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ABSTRACT 

Feature Specificity in Visual Statistical Summary Processing 

 

People initially process object sets by averaging their features into statistical 

summary representations. Previous studies have shown that there is independence 

between summarizing of low and high-level visual information. There is also 

evidence showing that, processing capacity of multiple statistical summaries is 

limited for simultaneous averaging of same kind of visual information, but not for 

different kinds of visual information. The current thesis investigates whether 

statistical summary processing relies on a feature-specific or a feature-general 

mechanism, and whether there are capacity limitations to simultaneous averaging of 

different visual features. We asked participants to average on of the features in a set 

of lines that varied in size and orientation. The relevant feature was either the same 

throughout a block or mixed within the trials of a blocks. Even though first two 

experiments showed a positive relation between viewers’ size and orientation 

averaging performances for mixed averaging conditions, with more controlled 

displays we repeatedly found that performances on two tasks were unrelated both for 

single and mixed conditions. Viewers’ errors for size averaging were higher in mixed 

than single averaging conditions, however this difference disappeared with reduced 

task difficulty. Orientation averaging performances were similar in single and mixed 

conditions. Finally, viewers’ performances on size and orientation averaging tasks 

were similar across 50, 100 and 200 milliseconds of encoding durations. Overall, 

results of this thesis suggested that there are independent feature-specific statistical 

summary mechanisms for size and orientation features. 
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ÖZET 

Görsel İstatistiksel Özet İşlemede Özelliğe-Özgüllük 

 

İnsanlar öncelikli olarak obje setlerini onların özelliklerini ortalayarak istatiksel özet 

temsil olarak işlerler. Önceki çalışmalar alt-düzey ve üst-düzey görsel bilgilerin 

özetlenmesi süreçlerinde bağımsızlık olduğunu göstermiştir. Ayrıca çoklu özet 

işleme kapasitesinin aynı türde bilgiler için kısıtlıyken, farklı türde bilgiler içeren 

özetlerde kısıtlı olmadığını gösteren çalışmalar bulunmaktadır. Bu tez özet 

temsillerin özelliğe-özgül mü yoksa özelliklere-genel mekanizmalar tarafından mı 

işlendiğini ve izleyiciler aynı obje setinden iki özelliği eş zamanlı olarak özetlerken 

çoklu özellikler-arası özet temsillerin işlenmesinde bir kapasite limiti olup 

olmadığını incelemektedir. Katılımcılardan uzunluk ve yön açısından varyasyona 

sahip obje setlerinin özelliklerinden birini ortalamalarını istedik. Ortalanacak özellik 

deney bloku süresince aynı ya da deney blokunun denemeleri arasında karışık olarak 

sunuldu. İlk iki deneyin sonuçları izleyicilerin uzunluk ve yön özetleme 

performanslarının tekli özetleme koşullarında ilişkili olduğunu göstermişse de, daha 

kontrollü sahnelerle bu görevlerdeki performansların hem tekli hem karışık özetleme 

koşullarında ilişkisiz olduğunu bulduk. İzleyicilerin uzunluk ortalama hataları karışık 

koşulda tek koşuldan daha yüksekken, bu fark daha kontrollü sahnelerde 

kaybolmuştur. Yön ortalama hataları ise tekli ve karışık ortalama koşullarında daima 

benzer bulundu. Son olarak izleyicilerin uzunluk ve yön ortalama görevlerindeki 

performanslarının 50, 100 ve 200 milisaniyelik kodlama sürelerinde benzer kaldığını 

bulduk. Genel olarak bu tezin sonuçları yön ve uzunluk özellikleri için bağımsız 

özelliğe-özgül istatistksel özet temsili mekanizmaları olabileceğini önermiştir. 
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CHAPTER 1 

INTRODUCTION 

People can extract average information from object sets by visual statistical summary 

processing (also called as ensemble processing) (for a review, see Alvarez, 2011). 

Previous research has shown that viewers can efficiently summarize various low-

level features such as size (Ariely, 2001), color (Maule, Witzel & Franklin, 2014), 

brightness (Bauer, 2009), orientation (Dakin, 2001; Parkes, Lund, Angelucci, 

Solomon & Morgan, 2001), position (Alvarez & Oliva, 2008; Mutluturk & 

Boduroglu, 2016), as well as higher-level features like facial identity (de Fockert & 

Wolfenstein, 2009) and facial emotion (Haberman & Whitney, 2007). Viewers do 

not only extract summaries of static visual displays, they can also summarize 

sequentially presented visual (Albrecht & Scholl, 2010; Hubert-Wallander & 

Boynton, 2015) and auditory inputs (Albrecht, Scholl, & Chun, 2012; Piazza, 

Sweeny, Wessel, Silver & Whitney, 2013); they can also represent variance 

(Morgan, Chubb & Solomon, 2008; Semizer & Boduroglu, 2016) and numerosity 

information (Utochkin & Vostrikov, 2017). Despite demonstrations of statistical 

summarizing across various domains, interestingly, the mechanism underlying this 

ability is not clearly described. This research specifically investigates visual 

summarizing abilities to determine whether there is a domain general neural 

mechanism or whether there are multiple domain-specific neural mechanisms 

underlying this summarization ability. 

Haberman, Brady and Alvarez (2015) proposed two possible mechanisms for 

how viewers extract visual summary information. One possibility is that there is a 

domain-general, central statistical summary processor in the visual system that is 

responsible for averaging all types of information. The alternative possibility is that 
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there are multi-level, domain-specific mechanisms for summarizing different visual 

properties, possibly at different cortical levels. While the former view would 

necessitate performance in summarizing information in one domain to be correlated 

with summarizing performance in other domains, the latter mechanism would allow 

for independence of performance at summarizing different types of visual properties. 

To determine whether there is a domain-general or domain-specific visual 

summarizing mechanism, Haberman, Brady and Alvarez (2015) compared 

summarizing performance across various visual properties. In their first experiment, 

they found that there was no correlation between orientation averaging and facial 

averaging tasks suggesting that statistical summary representations of high-level and 

low-level features may be governed by separate mechanisms. Subsequent 

experiments compared performance across various high-level (e.g. facial identity and 

facial emotion) and low-level (e.g. orientation and color) visual features. When 

viewers completed either two low-level or two high-level tasks, then there was a 

significant correlation between the two performances. On the other hand, when one 

task was from a low-level and the other one was from a high-level domain, there was 

no correlation between the two tasks. Thus, they concluded that statistical summary 

processing is not a uniform process, and that there are at least two separate and 

independent domain-specific summarizing mechanisms, for low-level and high-level 

visual information, specifically. 

These findings were in line with the claims made by Whitney, Haberman and 

Sweeny (2014) who argued that there might be multilevel processing mechanisms in 

the ventral and dorsal pathways for summarizing information rather than a single 

cortical area responsible for summarizing all types of visual properties. They claimed 

that orientation, color, and brightness features might be summarized in early cortical 
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stages, while motion and position information and size and shape features be 

summarized by separate mechanisms in the dorsal and ventral pathways, 

respectively. In addition, they argued that complex, higher-level face and biological 

motion summaries may be processed later, after the convergence of ventral and 

dorsal pathways While Whitney and colleagues outlined these possibilities, they did 

not provide empirical support for these claims; but recent work from our lab has 

provided indirect evidence that there may be more than one visual summary 

mechanisms. In a series of experiments, Uner and colleagues (2014) investigated 

how visual and spatial features were summarized.1 Viewers completed two tasks, in 

one, they provided the mean length of a set of lines and in the other, and they 

estimated the centroid of a number of items. There was no relationship between how 

accurately people summarized line lengths and identified centroids. In a separate 

series of experiments, Yildirim and Boduroglu (2015) investigated if viewers can 

extract statistical summary representations of multiple features from the same set of 

objects. Participants studied displays that consisted of heterogeneously sized circles. 

Viewers then reported either the centroid (spatial summary) or the center-of-mass 

(the weighted spatial center, which required viewers to combine size and spatial 

information). Viewers were equally accurate at retrieving both types of summaries 

suggesting that they could integrate visual and spatial properties of the studied set to 

produce a combined summary.  More critically, they directed viewers to attend to 

size and asked either the location of the smallest/largest object or the centroid within 

                                                           
1 The goal of this experiment was to compare action video-game players with strategy video-game 

players on centroid (mean position) and mean size estimation tasks. In centroid estimation task, they 

saw 7 squares scattered around the display and asked to report centroid of the squares. In mean size 

estimation task, they saw 9 lines with various lengths and asked to report the mean size of the lines. 

Uner and colleagues (2014) found that there was no significant relation between the performances 

across these two domains in the overall sample.  (r =.161, p =.161). Only for the AVGP group, there 

was a small yet significant relationship between the two domains, suggesting that these summarizing 

abilities may be benefitting from video-game related enhancements in visual processing skills (r = .42, 

p =.05). 
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the same block to see if there is a bias towards the center-of-mass in centroid 

responses because of a possible binding process. They found that attending to the 

size did not result in a bias towards the center-of-mass in centroid responses, 

compared to single centroid block. This result suggested that visual and spatial 

summaries may not be obligatorily bound (Yildirim & Boduroglu, 2015). Altogether 

these findings demonstrated that while viewers can summarize size and space 

information in a simultaneous and interactive manner (as revealed by the center-of-

mass results), they can also independently summarize these features given task 

demands. These two studies suggest that re there could be some level of 

independence between the summarizing of low-level features in the visual and spatial 

domains. 

 In sum, the empirical research so far, has suggested that there may be separate 

mechanisms responsible for the summarization of lower and higher-level complex 

visual features, as well as visual and spatial features. This current research further 

tested the domain-specificity argument by comparing how viewers summarize 

features that belong to the same domain (e.g. size and orientation features of visual 

domain). We expected independence for statistical summary processing among low-

level visual features.  
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CHAPTER 2 

THE PRESENT STUDY 

To test this general prediction, we asked participants to summarize two sets of 

features, across different experiments. In these experiments there were blocks of 

trials in which viewers summarized only one of the critical features (single-task 

blocks); there were also a separate set of mixed feature trials where viewers were 

asked to report the summary of either one of the features, identified by a cue 

following display offset (mixed-task blocks).   

As summarized above, a feature-general averaging mechanism would 

necessitate a dependence between the errors across the two features, thus a 

correlation between the performances. In addition, if there is a feature-general 

mechanism, then in mixed-task trials, there may be more interference between 

summarization of features, resulting in higher error compared to single-task trials. In 

contrast to this alternative, a feature-specific mechanism would allow the 

summarization errors to be independent, and even in mixed blocks interference 

between summarization of different features would be unlikely, resulting in similar 

levels of errors in single and mixed task blocks. 

 

2.1 Experiment 1A 

In Experiment 1A, we tested how averaging performance in one visual feature 

predicted performance in the other feature by focusing on mean size and mean 

orientation estimates. We presented people with displays that consisted of lines with 

different lengths, displayed at various orientations and they reported either the mean 

length or the mean orientation of these lines. While the errors in these two conditions 
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may be related because both features are visual in nature, the literature suggests that 

it is more likely that these low-level visual features may be still independently 

averaged. In particular, orientation may be summarized within the early cortical 

regions; size information may be summarized along the ventral stream (Whitney, 

Haberman & Sweeny, 2014). Therefore, we expected participants’ errors in size and 

orientation averaging tasks to be unrelated, with independent feature-specific 

mechanisms. 

 

2.1.1 Method 

 

2.1.1.1 Participants  

Twenty-six Bogazici University undergraduate students participated in the experiment 

in return of course credit for their participation. We excluded data of two participants 

because they did not generate a response for approximately half the trials, and an 

additional participant was more than 3 standard deviations away from the group mean 

on reaction time. Therefore, we conducted the analyses on the data from 23 

participants. 

 

2.1.1.2 Materials and stimuli 

The experiment was programmed in E-Prime 2.0 (Psychology Software Tools, 

Pittsburgh, PA) and was run on a 17’ monitor with screen resolution set to 1024x768 

pixels (32x24 cm).  Participants were sitting approximately 57 centimeters away 



   
 

7 
 

from the computer screen. From that viewing distance, 1 cm was equal to 32 pixels 

and 1º visual angle. 

Each trial (see Figure 1) began with a green fixation cross, presented for 1500 

milliseconds, which turned red for 500 milliseconds to indicate the beginning of a 

trial. We instructed the participants to fixate on the cross when it turned into red. The 

object displays that consisted of 12 randomly oriented lines of unique lengths were 

presented for 200 milliseconds. Then, participants heard an auditory cue indicating 

which feature of the object sets they should average (either Orientation or Size), and 

were presented with a response probe. Participants had to adjust the length of the line 

for the size averaging trials, or rotated the orientation angle of the line for orientation 

averaging trials by the left button of the mouse, and they completed the trial by 

clicking to the right button of the mouse.  

In each display, the orientation of the lines were randomly determined from a 

normal distribution ranging from 1 to 180 degrees. Line lengths were randomly 

selected from a range of 24 and 152 pixels (.75° – 4.75° of visual angle). No two 

lines were of the same length or orientation as the set mean and there were no 

repetitions of length or degree within sets. Lines were positioned on a 5x4 invisible 

grid (760x608 pixels), and 3 locations were randomly chosen from each row. We 

slided middle two rows of the grid by ±16 pixels in order to prevent endpoints of 

lines touching the center of the display. Lines were drawn in white on a gray 

background.  

On the response screen, either a blue or green response probe was presented 

to distinguish the two types of trials. We determined a random value between 21 and 

27 pixels, and, that value added either the half of the mean length of the set of lines 
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or subtracted from the mean length to determine the length of response probe for the 

size adjustment task. In the orientation rotation task the angle of the probe line was 

determined by either adding to or subtracting a random number between 21 and 27 

degrees from the mean angle of the set of lines.  

 

2.1.1.3 Procedure 

Before the actual experiment trials, participants completed a training session. To 

demonstrate viewers what average size of a set of lines looks like, we presented 

example displays, which consisted of 2,3,4,6,8,10, and 12 lines, sequentially. Each 

display was followed by another display that had an additional red line that indicated 

the mean length of the lines. After that, we gave 10 trials of the size averaging task 

for practice. We presented the displays for 1000 milliseconds in the training trials. 

After their response, we gave participants a feedback by showing the correct 

response line in red. We followed the same procedure for orientation averaging task. 

After the training, participants received a 16 trial practice block, which had the same 

procedure as the actual experiment. In the actual experiment, there were 150 size and 

150 orientation averaging trials in total, divided in 3 experimental blocks. We 

presented two tasks in an intermixed fashion.  

Figure 1. Example of a trial 
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2.1.2 Results  

For the size averaging tasks, we calculated participants’ performance by calculating 

the absolute pixel difference between the mean line size and the response. For the 

orientation averaging task, we calculated the absolute acute angle difference between 

the mean orientation of the lines and the orientation of the response line. The 

normality assumption was not satisfied for mean size estimation errors (Shapiro-

Wilk p < .05); therefore, we conducted nonparametric Spearman’s correlation 

analysis. Surprisingly, there was a significant positive correlation between mean size 

(M = 25.94, SD = 10.94) and mean orientation estimation errors (M = 32.42, SD = 

8.57), r = .436, p = .043. 

 

 

 

 

 

 

 

 

 

Figure 2. Correlation between size and orientation averaging performances. 
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We wanted to determine whether this unexpected pattern of relationship, was 

partly driven by task difficulty. If viewers were responding randomly in both tasks, 

then their performance may have seemed related, not because of a feature-general 

mechanism but because of random performance. Thus, we wanted to check whether 

viewers were randomly responding in the mean orientation and mean length trials.  

We ran two simulations depicting random-like behavior in the orientation 

task. In the first simulation, all responses were assumed to come from the range of 

correct mean orientations of the displays (55 and 136 degrees). In the second 

simulation, we assumed that all responses to come from all possible range of 

responses (1 to 180 degrees) to simulate a total random observer performance. 

Univariate ANOVA conducted to see whether the experimental data was closer to 

Simulation 1 or 2 revealed that experimental errors were significantly higher than 

data in Simulation 1. However, experimental errors were significantly lower than 

Simulation 2 (ps < .001); and experimental data (M = 31.81, 95% CI [29.62, 34.01]) 

was closer to Simulation 1 (M = 24.42, 95% CI [22.22, 26.62]) than Simulation 2 (M 

= 45.42, 29% CI [43.10, 47.48]). (See Figure 3). This pattern of results suggests that 

viewers were not fully sensitive to task parameters, and yet were not performing the 

orientation task in a fully random fashion, either.  

We ran two similar simulations for the mean size task. In the first simulation, 

the responses were always chosen from the range of the possible mean sizes depicted 

in the sets (61 to 110 pixels); in the second simulation a total random observer’s 

performance was generated by picking responses between the minimum and 

maximum individual line lengths presented in the displays (24 to 152 pixels). The 

comparison of the experimental data to the simulation data for the mean orientation 

task revealed a very similar pattern to that reported for the orientation task. A 
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Univariate ANOVA revealed that, experimental errors were significantly higher than 

that in Simulation 1, but lower than Simulation 2 (ps < .001); and experimental data 

(M = 23.11, 95% CI [13.36, 17.85]) was closer to Simulation 1 (M = 15.61, 95% CI 

[13.36, 17.85]) than Simulation 2 (M = 33.98, 95% CI [31.74, 36.22]).  

Figure 3. Random observer simulations for (a) size averaging and (b) orientation 

averaging tasks. Error bars indicate ±2 standard error of the mean. 

 

2.1.3 Discussion 

Contrary to our expectations, we found that there was a strong correlation between 

the size and orientation errors in Experiment 1A. This suggests that size and 

orientation features may be averaged by the same feature-general mechanism. 

However, the fact that we only used a mixed block in this experiment, allows for an 

alternative explanation. Since participants did not know which feature they were 

going to be asked to report, optimum performance would have required viewers to 

summarize both features and then choose the right feature to report following the 

cue. Thus, the mixed-task design may have created an additional demand on the 

viewers to summarize both features concurrently. This demand may be partly 

responsible for the relatively poor performance; on both tasks, viewers responded in 

a somewhat random fashion and reported means outside the range of possible means. 
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This suggests that participants were not fully sensitive to task parameters and their 

responses may be reflecting a lower boundary, shaped by the attentional demands of 

the design. This interpretation is possible in light of debate surrounding the view on 

whether there are costs associated with the summarization of two separate features 

(for a debate on this issue see Attarha & Moore, 2015b and Emmanouil & Treisman, 

2008). Emmanoil and Treisman, (2008) suggested that there was an attentional cost 

related to averaging multiple sets with different visual features. On the other hand, 

Attarha and Moore (2015b) suggested that attentional cost of processing multiple 

averaging was evident when sets varied on the same feature dimension but not when 

they varied on different feature dimensions. 

 

2.2 Experiment 1B 

The correlation we obtained in Experiment 1A may in part reflect individual 

differences in attentional capacity as opposed to individual differences in 

summarization ability. Therefore, to eliminate this confound, in Experiment 1B, in 

addition to mixed-trial blocks, we included single-trial blocks where viewers had to 

summarize only orientation or size information. If statistical summaries for size and 

orientation features are extracted by independent feature-specific mechanisms, then 

viewers should be able to extract summaries for both of these features 

simultaneously, we should not expect reduced performance in mixed condition 

compared to the single task condition. On the other hand, if both summaries are 

extracted by a domain-general mechanism for low-level visual features, then it is 

more likely that there would be costs associated with summarizing both size and 

orientation in the mixed- compared to the single-block trials.  
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Previous research has demonstrated that number of objects within a set does 

not impact accuracy of statistical summary representations, suggesting that extraction 

of these representations is an automatic process, and does not have the limitations of 

attentional capacity bottleneck (Ariely, 2001; Chong & Treisman, 2003; Chong & 

Treisman, 2005). Chong and Treisman (2005) even showed that there was no 

additional cost when viewers had to summarize two simultaneously presented sets on 

the same feature dimension (e.g. size). However, there is not yet a full consensus on 

how attention influences summarization of different features. While Emmanoil and 

Treisman, (2008) showed that, when the viewers had to summarize two sets on 

different dimensions (size vs. speed, size vs. orientation) simultaneously, there was 

an associated cost of dividing attention regarding accuracy of the summary 

representations. They used a precue-postcue paradigm to determine this. In those 

experiments, participants knew which feature to attend in precue trials before 

encoding stage, whereas they did not know in postcue trials. They found that there 

was a cost of accuracy in postcue trials by higher average estimation errors compared 

to precue trials. Using a similar method, Utochkin and Vostrikov (2017) found that 

there was no cost of extracting mean size and numerosity information from the same 

object sets, which suggested an independence between averaging processes of two 

different statistical properties.  

Contrary to these previous findings, later research found that capacity for 

simultaneous statistical summary processing was limited when two sets were on 

same feature dimensions (e.g. both sets varied on size or orientation), whereas it was 

unlimited when they were on two different dimensions (one from size and one from 

orientation). Therefore, there was a cost of attention when the two averaged features 
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were on the same domain, but not when they were different visual features. (Attarha, 

Moore & Vecera, 2014; Attarha & Moore, 2015a; Attarha & Moore, 2015b). 

 

2.2.1 Method 

 

2.2.1.1 Participants  

Twenty-five Bogazici University undergraduate students participated in the 

experiment in return of course credit for their participation. We excluded data of two 

participants who had size averaging errors more than 3 standard deviations away 

from the group mean. Therefore, we conducted the analyses on the data from 23 

participants. 

 

2.2.1.2 Materials and procedure 

Experiment setting, displays, and the task procedures were the same as in 

Experiment 1 except for the inclusion of single task blocks. The first two blocks were 

single task blocks with size and orientation averaging tasks counterbalanced across 

participants; the subsequent two blocks were mixed-trial blocks. There were 90 trials 

in each block, with 360 trials in total. 

 

2.2.2 Results  

A pairwise t-test showed that errors for size averaging was significantly lower in 

single (M = 18.46, SD = 6.15) than mixed task conditions (M = 23.86, SD = 12.03), 
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(t(22) = -2.53, p < .05, Cohen’s d = .513). However, there was no significant 

difference between single (M = 33.85, SD = 7.88) and mixed (M = 32.43, SD = 8.85) 

conditions for orientation averaging tasks (t(22) = -.92, p = .370, Cohen’s d = .169) 

(Figure 4). According to Pearson’s correlation analysis, the relationship between size 

and orientation errors were not significant in the single block conditions (r = .108, p 

= .625), but there was a marginally significant and positive relationship between size 

and orientation averaging errors in the mixed blocks conditions (r = .361, p = .090) 

(see Figure 5). The overall pattern suggests that the size averaging task may have 

been impacted by the attentional demands in the mixed block, while orientation 

averaging was not. The lack of a correlation between the errors in the two tasks in the 

single block, and the weak yet marginally significant correlation in the mixed block 

may reflect the additional attentional demands in the mixed block trials.   

 

 

Figure 4. Mean (a) size and (b) orientation averaging errors across single and mixed 

conditions. Error bars indicate ±2 standard error of the mean.  



   
 

16 
 

 

Figure 5. Correlations between (a) single and (b) mixed size and orientation 

averaging tasks. 

 

To determine the impact of amodal attentional demands on performance, for 

each participant, we calculated an attentional cost score by subtracting their 

performance on the single conditions from their performances on the mixed 

conditions separately for the size and orientation averaging tasks (size-cost and 

orientation-cost, respectively). Pearson’s correlation analyses showed that there was 

no significant relationship between the size-cost and orientation-cost. (r = .072, p = 

.744), suggesting that there was not a broad attentional limitation guiding 

performance. The size-cost did not correlate with performance in single size 

averaging block (r = .049, p = .826), but it did with the performance on size 

averaging trials in mixed conditions (r = .755, p < .001) suggesting that size 

averaging is influenced by attentional capacity. However, for orientation trials, there 

was no correlation between performance in the orientation-cost in neither single nor 

mixed blocks (r = -.084, p = .703 and r = -.166, p = .448, respectively).  

In summary, we found that there was no correlation between size and 

orientation averaging performances, but only the performance on the length task was 
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open to attentional influences. This pattern of findings is consistent with the idea that 

length and orientation features could be averaged independently. However, there 

remains an alternative explanation of the results. If participants were responding 

more randomly in the orientation task compared to the length task, random 

performance could have caused there to be no relationship between the single and 

mixed trials for these trials. To rule out this possibility we generated randomly 

simulated data (as in Experiment 1A) and demonstrated that people did not randomly 

respond in the orientation task. Overall, we found significant differences between 

simulated data, which assumed random responses, and experimental data suggested 

that participants were not performing in a random fashion in size and orientation 

averaging tasks. Therefore, we eliminated the possibility of random responses as an 

explanation of not finding any relation between size and orientation averaging errors 

in single and mixed blocks.2 

 

2.2.3 Discussion 

Experiment 1B showed that errors in size and orientation summaries were not 

correlated for the single task conditions, but were marginally correlated for the mixed 

                                                           
2 The criteria used for the response ranges were identical with that reported in Expeirment 1A. For 

single size averaging tasks experimental errors were marginally significantly higher than data in 

Simulation 1 (p = .07), but lower than Simulation 2 (p < .001); and experimental data (M = 18.46, 

95% CI [16.91, 20.01]) was closer to Simulation 1 (M = 15.91, 95% CI [14.35, 17.46]) than 

Simulation 2 (M = 33.02, 95% CI [31.47, 34.57]). For mixed size averaging tasks experimental errors 

were significantly higher than data in Simulation 1, but lower than Simulation 2 (ps < .001); and 

experimental data (M = 23.86, 95% CI [20.88, 26.84]) was slightly closer to Simulation 2 (M = 33.31, 

95% CI [30.33, 36.29]). Than Simulation 1 (M = 14.64, 95% CI [11.66, 17.63]). 

For single orientation averaging tasks experimental errors were significantly higher than data in 

Simulation 1, but lower than Simulation 2 (ps < .001); and experimental data (M = 33.85, 95% CI 

[31.72, 35.99]) was slightly closer to Simulation 1 (M = 24.46, 95% CI [22.33, 26.60]) than 

simulation 2 (M = 44.83, 95% CI [42.69, 46.96]). For mixed orientation averaging tasks experimental 

errors were significantly higher than data in Simulation 1, but lower than Simulation 2 (ps < .001); 

and experimental data (M = 32.43, 95% CI [30.19, 34.67]) was closer to Simulation 1 (M = 23.54, 

95% CI [21.30, 25.78]) than Simulation 2 (M = 45.00, 95% CI [42.72, 47.20]). 
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task conditions. The lack of correlation in the single task conditions are consistent 

with feature-specific independent summary mechanisms. The marginal correlation in 

the mixed block may be in part due to the attentional demands due to the mixing of 

the two tasks.  

An unexpected difference emerged between the size and orientation task. 

While there was no difference between the single and mixed condition for the 

orientation task, there was a difference between these two conditions for the size 

task. 

There may be several possible explanations for this pattern. One reason why 

errors were similar in the single and mixed orientation trials may have to do with the 

difficulty of the displays and low levels of performance in the orientation task. If 

performance is approaching floor for the orientation task in both conditions, the 

single vs. mixed manipulation may not have worked. However, the comparison of 

the random response simulations and the actual data suggests that people were not 

responding in a totally random fashion. Nevertheless, the specific task parameters 

may have increased the task difficulty to the extent that the performance was 

approaching the lower bounds   

A second possible explanation for the no difference in orientation errors in 

the single and mixed blocks may be related to the possibility that orientation 

averaging is a pre-attentive process, and thus it may  precedes any attentional 

bottleneck. Myczek and Simons (2008) had indeed argued that early visual system 

primarily processes mean percept of orientation, color, and motion features, but not 

size to extract statistical summary representations. Therefore, orientation might not 
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be open to attentional interference of multiple summary processing unlike size 

feature.  

A third possible explanation is that size and orientation features can be 

processed at different levels of statistical summary representation mechanism as 

Attarha and Moore (2015b) suggested. It is possible that summary processing of 

orientation can be earlier in the hierarchy than size averaging. For example, 

orientation can be averaged early in the time frame of statistical summary processing, 

before size averaging can interfere. Whereas orientation might have interfered with 

averaging of size feature at earlier stages. 

 

2.3 Experiment 1C 

The goal of Experiment 1C was to determine whether task characteristics had an 

impact on the performance in the orientation-averaging task. To examine this issue, 

we systematically varied the range of the lines presented and tested whether error 

increased as the range of the orientation presented became larger. 

 

2.3.1 Method 

 

2.3.1.1 Participants 

Nine Bogazici University undergraduate students participated in the experiment and 

we compensated them with course credit in return of their participation.  
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2.3.1.2 Materials and stimuli 

In this experiment, we only had the orientation condition. All parameters were the 

same with the previous orientation averaging trials (single block) except that we 

manipulated line lengths, orientation ranges and controlled tilt direction.  For each 

display, we chose the orientations randomly from 15, 30, 60, 90, 120 degrees ranges. 

On half of the trials line lengths were kept uniform (88 pixels), in the other half line 

lengths were chosen randomly from a 24 and 152 pixels range. Also, the direction 

where the orientation of the tilted lines were controlled as left, right, and even at both 

sides (For the displays with 120 degree ranges, which have both left and right tilted 

lines, we considered the mean direction as tiltedness direction.) Participants 

completed a total of 260 trials. 

 

2.3.2 Results 

Univariate ANOVA across displays showed that, the error in orientation averaging 

task significantly increased as the angle range of the lines in the displays increased 

(F(4,260) = 49.32, p < .001, 
2

p  = .457). Variance of the line sizes were also 

significantly influenced orientation averaging errors (F(1,260) = 4.37, p < .05, 
2

p  = 

.018) (Figure 6). Tiltedness of the lines had no significant effect on orientation 

averaging errors (F(2,260) = .287, p = .751, 
2

p   = .002). These findings suggest that 

the performance in Experiment 1B may have been negatively impacted by display 

characteristics, particularly line orientations.  
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Figure 6. Mean orientation averaging errors across degree ranges and size variances. 

Error bars indicate ±2 standard error of the mean. 

 

2.4 Experiment 2 

Experiment 2 aims to rule out the possibility of random responses caused by 

difficulty of orientation averaging task, we therefore used 60 and 90 degrees as 

orientation ranges to keep the task difficulty at an optimum level. We expected 

orientation averaging errors to be lower than Experiment 1B, by the reduced task 

difficulty.  

 

2.4.1 Method 

 

2.4.1.1 Participants  

Twenty-five Bogazici University undergraduate students participated to the 

experiment, in return for course credit. We excluded data of two participants because 
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their size and orientation averaging errors (respectively) were more than 3 standard 

deviations away from the group mean, one participant who gave irrelevant responses, 

and one participant who was color-blind. Therefore, we conducted the analyses on 

the data of 21 participants. 

 

2.4.1.2 Material, stimuli and procedure 

The same procedure and design was used as in Experiment 1B except that the 

orientation ranges of the lines were selected from either a 60 or 90 degree range. 

Also, we counterbalanced the single and mixed block conditions across participants. 

 

2.4.2 Results 

 Pairwise t-tests showed that, there was no difference in errors in single (M = 19.61, 

SD = 7.76) versus mixed size trials (M = 18.51, SD = 6.25), t(20) = .702, p = .140, 

Cohen’s d = .154. There was also no difference between averaging errors for single 

(M = 15.22, SD = 3.73) and mixed orientation averaging tasks (M = 14.88, SD = 

2.83), t(20) = .808, p = .429, Cohen’s d = 0.102 (see Figure 7). In addition, there was 

no significant correlation between size and orientation averaging errors in neither the 

single nor the mixed blocks (r = -.076, p = .745 and (r = .-107, p = .644, 

respectively) according to Pearson’s correlation analysis (see Figure 8). Finally, 

variability of line sizes did not influence orientation averaging errors.3 

                                                           
3 We wanted to check if variability on line sizes have an impact on orientation averaging errors, 

because shorter lines in the sets could have been less influential by being less salient than longer lines. 

Also, tasks irrelevant features could be influential on statistical summary representations (Brady & 

Alvarez, 2011). We determined the variability of line sizes by calculating standard deviations of the 

sizes of 12 lines, and we divided them in 3 categories as low, medium, and high variance. There was 
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Figure 7. Mean (a) size and (b) orientation averaging errors across single and mixed 

conditions. Error bars indicate ±2 standard error of the mean. 

 

 

Figure 8. Correlations between (a) single and (b) mixed size and orientation 

averaging tasks. 

 

2.4.3 Discussion 

In Experiment 2 we demonstrated that in both the single and mixed conditions, there 

was no correlation between length and orientation averaging errors. Also, the levels 

                                                           
no significant effect of size variability on orientation averaging errors (F(2,180) = 2.816, p = .063,   

2

p  = .031). 
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of errors were similar in both the length and orientation task across the single and 

mixed conditions, suggesting that the uncontrolled display characteristics in 

Experiment 1B actually interfered with performance. Overall, these results provided 

us more evidence for independent feature-specific statistical summary processing 

mechanisms for size and orientation averaging tasks.  

Our results seem to be in line with Attarha and Moore’s (2015b) findings on 

capacity of between feature statistical summaries. They found that, there was a cost 

related with simultaneous processing of within-feature summaries (two sets that 

varied on size or orientation); however, there was no cost of between-feature 

summaries (one size and one orientation feature), suggesting size and orientation are 

summarized by separate independent mechanisms. On the other hand, our findings 

contradict Emmanouil and Treisman (2008)’s findings. Emmanouil and Treisman 

(2008) asked people to average one of the two spatially segregated sets which were 

varied on either size or orientation feature. They used a precue-postcue design. In 

precue trials participants were given a cue before the displays where they know 

which feature to attend before encoding, whereas in postcue trials participants 

received the cue after presentation of the displays. With that design, Emmanouil and 

Treisman (2008) found a cost associated with dividing attention between two sets in 

a statistical summary estimation task, when one of the sets varied in size and the 

other varied in orientation. However, there were some specific differences as well as 

similarities between our task and theirs. As similarity, participants were directed to 

attend one of the features before encoding stages in single block conditions of our 

study, and precue condition of Emmanouil and Treisman’s study (2008); while 

participants were not given a specific feature to attend in mixed block of our study, 

and postcue condition of theirs until the encoding stage is completed. One of the 
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differences was that, in our design we directed viewers to extract summaries from a 

single set that varied on two features; whereas Emmanouil and Treisman’s (2008) 

task required viewers to extract summaries from two different sets spatially located 

on two sides of the screen. Therefore, viewers may have attended only one of the 

features by fixating one side of the display that contained the set with the relevant 

feature in precue condition. Whereas in our design even though participants knew 

which feature to attend in single block condition, the irrelevant features was still in 

their fixation area. Therefore, there could be an advantage in Emmanouil and 

Treisman’s (2008) precue conditions, stemmed from fixating viewers’ attention to 

the relevant set on a certain area, while the set with irrelevant feature is ignored. In 

relation with this, we know that, visual working memory could allocate more 

resources and provide higher resolution representations to the fixated items, while 

allocating less resource to foveal items (Bays & Husain, 2008). Therefore, 

simultaneous averaging of two features on spatially segregated sets could be more 

open to manipulations of attentional factors. Whereas, when feature pairs vary on 

same object sets as in our study, there could be an advantage of integration of two 

features on the same objects and viewers can accurately average those two features. 

In addition, our results are in parallel with Utochkin and Vostrikov’s (2017) findings 

where they found similar precue and postcue errors for simultaneous averaging of 

size and numerosity. They presented these two features on the same object set and 

asked for immediate response after presentation of the displays. Viewers’ errors on 

average size and numerosity estimations were similar across precue and postcue 

conditions (Utochkin & Vostrikov, 2017)  This method could explain our parallel 

findings by suggesting that, when the two features for simultaneous averaging varied 
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on the same set, attentional demands might be lower, and viewers can more 

effectively average two feature, compared to spatially separated sets. 

Secondly, Emmanouil and Treisman (2008) presented their stimuli for 520 

milliseconds, and there was 500 milliseconds of interval between stimuli and 

response in postcue conditions. This could cause the representation of the irrelevant 

feature in postcue conditions to decay over the time of display presentation and 

interval. Whereas, in mixed blocks of our experiment, there was no delay before the 

response, which might have helped summary representation of the both features to 

stay intact until response phase. 

 

2.5 Experiment 3 

Since Experiment 2 provided additional support for the feature-specific mechanisms 

of ensemble processing, in Experiment 3, we wanted to examine the temporal 

independence of size and orientation summarization processes. It is well known that 

in the visual processing hierarchy orientation feature is processed at early cortical 

stages, while size feature is processed at ventral stream (Whitney, Haberman & 

Sweeny, 2014). We expected participants to have higher averaging errors to increase 

as encoding duration decreased. We also expected the orientation feature to be 

averaged with less error than size feature at earlier durations, because of their 

different temporal position in visual processing hierarchy. 
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2.5.1 Method 

 

2.5.1.1 Participants 

Twenty-six undergraduate Bogazici University students participated in this 

experiment in return of course credits for their participation. We excluded data of 

one participant because of having orientation averaging errors more than 3 standard 

deviations away from the group mean, and another participant for having irrelevant 

responses. Therefore, we conducted the analyses on the data from 24 participants. 

 

2.5.1.2 Material, stimuli and procedure 

We used the same procedure and design as Experiment 2, except we manipulated so 

that displays were presented for either 50, 100, or 200 milliseconds. Encoding 

durations were intermixed throughout the trials of all blocks. 

 

2.5.2 Results 

For each participant, we calculated size and orientation averaging errors. We 

separately carried out a 2 x 3 repeated measures ANOVA analysis with single-mixed 

block condition and encoding duration as the variables, on size and orientation 

averaging errors. For the size errors, there was no main effect of single-mixed block 

conditions and encoding durations. Results showed that, there was no significant 

effect of single-mixed conditions on size averaging errors (F(1,23) = 0.59, p = .810, 

2

p  = .003), and errors were similar across different durations (F(2,22) = 2.64, p = 
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.093, 
2

p  = .194) (Figure 9). A similar pattern emerged for orientation averaging 

errors. There was also no difference between errors of single and mixed orientation 

averaging tasks (F(1,23) = 1.69, p = .206, 
2

p   = .069), and orientation averaging 

errors were similar across duration conditions (F(2,22) = .15, p = .866, 
2

p  = .013) 

(Figure 10). In size averaging task, the duration X single-mixed task interaction 

effect was not significant F(2,22) = 3.14, p = .063, 
2

p = .222; while there was a 

significant interaction effect for orientation averaging task F(2,22) = 6.43, p < .05, 

2

p = .369. 

 
Figure 9. Mean size averaging errors across single and mixed conditions and encoding 

durations. Error bars indicate ±2 standard error of the mean. 
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Figure 10. Mean orientation averaging errors across single and mixed conditions and 

encoding durations. Error bars indicate ±2 standard error of the mean. 

 

We also analyzed the relation between participants’ performance on size and 

orientation averaging tasks, across all single-mixed conditions and durations. There 

were no significant correlation between participants’ errors on single block size and 

orientation averaging tasks across all encoding durations (all rs < .244, all ps > .251). 

In addition, there was no significant correlation between participants’ mixed block 

size and orientation averaging errors across all encoding durations (all rs < |.133|, all 

ps > .594).  
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2.5.3 Discussion 

Experiment 3 demonstrated that reducing encoding duration to 50 milliseconds did 

not have a significant impact on the error rates in neither of the size and orientation 

features. This was the case both for single or mixed block tasks. Participants made 

similar levels of error on size and orientation averaging tasks across different 

encoding (50, 100, and 200 milliseconds). In addition, there was no correlation 

averaging errors for size and orientation averaging tasks both for single and mixed 

averaging performances for all encoding durations. These results are consistent with 

results from earlier experiments, which argued that there are independent statistical 

summary mechanisms for size and orientation, and strengthened our findings about 

independent feature-specific statistical summary mechanisms for size and orientation 

features.  

We expected increased errors at shorter encoding durations considering 

Jacoby, Kamke and Mattingley’s (2013) findings on decreased influence of masked 

items on average orientation estimation; specifically we expected an early processing 

advantage for orientation averaging, since orientation feature is processed at early 

cortical stages of visual system. Jacoby, Kamke and Mattingley (2013) asked 

participants to extract average size or orientation of an object set. When they masked 

a subset of the object set, contribution of masked objects to average size and 

orientation estimations reduced. Their findings suggested late processing advantage 

for statistical summary representations. Even though we did not find increased errors 

at earlier encoding durations for both size and orientation features, this could not be 

enough to indicate possible early processing advantage for averaging mechanisms of 

those features, because of the experimental design differences between our and 

Jacoby and his colleagues’ (2013) study. They used an even shorter encoding 
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duration (30 milliseconds) and used a method with masking paradigm. Therefore, 50 

milliseconds could be enough to extract an accurate statistical summary 

representation. This could indicate that even if size and orientation features do not 

have hierarchically different places in statistical summary processing mechanisms, 

there could be still complete independence in their averaging mechanisms. 
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CHAPTER 3 

GENERAL DISCUSSION 

 

This study investigated whether there are feature-specific statistical summary 

mechanisms in visual information processing. Across a series of experiments, we 

compared error rates in orientation and mean size estimation tasks and concluded 

that once attentional task demands are eliminated from designs, there was no longer a 

significant correlation between errors in these domains. These findings suggest that 

processing of mean size and orientation are independent and supportive of feature-

specific summary mechanisms in vision. Our findings are in line with earlier work 

suggesting that there are different summarizing mechanisms operating at different 

levels (Haberman, Brady & Alvarez, 2015), and also previous findings from our lab 

suggesting that visual and spatial averaging mechanisms may be independent  (Uner, 

Mutluturk & Boduroglu, 2014; Yildirim & Boduroglu, 2015).  

 While our findings do not speak to the neural mechanisms of the feature-

specific summary mechanisms, they are nonetheless consistent with proposals on the 

neural basis summary mechanisms.  For instance, Whitney, Haberman & Sweeny 

(2014) speculated that there could be multilevel statistical summary processors in 

different regions of the brain, specifically orientation feature could be averaged at 

early cortical stages and size feature could be averaged in ventral pathway of the 

visual system. In addition, Myczek and Simons (2008) argued that early visual 

system does not have specific receptors for size, unlike orientation feature. 

Therefore, our findings about separate feature-specific summary mechanisms for size 

and orientation features could be explained by the neural underpinnings of these 
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processes. Future research with a dissociative experimental design and functional 

magnetic resonance imaging (fMRI) tools could shed some light on neural correlates 

of averaging processes of size and orientation features. 

 The findings on separate summary mechanisms, is conceptually meaningful 

given evidence for models that propose that visual short-term memory capacity is 

limited by capacity of independent feature stores. For instance, Bays, Wu and Husain 

(2011) showed that there is a strong independence between storage of color and 

orientation features in visual working memory. They gave viewers an array of 

objects with various orientations and colors. Viewers’ task was to report color and 

orientation of the spatially indicated object by retrieving the representation from their 

visual working memory. They found that viewers’ absolute error rates for estimated 

orientation and color features were uncorrelated. Their results suggested independent 

feature-specific storage and maintenance mechanisms for basic visual features in 

visual working memory. In a similar vein, Pasternak & Greenlee (2005) 

demonstrated that there is selective decay in visual working memory. Another 

working memory study where viewers were asked to recall color and location 

features showed that, distractors for each feature only interfered with the items that 

belong to the same dimension, suggesting that color and location features are 

separately processed (Pasternak & Greenlee, 2005). These studies suggest that there 

are independent feature-specific mechanisms for storage of basic features of visual 

information. Our study adds to that with independent feature-specific mechanisms 

for low-level visual features at the encoding stage of visual information processing 

where viewers represent object sets as statistical summary representations. 

 We found that viewers could efficiently process two low-level visual features 

as statistical summary representations with independent feature-specific mechanisms, 
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yet there remains a question: Is there a limit to the number of features that we could 

accurately represent during statistical summary processing? As far as we know, 

studies on simultaneous statistical summary processing used mostly two-feature 

averaging settings, as the presented set of studies. This question could help us to 

understand these two issues more clearly: First, by knowing if there is a capacity 

limitation to the number of features for statistical summary processing, we could 

make further interpretations about unitary or multilevel mechanisms. If people could 

efficiently average more than two features in simultaneous settings, there should be 

higher capacity for averaging because of having multilevel independent statistical 

summary processors. On the other hand, if people could not efficiently average more 

than two visual features simultaneously, that could be a result of  having a central 

statistical summary processor. Second issue is, whether capacity of statistical 

summary processing is limited with a maximum number of features that viewers 

could represent as summaries at a given time. Further studies should use designs with 

conjunction of 3, 4 or even 5 features in simultaneous statistical summary tasks. If 

viewers’ performances decrease as the number of features increase it could be still 

possible to say that there might be a central statistical summary processor with a 

capacity to allocate resources only to a certain number of representations. On the 

other hand, if viewers’ performances on these tasks stay stable as the number of 

features increase, we could more confidently say that there are multi-level 

independent statistical summary mechanisms. 
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