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ABSTRACT 

Early Processing of Scatterplots: The Impact of Outlier 

and Content on Trend-Line Estimation 

 

Recently, there has been a growing interest in integrating data visualization research 

with basic visual perception findings. Following this line of reasoning, in this thesis, 

I investigated how our understanding of ensemble perception, our visual system’s 

ability to accurately and rapidly extract summary information of briefly presented set 

of objects that are spatially or featural similar, can contribute to our understanding of 

scatterplot processing. Across two experiments, I sought to answer two separate yet 

related questions. One, I investigated whether the presence of an outlier could 

influence how viewers extract best-fits in scatterplots. Two, I investigated whether 

familiar content and the presence of trend-consistent outliers influenced best-fits 

extracted in scatterplots. In both experiments, I briefly presented participants with 

scatterplots that varied outlier presence. Then, participants drew their best-fit 

estimates by using the mouse. Comparing their responses with possible best-fit 

alternatives, I found that outliers are equally weighed with the remaining points in 

trend-line estimates when there was not any context. However, when the relationship 

depicted in the scatterplot was familiar, and the outlier point represented a trend-

consistent position, viewers were more likely to generate best-fits that overweighed 

those outliers in their responses, demonstrating that prior beliefs could influence our 

trend-line estimates from briefly presented scatterplots. 
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ÖZET 

Dağılım Grafiklerinin Erken İşlenmesi: Uç Değerin ve İçeriğin Uyum Doğrusu 

Kestiriminde Etkisi 

 

Son dönemde veri görselleştirme araştırmalarına temel görsel algı bulgularını entegre 

etme yönünde artan bir ilgi var. Bu düşünceyi takip ederek, bu tezde, özet temsil 

algısı, görsel sistemimizin oldukça kısa süreli gösterilen ekranlardaki birbirine 

uzaysal ya da niteliksel bakımdan benzeyen nesne topluluklarının özet bilgilerini 

hızlı ve isabetli çıkarabilme becerisi, kavrayışımızın dağılım grafiklerinin işlenmesi 

kavrayışımıza nasıl katkıda bulunabileceğini inceledim. İki deney boyunca birbirine 

bağlı iki farklı soruyu cevaplamak için çabaladım. İlk olarak uç değere sahip 

noktanın izleyicilerin en-iyi-uyum-doğrusu kestirimlerine etki edip edemeyeceğini 

soruşturdum. İkinci olarak ise tanıdık bir bağlam ve ilişki yönünde uyumlu bir uç 

değerin varlığının izleyicilerin en-iyi-uyum-doğrusu kestirimlerini etkileyip 

etkileyemeyeceğini soruşturdum. İki deneyde de katılımcılara uç değer varlığının 

değiştiği dağılım grafiklerini kısa bir süre için gösterdim. Sonrasında katılımcılar en-

iyi-uyum-doğrusu kestirimlerini boş dağılım grafiğinde fare ile çizdi. Katılımcıların 

çizimlerini alternatif en-iyi-uyum-doğrusu çözümleri ile kıyasladığımda, herhangi bir 

bağlamın yokluğunda, uç değere sahip noktanın uyum doğrusu çiziminde geriye 

kalan noktalarla eşit seviyede hesaplamaya katıldığını gözlemledim. Fakat, tanıdık 

bir bağlam ve ilişki yönünde bir uç değer varlığında, izleyicilerin en-iyi-uyum-

doğrusu çizimlerinde uç değere sahip noktanın ağır bastığını gözlemledim. Bu sonuç 

önceki inanışlarımızın kısa süreli gösterilen dağılım grafiklerinde bile en-iyi-uyum-

doğrusu çizimimizi etkileyebileceğini gösterdi. 
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CHAPTER 1 

THE EFFECT OF OUTLIER PRESENCE ON TREND-LINE ESTIMATES IN 

SCATTERPLOTS 

 

1.1  Literature review 

In today’s world, data visualizations are frequently used to present data, even in 

articles written for the general public. For example, it is not surprising to encounter 

an icon array while reading a news article about the spread and the risk of getting a 

particular disease, or a line graph that shows the change of market prices. Since the 

beginning of the COVID-19 pandemic, there has been an abundance of visualizations 

trying to communicate the pandemic spread, current status, and future projections to 

masses (Zacks, & Franconeri, 2020; “Coronavirus in Charts: The Fact-Checkers 

Correcting Falsehoods”, 2020). Given the abundance of graphs in both academic and 

non-academic contexts, it is no surprise that researchers have been studying 

graphical processing for many decades (Freedman, Shah, 2002; Hegarty, 2011; 

Kossyln, 2012; Pinker, 1990; Shah, & Freedman, 2011; Shah, Freedman, & Vekiri, 

2005), with numerous guidelines for better visualizations (Cleveland, & McGill, 

1984; Hullman, Adar, & Shah, 2011; Kossyln, 2012; Lewandowsky, & Spence, 

1989). During the last decade, there has been a renewed interest in visuospatial 

displays, mainly focusing on how cognitive and vision science perspectives can 

improve design features and identify individual difference variables that would allow 

for efficient processing of various graphical displays (for a review, see Hegarty, 

2011). In this regard, there has been cross-fertilization between ensemble perception 

and graph perception literature (e.g., Correll, & Heer, 2017; Gleicher, 2018; 

Nothelfer, Gleicher, & Franconeri, 2017; Padilla, Ruginski, Creem-Regehr, 2017; 
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Sarikaya, Gleicher, & Szafir, 2018; Szafir, Haroz, Gleicher, & Franconeri, 2016). 

Ensemble perception refers to the extraction of statistical summary information of 

multiple individual objects with similar featural or spatial characteristics (for a 

review see Whitney, & Yamanashi, 2018). Recent research in ensemble perception 

has shown that viewers do not merely extract the mean of a set of features but they 

also rapidly extract information on the variance and range of visual properties 

(Khayat, Hochstein, 2018; Jeong, & Chong, 2020; Semizer, & Boduroglu, in press), 

and detect outliers (Alvarez, 2011; Avci, & Boduroglu, in press; Hochstein, 

Pavlovskaya, Bonneh, & Soroker, 2018). Considering these findings, in this thesis, I 

investigated whether ensemble mechanisms can contribute to the perception of trends 

in scatterplots. Specifically, I investigated how the presence of outliers, which are 

believed to be detected very rapidly through ensemble perception mechanisms, 

impact perceived trends in scatterplots (Experiment 1). Further, I also investigated 

the effect of familiar content on viewers’ trend-line estimates (Experiment 2). 

I believe that this translational approach integrating ensemble perception 

findings to the scatterplot perception domain could be instrumental because, 

perceptually speaking, the area of each scatterplot contains an ensemble of points. In 

this regard, these displays, apart from their axes, highly resemble displays used in 

studies of spatial working memory, configural processing, and contextual cueing 

(e.g., Boduroglu, & Shah, 2009; Boduroglu, & Shah, 2014; Brady, Konkle, & 

Alvarez, 2009; Jiang, Olson, & Chun, 2000; Mutluturk, & Boduroglu, 2014). It is 

known that viewers can quickly summarize the visual and spatial information 

depicted in such displays via ensemble perception mechanisms (e.g., Alvarez, & 

Olivia, 2008; Boduroglu, & Yildirim, 2020). 
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Scatterplots are graphic displays in which the numerical relationship between 

two variables is presented; each data point represents the corresponding values for 

variables depicted in the x and y axes. Thus, they typically accompany correlational 

analyses. It is not surprising that the studies on scatterplots generally has been 

focusing on the accuracy and precision of perceived correlation magnitude for 

decades (Doherty, Anderson, Angott, Klopfer, 2007; Harrison, Yang, Franconeri, & 

Chang, 2014; Lewandowsky, & Spence, 1989; Meyer, & Shinar, 1992; Meyer, 

Taieb, & Flascher, 1997; Pollack, 1960; Rensink, 2012; Rensink, 2017; Rensink, & 

Baldridge, 2010; Sher, Bemis, Liccardi, Chen, 2017; van Onzenoodt, Huckauf, & 

Ropinski, 2020; Yang, Harrison, Rensink, Franconeri, & Chang, 2019). There is a 

consensus that viewers generally underestimate the correlation magnitude (Doherty 

et al., 2007; Rensink, 2017; Strahan, & Hansen, 1978; but also see Cleveland, 

Diaconis, & McGill, 1982; Meyer, & Shinar, 1992). Researchers have also 

investigated the effect of several display features on perceived correlations: the 

presence of a trend-line (Meyer, & Shinar, 1992; Meyer et al., 1997), the density of 

the points (Doherty et al., 2007; Lauer, & Post, 1989; Rensink, 2012; Rensink, 

2017), dispersion of points around the major axis of imaginary ellipsis that 

encapsulated the point cloud (Meyer, & Shinar, 1992; Meyer et al., 1997, Rensink, 

2012; Rensink, 2017), aspect ratio (Cleveland et al., 1982; Rensink, 2017), geometric 

scaling (Wei et al., 2020) and the effect of individual difference measures such as 

expertise (Meyer, & Shinar, 1992; Meyer et al., 1997). These studies have yielded 

several different models of correlation magnitude perception (Cleveland et al., 1982; 

Harrison et al., 2014; Jenning, Amabile, & Ross, 1982; Meyer et al., 1997; Rensink, 

2017). For instance, Meyer et al. (1997) found that viewers’ correlation estimates 

could be explained by the mean geometrical distance (i.e., perpendicular distance) of 
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points across the regression line. Although Meyer and colleagues constructed the 

model based on the mean perpendicular distance of points to the regression line, they 

also suggested that it is not likely that viewers computed the distance of each point 

and summed all the results. In fact, they suggested that viewers were somehow able 

to immediately extract mean distance by perceptual mechanisms. Today, these 

abilities are broadly referred to as ensemble perception, and as Rensink (2017) 

suggested, they are likely to play a role in correlation magnitude estimation. 

Ensemble coding can also impact scatterplot perception by influencing outlier 

detection and trend estimation (Szafir et al., 2016). Recently, Correll and Heer 

(2017) investigated viewers’ perception of trends in scatterplots. Specifically, they 

asked participants to adjust the probe trend-line slope to specify their trend-line 

estimate for a given scatterplot that depicted 100 points. Their results showed that 

viewers’ estimates were accurate regardless of the complexity of the trend, i.e., linear 

or higher-order trend-lines. They also found that viewers’ accuracy became worse as 

the residuals bandwidth increased, and that suggested viewers’ performance in the 

trend-line estimation task decreased with decreasing physical correlation. 

Furthermore, they argued that the presence of outliers might influence viewers’ 

trend-line estimates, and they expected viewers to down-weight outliers while 

estimating the trend-line. To investigate this, they presented viewers with scatterplots 

that had either an outlier cluster with 5, 10, or 15 points or not. They also controlled 

for the location of the outlier cluster by positioning those clusters at the very 

beginning, middle, or end of the display. As they expected, results showed that 

viewers’ trend-line estimates were closer to a robust ordinary least squares (OLS) 

trend-line, which discounted the outlier cluster, than it was compared to an OLS 

solution including the outlier cluster. However, in Correll and Heer’s (2017) study, 
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scatterplots were always perceptually available, and rather than presenting 

participants with a single outlier, they showed an outlier cluster. I argue that the 

effect of a single outlier could be different from a cluster because the latter could be 

perceived as a separate group and more easily be excluded from trends. On the other 

hand, a single outlier point may be detected and yet not be excluded from trend 

estimates. 

In this thesis, I briefly presented participants with scatterplots that either had 

a single outlier point or not and asked viewers to draw their trend-line estimates to 

test the impact of a single outlier on trend estimates. I expected trend-line estimates 

to be more accurate as the correlation magnitude depicted in scatterplots increased. 

More critically, based on Correll and Heer’s study (2017) and research in ensemble 

perception (e.g., Epstein, Quilty-Dunn, Mandelbaum, & Emmanouil, 2020; 

Haberman, & Whitney, 2010) that showed that viewers discount outlier in their 

summary representations, I tested whether a single outlier is similarly discounted in 

trend-line estimates. I also explored the effect of the physical correlation valance and 

the outlier position on viewers’ trend-line estimates. 

 

1.2  Experiment 1 

 

1.2.1  Participants 

Twenty-one Boğaziçi University undergraduates (11 male; mean age = 22.05 ±  

2.52) were recruited with the exchange of one course credit. All participants had 
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normal or corrected to normal vision. Based on prior criteria, two participants who 

had less than 80% valid trials1 for any condition excluded. 

 

1.2.2  Materials 

Each trial began with a screen that showed the x and y axes of a scatterplot and a 

green fixation cross at the center of the screen that remained on for 500 ms. Then the 

fixation cross turned red for another 500 ms, alerting viewers to the onset of the data 

cloud during which they were expected to maintain fixation. Afterward, the red 

fixation cross disappeared, and the viewers were presented with data points in the 

scatterplot for 250 ms. After the offset of the data points, participants drew their 

trend-line estimate using a mouse on a blank scatterplot. 

Overall, in the main experiment, there were 360 trials. I equated the number 

of trials for two trend direction (i.e. negative, and positive), three correlation 

magnitude intervals (i.e. [.2, .4), [.4, .6), [.6, .8)), and four outlier types (i.e. NO-, X-, 

Y-, and XY-outlier). Figure 1 shows some example trials from the experiment; here 

on the figure at the top, you can see three no-outlier trials for all possible correlation 

magnitude, and at the bottom, there are examples of three types of scatterplots with 

an outlier. 

Each scatterplot was presented at the center of the screen, extending a region 

of 16.38° x 13.14°. The 20 dots were inside a 10.28° x 10.28° square area; marked 

with black (#000000) squares on a white (#FFFFFF) background. The centroid of the 

20 dots was at the center of the 10.28° x 10.28° square area for all displays. 

Throughout the displays, the standard deviation of 20 dots was the same, 1.55°. 

                                                        
1 Valid trials mean that average absolute error is calculable (e.g., it is not calculable when a participant 
drew a single point) and not extreme (i.e., is not away from the mean of the condition more than 3 
standard deviation). 
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While the no outlier dots could vary up to 2 standard deviation on both dimensions, 

outlier dots separated from the other dots on x, y, or both axes based on the type of 

the outlier, while its location was somewhere 2.5 to 3 standard deviation away from 

the centroid on the axis or axes depending on the type of the outlier. 

 

Figure 1.  Type of scatterplots in Experiment 1 

 

1.2.3  Procedure 

The experiment took place in a well-lit room. First, participants provided informed 

consent, and then they read instructions that explained what a scatterplot is and how 

to draw a trend-line estimate in detail. After the instructions, participants first 

completed the training phase consisted of 36 trials, and all had no outlier points. 

Unlike the main experiment, in the training phase, each participant was shown a 

visual feedback screen on which both participant’s response and OLS trend-line of 

20 points were presented after they had drawn their trend-line estimates. 
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In the main part of the experiment, participants completed the trend-line 

estimation task for 360 trials in which there were several types of scatterplot that 

mentioned under materials title. After participants completed the training and 

experimental phases of the experiment, they filled the demographic form. At the end 

of the experiment, they were thanked and debriefed. All procedure took 

approximately 45 minutes. 

 

1.2.4  Apparatus 

A computer with an Intel Core 2 Duo processor, an ATI Radeon X300/X550/X1050 

Series graphics card was used. Stimuli were shown on a 17-in. CRT Philips 107S6 

monitor. The screen resolution was set to 1280 x 1024 pixels, with a refresh rate of 

60 Hz (Refresh duration = 16.67 ms). The experiment was programmed in 

MATLAB, using the Psychtoolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 

2007). 

 

1.2.5  Results and discussion 

I calculated the average absolute error (AAE) for each trial. To calculate AAE 

between participants’ response and OLS solution of 20 points, I calculated the 

absolute pixel difference between y values for each integer x value between 0 and 

640, that was the boundaries of the x-axis by pixels. Then, I summed all absolute 

difference scores and averaged them to get the AAE. 

First, to determine if the presence of outliers and the correlation magnitude 

had any effect on trend-line estimates, I conducted a 2(Trend Direction: Negative, 

Positive) x 3(Correlation Magnitude: Low, Moderate, High) x 4(Outlier Presence: 
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NO-, X-, Y-, XY-outliers) repeated measures ANOVA (see Figure 2); the trend 

direction was included in the analyses as a control variable. 

 

Note. Error bars represent ±1 standard errors. 
Figure 2.  The results of 2(Trend Direction: Negative, Positive) x 3(Correlation Magnitude: Low, 
Moderate, High) x 4(Outlier Presence: NO-, X-, Y-, XY-outliers) ANOVA 

I found that there was no main effect of trend-direction, F < 1. As I expected, I found 

a main effect of correlation magnitude, F(1.066, 19.194) = 28.970, p2 < .001, hp2 = 

.617. That suggested viewers’ trend-line estimates got more accurate as correlation 

magnitude increased; High (M = 34.494, 95% CI [29.871, 39.117]), Moderate (M = 

42.266, 95% CI [36.388, 48.145]), Low (M = 60.178, 95% CI [49.915, 70.440]). I 

also found a main effect of outlier presence, F(1.783, 32.087) = 4.011, p = .32, hp2 = 

.182. Post-hoc analysis on the main effect of outlier presence showed that viewers’ 

estimates were closer to the 20 OLS solution in the NO (M = 44.070, 95% CI 

[38.253, 49.887]) and X (M = 43.573, 95% CI [36.846, 50.299]) outlier conditions 

                                                        
2 All ps are Bonferroni corrected. 
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compared to XY (M = 47.943, 95% CI [42.260, 53.626]) outlier condition, p = .002, 

p = .003, respectively. These main effects were further qualified by significant trend-

direction X outlier presence, and outlier presence X correlation magnitude 

interactions, F (2.783, 50.093) = 8.762, p < .001, hp2 = .327, F(4.405, 79.290) = 

8.331, p < 0.001, hp2 = 0.316, respectively. No other interactions were significant. 

The post-hoc analysis on trend-direction and outlier presence interaction showed that 

there was no difference between outlier conditions in positive trends; NO (M = 

45.377, 95% CI [39.397, 51.357]), X (M = 41.704, 95% CI [35.008, 48.400]), Y (M 

= 47.499, 95% CI [39.812, 55.186]), XY (M = 45.475, 95% CI [40.060, 50.891]). 

But, viewers’ trend-line estimates were more accurate in the No (M = 42.764, 95% 

CI [36.512, 49.016]) and X (M = 45.441, 95% CI [38.103, 52.779]) outlier 

conditions compared to XY (M = 50.410, 95% CI [43.699, 57.122]) outlier condition 

while the depicted trend was negative, respectively p < .001, p = .01. Furthermore, 

the post-hoc analysis on outlier presence and correlation magnitude interaction 

pointed out that while there was no difference between outlier conditions in high and 

moderate levels of correlation magnitudes, in low correlation magnitudes trend-line 

estimation errors were more in XY (M = 66.964, 95% CI [56.137, 77.791]) outlier 

condition compared to NO (M = 56.533, 95% CI [46.865, 66.201]) and X (M = 

56.033, 95% CI [44.799, 67.267]) outlier conditions. That suggested that the effect of 

outlier presence was mainly driven by the disproportionate errors in XY-outlier 

condition for scatterplots that depicted low correlation magnitudes. 

I decided to explore what might have led to the disproportionate levels of 

error in the XY-outlier condition for the low correlation magnitudes. I thought that 

the impact of the outlier point on the correlation magnitude of the remaining 19 

points could be a factor that might explain these inflated error levels. Thus, for each 
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scatterplot, I calculated how much each point, regardless of outlier status, changed 

the correlation magnitude by calculating the absolute difference between the 

correlation of all points and all except that particular point. Then, I calculated what 

percent of the correlation of 20 points equal to each point’s impact in the previous 

sentence. That gave me a percentage impact score for each point in each display. I 

chose the maximum impact for each display. The XY outlier had the maximum 

impact for all XY-outlier displays. After those calculations, I ran a 3(Correlation 

Magnitude: Low, Moderate, High) x 2 (Outlier Presence: NO-, XY-outliers) 

ANOVA with the maximum impact score as the DV. I only focused on the NO- and 

XY-outlier conditions for this analysis because the critical difference in the previous 

analysis was observed only across these two conditions. What I wanted to explore in 

that analysis was whether there was a difference between the NO- and XY-outliers 

displays on the maximum correlation change impact. This particular analysis was 

solely based on the displays and it showed a significant main effect of correlation 

magnitude and outlier presence on maximum impact, F(2, 174) = 218.807, p < .001, 

hp2 = .716; F(1, 174) = 238.874, p < .001, hp2 = .579, respectively (see Figure 3). 

The main effect of the correlation magnitude suggested that the maximum impact 

was the least for the High (M = 17.283, 95% CI [12.027, 22.539]) correlation 

magnitudes and was the most for the Low (M = 94.438, 95% CI [89.181, 99.694]) 

correlation magnitudes, all ps < .001. Moreover, the maximum impact was larger for 

the XY-outlier (M = 75.018, 95% CI [70.727, 79.310]) displays than the NO-outlier 

(M = 27.491, 95% CI [23.199, 31.783]) displays, p < .001. More critically, I found a 

significant interaction between the correlation magnitude and outlier presence, F(2, 

174) = 47.628, p < .001, hp2 = .354. Although the maximum impact was the biggest 

for XY-outlier displays for all correlation magnitude levels, the difference between 
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maximum impacts was the most for low correlation scatterplots (see Figure 3). The 

most important value in Figure 3 was that the percentage maximum impact score for 

XY-outliers in low correlation magnitudes was more than 100%, which means, for 

those displays, XY-outlier change the direction of the relationship between the 

remaining 19 points. Therefore, I argue that the disproportionate levels of error for 

XY-outliers in low correlation magnitudes was most likely due to the impact of XY 

outlier for the low correlation displays. 

Another exploratory line of analyses investigated the possibility that trend-

line estimates were closer to another trend-line compared to the OLS solution of 20 

points. Here two extreme alternatives for the OLS solution of 20 points were that of 

19 points excluding the outlier point and an outlier-overweighed trend-line, which 

passed through the centroid of the remaining 19 points and the outlier location. If 

viewers’ estimates were closer to the 19-point OLS solution, that would suggest 

viewers were excluding outliers in their trend-line estimates. On the other hand, if 

their estimates were closer to an outlier-overweighed trend-line, then that would 

suggest that viewers’ trend-line estimates were influenced by a pull from the outlier 

point, revealed in responses getting paid more getting closer to the outlier-

overweighed trend-line. To test these possibilities, I conducted a 2 (Trend Direction: 

Negative, Positive) x 3(Correlation Magnitude: Low, Moderate, High) x 3(Error 

Type: Outlier-included, Outlier-excluded, Outlier-overweighed) for XY-outlier 

displays. Since I found an effect of outliers for XY-outlier displays, I only analyzed 

responses for the XY-outlier condition. The results showed a main effect of trend-

direction, F(1, 18) = 11.405, p = .003, hp2 = .388; and correlation magnitude, 

F(1.116, 20.084) = 136.274, p < .001, hp2 = .883. More critically, I found a main 

effect of error type, F(1.036, 18.640) = 14.112, p = .001, hp2 = .439. 
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Note: Error bars represent ±1 standard errors. 
Figure 3.  The difference between maximum impact scores for NO- and XY- outlier displays in low, 
moderate, and high correlation magnitudes 

Post-hoc analyses showed that viewers’ trend-line estimates were the closest 

to outlier-included trend-line (M = 47.943, 95% CI [42.260, 53.626]) compared to 

outlier-excluded (M = 75.826, 95% CI [67.222, 84.429]) and outlier-overweighed (M 

= 69.726, 95% CI [61.879, 77.573]) trend-lines (see Figure 4). Thus, I concluded that 

viewers do not exclude and over-weigh the outlier points. Rather, they weigh them 

equally with the remaining points. There were also a two-way interaction between 

correlation magnitude and error type, and a three-way interaction between trend 

direction, correlation magnitude and error type; F(1.559, 28.054) = 7.252, p = .005, 

hp2 = .287, F(1.675, 30.151) = 3.715, p = .043, hp2 = .171, respectively. Those 

interactions suggested that despite viewers’ estimates were always significantly the 

closest to outlier-included trend-line. Besides, estimates converged numerically more 

to either outlier-excluded or outlier-overweighed trend-lines in the levels of trend 
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direction and correlation magnitude, although those results were not statistically 

significant. 

To summarize, in this experiment, I found that trend-line estimates in 

scatterplots were more accurate when the depicted correlation magnitude was 

stronger, replicating Correll and Heer’s (2017) findings. More critically, regarding 

the impact of outliers, I found that in all cases except for the XY outliers in the low-

magnitude scatterplots, viewers integrated outliers in their trend-line estimates. This 

was revealed by the similar levels of errors across the outlier and no-outlier 

conditions. However, when the scatterplot depicted weaker correlations, and there 

was an XY-outlier, then errors were disproportionately higher than in the no-outlier 

condition. In fact, in these cases, viewers’ trend-line estimates were pulled even 

closer to the outlier-weighed trend-estimate, in contrast to earlier findings of outlier 

exclusion from summaries (e.g., Correll & Heer, 2017; Haberman & Whitney, 2010). 

However, in the current study, what constituted an outlier was quantitatively and 

qualitatively different from the previous studies. For example, Correll and Heer 

(2017) presented participants with displays consisting of 5, 10, or 15 outlier points 

(among 100 points), and the size of these outlier clusters could have increased the 

distinctiveness of these outlier points from the remaining data cloud. Thus, I suggest 

that the difference between my results and Correll and Heer’s (2017) is caused by the 

difference between the saliency of outliers as a distinct group in their case. This 

interpretation is consistent with recent research from our group that shows that an 

outlier’s perceived distinctiveness moderates its exclusion from the broader feature 

summary in a display. 
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Note: Error bars represent ±1 standard errors. 
Figure 4.  The main effect of error type on AAE 

While this experiment demonstrated that outliers are not excluded from trend-

estimates, I must note that these findings may be limited in that the lack of 

meaningful context accompanying scatterplots (i.e., no explicitly identified variables 

on the x and y axes) may have prevented us from observing top-down influences in 

trend-estimation. In Experiment 2, I directly addressed this issue. 
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CHAPTER 2 

THE EFFECT OF CONTENT ON TREND-LINE ESTIMATES IN 

SCATTERPLOTS WITH OUTLIERS 

 

2.1  Literature review 

In real life, scatterplots depict meaningful context. When a meaningful pair of 

variables are plotted against one another, while the spatial outlier item may seem 

perceptually similar to an outlier in a no-context scatterplot, its impact and meaning 

may be differently perceived. Consequently, a single outlier may have a different 

effect on the trend-line estimates when there is a meaningful context compared to 

when there is none. For instance, the outlier may represent either an intuitively 

expected case or one that is less so. Suppose one were to look at the relationship 

between gun ownership and gun-related deaths. In that case, as can be seen in Figure 

5 the issue of general trends and intuitively expected and unexpected outliers may be 

better understood. For instance, in Figure 5 the data reveal a positive trend between 

gun ownership and gun-related deaths with a correlation magnitude of .62. In this 

scatterplot, two countries- the US and Mexico are placed at two visually distinct 

positions that are approximately equidistant to the remaining cluster of countries, 

with the highest level of gun-related deaths. However, these two countries differ on 

gun ownership. The US, with its highest level of gun ownership and the highest level 

of gun-related deaths, and given the positive trend, may represent an extreme and yet 

intuitively expected case. However, the gun-ownership in Mexico is reported to be 

approximately one fifth that of that in the US and at similar levels to the average gun 

ownership in the rest of the countries depicted in this graph, yet it has the highest 
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level of gun-related deaths. Someone who did not know anything about Mexico may 

find this pattern counterintuitive. 

 

Note: The data downloaded from http://mark.reid.name/blog/gun-deaths-vs-gun-ownership.html. 
Figure 5.  The relationship between gun ownership per 100 people and gun-related death per 100K 
people across countries 

In my current thesis, I specifically chose to focus on intuitively possible 

outliers to test how context impacts trend-line estimates as a function of outlier 

presence. The impact of context may likely be stronger for intuitively expected 

outliers because once people consider the context and variables of interest, they may 

also anticipate where an outlier may be present on the scatterplot. For instance, in the 

above gun ownership-gun-related deaths example, if we remove the US from the 

scatterplot, the correlation depicted by the remaining data is .43. In the scatterplot 

without the US, Mexico is the only point that is saliently distinct from the other 

points. When we compare the correlation between all points, including Mexico (r = 

.43), to the correlation between all points excluding Mexico (r = .72), one would 

realize that Mexico represents an outlier point that weakens the positive relationship 
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between all other points. On the other hand, the inspection of the data point 

representing the US reveals an opposite pattern. If the only outlier point in the 

scatterplot was the one represented by the US (i.e., Mexico excluded the comparison 

of the correlation magnitude when the outlier was included (r = .86) and excluded (r 

= .72) illustrates that the US case is an outlier that strengthens the positive 

relationship depicted in the scatterplot. This example suggests that the presence of 

intuitive (trend-consistent) outliers is likely to strengthen existing relationships, 

while unexpected outliers are likely to reduce the magnitude of existing 

relationships. I specifically focused on expected outliers because their presence is 

likely to increase absolute correlation magnitude. When the content is familiar, and 

the depicted relationship is in a typically expected direction (e.g., the scatterplot on 

Figure 5 without Mexico), an intuitive outlier point (e.g., the US) may further 

strengthen viewers’ perception of that relationship; furthermore, the outlier point 

may be overweighed as trends are extracted, resulting in the outlier acting as a partial 

anchor for the trend. Given these possibilities, I thought it was essential to 

investigate the link between outlier processing and trend extraction when the context 

was familiar and the outlier was expected. 

As I indicated in the previous paragraph, the aim of the current thesis was not 

only investigating the effect of an outlier in isolation of a context but also 

incorporating the presence of the outlier with familiar content to further investigate 

the role of context in the early processing of outliers in scatterplots. It is known that 

graph processing is not purely based on bottom-up perceptual characteristics of the 

display; indeed, prior knowledge of graph schema and the conceptual content of the 

visual display interact with the perceptual features and constitute the graph 

comprehension (for a review, see Shah, Freedman, & Vekiri, 2005). Thus, I aimed to 
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observe the effect of graph context even in the early processing of outliers in 

scatterplots. In subsequent paragraphs, first, I summarized the viewpoint of previous 

research on graph comprehension. I then mentioned the results of studies which 

investigated how prior knowledge influence covariation judgments in scatterplots. 

A camp of graph comprehension research focused on low-level perceptual 

features, while another camp combined the perceptual characteristics of a display 

with factors such as prior knowledge of the content presented on a visual display and 

graph knowledge per se (for a review, see Shah et al., 2005). For example, Pinker 

(1990) suggested a model of graph comprehension in which perceptual features and 

top-down factors interact. According to the model, viewers first translate the sensory 

image, which is encoded with the help of bottom-up attentional mechanisms, to a 

visual description. Properties of the visual system (e.g., gestalt law) and some 

individual difference factors such as working memory capacity and graph knowledge 

intervene in this translation process. After the extraction of visual description, that 

description is translated into a conceptual message, and finally, viewers answer a 

conceptual question based on the conceptual message. Freedman and Shah extended 

and differed from Pinker’s model by suggesting concurrent activation of prior 

knowledge and expectations with visual chunks and their top-down influence on 

subsequently formed interpretations (Freedman, & Shah, 2002; also see Hegarty, 

2011; Padilla, Creem-Regehr, Hegarty, & Stefanucci, 2018). 

Covariation judgment was one of the most studied tasks in which the effect of 

viewers’ prior knowledge on their estimates investigated while the data presented in 

a tabular format or a scatterplot (Anderson, 1995; Anderson, & Kellam, 1992; 

Baumgartner, 1995; Billman, Bornstein, Richards, 1992; Karduni, Markant, 

Wesslen, Dou, 2020; Wright, & Murphy, 1984). Those studies generally yielded that 
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prior beliefs could bias viewers’ judgment in a direction that favors prior intuitive 

theories (e.g., Anderson, 1995; Billman et al., 1992, but also see Wright, & Murphy, 

1984). However, Wright, and Murphy (1984) showed that having a prior theory 

could be better than having none. They found that people who had either high or low 

expectations about a  relationship between two variables responded congruous with 

their prior expectations. However, the accuracy of people who had not had a prior 

belief was worse than those who had a prior theory. Thus, they concluded that having 

a theory could facilitate viewers’ performance by urging them to look for further 

evidence in presented data. Moreover, they also found that, regardless of the outlier 

compliance with prior expectations, viewers discounted outliers in their covariation 

judgments, especially when the outlier dramatically weakened the correlation. On the 

other hand, Billman and colleagues argued that the previous works did not 

distinguish the meaningfulness of variables from prior beliefs (Billman et al., 1992). 

For example, in Wright and Murphy’s study (1984), they did not show any pair of 

variables to participants in no-theory condition. That means participants in no-theory 

conditions observed abstract numerical data without any content. Then, Billman et al. 

(1992) suggested that the positive effect of having a prior theory confounded by a 

third variable, that is, the meaningfulness of individual variables. They piloted to 

find variable pairs for four belief conditions; positive belief, negative belief, zero 

correlation belief, and no-belief. Although participants did not have any expectation 

about the possible relationship between two variables in the no-belief condition, 

those two variables individually meant something to participants. The study results 

showed that viewers’ discrimination of different correlation magnitude was the best 

when they were agnostic (Billman et al., 1992). Those results suggested that prior 

belief does not necessarily facilitate viewers’ performance; it could bias viewers’ 
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judgment in a systematic manner. A recent study also supported the idea that prior 

beliefs could bias viewers’ judgment, despite the presence of graphically presented 

data (Karduni et al., 2020, see also Valdez, Ziefle, & Sedlmair, 2018). Their study 

measured viewers’ belief change upon the presentation of a scatterplot with/without 

uncertainty information and the congruency/incongruency of the presented data with 

prior beliefs. They found that while viewers observed a display in which the data is 

consistent with their prior beliefs, viewers were less likely to update their prior 

beliefs. Nevertheless, viewers discounted their prior beliefs to some extent while 

posterior correlation judgments were closer to the posterior estimate of a Bayesian-

Uniform model than that of a prior-only model. That finding also supported the fact 

that neither viewers ignore the data presented nor disregard their prior knowledge 

(see Shah et al., 2005). Based on those previous findings, in the present thesis, I 

wanted to investigate the effect of an expected outlier, which is consistent with prior 

beliefs on viewers’ trend-line estimates. I thought expected outliers had special 

importance here. Previous research on ensemble perception consistently showed that 

viewers discount outlier objects in their summary inferences. In parallel with those 

findings, I also predicted that viewers would discount outliers in their trend-line 

estimates in the absence of content. However, as the literature on the effect of prior 

knowledge suggested, viewers tended to ignore data, especially the deviant ones, 

when the deviant ones weakened the presented relationship (e.g., Wright, & Murphy, 

1984). Thus, I asserted that an outlier like the US case could be overweighed while 

the presence of that outlier fosters the prior belief. That assertion is also compatible 

with the finding that viewers are hesitant to update their prior beliefs while the data 

is consistent with their prior beliefs (Karduni et al., 2020). For example, suppose a 

viewer ignores an expected outlier. In that case, the posterior belief will become less 
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congruent with the prior belief, which was not the case in Karduni and colleagues’ 

findings. Therefore, in the present thesis, I expected to find that an expected outlier 

in a familiar context could bias viewers’ trend-line estimates to an outlier-

overweighed trend-line solution. 

 

2.2  Experiment 2 

 

2.2.1  Participants 

One-hundred fifty-two Boğaziçi University undergraduates (92 female and 55 male, 

mean age = 20.76 ± 2.54) participated in the experiment in exchange for course 

credit. Participants were randomly assigned to one of two sets; half of the scatterplots 

in each set had outliers. However, the sets varied on whether a scenario was 

presented along a scatterplot containing an outlier or not. All participants had normal 

or corrected to normal vision. I had two prior exclusion criteria, but none of the 

participants violated these criteria and were therefore not excluded. These criteria 

were (1) excluding participants who mismatched axes and variables on more than 

20% of trials in the axis-matching phase of the trend-line estimation task (this phase 

is described in greater detail under the materials), and/or (2) excluding participants 

who had less than four valid3 responses in at least one of the conditions. 

2.2.2  Materials 

For the trend-line estimation task, participants first read a brief description of a 

fictitious study investigating the relationship between two variables. The description 

stated that the results were plotted in a scatterplot and identified which of the two 

variables were plotted on the x and y axes, respectively. To ensure that participants 

                                                        
3 If a participant drew a dot as opposed to a trend-line as a response, I tagged that trial as an invalid 
trial. 
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paid attention and thought about the variables before seeing the results, I asked them 

to drag and drop the variable names to the label boxes along the corresponding axes 

on an empty plot. For both correct and incorrect responses, they received feedback. 

Then, in the next phase of the trial, participants were presented with the body of a 

graph with the axis correctly labeled. The graph extended a 15.06° x 12.07° region at 

the center of the screen. At the center of the plot, a green (hex code: #00FF00) 

fixation sign was presented for 500 ms. Then, the fixation sign turned red (hex code: 

#FF0000) and stayed on the screen for another 500 ms, indicating that the data set 

would be revealed. Upon the offset of the red fixation sign, the data set that consisted 

of 20 dots appeared and was visible for 250 ms. Then the data disappeared, leaving 

behind an empty plot with the axes labeled. On this scatterplot, participants drew 

their trend-line estimates. I recorded the coordinates of two points at which viewers 

started to draw and finished drawing. 

Overall, in the main part of the experiment, participants completed 30 trials 

involving 30 separate scenarios; of all trials, 24 were included to test main 

hypotheses, and the remaining six were filler scenarios depicting neutral 

relationships randomly distributed among negative and positive scenarios. Of the 24 

trials, on half of them, the scatterplots contained an outlier point. In addition, while 

half of the participants saw a scatterplot with an outlier point (from here onward XY-

outlier) for a scenario, the other half observed a scatterplot without an outlier (from 

here onward NO-outlier); thus, from the 24 scenarios, I created two separate sets. In 

total, each participant was shown 12 XY-outlier and 12 NO-outlier scatterplots. In 

the XY-outlier displays, the outlier was at a typically expected position (see Figure 

6). The fictitious scenarios and outlier positions were determined based on two 

extensive pilot studies in which, in total, 581 participants reviewed a set of 54 unique 
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scenarios and identified the ones with the most homogeneous answers. Specifically, I 

extracted the distribution of correlation magnitude estimates for each scenario and 

picked the ones with the least mean and median differences based on the pilot work 

(for details, see Appendix A). Participants estimated the magnitude of the 

relationship between each pair of variables; I chose pairs of variables expected to 

have moderate-to-high correlation magnitudes (absolute mean expected correlation 

range: [.38, .86], M = .63, SD = .15). For each fictitious context, participants also had 

rank-ordered the plausibility/expectedness of the four possible XY-outlier cases (top-

left, top-right, bottom-left, bottom-right). Based on this pilot work, I identified 24 

scenarios and determined the most expected outlier in each case. Then, I matched 

each scenario with scatterplot displays with and without an outlier. Importantly, the 

depicted correlation magnitude on scatterplots was matched with the mean expected 

correlation magnitude from the previous surveys. 

Each scatterplot was shown at the center of the screen, extending a region of 

15.06° x 12.07°. The 20 dots were inside a 9.45° x 9.45° square area, marked with 

black (hex code: #000000) squares on a gray (hex code: #808080) background. The 

centroid of the 20 dots was at the center of the 9.45° x 9.45° square area for all 

displays. Throughout the displays, the standard deviation of 20 dots was the same, 

1.56°. While the no outlier dots could vary up to 2 standard deviations on both 

dimensions, outlier dots were 2.5 to 3 standard deviations away from the centroid on 

both axes. 
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Note: Variable names are identical in the upper (a & b) and bottom (c & d) row; however, the 
scatterplot either contains an outlier (a & d) or does not (b & c). The magnitude of the overall pattern 
for each context is similar across scatterplots. Participants saw one of each pair (i.e., a and c, or b and 
d). Different participants saw one of each one of these pairs. 
Figure 6.  Example scatterplots depicting positive and negative trends with and without outliers 

 

2.2.3  Procedure 

The experiment took place in a well-lit room. First, participants provided informed 

consent and completed a training phase. The training consisted of two components. 

In the first phase, participants were given a brief description of what trend-lines are 

and were familiarized with trend-line drawing. I presented them with six successive 

scatterplots without any variable name on the axes. Those scatterplots consisted of 

random points that were in the area enclosed by x and y axes, and they specifically 

did not include any outliers. This part of the training was just to teach participants 

how to draw a trend-line by using a keyboard touchpad. In the second phase of the 

training, participants were familiarized with how the actual experimental trials would 
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proceed. After receiving those instructions, participants completed a practice trial 

that described a study that showed the relationship between ice cream sales and 

temperature. They could repeat this practice trial if needed, otherwise, they continued 

with the actual experimental trials. Even though the scenarios were fictitious, 

participants were told that these scenarios were summaries of actual published 

studies. After completing the 30 trend-estimation trials, participants filled a 

demographic form, and then they were thanked and debriefed. Overall, the 

experiment took approximately 35 minutes. 

 

2.2.4  Apparatus 

HP ProOne 600 G1 All-in-One PC was used to run the experiment. That model has 

integrated Intel HD Graphics 4600, and discrete AMD Radeon HD 7650A graphics 

card, and Intel 4th generation core i7 processor those are embedded into the monitor. 

The monitor has a LED-backlit display of which size is diagonally 21 in. I set the 

display resolution to 1920 x 1080 pixels, with a refresh rate of 60Hz. The experiment 

was programmed in MATLAB, using the Psychtoolbox (Brainard, 1997; Pelli, 1997; 

Kleiner et al., 2007). 

 

2.2.5  Results and discussion 

For each participant, I first excluded the trials in which they did not provide a trend-

line. Then for each participant, I separately calculated their AAE on each trial. The 

AAE is the average absolute pixel difference between two lines. Here AAE was the 

average absolute pixel difference between viewers’ trend-line estimate and the OLS 

solution including all 20 dots. Then, for each participant, I separately calculated the 

average AAE for each outlier condition for positive and negative trends. 
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First, I conducted a 2(Group: Set1, Set2) x 2(Outlier Presence: No outlier 

displays, Outlier displays) x 2(Trend Direction: Negative, Positive) mixed ANOVA. 

The results pointed out that between-subjects factor group did not have a main effect 

(F < 1), also the two- and three-way interaction(s) that included group as factor were 

not significant (i.e. F < 1 for two-way interactions; and F(1, 150) = 1.418, p = .236, 

hp2 = .009 for the three-way interaction between group, outlier presence, and trend 

direction). Therefore, I do not discuss the effects of different sets any further. I found 

no main effect of outlier presence on AAE, F < 1, replicating my earlier findings 

with moderate-to-high correlations in Experiment 1. However, I found a small 

marginal main effect of trend direction, F(1, 150) = 3.422, p = .066, hp2 = .022, that 

suggested when the depicted relationship was positive (M = 69.900, 95% CI [63.710, 

76.090]) trend-line estimates deviated more from the 20 points OLS solution 

compared to when it was negative (M = 63.212, 95% CI [57.301, 69.124]). Critically, 

I found a significant interaction between outlier presence and trend direction, F(1, 

150) = 19.005, p < .001, hp2 = .112. Specifically, in no outlier displays viewers’ 

trend-line estimates deviated significantly more from 20 points OLS solution while 

the depicted trend was positive (M = 74.167, 95% CI [66.551, 81.783]) compared to 

when it was negative (M = 60.164, 95% CI [53.316, 67.012]), see Figure 7. This may 

be partly due to the axis constraining responses more when the trend is negative 

compared to when it is positive (i.e., the upper right-hand quadrant of a scatterplot is 

not as constrained). The fact that such a difference does not emerge for outlier trials 

may be linked to how outlier points themselves constrain responses.4 

                                                        
4 To eliminate a power-based explanation of the above resulted null findings, I also conducted 
Bayesian repeated measures ANOVA (Appendix B) on JASP (JASP Team, 2020) with group as a 
between-subjects factor, outlier presence and trend direction as within-subjects factors. The results 
supported my findings on the previous analysis (see Appendix B, Table B1 for the Bayesian analysis 
results). 
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Note: Error bars represent ±1 standard errors. 
Figure 7.  Mean AAE of displays with and without outlier for negative and positive trends 

To determine whether viewers’ trend-line estimates were closer to another 

trend line rather than the 20 points OLS solution, I also conducted a 2(Group: Set1, 

Set2) x 2(Trend Direction: Negative, Positive) x 3(Error Type: Outlier-included, 

Outlier-excluded, Outlier-overweighed) mixed ANOVA for outlier displays. Here 

error type indicates the line to which viewers’ estimate was compared. The outlier-

included line was the OLS solution for 20 dots. The outlier-excluded line was the 

OLS solution for 19 dots excluding the outlier point. Finally, the outlier-overweighed 

line was a trend-line that passed through the centroid of 19 points in the main data 

cloud and the outlier point. As before, there was no main effect of group (i.e. set), F 

< 1, p = .504, hp2 = .003, and all two-way and three-way interactions that included 

group variable were not significant (F = .616, F = .289, F = .81, respectively for 

group X trend direction, group X outlier presence, and group X outlier X trend 

direction interactions). There was no main effect of trend direction, F(1, 150) = 
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1.305, p = .255, hp2 = .009. Critically though, there was a main effect of the error 

type that showed viewers’ trend-line estimations were closest (M = 48.421, 95% CI 

[43.408, 53.434]) to the outlier-overweighed trend-line, and they were the farthest 

from the outlier-excluded trend-line (M = 99.686, 95% CI [95.133, 104.239]), 

F(1.055, 158.196) = 381.023, p < .001, hp2 = .718. This main effect was further 

qualified by a trend direction and error type interaction, F(1.089, 163.374) = 16.847, 

p < .001, hp2 = .101. As shown in Figure 8, the AAE from outlier-included and 

outlier-excluded trend-lines did not change as a function of trend-direction. 

However, viewers’ trend-line estimates were closer to the outlier-overweighed trend-

line more when the depicted trend was positive (M = 42.822, 95% CI [37.129, 

48.514]) compared to it was negative (M = 54.021, 95% CI [46.812, 61.229]), 

hinting at the different levels of perceptual saliency of outliers5 for positive and 

negative trends.6 To summarize, I found that outlier presence did impact how 

responses deviated from trend-line solutions including either 19 or 20 dots. 

Interestingly, I found that responses approached outlier-weighed solutions more than 

the two other solutions, suggesting that expected outliers influenced trend-estimates. 

Additionally, the impact of expected outliers was even more substantial when the 

depicted relationships were positive, suggesting that outliers may vary in salience 

based on their position to the main data cloud. 

                                                        
5 The effect of outlier on correlation magnitude did not vary for two sets, for both sets the outlier in 
average increased the correlation between the remaining 19 points .27. Also, the impact of the outlier 
did not change for negative and positive trends. For the Set 1, the outlier increased the correlation 
between remaining dots .29 and .25 respectively for negative and positive trends. It was .27 and ,24 
for the Set 2. 

6 To further support the ANOVA results I conducted another Bayesian repeated measures ANOVA 
(Appendix B) on JASP (JASP Team, 2020) while the group was the between-subjects factor, trend 
direction and error type were within-subjects factors. In general, Bayesian repeated measures 
ANOVA supported my results (see Appendix B, Table B2 for the Bayesian results in detail). 
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Note: Error bars represent ±1 standard errors. 
Figure 8.  Mean AAE of responses compared to outlier-included, outlier-excluded, and outlier-
overweighed trend-lines 

  

0

20

40

60

80

100

120

Outlier-included Outlier-excluded Outlier-overweighed

Av
er

ag
e A

bs
ol

ut
e 

Er
ro

r (
in

 p
ix

el
s)

Negative Positive



 31 

CHAPTER 3 

GENERAL DISCUSSION 

 

In this thesis, I studied the effect of outlier presence on trend-line estimates and 

further extended these results by investigating if viewers’ prior beliefs influenced the 

effect of outlier presence. In Experiment 1, I found that viewers integrate outliers in 

their trend-line estimates. However, with the decreasing level of correlation 

magnitude, viewers’ estimation error increased disproportionately in the XY-outlier 

condition. Exploratory results showed that this result was caused by the impact of 

XY-outliers in low correlations, those type of XY-outliers even changed the direction 

of the depicted relationship on the scatterplot. Yet, viewers’ estimates were closest to 

an OLS solution that weighed the outlier equally with the remaining points. Those 

findings demonstrated that viewers did not discount a single outlier in their trend-line 

estimates in the absence of content on the scatterplot. In Experiment 2, I investigated 

the effect of an expected outlier in a familiar context on trend-line estimates. Results 

showed that when the outlier’s location matched prior beliefs and the outlier was 

trend-consistent, viewers overweighed the outlier, and their estimates were biased to 

an outlier-overweighed trend-line solution. In the following paragraphs, I discuss the 

present findings in the context of prior findings in the literature. 

I found correlation magnitude is a significant factor that impacts trend-line 

estimates. As Correll and Heer (2017) demonstrated, I also found that viewers’ 

accuracy in trend-line estimation got worse as the depicted correlation got weaker. It 

is possible that when the depicted correlation was weaker, there was additional noise 

in the perceived display making it harder to rely on a well-known schema (e.g., the x 

= y line) to extract a trend-estimate (Pinker, 1990). This finding was also similar to 
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findings on correlation estimation, where viewers are more accurate when estimating 

stronger as opposed to weaker correlations (e.g., Meyer, & Shinar, 1992; Rensink, 

2017). 

Of more critical interest was the effect of the outlier on trend-line estimates. 

Contrary to previous findings that suggested that outliers were discounted from 

trend-estimates (e.g., Correll & Heer, 2017), I found that viewers did not discount 

outliers; in fact, they were pulled towards the outlier point, especially when there 

was familiar content. There could be two possible explanations for this finding. It is 

possible that the outlier point was not visually distinctive resulting in viewers 

treating the outlier point as the remaining 19 other points on the scatterplot. 

However, the disproportionate level of estimation error for XY-outliers in low 

correlation magnitude compared to that for NO-outlier condition suggested that 

viewers were sensitive to the presence of outliers, at least under some conditions. 

The reason that I did not observe that effect on the higher level of correlation 

magnitude could be caused by the disproportionate impact of the outlier on overall 

correlation magnitude of the display. That is how much the outlier changes the 

correlation magnitude of the remaining 19 points. That impact was the highest for the 

lower level of correlation magnitude, and on those displays, the outlier even changed 

the direction of the relationship between the 19 points. The second explanation could 

be that although viewers were able to detect the outlier, they preferred to equally 

weigh that outlier with the remaining dots. That could be the case since, except the 

lower level of correlation magnitude, the outlier was always at a location that was 

trend-consistent and increased the correlation magnitude between the remaining 19 

points. In more detail, even though these outliers were mathematically and spatially 

distinct from the remaining points, they have a nature that decreases the overall noise 
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since they increase the magnitude of the existing relationship. Thus, viewers could 

prefer not to discount those outliers. Nevertheless, while the saliency is a critical 

factor that affects outlier detection and discount on subsequent processes (Avci, & 

Boduroglu, in press), I admitted that having only outliers that strengthen the existing 

relationship is a limitation. Because the direction of the effect of the outlier on 

overall correlation could change its saliency regardless of its location, further studies 

that include more systematic manipulation of outlier saliency could shed light on that 

discussion. 

The current thesis further extended findings by showing the effect of the 

outlier in scatterplot on trend-line estimates by incorporating a familiar content into 

the scatterplot. As I expected, viewers overweighed the outlier in their trend-line 

estimates when there were familiar content and a trend-consistent outlier in the 

scatterplot. That suggested that prior beliefs could influence our perception of trend-

lines in scatterplots in a direction that favors those beliefs (Anderson, 1995; Billman 

et al., 1992). The results also supported the findings of Karduni and colleagues 

(2020), which pointed out that viewers’ do not update their prior belief when the data 

is congruent with their expectations. In a similar vein, the current findings showed 

that viewers draw a trend-line estimate which promotes their prior beliefs by 

overweighing the outlier. 

Surprisingly, in Experiment 2, I found a small marginal effect showing that 

error was larger when there were no outliers, and the trend was negative. More 

critically, when I compared trend-line estimates with the outlier-bias trend line, 

estimates were closer to the outlier-bias trend-line only when there was a positive 

trend. The fact that the outlier acted as a stronger anchor when the depicted 

relationship was positive may be linked to how such an outlier may serve as an 
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anchor point, limiting the possible paths the estimate could follow in the upper right-

hand corner of the graph. In other words, because scatterplots are only constrained 

on the left and the bottom with the y and x axes, respectively, participants may have 

no clear anchor to place their estimates through when there is no outlier. An 

intuitively expected outlier presented along with a positive trend may serve such an 

anchor, constraining the response space. These findings are in line with arguments 

that spatially coded data is open to perceptual biases. For example, to investigate 

whether spatial coding of data could generate a perceptual bias on viewers’ estimate, 

in a recent study, Xiong and colleagues presented participants with bar and line 

graphs and asked them to report their average positions (Xiong, Ceja, Ludwig, & 

Franconeri, 2020). They found that viewers systematically, under-, and over-

estimated the position of lines and bars, respectively. 

This thesis showed that presenting people with familiar content could make 

them more prone to outlier-bias when the outlier position is congruent with viewers’ 

prior belief. This tells us that graph perception is not purely bottom-up; instead, 

previous knowledge and low-level perceptual features interact and establish a whole 

perception. In their Construction-Integration (CI) model proposal for graph 

comprehension, Freedman and Shah (2002) suggested that graphical comprehension 

is analogous to text comprehension, and both perceptual and cognitive mechanisms 

play a role in whole graph comprehension. They also stated that graphical perception 

is the first step of graph comprehension, and in that phase, viewers construct a coarse 

mental model of the display. Based on growing ensemble perception research, I 

argue that ensemble mechanisms utilize the extraction of summary statistics of the 

display in the graphical perception phase. More importantly, I also established here 
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that those summary statistics somehow interact with the viewers’ previous 

knowledge, and together they create a whole perception. 

However, I still do not know how this summary statistics and previous 

knowledge interact, and I do not know how presenting an outlier of which location is 

incongruent with viewers’ expectation and/or trend-inconsistent could influence the 

results. In addition, encoding time could also possibly affect viewers’ trend-line 

estimates. For example, Epstein et al. (2020) demonstrated that viewers reduce the 

noise iteratively, which means the impact of an outlier on summary statistics 

decreases with the extended time interval. If I had increased the encoding time of 

scatterplot in a similar vein, viewers’ estimate could have been closer to the outlier-

excluded trend-line in the absence of content. On the other hand, I speculate that the 

outlier-overweigh effect could have remained while there is a familiar content and 

the outlier was expected. That is because viewers have a propensity to discount the 

data while they have prior beliefs. Lastly, changing the aspect ratio of the axes could 

have impacted trend-line estimates. However, I think that would be a factor only if 

there were a content since Rensink’s (2017) research showed the invariance of 

correlation magnitude perception to the aspect ratio of the display for scatterplot 

without a content. Thus, while it is likely that correlation magnitude and trend-line 

perception are somehow related to each other, it is not expected to find an effect of 

aspect ratio on trend-line estimates. However, when there is content, a higher aspect 

ratio could lead to more over-weigh of the outlier while making the trend-line 

steeper. So, future studies are needed to answer these open questions. 

In sum, in this thesis, I demonstrated that the presence of an outlier on 

scatterplots impacts how trend-lines are estimated, especially when there is a 

meaningful context, the outliers have a greater impact on trend-line estimates. This 
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suggests that top-down expectations and bottom-up ensemble perception 

mechanisms work in tandem to shape graph perception from a very early point 

onwards. 
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APPENDIX A 

SCENARIO NORM SURVEY 

 

A group of graduate and undergraduate students, all members of the lab, identified 

pairs of variables that one might encounter in real life, and we created possible 

scenarios (i.e., bivariate variables) for the subsequent experiment. After some 

internal group discussions, we determined the final 34 scenarios. Those scenarios 

consisted of a pair of variables everyone could encounter in daily life, for example, 

degree of education and aggression. Then to learn Boğaziçi University 

undergraduates’ thoughts about these relationships, we asked undergraduates to 

estimate the correlation magnitude between these variable pairs. We also asked them 

to rank the likelihood of encountering each one of four potential outlier locations 

(i.e., both variables are too high; both variables too low; and while one of them is too 

high, and the other one is too low). Each participant responded to these questions for 

each of 34 scenarios in an online survey. 

 

A.1  Survey 1 

 

A.1.1  Participants  

Six-hundred and eighty-six Boğaziçi University undergraduates took part in the 

online survey for one course credit. Before analyzing the data, I discarded 

participants who completed the survey more than once and only kept their first 

completion. Subsequently, for the remaining data, I excluded ones who answered 

less than 80% of 34 scenarios (less than 28 scenarios) or used a number more than a 

single time while sorting the potential outlier locations. After the cleaning of data, 
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276 (at least 251 for a scenario, red meat consumption and the risk of colon cancer) 

participants remained. 

 

A.1.2  Material and design  

A total of 34 scenarios were presented to each participant in random order. For each 

scenario, participants first stated their correlation estimation for that scenario by 

using a slider from -1 to +1 in 0.1 intervals. Then they completed a sorting task for 

potential outlier locations by choosing a number from 1 to 4, while 1 indicated the 

most possible outlier location, 4 indicated the least possible one. 

 

A.1.3  Procedure 

First, each participant was informed about the following tasks, and in a single 

training trial, they were taught to use a slider while estimating correlation magnitude. 

Then they completed correlation magnitude estimation and potential outlier location 

sorting tasks. 

 

A.1.4  Results  

I extracted descriptive statistics of each scenario and analyzed the possibility of 

potential outlier locations in participants’ minds by conducting a one-way ANOVA 

for each scenario; while the four potential outlier locations were IV, participants’ 

answers between 1 and 4 to indicate the order of that location was DV. The results 

showed that for the negative scenarios, while the most possible outlier location was 

at the bottom-right of the screen, the least possible one was at the top-right of the 

screen, and it was vice versa for the positive scenarios. 
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A.2  Survey 2 

When I analyzed the participants’ responses in the previous survey, I figured out that 

there were only two negative scenarios. Since I planned to control the direction of 

scenarios for the subsequent experiment, we focused on creating some negative 

scenarios in our laboratory. Everyone in our laboratory group proposed their negative 

scenarios, and after an inner-group discussion, we determined 20 negative scenarios. 

Those scenarios consisted of a pair of variables that anyone could encounter as the 

scenarios we created earlier, for example, age and speed of walking. To avoid using 

only negative scenarios that create a bias on participants’ responses, I added 14 

positive scenarios from the first survey to those 20 negative ones. Then conducted 

the same survey with another group of Boğaziçi University undergraduates by using 

34 scenarios. 

 

A.2.1  Participants 

Five-hundred and forty-one Boğaziçi University undergraduates took part in the 

online survey for one course credit. Before analyzing the data, I ran the same data 

cleaning procedure as in the previous survey. After the cleaning of the data, 305 (at 

least 291 for a scenario, caffeine consumption and concentration) participants 

remained. 

 

A.2.2  Material and design 

It was the same as the previous survey. 

 

A.2.3  Procedure 

It was the same as the previous survey. 
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A.2.4  Results 

Likewise, in the previous survey, first, I extracted the descriptive statistics of each 

scenario and then analyzed the possibility of potential outlier locations in 

participants’ minds by conducting a one-way ANOVA for each scenario. I replicated 

the results in the first survey pointed out that for the negative scenarios, while the 

most possible outlier location was at the bottom-right of the screen, the least possible 

one was at the top-right of the screen, and it was vice versa for the positive ones. 

 

A.3  Choosing scenarios for the subsequent experiment 

Since I used scatter plots on which the absolute correlation magnitude was between 

.4 and .8 in Experiment 1, my first criterion was to determine scenarios whose 

absolute mean estimated correlation magnitude is between .4 and .8. Additionally, I 

also wanted to determine scenarios in which the mean and median difference is as 

less as possible. Because the more mean and median difference means the more 

heterogeneous thoughts about a scenario, which I do not want since I would not be 

able to classify participants’ side in the subsequent experiment. By using the 

previous two criteria, I determined 12 negative and 12 positive scenarios. 
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APPENDIX B 

BAYESIAN ANALYSES 

 

To compare different models, we can compare the different effects. The Analysis of 

Effects (Table B1) gives Bayes factors for the inclusion of each effect that appears in 

at least one model. The table showed that while there was weak evidence in favor of 

the inclusion of trend direction effect (BFincl = 2.750), there was moderate evidence 

for the inclusion of trend direction and outlier interaction effect (BFincl = 7.468). For 

the other effects, there was moderate evidence against the inclusion (see pg. 14 

Stevens, 2019 for BF cutoff values).7 

In conclusion, I showed that moderate evidence in favor of the inclusion of 

trend direction and outlier presence interaction and weak evidence for the inclusion 

of trend direction predicts the AAE between viewers’ trend-line estimates and 20 

dots OLS solution as I demonstrated on the previously mentioned 2(Group: Set1, 

Set2) x 2(Outlier Presence: No outlier displays, Outlier displays) x 2(Trend 

Direction: Negative, Positive) mixed ANOVA. Importantly, for other main effects, 

and two- and three-way interaction(s), the Bayesian repeated-measures ANOVA 

yielded moderate evidence against the inclusion of those effects that suggested those 

effects do not predict the AAE. 

In a similar vein, to further support the results of 2(Group: Set1, Set2) x 

2(Trend Direction: Negative, Positive) x 3(Error Type: Outlier-included, Outlier-

excluded, Outlier-overweighed), I conducted another repeated measures Bayesian 

ANOVA (for the model comparison see Table B2). There was weak to extreme 

evidence against the 

                                                        
7 Beware that the interpretation could change based on which BF score that we are looking at. But the 
magnitude (e.g. being extreme, or weak) of effect is the same. 
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Table B1.  Analysis of Effects 
Effects  P(incl)  P(incl|data)  BFincl  
Trend Direction   0.263   0.477   2.750   

Outlier Presence   0.263   0.061   0.101   

Group   0.263   0.142   0.171   

Trend Direction x Outlier Presence   0.263   0.340   7.468   

Trend Direction x Group   0.263   0.017   0.137   

Outlier Presence x Group   0.263   0.009   0.141   

Trend Direction x Outlier Presence x 
Group  

 0.053   1.829e -4   0.206   
 
Note. Compares models that contain the effect to equivalent models stripped of the effect. Higher-
order interactions are excluded. The analysis is suggested by Sebastiaan Mathôt (Mathôt, 2017) 

inclusion of all effects except error type, and trend direction, and error type 

interaction. There was weak evidence in favor of inclusion for the trend direction 

and error type interaction (BFincl = 1.434). Importantly, the evidence for the inclusion 

of error type was extreme (BFincl = 2.815e+85). Like the first Bayesian analysis, this 

analysis also further supports my results in the main mixed ANOVA.  

Table B2.  Analysis of Effects 
Effects  P(incl)  P(incl|data)  BFincl  
Trend Direction   0.263   0.219   0.497   
Error   0.263   0.667   2.815e +85   
Group   0.263   0.172   0.215   
Trend Direction x Error   0.263   0.329   1.434   
Trend Direction x Group   0.263   0.024   0.240   
Error x Group   0.263   0.006   0.029   
Trend Direction x Error x Group   0.053   1.879e -5   0.050   
Note: Compares models that contain the effect to equivalent models stripped of the effect. Higher-
order interactions are excluded. The analysis is suggested by Sebastiaan Mathôt (Mathôt, 2017). 
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