
 

 

 

 

A DEEP LEARNING-BASED  

EXTRACTIVE TEXT SUMMARIZATION SYSTEM 

FOR TURKISH NEWS ARTICLES 

 

 

 

 

 

 

ÖZCAN GÜNDEŞ 

 

 

 

 

 

 

BOĞAZİÇİ UNIVERSITY 

2020 

  



 

 

 

A DEEP LEARNING-BASED  

EXTRACTIVE TEXT SUMMARIZATION SYSTEM 

FOR TURKISH NEWS ARTICLES 

 

 

Thesis submitted to the 

Institute for Graduate Studies in Social Sciences 

in partial fulfillment of the requirements for the degree of 

 

 

Master of Arts 

in 

Management Information System 

 

 

by 

Özcan Gündeş 

 

 

Boğaziçi University 

2020 

 





 

iv 

ABSTRACT 

A Deep Learning-Based  

Extractive Text Summarization System  

for Turkish News Articles 

 

The goal of this study is to develop an automated extractive summarization system for 

Turkish news using pre-trained language models. Pre-trained language models have 

been applied to wide range Natural Language Processing tasks and achieve state of the 

art performance results. In this thesis, pre-trained language models for Turkish are 

applied on extractive summarization task. The proposed model has a pre-trained 

language model and on top of it, Transformer layers are added to capture document level 

features and semantic relationships between the sentences in the news articles. Then, 

these sentences are scored with sigmoid function, which outputs a real value between 0 

and 1. To train this model, 2076 news are collected from well-known Turkish news 

website. After the data collection, each sentence in the articles is labelled as 0 or 1 with a 

heuristic algorithm. By using these labels, an extractive model is trained. In the test time, 

Top-5 scoring sentences are combined to generate final summaries. Also, to investigate 

the effects of hyperparameters, 241 different models, which have different architecture 

and hyperparameter sets, are run. The best one has achieved 38.38 Rouge-1 F score, 26.8 

Rouge-2 F score and 38.04 Rouge-L F score. These scores are promising since they are 

significantly greater than LEAD-5 baseline, which has 37.49, 26.4 and 37.12 Rouge F 

scores. For this study, LEAD-5 is very strong baseline since the most significant 

sentences are placed at the beginning of the news to capture the readers’ attention. 

Therefore, the proposed model shows a good performance for Turkish news dataset. 
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ÖZET 

Türkçe Haber Metinleri için Derin Öğrenme Tabanlı  

Çıkarıcı Metin Özetleme Sistemi 

 

Bu çalışmanın amacı, Türkçe haberler için önceden eğitilmiş dil modellerini kullanarak 

otomatik bir çıkarıcı özetleme sistemi geliştirmektir. Önceden eğitilmiş dil modelleri, 

birçok Doğal Dil İşleme görevinde kullanılmış ve yüksek performans sonuçları 

başarmıştır. Bu çalışmada, çıkarıcı özetleme görevi için derin öğrenme metotları ile 

önceden eğitilmiş Türkçe dil modelleri kullanılmıştır. Önerilen mimaride önceden 

eğitilmiş dil modeli üzerine, haberdeki belge düzeyindeki özellikleri ve cümleler 

arasındaki anlamsal ilişkileri yakalamak için fazladan Transformer katmanları 

eklenmiştir. Son olarak, haberde yer alan cümleler 0 ile 1 arasında bir değer üreten 

sigmoid fonksiyonu ile skorlanmıştır. Bu modeli eğitmek için, bilinen bir Türkçe haber 

sitesinden 2076 haber metni ilgili özetleriyle birlikte toplanmıştır. Veriler toplandıktan 

sonra, makalelerdeki her cümle, sezgisel bir algoritma ile 0 veya 1 olarak etiketlenmiş ve 

bu etiketler kullanılarak, çıkarıcı özetleme sistemi eğitilmiştir. Modeli test ederken ise 

model tarafından en yüksek skoru alan 5 cümle ile haberin özeti üretilmiştir. Ayrıca 

hiper parametrelerin etkilerini araştırmak amacıyla farklı hiper parametre setlerine sahip 

241 farklı model çalıştırılmıştır. En iyi model 38.38 Rouge-1 F skoru, 26.8 Rouge-2 F 

skoru ve 38.04 Rouge-L F skoruna ulaşmıştır. Bu skorlar, 37.49, 26.4 ve 37.12 Rouge F 

skorlarına sahip LEAD-5 bazından önemli ölçüde daha yüksek oldukları için umut 

vericidir. Bu çalışmada LEAD-5, okuyucuların dikkatini çekmek amacıyla en önemli 

cümleler haberlerin başına yerleştirildiği için çok güçlü bir baz oluşturuyor. Dolayısıyla, 

önerilen model, Türkçe haber veri seti için oldukça iyi bir performans göstermektedir. 
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CHAPTER 1 

INTRODUCTION 

 

With the internet being an integral part of daily life, people are exposed to a huge 

amount of written information. A large amount of textual data is produced at any time 

through news sites, social media platforms and blog posts. Hence, text summarization 

can provide a more efficient way to reach significant information that appears in huge 

amounts of textual data. Executive summaries for business reports, abstracts of academic 

papers and online newsletters about specific topics are some examples for potential text 

summarization applications. However, summarizing these textual data manually takes a 

lot of time.  

With the progress of computationally capable hardware and deep learning 

techniques, automated text summarization systems are receiving much attention by 

natural language processing (NLP) researchers. These systems aim to generate shorter 

versions of the original document while preserving its salient and significant information 

(Cheng and Lapata, 2016). There are two main techniques for summarization tasks: 

extractive and abstractive. Extractive summarization systems generate summaries by 

copying and concatenating the most important sentences from the original documents 

(See et al., 2017), whereas abstractive summarization systems aim to generate novel 

words and phrases not appeared in the original documents with the help of text rewriting 

operations such as substitution, reordering (Narayan et al., 2018). Human written 

summaries are usually produced as abstractive because they are rewritten by preserving 

main ideas in the original document. Extractive approach is easier and usually produces 

grammatically and semantically correct sentences by copying sentences directly from 
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the original document (Nallapati et al., 2016a; See et al., 2017; Dong et al., 2018). In 

addition, the extractive approach computes faster (Zhong et al., 2020) since it does not 

perform language generation or rewriting operations. Because of these advantages of 

extractive approach, most of the previous works have focused on this area. 

In the previous works, extractive summarization models generally consist of 

three main steps. These are representing sentences numerically (sentence 

representations), scoring sentences one by one based on their importance in the original 

document (sentence scoring) and finally, selecting top scorer sentences to generate final 

summary (sentence selection). With the progress of neural networks and deep learning 

techniques, modern extractive approaches utilize neural network architectures due to 

their ability to learn continuous feature spaces of inputs in order to learn sentence 

representations and their relationships with each other. In the training phase, these neural 

network based models take the sentence level features of the original document as input 

and as a target, they use binary labels for each sentence to indicate whether they should 

be included in the final summary or not. In other words, the extractive summarization 

task is treated as a sequence labelling problem with a binary classification. For example, 

Cheng and Lapata (2016) obtained sentence representations with Convolutional Neural 

Networks (CNN) and on top of it, Long Short-Term Memory (LSTM) based Recurrent 

Neural Network (RNN) was utilized to score and extract sentences. Similarly, Nallapati 

et al. (2016a) run 2-layer Gated Recurrent Unit (GRU) based RNN to generate final 

summaries. However, Vaswani et al. (2017) showed that Transformer networks perform 

better than RNN and CNN in many NLP tasks since Transformers can capture longer 

term dependencies and run in parallel. By training large Transformer networks with 

huge dataset, it is possible to learn complex linguistic features and this can boost the 
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performance in NLP tasks. For example, Devlin et al. (2018) offered Bidirectional 

Encoder Representations from Transformers (BERT) pre-trained language model. BERT 

is a masked language model (MLM) and pre-trained with enormous English corpora and 

leads to state-of-the-art performance results on 11 NLP tasks such as machine 

translation, question answering and text classification. In the training, authors simply 

mask 15% of the input tokens and then predict those masked tokens with the aim of 

learning contextual token representations. In addition to BERT, Clark et al. (2020) 

proposed the ELECTRA language model. Unlike BERT, ELECTRA is a Replaced 

Token Detection (RTD) language model. The authors stated that masking only a small 

portion of the input tokens reduces the amount learned from each sentence and leads to 

the data inefficiency. Therefore, ELECTRA replaces input tokens with incorrect but 

reasonable fake ones and then tries to predict and determine which tokens have been 

replaced with fake ones or remained the same. With this way, they believe that it is 

possible to learn token representations more effectively compared to BERT and as a 

result, ELECTRA achieves better performance results.  

After these highly capable pre-trained language models’ development, the 

researchers have investigated the effects of these models on extractive summarization. 

Best performing models for this task are based on these Transformer based pre-trained 

language models like BERT (Bae et al., 2019; Zhang et al., 2019; Zhong et al., 2019; 

Liu and Lapata, 2019; Zhong et al., 2020). For example, Liu and Lapata (2019) fine-

tuned the BERT model with extra Transformer layers to generate final summaries. To 

get sentence representations in the original document, they use special token 

representation, which is [CLS], for each sentence. It is possible to represent sentences 
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with different representation approaches such as taking the average of BERT outputs of 

all tokens in each sentence, called as mean pooling.  

The NLP community showed great interest in broadening these pre-trained 

models’ limits. For example, Schweter (2020) trained both BERT and ELECTRA 

architectures, called BERTurk and ELECTRA respectively, with Turkish corpus and 

published these models as open source. BERTurk model was trained with two different 

vocabulary sizes, 32K and 128K, which are referred as BERTurk base (32K) and 

BERTurk base (128K) in this thesis, respectively. The vocabulary size shows the 

number of different tokens used in the pre-training step. 

The study conducted in this thesis aims to perform extractive summarization for 

Turkish news based on pre-trained language models. The main research question is 

“how automated extractive summarization can be made for Turkish news?”. In this 

context, the main interests of this study are as follows: 

• Investigating the effects of the type of pre-trained language models (MLM 

with BERTurk and RTD with ELECTRA) on performance results 

• Understanding the effect of vocabulary size on performance by utilizing and 

comparing BERTurk base (32K) and BERTurk base (128K) models 

• Observing the effects of different sentence representation approaches by 

proposing new approach 

• Investigating the effect of architectural simplicity/complexity on performance 

results by putting extra single linear layer and 1, 2 or 3 Transformer layers on 

top of pre-trained language models 
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Additionally, the great majority of the summarization datasets in the literature 

are in English and there is no commonly used Turkish summarization dataset. In this 

study, Turkish news dataset is proposed for the interested researchers with 2076 news 

articles with their respective human written summaries.  

In this chapter, the main purpose of this research has been introduced. Also, 

problem definition, possible solution approaches and contributions made by this study 

have been explained. To mention the chapters that will be covered in the rest of this 

thesis, Chapter 2 mentions the previous works related to label extraction methods, text 

representations with pre-trained word embeddings and language models, deep learning 

methods and extractive summarization models which are the main subjects investigated 

in this study. Chapter 3 shows and details the methodological steps followed in this 

study, while Chapter 4 gives the details of the conducted experiments and the 

performance results obtained in these experiments. Chapter 5 presents the details of 

conclusion and managerial implications of this thesis topic. Finally, Chapter 7 offers 

further research opportunities to point out the possible improvement areas in this study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The goal of this study is to develop a deep learning based automated extractive text 

summarization system for Turkish news. In this context, the dataset which consists of 

the main article and related human written (abstractive) summary is collected. To 

achieve this system, firstly, the sentences in the main article should be labeled based on 

whether they should be included in the extractive summary, or not by considering their 

relationships with the human written abstractive summary. This step is fulfilled with 

label extraction methods. Then, both the main articles and their human written 

summaries should be converted into numerical representations so that they can be input 

for the deep learning models. Finally, this input is fed to the deep learning algorithms to 

train models that output the predicted extractive summaries. For this process, different 

label extraction methods, text representation methods and deep learning methods for the 

extractive summarization systems are investigated. In this chapter, previous works in the 

literature for these topics are mentioned. 

 

2.1  Label extraction methods 

Most of the summarization datasets contain abstractive summaries only and hence do 

not contain the sentence labels which indicate whether the sentences in the original 

article is included in the extractive summary or not. Therefore, the sentence label 

extraction from the abstractive summaries is needed to reach ground truth binary labels 

and train the extractive summarization systems which can be treated as a sequence 

classification problem. In the mentioned problem, each sentence in the original article is 
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visited sequentially, and a binary decision is made if the visited sentence should be 

included in the summary or not, by considering previous decisions. 

In the literature, there are some commonly used approaches to this problem. For 

example, Cheng and Lapata (2016) adopted a rule-based method whether the sentence 

should be labelled as 1, which means the sentence must be in the summary or as 0, 

otherwise. They trained a separate supervised classifier with 9000 articles by manually 

labelling the sentences in each article. The classifier was trained using the following 

features; the sentence position in the article, the unigram and bigram overlaps between 

the sentence and the related abstractive summary and lastly, the number of entities 

appeared in the sentence and the summary. They labelled each sentence individually in 

the articles to reach ground truth labels with the help of this classifier. Even though this 

method returns more accurate gold extractive labels, it leads to additional annotation 

costs (Nallapati et al., 2016a). Moreover, since this method labels the sentences 

individually, it often generates too many positive labels and this causes the model to 

overfit the data (Narayan et al., 2018). 

Another widely used approach for the label extraction is a greedy algorithm 

(Nallapati et al., 2016a). In this algorithm, the main idea is that the selected sentences in 

articles should maximize the ROUGE (Lin, 2004) score with respect to the gold 

summaries. To reach the binary sentence labels, the authors added one sentence 

incrementally at a time to the previously selected sentences until the ROUGE score 

between the generated subset of the selected sentences (oracle summary) and the gold 

summary does not improve. With this way, the selected sentences are labelled as 1 and 

the other sentences in articles are labelled as 0. Since the oracle summaries include less 

sentences, the process does not require additional labelling effort and the method is 
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computationally cheaper than the Cheng and Lapata (2016) method, it was applied in 

most of the best performed studies (Liu and Lapata, 2019; Zhong et al., 2020; Guo et al., 

2020). 

As a widely common evaluation metric of summarization systems, ROUGE (Lin, 

2004) is a recall-oriented performance evaluation metric which is widely used in natural 

language processing tasks, like automatic summarization and machine translation. Since 

different tasks require different evaluation approaches, ROUGE metric has different 

settings considering the overlapping of n-grams or subsequence between the text output 

and the reference text. ROUGE-N Recall is the number of overlapping n-gram words 

over the total number of n-grams in reference summary (Equation 2.1). On the other 

hand, ROUGE-N Precision is the number of overlapping n-gram words over the total 

number of n-grams in predicted summary (Equation 2.2). Finally, ROUGE-N F score is 

the harmonic mean of recall and precision scores (Equation 2.3).  

 

𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙 

=  
# 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦
 

 

(2.1) 

𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=  
# 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑢𝑚𝑚𝑎𝑟𝑦
 

 

(2.2) 

𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝐹 𝑆𝑐𝑜𝑟𝑒 

=  
2 ∗ (𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙) ∗ (𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙) + (𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

(2.3) 
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To illustrate the ROUGE calculation, imagine that the reference summary (S1) is 

“The doctor arrived late because of the traffic” and the model predicts the output 

summary (S2) as “The doctor arrived late due to traffic”. When N parameter is chosen 

as 2, the 2-grams (bi-grams) in these sentences are obtained as follows: 

S1 = [The, doctor], [doctor, arrived], [arrived, late], [late, because], [because, of],  

[of, the], [the, traffic] – 7 bi-grams 

S2 = [The, doctor], [doctor, arrived], [arrived, late], [late, due], [due, to], [to, traffic]  

– 6 bi-grams 

For their intersection, 3 bi-grams are common for both summaries, which are 

“[The, doctor], [doctor, arrived], [arrived, late]”. Finally, ROUGE-2 scores between 

these two texts are calculated as: 

• ROUGE-2 Recall = 3/7 = 0.43 

• ROUGE-2 Precision = 3/6 = 0.5 

• ROUGE-2 F score = (2*0.43*0.5) / (0.43+0.5) = 0.46 

In order to measure fluency between human written and automatically generated 

summaries, ROUGE-1 and ROUGE-2 scores are used for specific values of n = 1 and n 

= 2, respectively. Besides, ROUGE-L score is calculated to measure the longest 

common subsequence overlaps between reference and predicted summary, where n = L. 

It is applied for assessing informativeness of the generated summaries with respect to 

human written summaries (Liu and Lapata, 2019). 

In this study, ROUGE-1, ROUGE-2, and ROUGE-L scores are applied for the 

performance evaluation of extractive summarization models. Since it looks for exact n-

gram matching between predicted summary and human written summary, it may lead to 
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low scores even if the compared summaries have the semantically same meaning. But it 

is still very useful for machine translation and summarization tasks. Lin (2004) proved 

that the ROUGE scores are highly correlated with the human judgments, especially for 

single document summarization systems like this study. 

 

2.2  Text representation methods 

Natural Language Processing (NLP) aims to give computers reading, understanding, and 

generating ability for human languages. However, humans use words and sentences for 

communication, whereas computers and machine learning models are not able to process 

textual input directly. They can only process numerical inputs. Therefore, the textual 

inputs must be converted into numerical representations so that the machine learning 

models can interpret and learn the linguistic structures. In the literature, the mapping of 

each word or phrase in the textual data to the vector of real numbers was named as 

embedding. Embedding and representation terms are used interchangeably in this study. 

In the aim of creating machine learning models using textual data, texts like characters, 

words, or sentences should be first converted into numerical representations with the 

help of these embedding techniques. The selection of the embedding techniques may 

have an effect on the applied machine learning algorithms’ performance for downstream 

tasks such as text classification, text summarization and machine translation. In the 

literature, plenty of methods have been proposed so far. In this section, these methods 

and their advantages and disadvantages are mentioned.  
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2.2.1  Bag-of-words (BOW) Approach 

BOW is one of the most commonly used embedding methods. In this method, each 

document is represented by the importance of the words in the documents. To determine 

and measure the importance of these words, the most widely preferred metric is the term 

frequency-inverse document frequency (TF-IDF) score. The term frequency reveals the 

number of times which a term occured in a given document; while, inverse document 

frequency is used to understand how much information a word provides by revealing the 

number of documents the word appears in. Moreover, the inverse document frequency 

measures the rareness of the given term or word across all documents. TF-IDF scores are 

used widely in tasks like search engine ranking, stop-words filtering and text 

summarization. The calculation of TF-IDF scores is revealed in Equation 2.4. 

𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ log(
𝑁

𝑑𝑓𝑖
)  (2.4) 

𝑤𝑖,𝑗  =  𝑡𝑓 − 𝑖𝑑𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑡𝑜𝑘𝑒𝑛 𝑖 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗  

𝑡𝑓𝑖,𝑗   =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛 𝑖 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗  

𝑑𝑓𝑖  = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡𝑜𝑘𝑒𝑛 𝑖  

𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠  

 

The BoW approach is simple to understand, implement and it achieves great 

success in many machine learning tasks. However, it leads to a high dimensional feature 

vector due to the large size of vocabulary. In other words, the size of the document 

vectors is too large because each document is represented with the number of the times 

the word occurs in it and the major portion of the words in the vocabulary are not 

occurred in the related documents. Therefore, each document vector contains lots of zero 
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values for the words in the vocabulary, which do not appear in the related document. As 

a result of this, the sparsity problem occurs in BOW methods, especially for large 

corpora. Also, these methods suffer from ignoring the context, missing the semantic 

meaning of the words because they do not consider the positions of the words and their 

neighbors in the documents. To capture semantic meaning of the words and overcome 

the sparsity problem, semi-supervised techniques for learning word representations by 

using very large unlabeled data have been studied. With this way, it is possible to obtain 

the dense, continuous and lower-dimensional vector representations in order to acquire 

similar vectors for the semantically similar words (Guo et al., 2014). 

 

2.2.2  Pre-trained word embedding models 

With the progress in machine learning and computational capability of computers, it 

becomes possible to utilize neural networks to obtain word embeddings. Mikolov et al. 

(2013) proposed the Word2Vec technique which was based on one hidden layer simple 

neural network. With the publication of this study, pre-trained word embedding models 

gained popularity. In addition, different pre-trained word embedding models like GloVe 

(Pennington et al., 2014) and fastText (Bojanowski et al., 2017) have been proposed. 

As an input, Word2Vec (Mikolov et al., 2013) takes a large text corpus. Due to 

its semi-supervised nature, it is not required in any labelling process. After taking the 

input, the model creates a vocabulary which consists of all words in the corpus and 

represents each word with one hot encoded vector which has the value 1 for the related 

word index and 0 for the other words. After that step, the center words are paired with 

their neighbors in the predetermined maximum distance n and so, window size is equal 

to 2n+1. Therefore, there are 2n neighbors for each center word. This is the automated 
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labelling process for Word2Vec. Subsequent to this labelling process, the authors 

proposed two algorithms which are continuous bag-of-words (CBOW) and Skip Gram. 

By using word-neighbor pairs, the CBOW uses the context words (neighbors) to predict 

the center word; whereas, Skip Gram predicts the context words (neighbors) by using 

the center word. The representation of these algorithms with maximum distance equals 

to 2 and window size 2n+1 equals to 5 can be seen in Figure 1. In the training of this 

single layer neural network, the size of the hidden layer is the dimension of final word 

embeddings and it is determined as a hyperparameter. 

Each word is represented with two vectors, one of them is obtained when it is a 

context word and the second one is obtained when it is a center word. After the training 

process ends, the final hidden layer weights corresponding to each word's context and 

center word representations is averaged and used as its final vector representation. 

 

Figure 1.  Word2Vec algorithms to learn word representations (Mikolov et al., 2013) 
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 However, Word2Vec does not consider the co-occurrence counts of these word-

neighbor pairs in the corpus. At this point, Pennington et al. (2014) proposed the GloVe 

model by suggesting that the co-occurrence probabilities can encode meaning of the 

components. This method operates by calculating the co-occurrence count matrix. In this 

matrix, each row represents the center word, and each column represents the context 

words (neighbors) that the center word appeared together with. The matrix values state 

the frequency of the center word with the neighbors in the corpus. GloVe predicts the 

surrounding word which has the maximum probability among the context words given 

the center word, by using the log probability of co-occurrence counts to obtain word 

embeddings. 

 Both Word2Vec and GloVe have the pre-trained dense and continuous word 

embeddings, rather than sparse representations as it is seen from Figure 2. In addition, 

with these methods, the words which are used in the similar contexts have the similar 

vector representations. Hence, the semantic relationships as well as syntactic similarities 

can be captured. For example, the distance between the word vectors of “King” and 

“Man” is quite similar to the distance between word vectors of “Queen” and “Woman” 

in the vector space. 

 

Figure 2.  Visualization of sparse and dense representations 
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 These approaches are promising and produce good performance results in most 

of the NLP tasks such as machine translation, text summarization and text classification. 

Nevertheless, the rare or misspelled words and the words which are not in the training 

corpus cannot be represented if that word is not in the training corpus and this leads to 

out-of-vocabulary (OOV) problems. In other words, when a word which may be new, 

rare or misspelled from the perspective of the training corpus, is encountered in the 

inference time, it does not have any proper vector embedding. To overcome this OOV 

problem, the character-based n-gram level representations were proposed. One of the 

most popular character based embedding methods was proposed by Bojanowski et al. 

(2017) and published as an open source library called fastText. FastText has pre-trained 

word embeddings in more than 100 languages. Similar to Word2Vec, fastText also has a 

simple neural network and its hidden layer parameters are used to represent words or 

sentences. But the main difference of fastText from Word2Vec and GloVe, is its 

character level architecture. With the help of this character level nature, each word or 

phrase can be represented as n-grams. For example, the word “simple” is divided into 3-

gram level as “<si”, “sim”, “imp”, “mpl”, “ple” and “le>” tokens. With this way, the 

words, which are not included in the training data but encountered in the inference time, 

can have the proper vector embeddings and the risk of occurring OOV problem is highly 

minimized. 

 

2.2.3  Pre-trained language models 

Even though neural based word embedding methods like Word2Vec, GloVe and 

fastText have promising performance results in NLP tasks, they do not consider the 

word orders and positions in the text to obtain the embeddings, also, they suffer from the 
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non-contextuality. The non-contextuality problem leads to the same vector 

representation for polysemic words although they have different meanings based on the 

context. For example, “I have found a solution for the problem.” and “Heat the solution 

until it becomes clear.” sentences have word "solution" and they have the same vectorial 

representation, which includes both meanings in the related sentences of the training 

data, even though they are semantically different. 

 More advanced (and deeper) neural network architectures that take context of the 

words into account can deal with this polysemy and non-contextuality problem and 

hence it can be possible to obtain contextualized word representations. However, 

training this deeper and larger networks would be costly and require huge text corpora. 

Many studies have focused on these drawbacks and offered pre-trained language models 

which are trained with huge corpora and hardware. Pre-trained language models such as 

ELMO (Peters et al., 2018), BERT (Devlin et al. 2018) and ELECTRA (Clark et al., 

2020), can be a strong alternative to get word embeddings by overcoming all previously 

mentioned problems of sparsity, inability to capture semantic relationship, OOV and 

non-contextuality. 

 As a definition, language modelling is the task of assigning probability to 

sequences by assigning a probability to each token (characters, subwords or words) in a 

related sequence with respect to the previous tokens (Goldberg, 2017). In other words, 

language models are trained with the aim of predicting the next word given a sequence 

of previous words. The common applications of language models are text generation, 

machine translation and spelling correction. Since language models consider previous 

tokens to determine the next token’s probability, they are unidirectional, which is left to 

right, inherently. However, it is important to learn from both directions to obtain 
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contextual word embeddings. For this purpose, Peters et al. (2018) published ELMO 

(Embeddings from Language Models). ELMO utilizes 2 bidirectional (both left to right 

and right to left) LSTM (long short-term memory) architectures to reach contextual 

word representations. LSTM (Hochreiter and Schmidhuber, 1997) is the special kind of 

recurrent neural network (RNN). The main advantages of LSTM over standard RNN are 

its ability to learn long-term dependencies, which is important to remember the 

previously seen important words and to forget the insignificant ones to process the last 

ones for the long texts, and to overcome vanishing gradient problem, which occurs in the 

backpropagation step to update model parameters by calculating gradients in standard 

RNNs for the long texts. The deep biLSTM layers allow ELMO to learn the contextual 

meaning of the words in the higher layers and syntactic relationships in the lower layers. 

In addition to LSTM layers, ELMO utilizes character level convolutions rather than 

word level training to overcome OOV problems. As a result, ELMO is trained for 10 

epochs on 1B Word Benchmark dataset (Chelba et al., 2014) with 93.6 million 

parameters where the hidden size of biLSTM modules are 4096 and the dimension of the 

final embeddings is 512. 

Although the specialized RNN network architectures like LSTMs and GRUs 

(Gated Recurrent Units) (Cho et al., 2014) proves their effectiveness over the 

performance metrics of many NLP tasks, they suffer from the inability to parallelize. 

This inability leads to huge memory limitations, computational complexity, and training 

time with a large text corpus. In 2017, Vaswani et al. (2017) proposed a new network 

architecture called Transformers and they achieved great results in machine translation 

and constituency parsing with smaller training costs. Transformers are more 

parallelizable than LSTMs and require significantly less training time and also, they can 
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handle long range dependencies easily like LSTMs. The main idea behind them is to 

handle input and output dependencies with attention and recurrence. The Transformer’s 

architecture (Vaswani et al., 2017) can be seen in Figure 3. The architecture seen on the 

left half of Figure 3 is the encoder of the Transformer and the right half is the decoder 

part. The number of encoder and decoder units in one Transformer block is the 

hyperparameter and in Vaswani et al. (2017), the number of encoder and decoder units 

have been chosen as 6. Each encoder is identical and stacked on top of the previous one. 

Similarly, each decoder is identical to other decoders and stacked on top of previous 

ones. As a working principle, word embeddings and positions of the words in the input 

sequence are passed to the first encoder. With the help of multi-head attention and feed 

forward structures, they are transformed and moved forward to the next encoder. Then, 

the last encoder’s output is passed to all decoders’ multi-head attention parts. Multi-head 

attention refers to the computation of multiple self-attention in parallel. Self-attention, 

also known as intra attention, is the mechanism of relating different positions in a single 

sequence to be able to compute a representation of the whole sequence. These relations 

are calculated with scaled dot products between the words in the sequences in (Vaswani 

et al., 2017). 
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Figure 3.  Transformer model’s architecture (Vaswani et al., 2017) 

 

 With the invention of Transformers, NLP studies accelerated and lots of state of 

the art (SoTA) performance results were achieved with the models that incorporate 

Transformers in most NLP tasks. One of the most promising models for the language 

modeling task is the BERT (Devlin et al., 2018). BERT, which stands for Bidirectional 

Encoder Representations from Transformers, is also bidirectional like ELMO as the 

name implies. But unlike ELMO, it utilizes Transformer networks instead of LSTMs 

and is trained with the subword level tokens rather than character level. For input 

representation, BERT uses token, segment and position embeddings of the related token 

and represent this token by summing up these 3 types of embeddings as seen in Figure 4. 
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This representation can present both a single sentence (in this case, each token’s 

segment embeddings are the same) and a pair of sentences (in this case, for the tokens 

which belong to different sentences, they have different types of segment embeddings as 

seen in Figure 4) such as question-answers, and machine translation from one language 

to another. In this architecture, the first token of every sequence is [CLS] which is the 

special classification token. [CLS] token can be used as the aggregate sequence 

representation for classification tasks since every token in the sequence is related with 

different positions due to self-attention structure in the Transformer blocks. Also, [SEP] 

token is a special token used as a separator token (e.g. separating questions with their 

answers). 

 

 

Figure 4.  BERT input representations (Devlin et al., 2018) 

 

 In the pre-training phase, the input representations of the tokens are passed into 

the bidirectional Transformer encoder blocks. During the training, authors simply mask 

15% of the input and then predict those masked tokens similar to the language 

modelling. Therefore, this way of approaching to solve the language modelling task is 

called masked language modelling (MLM). For the pre-training corpus, the English 

model was trained with the BooksCorpus (Zhu et al., 2015), which has 800 million 
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words, and English Wikipedia, which has 2,500 million words. Authors published 2 

trained BERT models, Bert-base and Bert-large. In the base model of BERT, there are 

12 layers with 768 hidden sizes, 12 self-attention heads and totally 110 million 

parameters, whereas in the large model, there are 24 layers with 1024 hidden sizes, 16 

self-attention heads and totally 340 million parameters. Vocabulary size which is the 

number of subwords in the training corpus is around 30K for both Bert-base and Bert-

large models. To fine-tune these BERT models for the downstream NLP tasks such as 

text classification, question answering and part-of-speech (POS) tagging, the only 

requirement is the labelled dataset for these tasks. Fine-tuning BERT with the task 

related datasets leads to very high performance results according to the study. Therefore, 

fine-tuning the BERT and obtaining the sentence and token representations by using the 

BERT model as the textual feature extractor is quite common in the previous NLP 

studies. The pre-training and fine-tuning for classification task procedures of the BERT 

are shown in Figure 5. For example, for sentiment analysis task, the input text and 

related sentiment were fed into the BERT model and [CLS] token representations were 

used to reach the sentence embedding. By using a single linear classification layer over 

these [CLS] representations, the model can be fine-tuned where the corresponding 

model parameters are updated. When fine-tuning the BERT for a specific task, 

parameters in BERT are jointly fine-tuned/updated with additional task specific 

parameters, unlike ELMo, whose parameters are usually fixed and only the task specific 

parameters are learned (Liu and Lapata, 2019). 
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Figure 5.  Pre-training (left) and fine-tuning (right) procedures of BERT 

 

 Even though the BERT model has become one of the major breakthroughs in 

NLP research, there are some known limitations. According to the Devlin et al. (2018), 

their BERT model is creating a discord between pre-training and fine-tuning because 

[MASK] tokens are never seen during the fine-tuning phase. These tokens are utilized 

only in the training time to train the language model. In addition to this mismatch, 

masked language modelling in BERT has been masking only 15% of tokens in each 

sentence and this reduced the amount learned from each sentence leading to the data 

inefficiency. To address these problems, Clark et al. (2020) presented the ELECTRA, 

which stands for Efficiently Learning and Encoder that Classifies Token Replacements 

Accurately, and as its name implies, it uses a different approach to pre-train language 

models with the aim of providing the benefits of BERT in a more data efficient manner. 

Unlike BERT, ELECTRA uses replaced token detection (RTD) instead of MLM. The 

RTD trains a bidirectional model like MLM but learns from all input positions. To 

accomplish this, instead of replacing tokens with masking them as in BERT, 
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ELECTRA’s generator model replaces input tokens with incorrect but reasonable fake 

ones via its small language model. Then, the discriminator model tries to predict and 

determine which tokens in the original sequence have been replaced with fake ones or 

remained the same. The simplified version of ELECTRA’s working principle is shown 

at Figure 6. Since binary classification is performed over every input token rather than 

only 15% of all input tokens as in BERT, ELECTRA can achieve the same performance 

by using fewer examples. The main reason for this efficiency increase is that the 

ELECTRA takes more signal per example (Clark et al., 2020). After the training phase, 

the generator part is dropped, and the discriminator model is ready to use for fine-tuning. 

The base model of ELECTRA has the same number of layers (12), hidden size (768) and 

parameters (110 million) with the BERT base model. But ELECTRA base models’ 

performance scores are higher than the BERT large model, as shown in the ELECTRA 

study, (Clark et al., 2020). This proves their efficiency claims. 

 

Figure 6.  The overview of replaced token detection approach (Clark et al., 2020) 

  

 Both BERT (Devlin et al., 2018) and ELECTRA (Clark et al., 2020) language 

models were trained with English text corpus. Since their source codes are open, the 

NLP community trained these models for different languages. For example, Schweter 

(2020) presented the BERT and ELECTRA models for Turkish, called BERTurk and 
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ELECTRA, respectively. These models have the same architecture with original ones 

and the only difference from them is the language and size of the training corpora. Both 

models were trained with 35GB Turkish textual data, which has 4,4 million tokens. The 

data includes Turkish OSCAR corpus, Wikipedia, various OPUS corpora and a special 

corpus provided by the community. As a result of the BERTurk training process, 2 

different pre-trained BERTurk models were published. The difference between the 

models is the vocabulary size. The vocabulary size, that is the number of word-piece 

tokens, of the BERTurk base (32K) model is 32K, whereas the vocabulary size of the 

BERTurk base (128K) model is 128K. 

 

2.3  Deep learning models for extractive summarization 

Automated text summarization gains popularity with the progress of computer 

capabilities and the emergence of deep artificial neural networks. With the help of the 

deep learning models which consist of neural networks with several layers, the higher-

level textual features such as interrelation between sentences and the semantic 

understanding of the sentences can be learned. 

 Extractive summarization systems generate the summary by determining and 

selecting the most significant and salient sentences in the input document by scoring 

them with different techniques. Several studies about the extractive summarization were 

proposed in the literature. However, a major portion of these applied over the English 

texts. There is a considerably small number of studies focused on the low resource 

languages such as Turkish. The most commonly used dataset for the multi-sentence 

summary text summarization is the CNN/Daily Mail dataset. This dataset consists of 

311,971 English news with their related multi-sentence human written (abstractive) 
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summaries (Nallapati et al., 2016b). The data has been preprocessed so that each entity 

occurrences are replaced with document-specific integer-ids beginning from 0 to 

decrease the vocabulary size. As the dataset statistics, it has 286,817 (92% of all dataset) 

training articles, 13,368 (4% of all dataset) validation articles and 11,487 (4% of all 

dataset) test articles. The main articles in the training set have 766 words with 29.74 

sentences on average, whereas the human written summaries consist of 53 words and 

3.72 sentences on average. Moreover, there is a leaderboard for this dataset to show the 

performance results of the competitive extractive summarization approaches (Ruder, 

2020). The best performing methods are sorted by their final ROUGE-L F scores 

obtained from the test set. 

 One of the earliest extractive summarization approaches over this dataset belongs 

to Nallapati et al. (2016a). They treated the extractive summarization as a sequence 

classification problem. For this problem, each sentence is scored with respect to the 

probability of being included in the final summary based on the sentence features, which 

are its content richness, its salience with respect to the main article, its novelty with 

respect to the previously selected sentences to form the extractive summary and lastly, 

its position in the main article. To train the model with this approach, each sentence in 

the main article needs to be labelled as 0 or 1 depending on whether that sentence should 

be excluded or included in the final summary, respectively. For this labelling process, 

they proposed a greedy algorithm as mentioned in Section 2.1. 

 Their model, called SummaRuNNer, has 2-layer bidirectional GRU networks. Its 

input is the 100-dimensional Word2Vec embeddings of each word in each sentence. The 

bottom layer takes these input representations and runs at the word level to compute 

hidden state representations for each word by considering representations of previous 
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and next words. This layer outputs each word’s hidden state representations and by 

concatenating them and taking average over the word count for each sentence in the 

main article, the initial sentence representations are obtained. The upper biGRU layer 

runs over the sentences by taking the initial sentence representations outputted from the 

bottom layer. The hidden states of this upper layer encode the contextual sentence 

representations. Finally, one logistic layer makes a binary decision over these 

representations to calculate the cross-entropy loss (Equation 2.5) by considering whether 

the selected sentences by the SummaRuNNer are correctly chosen based on their labels. 

In the inference time, each sentence in the main article belonging to the test set articles is 

scored by the model and top 3 scored sentences are chosen to generate the final 

summaries. Finally, they achieved a 35.5 ROUGE-L F score. 

𝐶𝐸 =  −
1

𝑁
∗ ∑ 𝑦𝑖 ∗ log(𝑡𝑖) + (1 − 𝑦𝑖) ∗ log(1 − 𝑡𝑖)

𝑁

𝑖

  (2.5) 

𝐶𝐸 =  𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠  

𝑦𝑖   =  𝑎𝑐𝑡𝑢𝑎𝑙 (𝑡𝑟𝑢𝑒) 𝑙𝑎𝑏𝑒𝑙 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖  

𝑡𝑖  = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖  

𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡  

  

In 2017, See et al. (2017) proposed the non-anonymized version of CNN/Daily 

Mail. The only difference of this dataset from the previous anonymized one is that the 

entities in the main articles are not replaced with any values. The main reason that 

Nallapati et al. (2016b) replaced the entities with unique integers was to decrease 

vocabulary size. But See et al. (2017) stated that using non-anonymized (original) 

dataset is more favorable because it does not require a preprocessing step. Even though 
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See et al. (2017) focused on abstractive summarization and there is no extractive model 

proposed in their study, the authors showed that simply selecting the first 3 sentences 

from the main article to generate the final summaries (LEAD-3) leads to a 36.6 

ROUGE-L F score. LEAD-3 is often used as a baseline in the extractive summarization 

field. In the following works, the non-anonymized version of CNN/Daily Mail dataset is 

used. 

 Training extractive summarization models with the cross entropy loss (Equation 

2.5) and evaluating the performance of models with ROUGE scores renders a mismatch 

between what is being optimized and what is being used as the performance metric 

(Narayan et al., 2018) and also, the cross entropy loss may cause underfitting since it 

only maximizes the probabilities for the sentences labelled as 1 and ignores all 0 labelled 

sentences (Bae et al., 2019). To globally optimize ROUGE metrics, Narayan et al. 

(2018) proposed REFRESH model which applies reinforcement learning to achieve 

optimal ROUGE scores. The words in each sentence in the main articles are initialized 

with 200 dimensional Word2Vec embeddings and passed into a convolutional neural 

network (CNN) to obtain the sentence representations. After that, these sentence 

representations are fed into the LSTM network, and then the output of the LSTM 

network is used as the main article representation. On top of this LSTM layer, one more 

LSTM network is put to read a sentence representation from the CNN layer and make a 

binary prediction for this sentence conditioned on the main article representation taken 

from the former LSTM layer and the selected sentences in the previous time steps. Then, 

the result of binary predictions is used to rank sentences with the softmax layer’s scores. 

Higher rank means higher possibility of being in the final summary. To train this model, 

reinforcement learning based objective function is used with the aim of generating a 
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final summary that should have the maximum ROUGE score based on the actual human 

written summary. The training process took around 12 hours on a single GPU. Finally, 

REFRESH achieves a 36.6 ROUGE-L F score which is equal to the baseline LEAD-3 

approach. 

 With the emergence of Transformer architecture (Vaswani et al., 2017) and pre-

trained language models, the extractive summarization approaches got more capable of 

producing better performances like the other NLP tasks. In 2019, Zhang et al. (2019) 

proposed HIBERT, which stands for hierarchical bidirectional encoder representations 

from Transformers. The authors stated that the pre-trained models like BERT (Devlin et 

al., 2018) aim to pre-train in word level contextual embeddings based on the sentence 

words appeared in. However, HIBERT aims to pre-train hierarchical document encoders 

for the summarization task since it requires document level encodings rather than 

sentence level. HIBERT is inspired by the original BERT model but it has three 

Transformer networks, two of them used for encoding and last one is allocated for 

decoding, rather than single layer Transformer used in BERT. The first Transformer 

network runs over word level to encode sentences and the second one runs over the 

sentence representations outputted from the first one in order to come up with the 

document representations. In this second Transformer network, some sentences are 

masked, similar to the word masking used in BERT, and these masked sentences are 

predicted by the third (decoder) Transformer network. Instead of fine-tuning the BERT 

model, the authors trained HIBERT in an unsupervised manner from scratch with 

GIGA-CM dataset which has almost 7 million documents. This training process took 

around 20 hours for each epoch with 8 NVIDIA Tesla V100 16GB GPUs and in total the 

model is run for 45 epochs. After the training process was completed, they fine-tuned 
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the model for the extractive summarization with CNN/Daily Mail. After obtaining the 

main document based contextual sentence representations, they put one simple linear 

layer with softmax function to reach the probabilities of the sentences being in the final 

summary. These probability scores are compared with the true labels obtained from the 

greedy algorithm (Nallapati et al., 2016a) and the cross-entropy loss is calculated to 

update the model parameters. With this pre-training approach, training a new language 

model from scratch like BERT and then fine-tuning it with the CNN/Daily Mail dataset, 

they achieved 38.83 ROUGE-L F score which is a significant improvement as compared 

to the scores of the previous works. 

 Training of these large language models from scratch can be very costly and time 

consuming. As stated, HIBERT was trained around 900 hours with eight 16GB GPUs. 

Therefore, fine-tuning pre-trained language models by manipulating them based on the 

task is a more feasible solution with respect to computational cost. For example, Liu and 

Lapata (2019) proposed the BERTSumExt method within which they encode and 

manipulate multi-sentential inputs and proposed a novel BERT architecture for 

extractive summarization called BERTSUM. They have added external [CLS] tokens to 

the beginning of each individual sentence in the main article together with using interval 

segment embeddings in order to differentiate those multiple sentences in the document. 

Interval segment embeddings were assigned considering the order of the sentences. For 

example, segment embedding for the sentence(i) is assigned depending on if index i is 

odd or even. These changes made over the original BERT architecture can be seen in 

Figure 7. The architecture on the left of the figure shows the input formation of the 

original BERT method, whereas the architecture on right illustrates the BERTSUM 
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settings. In BERTSUM, the green items show the interval segment embeddings created 

to distinguish the sentences. 

 

Figure 7.  Architecture of original BERT and BERTSUM model (Liu and Lapata, 2019) 

 

 The BERTSUM model takes the embeddings of the words in the main articles 

computed considering the segment and position embeddings as input and by passing 

them into the BERT Transformer layers, it outputs the token representations as seen in 

Figure 7. By using each CLS token, it is possible to reach each sentence representation 

in the main article. Due to the self-attention mechanisms in the Transformer networks, 

the CLS tokens can encode information obtained from all the tokens in the same 

sentence. 

 The authors added several inter-sentence Transformer layers on top of the 

BERTSUM to capture document level features. These layers take the CLS token 

embeddings as the related sentence representations, calculate document level features 

and output the learned document specific sentence representations. Finally, these 

representations are classified with the sigmoid classifier to determine their labels. Based 

on the experiments to determine the optimum number of extra Transformer layers, 2 

extra layers performed best. They called this final model as BertSumExt. In the training, 
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cross entropy loss function was applied. During the prediction of sentences of the 

summary, they have used this model to calculate scores of each sentence and then rank 

them from highest to lowest, and finally, select the top scored 3 sentences. In addition to 

the selection phase, they have applied a method called Trigram Blocking which ensures 

that there is no trigram overlapping between the summary and the candidate sentence to 

reduce redundancy as a post processing step. This model has reached 39.63 ROUGE-L F 

score by using the base version of BERT and 39.90 score with the large version of 

BERT. 

 Even though the BertSumExt produced high performance results and took the 

leadership in the extractive summarization leaderboard for CNN/Daily Mail dataset, it 

works at the sentence level. That is, although the sentence representations can reflect 

document level features, they are chosen individually based on their scores at the end. 

Zhong et al. (2020) addressed this problem with their MatchSum approach. They stated 

that the output summaries consist of the individual sentences having the highest ROUGE 

scores in the sentence level studies. However, the summary containing these sentences 

may not be the optimal candidate summary for the related main article. Therefore, it is 

needed to use summary level extractors rather than sentence level ones for the extractive 

summarization. Unlike sentence level extractors, summary level ones choose the best 

candidate summary based on their ROUGE scores with human written summary and it 

may not contain the highest scorer sentences. 

 The authors formulated their approach as semantic text matching. In this 

approach, better candidate summaries should be semantically closer to the main article, 

while the human written summary should be the closest one. This approach can generate 

better summaries as compared to sentence level approaches. To support this, they 



 

32 

conducted experiments over different datasets and they found out that if the summaries 

are too short like 25-30 words or if the summaries are too long like 200+ words, their 

approach does not lead to much improvement. However, for a medium length summary 

around 50-100 words like the ones in the CNN/Daily Mail dataset, the summary level 

approach can be rewarding. 

 They have formulated the problem by first constituting all possible N sentence 

combinations of the sentences in main articles to generate all possible candidate 

summaries. For example, N is set to 2 and 3 for the CNN/Daily Mail dataset. After the 

candidate summaries are determined, their ROUGE scores, which are based on the 

human written (abstractive) summary, are calculated and they are sorted in descending 

order. Then, the candidate summary and the main article are fed into the Siamese BERT 

network, which consists of two BERTs with tied-weights and a cosine similarity layer in 

the inference phase. To determine the cosine similarity, the CLS token representations of 

both main article and candidate summary is used. As mentioned previously, the best 

candidate summary should have the highest similarity score compared to the other ones, 

while the human written summary should have the higher similarity score with respect to 

the main article than all candidate summaries. To guarantee these constraints (Equation 

2.7 and 2.6, respectively), the authors used a margin-based triplet loss function 

(Equation 2.8) to update the weights of the Siamese BERT network. In Equation 2.6, the 

first function f calculates the cosine similarity between the main article D and candidate 

summary C, whereas the second one calculates the cosine similarity between the main 

article D and human written summary C*. With margin 𝛾1, it is aimed that the second 

similarity score should be higher than the first score. In Equation 2.7, firstly all 

candidate summaries are sorted in descending order of ROUGE scores with the human 
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written summary. The candidate pair with a larger ranking gap should have a larger 

margin, which is (j-i)*𝛾2. Also, the higher scorer candidate summary, Ci should have a 

higher similarity score based on the main article D compared to lower scorer candidate 

summary Cj. Finally, in Equation 2.8, the losses, which are calculated in Equation 2.6 

and Equation 2.7, are summed up to obtain the total loss. 

 

ℒ1 = max (0, 𝑓(𝐷, 𝐶) − 𝑓(𝐷, 𝐶∗) + 𝛾1) (2.6) 

ℒ2 = max (0, 𝑓(𝐷, 𝐶𝑗) − 𝐹(𝐷, 𝐶𝑖) + (𝑗 − 𝑖) ∗ 𝛾2  (𝑖 < 𝑗) (2.7) 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 =  ℒ1 + ℒ2 (2.8) 

 

 Although this matching idea is quite intuitive, it suffers from considering the 

large number of candidate summaries. For example, CNN/Daily Mail articles have 30 

sentences on average and taking both 2 and 3 sentence combinations of them results in 

4495 possible candidate summaries for each article. To handle this problem, the authors 

prune the documents by selecting the most K salient sentences in the main articles and 

they have chosen K as equal to 5 for the CNN/Daily Mail dataset. So, for each main 

article, they chose 5 sentences and took 2 and 3 sentences of them to generate 20 

candidate summaries in total for each main article. To prune the main articles, they 

employed BertSumExt (Liu and Lapata, 2019) approach to calculate sentence scores and 

then, they obtained the top 5 scoring sentences and used them to generate the candidate 

summaries. 

 They trained MatchSum model’s Siamese Bert networks with eight Tesla V100-

16GB GPUs and the training took around 30 hours. In the inference time, the main 



 

34 

articles’ candidate summaries are generated and based on the Siamese Bert networks, 

their vector representations are calculated. Finally, the one with the highest cosine 

similarity with the main article’s vector representation is chosen as final extractive 

summary. The MatchSum with Siamese Bert achieved a 40.38 ROUGE-L F score. After 

obtaining this score, the authors change Bert encoder in the Siamese network with 

RoBERTa (Liu et al., 2019) encoder which is also a pre-trained language model similar 

to BERT, but it is pre-trained with 63 million English news. As a result of this change, 

MatchSum achieved slightly higher performance score in CNN/Daily Mail which is 

40.55 ROUGE-L F score. The authors explained this improvement as the similarity 

between the training corpus of RoBERTa and the fine-tuning dataset which is 

CNN/Daily Mail news. As a result, 40.55 ROUGE-L F score is the highest score 

achieved for CNN/Daily Mail dataset. 

 With the aim of achieving promising performance scores for the Turkish news 

dataset gathered for this thesis, the different Transformer architectures proposed in the 

literature are manipulated with different settings and hyperparameters. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

In this section, detailed explanations of the approach followed in the extractive 

summarization for Turkish news in this thesis are given. Firstly, the data collection steps 

are given, and the collected data is investigated with descriptive statistics after 

performing data preprocessing steps. Secondly, the label extraction method that is 

applied to obtain gold label extractive summaries from the human written (abstractive) 

summaries is described. Then, input data preparation steps taken in order to make raw 

data suitable for the proposed models are stated. Finally, the details of the proposed 

summarization model are explained. The overview of the research methodology 

followed in this thesis can be seen in Figure 8. 

 

Figure 8.  Overview of the research methodology 
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3.1  Data collection and preprocessing 

Since most of the summarization corpora is in English and there is no suitable multi-

sentence summarization dataset available in Turkish in the literature, a new corpus for 

Turkish news summarization is required to be created. In order to do so, the well-known 

news website, which has both long texts together with their human written (abstractive) 

summaries was discovered as seen in Table 1. 

 In this thesis, a news website was crawled to constitute Turkish news dataset by 

using the Python Selenium library. Then, the collected texts (both main articles and their 

respective human written abstractive summaries) were preprocessed. The applied 

preprocessing steps were converting text to lowercase, removing URLs, hashtags, some 

special characters such as “|”, stripping off the excess white spaces in order to help the 

tokenization process to tokenize the sentences in the texts properly and finally, dropping 

duplicate news if they have the same content. As a result of the preprocessing steps, the 

final dataset has 2076 news and the related statistics regarding the dataset can be seen in 

Table 2. The average news length is almost 20 sentences with 359 words and the 

average human written abstractive summary length is almost 5 sentences with 84 words. 

Both word and sentence level compression ratios, defined as the length of news divided 

by the length of summaries, are quite similar to each other which are 4.24 and 4.26, 

respectively. Additionally, the dataset novelty, which is the percentage of bi-grams in 

the gold abstractive summary that are not included in the related article, is 34.83%. This 

statistic is a proxy for the abstractiveness and shows the suitability of the dataset in 

terms of extractive or abstractive summarization (Scialom et al., 2020). Based on this, 

the dataset is highly suitable for extractive settings since the novelty is quite low. For 

comparison, novelty of the most widely used dataset CNN/Daily Mail is around 52% 
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(Liu & Lapata, 2019). Finally, the Turkish news dataset has almost 72K different words 

and 8K of them are occurring more than 10 times. 

Table 1.  Sample News with the Corresponding Summary (Sonmez, 2016) 

Main Article 

Facebook’un CEO’su Mark Zuckerberg İspanya / 

Barselona’daki Mobile World Congress kapsamında 

düzenlenen Samsung etkinliğinde sahne aldı. Sanal 

gerçeklik ile ilgili bir sunum yapan Zuckerberg 

Facebook’un geleceğinin yapay zekada yattığını 

söyledi. Sanal gerçeklikle ilgili “Sizi sarmalayacak, 

insanları bir araya getirecek ve bütün bunlar 

düşündüğünüzden çok daha yakında gerçekleşecek” 

şeklinde konuşan Zuckerberg “Uzun süredir bu 

deneyimi insanlara yaşatabilmeyi bekliyordum, 

şimdi o gün geldi” şeklinde heyecanını dile getirdi. 

Pazar günü düzenlenen Samsung etkinliğinde, 

Facebook ve Samsung’un ortak çalışmasının ürünü 

olan 360 derece fotoğraf ve video kaydı yapabilen 

Gear 360 tüketiciye tanıtıldı. Geçtiğimiz Kasım 

ayında Samsung 360 derece video izlemeye olanak 

sağlayan bir sanal gerçeklik cihazını tanıtmıştı. Gear 

VR adlı bu ürün Facebook’un 2014’te 2 milyar dolar 

gibi iddialı bir bedel ödeyerek bünyesine kattığı 

sanal gerçeklik şirketi Oculus’un teknolojisini 

kullanıyor. 99 dolara satışa sunulan ürün, içine 

(ekran ve ana işlemci görevi üstlenen) uyumlu bir 

Samsung telefon yerleştirilerek kullanılıyor. 

Zuckerberg “Sanal gerçeklik herkesin, istediği her 

şeyi üretip deneyimleyebileceği yeni platform. Çok 

yakında herkes, sahnelerin tamamını sanki 

oradaymış gibi deneyimleyebilecek” şeklinde 

hayalini özetledi. 

Human-written Summary 

Barcelona'da gerçekleştirilen basın toplantısında 

Facebook-Samsung ortak çalışmasının ürünü 'Gear 

360' tanıtıldı. Oculus ve Facebook'un sahibi Mark 

Zuckerberg'e göre sanal gerçeklik sayesinde çok 

yakında yepyeni bir dönem başlayacak. 
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Table 2.  Turkish News Dataset Statistics 

Dataset Size 2,076 

Training/Valid/Test Sets Size 1,476/300/300 

Sentence-level News Length 19.96 ± 9.81 

Sentence-level Summary Length 4.71 ± 2.45 

Sentence-level Compression Ratio 4.24 

Word-level News Length 359.06 ± 168.49 

Word-level Summary Length 84.29 ± 34.36 

Word-level Compression Ratio 4.26 

Novel bi-grams in Gold Summary 34.83% 

Total Vocabulary Size 71,547 

Total Vocabulary Size (Occurring 10+ Times) 8,243 

 

3.2  Label extraction 

Like the other widely used summarization datasets, the collected dataset does not 

contain the sentence labels which indicates whether the sentence is included in the 

extractive summary. Therefore, the sentence label extraction from the abstractive 

summaries is needed to reach ground truth binary labels to train the extractive 

summarization systems as mentioned in Section 2.1. 

 In order to avoid extra annotation costs and the overfitting risk, the rule-based 

label extraction method proposed by Cheng and Lapata (2016) is not preferred as the 
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label extraction method in this thesis. Rather, the greedy algorithm (Nallapati et al., 

2016a) is applied since it is cheaper and preferred by the best systems proposed in the 

literature. 

 To implement this algorithm, the original articles are tokenized into sentences by 

using the Python nltk package (Bird, Klein and Loper, 2009). Then, the sentence in the 

article which has the highest ROUGE-2 F1 score with respect to the related gold 

abstractive summary is selected. Following that, the remaining sentences are added to 

the first chosen sentence, one at a time until the ROUGE-2 F1 score does not improve 

anymore. Finally, sentences selected in this way by the greedy algorithm are labelled as 

1 and the remaining ones are labelled as 0. Additionally, selected sentences are 

combined to constitute the ORACLE (gold extractive) summaries which will be used to 

compute the upper bound for the performances of the extractive summarization models. 

 After the label extraction step, the dataset contains both the original article, 

abstractive summary, and extractive sentence labels. To see the most salient sentences’ 

positions in the original article based on the extracted labels, the sentence positions with 

respect to the percentage of those sentences included in the respective oracle summaries 

are plotted and shown in Figure 9. As seen, there is no uniform distribution between the 

positions. Almost 68% of the first sentences and 59% of the second sentences in the 

input document are included in the oracle summaries. This observation supports the 

claims of See et al. (2017) about the news datasets that the news articles are generally 

structured with the most significant and salient sentences at the beginning in order to get 

attention from the readers. Therefore, Lead-N, which is selecting the top-N sentences 

from the news, is the most basic but effective approach for the extractive summarization 

systems developed for the news. Since in the major portion of the oracle summaries in 
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the dataset, the number of sentences is in range between 0-5, as seen in Figure 10, and 

the average sentence length of the gold summaries is almost 5, the performance Lead-5 

approach is taken as the lower bound for the extractive summarization models. 

 

Figure 9.  Selection percentages of sentence positions in the main articles 

 

Figure 10.  The sentence length histogram of the oracle summaries  
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3.3  Input data preparation for Transformer based pre-trained sentence encoders 

Transformer based pretrained language models like BERT (Devlin et al., 2018) and 

ELECTRA (Clark et al., 2020) have been applied in most of the NLP tasks as encoders 

to represent words and sentences. However, summarization requires deeper document 

level understanding and transformer based pretrained language models, which are 

trained as masked language models, learn to represent tokens instead of representing the 

individual sentences (Liu and Lapata, 2019). In order to overcome this inability of pre-

trained masked language models for summarization tasks, each sentence in the article 

should be represented not only individually but also, should contain the semantic 

information from the other sentences in the same article. Therefore, input data must be 

manipulated with some extra preparation as detailed below. 

 First, each article tokenized into sentences with Python nltk library. Then, [CLS] 

and [SEP] tokens were added at the beginning and end of the sentences in the original 

article, respectively. So, BERTurk and ELECTRA language models can detect the 

sentence boundaries with the aim that each [CLS] token can collect and absorb 

important features for the sentence it represents. After that, by using BERTurk base 

tokenizer and ELECTRA base tokenizer, the articles and the summaries are tokenized to 

reach the input indexes of each token based on the related tokenizer. Since both 

BERTurk and ELECTRA language models were trained with 512 tokens, sub word 

level truncation and padding operations were applied to each article so that each has 512 

tokens. Finally, the attention masks are added in order to indicate padding tokens and 

avoid performing attention on them. In other words, masking the padded inputs helps the 

self-attention mechanism to attend only required information. 
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 Since the summarization task requires to distinguish multiple sentences in the 

article, interval segment embeddings were used for that purpose. 0 was assigned to the 

tokens in i-th sentence, if i is even and 1 was assigned to the tokens in i-th sentence, if i 

is odd. With this way, article representations can be learned hierarchically (Liu and 

Lapata, 2019). 

 Consequently, token indexes of the original articles, CLS (starting) positions of 

the sentences, sentence labels, interval segment embeddings and the token indexes of the 

gold summaries are obtained for the sentence encoders, BERTurk and ELECTRA 

separately. The contextual sentence representations for each article can be obtained by 

fine tuning pretrained language model encoders with this dataset and then used to 

perform sentence scoring and selection for extractive summaries. 

 

3.4  Extractive summarization models 

Extractive summarization intends to choose the most salient and significant sentences 

from the original input article in order to generate a summary of it. Treating the 

extractive summarization as a sequence labelling problem, a binary decision is required 

to be made for each sentence in the main article by assigning scores to them. Previously, 

this approach proves its effectiveness and achieves high ROUGE scores (Cheng and 

Lapata, 2016; Nallapati et al., 2016a; Liu and Lapata, 2019). 

 The selection of model architecture yields differences in the model 

performances. For example, Cheng and Lapata (2016) and Nallapati et al. (2016a) 

utilized LSTM layers to score sentences, but they could not pass the performance of 

Lead-3 baseline with their models. Although LSTMs are quite useful and effective in 

several NLP tasks, since they cannot be run in parallel, using them leads to high memory 
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usage and longer training time. In addition, text summarization models need to be 

trained with relatively longer textual data, unlike other common NLP tasks such as 

sentiment analysis, named-entity-recognition (NER) and part-of-speech (POS) tagging. 

Therefore, text summarization models need to capture and learn longer term 

dependencies than the LSTMs can achieve. Unlike LSTMs, Transformer networks can 

work in parallel and handle the longer term dependencies with ease. For example, best 

performing extractive summarization models proposed in the literature using the 

CNN/Daily Mail utilizes Transformer based pre-trained language models in their studies 

(Bae et al., 2019; Zhang et al., 2019; Zhong et al., 2019; Liu and Lapata, 2019; Zhong et 

al., 2020). 

 Based on these findings, the extractive summarization is treated as a sequence 

labelling process also in this thesis and different Transformer architectures are 

considered to constitute the investigated model architectures. Similar to the previously 

proposed approaches, pre-trained language models are used as the encoder that encodes 

sentences. On top of the language models, extra inter-sentence Transformer layers are 

put. These layers get the sentence representations as input and generate the contextual 

sentence embeddings with the aim of capturing document level features for extracting 

summaries. Finally, these contextual sentence embeddings are fed into the sigmoid layer 

where the sigmoid function takes the contextual embeddings and outputs a value 

between 0 and 1 (Equation 3.1) as a prediction for each sentence. These scores represent 

the probability that the related sentence is in the generated summary. Then, the predicted 

scores are compared with the original extracted labels. The summarization models then 

try to minimize the difference between the predicted scores and original labels utilizing 

the cross-entropy loss (Equation 2.5) by updating the model parameters. 
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𝑓(𝑥) =
1

1 +  𝑒−𝑥
 (3.1) 

 

The model architecture that encodes the sentences using the last layers’ related CLS 

tokens of the underlying language model, is shown in Figure 11. Each sentence in the 

main articles starts with [CLS] token and it ends with [SEP] token as mentioned in 

Section 3.3. Since each main article should be represented with fixed size length, each 

main article is represented with 512 tokens due to positional embeddings limitation of 

language models, and similarly there are 32 sentences in each main article as a result of 

sentence padding and truncation processes. At the bottom of proposed model’s 

architecture, these sentences, which are tokenized to subword level with the related pre-

trained language model’s tokenizer, are fed into the language model as input. In the 

experiments, model weights of BERTurk base (32K), BERTurk base (128K) and 

ELECTRA models were utilized as the encoder part of the proposed summarization 

model architectures. Hence, the pre-trained language model part of the architecture has 

the same 12 Transformer layers that exist in BERTurk and ELECTRA models. This part 

outputs each token representation for each sentence in the main articles. After obtaining 

the token representations, the [CLS] tokens are chosen as related sentences’ 

representations and they are passed into extra inter-sentence Transformer layers to 

extract document level features. Finally, the sigmoid layer takes extra Transformer 

layers’ outputs and assigns a score between 0 and 1 to each sentence. 
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Figure 11.  Architecture which uses CLS token representations to represent sentences 

 

 The highest scorer sentences, where the scores are obtained from the proposed 

summarization model, produce the predicted summary. Then, ROUGE score between 

the predicted and human-written summary is computed and used to evaluate the 

performance of the model. In this approach, it is assumed that the selected sentences 

represent the most important content of the main article. Besides, during the sentence 

selection process, Trigram Blocking is used as a post-processing step to reduce 

redundancies in the predicted summary (Paulus et al., 2018). In this heuristic approach, 

the next (candidate) sentence with the highest score is appended to the predicted 

summary if and only if trigram overlapping does not exist between the candidate 

sentence and previously selected sentences. The main reason for applying Trigram 

Blocking is to minimize the similarity between the sentences which have been already 
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selected as a part of the predicted summary and the next highest scoring candidate 

sentence. It can be seen as a control mechanism in order not to generate a summary 

which has repetitive content. 

 Besides the model architecture described above which uses CLS token 

representations for sentence encoding, some modifications over this architecture are 

investigated for Turkish news extractive summarization. It was mentioned that, as the 

underlying pre-trained language model, both BERTurk models and ELECTRA models 

were utilized. But, instead of using the last layer’s CLS tokens of each sentence, it is 

also possible to represent a sentence by taking the average of the last layer’s token 

representations for the tokens that make up that sentence. This operation is called mean 

pooling. For example, Zhong et al. (2019) preferred to use mean pooling rather than 

CLS representations to get the sentence representations for the extractive summarization. 

Also, Reimers and Gurevych (2019) showed that using mean pooling may slightly 

improve the performance of text classification models compared to using CLS token 

representations. In this thesis, the use of mean pooling was also investigated where the 

modified model architecture based on mean pooling can be seen in Figure 12. 



 

47 

 

Figure 12.  Architecture which uses mean pooling to represent sentences 

 

 In addition to using CLS and mean pooling representations, there are different 

approaches in the literature to get sentence representations from BERT-like language 

model architectures. For example, Devlin et al. (2018) stated that summing the CLS 

values of the last 4 layers can produce comparable performance results for NER tasks. 

Also, Reimers and Gurevych (2019) explained that concatenating a vector u, with a 

second one v and their absolute element wise differences |u-v|, may also be a good 

alternative to represent sentences. However, it should be considered that the dimension 

of sentence representations created in this way is three times larger than the previous 

ones as a result of this concatenation (u, v, |u-v|). Another alternative investigated in the 

same study is to concatenate directly two vectors (u, v). According to the study, this 

process makes the sentence vector dimensions doubled but did not produce comparable 

performance results in text classification tasks. In this study, each one of these sentence 
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representation approaches were investigated to compare their performances in an 

extractive summarization task. Beyond these previously investigated approaches, a new 

sentence representation approach is proposed in this study in which the CLS token 

representation of the last layer in the pre-trained language model is summed up with the 

mean pooling of the word representations. Thus, dimensions of the sentence 

representations stay the same as CLS token representation. The modified model 

architecture implementing this approach is shown in Figure 13. 

 

Figure 13.  Architecture which uses the sum of CLS token and mean pooling to 

represent sentences 

 

 In the previously mentioned architectures, sentences are contextualized in the 

extra Transformer layers that are located above the base language model architecture. 

But, Guo et al. (2020) stated that the large networks like Transformers on top of BERT-
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like language models does not improve the performance results by a large margin and 

they applied simple linear layer and sigmoid layer in their extractive summarization 

model architecture. In this study, in addition to analyzing the use of complicated 

Transformers layers, this simple architecture is also investigated to see if simplicity 

helps to improve the performances of the extractive summarization models where this 

simple architecture is shown in Figure 14. 

 

Figure 14.  Architecture with a simple linear layer 

 

 In the next section, the details of the experiments with different architectures and 

hyperparameter settings are given and the performance results based on ROUGE scores 

are compared.  
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

 

Different deep learning architectures considered in the thesis proposed for extractive 

summarization are introduced in the previous chapters. In this chapter, the experiments 

conducted by creating models with these different architectures are explained in detailed 

with their related architectures, hyperparameter settings and the performance results 

obtained by running these models over the Turkish news dataset are discussed. 

 For all experiments, one Tesla V100 16GB GPU was used and these experiments 

were implemented with PyTorch library. The batch size for each experiment was chosen 

as 8 due to the memory limitations. As the optimizer, ADAM optimization algorithm 

(Kingma and Ba, 2014) is deployed with the aim of updating the model parameters 

iteratively in the training data. The authors suggest that β1 and β2 hyperparameters of 

Adam optimizer work best with the values of 0.9 and 0.999, respectively. As in Devlin 

et al. (2018), Liu and Lapata (2019) and Clark et al. (2020), these values were also used 

in the experiments. Additionally, to schedule a learning rate, a linear scheduler with 

warm-up steps was deployed as it was done in Devlin et al. (2018) and Clark et al. 

(2020). In this type of scheduler, the learning rate increases linearly from zero to the 

initial given learning rate during the warm-up period and after that, it decreases linearly 

from that learning rate to zero again. Finally, the dropout probabilities are kept at 0.1 for 

each experiment (Devlin et al., 2018). To sum up, common settings that were used in 

each experiment is shown at Table 3. 
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Table 3.  Common Settings for each Experiment 

Optimizer: Adam 

Adam β1: 0.9 

Adam β2: 0.999 

Scheduler: Linear 

Dropout Probabilities: 0.1 

 

4.1  Hyperparameter selection 

As stated in Section 3.4, different model architectures were proposed and in this section 

the effects of different values of hyperparameters and choices of underlying deep 

learning architectures are investigated.  

 Firstly, the effects of pre-trained language models on the performance results are 

investigated. In this context, three different language models were considered. These 

were ELECTRA, BERTurk base (32K) model (which has 32 thousand words in its 

vocabulary) and BERTurk base (128K) model (which has 128 thousand words in its 

vocabulary). Even though their architectures are quite similar, both architectures have 12 

layers Transformers network with the hidden size 768, ELECTRA and BERT models 

differ from each other in terms of their objective functions. ELECTRA uses RTD, 

whereas BERT uses MLM. Considering these model in this thesis provides us with the 

effect of using models of similar underlying architecture trained with different objective 

functions. Besides, comparison of the performance results of BERTurk base (32K) and 

BERTurk base (128K) models are expected to provide insights on the effect of utilizing 

large models trained with larger vocabulary. 
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 Secondly, the effect of increasing the capacity of the models by putting extra 

Transformer layers’ was examined by checking the ability of the models to capture 

document level features in the process of learning sentence representations (Figure 11, 

12 and 13) by comparing their performances with performance of the model that has 

single linear layer (Figure 14). Beyond that, different number of extra Transformer 

layers, 1, 2 and 3 layers, was implemented and the performances were analyzed despite 

the fact that Liu and Lapata (2019) found out that the best performance is achieved with 

2 extra Transformer layers. 

 Thirdly, the different sentence representation approaches were experimented as 

explained in Section 3.4. These different sentence representations used to select those 

sentences to be included in the extractive summary were obtained by extracting the CLS 

token of the pre-trained language model’s last layer, applying mean pooling over the 

token representations of the last layer, summing up CLS token and mean pooling 

representations, concatenating CLS token and mean pooling representations, 

concatenating CLS token, mean pooling representations and the absolute value of their 

element wise differences, and finally, summing up CLS token representations of the pre-

trained language model’s last 4 layers. The list of these architectural settings and their 

different values are shown in Table 4.  
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Table 4.  Architectural Settings Used in the Experiments 

Pre-trained 

Language 

Models: 

ELECTRA BERTurk base (32K) BERTurk base (128K) 

    

Extra Layers: 
Single Linear 

Layer 

1-layer 
Transformer    

2-layer 

Transformer 

3-layer 
Transformer 

     

Sentence 

Representation 

Approaches: 

CLS 

token 

of 

last 

layer 

Mean 

pooling 

over last 

layer 

Summed 

CLS token 

with mean 

pooling 

Concatenating 

CLS token 

and mean 

pooling 

Concatenating 

CLS token, 

mean pooling 

and their 

absolute 

differences 

Summing 

up CLS 

token of 

last 4 

layers 

 

 In addition to architectural settings, suitable training hyperparameters were also 

investigated. These hyperparameters include the number of training epochs, learning rate 

and feed forward network’s (FFN) hidden size and number of attention heads in the 

extra Transformer layers. The experimented values for each hyperparameter are shown 

in Table 5. 

Table 5.  Training Hyperparameter Sets Used in the Experiments 

# of Epochs Learning Rate FFN Hidden Size # of Attention Heads 

4 5E-5 

2048 8 

3072 12 

5 1E-4 

4096 16 

6144 24 

10 2E-3 9216 32 
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 The epoch indicates the number of passes of feeding whole training data in mini-

batches to the deep learning models. In the experiments, the values considered for the 

number of training epochs are 4, 5 and 10. For extra Transformer layer-based 

architectures, models were fine-tuned for 4 and 5 epochs. For the simple linear layer-

based architectures, the models were trained for 10 epochs. The main reason for this 

difference is the fact that the Transformer networks have much more parameters and are 

more capable of learning from the training data, as compared to shallow networks like 

linear layers. Therefore, to increase the learning capability of linear layers, more training 

epochs were used. 

 The second training hyperparameter is the learning rate. The learning rate can be 

defined as the step size that the model uses when updating its parameters. It controls the 

speed at which the model learns and has direct effect on the convergence properties of 

the models. Devlin et al. (2018) recommends 5e-5 for the learning rate in the fine-tuning 

processes, whereas Clark et al. (2020) recommends 1e-4. Additionally, Liu and Lapata 

(2019) used 2e-3 as the learning rate in their extractive summarization models. In the 

experiments conducted in this thesis, each of these learning rates were applied in order 

to explore their effects on the model performances. 

The third training hyperparameter size is the FFNs’ hidden size and number of 

attention heads in the extra Transformer layers as previously shown in Table 5. Liu and 

Lapata (2019) used 2048 and 8 for these hyperparameters, respectively. However, 

Devlin et al. (2018) set the FFN hidden unit size to be 4 times the hidden units in the 

Transformer architecture in all of their experiments. Since the number of hidden units in 

both BERT and ELECTRA equal to 768, FFN hidden size was set to 3072 in this thesis 

where the sentence representations are of size 768. For the concatenation-based sentence 
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representation approaches (Table 4), the number of hidden units increases, therefore, the 

FFN hidden sizes are increased with the same proportion. For example, CLS token 

representations, mean pooling representations and summing CLS token with mean 

pooling approaches have 768 hidden units and, in these settings,, FFN hidden size were 

set to 2048 and 3072, with 8 and 12 attention heads, respectively. However, 

concatenating CLS token representations with mean pooling representations leads to 

1536 (768+768) hidden units and as a result, FFN hidden sizes were set to 4096 and 

6144 with 16 and 24 attention heads, respectively. Additionally, the ratio of FFN hidden 

size to number of attention heads is kept constant at 256 for all experiments. For simple 

linear layer-based experiments, these hyperparameters are not applicable. The overall 

hyperparameter settings used in different sentence representation approaches is shown in 

Table 6. 

Table 6.  Experimented FFN Hidden Size and Number of Attention Heads based on 

Sentence Representation Approaches 

Sentence Representation Approach 

Hidden 

Unit 

Size 

FFN Hidden Size and # of 

Attention Heads 

CLS 768 (2048,8), (3072,12) 

Mean pooling 768 (2048,8), (3072,12) 

CLS + Mean pooling 768 (2048,8), (3072,12) 

Summing CLS tokens of last 4 layers 768 (2048,8), (3072,12) 

Concatenating CLS and Mean pooling 1536 
(2048, 8), (3072, 12), (4096, 16), 

(6144, 24) 

Concatenating CLS, Mean pooling 

and |CLS-mean pooling| 
2304 

(2048, 8), (3072, 12), (6144, 24), 

(9216, 36) 
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4.2  Experimental details 

As it is explained in the previous section, in total there were 7 different hyperparameter 

settings to be optimized. Three of them were architectural, namely different underlying 

language models, number of extra layers, and sentence representations. Remaining four 

were training hyperparameters, namely different FFN hidden sizes, number of attention 

heads, learning rates and number of epochs. Since experimenting with all of the 

combinations of these hyperparameters is time and resource consuming, some of the 

settings were filtered out based on the performances obtained from experimenting with 

different pre-trained language models and sentence representation approaches. As a 

result, 241 different models were trained with different hyperparameter settings. The 

architectures and hyperparameter settings for each of these models can be seen in 

Appendix A together with their performance results and training times. 

 Firstly, 78 models were trained with CLS token representations and same 

number of model were trained with mean pooling representations. The applied 

hyperparameter values for these 2 sentence representation approaches and the number of 

models run can be seen in Table 7. 
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Table 7.  Hyperparameter Combinations for Models Trained with CLS Token and Mean 

Pooling Representations 

 Language 

Model 
Extra Layers 

FFN Hidden 

size with # 

of Attention 

Heads 

Epoch 
Learning 

Rate 

Total 

# of 

Models 

CLS 

Token 

BERTurk 

base (32K), 

ELECTRA 

Simple Linear 

Layer 
- 10 

5e-5, 1e-4, 

2e-3 
6 

BERTurk 

base (32K), 

ELECTRA 

1, 2 and 3 

Transformer 

Layers 

2048-8, 

3072-12 
4, 5 

5e-5, 1e-4, 

2e-3 
72 

Mean 

Pooling 

BERTurk 

base (32K), 

ELECTRA 

Simple Linear 

Layer 
- 10 

5e-5, 1e-4, 

2e-3 
6 

BERTurk 

base (32K), 

ELECTRA 

1, 2 and 3 

Transformer 

Layers 

2048-8, 

3072-12 
4, 5 

5e-5, 1e-4, 

2e-3 
72 

 

 After running these 156 models, the top-10 performing settings were selected 

based on ROUGE-2 F scores, as seen in Appendix B. The main reason behind the 

selection of ROUGE-2 score for model comparison is the fact that the extractive labels 

were obtained with a greedy algorithm (Nallapati et al., 2016a) where the ROUGE-2 

scores of selected sentence sets were maximized with respect to human written 

summaries. Then, hyperparameter setting of these top 10 performing models were used 

for the other four sentence representation approaches. In addition to these extra models, 

for the concatenation based sentence representations, FFN hidden sizes and number of 

attention values were multiplied by the number of representations concatenated in the 

model as shown in Table 6. Total number of different models for each sentence 

representation approach is shown in Table 8. 
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Table 8.  Total Number of Different Models Trained by Implementing each Sentence 

Representation Approach 

Sentence Representation Approach # of Different Models 

in the Experiments 

CLS 78 

Mean pooling 78 

CLS + Mean pooling 10 

Summing CLS tokens of last 4 layers 10 

Concatenating CLS and Mean pooling 20 

Concatenating CLS, Mean pooling and |CLS-mean pooling| 20 

TOTAL 216 

 

To see the effect of vocabulary size of the pre-trained language models on the model 

performances, hyperparameters of the top-25 performing models (which are all 

BERTurk base (32K) models) among these 216 models were selected based on 

ROUGE-2 F score (see Appendix C). Then, keeping the other hyperparameter settings 

the same, the pre-trained language model hyperparameter was replaced with the 

BERTurk base (128K) model. In the end, in total 241 models were trained with different 

hyperparameter settings and evaluated. 
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4.3  Performance results 

In the experiments, ROUGE scores (Lin, 2004) between human written summaries and 

automatically generated summaries by the models were computed in order to evaluate the 

fluency with ROUGE-1 and ROUGE-2 scores and assess informativeness with ROUGE-

L score. In Appendix A, all 241 models are reported with their ROUGE-1 F scores, 

ROUGE-2 F scores and ROUGE-L F scores over the test data together with the training 

time of each model. 

 Before comparing and interpreting these results, the upper bound (ORACLE) and 

the baseline (LEAD-5) performance scores were calculated. ORACLE approach does not 

contain any training part. The sentences selected by the greedy algorithm (Nallapati et al., 

2016a), were considered as the final summaries. The score obtained by these sentences is 

considered as the maximum score one could achieve in extractive summarization (Scialom 

et al., 2020). Therefore, the ORACLE ROUGE scores were chosen as the upper bound. 

On the other hand, LEAD-5 simply selects the first five sentences in the input document 

to generate final summaries and it is presented as a baseline for the other methods and the 

score obtained from the LEAD-5 was considered as the lower bound. As stated in Section 

3.2, LEAD-5 is a strong baseline for Turkish news dataset since the distribution of 

extracted sentence positions is not uniform and these important sentences are mostly 

placed at the beginning of main articles. The ROUGE scores of these models on test data 

are shown in Table 9. 

Table 9.  The ROUGE Scores of ORACLE and LEAD-5 

 
ROUGE-1 F Score ROUGE-2 F Score ROUGE-L F Score 

ORACLE 53.60 41.63 52.80 

LEAD-5 37.49 26.40 37.12 
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Among all 241 models trained in this study, 33 of them perform better than LEAD-5 

ROUGE F scores as shown in Table 10. As stated in the Introduction chapter, the results 

are interpreted in terms of utilizing different pre-trained language models, sentence 

representation approaches, and architectural simplicity and complexity. 

 

4.3.1  Effects of pre-trained language models 

In the experiments, three different pre-trained language models were utilized. These are 

BERTurk base (32K), BERTurk base (128K) and ELECTRA. As mentioned in Section 

4.2, the experiments were conducted first with 78 different parameter settings using 

ELECTRA as the underlying pre-trained language model. The hyperparameter settings 

and ROUGE scores are reported in Appendix A. It can be seen that a major portion of 

the 78 models obtained the same ROUGE F scores with LEAD-5 baseline. These 

experiments put extra Transformer layers on top of the ELECTRA. Therefore, it can be 

concluded that these models learned only positional embeddings of the sentences in the 

main articles and generate final summaries by considering their positions and extracting 

the first 5 sentences. The possible reasons for this might be the size of the dataset used to 

fine-tune the models. In the training set, there were 1476 articles, and this may not be 

sufficient to fine tune the ELECTRA model and hence for the model to learn semantic 

and contextual relationships between the sentences. 
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Table 10.  The Performance Results of Best 33 Models which are Better than LEAD-5 Baseline with Their Corresponding Settings 

# Language Model Sentence Representation 
Extra 
Layer 

FFN Size 
# of Attention 

Heads 
# of 

Epoch 
Learning 

Rate 
ROUGE-1 

F score 
ROUGE-2 F 

score 
ROUGE-L 

F score 

160 BERTurk-Base (32K) CLS Token + Mean pooling 2-Layer 2048 8 5 1.00E-04 38.38 26.8 38.04 

206 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 6144 24 5 5.00E-05 37.85 26.59 37.53 

184 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 4096 16 4 1.00E-04 37.83 26.57 37.47 

175 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 2048 8 4 5.00E-05 37.75 26.56 37.38 

164 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 4 1.00E-04 38.03 26.55 37.66 

174 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 2048 8 4 1.00E-04 37.7 26.54 37.36 

28 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 3072 12 5 5.00E-05 37.8 26.53 37.45 

17 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 3072 12 4 1.00E-04 37.78 26.5 37.43 

166 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 5 5.00E-05 38.03 26.5 37.6 

205 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 6144 24 4 5.00E-05 37.71 26.5 37.34 

11 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 3072 12 4 1.00E-04 37.72 26.49 37.36 

29 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 3072 12 5 1.00E-04 37.71 26.49 37.37 

159 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 5 1.00E-04 38.02 26.49 37.62 

172 BERTurk-Base (32K) (CLS Token, Mean pooling) 2-Layer 3072 12 4 1.00E-04 37.73 26.48 37.35 

32 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 5 1.00E-04 37.8 26.47 37.41 

26 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 5 1.00E-04 37.69 26.46 37.38 

158 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 3072 12 4 1.00E-04 37.91 26.46 37.5 

14 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 4 1.00E-04 37.66 26.45 37.3 

168 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 3072 12 4 1.00E-04 37.72 26.45 37.32 

182 BERTurk-Base (32K) (CLS Token, Mean pooling) 2-Layer 6144 24 4 1.00E-04 37.69 26.45 37.34 

196 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 2048 8 5 5.00E-05 37.74 26.45 37.39 

13 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 4 5.00E-05 37.62 26.44 37.27 

163 BERTurk-Base (32K) CLS Token + Mean pooling 2-Layer 2048 8 5 5.00E-05 37.98 26.44 37.59 

25 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 5 5.00E-05 37.69 26.43 37.33 

31 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 5 5.00E-05 37.68 26.43 37.31 

7 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 4 5.00E-05 37.63 26.42 37.28 

165 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 4 5.00E-05 37.88 26.42 37.49 

217 BERTurk-Base (128K) CLS Token + Mean pooling 2-Layer 2048 8 5 1.00E-04 37.83 26.42 37.51 

5 BERTurk-Base (32K) CLS Token of the Last Layer 1-Layer 3072 12 4 1.00E-04 37.71 26.41 37.36 

8 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 4 1.00E-04 37.64 26.41 37.32 

191 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 2-Layer 3072 12 5 1.00E-04 37.53 26.41 37.18 

195 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 2048 8 4 5.00E-05 37.56 26.41 37.2 

199 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 6144 24 5 1.00E-04 37.67 26.41 37.32 
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Unlike models that use ELECTRA as the underlying language model, models 

that use BERTurk base (32K) language model performed quite well. As seen in Table 

10, among the 33 best performing models, 32 of them use BERTurk base (32K) 

language model. Moreover, in the first part of experimental design, 78 different settings 

were chosen for ELECTRA and BERTurk base (32K) language models, separately. In 

the second part, top 10 performing models were chosen among these 156 models to 

investigate the effects of using other sentence representation techniques. Performance 

results and hyperparameter settings of these top 10 best performing models are shown in 

Appendix B. All of them have BERTurk base (32K) as their underlying pre-trained 

language model. Therefore, it can be said that the BERTurk base (32K) model performs 

better than ELECTRA for Turkish news extractive summarization.  

 Finally, BERTurk base (128K) pre-trained language model is used as the pre-

trained language model for the models trained with the hyperparameter settings of the 

top 25 best performing BERTurk base (32K) models which are shown in Appendix C. 

The performances obtained by these 25 models are not as good as the ones obtained by 

the models utilizing BERTurk base (32K) as the underlying language model, as seen in 

Appendix A. As it can be seen from Table 10, best performing BERTurk base (128K) 

based model takes 28th place over all the model performances. Its settings are the same 

with the best model in the Table 10 except for the difference in the pre-trained language 

model. As a result, it can be said that generating a model using BERTurk base (32K) is 

better than utilizing BERTurk base (128K) with approximately two thousand training 

examples for the extractive summarization task of Turkish news. The reason why 

smaller vocabulary performs better than larger one might be that 32K may be good 

enough to represent all the words in the small training data. With 128K vocabulary and 
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small dataset, each token is represented lesser and the model may not learn their 

embeddings properly in the fine-tuning phase. 

The average ROUGE F scores of the models utilizing different pre-trained 

language models in all 241 experiments conducted in this thesis are shown in Table 11. 

The reason why the average ROUGE F scores of the models with different pre-trained 

language models are compared among all 241 models is that there are not enough 

ELECTRA and BERTurk base (128K) language models in the best performing models 

for comparison properly. As it is seen from the Table 11, utilizing BERTurk base (32K) 

as the underlying language model is better than using BERTurk base (128K) and 

ELECTRA. 

Table 11.  The Average ROUGE Scores of all 241 Models Generated by Utilizing 

Different Pre-trained Language Models 

Language Model 
# of 

models 

ROUGE-1 F 

Score 

ROUGE-2 F 

Score 

ROUGE-L F 

Score 

BERTurk base (32K) 138 37.06 25.72 36.70 

BERTurk base (128K) 25 36.75 25.52 36.35 

ELECTRA 78 35.26 24.04 34.83 

 

 As shown in Table 11, the number of models using these pre-trained language 

models are not close to each other. Hence, the comparison with respect to these scores 

may not yield strong evidence. In order to more conveniently compare the effects of 

underlying language models on extractive summarization models, the 30 models which 

have exactly the same architectures and hyperparameters sets except the pre-trained 

language model parts are compared in Table 12. Based on the findings from these 

models, the models utilizing BERTurk base (32K) performs better than the models using 
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BERTurk base (128K) and ELECTRA. However, there is no significant difference 

between performance results of BERTurk base (128K) and ELECTRA based models.  

Table 12.  The Average ROUGE Scores of the Models Generated by Utilizing the Same 

Settings Except the Pre-trained Language Models 

Language Model 
# of 

models 

ROUGE-1 F 

Score 

ROUGE-2 F 

Score 

ROUGE-L F 

Score 

BERTurk base (32K) 10 37.72 26.47 37.36 

BERTurk base (128K) 10 37.49 26.40 37.12 

ELECTRA 10 37.49 26.40 37.12 

 

4.3.2  Effects of architectural simplicity/complexity 

In order to investigate the performance gained obtained by the capacity of the models, 

four different extra layers that are put on top of the underlying pre-trained language 

models are considered in this thesis. These extra layers are simple linear layer, 1-layer 

Transformer network, 2-layer Transformer network and 3-layer Transformer network. 

The models obtained by fine-tuning pre-trained models with a simple linear layer 

performed worse compared to the models formed using Transformer layers. Guo et al. 

(2020) stated that the complex networks on top of BERT do not lead to a large margin 

performance gains in extractive summarization tasks, and they applied simple linear 

layer as extra layer. As opposed to their findings, simple linear layer based models in 

this study produced lower ROUGE scores, and they are even worse than LEAD-5 

baseline. Similarly, the model implemented with 1-layer Transformer network did not 

perform well as compared to the ones having 2 and 3 Transformer layers. Finally, 

performances obtained from the models with 3-layer Transformer networks are slightly 
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better than the ones with 2-layer Transformer network with respect to average ROUGE 

F scores. These can be observed from the results given in Table 10.  

As a result, more complex models are found to produce higher performance 

scores in extractive summarization task for Turkish news. The average ROUGE F scores 

of best 33 models using different extra Transformer networks are shown in Table 13. In 

addition to average scores, maximum and minimum scores are also reported since the 

number of models using these extra layers are very different. 

Table 13.  The Average, Maximum and Minimum ROUGE Scores of Best 33 Models 

Generated by Utilizing Different Extra Layers 

Extra Layer 
# of 

models 

ROUGE-1 

F Score 

(Avg/Max/Min) 

ROUGE-2 

F Score 

(Avg/Max/Min) 

ROUGE-L 

F Score 

(Avg/Max/Min) 

1-Layer 

Transformer 
1 37.71/37.71/37.71 26.41/26.41/26.41 37.36/37.36/37.36 

2-Layer 

Transformers 
13 37.77/38.38/37.53 26.48/26.80/26.41 37.42/38.04/37.18 

3-Layer 

Transformers 
19 37.79/38.03/37.56 26.48/26.59/26.41 37.42/37.66/37.20 

 

4.3.3  Effects of sentence representation approaches 

In these approaches, sentences are represented with the last layer’s CLS token 

representation of the pre-trained language models, mean pooling of the token 

representations over the last layer, summing up CLS token and mean pooling 

representations, concatenating CLS token and mean pooling representations, 

concatenating CLS token, mean pooling representations and the absolute value of their 

element wise differences, and finally, summing up CLS token representations of the pre-

trained language model’s last 4 layers. In the literature, CLS token representations and 

mean pooling over the last layer’s token representations are the most common 
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approaches. Although Reimers and Gurevych (2019) found out that mean pooling can 

result in better performance scores compared to CLS token representations, the models 

using CLS token representations produced better average ROUGE F scores in the 241 

experiments conducted in this study, as shown in Table 14. The main reason for the 

mean pooling performing worse might be the fact that, with mean pooling, each token is 

averaged with the same weight, including stop words or other tokens that are not 

significant for the summaries. The CLS token representations are computed using self-

attention, so it can only collect the relevant information from the rest of the hidden 

states. Therefore, combining both CLS and mean pooling may lead to good results. 

These representations can be combined by either concatenating them or by doing 

element-wise sum. Reimers and Gurevych (2019) have tried several concatenation 

approaches and found out that concatenating CLS, mean pooling and absolute value of 

their element wise differences produces best performance results. Moreover, they stated 

that concatenating CLS and mean pooling directly may not perform well. Parallel to that, 

concatenating CLS and mean pooling directly is the second worst performing approach 

according to the averages obtained from the models generated by this approach, even 

though among these 26 models, 6 of them were able to beat LEAD-5 baseline. On the 

other hand, approaches that employ the approach that sum the token representations 

achieved the best average scores. Devlin et al. (2018) stated that summing the last four 

layers’ CLS tokens is a good sentence representation technique. As it can be seen in 

Table 14, the models using this technique obtained the second-best average ROUGE 

scores. However, none of the models generated with this approach exceed LEAD-5 

ROUGE-2 F score. None of the models implemented this approach takes place in the 

best 33 ones which are the ones that exceed baseline LEAD-5 score as can be seen in 
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Table 10. Finally, a new representation approach which is summing CLS representation 

with mean pooling is proposed. This approach is the best one among the others. The 

reason might be that the final sentence representation takes both CLS token and mean 

pooling representations into account, so that both stop words and irrelevant tokens are 

represented but their worsening effect might be mitigated on final representation by the 

CLS token as compared to the mean pooling. Besides, the tokens that are far away from 

the CLS token in the sentence can be better represented this way as compared to using 

only CLS tokens. 

Table 14.  The Average ROUGE Scores of all 241 Models Generated by Utilizing 

Different Sentence Representation Approaches 

Sentence Representation 

Approach 

# of 

models 

ROUGE-1 F 

Score 

ROUGE-2 

F Score 

ROUGE-L 

F Score 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 
23 37.11 25.89 36.75 

(CLS Token, Mean pooling) 26 36.38 25.09 35.99 

CLS Token + Mean pooling 16 37.85 26.39 37.50 

CLS Token of the Last Layer 88 36.47 25.22 36.07 

Mean pooling of the Last 

Layer 
78 35.79 24.50 35.37 

Sum Last Four Layers' CLS 

Token 
10 37.68 26.19 37.35 

 

To eliminate the effect of comparing average scores of the sentence 

representation approaches with different number of models and do more appropriate 

ablation study, the average ROUGE F scores of 60 models, which have the same 

architectures and hyperparameters, are compared in Table 15. According to these scores, 
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the models that are utilizing the summation of CLS token and mean pooling 

representations achieved the highest performance scores.  

Table 15.  The Average ROUGE Scores of the Models Generated by Utilizing the Same 

Settings Except the Sentence Representation Approaches 

Sentence Representation 

Approach 

# of 

models 

ROUGE-1 F 

Score 

ROUGE-2 

F Score 

ROUGE-L 

F Score 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 
10 36.51 25.29 36.13 

(CLS Token, Mean pooling) 10 37.56 26.26 37.21 

CLS Token + Mean pooling 10 37.95 26.47 37.58 

CLS Token of the Last Layer 10 37.72 26.47 37.36 

Mean pooling of the Last 

Layer 
10 37.48 26.26 37.13 

Sum Last Four Layers' CLS 

Token 
10 37.68 26.19 37.35 

 

 Finally, the effect of FFN hidden size were investigated. As stated earlier, Devlin 

et al. (2018) suggested setting the FFN hidden unit size to 4 times size of the hidden 

units in the Transformer architecture. Since concatenation-based sentence 

representations increases size of the hidden units, different FFN hidden size were 

experimented. For example, concatenating CLS token and mean pooling representations 

lead to 1536 (768+768) dimensional sentence representations. Therefore, both 4096 and 

6144 (1536*4) FFN hidden sizes were experimented for this approach, in addition to 

2048 and 3072 FFN hidden sizes, as shown in Table 6. The average ROUGE F scores of 

the models trained with both original and increased FFN hidden units are shown in 

Table 16. The results displayed in italics obtained from the models trained with 
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increased FFN hidden units. For concatenation of CLS token, mean pooling and their 

element wise absolute difference, increasing FFN hidden size achieves higher 

performance scores than original ones, whereas increasing FFN hidden size leads to 

worse performance scores than original ones for concatenating CLS token and mean 

pooling representations. Therefore, these scores do not provide strong evidence that 

increasing the FFN hidden units based on the hidden units in the Transformer 

architecture leads to better performance results.  

Table 16.  The Average ROUGE Scores of the Models Generated by Utilizing the Same 

Settings Except the Hidden Sizes 

Sentence Representation 

Approach 

# of 

models 

ROUGE-1 F 

Score 

ROUGE-2 

F Score 

ROUGE-L 

F Score 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 
10 36.51 25.29 36.13 

(CLS Token, Mean pooling) 10 37.56 26.26 37.21 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 
10 37.59 26.35 37.23 

(CLS Token, Mean pooling) 10 36.56 25.25 36.18 

 

As a result, summing CLS token and mean pooling representations of the last 

layer is turned out to be the best sentence representation technique for summarizing 

Turkish news dataset. The model generated by combining BERTurk base (32K) model 

with this approach and putting extra 2-layer Transformer network on top of it has 

achieved the best ROUGE F scores. The best performing model with this architecture 

was trained for 5 epochs where learning rate and FFN hidden size parameters are set to 

1e-4 and 2048, respectively. Almost 1 percent higher score than LEAD-5 ROUGE-L F 

score was achieved with this configuration, and hence it is possible to produce 

meaningful extractive summaries. 
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CHAPTER 5 

CONCLUSIONS AND MANAGERIAL IMPLICATIONS 

 

This thesis aims to develop an automated extractive summarization system for Turkish 

news. For this purpose, the most salient and significant sentences in the main articles are 

determined and extracted by the proposed models to generate final summaries. To 

develop an end-to-end extractive summarization model, the dataset is gathered via a 

well-known news website. The dataset consists of the news published in Turkish and the 

related human written summaries. After 2076 such news-summary pairs are collected, 

the data is preprocessed. Then, binary sentence labels in the main articles are extracted 

by greedy algorithm (Nallapati et al., 2016a) since the human-written summaries should 

be converted to extractive summaries to train the model. In the label extraction phase, it 

is realized that the most significant sentences are placed at the beginning of the main 

articles to capture the readers’ attention and there is no uniform distribution for extracted 

sentence positions as shown in Figure 9. After extracting the binary labels for each 

sentence in each article, the most promising Transformer based pre-trained language 

models generated for Turkish are determined. There are BERT (Devlin et al., 2018) and 

ELECTRA (Clark et al., 2020) based models since both have been pre-trained for 

Turkish with huge corpus by Schweter (2020). The main purpose of using these pre-

trained language model in the models proposed in this thesis is their ability to capture 

high-level textual features, such as semantic relationship between the words. Three 

different pre-trained language models are considered in generating summarization 

models, and then their abilities in Turkish news extractive summarization task are 

investigated. These models are named as ELECTRA, BERTurk base (32K) and 
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BERTurk base (128K). ELECTRA is the language model trained based on the replaced 

token detection, while BERT is a masked language model. The difference between the 

performance results of BERTurk base (32K) and ELECTRA may show the effectiveness 

of language model types over Turkish news extractive summarization. Besides, both 

BERTurk base (32K) and BERTurk base (128K) have the same architectures but their 

vocabulary size in the pre-training phase is different. Therefore, it is informative to see 

the effect of vocabulary size on the performance results by employing these two models. 

 On top of pre-trained language models, extra layers are added to capture 

document level features like intersentential relationships. Since Guo et al. (2020) stated 

that the larger networks does not contribute a large margin to the performance results 

and added an extra simple linear layer on top of the BERT model, the effect of 

complexity of the extra layers on the summarization performance results for Turkish 

news is also investigated in this thesis. Liu and Lapata (2019) applied 1-layer, 2-layer 

and 3-layer Transformer networks on top of BERT, separately and found out that 2-layer 

ones work best. In this thesis, four different extra layer alternatives are investigated. 

These are simple linear layer, 1-layer, 2-layer and 3-layer Transformer networks. 

Examining the performance results of the models generated by these different extra layer 

alternatives may yield understanding of the effect of architectural complexity. 

 The other architectural settings investigated in this study is the sentence 

representation approaches. As stated earlier, the pre-trained language models output 

each token representation in the sentence and to obtain sentence embeddings, different 

approaches were proposed in the literature. For example, Liu and Lapata (2019) used the 

CLS token embeddings to represent sentences, whereas Reimers and Gurevych (2019) 

stated that taking average of token embeddings, called mean pooling, in the sentences 
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may lead to better performance compared to the CLS token. Additionally, Devlin et al. 

(2018) found out that summing the last 4 layers’ CLS token representations is quite good 

to represent sentences. Moreover, Reimers and Gurevych (2019) suggested that 

concatenation operations may yield good performance results. Therefore, concatenating 

CLS token representations with mean pooling representations, and also, concatenation of 

CLS token, mean pooling and their element wise absolute difference are also 

experimented. Finally, directly summing up CLS token representations with mean 

pooling representations is proposed in this study as a sentence representation approach. 

As a result, six different approaches were examined to measure and compare their 

effectiveness. 

 In addition to these architectural settings which are shown in Table 4, some 

training hyperparameters were also optimized. These hyperparameters are learning rate, 

number of epochs for training, FFN hidden size and number of attention heads. The last 

two hyperparameters are valid for only extra Transformer layer networks. The value sets 

for each training hyperparameter were presented in Table 5. 

 In total, 241 models with different architectures and hyperparameter setting were 

experimented in this thesis. Model architectures and the hyperparameters used to train 

models together with the performance results can be seen in Appendix A. Among these 

models, 33 of them produced higher ROUGE scores than LEAD-5 baseline. Based on 

these 33 models’ ROUGE scores, the most effective pre-trained language model for 

Turkish news is found to be BERTurk base (32K). Therefore, it can be concluded that 

the BERTurk base (32K) performed better than ELECTRA and lower vocabulary size 

(BERTurk base (32K)) enables models to capture token representations more effective 

than larger vocabulary size (BERTurk base (128K)) for Turkish news.  
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Also, architectures like 2-layer or 3-layer Transformer networks with higher 

capacities perform better than simpler ones like simple linear layer or 1-layer 

Transformer networks. This means that the complex networks achieve better 

performance results than simpler ones in this thesis. 

Finally, summing CLS token representations with mean pooling representations 

to represent sentences in summarization model turns out to be the best approach 

compared to other ones considered in this thesis which can be seen in Table 17. The 

proposed approach aggregates contextual token embeddings more suitable in order to 

represent sentences compared to other popular sentence representation approaches. 

Table 17.  Average ROUGE Scores of the Best 33 Models based on Applied Sentence 

Representation Approaches 

Sentence Representation 

Approach 

# of 

models 

ROUGE-1 F 

Score 

ROUGE-2 

F Score 

ROUGE-L 

F Score 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

6 37.68 26.46 37.33 

(CLS Token, Mean pooling) 6 37.74 26.51 37.37 

CLS Token + Mean pooling 8 38.01 26.51 37.63 

CLS Token of the Last Layer 13 37.70 26.46 37.35 

 

 The best model among the 241 models achieves 38.38 ROUGE-1 F score, 26.8 

ROUGE-2 F score and 38.04 ROUGE-L F score. These scores are significantly greater 

than the LEAD-5 baseline score which is a really strong baseline since significant 

sentences are mostly located at the beginning of the main articles to impress the readers. 
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Therefore, the results obtained in this study are promising. The best model uses 

BERTurk base (32K) as the underlying pre-trained language model, and sum of CLS 

token and mean pooling as the sentence representation approach, and put 2 extra 

Transformer network layers. Besides, hyperparameter values for FFN hidden size, 

attention heads, and learning rate are set to 2048, 8, and 1e-4, respectively, and finally 

the model was trained for 5 epochs. To conclude, it is possible to develop a good 

extractive summarization system for Turkish news using the proposed approach. 

 As managerial implications, summarization systems are quite useful in the 

internet era since huge amounts of textual information are broadcasted every time via 

social media, online news websites or blogs. By developing automatic summarization 

systems, users or readers can access required, significant, and actionable information 

and these systems reduce the reading time and the time to access the important and 

relevant information. These systems can be beneficial for various fields. Extractive 

summarization systems can be used in generating summaries of long business reports, 

legal documents, academic papers or news, automatically. The model proposed in this 

thesis can be applied easily to the real-world applications. 
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CHAPTER 6 

FURTHER RESEARCH 

 

In this thesis, the promising results have been achieved since the proposed model 

reached higher ROUGE scores than the LEAD-5 baseline. This is important since the 

LEAD-5 score is very high. The reason why the LEAD-5 score is so high is that the 

collected Turkish news contains the important contents in the very first sentences. In 

other words, the human-written (abstractive) summaries are written by considering 

mostly the first sentences of the main articles as seen in Figure 9. However, there are 

further research opportunities to increase the performance results of extractive 

summarization systems for Turkish news. 

Firstly, the gathered data set size is comparably small, which has 2076 news and 

1476 of them are used for training the model. In the news website the data collected, 

there were no more news and another website could not be found, which has human-

written summaries for Turkish news. For comparison, CNN/Daily Mail dataset has 

around 300K news (See et al., 2017). Although collecting much more news articles with 

the relevant human written summaries may lead to longer training times and also, may 

require higher memory usage and processing power, it is possible to train more robust 

and generalizable summarization models for Turkish news. 

Secondly, extractive summarization systems are directly copying the significant 

and salient sentences occurred in the main articles to generate final summaries. 

However, most of the summarization datasets contain the abstractive summaries. To 

train extractive summarization models, the sentences in the main articles should be 

labelled based on these abstractive summaries. In other words, the extracted sentences 



 

76 

from main articles should contain the most or all of the information given by abstractive 

summaries. In the literature, some heuristic and rule-based approaches are commonly 

used for this label extraction process. The most common one is the greedy approach 

proposed by Nallapati et al. (2016a). This approach selects the sentences so that the 

selected sentence set has the highest possible ROUGE-2 F scores with respect to the 

abstractive summaries. In this thesis, this approach is utilized to determine sentence 

labels. However, this approach is rule-based and does not guarantee the most suitable 

labels (Narayan et al., 2018). In the future research, this process can be done by human 

annotators similar to the work of Cheng and Lapata (2016). The main articles are shown 

to the annotators and they can select the most informative sentences in the main articles. 

The selected sentences are labelled as 1 and the others are labelled as 0. Then, these 

labels can be used to train the summarization models properly, despite the fact that this 

annotation process may be more costly and time consuming for researchers. 

Another future research can be studied for Turkish news extractive 

summarization might investigate other pre-trained language models, which are trained 

with Turkish corpus. During the time this study was conducted, there were only BERT 

(Devlin et al., 2018) and ELECTRA (Clark et al., 2020) for Turkish. However, in the 

future, the other popular language models such as RoBERTa can be trained for Turkish 

and these language models can perform better. 

Finally, in this thesis, the sentences are selected individually based on their 

scores and high scoring sentences generated a final summary. However, this may lead to 

overlooking better candidates since the best possible summaries may not include only 

high scoring sentences as explained by Zhong et al. (2020). They applied Siamese 

networks to measure and learn the similarities between candidate summaries and main 
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articles, as mentioned in Section 2.3. However, training Siamese networks require huge 

memory (RAM) and processing powers (GPU). For example, the MatchSUM model was 

trained with 8 16GB GPUs and the training took 30 hours with these hardware (Zhong et 

al., 2020). In this study, these resources are not accessible and affordable. But, the 

researchers, who have access to required hardware, can train the Siamese networks to 

achieve better performance scores for Turkish news. 
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APPENDIX A 

PERFORMANCE RESULTS OF ALL MODELS 

 

# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

1 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
2048 8 4 5.00E-05 00:01:31 37.46 26.2 37.13 

2 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
2048 8 4 1.00E-04 00:01:31 37.47 26.21 37.11 

3 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
2048 8 4 2.00E-03 00:01:30 37.48 26.13 37.09 

4 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
3072 12 4 5.00E-05 00:01:28 37.6 26.21 37.24 

5 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
3072 12 4 1.00E-04 00:01:32 37.71 26.41 37.36 

6 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
3072 12 4 2.00E-03 00:01:31 37.44 25.87 36.96 

7 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 4 5.00E-05 00:01:36 37.63 26.42 37.28 

8 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:35 37.64 26.41 37.32 

9 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 4 2.00E-03 00:01:34 37.46 26.12 37.08 

10 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 4 5.00E-05 00:01:33 37.58 26.33 37.22 

11 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:36 37.72 26.49 37.36 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

12 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 4 2.00E-03 00:01:37 37.53 26.26 37.14 

13 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:01:40 37.62 26.44 37.27 

14 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:40 37.66 26.45 37.3 

15 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 2.00E-03 00:01:37 37.64 26.16 37.18 

16 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 4 5.00E-05 00:01:39 37.51 26.25 37.16 

17 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:38 37.78 26.5 37.43 

18 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 4 2.00E-03 00:01:40 37.57 26.24 37.19 

19 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
2048 8 5 5.00E-05 00:01:53 37.59 26.23 37.18 

20 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
2048 8 5 1.00E-04 00:01:51 37.69 26.34 37.31 

21 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
2048 8 5 2.00E-03 00:01:48 27.4 15.94 26.75 

22 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
3072 12 5 5.00E-05 00:01:51 37.56 26.15 37.21 

23 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
3072 12 5 1.00E-04 00:01:53 37.74 26.35 37.4 

24 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

1-Layer 

Transformer 
3072 12 5 2.00E-03 00:01:53 37.48 26.15 37.11 

25 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:12 37.69 26.43 37.33 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

26 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:01 37.69 26.46 37.38 

27 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 2.00E-03 00:02:00 37.51 26.08 37.09 

28 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:01:58 37.8 26.53 37.45 

29 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 1.00E-04 00:01:58 37.71 26.49 37.37 

30 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 2.00E-03 00:01:56 37.42 26.12 37.05 

31 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:06 37.68 26.43 37.31 

32 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:05 37.8 26.47 37.41 

33 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 2.00E-03 00:02:01 37.42 25.94 37.03 

34 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:08 37.6 26.32 37.25 

35 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:03 37.66 26.33 37.29 

36 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 5 2.00E-03 00:02:00 37.57 26.21 37.18 

37 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
2048 8 4 5.00E-05 00:01:50 37.41 26.15 37.05 

38 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
2048 8 4 1.00E-04 00:01:48 37.4 26.16 37.04 

39 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
2048 8 4 2.00E-03 00:01:49 27.4 15.94 26.75 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

40 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
3072 12 4 5.00E-05 00:01:52 37.49 26.27 37.11 

41 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
3072 12 4 1.00E-04 00:01:48 37.48 26.3 37.09 

42 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
3072 12 4 2.00E-03 00:01:51 37.46 26.1 37.06 

43 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
2048 8 4 5.00E-05 00:01:51 37.39 26.22 37.03 

44 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:52 37.4 26.2 37.04 

45 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
2048 8 4 2.00E-03 00:01:53 37.4 26.02 37.01 

46 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
3072 12 4 5.00E-05 00:01:54 37.43 26.21 37.08 

47 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:52 37.45 26.26 37.1 

48 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
3072 12 4 2.00E-03 00:01:54 37.49 26.39 37.12 

49 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:01:55 37.38 26.22 37.02 

50 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:53 37.42 26.25 37.07 

51 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
2048 8 4 2.00E-03 00:01:53 37.42 26.19 37.05 

52 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
3072 12 4 5.00E-05 00:01:58 37.47 26.31 37.1 

53 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:57 37.41 26.25 37.06 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

54 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
3072 12 4 2.00E-03 00:01:57 37.5 26.36 37.15 

55 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
2048 8 5 5.00E-05 00:02:16 37.52 26.24 37.17 

56 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
2048 8 5 1.00E-04 00:02:16 37.42 26.21 37.06 

57 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
2048 8 5 2.00E-03 00:02:16 27.4 15.94 26.75 

58 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
3072 12 5 5.00E-05 00:02:15 37.47 26.21 37.1 

59 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
3072 12 5 1.00E-04 00:02:14 37.41 26.21 37.06 

60 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

1-Layer 

Transformer 
3072 12 5 2.00E-03 00:02:14 37.49 26.36 37.12 

61 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:20 37.4 26.16 37.04 

62 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:19 37.61 26.31 37.26 

63 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
2048 8 5 2.00E-03 00:02:20 37.41 26.22 37.03 

64 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:20 37.61 26.33 37.26 

65 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:20 37.59 26.34 37.22 

66 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

2-Layer 

Transformers 
3072 12 5 2.00E-03 00:02:20 37.39 26.23 37 

67 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:25 37.41 26.24 37.07 



 

83 

# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

68 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:25 37.51 26.28 37.19 

69 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
2048 8 5 2.00E-03 00:02:25 37.42 25.99 37.06 

70 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:25 37.43 26.23 37.08 

71 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:25 37.52 26.23 37.18 

72 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

3-Layer 

Transformers 
3072 12 5 2.00E-03 00:02:25 37.5 26.33 37.14 

73 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

Simple 

Linear Layer 
- - 10 5.00E-05 00:06:09 31.45 19.82 30.85 

74 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

Simple 

Linear Layer 
- - 10 1.00E-04 00:06:10 32.58 20.85 32.09 

75 
BERTurk-

Base (32K) 
CLS Token of the Last Layer 

Simple 

Linear Layer 
- - 10 2.00E-03 00:06:10 36.1 24.46 35.81 

76 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

Simple 

Linear Layer 
- - 10 5.00E-05 00:04:25 32.62 20.24 32 

77 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

Simple 

Linear Layer 
- - 10 1.00E-04 00:04:24 33.8 21.37 33.29 

78 
BERTurk-

Base (32K) 
Mean pooling of the Last Layer 

Simple 

Linear Layer 
- - 10 2.00E-03 00:04:24 36.92 24.85 36.56 

79 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
2048 8 4 5.00E-05 00:02:30 37.49 26.4 37.12 

80 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
2048 8 4 1.00E-04 00:02:30 37.49 26.4 37.12 

81 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
2048 8 4 2.00E-03 00:02:32 37.45 26.2 37.1 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

82 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
3072 12 4 5.00E-05 00:02:31 37.49 26.4 37.12 

83 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
3072 12 4 1.00E-04 00:02:32 37.49 26.4 37.12 

84 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
3072 12 4 2.00E-03 00:02:32 37.49 26.4 37.12 

85 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:36 37.49 26.4 37.12 

86 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
2048 8 4 1.00E-04 00:02:36 37.49 26.4 37.12 

87 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
2048 8 4 2.00E-03 00:02:36 37.25 25.42 36.82 

88 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
3072 12 4 5.00E-05 00:02:36 37.49 26.4 37.12 

89 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:36 37.49 26.4 37.12 

90 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
3072 12 4 2.00E-03 00:02:35 37.49 26.26 37.11 

91 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:39 37.49 26.4 37.12 

92 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
2048 8 4 1.00E-04 00:02:39 37.49 26.4 37.12 

93 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
2048 8 4 2.00E-03 00:02:38 27.4 15.94 26.75 

94 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
3072 12 4 5.00E-05 00:02:39 37.49 26.4 37.12 

95 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:38 37.49 26.4 37.12 



 

85 

# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

96 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
3072 12 4 2.00E-03 00:02:38 27.4 15.94 26.75 

97 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
2048 8 5 5.00E-05 00:01:53 37.49 26.4 37.12 

98 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
2048 8 5 1.00E-04 00:01:53 37.49 26.4 37.12 

99 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
2048 8 5 2.00E-03 00:01:55 37.41 25.73 37.02 

100 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
3072 12 5 5.00E-05 00:01:56 37.49 26.4 37.12 

101 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
3072 12 5 1.00E-04 00:01:55 37.49 26.4 37.12 

102 ELECTRA CLS Token of the Last Layer 
1-Layer 

Transformer 
3072 12 5 2.00E-03 00:01:55 37.49 26.4 37.12 

103 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:01 37.49 26.4 37.12 

104 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:01 37.49 26.4 37.12 

105 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
2048 8 5 2.00E-03 00:02:01 37.49 26.25 37.13 

106 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:01 37.49 26.4 37.12 

107 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:01 37.49 26.4 37.12 

108 ELECTRA CLS Token of the Last Layer 
2-Layer 

Transformers 
3072 12 5 2.00E-03 00:02:01 37.42 26.32 37.04 

109 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:07 37.49 26.4 37.12 
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# 
Language 

Model 
Sentence Representation Extra Layer 
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Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

110 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:07 37.49 26.4 37.12 

111 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
2048 8 5 2.00E-03 00:02:06 27.4 15.94 26.75 

112 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:07 37.49 26.4 37.12 

113 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:07 37.49 26.4 37.12 

114 ELECTRA CLS Token of the Last Layer 
3-Layer 

Transformers 
3072 12 5 2.00E-03 00:02:06 27.4 15.94 26.75 

115 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
2048 8 4 5.00E-05 00:01:52 37.49 26.39 37.12 

116 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
2048 8 4 1.00E-04 00:01:51 37.49 26.39 37.12 

117 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
2048 8 4 2.00E-03 00:01:52 37.51 25.92 37.13 

118 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
3072 12 4 5.00E-05 00:02:51 37.49 26.35 37.12 

119 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
3072 12 4 1.00E-04 00:02:50 37.49 26.4 37.12 

120 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
3072 12 4 2.00E-03 00:02:50 27.4 15.94 26.75 

121 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:56 37.49 26.4 37.12 

122 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
2048 8 4 1.00E-04 00:02:57 37.49 26.4 37.12 

123 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
2048 8 4 2.00E-03 00:02:55 27.4 15.94 26.75 
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Language 
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Sentence Representation Extra Layer 

FFN 

Hidden 
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ROUGE-2 

F score 

ROUGE-L 

F score 

124 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
3072 12 4 5.00E-05 00:02:55 37.49 26.39 37.12 

125 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:55 37.49 26.39 37.12 

126 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
3072 12 4 2.00E-03 00:02:55 27.4 15.94 26.75 

127 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:59 37.49 26.4 37.12 

128 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
2048 8 4 1.00E-04 00:02:59 37.49 26.39 37.12 

129 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
2048 8 4 2.00E-03 00:03:01 27.4 15.94 26.75 

130 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
3072 12 4 5.00E-05 00:03:01 37.49 26.39 37.12 

131 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
3072 12 4 1.00E-04 00:03:00 37.49 26.39 37.12 

132 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
3072 12 4 2.00E-03 00:03:00 27.4 15.94 26.75 

133 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
2048 8 5 5.00E-05 00:03:34 37.49 26.39 37.12 

134 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
2048 8 5 1.00E-04 00:03:34 37.49 26.4 37.12 

135 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
2048 8 5 2.00E-03 00:03:34 37.49 26.36 37.12 

136 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
3072 12 5 5.00E-05 00:03:33 37.49 26.39 37.12 

137 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
3072 12 5 1.00E-04 00:03:33 37.49 26.39 37.12 



 

88 

# 
Language 

Model 
Sentence Representation Extra Layer 
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ROUGE-2 
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ROUGE-L 
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138 ELECTRA Mean pooling of the Last Layer 
1-Layer 

Transformer 
3072 12 5 2.00E-03 00:03:34 37.49 26.38 37.12 

139 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:39 37.49 26.39 37.12 

140 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
2048 8 5 1.00E-04 00:03:38 37.49 26.39 37.12 

141 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
2048 8 5 2.00E-03 00:03:39 37.49 26.35 37.12 

142 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
3072 12 5 5.00E-05 00:03:39 37.49 26.38 37.12 

143 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
3072 12 5 1.00E-04 00:03:38 37.49 26.38 37.12 

144 ELECTRA Mean pooling of the Last Layer 
2-Layer 

Transformers 
3072 12 5 2.00E-03 00:03:37 27.4 15.94 26.75 

145 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:48 37.49 26.39 37.12 

146 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
2048 8 5 1.00E-04 00:03:53 37.49 26.39 37.12 

147 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
2048 8 5 2.00E-03 00:03:49 27.4 15.94 26.75 

148 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
3072 12 5 5.00E-05 00:03:48 37.49 26.39 37.12 

149 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
3072 12 5 1.00E-04 00:03:51 37.49 26.38 37.12 

150 ELECTRA Mean pooling of the Last Layer 
3-Layer 

Transformers 
3072 12 5 2.00E-03 00:03:47 27.4 15.94 26.75 

151 ELECTRA CLS Token of the Last Layer 
Simple 

Linear Layer 
- - 10 5.00E-05 00:06:04 27.35 15.89 26.71 
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Sentence Representation Extra Layer 
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Hidden 
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ROUGE-2 
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ROUGE-L 
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152 ELECTRA CLS Token of the Last Layer 
Simple 

Linear Layer 
- - 10 1.00E-04 00:06:03 27.35 15.89 26.71 

153 ELECTRA CLS Token of the Last Layer 
Simple 

Linear Layer 
- - 10 2.00E-03 00:06:03 27.21 15.78 26.54 

154 ELECTRA Mean pooling of the Last Layer 
Simple 

Linear Layer 
- - 10 5.00E-05 00:04:12 28.72 16.65 28.15 

155 ELECTRA Mean pooling of the Last Layer 
Simple 

Linear Layer 
- - 10 1.00E-04 00:04:10 29.62 17.76 29.12 

156 ELECTRA Mean pooling of the Last Layer 
Simple 

Linear Layer 
- - 10 2.00E-03 00:04:09 32.38 20.62 32.03 

157 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:23 37.73 26.25 37.4 

158 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:01 37.91 26.46 37.5 

159 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:28 38.02 26.49 37.62 

160 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:24 38.38 26.8 38.04 

161 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:18 37.76 26.28 37.45 

162 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:50 37.76 26.33 37.43 

163 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:32 37.98 26.44 37.59 

164 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:56 38.03 26.55 37.66 

165 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:55 37.88 26.42 37.49 
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ROUGE-L 
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166 
BERTurk-

Base (32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:37 38.03 26.5 37.6 

167 
BERTurk-

Base (32K) 
(CLS Token, Mean pooling) 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:22 37.42 26.05 37.08 

168 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:59 37.72 26.45 37.32 

169 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:29 37.44 26.03 37.12 

170 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
2048 8 5 1.00E-04 00:03:55 37.52 26.17 37.2 

171 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
3072 12 5 1.00E-04 00:03:38 37.36 25.9 37.03 

172 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:54 37.73 26.48 37.35 

173 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:19 37.48 26.23 37.16 

174 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
2048 8 4 1.00E-04 00:03:00 37.7 26.54 37.36 

175 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
2048 8 4 5.00E-05 00:03:00 37.75 26.56 37.38 

176 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:28 37.52 26.17 37.12 

177 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
6144 24 5 5.00E-05 00:02:23 37.52 26.28 37.15 

178 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
6144 24 4 1.00E-04 00:02:02 27.4 15.94 26.75 

179 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
4096 16 5 1.00E-04 00:02:30 37.49 26.16 37.17 



 

91 

# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 
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180 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
4096 16 5 1.00E-04 00:02:21 37.42 25.99 37.05 

181 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
6144 24 5 1.00E-04 00:02:23 37.51 26.23 37.14 

182 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
6144 24 4 1.00E-04 00:01:56 37.69 26.45 37.34 

183 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
4096 16 5 5.00E-05 00:02:21 37.65 26.37 37.31 

184 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
4096 16 4 1.00E-04 00:01:55 37.83 26.57 37.47 

185 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
4096 16 4 5.00E-05 00:01:55 37.67 26.39 37.33 

186 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
4096 16 5 5.00E-05 00:02:23 37.41 26.1 37.09 

187 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:02:28 37.63 26.29 37.29 

188 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:04 37.49 26.38 37.12 

189 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:04:17 37.5 26.4 37.12 

190 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:03:45 27.4 15.94 26.75 

191 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
3072 12 5 1.00E-04 00:02:27 37.53 26.41 37.18 

192 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:55 37.49 26.31 37.13 

193 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:48 37.36 26.07 37.04 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

194 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:02:02 37.44 26.28 37.07 

195 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:02 37.56 26.41 37.2 

196 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:33 37.74 26.45 37.39 

197 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
9216 36 5 5.00E-05 00:02:39 37.52 26.22 37.21 

198 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
9216 36 4 1.00E-04 00:02:21 37.49 26.41 37.12 

199 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 5 1.00E-04 00:02:47 37.67 26.41 37.32 

200 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
6144 24 5 1.00E-04 00:02:32 37.49 26.2 37.1 

201 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
9216 36 5 1.00E-04 00:02:41 37.49 26.29 37.16 

202 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
9216 36 4 1.00E-04 00:02:06 37.48 26.34 37.11 

203 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

2-Layer 

Transformers 
6144 24 5 5.00E-05 00:02:31 37.67 26.29 37.33 

204 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 4 1.00E-04 00:02:12 37.48 26.25 37.09 

205 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 4 5.00E-05 00:02:12 37.71 26.5 37.34 

206 
BERTurk-

Base (32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 5 5.00E-05 00:02:43 37.85 26.59 37.53 

207 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:03:34 37.76 26.39 37.53 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

208 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:55 37.64 26.16 37.38 

209 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:03:40 37.69 26.07 37.32 

210 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:03:34 37.64 26.22 37.36 

211 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

2-Layer 

Transformers 
3072 12 5 1.00E-04 00:03:34 37.68 26.17 37.35 

212 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:02:51 37.58 26.13 37.23 

213 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:34 37.92 26.37 37.58 

214 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:02:55 37.59 26.09 37.21 

215 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:02:55 37.62 26.11 37.23 

216 
BERTurk-

Base (32K) 

Sum Last Four Layers' CLS 

Token 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:03:40 37.7 26.18 37.35 

217 
BERTurk-

Base (128K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:14 37.83 26.42 37.51 

218 
BERTurk-

Base (128K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 5 5.00E-05 00:02:45 37.62 26.39 37.27 

219 
BERTurk-

Base (128K) 
(CLS Token, Mean pooling) 

3-Layer 

Transformers 
4096 16 4 1.00E-04 00:01:58 27.33 15.88 26.66 

220 
BERTurk-

Base (128K) 
(CLS Token, Mean pooling) 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:01:57 37.49 26.4 37.12 

221 
BERTurk-

Base (128K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:51 37.61 26.22 37.27 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

222 
BERTurk-

Base (128K) 
(CLS Token, Mean pooling|) 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:54 27.33 15.88 26.66 

223 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 5.00E-05 00:01:58 37.49 26.4 37.12 

224 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:38 37.49 26.4 37.12 

225 
BERTurk-

Base (128K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:18 37.6 26.25 37.27 

226 
BERTurk-

Base (128K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 4 5.00E-05 00:02:12 37.49 26.34 37.13 

227 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:31 37.49 26.4 37.12 

228 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 1.00E-04 00:01:55 37.49 26.4 37.12 

229 
BERTurk-

Base (128K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:02:19 37.78 26.37 37.46 

230 
BERTurk-

Base (128K) 
(CLS Token, Mean pooling) 

2-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:51 37.49 26.35 37.12 

231 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 1.00E-04 00:01:59 37.49 26.4 37.12 

232 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 1.00E-04 00:01:54 37.49 26.4 37.12 

233 
BERTurk-

Base (128K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:51 37.6 26.22 37.26 

234 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 1.00E-04 00:01:35 37.49 26.4 37.12 

235 
BERTurk-

Base (128K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
3072 12 4 1.00E-04 00:01:55 37.49 26.39 37.12 



 

95 

# 
Language 

Model 
Sentence Representation Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 

F score 

ROUGE-2 

F score 

ROUGE-L 

F score 

236 
BERTurk-

Base (128K) 

(CLS Token, Mean pooling) 2-Layer 

Transformers 
6144 24 4 1.00E-04 00:01:53 37.49 26.35 37.12 

237 
BERTurk-

Base (128K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:33 37.51 26.28 37.16 

238 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 5.00E-05 00:01:35 37.49 26.4 37.12 

239 
BERTurk-

Base (128K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:14 37.71 26.29 37.39 

240 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:01 37.49 26.4 37.12 

241 
BERTurk-

Base (128K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 5.00E-05 00:02:07 37.49 26.4 37.12 
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APPENDIX B 

TOP-10 PERFORMING MODELS 

AMONG THE INITIAL 158 MODELS 

 

# 
Language 

Model 

Sentence 

Representation 
Extra Layer 

FFN 

Hidden 

Size 

# of 

Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 F 

score 

ROUGE-2 F 

score 

ROUGE-L F 

score 

28 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

2-Layer 

Transformers 
3072 12 5 5.00E-05 0:01:58 37.8 26.53 37.45 

17 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

3-Layer 

Transformers 
3072 12 4 1.00E-04 0:01:38 37.78 26.5 37.43 

11 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

2-Layer 

Transformers 
3072 12 4 1.00E-04 0:01:36 37.72 26.49 37.36 

29 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

2-Layer 

Transformers 
3072 12 5 1.00E-04 0:01:58 37.71 26.49 37.37 

32 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

3-Layer 

Transformers 
2048 8 5 1.00E-04 0:02:05 37.8 26.47 37.41 

26 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

2-Layer 

Transformers 
2048 8 5 1.00E-04 0:02:01 37.69 26.46 37.38 

14 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

3-Layer 

Transformers 
2048 8 4 1.00E-04 0:01:40 37.66 26.45 37.3 

13 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

3-Layer 

Transformers 
2048 8 4 5.00E-05 0:01:40 37.62 26.44 37.27 

25 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

2-Layer 

Transformers 
2048 8 5 5.00E-05 0:03:12 37.69 26.43 37.33 

31 
BERTurk-

Base (32K) 

CLS Token of the 

Last Layer 

3-Layer 

Transformers 
2048 8 5 5.00E-05 0:02:06 37.68 26.43 37.31 
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APPENDIX C 

TOP-25 BEST PERFORMING BERTURK BASE (32K) MODELS’ HYPERPARAMETER 

SETTINGS USED IN BERTURK BASE (128) MODEL EXPERIMENTS 

 

# 
Language 

Model 
Sentence Representation Extra Layer 

FFN Hidden 

Size 

# of Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 F 

score 

ROUGE-2 F 

score 

ROUGE-L F 

score 

160 
BERTurk-Base 

(32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
2048 8 5 1.00E-04 0:02:24 38.38 26.8 38.04 

206 
BERTurk-Base 

(32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 5 5.00E-05 0:02:43 37.85 26.59 37.53 

184 
BERTurk-Base 

(32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
4096 16 4 1.00E-04 0:01:55 37.83 26.57 37.47 

175 
BERTurk-Base 

(32K) 

(CLS Token, Mean pooling) 3-Layer 

Transformers 
2048 8 4 5.00E-05 0:03:00 37.75 26.56 37.38 

164 
BERTurk-Base 

(32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 4 1.00E-04 0:01:56 38.03 26.55 37.66 

174 
BERTurk-Base 

(32K) 
(CLS Token, Mean pooling) 

3-Layer 

Transformers 
2048 8 4 1.00E-04 0:03:00 37.7 26.54 37.36 

28 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 5.00E-05 0:01:58 37.8 26.53 37.45 

17 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
3072 12 4 1.00E-04 0:01:38 37.78 26.5 37.43 

166 
BERTurk-Base 

(32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 5 5.00E-05 0:03:37 38.03 26.5 37.6 

205 
BERTurk-Base 

(32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
6144 24 4 5.00E-05 0:02:12 37.71 26.5 37.34 

11 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 4 1.00E-04 0:01:36 37.72 26.49 37.36 
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# 
Language 

Model 
Sentence Representation Extra Layer 

FFN Hidden 

Size 

# of Attention 

Heads 

# of 

Epoch 

Learning 

Rate 

Training 

Time 

ROUGE-1 F 

score 

ROUGE-2 F 

score 

ROUGE-L F 

score 

29 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
3072 12 5 1.00E-04 0:01:58 37.71 26.49 37.37 

159 
BERTurk-Base 

(32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
2048 8 5 1.00E-04 0:02:28 38.02 26.49 37.62 

172 
BERTurk-Base 

(32K) 
(CLS Token, Mean pooling) 

2-Layer 

Transformers 
3072 12 4 1.00E-04 0:01:54 37.73 26.48 37.35 

32 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 1.00E-04 0:02:05 37.8 26.47 37.41 

26 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 1.00E-04 0:02:01 37.69 26.46 37.38 

158 
BERTurk-Base 

(32K) 
CLS Token + Mean pooling 

3-Layer 

Transformers 
3072 12 4 1.00E-04 0:02:01 37.91 26.46 37.5 

14 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 1.00E-04 0:01:40 37.66 26.45 37.3 

168 
BERTurk-Base 

(32K) 
(CLS Token, Mean pooling) 

3-Layer 

Transformers 
3072 12 4 1.00E-04 0:01:59 37.72 26.45 37.32 

182 
BERTurk-Base 

(32K) 
(CLS Token, Mean pooling) 

2-Layer 

Transformers 
6144 24 4 1.00E-04 0:01:56 37.69 26.45 37.34 

196 
BERTurk-Base 

(32K) 

(CLS Token, Mean pooling, 

|CLS Token-Mean pooling|) 

3-Layer 

Transformers 
2048 8 5 5.00E-05 0:02:33 37.74 26.45 37.39 

13 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 4 5.00E-05 0:01:40 37.62 26.44 37.27 

163 
BERTurk-Base 

(32K) 
CLS Token + Mean pooling 

2-Layer 

Transformers 
2048 8 5 5.00E-05 0:03:32 37.98 26.44 37.59 

25 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

2-Layer 

Transformers 
2048 8 5 5.00E-05 0:03:12 37.69 26.43 37.33 

31 
BERTurk-Base 

(32K) 
CLS Token of the Last Layer 

3-Layer 

Transformers 
2048 8 5 5.00E-05 0:02:06 37.68 26.43 37.31 
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