, 

Snap Random Forest Regressor and Extreme Gradient Boosting (XGB) Regressor. 

Brief explanations of these algorithms are provided as follows: 

• Decision Tree Regressor: Decision tree algorithms construct regression or 

classification models in the form of a tree structure. It separates a dataset into 

smaller subsets while simultaneously an associated decision tree is incrementally 

developed. At the end, a tree which has decision nodes and leaf nodes is built. 

Decision nodes have two or more branches, and these branches represent values 

for the tested attribute. Leaf nodes represent a decision on the numerical target. 

Furthermore, root node is the topmost decision node in a tree which represents 

the best predictor. There is a top down, greedy search through the space of 

possible branches with no backtracking at the core algorithm for building 

decision trees. Decision tree algorithms supports both categorical and numerical 

data (Rathore & Kumar, 2016). 

• Extra Trees Regressor: It is an algorithm which creates several unpruned decision 

trees and makes predictions by averaging the predictions of the decision trees 

(Geurts et al., 2006). 
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• Gradient Boosting Regressor: It is an ensemble learning algorithm which builds a 

final model based on a set of individual models, typically decision trees. The 

gradient is used to minimize the loss function (Sarker, 2021). 

• LGBM Regressor: Light Gradient Boosting Machine is a gradient boosting 

framework that uses tree based learning algorithm (IBM, 2021a). In LGBM, the 

tree grows vertically while it grows horizontally in other tree-based algorithms. 

In other words, the tree grows leaf-wise in LGBM, and it grows level-wise in the 

others. LGBM will choose the leaf in such a way that it has maximum delta loss 

to grow. Leaf-wise algorithm can reduce more loss than level-wise algorithm 

while growing the same leaf. LGBM is a high-speed algorithm, so it is prefixed 

as Light GBM. LGBM can deal with huge size of data, and it takes lower 

memory to run. Moreover, LGBM focuses on the accuracy of results and it also 

supports GPU learning (Ke et al., 2017). 

• Linear Regression: In this algorithm, the dependent variable is continuous, but 

the independent variable can be continuous or discrete. The regression line is in 

the form of linear. In linear regression algorithm, a relationship is created 

between the dependent variable (y) and independent variable or variables (x) by 

using the best fit straight line. This relationship is defined by the following 

equations: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑒 

𝑦 = 𝑎 +  𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑒 

In these equations, a represents the intercept, b represents the slope of the line 

and e represents the error term (Sarker, 2021). 
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• Random Forest Regressor: It is an algorithm which builds multiple decision trees 

in order to produce the mean prediction of each decision tree. This algorithm 

supports both categorical and continuous variables (IBM, 2021a). 

• Ridge: It is an algorithm which is used to analyze datasets which have 

multicollinearity, i.e., the predictors that are correlated with other predictors. This 

algorithm performs L2 regularization which is the squared magnitude of 

coefficients. Therefore, Ridge regression forces the weights to be small, but 

never sets the coefficient value to zero, making it a non-sparse solution (Sarker, 

2021).  

• Snap Boosting Machine Regressor: It is an algorithm which provides a boosting 

machine that uses the IBM Snap ML library which can be used to construct an 

ensemble of decision trees (IBM, 2021a). 

• Snap Decision Tree Regressor: It is an algorithm which provides a decision tree 

that uses the IBM Snap ML library (IBM, 2021a). 

• Snap Random Forest Regressor: It is an algorithm which provides a random 

forest that uses the IBM Snap ML library (IBM, 2021a). 

• XGB Regressor: Extreme Gradient Boosting is a form of gradient boosting 

algorithm. It considers more detailed approximations while deciding the best 

model. By calculating second-order gradients of the loss function, it minimizes 

loss and advanced regularization, which reduces overfitting and improves 

performance and model generalization. XGB is a high speed algorithm and it can 

deal with huge size of data (Sarker, 2021). 

All the available algorithms are selected in order to be considered when the 

experiment is run. AutoAI experiment is configured to select top two performing 
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algorithms to complete. It is limited to two because each algorithm generates four 

pipelines, and more pipelines increase the runtime and use more resources. 

Since the dataset is sufficiently large and there are enough records to cover all 

possible cases, the experiment is adjusted to use 90% of the data as training data and 

10% of the data as holdout data in order to optimize and validate pipelines. The 

reason beyond this splitting operation is to estimate the performance of the machine 

learning model on the new data. 

Furthermore, the number of hyper-parameter optimization iterations to apply to 

pipelines after model selection per algorithm is set to 10, the number of feature 

engineering iterations per algorithm is set to 30 and the number of hyper-parameter 

optimization iterations after feature engineering per algorithm is set to 25 as runtime 

settings. The text feature engineering is also enabled in order to transform columns 

detected as text into vectors to better analyze semantic similarity between strings. In 

this experiment, Watson Machine Learning service of IBM Cloud Pak for Data as a 

Service is used, and the runtime is configured to have 8 CPU and 32GB RAM and to 

consume 20 capacity units per hour.  

Each flow in the Total CPU Consumption AutoAI Experiment is started with 

reading the dataset. Then dataset splitting operation takes place followed by reading 

the training data. Afterwards, preprocessing operation is performed before the model 

selection. Then the model starts to run with all the available algorithms that is chosen 

in the experiment configuration. AutoAI selects two best algorithms to create four 

pipelines for each since it is configured to do so. Finally, optimization and feature 

engineering operations are performed for different pipelines in order to find the best 

pipeline to proceed. 
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The results of AutoAI experiment are displayed on Table 7. It shows the 

automatically generated model pipelines ranked according to the problem 

optimization objective which is RMSE. AutoAI selects two best algorithms as 

LGBM Regressor and XGB Regressor. This situation is reasonable since the dataset 

is quite large, i.e., it includes data from the beginning of 2009 to the end of 2020, and 

both of these two algorithms can deal with huge size of data effectively. 

The RMSE value of the best pipeline is 77,374.265 and it is a quite good 

value even if it seems a big number. RMSE can get all the values in the interval [0, 

∞). The lower the RMSE is better, but it changes with respect to the dataset. RMSE 

is nothing but the standard deviation of the prediction errors and the prediction errors 

are a measure of how far from the regression line data points are. Therefore, RMSE 

is a measure of how spread out these prediction errors are. In this AutoAI 

experiment, the prediction variable is ‘TOTCPUTIME’, and the value of this variable 

varies between 500,000 and 2,606,000, so RMSE value of the best pipeline is 

reasonable and acceptable. The pipeline which uses the LGBM Regressor algorithm 

and enhanced by hyper-parameter optimization (HPO-1) and feature engineering 

(FE) performs the best result based on RMSE value. Pipelines labeled by ‘Pipeline 3’ 

and ‘Pipeline 4’ have the same RMSE value. AutoAI selects the ‘Pipeline 3’ as the 

best performing pipeline since its build time is smaller. ‘Pipeline 3’ is now ready to 

be deployed as a machine learning model. 
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Table 7.  Pipeline Leaderboard of Total CPU Consumption AutoAI Experiment 

Rank Name Algorithm RMSE Enhancements Build Time 

1 Pipeline 3 LGBM 77,374.265 HPO-1, FE 00:00:27 

2 Pipeline 4 LGBM 77,374.265 HPO-1, FE, HPO-2 00:01:16 

3 Pipeline 1 LGBM 78,002.703 None 00:00:01 

4 Pipeline 2 LGBM 78,002.703 HPO-1 00:00:32 

5 Pipeline 7 XGB 79,950.126 HPO-1, FE 00:00:30 

6 Pipeline 8 XGB 79,950.126 HPO-1, FE, HPO-2 00:00:48 

7 Pipeline 5 XGB 80,191.844 None 00:00:01 

8 Pipeline 6 XGB 80,191.844 HPO-1 00:00:15 
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CHAPTER 6 

TESTS AND RESULTS 

 

 

In this thesis, two different machine learning models are trained and deployed 

in order to predict capacity needs of the system by using AutoAI graphical tool of 

Watson Studio. In the first model, transaction counts are predicted by using a time 

series forecast algorithm. Therefore, in order to perform tests, there is only 1 input 

variable for this model, and it is ‘DATE’ variable. In the second and the actual 

model, total CPU consumptions are predicted by using a regression algorithm. 

Therefore, in order to perform tests, there are 4 input variables for this model which 

are ‘DATE’, ‘DATE_TYPE’, ‘AVGRESPTIME’ and ‘TRANCOUNT’. For 

‘TRANCOUNT’ variable, the output of the first model is given as the input for the 

second model during the test phase. By this means, it is aimed to predict two 

unknowns at the same time and to produce more realistic results. 

The models are trained by using a dataset which includes data from the 

beginning of 2009 to the end of 2020. Then, some tests are performed by using 2021 

data in order to see the performance and accuracy of the models. IBM Cloud Pak for 

Data as a Service provides a test interface in order to perform performance and 

accuracy tests. Users can provide input data either as a list or as in JSON (JavaScript 

Object Notation) format.  
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Different tests are performed by using the test interface of the platform. 

Firstly, it is aimed to see the performance and accuracy of the transaction count 

forecasting model for the first 102 weekdays of 2021. This test is performed by using 

data for only the weekdays and the special weekdays because there are drastic 

changes between the weekdays and holidays in terms of both transaction counts and 

CPU consumption values. Another reason is that the transaction count forecasting 

model is trained by using data for only the weekdays and the special weekdays in 

order to focus more on the capacity needs in those days. The test data is prepared in 

JSON format to make predictions. The results of this test are provided in Figure 11. 

The prediction error of future transaction counts is in the range of (-11.63%, 

+16.75%). Actually, most of the errors are in the range of (-10%, +10%). The reason 

beyond this situation is that there are some extraordinary days in which the workload 

and transaction counts take unusual values, so the predictions become less accurate. 

The reason why error percentages take negative and positive values is that the 

predictions are sometimes more than the actual values and sometimes less. In other 

words, there are over predictions and under predictions, so the error values are 

reasonable and acceptable. 
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Figure 11.  Actual vs. predicted transaction count values and prediction errors 
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Secondly, it is aimed to see the performance and accuracy of the total CPU 

consumption model for the first 102 weekdays of 2021. This test is performed by 

using data for only the weekdays and the special weekdays because there are drastic 

changes between the weekdays and holidays in terms of both transaction counts and 

CPU consumption values. Another reason is that the transaction count forecasting 

model is trained by using data for only the weekdays and the special weekdays in 

order to focus more on the capacity needs in those days. The test data is prepared in 

JSON format in such a way that the output of the first model is given as the input for 

the transaction count variable of this model. The results of this test are provided in 

Figure 12. The prediction error of future total CPU consumption values is in the 

range of (-18.32%, +18.65%). Actually, most of the errors are in the range of (-10%, 

+10%). The reason beyond this situation is that there are some extraordinary days in 

which transaction counts and total CPU consumptions take unusual values, so the 

predictions become less accurate. The reason why error percentages take negative 

and positive values is that the predictions are sometimes more than the actual values 

and sometimes less. In other words, there are over predictions and under predictions, 

so the error values are reasonable and acceptable. 
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Figure 12.  Actual vs. predicted total CPU consumption values and prediction errors 
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Lastly, another test is performed in order to check the effect of the 

“AVGRESPTIME” and “DATE_TYPE” variables. It is aimed to see the effect of 

response time in the model since it is examined that it may have some drastic 

changes in busy days although it generally follows a stable trend. It is also aimed to 

see the effect of type of day in the model because the workload and the transaction 

counts generally higher on the special weekdays than the ordinary weekdays. In 

order to observe these effects, a few days are selected randomly and changed their 

‘DATE_TYPE’ and ‘AVGRESPTIME’ values respectively. It is expected that the 

model to perform more CPU estimation on special weekdays or on days in which the 

average response time is higher. The test results have met this expectation. In Table 

8, test results for three different days are provided.  

 

Table 8.  Test Results for the Effects of “AVGRESPTIME” and “DATE_TYPE” 

Variables 

DATE DATE_TYPE TRANCOUNT 

AVGRESPTIME 

(seconds) 

TOTCPUTIME 

(seconds) 

TOTCPUTIME 

Predicted 

(seconds) 

TOTCPUTIME 

Error 

06/01/2021 WS 1,215,987,230 0.0319s 2,214,869.035s 2,139,865.698s -3.386% 

06/01/2021 W 1,215,987,230 0.0319s 2,214,869.035s 2,096,532.785s -5.343% 

06/01/2021 WS 1,215,987,230 0.0255s 2,214,869.035s 2,106,308.965s -4.901% 

07/01/2021 W 1,031,672,230 0.0262s 2,084,582.963s 2,195,265.256s 5.309% 

07/01/2021 WS 1,031,672,230 0.0262s 2,084,582.963s 2,268,745.784s 8.834% 

07/01/2021 W 1,031,672,230 0.0325s 2,084,582.963s 2,221,693.596s 6.577% 

08/01/2021 W 938,080,135 0.0274s 1,937,815.232s 1,862,365.458s -3.894% 

08/01/2021 H 938,080,135 0.0274s 1,937,815.232s 1,625,478.632s -16.118% 

 

For the day dated ‘06/01/2021’ which is a special weekday, so it is labeled by 

‘WS’. There are 1,215,987,230 transaction counts on this day with an average 

response time of 0.0319s and total CPU consumption is 2,214,869.035s. The model 

is predicted total CPU consumption as 2,139,865.698s with a -3.386% error. Then, 

the ‘DATE_TYPE’ variable is changed to ‘W’ to label the day as an ordinary 

weekday in order to see the effect of type of day. In this case, the model is predicted 
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total CPU consumption as 2,096,532.785s with a -5.343% error. The new prediction 

is lower than the actual one and it is the expected result. Afterwards, the average 

response time is decreased to 0.0255s in order to see the effect of response time. In 

this case, the model is predicted total CPU consumption as 2,106,308.965s with a -

4.901% error. The new prediction is lower than the actual one and it is the expected 

result. 

On the other hand, for the day dated ‘07/01/2021’ which is an ordinary 

weekday, so it is labeled by ‘W’. There are 1,031,672,230 transaction counts on this 

day with an average response time of 0.0262s and total CPU consumption is 

2,084,582.963s. The model is predicted total CPU consumption as 2,195,265.256s 

with a 5.309% error. Then, the ‘DATE_TYPE’ variable is changed to ‘WS’ to label 

the day as a special weekday in order to see the effect of type of day. In this case, the 

model is predicted total CPU consumption as 2,268,745.784s with an 8.834% error. 

The new prediction is higher than the actual one and it is the expected result. 

Afterwards, the average response time is increased to 0.0325s in order to see the 

effect of response time. In this case, the model is predicted total CPU consumption as 

2,221,693.596s with a 6.577% error. The new prediction is higher than the actual one 

and it is the expected result. 

Furthermore, for the day dated ‘08/01/2021’ which is an ordinary weekday, 

so it is labeled by ‘W’. There are 938,080,135 transaction counts on this day with an 

average response time of 0.0274s and total CPU consumption is 1,937,815.232s. The 

model is predicted total CPU consumption as 1,862,365.458s with a -3.894% error. 

Then, the ‘DATE_TYPE’ variable is changed to ‘H’ to label the day as a holiday in 

order to see the effect of type of day. In this case, the model is predicted total CPU 
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consumption as 1,625,478.632s with a -16.118% error. The new prediction is 

significantly lower than the actual one and it is the expected result. 

The test results give an opportunity to observe performance and accuracy of 

the models and they also give a chance to make decisions whether the models are 

reliable or not. When the test results are examined, it can be said that the models are 

quite reliable since the error percentages are not high and the results are expected 

when changes take place. 
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CHAPTER 7 

CONCLUSIONS AND FURTHER RESEARCH 

 

 

This thesis aims to design a capacity planning tool for CPU consumption of 

application servers which are running on Z systems by using machine learning 

algorithms. In this thesis, IBM Cloud Pak for Data as a Service is used in order to 

create capacity planning model by using data analysis, data engineering, data 

governance and AI modeling services which are provided by the platform. The 

dataset includes date, type of date, transaction count per day, average response time 

of the application servers per day and total CPU consumptions of the application 

servers per day variables. The dataset covers data from the beginning of 2009 to the 

end of 2020. The data is prepared outside of the platform and imported to the 

platform in order to perform analysis and refinement. After the data refinement step 

is completed, several machine learning model pipelines are built and trained and 

AutoAI selected best pipelines according to the selection criteria. Then the selected 

pipelines are deployed as a machine learning models. 

In this thesis, two different machine learning models are trained in order to 

predict capacity needs of the system. In the first model, it is aimed to predict 

transaction count by using a time series forecast algorithm. In this model, the 

pipeline which uses the Ensembler algorithm performed the best result based on 

SMAPE value, which was 4.661%. In the second and the actual model, it is aimed to 

predict total CPU consumption by using a regression algorithm. The output of the 

first model is given as an input for the second model in order to predict two 

unknowns at the same time and to produce more realistic results. In this model, the 
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pipeline which uses the LGBM Regressor algorithm performed the best result based 

on RMSE value, which was 77,374.265 and it was a quite good value even if it 

seemed a big number. In this thesis, one optimization metric is used for each model. 

In the future study, different optimization metrics can be used together to make 

comparisons between the algorithms and the models. This will give an opportunity to 

have more precise results. 

Some accuracy and performance tests are also performed by using the test 

interface of the platform. In the first test, it is aimed to see the performance and 

accuracy of the transaction count forecasting model for the first 102 weekdays of 

2021. The prediction error of future transaction counts was in the range of (-11.63%, 

+16.75%). Secondly, another test is performed to see the performance and accuracy 

of the total CPU consumption model for the first 102 weekdays of 2021. The 

prediction error of future total CPU consumption values was in the range of (-

18.32%, +18.65%). Actually, most of these two errors were in the range of (-10%, 

+10%). The reason beyond this situation was that there were some extraordinary 

days in which transaction counts and total CPU consumptions took unusual values, 

so the predictions became less accurate. In the final test, it is aimed to see the effect 

of the average response time and type of date variables. It is aimed to see the effect 

of response time in the model since it is examined that it may have some drastic 

changes in busy days although it generally follows a stable trend. It is also aimed to 

see the effect of type of day in the model because the workload and the transaction 

counts generally higher on the special weekdays than the ordinary weekdays. These 

two effects are observed at the end of the test and the results are met the 

expectations. The test results give an opportunity to observe performance and 
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accuracy of the models and they also give a chance to say that these models are 

reliable. Therefore, the results obtained in this thesis are promising. 

In this thesis, a capacity planning tool for CPU consumption of application 

servers which are running on Z systems is designed. The tool is designed to make 

predictions for the total workload of the bank. There are several channels of the 

banks which create the workload such as mobile banking, branches, Point of Sale 

(POS) transactions etc. Every channel has its own characteristics and workload. For 

example, the usage of mobile banking channel increases significantly with the 

widespread use of mobile devices. Therefore, workload of the mobile banking 

channel increases as well, and it brings a necessity to monitor this channel closely. In 

the future study, workload separation based on channels can be considered in order 

to make predictions for a specific channel. Resource and capacity management can 

be performed by using these predictions and so by following the customer trends. 

When predictions are performed on a channel basis, proactive capacity management 

techniques can be applied easily. 
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