

A DEEP LEARNING-BASED

EXTRACTIVE TEXT SUMMARIZATION SYSTEM

FOR TURKISH NEWS ARTICLES

ÖZCAN GÜNDEŞ

BOĞAZİÇİ UNIVERSITY

2020

A DEEP LEARNING-BASED

EXTRACTIVE TEXT SUMMARIZATION SYSTEM

FOR TURKISH NEWS ARTICLES

Thesis submitted to the

Institute for Graduate Studies in Social Sciences

in partial fulfillment of the requirements for the degree of

Master of Arts

in

Management Information System

by

Özcan Gündeş

Boğaziçi University

2020

iv

ABSTRACT

A Deep Learning-Based

Extractive Text Summarization System

for Turkish News Articles

The goal of this study is to develop an automated extractive summarization system for

Turkish news using pre-trained language models. Pre-trained language models have

been applied to wide range Natural Language Processing tasks and achieve state of the

art performance results. In this thesis, pre-trained language models for Turkish are

applied on extractive summarization task. The proposed model has a pre-trained

language model and on top of it, Transformer layers are added to capture document level

features and semantic relationships between the sentences in the news articles. Then,

these sentences are scored with sigmoid function, which outputs a real value between 0

and 1. To train this model, 2076 news are collected from well-known Turkish news

website. After the data collection, each sentence in the articles is labelled as 0 or 1 with a

heuristic algorithm. By using these labels, an extractive model is trained. In the test time,

Top-5 scoring sentences are combined to generate final summaries. Also, to investigate

the effects of hyperparameters, 241 different models, which have different architecture

and hyperparameter sets, are run. The best one has achieved 38.38 Rouge-1 F score, 26.8

Rouge-2 F score and 38.04 Rouge-L F score. These scores are promising since they are

significantly greater than LEAD-5 baseline, which has 37.49, 26.4 and 37.12 Rouge F

scores. For this study, LEAD-5 is very strong baseline since the most significant

sentences are placed at the beginning of the news to capture the readers’ attention.

Therefore, the proposed model shows a good performance for Turkish news dataset.

v

ÖZET

Türkçe Haber Metinleri için Derin Öğrenme Tabanlı

Çıkarıcı Metin Özetleme Sistemi

Bu çalışmanın amacı, Türkçe haberler için önceden eğitilmiş dil modellerini kullanarak

otomatik bir çıkarıcı özetleme sistemi geliştirmektir. Önceden eğitilmiş dil modelleri,

birçok Doğal Dil İşleme görevinde kullanılmış ve yüksek performans sonuçları

başarmıştır. Bu çalışmada, çıkarıcı özetleme görevi için derin öğrenme metotları ile

önceden eğitilmiş Türkçe dil modelleri kullanılmıştır. Önerilen mimaride önceden

eğitilmiş dil modeli üzerine, haberdeki belge düzeyindeki özellikleri ve cümleler

arasındaki anlamsal ilişkileri yakalamak için fazladan Transformer katmanları

eklenmiştir. Son olarak, haberde yer alan cümleler 0 ile 1 arasında bir değer üreten

sigmoid fonksiyonu ile skorlanmıştır. Bu modeli eğitmek için, bilinen bir Türkçe haber

sitesinden 2076 haber metni ilgili özetleriyle birlikte toplanmıştır. Veriler toplandıktan

sonra, makalelerdeki her cümle, sezgisel bir algoritma ile 0 veya 1 olarak etiketlenmiş ve

bu etiketler kullanılarak, çıkarıcı özetleme sistemi eğitilmiştir. Modeli test ederken ise

model tarafından en yüksek skoru alan 5 cümle ile haberin özeti üretilmiştir. Ayrıca

hiper parametrelerin etkilerini araştırmak amacıyla farklı hiper parametre setlerine sahip

241 farklı model çalıştırılmıştır. En iyi model 38.38 Rouge-1 F skoru, 26.8 Rouge-2 F

skoru ve 38.04 Rouge-L F skoruna ulaşmıştır. Bu skorlar, 37.49, 26.4 ve 37.12 Rouge F

skorlarına sahip LEAD-5 bazından önemli ölçüde daha yüksek oldukları için umut

vericidir. Bu çalışmada LEAD-5, okuyucuların dikkatini çekmek amacıyla en önemli

cümleler haberlerin başına yerleştirildiği için çok güçlü bir baz oluşturuyor. Dolayısıyla,

önerilen model, Türkçe haber veri seti için oldukça iyi bir performans göstermektedir.

vi

ACKNOWLEDGEMENTS

First of all, I’d like to thank my thesis advisor, Assist. Prof. Ahmet Onur Durahim, for allocating

his time for this research and sharing his knowledge in order to guide me through this research.

Then, I would like to thank my jury members, Prof. Aslı Sencer and Prof. Erkay Savaş for

accepting to attend my thesis jury, allocating their time to evaluate my thesis and their valuable

feedbacks.

 I am grateful to my beloved parents and my dearest little brother Berk Gündeş.

They always support me for every decision that I have made so far. Without them and

their support, I would not achieve anything. They are the most wonderful family.

 I would also like to thank my friends, Başak Kalfa and Orkun Kocatürk for being

with me throughout this thesis process and sharing their valuable feedbacks. Başak is the

one paved my master journey and guided me through all steps. She changed my career.

Also, Orkun is always good listener and makes valuable comments for every situation

with his wide perspective.

 I thank my best friends Ezgi Kurtulmuş, Serhat Say, Çağrı Can and Ekrem

Kürtül for making this long journey bearable and enjoyable. It is always relaxing to have

fun and share my complaints with them.

 My last, biggest, and deepest thanks go to Seden Tezel. She is the most

incredible person who makes my life beautiful. During this thesis, she always smiles me

with her great comments about epochs, greedy algorithms. I sincerely believe that she

will be there for me, for every second in my life.

vii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 Label extraction methods ... 6

2.2 Text representation methods .. 10

2.3 Deep learning models for extractive summarization ... 24

CHAPTER 3: RESEARCH METHODOLOGY .. 35

3.1 Data collection and preprocessing ... 36

3.2 Label extraction .. 38

3.3 Input data preparation for Transformer based pre-trained sentence encoders 41

3.4 Extractive summarization models .. 42

CHAPTER 4: EXPERIMENTS AND RESULTS .. 50

4.1 Hyperparameter selection... 51

4.2 Experimental details ... 56

4.3 Performance results .. 59

CHAPTER 5: CONCLUSIONS AND MANAGERIAL IMPLICATIONS 70

CHAPTER 6: FUTURE RESEARCH .. 75

APPENDIX A: PERFORMANCE RESULTS OF ALL MODELS 78

APPENDIX B: TOP-10 PERFORMING MODELS IN INITIAL 158 MODELS 96

viii

APPENDIX C: TOP-25 BEST PERFORMING BERTURK BASE (32K) MODELS’

HYPERPARAMETER SETTINGS USED IN BERTURK BASE (128K) MODEL 97

REFERENCES ... 99

ix

LIST OF TABLES

Table 1. Sample News with the Corresponding Summary .. 37

Table 2. Turkish News Dataset Statistics .. 38

Table 3. Common Settings for each Experiment .. 51

Table 4. Architectural Settings Used in the Experiments ... 53

Table 5. Training Hyperparameter Sets Used in the Experiments 53

Table 6. Experimented FFN Hidden Size and Number of Attention Heads based on

Sentence Representation Approaches ... 55

Table 7. Hyperparameter Combinations for Models Trained with CLS Token and Mean

Pooling Representations .. 57

Table 8. Total Number of Different Models Trained by Implementing each Sentence

Representation Approach .. 58

Table 9. The ROUGE Scores of ORACLE and LEAD-5 ... 59

Table 10. The Performance Results of Best 33 Models which are Better than LEAD-5

Baseline with Their Corresponding Settings .. 61

Table 11. The Average ROUGE Scores of all 241 Models Generated by Utilizing

Different Pre-trained Language Models ... 63

Table 12. The Average ROUGE Scores of the Models Generated by Utilizing the Same

Settings Except the Pre-trained Language Models ... 64

Table 13. The Average, Maximum and Minimum ROUGE Scores of Best 33 Models

Generated by Utilizing Different Extra Layers ... 65

Table 14. The Average ROUGE Scores of all 241 Models Generated by Utilizing

Different Sentence Representation Approaches ... 67

x

Table 15. The Average ROUGE Scores of the Models Generated by Utilizing the Same

Settings Except the Sentence Representation Approaches 68

Table 16. The Average ROUGE Scores of the Models Generated by Utilizing the Same

Settings Except the Hidden Sizes.. 69

Table 17. Average ROUGE Scores of the Best 33 Models based on Applied Sentence

Representation Approaches... 73

xi

LIST OF FIGURES

Figure 1. Word2Vec algorithms to learn word representations 13

Figure 2. Visualization of sparse and dense representations... 14

Figure 3. Transformer model’s architecture.. 19

Figure 4. BERT input representations ... 20

Figure 5. Pre-training (left) and fine-tuning (right) procedures of BERT 22

Figure 6. The overview of replaced token detection approach 23

Figure 7. Architecture of original BERT and BERTSUM model 30

Figure 8. Overview of the research methodology ... 35

Figure 9. Selection percentages of sentence positions in the main articles 40

Figure 10. The sentence length histogram of the oracle summaries 40

Figure 11. Architecture which uses CLS token representations to represent sentences . 45

Figure 12. Architecture which uses mean pooling to represent sentences 47

Figure 13. Architecture which uses the sum of CLS token and mean pooling to

represent sentences .. 48

Figure 14. Architecture with a simple linear layer .. 49

1

CHAPTER 1

INTRODUCTION

With the internet being an integral part of daily life, people are exposed to a huge

amount of written information. A large amount of textual data is produced at any time

through news sites, social media platforms and blog posts. Hence, text summarization

can provide a more efficient way to reach significant information that appears in huge

amounts of textual data. Executive summaries for business reports, abstracts of academic

papers and online newsletters about specific topics are some examples for potential text

summarization applications. However, summarizing these textual data manually takes a

lot of time.

With the progress of computationally capable hardware and deep learning

techniques, automated text summarization systems are receiving much attention by

natural language processing (NLP) researchers. These systems aim to generate shorter

versions of the original document while preserving its salient and significant information

(Cheng and Lapata, 2016). There are two main techniques for summarization tasks:

extractive and abstractive. Extractive summarization systems generate summaries by

copying and concatenating the most important sentences from the original documents

(See et al., 2017), whereas abstractive summarization systems aim to generate novel

words and phrases not appeared in the original documents with the help of text rewriting

operations such as substitution, reordering (Narayan et al., 2018). Human written

summaries are usually produced as abstractive because they are rewritten by preserving

main ideas in the original document. Extractive approach is easier and usually produces

grammatically and semantically correct sentences by copying sentences directly from

2

the original document (Nallapati et al., 2016a; See et al., 2017; Dong et al., 2018). In

addition, the extractive approach computes faster (Zhong et al., 2020) since it does not

perform language generation or rewriting operations. Because of these advantages of

extractive approach, most of the previous works have focused on this area.

In the previous works, extractive summarization models generally consist of

three main steps. These are representing sentences numerically (sentence

representations), scoring sentences one by one based on their importance in the original

document (sentence scoring) and finally, selecting top scorer sentences to generate final

summary (sentence selection). With the progress of neural networks and deep learning

techniques, modern extractive approaches utilize neural network architectures due to

their ability to learn continuous feature spaces of inputs in order to learn sentence

representations and their relationships with each other. In the training phase, these neural

network based models take the sentence level features of the original document as input

and as a target, they use binary labels for each sentence to indicate whether they should

be included in the final summary or not. In other words, the extractive summarization

task is treated as a sequence labelling problem with a binary classification. For example,

Cheng and Lapata (2016) obtained sentence representations with Convolutional Neural

Networks (CNN) and on top of it, Long Short-Term Memory (LSTM) based Recurrent

Neural Network (RNN) was utilized to score and extract sentences. Similarly, Nallapati

et al. (2016a) run 2-layer Gated Recurrent Unit (GRU) based RNN to generate final

summaries. However, Vaswani et al. (2017) showed that Transformer networks perform

better than RNN and CNN in many NLP tasks since Transformers can capture longer

term dependencies and run in parallel. By training large Transformer networks with

huge dataset, it is possible to learn complex linguistic features and this can boost the

3

performance in NLP tasks. For example, Devlin et al. (2018) offered Bidirectional

Encoder Representations from Transformers (BERT) pre-trained language model. BERT

is a masked language model (MLM) and pre-trained with enormous English corpora and

leads to state-of-the-art performance results on 11 NLP tasks such as machine

translation, question answering and text classification. In the training, authors simply

mask 15% of the input tokens and then predict those masked tokens with the aim of

learning contextual token representations. In addition to BERT, Clark et al. (2020)

proposed the ELECTRA language model. Unlike BERT, ELECTRA is a Replaced

Token Detection (RTD) language model. The authors stated that masking only a small

portion of the input tokens reduces the amount learned from each sentence and leads to

the data inefficiency. Therefore, ELECTRA replaces input tokens with incorrect but

reasonable fake ones and then tries to predict and determine which tokens have been

replaced with fake ones or remained the same. With this way, they believe that it is

possible to learn token representations more effectively compared to BERT and as a

result, ELECTRA achieves better performance results.

After these highly capable pre-trained language models’ development, the

researchers have investigated the effects of these models on extractive summarization.

Best performing models for this task are based on these Transformer based pre-trained

language models like BERT (Bae et al., 2019; Zhang et al., 2019; Zhong et al., 2019;

Liu and Lapata, 2019; Zhong et al., 2020). For example, Liu and Lapata (2019) fine-

tuned the BERT model with extra Transformer layers to generate final summaries. To

get sentence representations in the original document, they use special token

representation, which is [CLS], for each sentence. It is possible to represent sentences

4

with different representation approaches such as taking the average of BERT outputs of

all tokens in each sentence, called as mean pooling.

The NLP community showed great interest in broadening these pre-trained

models’ limits. For example, Schweter (2020) trained both BERT and ELECTRA

architectures, called BERTurk and ELECTRA respectively, with Turkish corpus and

published these models as open source. BERTurk model was trained with two different

vocabulary sizes, 32K and 128K, which are referred as BERTurk base (32K) and

BERTurk base (128K) in this thesis, respectively. The vocabulary size shows the

number of different tokens used in the pre-training step.

The study conducted in this thesis aims to perform extractive summarization for

Turkish news based on pre-trained language models. The main research question is

“how automated extractive summarization can be made for Turkish news?”. In this

context, the main interests of this study are as follows:

• Investigating the effects of the type of pre-trained language models (MLM

with BERTurk and RTD with ELECTRA) on performance results

• Understanding the effect of vocabulary size on performance by utilizing and

comparing BERTurk base (32K) and BERTurk base (128K) models

• Observing the effects of different sentence representation approaches by

proposing new approach

• Investigating the effect of architectural simplicity/complexity on performance

results by putting extra single linear layer and 1, 2 or 3 Transformer layers on

top of pre-trained language models

5

Additionally, the great majority of the summarization datasets in the literature

are in English and there is no commonly used Turkish summarization dataset. In this

study, Turkish news dataset is proposed for the interested researchers with 2076 news

articles with their respective human written summaries.

In this chapter, the main purpose of this research has been introduced. Also,

problem definition, possible solution approaches and contributions made by this study

have been explained. To mention the chapters that will be covered in the rest of this

thesis, Chapter 2 mentions the previous works related to label extraction methods, text

representations with pre-trained word embeddings and language models, deep learning

methods and extractive summarization models which are the main subjects investigated

in this study. Chapter 3 shows and details the methodological steps followed in this

study, while Chapter 4 gives the details of the conducted experiments and the

performance results obtained in these experiments. Chapter 5 presents the details of

conclusion and managerial implications of this thesis topic. Finally, Chapter 7 offers

further research opportunities to point out the possible improvement areas in this study.

6

CHAPTER 2

LITERATURE REVIEW

The goal of this study is to develop a deep learning based automated extractive text

summarization system for Turkish news. In this context, the dataset which consists of

the main article and related human written (abstractive) summary is collected. To

achieve this system, firstly, the sentences in the main article should be labeled based on

whether they should be included in the extractive summary, or not by considering their

relationships with the human written abstractive summary. This step is fulfilled with

label extraction methods. Then, both the main articles and their human written

summaries should be converted into numerical representations so that they can be input

for the deep learning models. Finally, this input is fed to the deep learning algorithms to

train models that output the predicted extractive summaries. For this process, different

label extraction methods, text representation methods and deep learning methods for the

extractive summarization systems are investigated. In this chapter, previous works in the

literature for these topics are mentioned.

2.1 Label extraction methods

Most of the summarization datasets contain abstractive summaries only and hence do

not contain the sentence labels which indicate whether the sentences in the original

article is included in the extractive summary or not. Therefore, the sentence label

extraction from the abstractive summaries is needed to reach ground truth binary labels

and train the extractive summarization systems which can be treated as a sequence

classification problem. In the mentioned problem, each sentence in the original article is

7

visited sequentially, and a binary decision is made if the visited sentence should be

included in the summary or not, by considering previous decisions.

In the literature, there are some commonly used approaches to this problem. For

example, Cheng and Lapata (2016) adopted a rule-based method whether the sentence

should be labelled as 1, which means the sentence must be in the summary or as 0,

otherwise. They trained a separate supervised classifier with 9000 articles by manually

labelling the sentences in each article. The classifier was trained using the following

features; the sentence position in the article, the unigram and bigram overlaps between

the sentence and the related abstractive summary and lastly, the number of entities

appeared in the sentence and the summary. They labelled each sentence individually in

the articles to reach ground truth labels with the help of this classifier. Even though this

method returns more accurate gold extractive labels, it leads to additional annotation

costs (Nallapati et al., 2016a). Moreover, since this method labels the sentences

individually, it often generates too many positive labels and this causes the model to

overfit the data (Narayan et al., 2018).

Another widely used approach for the label extraction is a greedy algorithm

(Nallapati et al., 2016a). In this algorithm, the main idea is that the selected sentences in

articles should maximize the ROUGE (Lin, 2004) score with respect to the gold

summaries. To reach the binary sentence labels, the authors added one sentence

incrementally at a time to the previously selected sentences until the ROUGE score

between the generated subset of the selected sentences (oracle summary) and the gold

summary does not improve. With this way, the selected sentences are labelled as 1 and

the other sentences in articles are labelled as 0. Since the oracle summaries include less

sentences, the process does not require additional labelling effort and the method is

8

computationally cheaper than the Cheng and Lapata (2016) method, it was applied in

most of the best performed studies (Liu and Lapata, 2019; Zhong et al., 2020; Guo et al.,

2020).

As a widely common evaluation metric of summarization systems, ROUGE (Lin,

2004) is a recall-oriented performance evaluation metric which is widely used in natural

language processing tasks, like automatic summarization and machine translation. Since

different tasks require different evaluation approaches, ROUGE metric has different

settings considering the overlapping of n-grams or subsequence between the text output

and the reference text. ROUGE-N Recall is the number of overlapping n-gram words

over the total number of n-grams in reference summary (Equation 2.1). On the other

hand, ROUGE-N Precision is the number of overlapping n-gram words over the total

number of n-grams in predicted summary (Equation 2.2). Finally, ROUGE-N F score is

the harmonic mean of recall and precision scores (Equation 2.3).

𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

(2.1)

𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑁 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

(2.2)

𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝐹 𝑆𝑐𝑜𝑟𝑒

=
2 ∗ (𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙) ∗ (𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙) + (𝑅𝑂𝑈𝐺𝐸 − 𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(2.3)

9

To illustrate the ROUGE calculation, imagine that the reference summary (S1) is

“The doctor arrived late because of the traffic” and the model predicts the output

summary (S2) as “The doctor arrived late due to traffic”. When N parameter is chosen

as 2, the 2-grams (bi-grams) in these sentences are obtained as follows:

S1 = [The, doctor], [doctor, arrived], [arrived, late], [late, because], [because, of],

[of, the], [the, traffic] – 7 bi-grams

S2 = [The, doctor], [doctor, arrived], [arrived, late], [late, due], [due, to], [to, traffic]

– 6 bi-grams

For their intersection, 3 bi-grams are common for both summaries, which are

“[The, doctor], [doctor, arrived], [arrived, late]”. Finally, ROUGE-2 scores between

these two texts are calculated as:

• ROUGE-2 Recall = 3/7 = 0.43

• ROUGE-2 Precision = 3/6 = 0.5

• ROUGE-2 F score = (2*0.43*0.5) / (0.43+0.5) = 0.46

In order to measure fluency between human written and automatically generated

summaries, ROUGE-1 and ROUGE-2 scores are used for specific values of n = 1 and n

= 2, respectively. Besides, ROUGE-L score is calculated to measure the longest

common subsequence overlaps between reference and predicted summary, where n = L.

It is applied for assessing informativeness of the generated summaries with respect to

human written summaries (Liu and Lapata, 2019).

In this study, ROUGE-1, ROUGE-2, and ROUGE-L scores are applied for the

performance evaluation of extractive summarization models. Since it looks for exact n-

gram matching between predicted summary and human written summary, it may lead to

10

low scores even if the compared summaries have the semantically same meaning. But it

is still very useful for machine translation and summarization tasks. Lin (2004) proved

that the ROUGE scores are highly correlated with the human judgments, especially for

single document summarization systems like this study.

2.2 Text representation methods

Natural Language Processing (NLP) aims to give computers reading, understanding, and

generating ability for human languages. However, humans use words and sentences for

communication, whereas computers and machine learning models are not able to process

textual input directly. They can only process numerical inputs. Therefore, the textual

inputs must be converted into numerical representations so that the machine learning

models can interpret and learn the linguistic structures. In the literature, the mapping of

each word or phrase in the textual data to the vector of real numbers was named as

embedding. Embedding and representation terms are used interchangeably in this study.

In the aim of creating machine learning models using textual data, texts like characters,

words, or sentences should be first converted into numerical representations with the

help of these embedding techniques. The selection of the embedding techniques may

have an effect on the applied machine learning algorithms’ performance for downstream

tasks such as text classification, text summarization and machine translation. In the

literature, plenty of methods have been proposed so far. In this section, these methods

and their advantages and disadvantages are mentioned.

11

2.2.1 Bag-of-words (BOW) Approach

BOW is one of the most commonly used embedding methods. In this method, each

document is represented by the importance of the words in the documents. To determine

and measure the importance of these words, the most widely preferred metric is the term

frequency-inverse document frequency (TF-IDF) score. The term frequency reveals the

number of times which a term occured in a given document; while, inverse document

frequency is used to understand how much information a word provides by revealing the

number of documents the word appears in. Moreover, the inverse document frequency

measures the rareness of the given term or word across all documents. TF-IDF scores are

used widely in tasks like search engine ranking, stop-words filtering and text

summarization. The calculation of TF-IDF scores is revealed in Equation 2.4.

𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ log(
𝑁

𝑑𝑓𝑖
) (2.4)

𝑤𝑖,𝑗 = 𝑡𝑓 − 𝑖𝑑𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑡𝑜𝑘𝑒𝑛 𝑖 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗

𝑡𝑓𝑖,𝑗 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛 𝑖 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗

𝑑𝑓𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡𝑜𝑘𝑒𝑛 𝑖

𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

The BoW approach is simple to understand, implement and it achieves great

success in many machine learning tasks. However, it leads to a high dimensional feature

vector due to the large size of vocabulary. In other words, the size of the document

vectors is too large because each document is represented with the number of the times

the word occurs in it and the major portion of the words in the vocabulary are not

occurred in the related documents. Therefore, each document vector contains lots of zero

12

values for the words in the vocabulary, which do not appear in the related document. As

a result of this, the sparsity problem occurs in BOW methods, especially for large

corpora. Also, these methods suffer from ignoring the context, missing the semantic

meaning of the words because they do not consider the positions of the words and their

neighbors in the documents. To capture semantic meaning of the words and overcome

the sparsity problem, semi-supervised techniques for learning word representations by

using very large unlabeled data have been studied. With this way, it is possible to obtain

the dense, continuous and lower-dimensional vector representations in order to acquire

similar vectors for the semantically similar words (Guo et al., 2014).

2.2.2 Pre-trained word embedding models

With the progress in machine learning and computational capability of computers, it

becomes possible to utilize neural networks to obtain word embeddings. Mikolov et al.

(2013) proposed the Word2Vec technique which was based on one hidden layer simple

neural network. With the publication of this study, pre-trained word embedding models

gained popularity. In addition, different pre-trained word embedding models like GloVe

(Pennington et al., 2014) and fastText (Bojanowski et al., 2017) have been proposed.

As an input, Word2Vec (Mikolov et al., 2013) takes a large text corpus. Due to

its semi-supervised nature, it is not required in any labelling process. After taking the

input, the model creates a vocabulary which consists of all words in the corpus and

represents each word with one hot encoded vector which has the value 1 for the related

word index and 0 for the other words. After that step, the center words are paired with

their neighbors in the predetermined maximum distance n and so, window size is equal

to 2n+1. Therefore, there are 2n neighbors for each center word. This is the automated

13

labelling process for Word2Vec. Subsequent to this labelling process, the authors

proposed two algorithms which are continuous bag-of-words (CBOW) and Skip Gram.

By using word-neighbor pairs, the CBOW uses the context words (neighbors) to predict

the center word; whereas, Skip Gram predicts the context words (neighbors) by using

the center word. The representation of these algorithms with maximum distance equals

to 2 and window size 2n+1 equals to 5 can be seen in Figure 1. In the training of this

single layer neural network, the size of the hidden layer is the dimension of final word

embeddings and it is determined as a hyperparameter.

Each word is represented with two vectors, one of them is obtained when it is a

context word and the second one is obtained when it is a center word. After the training

process ends, the final hidden layer weights corresponding to each word's context and

center word representations is averaged and used as its final vector representation.

Figure 1. Word2Vec algorithms to learn word representations (Mikolov et al., 2013)

14

 However, Word2Vec does not consider the co-occurrence counts of these word-

neighbor pairs in the corpus. At this point, Pennington et al. (2014) proposed the GloVe

model by suggesting that the co-occurrence probabilities can encode meaning of the

components. This method operates by calculating the co-occurrence count matrix. In this

matrix, each row represents the center word, and each column represents the context

words (neighbors) that the center word appeared together with. The matrix values state

the frequency of the center word with the neighbors in the corpus. GloVe predicts the

surrounding word which has the maximum probability among the context words given

the center word, by using the log probability of co-occurrence counts to obtain word

embeddings.

 Both Word2Vec and GloVe have the pre-trained dense and continuous word

embeddings, rather than sparse representations as it is seen from Figure 2. In addition,

with these methods, the words which are used in the similar contexts have the similar

vector representations. Hence, the semantic relationships as well as syntactic similarities

can be captured. For example, the distance between the word vectors of “King” and

“Man” is quite similar to the distance between word vectors of “Queen” and “Woman”

in the vector space.

Figure 2. Visualization of sparse and dense representations

15

 These approaches are promising and produce good performance results in most

of the NLP tasks such as machine translation, text summarization and text classification.

Nevertheless, the rare or misspelled words and the words which are not in the training

corpus cannot be represented if that word is not in the training corpus and this leads to

out-of-vocabulary (OOV) problems. In other words, when a word which may be new,

rare or misspelled from the perspective of the training corpus, is encountered in the

inference time, it does not have any proper vector embedding. To overcome this OOV

problem, the character-based n-gram level representations were proposed. One of the

most popular character based embedding methods was proposed by Bojanowski et al.

(2017) and published as an open source library called fastText. FastText has pre-trained

word embeddings in more than 100 languages. Similar to Word2Vec, fastText also has a

simple neural network and its hidden layer parameters are used to represent words or

sentences. But the main difference of fastText from Word2Vec and GloVe, is its

character level architecture. With the help of this character level nature, each word or

phrase can be represented as n-grams. For example, the word “simple” is divided into 3-

gram level as “<si”, “sim”, “imp”, “mpl”, “ple” and “le>” tokens. With this way, the

words, which are not included in the training data but encountered in the inference time,

can have the proper vector embeddings and the risk of occurring OOV problem is highly

minimized.

2.2.3 Pre-trained language models

Even though neural based word embedding methods like Word2Vec, GloVe and

fastText have promising performance results in NLP tasks, they do not consider the

word orders and positions in the text to obtain the embeddings, also, they suffer from the

16

non-contextuality. The non-contextuality problem leads to the same vector

representation for polysemic words although they have different meanings based on the

context. For example, “I have found a solution for the problem.” and “Heat the solution

until it becomes clear.” sentences have word "solution" and they have the same vectorial

representation, which includes both meanings in the related sentences of the training

data, even though they are semantically different.

 More advanced (and deeper) neural network architectures that take context of the

words into account can deal with this polysemy and non-contextuality problem and

hence it can be possible to obtain contextualized word representations. However,

training this deeper and larger networks would be costly and require huge text corpora.

Many studies have focused on these drawbacks and offered pre-trained language models

which are trained with huge corpora and hardware. Pre-trained language models such as

ELMO (Peters et al., 2018), BERT (Devlin et al. 2018) and ELECTRA (Clark et al.,

2020), can be a strong alternative to get word embeddings by overcoming all previously

mentioned problems of sparsity, inability to capture semantic relationship, OOV and

non-contextuality.

 As a definition, language modelling is the task of assigning probability to

sequences by assigning a probability to each token (characters, subwords or words) in a

related sequence with respect to the previous tokens (Goldberg, 2017). In other words,

language models are trained with the aim of predicting the next word given a sequence

of previous words. The common applications of language models are text generation,

machine translation and spelling correction. Since language models consider previous

tokens to determine the next token’s probability, they are unidirectional, which is left to

right, inherently. However, it is important to learn from both directions to obtain

17

contextual word embeddings. For this purpose, Peters et al. (2018) published ELMO

(Embeddings from Language Models). ELMO utilizes 2 bidirectional (both left to right

and right to left) LSTM (long short-term memory) architectures to reach contextual

word representations. LSTM (Hochreiter and Schmidhuber, 1997) is the special kind of

recurrent neural network (RNN). The main advantages of LSTM over standard RNN are

its ability to learn long-term dependencies, which is important to remember the

previously seen important words and to forget the insignificant ones to process the last

ones for the long texts, and to overcome vanishing gradient problem, which occurs in the

backpropagation step to update model parameters by calculating gradients in standard

RNNs for the long texts. The deep biLSTM layers allow ELMO to learn the contextual

meaning of the words in the higher layers and syntactic relationships in the lower layers.

In addition to LSTM layers, ELMO utilizes character level convolutions rather than

word level training to overcome OOV problems. As a result, ELMO is trained for 10

epochs on 1B Word Benchmark dataset (Chelba et al., 2014) with 93.6 million

parameters where the hidden size of biLSTM modules are 4096 and the dimension of the

final embeddings is 512.

Although the specialized RNN network architectures like LSTMs and GRUs

(Gated Recurrent Units) (Cho et al., 2014) proves their effectiveness over the

performance metrics of many NLP tasks, they suffer from the inability to parallelize.

This inability leads to huge memory limitations, computational complexity, and training

time with a large text corpus. In 2017, Vaswani et al. (2017) proposed a new network

architecture called Transformers and they achieved great results in machine translation

and constituency parsing with smaller training costs. Transformers are more

parallelizable than LSTMs and require significantly less training time and also, they can

18

handle long range dependencies easily like LSTMs. The main idea behind them is to

handle input and output dependencies with attention and recurrence. The Transformer’s

architecture (Vaswani et al., 2017) can be seen in Figure 3. The architecture seen on the

left half of Figure 3 is the encoder of the Transformer and the right half is the decoder

part. The number of encoder and decoder units in one Transformer block is the

hyperparameter and in Vaswani et al. (2017), the number of encoder and decoder units

have been chosen as 6. Each encoder is identical and stacked on top of the previous one.

Similarly, each decoder is identical to other decoders and stacked on top of previous

ones. As a working principle, word embeddings and positions of the words in the input

sequence are passed to the first encoder. With the help of multi-head attention and feed

forward structures, they are transformed and moved forward to the next encoder. Then,

the last encoder’s output is passed to all decoders’ multi-head attention parts. Multi-head

attention refers to the computation of multiple self-attention in parallel. Self-attention,

also known as intra attention, is the mechanism of relating different positions in a single

sequence to be able to compute a representation of the whole sequence. These relations

are calculated with scaled dot products between the words in the sequences in (Vaswani

et al., 2017).

19

Figure 3. Transformer model’s architecture (Vaswani et al., 2017)

 With the invention of Transformers, NLP studies accelerated and lots of state of

the art (SoTA) performance results were achieved with the models that incorporate

Transformers in most NLP tasks. One of the most promising models for the language

modeling task is the BERT (Devlin et al., 2018). BERT, which stands for Bidirectional

Encoder Representations from Transformers, is also bidirectional like ELMO as the

name implies. But unlike ELMO, it utilizes Transformer networks instead of LSTMs

and is trained with the subword level tokens rather than character level. For input

representation, BERT uses token, segment and position embeddings of the related token

and represent this token by summing up these 3 types of embeddings as seen in Figure 4.

20

This representation can present both a single sentence (in this case, each token’s

segment embeddings are the same) and a pair of sentences (in this case, for the tokens

which belong to different sentences, they have different types of segment embeddings as

seen in Figure 4) such as question-answers, and machine translation from one language

to another. In this architecture, the first token of every sequence is [CLS] which is the

special classification token. [CLS] token can be used as the aggregate sequence

representation for classification tasks since every token in the sequence is related with

different positions due to self-attention structure in the Transformer blocks. Also, [SEP]

token is a special token used as a separator token (e.g. separating questions with their

answers).

Figure 4. BERT input representations (Devlin et al., 2018)

 In the pre-training phase, the input representations of the tokens are passed into

the bidirectional Transformer encoder blocks. During the training, authors simply mask

15% of the input and then predict those masked tokens similar to the language

modelling. Therefore, this way of approaching to solve the language modelling task is

called masked language modelling (MLM). For the pre-training corpus, the English

model was trained with the BooksCorpus (Zhu et al., 2015), which has 800 million

21

words, and English Wikipedia, which has 2,500 million words. Authors published 2

trained BERT models, Bert-base and Bert-large. In the base model of BERT, there are

12 layers with 768 hidden sizes, 12 self-attention heads and totally 110 million

parameters, whereas in the large model, there are 24 layers with 1024 hidden sizes, 16

self-attention heads and totally 340 million parameters. Vocabulary size which is the

number of subwords in the training corpus is around 30K for both Bert-base and Bert-

large models. To fine-tune these BERT models for the downstream NLP tasks such as

text classification, question answering and part-of-speech (POS) tagging, the only

requirement is the labelled dataset for these tasks. Fine-tuning BERT with the task

related datasets leads to very high performance results according to the study. Therefore,

fine-tuning the BERT and obtaining the sentence and token representations by using the

BERT model as the textual feature extractor is quite common in the previous NLP

studies. The pre-training and fine-tuning for classification task procedures of the BERT

are shown in Figure 5. For example, for sentiment analysis task, the input text and

related sentiment were fed into the BERT model and [CLS] token representations were

used to reach the sentence embedding. By using a single linear classification layer over

these [CLS] representations, the model can be fine-tuned where the corresponding

model parameters are updated. When fine-tuning the BERT for a specific task,

parameters in BERT are jointly fine-tuned/updated with additional task specific

parameters, unlike ELMo, whose parameters are usually fixed and only the task specific

parameters are learned (Liu and Lapata, 2019).

22

Figure 5. Pre-training (left) and fine-tuning (right) procedures of BERT

 Even though the BERT model has become one of the major breakthroughs in

NLP research, there are some known limitations. According to the Devlin et al. (2018),

their BERT model is creating a discord between pre-training and fine-tuning because

[MASK] tokens are never seen during the fine-tuning phase. These tokens are utilized

only in the training time to train the language model. In addition to this mismatch,

masked language modelling in BERT has been masking only 15% of tokens in each

sentence and this reduced the amount learned from each sentence leading to the data

inefficiency. To address these problems, Clark et al. (2020) presented the ELECTRA,

which stands for Efficiently Learning and Encoder that Classifies Token Replacements

Accurately, and as its name implies, it uses a different approach to pre-train language

models with the aim of providing the benefits of BERT in a more data efficient manner.

Unlike BERT, ELECTRA uses replaced token detection (RTD) instead of MLM. The

RTD trains a bidirectional model like MLM but learns from all input positions. To

accomplish this, instead of replacing tokens with masking them as in BERT,

23

ELECTRA’s generator model replaces input tokens with incorrect but reasonable fake

ones via its small language model. Then, the discriminator model tries to predict and

determine which tokens in the original sequence have been replaced with fake ones or

remained the same. The simplified version of ELECTRA’s working principle is shown

at Figure 6. Since binary classification is performed over every input token rather than

only 15% of all input tokens as in BERT, ELECTRA can achieve the same performance

by using fewer examples. The main reason for this efficiency increase is that the

ELECTRA takes more signal per example (Clark et al., 2020). After the training phase,

the generator part is dropped, and the discriminator model is ready to use for fine-tuning.

The base model of ELECTRA has the same number of layers (12), hidden size (768) and

parameters (110 million) with the BERT base model. But ELECTRA base models’

performance scores are higher than the BERT large model, as shown in the ELECTRA

study, (Clark et al., 2020). This proves their efficiency claims.

Figure 6. The overview of replaced token detection approach (Clark et al., 2020)

 Both BERT (Devlin et al., 2018) and ELECTRA (Clark et al., 2020) language

models were trained with English text corpus. Since their source codes are open, the

NLP community trained these models for different languages. For example, Schweter

(2020) presented the BERT and ELECTRA models for Turkish, called BERTurk and

24

ELECTRA, respectively. These models have the same architecture with original ones

and the only difference from them is the language and size of the training corpora. Both

models were trained with 35GB Turkish textual data, which has 4,4 million tokens. The

data includes Turkish OSCAR corpus, Wikipedia, various OPUS corpora and a special

corpus provided by the community. As a result of the BERTurk training process, 2

different pre-trained BERTurk models were published. The difference between the

models is the vocabulary size. The vocabulary size, that is the number of word-piece

tokens, of the BERTurk base (32K) model is 32K, whereas the vocabulary size of the

BERTurk base (128K) model is 128K.

2.3 Deep learning models for extractive summarization

Automated text summarization gains popularity with the progress of computer

capabilities and the emergence of deep artificial neural networks. With the help of the

deep learning models which consist of neural networks with several layers, the higher-

level textual features such as interrelation between sentences and the semantic

understanding of the sentences can be learned.

 Extractive summarization systems generate the summary by determining and

selecting the most significant and salient sentences in the input document by scoring

them with different techniques. Several studies about the extractive summarization were

proposed in the literature. However, a major portion of these applied over the English

texts. There is a considerably small number of studies focused on the low resource

languages such as Turkish. The most commonly used dataset for the multi-sentence

summary text summarization is the CNN/Daily Mail dataset. This dataset consists of

311,971 English news with their related multi-sentence human written (abstractive)

25

summaries (Nallapati et al., 2016b). The data has been preprocessed so that each entity

occurrences are replaced with document-specific integer-ids beginning from 0 to

decrease the vocabulary size. As the dataset statistics, it has 286,817 (92% of all dataset)

training articles, 13,368 (4% of all dataset) validation articles and 11,487 (4% of all

dataset) test articles. The main articles in the training set have 766 words with 29.74

sentences on average, whereas the human written summaries consist of 53 words and

3.72 sentences on average. Moreover, there is a leaderboard for this dataset to show the

performance results of the competitive extractive summarization approaches (Ruder,

2020). The best performing methods are sorted by their final ROUGE-L F scores

obtained from the test set.

 One of the earliest extractive summarization approaches over this dataset belongs

to Nallapati et al. (2016a). They treated the extractive summarization as a sequence

classification problem. For this problem, each sentence is scored with respect to the

probability of being included in the final summary based on the sentence features, which

are its content richness, its salience with respect to the main article, its novelty with

respect to the previously selected sentences to form the extractive summary and lastly,

its position in the main article. To train the model with this approach, each sentence in

the main article needs to be labelled as 0 or 1 depending on whether that sentence should

be excluded or included in the final summary, respectively. For this labelling process,

they proposed a greedy algorithm as mentioned in Section 2.1.

 Their model, called SummaRuNNer, has 2-layer bidirectional GRU networks. Its

input is the 100-dimensional Word2Vec embeddings of each word in each sentence. The

bottom layer takes these input representations and runs at the word level to compute

hidden state representations for each word by considering representations of previous

26

and next words. This layer outputs each word’s hidden state representations and by

concatenating them and taking average over the word count for each sentence in the

main article, the initial sentence representations are obtained. The upper biGRU layer

runs over the sentences by taking the initial sentence representations outputted from the

bottom layer. The hidden states of this upper layer encode the contextual sentence

representations. Finally, one logistic layer makes a binary decision over these

representations to calculate the cross-entropy loss (Equation 2.5) by considering whether

the selected sentences by the SummaRuNNer are correctly chosen based on their labels.

In the inference time, each sentence in the main article belonging to the test set articles is

scored by the model and top 3 scored sentences are chosen to generate the final

summaries. Finally, they achieved a 35.5 ROUGE-L F score.

𝐶𝐸 = −
1

𝑁
∗ ∑ 𝑦𝑖 ∗ log(𝑡𝑖) + (1 − 𝑦𝑖) ∗ log(1 − 𝑡𝑖)

𝑁

𝑖

 (2.5)

𝐶𝐸 = 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠

𝑦𝑖 = 𝑎𝑐𝑡𝑢𝑎𝑙 (𝑡𝑟𝑢𝑒) 𝑙𝑎𝑏𝑒𝑙 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖

𝑡𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖

𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

In 2017, See et al. (2017) proposed the non-anonymized version of CNN/Daily

Mail. The only difference of this dataset from the previous anonymized one is that the

entities in the main articles are not replaced with any values. The main reason that

Nallapati et al. (2016b) replaced the entities with unique integers was to decrease

vocabulary size. But See et al. (2017) stated that using non-anonymized (original)

dataset is more favorable because it does not require a preprocessing step. Even though

27

See et al. (2017) focused on abstractive summarization and there is no extractive model

proposed in their study, the authors showed that simply selecting the first 3 sentences

from the main article to generate the final summaries (LEAD-3) leads to a 36.6

ROUGE-L F score. LEAD-3 is often used as a baseline in the extractive summarization

field. In the following works, the non-anonymized version of CNN/Daily Mail dataset is

used.

 Training extractive summarization models with the cross entropy loss (Equation

2.5) and evaluating the performance of models with ROUGE scores renders a mismatch

between what is being optimized and what is being used as the performance metric

(Narayan et al., 2018) and also, the cross entropy loss may cause underfitting since it

only maximizes the probabilities for the sentences labelled as 1 and ignores all 0 labelled

sentences (Bae et al., 2019). To globally optimize ROUGE metrics, Narayan et al.

(2018) proposed REFRESH model which applies reinforcement learning to achieve

optimal ROUGE scores. The words in each sentence in the main articles are initialized

with 200 dimensional Word2Vec embeddings and passed into a convolutional neural

network (CNN) to obtain the sentence representations. After that, these sentence

representations are fed into the LSTM network, and then the output of the LSTM

network is used as the main article representation. On top of this LSTM layer, one more

LSTM network is put to read a sentence representation from the CNN layer and make a

binary prediction for this sentence conditioned on the main article representation taken

from the former LSTM layer and the selected sentences in the previous time steps. Then,

the result of binary predictions is used to rank sentences with the softmax layer’s scores.

Higher rank means higher possibility of being in the final summary. To train this model,

reinforcement learning based objective function is used with the aim of generating a

28

final summary that should have the maximum ROUGE score based on the actual human

written summary. The training process took around 12 hours on a single GPU. Finally,

REFRESH achieves a 36.6 ROUGE-L F score which is equal to the baseline LEAD-3

approach.

 With the emergence of Transformer architecture (Vaswani et al., 2017) and pre-

trained language models, the extractive summarization approaches got more capable of

producing better performances like the other NLP tasks. In 2019, Zhang et al. (2019)

proposed HIBERT, which stands for hierarchical bidirectional encoder representations

from Transformers. The authors stated that the pre-trained models like BERT (Devlin et

al., 2018) aim to pre-train in word level contextual embeddings based on the sentence

words appeared in. However, HIBERT aims to pre-train hierarchical document encoders

for the summarization task since it requires document level encodings rather than

sentence level. HIBERT is inspired by the original BERT model but it has three

Transformer networks, two of them used for encoding and last one is allocated for

decoding, rather than single layer Transformer used in BERT. The first Transformer

network runs over word level to encode sentences and the second one runs over the

sentence representations outputted from the first one in order to come up with the

document representations. In this second Transformer network, some sentences are

masked, similar to the word masking used in BERT, and these masked sentences are

predicted by the third (decoder) Transformer network. Instead of fine-tuning the BERT

model, the authors trained HIBERT in an unsupervised manner from scratch with

GIGA-CM dataset which has almost 7 million documents. This training process took

around 20 hours for each epoch with 8 NVIDIA Tesla V100 16GB GPUs and in total the

model is run for 45 epochs. After the training process was completed, they fine-tuned

29

the model for the extractive summarization with CNN/Daily Mail. After obtaining the

main document based contextual sentence representations, they put one simple linear

layer with softmax function to reach the probabilities of the sentences being in the final

summary. These probability scores are compared with the true labels obtained from the

greedy algorithm (Nallapati et al., 2016a) and the cross-entropy loss is calculated to

update the model parameters. With this pre-training approach, training a new language

model from scratch like BERT and then fine-tuning it with the CNN/Daily Mail dataset,

they achieved 38.83 ROUGE-L F score which is a significant improvement as compared

to the scores of the previous works.

 Training of these large language models from scratch can be very costly and time

consuming. As stated, HIBERT was trained around 900 hours with eight 16GB GPUs.

Therefore, fine-tuning pre-trained language models by manipulating them based on the

task is a more feasible solution with respect to computational cost. For example, Liu and

Lapata (2019) proposed the BERTSumExt method within which they encode and

manipulate multi-sentential inputs and proposed a novel BERT architecture for

extractive summarization called BERTSUM. They have added external [CLS] tokens to

the beginning of each individual sentence in the main article together with using interval

segment embeddings in order to differentiate those multiple sentences in the document.

Interval segment embeddings were assigned considering the order of the sentences. For

example, segment embedding for the sentence(i) is assigned depending on if index i is

odd or even. These changes made over the original BERT architecture can be seen in

Figure 7. The architecture on the left of the figure shows the input formation of the

original BERT method, whereas the architecture on right illustrates the BERTSUM

30

settings. In BERTSUM, the green items show the interval segment embeddings created

to distinguish the sentences.

Figure 7. Architecture of original BERT and BERTSUM model (Liu and Lapata, 2019)

 The BERTSUM model takes the embeddings of the words in the main articles

computed considering the segment and position embeddings as input and by passing

them into the BERT Transformer layers, it outputs the token representations as seen in

Figure 7. By using each CLS token, it is possible to reach each sentence representation

in the main article. Due to the self-attention mechanisms in the Transformer networks,

the CLS tokens can encode information obtained from all the tokens in the same

sentence.

 The authors added several inter-sentence Transformer layers on top of the

BERTSUM to capture document level features. These layers take the CLS token

embeddings as the related sentence representations, calculate document level features

and output the learned document specific sentence representations. Finally, these

representations are classified with the sigmoid classifier to determine their labels. Based

on the experiments to determine the optimum number of extra Transformer layers, 2

extra layers performed best. They called this final model as BertSumExt. In the training,

31

cross entropy loss function was applied. During the prediction of sentences of the

summary, they have used this model to calculate scores of each sentence and then rank

them from highest to lowest, and finally, select the top scored 3 sentences. In addition to

the selection phase, they have applied a method called Trigram Blocking which ensures

that there is no trigram overlapping between the summary and the candidate sentence to

reduce redundancy as a post processing step. This model has reached 39.63 ROUGE-L F

score by using the base version of BERT and 39.90 score with the large version of

BERT.

 Even though the BertSumExt produced high performance results and took the

leadership in the extractive summarization leaderboard for CNN/Daily Mail dataset, it

works at the sentence level. That is, although the sentence representations can reflect

document level features, they are chosen individually based on their scores at the end.

Zhong et al. (2020) addressed this problem with their MatchSum approach. They stated

that the output summaries consist of the individual sentences having the highest ROUGE

scores in the sentence level studies. However, the summary containing these sentences

may not be the optimal candidate summary for the related main article. Therefore, it is

needed to use summary level extractors rather than sentence level ones for the extractive

summarization. Unlike sentence level extractors, summary level ones choose the best

candidate summary based on their ROUGE scores with human written summary and it

may not contain the highest scorer sentences.

 The authors formulated their approach as semantic text matching. In this

approach, better candidate summaries should be semantically closer to the main article,

while the human written summary should be the closest one. This approach can generate

better summaries as compared to sentence level approaches. To support this, they

32

conducted experiments over different datasets and they found out that if the summaries

are too short like 25-30 words or if the summaries are too long like 200+ words, their

approach does not lead to much improvement. However, for a medium length summary

around 50-100 words like the ones in the CNN/Daily Mail dataset, the summary level

approach can be rewarding.

 They have formulated the problem by first constituting all possible N sentence

combinations of the sentences in main articles to generate all possible candidate

summaries. For example, N is set to 2 and 3 for the CNN/Daily Mail dataset. After the

candidate summaries are determined, their ROUGE scores, which are based on the

human written (abstractive) summary, are calculated and they are sorted in descending

order. Then, the candidate summary and the main article are fed into the Siamese BERT

network, which consists of two BERTs with tied-weights and a cosine similarity layer in

the inference phase. To determine the cosine similarity, the CLS token representations of

both main article and candidate summary is used. As mentioned previously, the best

candidate summary should have the highest similarity score compared to the other ones,

while the human written summary should have the higher similarity score with respect to

the main article than all candidate summaries. To guarantee these constraints (Equation

2.7 and 2.6, respectively), the authors used a margin-based triplet loss function

(Equation 2.8) to update the weights of the Siamese BERT network. In Equation 2.6, the

first function f calculates the cosine similarity between the main article D and candidate

summary C, whereas the second one calculates the cosine similarity between the main

article D and human written summary C*. With margin 𝛾1, it is aimed that the second

similarity score should be higher than the first score. In Equation 2.7, firstly all

candidate summaries are sorted in descending order of ROUGE scores with the human

33

written summary. The candidate pair with a larger ranking gap should have a larger

margin, which is (j-i)*𝛾2. Also, the higher scorer candidate summary, Ci should have a

higher similarity score based on the main article D compared to lower scorer candidate

summary Cj. Finally, in Equation 2.8, the losses, which are calculated in Equation 2.6

and Equation 2.7, are summed up to obtain the total loss.

ℒ1 = max (0, 𝑓(𝐷, 𝐶) − 𝑓(𝐷, 𝐶∗) + 𝛾1) (2.6)

ℒ2 = max (0, 𝑓(𝐷, 𝐶𝑗) − 𝐹(𝐷, 𝐶𝑖) + (𝑗 − 𝑖) ∗ 𝛾2 (𝑖 < 𝑗) (2.7)

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = ℒ1 + ℒ2 (2.8)

 Although this matching idea is quite intuitive, it suffers from considering the

large number of candidate summaries. For example, CNN/Daily Mail articles have 30

sentences on average and taking both 2 and 3 sentence combinations of them results in

4495 possible candidate summaries for each article. To handle this problem, the authors

prune the documents by selecting the most K salient sentences in the main articles and

they have chosen K as equal to 5 for the CNN/Daily Mail dataset. So, for each main

article, they chose 5 sentences and took 2 and 3 sentences of them to generate 20

candidate summaries in total for each main article. To prune the main articles, they

employed BertSumExt (Liu and Lapata, 2019) approach to calculate sentence scores and

then, they obtained the top 5 scoring sentences and used them to generate the candidate

summaries.

 They trained MatchSum model’s Siamese Bert networks with eight Tesla V100-

16GB GPUs and the training took around 30 hours. In the inference time, the main

34

articles’ candidate summaries are generated and based on the Siamese Bert networks,

their vector representations are calculated. Finally, the one with the highest cosine

similarity with the main article’s vector representation is chosen as final extractive

summary. The MatchSum with Siamese Bert achieved a 40.38 ROUGE-L F score. After

obtaining this score, the authors change Bert encoder in the Siamese network with

RoBERTa (Liu et al., 2019) encoder which is also a pre-trained language model similar

to BERT, but it is pre-trained with 63 million English news. As a result of this change,

MatchSum achieved slightly higher performance score in CNN/Daily Mail which is

40.55 ROUGE-L F score. The authors explained this improvement as the similarity

between the training corpus of RoBERTa and the fine-tuning dataset which is

CNN/Daily Mail news. As a result, 40.55 ROUGE-L F score is the highest score

achieved for CNN/Daily Mail dataset.

 With the aim of achieving promising performance scores for the Turkish news

dataset gathered for this thesis, the different Transformer architectures proposed in the

literature are manipulated with different settings and hyperparameters.

35

CHAPTER 3

RESEARCH METHODOLOGY

In this section, detailed explanations of the approach followed in the extractive

summarization for Turkish news in this thesis are given. Firstly, the data collection steps

are given, and the collected data is investigated with descriptive statistics after

performing data preprocessing steps. Secondly, the label extraction method that is

applied to obtain gold label extractive summaries from the human written (abstractive)

summaries is described. Then, input data preparation steps taken in order to make raw

data suitable for the proposed models are stated. Finally, the details of the proposed

summarization model are explained. The overview of the research methodology

followed in this thesis can be seen in Figure 8.

Figure 8. Overview of the research methodology

36

3.1 Data collection and preprocessing

Since most of the summarization corpora is in English and there is no suitable multi-

sentence summarization dataset available in Turkish in the literature, a new corpus for

Turkish news summarization is required to be created. In order to do so, the well-known

news website, which has both long texts together with their human written (abstractive)

summaries was discovered as seen in Table 1.

 In this thesis, a news website was crawled to constitute Turkish news dataset by

using the Python Selenium library. Then, the collected texts (both main articles and their

respective human written abstractive summaries) were preprocessed. The applied

preprocessing steps were converting text to lowercase, removing URLs, hashtags, some

special characters such as “|”, stripping off the excess white spaces in order to help the

tokenization process to tokenize the sentences in the texts properly and finally, dropping

duplicate news if they have the same content. As a result of the preprocessing steps, the

final dataset has 2076 news and the related statistics regarding the dataset can be seen in

Table 2. The average news length is almost 20 sentences with 359 words and the

average human written abstractive summary length is almost 5 sentences with 84 words.

Both word and sentence level compression ratios, defined as the length of news divided

by the length of summaries, are quite similar to each other which are 4.24 and 4.26,

respectively. Additionally, the dataset novelty, which is the percentage of bi-grams in

the gold abstractive summary that are not included in the related article, is 34.83%. This

statistic is a proxy for the abstractiveness and shows the suitability of the dataset in

terms of extractive or abstractive summarization (Scialom et al., 2020). Based on this,

the dataset is highly suitable for extractive settings since the novelty is quite low. For

comparison, novelty of the most widely used dataset CNN/Daily Mail is around 52%

37

(Liu & Lapata, 2019). Finally, the Turkish news dataset has almost 72K different words

and 8K of them are occurring more than 10 times.

Table 1. Sample News with the Corresponding Summary (Sonmez, 2016)

Main Article

Facebook’un CEO’su Mark Zuckerberg İspanya /

Barselona’daki Mobile World Congress kapsamında

düzenlenen Samsung etkinliğinde sahne aldı. Sanal

gerçeklik ile ilgili bir sunum yapan Zuckerberg

Facebook’un geleceğinin yapay zekada yattığını

söyledi. Sanal gerçeklikle ilgili “Sizi sarmalayacak,

insanları bir araya getirecek ve bütün bunlar

düşündüğünüzden çok daha yakında gerçekleşecek”

şeklinde konuşan Zuckerberg “Uzun süredir bu

deneyimi insanlara yaşatabilmeyi bekliyordum,

şimdi o gün geldi” şeklinde heyecanını dile getirdi.

Pazar günü düzenlenen Samsung etkinliğinde,

Facebook ve Samsung’un ortak çalışmasının ürünü

olan 360 derece fotoğraf ve video kaydı yapabilen

Gear 360 tüketiciye tanıtıldı. Geçtiğimiz Kasım

ayında Samsung 360 derece video izlemeye olanak

sağlayan bir sanal gerçeklik cihazını tanıtmıştı. Gear

VR adlı bu ürün Facebook’un 2014’te 2 milyar dolar

gibi iddialı bir bedel ödeyerek bünyesine kattığı

sanal gerçeklik şirketi Oculus’un teknolojisini

kullanıyor. 99 dolara satışa sunulan ürün, içine

(ekran ve ana işlemci görevi üstlenen) uyumlu bir

Samsung telefon yerleştirilerek kullanılıyor.

Zuckerberg “Sanal gerçeklik herkesin, istediği her

şeyi üretip deneyimleyebileceği yeni platform. Çok

yakında herkes, sahnelerin tamamını sanki

oradaymış gibi deneyimleyebilecek” şeklinde

hayalini özetledi.

Human-written Summary

Barcelona'da gerçekleştirilen basın toplantısında

Facebook-Samsung ortak çalışmasının ürünü 'Gear

360' tanıtıldı. Oculus ve Facebook'un sahibi Mark

Zuckerberg'e göre sanal gerçeklik sayesinde çok

yakında yepyeni bir dönem başlayacak.

38

Table 2. Turkish News Dataset Statistics

Dataset Size 2,076

Training/Valid/Test Sets Size 1,476/300/300

Sentence-level News Length 19.96 ± 9.81

Sentence-level Summary Length 4.71 ± 2.45

Sentence-level Compression Ratio 4.24

Word-level News Length 359.06 ± 168.49

Word-level Summary Length 84.29 ± 34.36

Word-level Compression Ratio 4.26

Novel bi-grams in Gold Summary 34.83%

Total Vocabulary Size 71,547

Total Vocabulary Size (Occurring 10+ Times) 8,243

3.2 Label extraction

Like the other widely used summarization datasets, the collected dataset does not

contain the sentence labels which indicates whether the sentence is included in the

extractive summary. Therefore, the sentence label extraction from the abstractive

summaries is needed to reach ground truth binary labels to train the extractive

summarization systems as mentioned in Section 2.1.

 In order to avoid extra annotation costs and the overfitting risk, the rule-based

label extraction method proposed by Cheng and Lapata (2016) is not preferred as the

39

label extraction method in this thesis. Rather, the greedy algorithm (Nallapati et al.,

2016a) is applied since it is cheaper and preferred by the best systems proposed in the

literature.

 To implement this algorithm, the original articles are tokenized into sentences by

using the Python nltk package (Bird, Klein and Loper, 2009). Then, the sentence in the

article which has the highest ROUGE-2 F1 score with respect to the related gold

abstractive summary is selected. Following that, the remaining sentences are added to

the first chosen sentence, one at a time until the ROUGE-2 F1 score does not improve

anymore. Finally, sentences selected in this way by the greedy algorithm are labelled as

1 and the remaining ones are labelled as 0. Additionally, selected sentences are

combined to constitute the ORACLE (gold extractive) summaries which will be used to

compute the upper bound for the performances of the extractive summarization models.

 After the label extraction step, the dataset contains both the original article,

abstractive summary, and extractive sentence labels. To see the most salient sentences’

positions in the original article based on the extracted labels, the sentence positions with

respect to the percentage of those sentences included in the respective oracle summaries

are plotted and shown in Figure 9. As seen, there is no uniform distribution between the

positions. Almost 68% of the first sentences and 59% of the second sentences in the

input document are included in the oracle summaries. This observation supports the

claims of See et al. (2017) about the news datasets that the news articles are generally

structured with the most significant and salient sentences at the beginning in order to get

attention from the readers. Therefore, Lead-N, which is selecting the top-N sentences

from the news, is the most basic but effective approach for the extractive summarization

systems developed for the news. Since in the major portion of the oracle summaries in

40

the dataset, the number of sentences is in range between 0-5, as seen in Figure 10, and

the average sentence length of the gold summaries is almost 5, the performance Lead-5

approach is taken as the lower bound for the extractive summarization models.

Figure 9. Selection percentages of sentence positions in the main articles

Figure 10. The sentence length histogram of the oracle summaries

41

3.3 Input data preparation for Transformer based pre-trained sentence encoders

Transformer based pretrained language models like BERT (Devlin et al., 2018) and

ELECTRA (Clark et al., 2020) have been applied in most of the NLP tasks as encoders

to represent words and sentences. However, summarization requires deeper document

level understanding and transformer based pretrained language models, which are

trained as masked language models, learn to represent tokens instead of representing the

individual sentences (Liu and Lapata, 2019). In order to overcome this inability of pre-

trained masked language models for summarization tasks, each sentence in the article

should be represented not only individually but also, should contain the semantic

information from the other sentences in the same article. Therefore, input data must be

manipulated with some extra preparation as detailed below.

 First, each article tokenized into sentences with Python nltk library. Then, [CLS]

and [SEP] tokens were added at the beginning and end of the sentences in the original

article, respectively. So, BERTurk and ELECTRA language models can detect the

sentence boundaries with the aim that each [CLS] token can collect and absorb

important features for the sentence it represents. After that, by using BERTurk base

tokenizer and ELECTRA base tokenizer, the articles and the summaries are tokenized to

reach the input indexes of each token based on the related tokenizer. Since both

BERTurk and ELECTRA language models were trained with 512 tokens, sub word

level truncation and padding operations were applied to each article so that each has 512

tokens. Finally, the attention masks are added in order to indicate padding tokens and

avoid performing attention on them. In other words, masking the padded inputs helps the

self-attention mechanism to attend only required information.

42

 Since the summarization task requires to distinguish multiple sentences in the

article, interval segment embeddings were used for that purpose. 0 was assigned to the

tokens in i-th sentence, if i is even and 1 was assigned to the tokens in i-th sentence, if i

is odd. With this way, article representations can be learned hierarchically (Liu and

Lapata, 2019).

 Consequently, token indexes of the original articles, CLS (starting) positions of

the sentences, sentence labels, interval segment embeddings and the token indexes of the

gold summaries are obtained for the sentence encoders, BERTurk and ELECTRA

separately. The contextual sentence representations for each article can be obtained by

fine tuning pretrained language model encoders with this dataset and then used to

perform sentence scoring and selection for extractive summaries.

3.4 Extractive summarization models

Extractive summarization intends to choose the most salient and significant sentences

from the original input article in order to generate a summary of it. Treating the

extractive summarization as a sequence labelling problem, a binary decision is required

to be made for each sentence in the main article by assigning scores to them. Previously,

this approach proves its effectiveness and achieves high ROUGE scores (Cheng and

Lapata, 2016; Nallapati et al., 2016a; Liu and Lapata, 2019).

 The selection of model architecture yields differences in the model

performances. For example, Cheng and Lapata (2016) and Nallapati et al. (2016a)

utilized LSTM layers to score sentences, but they could not pass the performance of

Lead-3 baseline with their models. Although LSTMs are quite useful and effective in

several NLP tasks, since they cannot be run in parallel, using them leads to high memory

43

usage and longer training time. In addition, text summarization models need to be

trained with relatively longer textual data, unlike other common NLP tasks such as

sentiment analysis, named-entity-recognition (NER) and part-of-speech (POS) tagging.

Therefore, text summarization models need to capture and learn longer term

dependencies than the LSTMs can achieve. Unlike LSTMs, Transformer networks can

work in parallel and handle the longer term dependencies with ease. For example, best

performing extractive summarization models proposed in the literature using the

CNN/Daily Mail utilizes Transformer based pre-trained language models in their studies

(Bae et al., 2019; Zhang et al., 2019; Zhong et al., 2019; Liu and Lapata, 2019; Zhong et

al., 2020).

 Based on these findings, the extractive summarization is treated as a sequence

labelling process also in this thesis and different Transformer architectures are

considered to constitute the investigated model architectures. Similar to the previously

proposed approaches, pre-trained language models are used as the encoder that encodes

sentences. On top of the language models, extra inter-sentence Transformer layers are

put. These layers get the sentence representations as input and generate the contextual

sentence embeddings with the aim of capturing document level features for extracting

summaries. Finally, these contextual sentence embeddings are fed into the sigmoid layer

where the sigmoid function takes the contextual embeddings and outputs a value

between 0 and 1 (Equation 3.1) as a prediction for each sentence. These scores represent

the probability that the related sentence is in the generated summary. Then, the predicted

scores are compared with the original extracted labels. The summarization models then

try to minimize the difference between the predicted scores and original labels utilizing

the cross-entropy loss (Equation 2.5) by updating the model parameters.

44

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (3.1)

The model architecture that encodes the sentences using the last layers’ related CLS

tokens of the underlying language model, is shown in Figure 11. Each sentence in the

main articles starts with [CLS] token and it ends with [SEP] token as mentioned in

Section 3.3. Since each main article should be represented with fixed size length, each

main article is represented with 512 tokens due to positional embeddings limitation of

language models, and similarly there are 32 sentences in each main article as a result of

sentence padding and truncation processes. At the bottom of proposed model’s

architecture, these sentences, which are tokenized to subword level with the related pre-

trained language model’s tokenizer, are fed into the language model as input. In the

experiments, model weights of BERTurk base (32K), BERTurk base (128K) and

ELECTRA models were utilized as the encoder part of the proposed summarization

model architectures. Hence, the pre-trained language model part of the architecture has

the same 12 Transformer layers that exist in BERTurk and ELECTRA models. This part

outputs each token representation for each sentence in the main articles. After obtaining

the token representations, the [CLS] tokens are chosen as related sentences’

representations and they are passed into extra inter-sentence Transformer layers to

extract document level features. Finally, the sigmoid layer takes extra Transformer

layers’ outputs and assigns a score between 0 and 1 to each sentence.

45

Figure 11. Architecture which uses CLS token representations to represent sentences

 The highest scorer sentences, where the scores are obtained from the proposed

summarization model, produce the predicted summary. Then, ROUGE score between

the predicted and human-written summary is computed and used to evaluate the

performance of the model. In this approach, it is assumed that the selected sentences

represent the most important content of the main article. Besides, during the sentence

selection process, Trigram Blocking is used as a post-processing step to reduce

redundancies in the predicted summary (Paulus et al., 2018). In this heuristic approach,

the next (candidate) sentence with the highest score is appended to the predicted

summary if and only if trigram overlapping does not exist between the candidate

sentence and previously selected sentences. The main reason for applying Trigram

Blocking is to minimize the similarity between the sentences which have been already

46

selected as a part of the predicted summary and the next highest scoring candidate

sentence. It can be seen as a control mechanism in order not to generate a summary

which has repetitive content.

 Besides the model architecture described above which uses CLS token

representations for sentence encoding, some modifications over this architecture are

investigated for Turkish news extractive summarization. It was mentioned that, as the

underlying pre-trained language model, both BERTurk models and ELECTRA models

were utilized. But, instead of using the last layer’s CLS tokens of each sentence, it is

also possible to represent a sentence by taking the average of the last layer’s token

representations for the tokens that make up that sentence. This operation is called mean

pooling. For example, Zhong et al. (2019) preferred to use mean pooling rather than

CLS representations to get the sentence representations for the extractive summarization.

Also, Reimers and Gurevych (2019) showed that using mean pooling may slightly

improve the performance of text classification models compared to using CLS token

representations. In this thesis, the use of mean pooling was also investigated where the

modified model architecture based on mean pooling can be seen in Figure 12.

47

Figure 12. Architecture which uses mean pooling to represent sentences

 In addition to using CLS and mean pooling representations, there are different

approaches in the literature to get sentence representations from BERT-like language

model architectures. For example, Devlin et al. (2018) stated that summing the CLS

values of the last 4 layers can produce comparable performance results for NER tasks.

Also, Reimers and Gurevych (2019) explained that concatenating a vector u, with a

second one v and their absolute element wise differences |u-v|, may also be a good

alternative to represent sentences. However, it should be considered that the dimension

of sentence representations created in this way is three times larger than the previous

ones as a result of this concatenation (u, v, |u-v|). Another alternative investigated in the

same study is to concatenate directly two vectors (u, v). According to the study, this

process makes the sentence vector dimensions doubled but did not produce comparable

performance results in text classification tasks. In this study, each one of these sentence

48

representation approaches were investigated to compare their performances in an

extractive summarization task. Beyond these previously investigated approaches, a new

sentence representation approach is proposed in this study in which the CLS token

representation of the last layer in the pre-trained language model is summed up with the

mean pooling of the word representations. Thus, dimensions of the sentence

representations stay the same as CLS token representation. The modified model

architecture implementing this approach is shown in Figure 13.

Figure 13. Architecture which uses the sum of CLS token and mean pooling to

represent sentences

 In the previously mentioned architectures, sentences are contextualized in the

extra Transformer layers that are located above the base language model architecture.

But, Guo et al. (2020) stated that the large networks like Transformers on top of BERT-

49

like language models does not improve the performance results by a large margin and

they applied simple linear layer and sigmoid layer in their extractive summarization

model architecture. In this study, in addition to analyzing the use of complicated

Transformers layers, this simple architecture is also investigated to see if simplicity

helps to improve the performances of the extractive summarization models where this

simple architecture is shown in Figure 14.

Figure 14. Architecture with a simple linear layer

 In the next section, the details of the experiments with different architectures and

hyperparameter settings are given and the performance results based on ROUGE scores

are compared.

50

CHAPTER 4

EXPERIMENTS AND RESULTS

Different deep learning architectures considered in the thesis proposed for extractive

summarization are introduced in the previous chapters. In this chapter, the experiments

conducted by creating models with these different architectures are explained in detailed

with their related architectures, hyperparameter settings and the performance results

obtained by running these models over the Turkish news dataset are discussed.

 For all experiments, one Tesla V100 16GB GPU was used and these experiments

were implemented with PyTorch library. The batch size for each experiment was chosen

as 8 due to the memory limitations. As the optimizer, ADAM optimization algorithm

(Kingma and Ba, 2014) is deployed with the aim of updating the model parameters

iteratively in the training data. The authors suggest that β1 and β2 hyperparameters of

Adam optimizer work best with the values of 0.9 and 0.999, respectively. As in Devlin

et al. (2018), Liu and Lapata (2019) and Clark et al. (2020), these values were also used

in the experiments. Additionally, to schedule a learning rate, a linear scheduler with

warm-up steps was deployed as it was done in Devlin et al. (2018) and Clark et al.

(2020). In this type of scheduler, the learning rate increases linearly from zero to the

initial given learning rate during the warm-up period and after that, it decreases linearly

from that learning rate to zero again. Finally, the dropout probabilities are kept at 0.1 for

each experiment (Devlin et al., 2018). To sum up, common settings that were used in

each experiment is shown at Table 3.

51

Table 3. Common Settings for each Experiment

Optimizer: Adam

Adam β1: 0.9

Adam β2: 0.999

Scheduler: Linear

Dropout Probabilities: 0.1

4.1 Hyperparameter selection

As stated in Section 3.4, different model architectures were proposed and in this section

the effects of different values of hyperparameters and choices of underlying deep

learning architectures are investigated.

 Firstly, the effects of pre-trained language models on the performance results are

investigated. In this context, three different language models were considered. These

were ELECTRA, BERTurk base (32K) model (which has 32 thousand words in its

vocabulary) and BERTurk base (128K) model (which has 128 thousand words in its

vocabulary). Even though their architectures are quite similar, both architectures have 12

layers Transformers network with the hidden size 768, ELECTRA and BERT models

differ from each other in terms of their objective functions. ELECTRA uses RTD,

whereas BERT uses MLM. Considering these model in this thesis provides us with the

effect of using models of similar underlying architecture trained with different objective

functions. Besides, comparison of the performance results of BERTurk base (32K) and

BERTurk base (128K) models are expected to provide insights on the effect of utilizing

large models trained with larger vocabulary.

52

 Secondly, the effect of increasing the capacity of the models by putting extra

Transformer layers’ was examined by checking the ability of the models to capture

document level features in the process of learning sentence representations (Figure 11,

12 and 13) by comparing their performances with performance of the model that has

single linear layer (Figure 14). Beyond that, different number of extra Transformer

layers, 1, 2 and 3 layers, was implemented and the performances were analyzed despite

the fact that Liu and Lapata (2019) found out that the best performance is achieved with

2 extra Transformer layers.

 Thirdly, the different sentence representation approaches were experimented as

explained in Section 3.4. These different sentence representations used to select those

sentences to be included in the extractive summary were obtained by extracting the CLS

token of the pre-trained language model’s last layer, applying mean pooling over the

token representations of the last layer, summing up CLS token and mean pooling

representations, concatenating CLS token and mean pooling representations,

concatenating CLS token, mean pooling representations and the absolute value of their

element wise differences, and finally, summing up CLS token representations of the pre-

trained language model’s last 4 layers. The list of these architectural settings and their

different values are shown in Table 4.

53

Table 4. Architectural Settings Used in the Experiments

Pre-trained

Language

Models:

ELECTRA BERTurk base (32K) BERTurk base (128K)

Extra Layers:
Single Linear

Layer

1-layer
Transformer

2-layer

Transformer

3-layer
Transformer

Sentence

Representation

Approaches:

CLS

token

of

last

layer

Mean

pooling

over last

layer

Summed

CLS token

with mean

pooling

Concatenating

CLS token

and mean

pooling

Concatenating

CLS token,

mean pooling

and their

absolute

differences

Summing

up CLS

token of

last 4

layers

 In addition to architectural settings, suitable training hyperparameters were also

investigated. These hyperparameters include the number of training epochs, learning rate

and feed forward network’s (FFN) hidden size and number of attention heads in the

extra Transformer layers. The experimented values for each hyperparameter are shown

in Table 5.

Table 5. Training Hyperparameter Sets Used in the Experiments

of Epochs Learning Rate FFN Hidden Size # of Attention Heads

4 5E-5

2048 8

3072 12

5 1E-4

4096 16

6144 24

10 2E-3 9216 32

54

 The epoch indicates the number of passes of feeding whole training data in mini-

batches to the deep learning models. In the experiments, the values considered for the

number of training epochs are 4, 5 and 10. For extra Transformer layer-based

architectures, models were fine-tuned for 4 and 5 epochs. For the simple linear layer-

based architectures, the models were trained for 10 epochs. The main reason for this

difference is the fact that the Transformer networks have much more parameters and are

more capable of learning from the training data, as compared to shallow networks like

linear layers. Therefore, to increase the learning capability of linear layers, more training

epochs were used.

 The second training hyperparameter is the learning rate. The learning rate can be

defined as the step size that the model uses when updating its parameters. It controls the

speed at which the model learns and has direct effect on the convergence properties of

the models. Devlin et al. (2018) recommends 5e-5 for the learning rate in the fine-tuning

processes, whereas Clark et al. (2020) recommends 1e-4. Additionally, Liu and Lapata

(2019) used 2e-3 as the learning rate in their extractive summarization models. In the

experiments conducted in this thesis, each of these learning rates were applied in order

to explore their effects on the model performances.

The third training hyperparameter size is the FFNs’ hidden size and number of

attention heads in the extra Transformer layers as previously shown in Table 5. Liu and

Lapata (2019) used 2048 and 8 for these hyperparameters, respectively. However,

Devlin et al. (2018) set the FFN hidden unit size to be 4 times the hidden units in the

Transformer architecture in all of their experiments. Since the number of hidden units in

both BERT and ELECTRA equal to 768, FFN hidden size was set to 3072 in this thesis

where the sentence representations are of size 768. For the concatenation-based sentence

55

representation approaches (Table 4), the number of hidden units increases, therefore, the

FFN hidden sizes are increased with the same proportion. For example, CLS token

representations, mean pooling representations and summing CLS token with mean

pooling approaches have 768 hidden units and, in these settings,, FFN hidden size were

set to 2048 and 3072, with 8 and 12 attention heads, respectively. However,

concatenating CLS token representations with mean pooling representations leads to

1536 (768+768) hidden units and as a result, FFN hidden sizes were set to 4096 and

6144 with 16 and 24 attention heads, respectively. Additionally, the ratio of FFN hidden

size to number of attention heads is kept constant at 256 for all experiments. For simple

linear layer-based experiments, these hyperparameters are not applicable. The overall

hyperparameter settings used in different sentence representation approaches is shown in

Table 6.

Table 6. Experimented FFN Hidden Size and Number of Attention Heads based on

Sentence Representation Approaches

Sentence Representation Approach

Hidden

Unit

Size

FFN Hidden Size and # of

Attention Heads

CLS 768 (2048,8), (3072,12)

Mean pooling 768 (2048,8), (3072,12)

CLS + Mean pooling 768 (2048,8), (3072,12)

Summing CLS tokens of last 4 layers 768 (2048,8), (3072,12)

Concatenating CLS and Mean pooling 1536
(2048, 8), (3072, 12), (4096, 16),

(6144, 24)

Concatenating CLS, Mean pooling

and |CLS-mean pooling|
2304

(2048, 8), (3072, 12), (6144, 24),

(9216, 36)

56

4.2 Experimental details

As it is explained in the previous section, in total there were 7 different hyperparameter

settings to be optimized. Three of them were architectural, namely different underlying

language models, number of extra layers, and sentence representations. Remaining four

were training hyperparameters, namely different FFN hidden sizes, number of attention

heads, learning rates and number of epochs. Since experimenting with all of the

combinations of these hyperparameters is time and resource consuming, some of the

settings were filtered out based on the performances obtained from experimenting with

different pre-trained language models and sentence representation approaches. As a

result, 241 different models were trained with different hyperparameter settings. The

architectures and hyperparameter settings for each of these models can be seen in

Appendix A together with their performance results and training times.

 Firstly, 78 models were trained with CLS token representations and same

number of model were trained with mean pooling representations. The applied

hyperparameter values for these 2 sentence representation approaches and the number of

models run can be seen in Table 7.

57

Table 7. Hyperparameter Combinations for Models Trained with CLS Token and Mean

Pooling Representations

 Language

Model
Extra Layers

FFN Hidden

size with #

of Attention

Heads

Epoch
Learning

Rate

Total

of

Models

CLS

Token

BERTurk

base (32K),

ELECTRA

Simple Linear

Layer
- 10

5e-5, 1e-4,

2e-3
6

BERTurk

base (32K),

ELECTRA

1, 2 and 3

Transformer

Layers

2048-8,

3072-12
4, 5

5e-5, 1e-4,

2e-3
72

Mean

Pooling

BERTurk

base (32K),

ELECTRA

Simple Linear

Layer
- 10

5e-5, 1e-4,

2e-3
6

BERTurk

base (32K),

ELECTRA

1, 2 and 3

Transformer

Layers

2048-8,

3072-12
4, 5

5e-5, 1e-4,

2e-3
72

 After running these 156 models, the top-10 performing settings were selected

based on ROUGE-2 F scores, as seen in Appendix B. The main reason behind the

selection of ROUGE-2 score for model comparison is the fact that the extractive labels

were obtained with a greedy algorithm (Nallapati et al., 2016a) where the ROUGE-2

scores of selected sentence sets were maximized with respect to human written

summaries. Then, hyperparameter setting of these top 10 performing models were used

for the other four sentence representation approaches. In addition to these extra models,

for the concatenation based sentence representations, FFN hidden sizes and number of

attention values were multiplied by the number of representations concatenated in the

model as shown in Table 6. Total number of different models for each sentence

representation approach is shown in Table 8.

58

Table 8. Total Number of Different Models Trained by Implementing each Sentence

Representation Approach

Sentence Representation Approach # of Different Models

in the Experiments

CLS 78

Mean pooling 78

CLS + Mean pooling 10

Summing CLS tokens of last 4 layers 10

Concatenating CLS and Mean pooling 20

Concatenating CLS, Mean pooling and |CLS-mean pooling| 20

TOTAL 216

To see the effect of vocabulary size of the pre-trained language models on the model

performances, hyperparameters of the top-25 performing models (which are all

BERTurk base (32K) models) among these 216 models were selected based on

ROUGE-2 F score (see Appendix C). Then, keeping the other hyperparameter settings

the same, the pre-trained language model hyperparameter was replaced with the

BERTurk base (128K) model. In the end, in total 241 models were trained with different

hyperparameter settings and evaluated.

59

4.3 Performance results

In the experiments, ROUGE scores (Lin, 2004) between human written summaries and

automatically generated summaries by the models were computed in order to evaluate the

fluency with ROUGE-1 and ROUGE-2 scores and assess informativeness with ROUGE-

L score. In Appendix A, all 241 models are reported with their ROUGE-1 F scores,

ROUGE-2 F scores and ROUGE-L F scores over the test data together with the training

time of each model.

 Before comparing and interpreting these results, the upper bound (ORACLE) and

the baseline (LEAD-5) performance scores were calculated. ORACLE approach does not

contain any training part. The sentences selected by the greedy algorithm (Nallapati et al.,

2016a), were considered as the final summaries. The score obtained by these sentences is

considered as the maximum score one could achieve in extractive summarization (Scialom

et al., 2020). Therefore, the ORACLE ROUGE scores were chosen as the upper bound.

On the other hand, LEAD-5 simply selects the first five sentences in the input document

to generate final summaries and it is presented as a baseline for the other methods and the

score obtained from the LEAD-5 was considered as the lower bound. As stated in Section

3.2, LEAD-5 is a strong baseline for Turkish news dataset since the distribution of

extracted sentence positions is not uniform and these important sentences are mostly

placed at the beginning of main articles. The ROUGE scores of these models on test data

are shown in Table 9.

Table 9. The ROUGE Scores of ORACLE and LEAD-5

ROUGE-1 F Score ROUGE-2 F Score ROUGE-L F Score

ORACLE 53.60 41.63 52.80

LEAD-5 37.49 26.40 37.12

60

Among all 241 models trained in this study, 33 of them perform better than LEAD-5

ROUGE F scores as shown in Table 10. As stated in the Introduction chapter, the results

are interpreted in terms of utilizing different pre-trained language models, sentence

representation approaches, and architectural simplicity and complexity.

4.3.1 Effects of pre-trained language models

In the experiments, three different pre-trained language models were utilized. These are

BERTurk base (32K), BERTurk base (128K) and ELECTRA. As mentioned in Section

4.2, the experiments were conducted first with 78 different parameter settings using

ELECTRA as the underlying pre-trained language model. The hyperparameter settings

and ROUGE scores are reported in Appendix A. It can be seen that a major portion of

the 78 models obtained the same ROUGE F scores with LEAD-5 baseline. These

experiments put extra Transformer layers on top of the ELECTRA. Therefore, it can be

concluded that these models learned only positional embeddings of the sentences in the

main articles and generate final summaries by considering their positions and extracting

the first 5 sentences. The possible reasons for this might be the size of the dataset used to

fine-tune the models. In the training set, there were 1476 articles, and this may not be

sufficient to fine tune the ELECTRA model and hence for the model to learn semantic

and contextual relationships between the sentences.

61

Table 10. The Performance Results of Best 33 Models which are Better than LEAD-5 Baseline with Their Corresponding Settings

Language Model Sentence Representation
Extra
Layer

FFN Size
of Attention

Heads
of

Epoch
Learning

Rate
ROUGE-1

F score
ROUGE-2 F

score
ROUGE-L

F score

160 BERTurk-Base (32K) CLS Token + Mean pooling 2-Layer 2048 8 5 1.00E-04 38.38 26.8 38.04

206 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 6144 24 5 5.00E-05 37.85 26.59 37.53

184 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 4096 16 4 1.00E-04 37.83 26.57 37.47

175 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 2048 8 4 5.00E-05 37.75 26.56 37.38

164 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 4 1.00E-04 38.03 26.55 37.66

174 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 2048 8 4 1.00E-04 37.7 26.54 37.36

28 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 3072 12 5 5.00E-05 37.8 26.53 37.45

17 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 3072 12 4 1.00E-04 37.78 26.5 37.43

166 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 5 5.00E-05 38.03 26.5 37.6

205 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 6144 24 4 5.00E-05 37.71 26.5 37.34

11 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 3072 12 4 1.00E-04 37.72 26.49 37.36

29 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 3072 12 5 1.00E-04 37.71 26.49 37.37

159 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 5 1.00E-04 38.02 26.49 37.62

172 BERTurk-Base (32K) (CLS Token, Mean pooling) 2-Layer 3072 12 4 1.00E-04 37.73 26.48 37.35

32 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 5 1.00E-04 37.8 26.47 37.41

26 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 5 1.00E-04 37.69 26.46 37.38

158 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 3072 12 4 1.00E-04 37.91 26.46 37.5

14 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 4 1.00E-04 37.66 26.45 37.3

168 BERTurk-Base (32K) (CLS Token, Mean pooling) 3-Layer 3072 12 4 1.00E-04 37.72 26.45 37.32

182 BERTurk-Base (32K) (CLS Token, Mean pooling) 2-Layer 6144 24 4 1.00E-04 37.69 26.45 37.34

196 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 2048 8 5 5.00E-05 37.74 26.45 37.39

13 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 4 5.00E-05 37.62 26.44 37.27

163 BERTurk-Base (32K) CLS Token + Mean pooling 2-Layer 2048 8 5 5.00E-05 37.98 26.44 37.59

25 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 5 5.00E-05 37.69 26.43 37.33

31 BERTurk-Base (32K) CLS Token of the Last Layer 3-Layer 2048 8 5 5.00E-05 37.68 26.43 37.31

7 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 4 5.00E-05 37.63 26.42 37.28

165 BERTurk-Base (32K) CLS Token + Mean pooling 3-Layer 2048 8 4 5.00E-05 37.88 26.42 37.49

217 BERTurk-Base (128K) CLS Token + Mean pooling 2-Layer 2048 8 5 1.00E-04 37.83 26.42 37.51

5 BERTurk-Base (32K) CLS Token of the Last Layer 1-Layer 3072 12 4 1.00E-04 37.71 26.41 37.36

8 BERTurk-Base (32K) CLS Token of the Last Layer 2-Layer 2048 8 4 1.00E-04 37.64 26.41 37.32

191 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 2-Layer 3072 12 5 1.00E-04 37.53 26.41 37.18

195 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 2048 8 4 5.00E-05 37.56 26.41 37.2

199 BERTurk-Base (32K) (CLS Token, Mean pooling, |CLS Token-Mean pooling|) 3-Layer 6144 24 5 1.00E-04 37.67 26.41 37.32

62

Unlike models that use ELECTRA as the underlying language model, models

that use BERTurk base (32K) language model performed quite well. As seen in Table

10, among the 33 best performing models, 32 of them use BERTurk base (32K)

language model. Moreover, in the first part of experimental design, 78 different settings

were chosen for ELECTRA and BERTurk base (32K) language models, separately. In

the second part, top 10 performing models were chosen among these 156 models to

investigate the effects of using other sentence representation techniques. Performance

results and hyperparameter settings of these top 10 best performing models are shown in

Appendix B. All of them have BERTurk base (32K) as their underlying pre-trained

language model. Therefore, it can be said that the BERTurk base (32K) model performs

better than ELECTRA for Turkish news extractive summarization.

 Finally, BERTurk base (128K) pre-trained language model is used as the pre-

trained language model for the models trained with the hyperparameter settings of the

top 25 best performing BERTurk base (32K) models which are shown in Appendix C.

The performances obtained by these 25 models are not as good as the ones obtained by

the models utilizing BERTurk base (32K) as the underlying language model, as seen in

Appendix A. As it can be seen from Table 10, best performing BERTurk base (128K)

based model takes 28th place over all the model performances. Its settings are the same

with the best model in the Table 10 except for the difference in the pre-trained language

model. As a result, it can be said that generating a model using BERTurk base (32K) is

better than utilizing BERTurk base (128K) with approximately two thousand training

examples for the extractive summarization task of Turkish news. The reason why

smaller vocabulary performs better than larger one might be that 32K may be good

enough to represent all the words in the small training data. With 128K vocabulary and

63

small dataset, each token is represented lesser and the model may not learn their

embeddings properly in the fine-tuning phase.

The average ROUGE F scores of the models utilizing different pre-trained

language models in all 241 experiments conducted in this thesis are shown in Table 11.

The reason why the average ROUGE F scores of the models with different pre-trained

language models are compared among all 241 models is that there are not enough

ELECTRA and BERTurk base (128K) language models in the best performing models

for comparison properly. As it is seen from the Table 11, utilizing BERTurk base (32K)

as the underlying language model is better than using BERTurk base (128K) and

ELECTRA.

Table 11. The Average ROUGE Scores of all 241 Models Generated by Utilizing

Different Pre-trained Language Models

Language Model
of

models

ROUGE-1 F

Score

ROUGE-2 F

Score

ROUGE-L F

Score

BERTurk base (32K) 138 37.06 25.72 36.70

BERTurk base (128K) 25 36.75 25.52 36.35

ELECTRA 78 35.26 24.04 34.83

 As shown in Table 11, the number of models using these pre-trained language

models are not close to each other. Hence, the comparison with respect to these scores

may not yield strong evidence. In order to more conveniently compare the effects of

underlying language models on extractive summarization models, the 30 models which

have exactly the same architectures and hyperparameters sets except the pre-trained

language model parts are compared in Table 12. Based on the findings from these

models, the models utilizing BERTurk base (32K) performs better than the models using

64

BERTurk base (128K) and ELECTRA. However, there is no significant difference

between performance results of BERTurk base (128K) and ELECTRA based models.

Table 12. The Average ROUGE Scores of the Models Generated by Utilizing the Same

Settings Except the Pre-trained Language Models

Language Model
of

models

ROUGE-1 F

Score

ROUGE-2 F

Score

ROUGE-L F

Score

BERTurk base (32K) 10 37.72 26.47 37.36

BERTurk base (128K) 10 37.49 26.40 37.12

ELECTRA 10 37.49 26.40 37.12

4.3.2 Effects of architectural simplicity/complexity

In order to investigate the performance gained obtained by the capacity of the models,

four different extra layers that are put on top of the underlying pre-trained language

models are considered in this thesis. These extra layers are simple linear layer, 1-layer

Transformer network, 2-layer Transformer network and 3-layer Transformer network.

The models obtained by fine-tuning pre-trained models with a simple linear layer

performed worse compared to the models formed using Transformer layers. Guo et al.

(2020) stated that the complex networks on top of BERT do not lead to a large margin

performance gains in extractive summarization tasks, and they applied simple linear

layer as extra layer. As opposed to their findings, simple linear layer based models in

this study produced lower ROUGE scores, and they are even worse than LEAD-5

baseline. Similarly, the model implemented with 1-layer Transformer network did not

perform well as compared to the ones having 2 and 3 Transformer layers. Finally,

performances obtained from the models with 3-layer Transformer networks are slightly

65

better than the ones with 2-layer Transformer network with respect to average ROUGE

F scores. These can be observed from the results given in Table 10.

As a result, more complex models are found to produce higher performance

scores in extractive summarization task for Turkish news. The average ROUGE F scores

of best 33 models using different extra Transformer networks are shown in Table 13. In

addition to average scores, maximum and minimum scores are also reported since the

number of models using these extra layers are very different.

Table 13. The Average, Maximum and Minimum ROUGE Scores of Best 33 Models

Generated by Utilizing Different Extra Layers

Extra Layer
of

models

ROUGE-1

F Score

(Avg/Max/Min)

ROUGE-2

F Score

(Avg/Max/Min)

ROUGE-L

F Score

(Avg/Max/Min)

1-Layer

Transformer
1 37.71/37.71/37.71 26.41/26.41/26.41 37.36/37.36/37.36

2-Layer

Transformers
13 37.77/38.38/37.53 26.48/26.80/26.41 37.42/38.04/37.18

3-Layer

Transformers
19 37.79/38.03/37.56 26.48/26.59/26.41 37.42/37.66/37.20

4.3.3 Effects of sentence representation approaches

In these approaches, sentences are represented with the last layer’s CLS token

representation of the pre-trained language models, mean pooling of the token

representations over the last layer, summing up CLS token and mean pooling

representations, concatenating CLS token and mean pooling representations,

concatenating CLS token, mean pooling representations and the absolute value of their

element wise differences, and finally, summing up CLS token representations of the pre-

trained language model’s last 4 layers. In the literature, CLS token representations and

mean pooling over the last layer’s token representations are the most common

66

approaches. Although Reimers and Gurevych (2019) found out that mean pooling can

result in better performance scores compared to CLS token representations, the models

using CLS token representations produced better average ROUGE F scores in the 241

experiments conducted in this study, as shown in Table 14. The main reason for the

mean pooling performing worse might be the fact that, with mean pooling, each token is

averaged with the same weight, including stop words or other tokens that are not

significant for the summaries. The CLS token representations are computed using self-

attention, so it can only collect the relevant information from the rest of the hidden

states. Therefore, combining both CLS and mean pooling may lead to good results.

These representations can be combined by either concatenating them or by doing

element-wise sum. Reimers and Gurevych (2019) have tried several concatenation

approaches and found out that concatenating CLS, mean pooling and absolute value of

their element wise differences produces best performance results. Moreover, they stated

that concatenating CLS and mean pooling directly may not perform well. Parallel to that,

concatenating CLS and mean pooling directly is the second worst performing approach

according to the averages obtained from the models generated by this approach, even

though among these 26 models, 6 of them were able to beat LEAD-5 baseline. On the

other hand, approaches that employ the approach that sum the token representations

achieved the best average scores. Devlin et al. (2018) stated that summing the last four

layers’ CLS tokens is a good sentence representation technique. As it can be seen in

Table 14, the models using this technique obtained the second-best average ROUGE

scores. However, none of the models generated with this approach exceed LEAD-5

ROUGE-2 F score. None of the models implemented this approach takes place in the

best 33 ones which are the ones that exceed baseline LEAD-5 score as can be seen in

67

Table 10. Finally, a new representation approach which is summing CLS representation

with mean pooling is proposed. This approach is the best one among the others. The

reason might be that the final sentence representation takes both CLS token and mean

pooling representations into account, so that both stop words and irrelevant tokens are

represented but their worsening effect might be mitigated on final representation by the

CLS token as compared to the mean pooling. Besides, the tokens that are far away from

the CLS token in the sentence can be better represented this way as compared to using

only CLS tokens.

Table 14. The Average ROUGE Scores of all 241 Models Generated by Utilizing

Different Sentence Representation Approaches

Sentence Representation

Approach

of

models

ROUGE-1 F

Score

ROUGE-2

F Score

ROUGE-L

F Score

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)
23 37.11 25.89 36.75

(CLS Token, Mean pooling) 26 36.38 25.09 35.99

CLS Token + Mean pooling 16 37.85 26.39 37.50

CLS Token of the Last Layer 88 36.47 25.22 36.07

Mean pooling of the Last

Layer
78 35.79 24.50 35.37

Sum Last Four Layers' CLS

Token
10 37.68 26.19 37.35

To eliminate the effect of comparing average scores of the sentence

representation approaches with different number of models and do more appropriate

ablation study, the average ROUGE F scores of 60 models, which have the same

architectures and hyperparameters, are compared in Table 15. According to these scores,

68

the models that are utilizing the summation of CLS token and mean pooling

representations achieved the highest performance scores.

Table 15. The Average ROUGE Scores of the Models Generated by Utilizing the Same

Settings Except the Sentence Representation Approaches

Sentence Representation

Approach

of

models

ROUGE-1 F

Score

ROUGE-2

F Score

ROUGE-L

F Score

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)
10 36.51 25.29 36.13

(CLS Token, Mean pooling) 10 37.56 26.26 37.21

CLS Token + Mean pooling 10 37.95 26.47 37.58

CLS Token of the Last Layer 10 37.72 26.47 37.36

Mean pooling of the Last

Layer
10 37.48 26.26 37.13

Sum Last Four Layers' CLS

Token
10 37.68 26.19 37.35

 Finally, the effect of FFN hidden size were investigated. As stated earlier, Devlin

et al. (2018) suggested setting the FFN hidden unit size to 4 times size of the hidden

units in the Transformer architecture. Since concatenation-based sentence

representations increases size of the hidden units, different FFN hidden size were

experimented. For example, concatenating CLS token and mean pooling representations

lead to 1536 (768+768) dimensional sentence representations. Therefore, both 4096 and

6144 (1536*4) FFN hidden sizes were experimented for this approach, in addition to

2048 and 3072 FFN hidden sizes, as shown in Table 6. The average ROUGE F scores of

the models trained with both original and increased FFN hidden units are shown in

Table 16. The results displayed in italics obtained from the models trained with

69

increased FFN hidden units. For concatenation of CLS token, mean pooling and their

element wise absolute difference, increasing FFN hidden size achieves higher

performance scores than original ones, whereas increasing FFN hidden size leads to

worse performance scores than original ones for concatenating CLS token and mean

pooling representations. Therefore, these scores do not provide strong evidence that

increasing the FFN hidden units based on the hidden units in the Transformer

architecture leads to better performance results.

Table 16. The Average ROUGE Scores of the Models Generated by Utilizing the Same

Settings Except the Hidden Sizes

Sentence Representation

Approach

of

models

ROUGE-1 F

Score

ROUGE-2

F Score

ROUGE-L

F Score

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)
10 36.51 25.29 36.13

(CLS Token, Mean pooling) 10 37.56 26.26 37.21

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)
10 37.59 26.35 37.23

(CLS Token, Mean pooling) 10 36.56 25.25 36.18

As a result, summing CLS token and mean pooling representations of the last

layer is turned out to be the best sentence representation technique for summarizing

Turkish news dataset. The model generated by combining BERTurk base (32K) model

with this approach and putting extra 2-layer Transformer network on top of it has

achieved the best ROUGE F scores. The best performing model with this architecture

was trained for 5 epochs where learning rate and FFN hidden size parameters are set to

1e-4 and 2048, respectively. Almost 1 percent higher score than LEAD-5 ROUGE-L F

score was achieved with this configuration, and hence it is possible to produce

meaningful extractive summaries.

70

CHAPTER 5

CONCLUSIONS AND MANAGERIAL IMPLICATIONS

This thesis aims to develop an automated extractive summarization system for Turkish

news. For this purpose, the most salient and significant sentences in the main articles are

determined and extracted by the proposed models to generate final summaries. To

develop an end-to-end extractive summarization model, the dataset is gathered via a

well-known news website. The dataset consists of the news published in Turkish and the

related human written summaries. After 2076 such news-summary pairs are collected,

the data is preprocessed. Then, binary sentence labels in the main articles are extracted

by greedy algorithm (Nallapati et al., 2016a) since the human-written summaries should

be converted to extractive summaries to train the model. In the label extraction phase, it

is realized that the most significant sentences are placed at the beginning of the main

articles to capture the readers’ attention and there is no uniform distribution for extracted

sentence positions as shown in Figure 9. After extracting the binary labels for each

sentence in each article, the most promising Transformer based pre-trained language

models generated for Turkish are determined. There are BERT (Devlin et al., 2018) and

ELECTRA (Clark et al., 2020) based models since both have been pre-trained for

Turkish with huge corpus by Schweter (2020). The main purpose of using these pre-

trained language model in the models proposed in this thesis is their ability to capture

high-level textual features, such as semantic relationship between the words. Three

different pre-trained language models are considered in generating summarization

models, and then their abilities in Turkish news extractive summarization task are

investigated. These models are named as ELECTRA, BERTurk base (32K) and

71

BERTurk base (128K). ELECTRA is the language model trained based on the replaced

token detection, while BERT is a masked language model. The difference between the

performance results of BERTurk base (32K) and ELECTRA may show the effectiveness

of language model types over Turkish news extractive summarization. Besides, both

BERTurk base (32K) and BERTurk base (128K) have the same architectures but their

vocabulary size in the pre-training phase is different. Therefore, it is informative to see

the effect of vocabulary size on the performance results by employing these two models.

 On top of pre-trained language models, extra layers are added to capture

document level features like intersentential relationships. Since Guo et al. (2020) stated

that the larger networks does not contribute a large margin to the performance results

and added an extra simple linear layer on top of the BERT model, the effect of

complexity of the extra layers on the summarization performance results for Turkish

news is also investigated in this thesis. Liu and Lapata (2019) applied 1-layer, 2-layer

and 3-layer Transformer networks on top of BERT, separately and found out that 2-layer

ones work best. In this thesis, four different extra layer alternatives are investigated.

These are simple linear layer, 1-layer, 2-layer and 3-layer Transformer networks.

Examining the performance results of the models generated by these different extra layer

alternatives may yield understanding of the effect of architectural complexity.

 The other architectural settings investigated in this study is the sentence

representation approaches. As stated earlier, the pre-trained language models output

each token representation in the sentence and to obtain sentence embeddings, different

approaches were proposed in the literature. For example, Liu and Lapata (2019) used the

CLS token embeddings to represent sentences, whereas Reimers and Gurevych (2019)

stated that taking average of token embeddings, called mean pooling, in the sentences

72

may lead to better performance compared to the CLS token. Additionally, Devlin et al.

(2018) found out that summing the last 4 layers’ CLS token representations is quite good

to represent sentences. Moreover, Reimers and Gurevych (2019) suggested that

concatenation operations may yield good performance results. Therefore, concatenating

CLS token representations with mean pooling representations, and also, concatenation of

CLS token, mean pooling and their element wise absolute difference are also

experimented. Finally, directly summing up CLS token representations with mean

pooling representations is proposed in this study as a sentence representation approach.

As a result, six different approaches were examined to measure and compare their

effectiveness.

 In addition to these architectural settings which are shown in Table 4, some

training hyperparameters were also optimized. These hyperparameters are learning rate,

number of epochs for training, FFN hidden size and number of attention heads. The last

two hyperparameters are valid for only extra Transformer layer networks. The value sets

for each training hyperparameter were presented in Table 5.

 In total, 241 models with different architectures and hyperparameter setting were

experimented in this thesis. Model architectures and the hyperparameters used to train

models together with the performance results can be seen in Appendix A. Among these

models, 33 of them produced higher ROUGE scores than LEAD-5 baseline. Based on

these 33 models’ ROUGE scores, the most effective pre-trained language model for

Turkish news is found to be BERTurk base (32K). Therefore, it can be concluded that

the BERTurk base (32K) performed better than ELECTRA and lower vocabulary size

(BERTurk base (32K)) enables models to capture token representations more effective

than larger vocabulary size (BERTurk base (128K)) for Turkish news.

73

Also, architectures like 2-layer or 3-layer Transformer networks with higher

capacities perform better than simpler ones like simple linear layer or 1-layer

Transformer networks. This means that the complex networks achieve better

performance results than simpler ones in this thesis.

Finally, summing CLS token representations with mean pooling representations

to represent sentences in summarization model turns out to be the best approach

compared to other ones considered in this thesis which can be seen in Table 17. The

proposed approach aggregates contextual token embeddings more suitable in order to

represent sentences compared to other popular sentence representation approaches.

Table 17. Average ROUGE Scores of the Best 33 Models based on Applied Sentence

Representation Approaches

Sentence Representation

Approach

of

models

ROUGE-1 F

Score

ROUGE-2

F Score

ROUGE-L

F Score

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

6 37.68 26.46 37.33

(CLS Token, Mean pooling) 6 37.74 26.51 37.37

CLS Token + Mean pooling 8 38.01 26.51 37.63

CLS Token of the Last Layer 13 37.70 26.46 37.35

 The best model among the 241 models achieves 38.38 ROUGE-1 F score, 26.8

ROUGE-2 F score and 38.04 ROUGE-L F score. These scores are significantly greater

than the LEAD-5 baseline score which is a really strong baseline since significant

sentences are mostly located at the beginning of the main articles to impress the readers.

74

Therefore, the results obtained in this study are promising. The best model uses

BERTurk base (32K) as the underlying pre-trained language model, and sum of CLS

token and mean pooling as the sentence representation approach, and put 2 extra

Transformer network layers. Besides, hyperparameter values for FFN hidden size,

attention heads, and learning rate are set to 2048, 8, and 1e-4, respectively, and finally

the model was trained for 5 epochs. To conclude, it is possible to develop a good

extractive summarization system for Turkish news using the proposed approach.

 As managerial implications, summarization systems are quite useful in the

internet era since huge amounts of textual information are broadcasted every time via

social media, online news websites or blogs. By developing automatic summarization

systems, users or readers can access required, significant, and actionable information

and these systems reduce the reading time and the time to access the important and

relevant information. These systems can be beneficial for various fields. Extractive

summarization systems can be used in generating summaries of long business reports,

legal documents, academic papers or news, automatically. The model proposed in this

thesis can be applied easily to the real-world applications.

75

CHAPTER 6

FURTHER RESEARCH

In this thesis, the promising results have been achieved since the proposed model

reached higher ROUGE scores than the LEAD-5 baseline. This is important since the

LEAD-5 score is very high. The reason why the LEAD-5 score is so high is that the

collected Turkish news contains the important contents in the very first sentences. In

other words, the human-written (abstractive) summaries are written by considering

mostly the first sentences of the main articles as seen in Figure 9. However, there are

further research opportunities to increase the performance results of extractive

summarization systems for Turkish news.

Firstly, the gathered data set size is comparably small, which has 2076 news and

1476 of them are used for training the model. In the news website the data collected,

there were no more news and another website could not be found, which has human-

written summaries for Turkish news. For comparison, CNN/Daily Mail dataset has

around 300K news (See et al., 2017). Although collecting much more news articles with

the relevant human written summaries may lead to longer training times and also, may

require higher memory usage and processing power, it is possible to train more robust

and generalizable summarization models for Turkish news.

Secondly, extractive summarization systems are directly copying the significant

and salient sentences occurred in the main articles to generate final summaries.

However, most of the summarization datasets contain the abstractive summaries. To

train extractive summarization models, the sentences in the main articles should be

labelled based on these abstractive summaries. In other words, the extracted sentences

76

from main articles should contain the most or all of the information given by abstractive

summaries. In the literature, some heuristic and rule-based approaches are commonly

used for this label extraction process. The most common one is the greedy approach

proposed by Nallapati et al. (2016a). This approach selects the sentences so that the

selected sentence set has the highest possible ROUGE-2 F scores with respect to the

abstractive summaries. In this thesis, this approach is utilized to determine sentence

labels. However, this approach is rule-based and does not guarantee the most suitable

labels (Narayan et al., 2018). In the future research, this process can be done by human

annotators similar to the work of Cheng and Lapata (2016). The main articles are shown

to the annotators and they can select the most informative sentences in the main articles.

The selected sentences are labelled as 1 and the others are labelled as 0. Then, these

labels can be used to train the summarization models properly, despite the fact that this

annotation process may be more costly and time consuming for researchers.

Another future research can be studied for Turkish news extractive

summarization might investigate other pre-trained language models, which are trained

with Turkish corpus. During the time this study was conducted, there were only BERT

(Devlin et al., 2018) and ELECTRA (Clark et al., 2020) for Turkish. However, in the

future, the other popular language models such as RoBERTa can be trained for Turkish

and these language models can perform better.

Finally, in this thesis, the sentences are selected individually based on their

scores and high scoring sentences generated a final summary. However, this may lead to

overlooking better candidates since the best possible summaries may not include only

high scoring sentences as explained by Zhong et al. (2020). They applied Siamese

networks to measure and learn the similarities between candidate summaries and main

77

articles, as mentioned in Section 2.3. However, training Siamese networks require huge

memory (RAM) and processing powers (GPU). For example, the MatchSUM model was

trained with 8 16GB GPUs and the training took 30 hours with these hardware (Zhong et

al., 2020). In this study, these resources are not accessible and affordable. But, the

researchers, who have access to required hardware, can train the Siamese networks to

achieve better performance scores for Turkish news.

78

APPENDIX A

PERFORMANCE RESULTS OF ALL MODELS

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

1
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
2048 8 4 5.00E-05 00:01:31 37.46 26.2 37.13

2
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
2048 8 4 1.00E-04 00:01:31 37.47 26.21 37.11

3
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
2048 8 4 2.00E-03 00:01:30 37.48 26.13 37.09

4
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
3072 12 4 5.00E-05 00:01:28 37.6 26.21 37.24

5
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
3072 12 4 1.00E-04 00:01:32 37.71 26.41 37.36

6
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
3072 12 4 2.00E-03 00:01:31 37.44 25.87 36.96

7
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 4 5.00E-05 00:01:36 37.63 26.42 37.28

8
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 4 1.00E-04 00:01:35 37.64 26.41 37.32

9
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 4 2.00E-03 00:01:34 37.46 26.12 37.08

10
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 4 5.00E-05 00:01:33 37.58 26.33 37.22

11
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 4 1.00E-04 00:01:36 37.72 26.49 37.36

79

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

12
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 4 2.00E-03 00:01:37 37.53 26.26 37.14

13
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 5.00E-05 00:01:40 37.62 26.44 37.27

14
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 1.00E-04 00:01:40 37.66 26.45 37.3

15
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 2.00E-03 00:01:37 37.64 26.16 37.18

16
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 4 5.00E-05 00:01:39 37.51 26.25 37.16

17
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 4 1.00E-04 00:01:38 37.78 26.5 37.43

18
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 4 2.00E-03 00:01:40 37.57 26.24 37.19

19
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
2048 8 5 5.00E-05 00:01:53 37.59 26.23 37.18

20
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
2048 8 5 1.00E-04 00:01:51 37.69 26.34 37.31

21
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
2048 8 5 2.00E-03 00:01:48 27.4 15.94 26.75

22
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
3072 12 5 5.00E-05 00:01:51 37.56 26.15 37.21

23
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
3072 12 5 1.00E-04 00:01:53 37.74 26.35 37.4

24
BERTurk-

Base (32K)
CLS Token of the Last Layer

1-Layer

Transformer
3072 12 5 2.00E-03 00:01:53 37.48 26.15 37.11

25
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 5.00E-05 00:03:12 37.69 26.43 37.33

80

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

26
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 1.00E-04 00:02:01 37.69 26.46 37.38

27
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 2.00E-03 00:02:00 37.51 26.08 37.09

28
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 5.00E-05 00:01:58 37.8 26.53 37.45

29
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 1.00E-04 00:01:58 37.71 26.49 37.37

30
BERTurk-

Base (32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 2.00E-03 00:01:56 37.42 26.12 37.05

31
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 5.00E-05 00:02:06 37.68 26.43 37.31

32
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 1.00E-04 00:02:05 37.8 26.47 37.41

33
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 2.00E-03 00:02:01 37.42 25.94 37.03

34
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 5 5.00E-05 00:02:08 37.6 26.32 37.25

35
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 5 1.00E-04 00:02:03 37.66 26.33 37.29

36
BERTurk-

Base (32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 5 2.00E-03 00:02:00 37.57 26.21 37.18

37
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
2048 8 4 5.00E-05 00:01:50 37.41 26.15 37.05

38
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
2048 8 4 1.00E-04 00:01:48 37.4 26.16 37.04

39
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
2048 8 4 2.00E-03 00:01:49 27.4 15.94 26.75

81

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

40
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
3072 12 4 5.00E-05 00:01:52 37.49 26.27 37.11

41
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
3072 12 4 1.00E-04 00:01:48 37.48 26.3 37.09

42
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
3072 12 4 2.00E-03 00:01:51 37.46 26.1 37.06

43
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
2048 8 4 5.00E-05 00:01:51 37.39 26.22 37.03

44
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
2048 8 4 1.00E-04 00:01:52 37.4 26.2 37.04

45
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
2048 8 4 2.00E-03 00:01:53 37.4 26.02 37.01

46
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
3072 12 4 5.00E-05 00:01:54 37.43 26.21 37.08

47
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
3072 12 4 1.00E-04 00:01:52 37.45 26.26 37.1

48
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
3072 12 4 2.00E-03 00:01:54 37.49 26.39 37.12

49
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
2048 8 4 5.00E-05 00:01:55 37.38 26.22 37.02

50
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
2048 8 4 1.00E-04 00:01:53 37.42 26.25 37.07

51
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
2048 8 4 2.00E-03 00:01:53 37.42 26.19 37.05

52
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
3072 12 4 5.00E-05 00:01:58 37.47 26.31 37.1

53
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
3072 12 4 1.00E-04 00:01:57 37.41 26.25 37.06

82

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

54
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
3072 12 4 2.00E-03 00:01:57 37.5 26.36 37.15

55
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
2048 8 5 5.00E-05 00:02:16 37.52 26.24 37.17

56
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
2048 8 5 1.00E-04 00:02:16 37.42 26.21 37.06

57
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
2048 8 5 2.00E-03 00:02:16 27.4 15.94 26.75

58
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
3072 12 5 5.00E-05 00:02:15 37.47 26.21 37.1

59
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
3072 12 5 1.00E-04 00:02:14 37.41 26.21 37.06

60
BERTurk-

Base (32K)
Mean pooling of the Last Layer

1-Layer

Transformer
3072 12 5 2.00E-03 00:02:14 37.49 26.36 37.12

61
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
2048 8 5 5.00E-05 00:02:20 37.4 26.16 37.04

62
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
2048 8 5 1.00E-04 00:02:19 37.61 26.31 37.26

63
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
2048 8 5 2.00E-03 00:02:20 37.41 26.22 37.03

64
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
3072 12 5 5.00E-05 00:02:20 37.61 26.33 37.26

65
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
3072 12 5 1.00E-04 00:02:20 37.59 26.34 37.22

66
BERTurk-

Base (32K)
Mean pooling of the Last Layer

2-Layer

Transformers
3072 12 5 2.00E-03 00:02:20 37.39 26.23 37

67
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
2048 8 5 5.00E-05 00:02:25 37.41 26.24 37.07

83

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

68
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
2048 8 5 1.00E-04 00:02:25 37.51 26.28 37.19

69
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
2048 8 5 2.00E-03 00:02:25 37.42 25.99 37.06

70
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
3072 12 5 5.00E-05 00:02:25 37.43 26.23 37.08

71
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
3072 12 5 1.00E-04 00:02:25 37.52 26.23 37.18

72
BERTurk-

Base (32K)
Mean pooling of the Last Layer

3-Layer

Transformers
3072 12 5 2.00E-03 00:02:25 37.5 26.33 37.14

73
BERTurk-

Base (32K)
CLS Token of the Last Layer

Simple

Linear Layer
- - 10 5.00E-05 00:06:09 31.45 19.82 30.85

74
BERTurk-

Base (32K)
CLS Token of the Last Layer

Simple

Linear Layer
- - 10 1.00E-04 00:06:10 32.58 20.85 32.09

75
BERTurk-

Base (32K)
CLS Token of the Last Layer

Simple

Linear Layer
- - 10 2.00E-03 00:06:10 36.1 24.46 35.81

76
BERTurk-

Base (32K)
Mean pooling of the Last Layer

Simple

Linear Layer
- - 10 5.00E-05 00:04:25 32.62 20.24 32

77
BERTurk-

Base (32K)
Mean pooling of the Last Layer

Simple

Linear Layer
- - 10 1.00E-04 00:04:24 33.8 21.37 33.29

78
BERTurk-

Base (32K)
Mean pooling of the Last Layer

Simple

Linear Layer
- - 10 2.00E-03 00:04:24 36.92 24.85 36.56

79 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
2048 8 4 5.00E-05 00:02:30 37.49 26.4 37.12

80 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
2048 8 4 1.00E-04 00:02:30 37.49 26.4 37.12

81 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
2048 8 4 2.00E-03 00:02:32 37.45 26.2 37.1

84

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

82 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
3072 12 4 5.00E-05 00:02:31 37.49 26.4 37.12

83 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
3072 12 4 1.00E-04 00:02:32 37.49 26.4 37.12

84 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
3072 12 4 2.00E-03 00:02:32 37.49 26.4 37.12

85 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
2048 8 4 5.00E-05 00:02:36 37.49 26.4 37.12

86 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
2048 8 4 1.00E-04 00:02:36 37.49 26.4 37.12

87 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
2048 8 4 2.00E-03 00:02:36 37.25 25.42 36.82

88 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
3072 12 4 5.00E-05 00:02:36 37.49 26.4 37.12

89 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
3072 12 4 1.00E-04 00:02:36 37.49 26.4 37.12

90 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
3072 12 4 2.00E-03 00:02:35 37.49 26.26 37.11

91 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
2048 8 4 5.00E-05 00:02:39 37.49 26.4 37.12

92 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
2048 8 4 1.00E-04 00:02:39 37.49 26.4 37.12

93 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
2048 8 4 2.00E-03 00:02:38 27.4 15.94 26.75

94 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
3072 12 4 5.00E-05 00:02:39 37.49 26.4 37.12

95 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
3072 12 4 1.00E-04 00:02:38 37.49 26.4 37.12

85

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

96 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
3072 12 4 2.00E-03 00:02:38 27.4 15.94 26.75

97 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
2048 8 5 5.00E-05 00:01:53 37.49 26.4 37.12

98 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
2048 8 5 1.00E-04 00:01:53 37.49 26.4 37.12

99 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
2048 8 5 2.00E-03 00:01:55 37.41 25.73 37.02

100 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
3072 12 5 5.00E-05 00:01:56 37.49 26.4 37.12

101 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
3072 12 5 1.00E-04 00:01:55 37.49 26.4 37.12

102 ELECTRA CLS Token of the Last Layer
1-Layer

Transformer
3072 12 5 2.00E-03 00:01:55 37.49 26.4 37.12

103 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
2048 8 5 5.00E-05 00:02:01 37.49 26.4 37.12

104 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
2048 8 5 1.00E-04 00:02:01 37.49 26.4 37.12

105 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
2048 8 5 2.00E-03 00:02:01 37.49 26.25 37.13

106 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
3072 12 5 5.00E-05 00:02:01 37.49 26.4 37.12

107 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
3072 12 5 1.00E-04 00:02:01 37.49 26.4 37.12

108 ELECTRA CLS Token of the Last Layer
2-Layer

Transformers
3072 12 5 2.00E-03 00:02:01 37.42 26.32 37.04

109 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
2048 8 5 5.00E-05 00:02:07 37.49 26.4 37.12

86

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

110 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
2048 8 5 1.00E-04 00:02:07 37.49 26.4 37.12

111 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
2048 8 5 2.00E-03 00:02:06 27.4 15.94 26.75

112 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
3072 12 5 5.00E-05 00:02:07 37.49 26.4 37.12

113 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
3072 12 5 1.00E-04 00:02:07 37.49 26.4 37.12

114 ELECTRA CLS Token of the Last Layer
3-Layer

Transformers
3072 12 5 2.00E-03 00:02:06 27.4 15.94 26.75

115 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
2048 8 4 5.00E-05 00:01:52 37.49 26.39 37.12

116 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
2048 8 4 1.00E-04 00:01:51 37.49 26.39 37.12

117 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
2048 8 4 2.00E-03 00:01:52 37.51 25.92 37.13

118 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
3072 12 4 5.00E-05 00:02:51 37.49 26.35 37.12

119 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
3072 12 4 1.00E-04 00:02:50 37.49 26.4 37.12

120 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
3072 12 4 2.00E-03 00:02:50 27.4 15.94 26.75

121 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
2048 8 4 5.00E-05 00:02:56 37.49 26.4 37.12

122 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
2048 8 4 1.00E-04 00:02:57 37.49 26.4 37.12

123 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
2048 8 4 2.00E-03 00:02:55 27.4 15.94 26.75

87

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

124 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
3072 12 4 5.00E-05 00:02:55 37.49 26.39 37.12

125 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
3072 12 4 1.00E-04 00:02:55 37.49 26.39 37.12

126 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
3072 12 4 2.00E-03 00:02:55 27.4 15.94 26.75

127 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
2048 8 4 5.00E-05 00:02:59 37.49 26.4 37.12

128 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
2048 8 4 1.00E-04 00:02:59 37.49 26.39 37.12

129 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
2048 8 4 2.00E-03 00:03:01 27.4 15.94 26.75

130 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
3072 12 4 5.00E-05 00:03:01 37.49 26.39 37.12

131 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
3072 12 4 1.00E-04 00:03:00 37.49 26.39 37.12

132 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
3072 12 4 2.00E-03 00:03:00 27.4 15.94 26.75

133 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
2048 8 5 5.00E-05 00:03:34 37.49 26.39 37.12

134 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
2048 8 5 1.00E-04 00:03:34 37.49 26.4 37.12

135 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
2048 8 5 2.00E-03 00:03:34 37.49 26.36 37.12

136 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
3072 12 5 5.00E-05 00:03:33 37.49 26.39 37.12

137 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
3072 12 5 1.00E-04 00:03:33 37.49 26.39 37.12

88

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

138 ELECTRA Mean pooling of the Last Layer
1-Layer

Transformer
3072 12 5 2.00E-03 00:03:34 37.49 26.38 37.12

139 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
2048 8 5 5.00E-05 00:03:39 37.49 26.39 37.12

140 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
2048 8 5 1.00E-04 00:03:38 37.49 26.39 37.12

141 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
2048 8 5 2.00E-03 00:03:39 37.49 26.35 37.12

142 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
3072 12 5 5.00E-05 00:03:39 37.49 26.38 37.12

143 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
3072 12 5 1.00E-04 00:03:38 37.49 26.38 37.12

144 ELECTRA Mean pooling of the Last Layer
2-Layer

Transformers
3072 12 5 2.00E-03 00:03:37 27.4 15.94 26.75

145 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
2048 8 5 5.00E-05 00:03:48 37.49 26.39 37.12

146 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
2048 8 5 1.00E-04 00:03:53 37.49 26.39 37.12

147 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
2048 8 5 2.00E-03 00:03:49 27.4 15.94 26.75

148 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
3072 12 5 5.00E-05 00:03:48 37.49 26.39 37.12

149 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
3072 12 5 1.00E-04 00:03:51 37.49 26.38 37.12

150 ELECTRA Mean pooling of the Last Layer
3-Layer

Transformers
3072 12 5 2.00E-03 00:03:47 27.4 15.94 26.75

151 ELECTRA CLS Token of the Last Layer
Simple

Linear Layer
- - 10 5.00E-05 00:06:04 27.35 15.89 26.71

89

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

152 ELECTRA CLS Token of the Last Layer
Simple

Linear Layer
- - 10 1.00E-04 00:06:03 27.35 15.89 26.71

153 ELECTRA CLS Token of the Last Layer
Simple

Linear Layer
- - 10 2.00E-03 00:06:03 27.21 15.78 26.54

154 ELECTRA Mean pooling of the Last Layer
Simple

Linear Layer
- - 10 5.00E-05 00:04:12 28.72 16.65 28.15

155 ELECTRA Mean pooling of the Last Layer
Simple

Linear Layer
- - 10 1.00E-04 00:04:10 29.62 17.76 29.12

156 ELECTRA Mean pooling of the Last Layer
Simple

Linear Layer
- - 10 2.00E-03 00:04:09 32.38 20.62 32.03

157
BERTurk-

Base (32K)
CLS Token + Mean pooling

2-Layer

Transformers
3072 12 5 5.00E-05 00:02:23 37.73 26.25 37.4

158
BERTurk-

Base (32K)
CLS Token + Mean pooling

3-Layer

Transformers
3072 12 4 1.00E-04 00:02:01 37.91 26.46 37.5

159
BERTurk-

Base (32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 5 1.00E-04 00:02:28 38.02 26.49 37.62

160
BERTurk-

Base (32K)
CLS Token + Mean pooling

2-Layer

Transformers
2048 8 5 1.00E-04 00:02:24 38.38 26.8 38.04

161
BERTurk-

Base (32K)
CLS Token + Mean pooling

2-Layer

Transformers
3072 12 5 1.00E-04 00:02:18 37.76 26.28 37.45

162
BERTurk-

Base (32K)
CLS Token + Mean pooling

2-Layer

Transformers
3072 12 4 1.00E-04 00:01:50 37.76 26.33 37.43

163
BERTurk-

Base (32K)
CLS Token + Mean pooling

2-Layer

Transformers
2048 8 5 5.00E-05 00:03:32 37.98 26.44 37.59

164
BERTurk-

Base (32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 4 1.00E-04 00:01:56 38.03 26.55 37.66

165
BERTurk-

Base (32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 4 5.00E-05 00:02:55 37.88 26.42 37.49

90

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

166
BERTurk-

Base (32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 5 5.00E-05 00:03:37 38.03 26.5 37.6

167
BERTurk-

Base (32K)
(CLS Token, Mean pooling)

2-Layer

Transformers
3072 12 5 5.00E-05 00:02:22 37.42 26.05 37.08

168
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
3072 12 4 1.00E-04 00:01:59 37.72 26.45 37.32

169
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
2048 8 5 1.00E-04 00:02:29 37.44 26.03 37.12

170
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
2048 8 5 1.00E-04 00:03:55 37.52 26.17 37.2

171
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
3072 12 5 1.00E-04 00:03:38 37.36 25.9 37.03

172
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
3072 12 4 1.00E-04 00:01:54 37.73 26.48 37.35

173
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
2048 8 5 5.00E-05 00:02:19 37.48 26.23 37.16

174
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
2048 8 4 1.00E-04 00:03:00 37.7 26.54 37.36

175
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
2048 8 4 5.00E-05 00:03:00 37.75 26.56 37.38

176
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
2048 8 5 5.00E-05 00:02:28 37.52 26.17 37.12

177
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
6144 24 5 5.00E-05 00:02:23 37.52 26.28 37.15

178
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
6144 24 4 1.00E-04 00:02:02 27.4 15.94 26.75

179
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
4096 16 5 1.00E-04 00:02:30 37.49 26.16 37.17

91

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

180
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
4096 16 5 1.00E-04 00:02:21 37.42 25.99 37.05

181
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
6144 24 5 1.00E-04 00:02:23 37.51 26.23 37.14

182
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
6144 24 4 1.00E-04 00:01:56 37.69 26.45 37.34

183
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 2-Layer

Transformers
4096 16 5 5.00E-05 00:02:21 37.65 26.37 37.31

184
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
4096 16 4 1.00E-04 00:01:55 37.83 26.57 37.47

185
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
4096 16 4 5.00E-05 00:01:55 37.67 26.39 37.33

186
BERTurk-

Base (32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
4096 16 5 5.00E-05 00:02:23 37.41 26.1 37.09

187
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
3072 12 5 5.00E-05 00:02:28 37.63 26.29 37.29

188
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
3072 12 4 1.00E-04 00:02:04 37.49 26.38 37.12

189
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
2048 8 5 1.00E-04 00:04:17 37.5 26.4 37.12

190
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
2048 8 5 1.00E-04 00:03:45 27.4 15.94 26.75

191
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
3072 12 5 1.00E-04 00:02:27 37.53 26.41 37.18

192
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
3072 12 4 1.00E-04 00:01:55 37.49 26.31 37.13

193
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
2048 8 5 5.00E-05 00:03:48 37.36 26.07 37.04

92

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

194
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
2048 8 4 1.00E-04 00:02:02 37.44 26.28 37.07

195
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
2048 8 4 5.00E-05 00:02:02 37.56 26.41 37.2

196
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
2048 8 5 5.00E-05 00:02:33 37.74 26.45 37.39

197
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
9216 36 5 5.00E-05 00:02:39 37.52 26.22 37.21

198
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
9216 36 4 1.00E-04 00:02:21 37.49 26.41 37.12

199
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 5 1.00E-04 00:02:47 37.67 26.41 37.32

200
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
6144 24 5 1.00E-04 00:02:32 37.49 26.2 37.1

201
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
9216 36 5 1.00E-04 00:02:41 37.49 26.29 37.16

202
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
9216 36 4 1.00E-04 00:02:06 37.48 26.34 37.11

203
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

2-Layer

Transformers
6144 24 5 5.00E-05 00:02:31 37.67 26.29 37.33

204
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 4 1.00E-04 00:02:12 37.48 26.25 37.09

205
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 4 5.00E-05 00:02:12 37.71 26.5 37.34

206
BERTurk-

Base (32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 5 5.00E-05 00:02:43 37.85 26.59 37.53

207
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

2-Layer

Transformers
3072 12 5 5.00E-05 00:03:34 37.76 26.39 37.53

93

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

208
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

3-Layer

Transformers
3072 12 4 1.00E-04 00:02:55 37.64 26.16 37.38

209
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

3-Layer

Transformers
2048 8 5 1.00E-04 00:03:40 37.69 26.07 37.32

210
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

2-Layer

Transformers
2048 8 5 1.00E-04 00:03:34 37.64 26.22 37.36

211
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

2-Layer

Transformers
3072 12 5 1.00E-04 00:03:34 37.68 26.17 37.35

212
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

2-Layer

Transformers
3072 12 4 1.00E-04 00:02:51 37.58 26.13 37.23

213
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

2-Layer

Transformers
2048 8 5 5.00E-05 00:03:34 37.92 26.37 37.58

214
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

3-Layer

Transformers
2048 8 4 1.00E-04 00:02:55 37.59 26.09 37.21

215
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

3-Layer

Transformers
2048 8 4 5.00E-05 00:02:55 37.62 26.11 37.23

216
BERTurk-

Base (32K)

Sum Last Four Layers' CLS

Token

3-Layer

Transformers
2048 8 5 5.00E-05 00:03:40 37.7 26.18 37.35

217
BERTurk-

Base (128K)
CLS Token + Mean pooling

2-Layer

Transformers
2048 8 5 1.00E-04 00:02:14 37.83 26.42 37.51

218
BERTurk-

Base (128K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 5 5.00E-05 00:02:45 37.62 26.39 37.27

219
BERTurk-

Base (128K)
(CLS Token, Mean pooling)

3-Layer

Transformers
4096 16 4 1.00E-04 00:01:58 27.33 15.88 26.66

220
BERTurk-

Base (128K)
(CLS Token, Mean pooling)

3-Layer

Transformers
2048 8 4 5.00E-05 00:01:57 37.49 26.4 37.12

221
BERTurk-

Base (128K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 4 1.00E-04 00:01:51 37.61 26.22 37.27

94

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

222
BERTurk-

Base (128K)
(CLS Token, Mean pooling|)

3-Layer

Transformers
2048 8 4 1.00E-04 00:01:54 27.33 15.88 26.66

223
BERTurk-

Base (128K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 5.00E-05 00:01:58 37.49 26.4 37.12

224
BERTurk-

Base (128K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 4 1.00E-04 00:01:38 37.49 26.4 37.12

225
BERTurk-

Base (128K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 5 5.00E-05 00:02:18 37.6 26.25 37.27

226
BERTurk-

Base (128K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 4 5.00E-05 00:02:12 37.49 26.34 37.13

227
BERTurk-

Base (128K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 4 1.00E-04 00:01:31 37.49 26.4 37.12

228
BERTurk-

Base (128K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 1.00E-04 00:01:55 37.49 26.4 37.12

229
BERTurk-

Base (128K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 5 1.00E-04 00:02:19 37.78 26.37 37.46

230
BERTurk-

Base (128K)
(CLS Token, Mean pooling)

2-Layer

Transformers
3072 12 4 1.00E-04 00:01:51 37.49 26.35 37.12

231
BERTurk-

Base (128K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 1.00E-04 00:01:59 37.49 26.4 37.12

232
BERTurk-

Base (128K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 1.00E-04 00:01:54 37.49 26.4 37.12

233
BERTurk-

Base (128K)
CLS Token + Mean pooling

3-Layer

Transformers
3072 12 4 1.00E-04 00:01:51 37.6 26.22 37.26

234
BERTurk-

Base (128K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 1.00E-04 00:01:35 37.49 26.4 37.12

235
BERTurk-

Base (128K)

(CLS Token, Mean pooling) 3-Layer

Transformers
3072 12 4 1.00E-04 00:01:55 37.49 26.39 37.12

95

Language

Model
Sentence Representation Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1

F score

ROUGE-2

F score

ROUGE-L

F score

236
BERTurk-

Base (128K)

(CLS Token, Mean pooling) 2-Layer

Transformers
6144 24 4 1.00E-04 00:01:53 37.49 26.35 37.12

237
BERTurk-

Base (128K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
2048 8 5 5.00E-05 00:02:33 37.51 26.28 37.16

238
BERTurk-

Base (128K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 5.00E-05 00:01:35 37.49 26.4 37.12

239
BERTurk-

Base (128K)
CLS Token + Mean pooling

2-Layer

Transformers
2048 8 5 5.00E-05 00:02:14 37.71 26.29 37.39

240
BERTurk-

Base (128K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 5.00E-05 00:02:01 37.49 26.4 37.12

241
BERTurk-

Base (128K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 5.00E-05 00:02:07 37.49 26.4 37.12

96

APPENDIX B

TOP-10 PERFORMING MODELS

AMONG THE INITIAL 158 MODELS

Language

Model

Sentence

Representation
Extra Layer

FFN

Hidden

Size

of

Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1 F

score

ROUGE-2 F

score

ROUGE-L F

score

28
BERTurk-

Base (32K)

CLS Token of the

Last Layer

2-Layer

Transformers
3072 12 5 5.00E-05 0:01:58 37.8 26.53 37.45

17
BERTurk-

Base (32K)

CLS Token of the

Last Layer

3-Layer

Transformers
3072 12 4 1.00E-04 0:01:38 37.78 26.5 37.43

11
BERTurk-

Base (32K)

CLS Token of the

Last Layer

2-Layer

Transformers
3072 12 4 1.00E-04 0:01:36 37.72 26.49 37.36

29
BERTurk-

Base (32K)

CLS Token of the

Last Layer

2-Layer

Transformers
3072 12 5 1.00E-04 0:01:58 37.71 26.49 37.37

32
BERTurk-

Base (32K)

CLS Token of the

Last Layer

3-Layer

Transformers
2048 8 5 1.00E-04 0:02:05 37.8 26.47 37.41

26
BERTurk-

Base (32K)

CLS Token of the

Last Layer

2-Layer

Transformers
2048 8 5 1.00E-04 0:02:01 37.69 26.46 37.38

14
BERTurk-

Base (32K)

CLS Token of the

Last Layer

3-Layer

Transformers
2048 8 4 1.00E-04 0:01:40 37.66 26.45 37.3

13
BERTurk-

Base (32K)

CLS Token of the

Last Layer

3-Layer

Transformers
2048 8 4 5.00E-05 0:01:40 37.62 26.44 37.27

25
BERTurk-

Base (32K)

CLS Token of the

Last Layer

2-Layer

Transformers
2048 8 5 5.00E-05 0:03:12 37.69 26.43 37.33

31
BERTurk-

Base (32K)

CLS Token of the

Last Layer

3-Layer

Transformers
2048 8 5 5.00E-05 0:02:06 37.68 26.43 37.31

97

APPENDIX C

TOP-25 BEST PERFORMING BERTURK BASE (32K) MODELS’ HYPERPARAMETER

SETTINGS USED IN BERTURK BASE (128) MODEL EXPERIMENTS

Language

Model
Sentence Representation Extra Layer

FFN Hidden

Size

of Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1 F

score

ROUGE-2 F

score

ROUGE-L F

score

160
BERTurk-Base

(32K)
CLS Token + Mean pooling

2-Layer

Transformers
2048 8 5 1.00E-04 0:02:24 38.38 26.8 38.04

206
BERTurk-Base

(32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 5 5.00E-05 0:02:43 37.85 26.59 37.53

184
BERTurk-Base

(32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
4096 16 4 1.00E-04 0:01:55 37.83 26.57 37.47

175
BERTurk-Base

(32K)

(CLS Token, Mean pooling) 3-Layer

Transformers
2048 8 4 5.00E-05 0:03:00 37.75 26.56 37.38

164
BERTurk-Base

(32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 4 1.00E-04 0:01:56 38.03 26.55 37.66

174
BERTurk-Base

(32K)
(CLS Token, Mean pooling)

3-Layer

Transformers
2048 8 4 1.00E-04 0:03:00 37.7 26.54 37.36

28
BERTurk-Base

(32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 5.00E-05 0:01:58 37.8 26.53 37.45

17
BERTurk-Base

(32K)
CLS Token of the Last Layer

3-Layer

Transformers
3072 12 4 1.00E-04 0:01:38 37.78 26.5 37.43

166
BERTurk-Base

(32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 5 5.00E-05 0:03:37 38.03 26.5 37.6

205
BERTurk-Base

(32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
6144 24 4 5.00E-05 0:02:12 37.71 26.5 37.34

11
BERTurk-Base

(32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 4 1.00E-04 0:01:36 37.72 26.49 37.36

98

Language

Model
Sentence Representation Extra Layer

FFN Hidden

Size

of Attention

Heads

of

Epoch

Learning

Rate

Training

Time

ROUGE-1 F

score

ROUGE-2 F

score

ROUGE-L F

score

29
BERTurk-Base

(32K)
CLS Token of the Last Layer

2-Layer

Transformers
3072 12 5 1.00E-04 0:01:58 37.71 26.49 37.37

159
BERTurk-Base

(32K)
CLS Token + Mean pooling

3-Layer

Transformers
2048 8 5 1.00E-04 0:02:28 38.02 26.49 37.62

172
BERTurk-Base

(32K)
(CLS Token, Mean pooling)

2-Layer

Transformers
3072 12 4 1.00E-04 0:01:54 37.73 26.48 37.35

32
BERTurk-Base

(32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 1.00E-04 0:02:05 37.8 26.47 37.41

26
BERTurk-Base

(32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 1.00E-04 0:02:01 37.69 26.46 37.38

158
BERTurk-Base

(32K)
CLS Token + Mean pooling

3-Layer

Transformers
3072 12 4 1.00E-04 0:02:01 37.91 26.46 37.5

14
BERTurk-Base

(32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 1.00E-04 0:01:40 37.66 26.45 37.3

168
BERTurk-Base

(32K)
(CLS Token, Mean pooling)

3-Layer

Transformers
3072 12 4 1.00E-04 0:01:59 37.72 26.45 37.32

182
BERTurk-Base

(32K)
(CLS Token, Mean pooling)

2-Layer

Transformers
6144 24 4 1.00E-04 0:01:56 37.69 26.45 37.34

196
BERTurk-Base

(32K)

(CLS Token, Mean pooling,

|CLS Token-Mean pooling|)

3-Layer

Transformers
2048 8 5 5.00E-05 0:02:33 37.74 26.45 37.39

13
BERTurk-Base

(32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 4 5.00E-05 0:01:40 37.62 26.44 37.27

163
BERTurk-Base

(32K)
CLS Token + Mean pooling

2-Layer

Transformers
2048 8 5 5.00E-05 0:03:32 37.98 26.44 37.59

25
BERTurk-Base

(32K)
CLS Token of the Last Layer

2-Layer

Transformers
2048 8 5 5.00E-05 0:03:12 37.69 26.43 37.33

31
BERTurk-Base

(32K)
CLS Token of the Last Layer

3-Layer

Transformers
2048 8 5 5.00E-05 0:02:06 37.68 26.43 37.31

99

REFERENCES

Bae, S., Kim, T., Kim, J., & Lee, S. (2019). Summary level training of sentence

rewriting for abstractive summarization. Proceedings of the 2nd Workshop on

New Frontiers in Summarization. doi:10.18653/v1/d19-5402

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python:

Analyzing text with the natural language toolkit. Newton, MA: O'Reilly Media.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors

with Subword information. Transactions of the Association for Computational

Linguistics, 5, 135-146. doi:10.1162/tacl_a_00051

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., & Robinson, T.

(2013). One billion word benchmark for measuring progress in statistical

language modeling. Retrieved from https://arxiv.org/abs/1312.3005

Cheng, J., & Lapata, M. (2016). Neural summarization by extracting sentences and

words. Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p16-1046

Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

& Bengio, Y. (2014). Learning phrase representations using RNN encoder–

decoder for statistical machine translation. Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP).

doi:10.3115/v1/d14-1179

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training

text encoders as discriminators rather than generators. Retrieved from

https://arxiv.org/abs/2003.10555

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep

bidirectional transformers for language understanding. Retrieved from

https://arxiv.org/abs/1810.04805

Dong, Y., Shen, Y., Crawford, E., Van Hoof, H., & Cheung, J. C. (2018). BanditSum:

Extractive summarization as a contextual bandit. Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing.

doi:10.18653/v1/d18-1409

Goldberg, Y. (2017). Neural network methods in natural language processing (synthesis

lectures on human language technologies). Williston, VT: Morgan & Claypool

Publishers.

100

Guo, J., Che, W., Wang, H., & Liu, T. (2014). Revisiting embedding features for simple

semi-supervised learning. Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP). doi:10.3115/v1/d14-1012

Guo, W., Wu, B., Wang, B., & Yang, Y. (2020). Two-stage encoding extractive

summarization. 2020 IEEE Fifth International Conference on Data Science in

Cyberspace (DSC). doi:10.1109/dsc50466.2020.00060

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735-1780. Retrieved from

https://doi.org/10.1162/neco.1997.9.8.1735

Kingma, D., & Ba, J. L. (2014). Adam: A method for stochastic optimization. Retrieved

from https://arxiv.org/abs/1412.6980

Lin, C. Y. (2004). ROUGE: A package for automatic evaluation of summaries.

Retrieved from https://www.aclweb.org/anthology/W04-1013.pdf

Liu, Y., & Lapata, M. (2019). Text summarization with pretrained encoders.

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP). doi:10.18653/v1/d19-1387

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., … Stoyanov, V. (2019).

RoBERTa: A Robustly Optimized BERT Pretraining Approach. Retrieved from

https://arxiv.org/abs/1907.11692

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. Retrieved from https://arxiv.org/abs/1301.3781

Nallapati, R., Zhai, F., & Zhou, B. (2016a). SummaRuNNer: A recurrent neural network

based sequence model for extractive summarization of documents. Retrieved

from https://arxiv.org/abs/1611.04230

Nallapati, R., Zhou, B., Dos Santos, C., Gulcehre, C., & Xiang, B. (2016b). Abstractive

text summarization using sequence-to-sequence RNNs and beyond. Proceedings

of The 20th SIGNLL Conference on Computational Natural Language Learning.

doi:10.18653/v1/k16-1028

Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking sentences for extractive

summarization with reinforcement learning. Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers). doi:10.18653/v1/n18-

1158

Paulus, R., Xiong, C., & Socher, R. (2017). A deep reinforced model for abstractive

summarization. Retrieved from https://arxiv.org/abs/1705.04304

101

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word

representation. Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP). doi:10.3115/v1/d14-1162

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &

Zettlemoyer, L. (2018). Deep contextualized word representations. Retrieved

from https://arxiv.org/abs/1802.05365

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using

Siamese BERT-networks. Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP).

doi:10.18653/v1/d19-1410

Ruder, S. (2020). Tracking progress in natural language processing. Retrieved October

2020, from https://github.com/sebastianruder/NLP-progress

Schweter, S. (2020, April). BERTurk - BERT models for Turkish. Retrieved October

2020, from https://github.com/stefan-it/turkish-bert

Scialom, T., Dray, P. A., Lamprier, S., Piwowarski, B., & Staiano, J. (2020). MLSUM:

The multilingual summarization corpus. Retrieved from

https://arxiv.org/abs/2004.14900

See, A., Liu, E. J., & Manning, C. D. (2017). Get to the point: Summarization with

pointer-generator networks. Retrieved from https://arxiv.org/abs/1704.04368

Sonmez, S. (2016, February 24). “Facebook’un geleceği yapay zekada”. Retrieved from

https://www.dunyahalleri.com/facebookun-gelecegi-yapay-zekada/

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems, 5998-6008. Retrieved from https://arxiv.org/abs/1706.03762

Zhang, X., Wei, F., & Zhou, M. (2019). HIBERT: Document level pre-training of

hierarchical bidirectional transformers for document summarization. Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics.

doi:10.18653/v1/p19-1499

Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X., & Huang, X. (2020). Extractive

Summarization as text matching. Retrieved from

https://arxiv.org/abs/2004.08795

Zhong, M., Liu, P., Wang, D., Qiu, X., & Huang, X. (2019). Searching for effective

neural extractive summarization: What works and what’s next. Retrieved from

https://arxiv.org/abs/1907.03491

102

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S.

(2015). Aligning books and movies: Towards story-like visual explanations by

watching movies and reading books. Proceedings of the IEEE international

conference on computer vision, 19-27. Retrieved from

https://arxiv.org/abs/1506.06724

