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ABSTRACT 

 

The study aims to model the tails of daily returns of securities being traded in ISE via 

techniques developed by Extreme Value Theory and compute VaR. The 

performances of classical VaR forecasting methods of Historical Simulation and 

RiskMetrics™ are compared with the models estimated using Peaks over Threshold 

(POT) approach, which is put forward by Extreme Value Theory. POT approach 

incorporates estimating the tail index of Generalized Pareto distributions(GPD).  As 

well as having used nonparametric Hill and Dekkers estimators, also parametric 

Maximum Likelihood Estimate approach is applied in estimating the tail index of 

GPD. VaR has been computed with these various approaches mentioned for six 

stocks being traded in ISE, the ISE National 100 index, and an artificial price 

weighted index. The models are classified as successful if they satisfy both criteria of 

unconditional and conditional coverage. Those VaR models that satisfy both criteria 

of success have also been tested in terms of a Quantile Loss function. The models 

that gave lowest loss values are preferred. 

Among the approaches used in the study, the models that fit Genaralized Pareto 

distributions to the lower tail are found to outperform the classical Historical 

Simulation and RiskMetrics approaches. 
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KISA ÖZET 

 

Bu çalışmada esas olarak İMKB’da işlem gören hisse senetlerinin günlük getirileri 

için dağılımların alt kuyruğunun modellemesi ve bu dağılıma ilişkili olarak Riske 

Maruz Değer (RMD) hesaplamalarının yapılması hedeflenmiştir. Daha klasik 

yöntemler olan Tarihi Simulasyon, RiskMetrics™ yöntemlerinin RMD 

hesaplamalarındaki performsları Uç Değer Teorisinin sunduğu Eşik Ötesi Gözlemler 

ile tahmin edilen modellerin performansı ile kıyaslanmıştır. Eşik Ötesi Gözlemler 

yaklaşımı Genelleştirilmiş Pareto Dağılımı ile kuyruk endeksinin kestirimini 

içermektedir. Çalışmada, parametrik olmayan Hill ve Dekkers kestiricilerinin 

yanısıra Maksimum Olabilirlik Kestirimi yaklaşımı ile de kuyruk endeksi tahmin 

edilmiştir. Yukarıda bahsedilen yaklaşımlar ile RMD, İMKB’de işlem gören altı 

hisse senedi, IMKB 100 endeksi ve fiyat ağırlıklı olarak hesaplanan bir başka endeks 

için hesaplanmıştır. Bu modeller arasında koşulsuz ve koşullu kapsama olasılığı 

kriterlerini sağlayanlar başarılı olarak sınıflandırılmıştır. Her iki başarı kriterini de 

sağlayan modeller, bir Quantile Kayıp fonksiyonu değerleri hesaplanarak birbirleri 

arasında test edilmiştir. En düşük kayıp değerlerini veren modeller tercih edilmiştir.  

Çalışmada kullanılan yaklaşımlar arasında genelleştirilmiş Pareto dağılımı 

kullanılarak hesaplanan modeller, Tarihi Simülasyon ve RiskMetrics yaklaşımları ile 

hesaplanan modellerden daha başarılı bulunmuştur. 
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1 Introduction 

Extreme movements in the prices of financial assets are of great concern to both 

investors and the entire economy. A single negative return, or a combination of 

several smaller returns can create serious liquidity problems. The amount of capital 

insolvency or portfolio shrinking these liquidity problems cause, can further lead to 

the bankruptcy of the investor. Furthermore, the whole economy may be affected if 

enough investors experience such losses.  

 

There is an increasing need for modeling of events that cause larger shocks to the 

underlying financial system for effective risk management. The crisis occurrence 

frequency is getting higher and higher as time goes by. The time interval between 

two consequent crises is consistently shrinking. Below is a list of the crisis that had 

shaken the Turkish economy in the last fifteen years. 

 

1992-1993 ERM (Exchange Rate Mechanism) 
1994 Latin America, Mexico-Tequila 
1994 Currency Crisis Turkey 
1997 Southeast Asia  
1998 Russia  
2000 Liquidity 
2001 Twin Crisis (Banking and Currency) 

Table 1: List of the years of recent crisis that affected Turkey 

 

This list supports the argument that the crisis occurrence is getting more and more 

frequent. Furthermore, these crisis also revealed how easily the impact of a crisis 

occurring at some part of the world, can be spread to the rest of the global economy. 

This trend, called the contagion effect, pushes investors to be more alert to risks not 

only local but also global. 
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Value-at-Risk (VaR) is a concept used in measuring the extreme risk mentioned 

above. The concept is widely used in the finance industry and the firms try to 

minimize their insolvency risk by sustaining capital reserves that calculated VaR 

levels indicate.  Hence correct VaR calculations play an important role in decision 

making in the finance community.  One of the major difficulties in VaR calculations 

is to estimate the tails of return distributions where there is a limited number of 

observations. 

 

In the last few years, Extreme Value Theory (EVT) methods received attention from 

the finance professionals as the approach promises to estimate the tails of the 

financial asset returns. The main idea behind these methods is to directly model the 

tail without the need to make any assumptions regarding the center of the 

distribution. 

 

This study focuses on using EVT in estimating VaR for several stocks and indices 

from Istanbul Stock Exchange. Therefore, the VaR concept and EVT will be 

discussed in more detail in the next introduction sections.  

 

1.1 VaR-Value at Risk Concept 

Value-at-Risk is a measure used for quantifying extreme risk. VaR measures how 

much can be lost with p% probability (95% or 99% for example) over a given period 

of time (one day or a fortnight for example), i.e. Pr (Loss >VaR) ≤ (1 – p). Thus, 

having VaR calculated, this number summarizes information about the risk of a 

portfolio.  
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VaR is shown with the red line in Figure 1. For the given example in the plot, the 

daily returns are assumed to have a density function shown with the blue line. At 

99% percent VaR level, the calculated VaR is 18.6%. This means that for each dollar 

invested, one can lose $0.186 or greater the next day with a probability of one in a 

hundred. 

 

Figure 1: Value at Risk 

 

VaR gained almost immediate acceptance from both regulators and practitioners 

because of its simplicity and intuitive appeal. As of January 1, 1998, the Basle 

Committee on Banking Supervision requires banks with significant market exposure 

to report their daily VaR as a basis to determine their minimum capital adequacy 

requirements. In the United States, VaR is also accepted by the Securities Exchange 

Commission as an appropriate measure for corporations to report the risk of their 

business. 

 

Whilst Basle Committee compels financial institutions to calculate VaR for 

determining their level of capital adequacy, the Committee does not force institutions 
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to use a prescribed single model. Financial institutions are free to use for example 

variance-covariance, historical simulation, Monte Carlo methods or a combination of 

these methods.  Each financial institution is encouraged to have its own internal 

model so that computations in this field evolve better and better.   

 

However, the RiskMetrics™ approach developed by J.P. Morgan became the most 

popular one. And many financial institutions today follow their approach in 

estimating the VaR for their portfolios.   

 

Even though, there are more elaborate risk measures such as “Expected Shortfall” 

(ES) or “Conditional VaR” (C-VaR) being discussed in academic studies, their 

application in the financial institutions is still limited. The reason may be that C-VaR 

or ES calculations are not necessitated by regulatory bodies or that computations 

require an estimate of the whole tail of the firm-wide loss distribution.  

 

For now, VaR is used as a standard risk measure around the world today. So, it 

became very important to measure VaR accurately for risk management practices. 

The main difficulty in calculations lies in estimating the tails where there are only 

very limited observations. The existing models for estimating overall distributions 

can be divided into the following two categories: ‘parametric models’ and ‘non-

parametric models’. 

 

Parametric models try to fit the returns to various known statistical distributions (e.g. 

normal, symmetric stable, student t) or mixture of statistical distributions. VaR 

estimates are derived once the density function is fitted.  
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However, the true density function form is often not known and can be time-varying. 

Conditional models like Autoregressive Conditional Heteroscedasticity (ARCH) and 

Stochastic Volatility (SV) assume price changes to follow a statistical distribution 

conditionally. They model the variance of returns as a time dependent process. The 

advantage of these models is that they consider both fat tails and the dependence 

problem of the financial data. 

 

Generally, the true distribution function can not be known due to the complexity of 

the system. The non-parametric approaches are therefore used to model the density 

function of a given circumstance. Without any distributional assumptions, the data is 

fit directly according to some statistical criteria. However, the non-parametric models 

do not work in tails where data is sparse and it is impossible to extrapolate to areas 

where there is no sample data.   

 

1.2 Extreme Value Theory 

Both parametric models and non-parametric models discussed above achieve the best 

overall fit at the expense of tail fitting. Outlying observations on the tails of 

distributions occur very rarely but indeed they have important influence on the 

behavior of the whole model.  EVT, an interdisciplinary field in probability theory 

and statistics, brings in statistical techniques and introduces appropriate mathematical 

models for learning the probabilities of these outliers.  

 

The main advantage of EVT is that the only focus is on the tail of distribution. The 

concern is not to estimate the correct shape of the whole distribution function. The 
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central observations are ignored and only extreme observations are taken into 

consideration. Another advantage of EVT is that since it is a parametric approach it 

enables extrapolation, i.e. the estimated model can project for values that are beyond 

those observed so far. Other risk measures of C-VaR and ES can also be estimated 

using EVT. Furthermore, it can capture event risks, such as crashes and currency 

devaluations. 

 

The preface of the famous book named Modelling Extreme Events start as follows: 

“In a recent issue, The New Scientist ran a cover story under the title: ‘Mission 

improbable. How to predict the unpredictable?’ In it, the author describes a group of 

mathematicians who claim that EVT is capable doing just that: predicting the 

occurrence of rare events, outside the range of available data…..” (Embrechts et al. 

1997: VII)  

 

EVT gives us a ground to better explain the outlier or extreme events, which the need 

for it especially in finance is growing more and more as the number of so-called 

extreme events has increased considerably.  

 

1.2.1 Purpose and essential conditions 

The purpose of the statistical theory of extreme values is to model observed extremes 

in samples of some specified size, or to estimate the number of extreme data points in 

a related group.  

 

The essential conditions to study EVT are only that; the phenomenon being measured 

is a stochastic (random) variable, the initial distribution from which the samples with 
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extreme values have been drawn remains constant from one set of samples to the 

next, i.e. extreme events are drawn from a common population, and the observed 

extremes are statistically independent. 

 

Accordingly, EVT does not impose assumptions on the distribution function of the 

population. For example, the returns need not be assumed to be normally distributed 

whilst using EVT.   

 

1.2.2 Asymptotic Approach 

EVT uses asymptotic theory to base its inferences about extreme events in the tails. 

The theory tells what the distribution of extreme values should look like in the limit 

as the sample size increases. For example, in the case that the true density function of 

some return series is not known and the essential conditions listed above hold, the 

theorem tells that the distribution of extreme returns converge asymptotically to one 

of the three types of GEV functions which will be described in Section 2.1.2.  

 

In analyzing stock returns, usually high density (near continuous-time observed) data 

are used. The distributions are heavy-tailed and return data exhibit clustering of 

extremes and long-range dependence. Even though there is no universally accepted 

model that explains all of these phenomena, asymptotic approach of EVT can help 

estimating the tails using large sample sizes.  

 

1.2.3 Extreme Value Theory and Finance 

Extremal events in finance have the advantage that they are mostly quantifiable in 

units of money as opposed to other extremal occurrences, such as floods and 
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earthquakes, which might cost the loss of lives. However, even in finance there are 

market crashes that also have a non-quantifiable component: these events can cause a 

larger shock to the underlying financial system. Contagion risk or the risk that a 

securities market decline in one country will spread to another, causing serious 

market losses, or that the failure of one large financial institution will lead to the 

failure of others.  

 

As it will be mentioned in Literature Review, EVT was first applied by engineers. 

Following engineers, the finance community has also found out that using EVT may 

be helpful in risk management. The applications of EVT on financial time series data 

for quantifying risk measures will be mentioned in Section 2.3. 

 

Daily or weekly reported prices such as stocks, foreign currencies, or commodities 

such as crude oil, cotton, sugar, etc can all be considered as financial time series data. 

Firms perform risk management to guard against the risk of loss due to the fall in 

prices of financial assets held or issued by the company. What is of importance here 

are the magnitudes of the changes in prices, rather than the average variations. A 

single, extremely negative return or a sequence of smaller negative returns, can lead 

a company to bankruptcy. Hence generally companies feel the need to set trading 

limits. In order to determine these limits, probabilities of extreme negative returns 

need to be estimated. 

 

Researchers with the aim of studying these trading limits find themselves in the 

contradictory situation that extreme risks are, by definition, rare; whereas significant 

statistical results can only be achieved if a sufficient number of these events can be 
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analyzed. Unfortunately, in most mature markets the number of data in real cases is 

relatively limited. But as ISE is a trading platform in an emerging market, the 

securities traded in this exchange have high volatilities.  Consequently, the dataset 

(ISE returns) that will be analyzed in this study is rich in extreme returns and losses. 

EVT places emphasis on the tail behavior as the basis for the analysis. In other 

words, one is interested in the distribution of the largest order statistic, say Mn, which 

gives the likelihood of an extreme realization. For this reason, this study focuses on 

the tail of the distribution. Estimating the lower tail of the distribution is especially 

important in the correct calculation of VaR figures. 

 

2 Literature Review 

In literature, the financial return data is observed to have alternation between periods 

of tranquility and volatility. Periods of persistent high volatility are followed by 

periods of persistent low volatility. This feature of financial returns is known as 

volatility clustering.   

 

Most importantly, there is empirical evidence that distributions of returns can possess 

heavy (fat) tails so that a careful analysis of returns is required. Fat-tailed 

distributions exhibit more probability mass in the tails than distributions such as the 

standard normal distribution. This means that extremely high and low realizations 

will occur more frequently than under the hypothesis of normality.  

 

Mandelbrot (1963) and Fama (1965) were the first to use heavy tail distributions in 

finance. They proposed infinite variance models such as the stable distribution to 

model daily stock returns. However, Akgiray and Booth (1987) investigated the tail 
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behavior and found that the tails of stable distribution are too thick to fit the 

empirical data. 

 

As this study aims to model the tails of daily returns of securities being traded in ISE 

via techniques developed by EVT and estimate VaR, the literature review 

concentrates on the following three topics: EVT, VaR and former studies that used 

EVT in VaR estimations. 

 

2.1 Extreme Value Theory 

2.1.1 Background of EVT 

Comparing to the general statistics history, extreme value statistics history is quite 

brief. Initially, statisticians were concerned with studying the behavior of the masses 

rather than studying rare events. Kinnison (1985), who offers a thorough history of 

extreme value theory, acknowledges Fourier in 1824 for the oldest remarks in the 

statistical literature about extreme values. Fourier had the following remark for the 

Gaussian distribution that the probability of a deviation being more than three times 

the square root of two standard deviations from the means is about 0.00002 and 

hence the observation associated with this deviation could be neglected. 

 

This can be the source of the common but untrue statistical rule of thumb that plus or 

minus three standard deviations from the mean should be considered the maximum 

range of valid samples from a Gaussian distribution, irrespective of the sample size 

taken. 
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However, as the sample size increases, the largest value encountered in a sample will 

similarly increase. This is due to the fact that there is more opportunity for values in 

the tails to occur. 

 

In 1877, Helmert added that the probability of surpassing any specified value 

depends on the size of the sample. If the distribution that was being sampled is 

unlimited, no matter how small the probability of the limits given by a rule, then the 

largest or smallest sample observation is also unlimited. 

 

As a result, the study of extreme value theory is an attempt to describe the 

relationship between the size and magnitude of the observed extreme values. Now, 

we can see that the three sigma rule is far conservative for small samples and too 

liberal for large samples. 

 

Dodd (1923) started the modern day study of statistical extremes with his paper. 

Fréchet (1927) and Fisher-Tippett (1928) were the followers. Papers of de Finetti 

(1930), Gumbel (1935) and von Mises (1936) are a few of the most quoted ones 

written on the subject. 

 

Especially the paper of Fisher-Tippett (1928) is considered as the foundation of 

asymptotic theory of extreme value distributions. The theorem in the paper specifies 

the form of the limit distribution for centered and normalized maxima. They argue 

that in the existence of a normalizing constant and a centering constant, the 

distribution follows one of the three families of extreme value distributions which 

will be described in Section 2.1.3. 
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Since Fisher and Tippett, a large number of books and articles have been written on 

extreme value theory. Gnedenko (1943) was the first to provide a rigorous proof.  De 

Haan (1970) subsequently applied regular variation as an analytic tool. Then, 

Weissman (1975) presented a shorter version of de Haan’s proof. Weissman (1975) 

generalized the problem to include non-identically distributed observations. He later 

in 1978 derived estimators when only the k largest observations of a sample size n 

are available. De Haan (1981) focused on constructing a confidence interval for 

estimating the minimum of a function using order statistics. 

 

Beirlant et. al. (1996), Gumbel (1958), and Pfeifer (1989) concentrate more on the 

statistical methods based on extreme value theory.  

 

Anderson (1970, 1980), Arnold, Balakrishnan and Nagaraja (1992), and Gordon, 

Schilling and Waterman (1986) studied on extremes for discrete distributions. And 

Adler (1990), Berman (1992), and Leadbetter et al. (1983) studied extremes for 

continuous time processes, in particular the Gaussian distribution.  

 

Leadbetter, Linger, and Rootzén (1983) concentrated on extremes of stationary 

sequences and processes, along with extremes of dependent variables. Galambos 

(1987) studies the weak and strong limit theory for extremes of independent and 

identically distributed (i.i.d.) observations.  
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Resnick (1987) has worked primarily on i.i.d. observations and extreme value theory. 

The theory of the regularly varying functions is the main analytic tool and the point 

process theory is his basic probabilistic tool.  

 

Resnick (1987), Reiss (1993), and Galambos (1987) are the first ones to include 

results based on multivariate extremes in their studies. 

 

Contrary to the classical limit theorems that primarily concern the weak convergence 

of distribution functions, the main results of Reiss (1989) are formulated in terms of 

the variational and Hellinger distance. A collection of proceedings from a conference 

on extreme value theory edited by Hüsler and Reiss (1989) includes recent 

developments and extensions to multivariate extremes. 

 

The application of extreme value theory began in the middle 1930s with the work of 

E.J. Gumbel, first in Germany and then in the U.S. when World War II engulfed 

Europe. Gumbel’s first application was the consideration of the longest duration of 

life, or older age (Gumbel, 1935). Then, he showed that the statistical distribution of 

floods, long studied by engineers, could be understood by the use of extreme value 

theory (1941). These procedures have been extensively applied to other areas of 

science. For example, Tiago de Oliveira (1983) presents the proceedings from the 

1983 NATO Advanced Study Institute on Statistical Extremes and Applications to 

obtain a complete perspective of the field, along with a series of applications. 

 

The book Statistics of Extremes, written by Gumbel and published in 1958, pulled 

interest in the engineering community. Since then, as scientists, applied engineers, 
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mathematicians and statisticians used the theory in their daily practices, many 

advances in the extreme value theory have taken place. 

 

Extreme value theory had been mostly used in the biological, engineering and 

environmental studies. For these fields, extreme or unusual conditions are more 

important than usual conditions. Several examples of fields extreme value theory has 

decisive role in are listed in Table 2. However, a longer list of references of the use 

of extreme value theory in engineering is given by Castillo (1988). 

 

Field of study EVT has decisive role in 

Carcinogenesis studies determining maximum dose of chemotherapy 

Structural engineering estimating the probability of occurrence of extreme winds and 

earthquakes 

Ocean engineering probability distribution of the largest waves 

Hydraulics engineering flood frequency analysis 

Pollution studies determining a critical level of pollution concentration 

Meteorology Study of extreme events such as very high or low temperature, 

rainfall, sea levels, wind speeds, hurricanes, etc. 

Material strength size effect analysis and possible and reliable extrapolation making 

Fatigue strength estimating the number of cycles to failure under the action of 

repetitive loads 

Electrical strength estimating lifetimes based on random voltage levels 

Corrosion resistance predicting corrosion failure due to the action of chemical agents 

Table 2: Fields that use Extreme Value Theory 
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Hosking, Wallis, Wood (1985), Hosking, Wallis (1986a, 1986b, 1988), Hosking 

(1994) have all performed research on extreme value analysis and flood frequency 

analysis. Barnett and Turkman (1993) present case studies in environmental pollution 

statistics. Jerkinson (1955) introduced the generalized extreme value distribution 

while examining meteorological events. Shibata (1994) had an application of 

extreme value statistics to corrosion. 

 

2.1.2 Univariate Extreme Value Theory 

The study aims to estimate the distribution of daily returns of several stocks and 

indices, which will be described in detail in section 3.1. The portfolio of stock 

returns, hence their joint distributions are not estimated. This limits the study on a 

univariate level.  

 

EVT enables two different approaches: the classical approach that uses block 

maxima data and the more recent approach that uses exceedances over a specified 

threshold.  

 

In general, for some studies only the annual maximum data may have been recorded. 

Then working with this annual maxima data does not give the researcher the option 

of modeling exceedances over a threshold. However, using daily stock returns, the 

data makes it available that all daily observations are known rather than only the 

maxima within blocks. Rather than working with data of block maxima, say maxima 

of daily returns over months, selecting a threshold and working with the data of 

exceedances over the threshold is a much more efficient way of using data. Yet, one 
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can either assume that daily returns are the maxima over blocks of size of a single 

day or that daily returns are just point observations.  

 

Let Xi (i=1, 2, n) be a sequence of independent and identically distributed (i.i.d.) 

random variables. The variables are ordered and reindexed such that order statistics 

are: X1  ≤ X2  ≤ … ≤ Xn. 

 

If the common distribution function of these sequence of random variables is F then 

the tail quantile function Q is defined as follows: 

 

Q (n) = inf{u; F(u) ≥ 1 – 1/n}. 

 

The maximum domain of attraction condition that controls EVT is that if there exist 

sequences of constants { }0>na  and { }nb  such that: 

 

∞→→








≤
−

nasxGx
a

bX

n

nn )(Pr  

for a non-degenerate distribution function G, then G is a member of the generalized 

extreme value family of distributions (EVD) γG . 

 

( ) ( ) 




 +−= −

γγ γ
1

1exp xxG        Equation 1 

Thus, if the tail index γ is estimated, the distribution function of the random variable 

can also be estimated. The tail index γ is hence the main indicator about the decay of 

the distribution tail. When γ < 0, the distribution is classified as Weibull type and it 

has finite endpoint. When γ = 0, the distribution is classified as Gumbel type and it 
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decays exponentially. When γ > 0, the distribution is classified as Fréchet type and it 

decays polynomially. 

 

 

Figure 2: Density and distribution functions of GEV family 

 

Equation 1 is the continuous, unified general model for the family of extreme value 

distributions. This general formula can be decomposed into three separate formulas 

by setting α=1/γ.   

 

Gumbel  : { }xallforexG x )exp()(0
−−=     Equation 2 

Fréchet α>0 : 








<
≥−

=
−

0 0
0 )exp(

)(,1 x
xx

xG
α

α    Equation 3 

Weibull α<0 : 
( )









>
≤−−=

−

0 1
0 

x
xxxG )exp()(,2

α

α    Equation 4 

 

In this notation each parameter α determines a standard EV distribution. 

Accordingly, the relevant densities g=G' of the standard EVD functions are: 
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Gumbel  : ,)()(0
x

o exGxg −=    for all x;     

Fréchet   : ,)()( )1(
,1,1

α
αα α +−= xxGxg   x≥ 0;     

Weibull  : ,)()()( )1(
,2,2

α
αα α +−−= xxGxg  x≤ 0.     

 

As it can be observed in Figure 2, Fréchet densities and the Gumbel density are 

skewed to the right. Weibull densities, on the other hand, are skewed to the left when 

α > -3.6, look symmetrical if α is close to -3.6, and are skewed to the right if α < -3.6. 

Furthermore, for α > -1, Weibull densities have a pole at zero. The effects of shape 

parameter α on Fréchet and Weibull densities can be seen in Figure 3. 

 

The left figure shows four Fréchet densities at α level 0.5, 1, 2 and 3. All figures are 

right skewed as expected and the curves get steeper as α decreases. The right figure, 

on the other hand, depicts again four Weibull densities. The shape parameters α of 

these densities are -0.5, -1, -3.6 and -5. Again, the curves with lower absolute values 

of α are steeper. The skewness properties of Weibull densities at different α levels 

can also be observed in this figure.  

 

Figure 3: Effect of shape parameters on Fréchet and Weibull densities. 

 



19 

 

If a random variable X has the distribution function F, then (µ + σ X) has the 

distribution function Fµ, σ(x) =F ((x-µ)/ σ), where µ and σ > 0 are the location and 

scale parameters. Given the property above and adding the location and scale 

parameters, µ and σ respectively, full notation of extreme value models are obtained. 

Then Gumbel, Fréchet and Weibull distribution functions in Equations 2, 3, and 4 in 

more general context become: 

)exp()( /)(
,,0

σµ
σµ

−−−= xexG  

and 

),()( ,,,, σ
µ

ασµα
−= xGxG ii    i=1, 2. 

 

Likewise the density functions for Gumbel, Fréchet, and Weibull are now under this 

notation;  

)exp(1)( /)(/)(
,,0

σµσµ
σµ σ

−−−− −= xx eexg  

and 

)(1)( ,,,, σ
µ

σ ασµα
−= xgxg ii ,   i=1, 2. 

 

The effects of location and scale parameters on Gumbel function can be observed in 

Figure 4. The figure on the left shows five different Gumbel densities with five 

different location parameters, all having σ = 1. Then, the figure on the right shows 

five different Gumbel densities with five different scale parameters and µ = 0. 
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Figure 4: Effects of µ and σ shown on Gumbel density function.  

 

Because of the well-known leptokurtic property of the financial data series, empirical 

applications in finance are mainly concerned with EVD distributions where γ > 0, i.e. 

the Fréchet distribution.  

 

2.1.3 Peaks Over Threshold Model 

More recent studies on Extreme Value Theory use data of exceedances rather than 

working with block maxima or minima. Since this approach uses exceedance data 

over a given high threshold u, those of the outcomes that exceed u are regarded as 

extreme events. The EVT model used in this approach is known as the Peaks over 

Threshold (POT) model or generalized Pareto distribution (GPD) model.  

 

In literature, the theoretical foundation leading to this generalized Pareto model is 

attributed to Pickands (1975). This model was further developed in the studies of 

Smith (1987) and Leadbetter (1991). Tajvidi (1996) also studied statistical estimation 

of the parameters of the model. The main framework of GPD approach these 

researchers had developed is as follows: 
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There is an analytic relationship between GPD family of distribution functions (will 

be denoted by H) and EVD family of distribution functions G defined in the above 

section. The relationship is; 

 

H (x) = 1 + log G (x) ,   if log G (x) >-1 

 

GPD functions are the only continuous distribution functions F such that for a certain 

choice of constants bu and au, F[u] (bu + au x) is equal to )(xF . Here F[u] (x) is again 

the exceedances distribution function at u relevant to F (the truncation of F left of u). 

More explicitly, F[u] (x) = ))(1())()(( uFuFxF −− . This property is known as the 

pot-stability of GPD functions.  

 

F[u] (x) is thus the conditional probability that given an exceedance occurs the 

outcome will be below x. Equivalently, the conditional probability of an extreme 

event given that the threshold is exceeded is: 

 

{ } [ ] 0),(1
)(1

)(1Pr >+−=
−

+−=>+> yyuF
uF

yuFuXyuX u  

where X1, X2, ... is a sequence of i.i.d. random variables having marginal distribution 

function F.   

 

As the distribution F is unknown, generalized extreme value approximation to the 

distribution of maxima can be used. The parametric modeling of exceedance 

distributions F[u] by GPD is based on a limit theorem again. Since the intention is 
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modeling exceedances at high thresholds, thresholds are considered to tend to the 

right endpoint of the actual distribution F. 

 

Balkema-de Haan (1974) states in their study the following limit theorem:  

If F[u] (bu + au x) has a continuous limiting distribution as u goes to the right endpoint 

w (F) of F, then│F[u] (x) - Hγ (x)│→0 as u→ w (F). 

 

If the convergence above holds, then F is said to belong to the pot-domain of 

attraction of Hγ. This limit distribution of the exceedances over u when u → ∞ is: 

 

( )
γ

σγ σ
γ

/1

, 11
−






 +−= xxH        Equation 5 

 

Equation 7 is the continuous, unified GPD model. Similar to the case in classical 

family of extreme value distributions, it can again be decomposed into three separate 

formulas with α (= 1 / γ) notation.   

Exponential : 








≥−

<
=

− 01
00

)(0 xe
x

xH
x

     Equation 6 

Pareto α > 0 : 








≥−
<

= − 1 1
1 0

)(,1 xx
x

xH αα     Equation 7 

Beta α < 0 : ( )
















>
≤≤−−−

<

= −
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0 1)1

-1 0

)(,2

x
xx

x

xH α
α    Equation 8 

 

In this notation, for positive and negative α, the GPD type is called Pareto and Beta, 

respectively. The relevant densities Hh ′= are: 



23 

 

 

Exponential  : 0)(0 ≥= − xexh x      

Pareto  : 1)( )1(
,1 ≥= +− xxxh α
α α      

Beta   : 01)()( )1(
,2 ≤≤−−= +− xxxh α
α α     

 

The density and distribution functions are plotted for Exponential, Pareto and Beta 

functions in Figure 5. 

 

Figure 5: Density and distribution functions of GPD family 

 

Again location and scale parameters µ and σ > 0 are added to the equations above in 

order to obtain the full statistical families of GPD functions. Considering the context 

that the study uses financial data, we are particularly interested in Pareto distribution 

functions H1,α,0,σ ( x ) = H1,α ( x / σ ) with scale parameter σ > 0 and fixed location 

parameter µ = 0.  

 

In Figure 6, the red line on the left diagram is the density function for the 

Exponential distribution. The other lines are Pareto densities all with location µ = 0 
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and scale σ = 1, but with different shape parameters γ = 0.5, 1, and 2. In this plot we 

can see the convergence of Pareto densities to the Exponential density as γ decreases. 

The right plot of Figure 6, shows Pareto densities all with location µ = 0 and shape 

index γ = 1, but with four different levels of scales σ ranging from 0.5 to 3. 

 

 

Figure 6: Effects of γ and σ shown on Pareto density function.  

 

In determining the threshold u, the researches face the following handicap. If the 

threshold is too low, then the asymptotic basis of the model working on maxima is 

likely to be violated. On the other hand, if the threshold is too high, then the model 

will be estimated with only a few exceedances and hence the estimators will have 

high variance. This is known as the bias-variance tradeoff in selecting thresholds. 

 

This threshold choice problem was investigated by Davison and Smith (1990), who 

have combined their former studies in Davison (1984) and Smith (1984) and 

recommended the use of mean residual life plot for threshold selection.  

 

Mean residual life plot is the scatterplot of the points: 
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      Equation 9 

 

where 
unxxx ,...,, 21 are the nu observations that exceed u and xmax is the maximum of 

Xi. Above a valid threshold level u, the mean residual life plot is expected to be 

approximately linear due to the relationship stated in Coles (2001: 79) 

 

( ) ( )
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γσ
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=
−

=>−Ε=
11
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u
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.     Equation 10 

 

2.1.3.1 Parametric Approaches 

After selecting the threshold, the fit of the generalized Pareto distribution over this 

threshold can be performed by one of the following methods: Maximum likelihood 

(Smith (1987)), Probability-weighted moments (Hosking and Wallis (1987)), 

Bayesian analysis methods (Coles and Powell (1996)), Elemental percentile method 

(Castillo and Hadi (1997)). 

 

Among these four approaches the classical ones which are maximum likelihood and 

probability weighted moments are the most preferred. However, both have some 

constraints regarding the tail index γ. In the later studies, Castillo and Hadi (1997) 

proposed an elemental percentile method (EPM) that does not impose any 

restrictions on the tail index γ. Also, Coles and Powell (1996) used Bayesian methods 

to estimate GPD parameters; however these methods have not been excessively 

explored. Cabras-Castellanos (2005) state that the reason why Bayesian methods 
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have not been explored neither in a non-informative context, nor in an informative 

one, may be due to the lack of physical meaning of the unknown parameters. 

 

In the following sections, the classical approaches maximum likelihood estimation 

and probability weighted moments will be discussed in more detail. 

2.1.3.1.1 Maximum Likelihood Estimation 

Marginal distribution functions of POT models can estimated by maximum 

likelihood method. The maximum likelihood estimators have been considered by 

many authors, including Davison (1984), Smith (1984), DuMouchel (1983), 

Hosking-Wallis (1987) and Grimshaw (1993). Smith (1984) showed that for γ > -0.5 

the likelihood is regular in the sense that the Fisher information matrix exists. A 

summary of the findings of Smith (1987) is below. 

 

Let X1, X2, ... be a sequence of i.i.d. random variables having marginal distribution 

function F. Assume F is a GPD with parameters γ and σ, then the density function f 

is: 
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The log-likelihood function of Equation 5 equals 
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Solving this likelihood function, the MLE estimates nγ̂ and nσ̂ are attained. The 

method is applicable for cases when γ > -0.5. 

 

Then application of MLE on the nu excesses of a threshold u, where yi are the 

exceedance values (yi = Xi - u), the log-likelihood equation becomes for γ ≠ 0 

 

( ) ( ) ( )∑
=

++−−=
un

i
iu yn

1
/1ln/11ln, σγγσγσl ,    Equation 11 

 

provided ( )σγ /1 iy+  > 0 for i = 1, … , nu; otherwise ( ) −∞=γσ ,l .  

 

In the case γ = 0, the log-likelihood is  
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Since the log-likelihood above cannot be maximized analytically, numerical 

techniques are applied for the optimization process. 

 

MLE parameters are consistent and asymptotically efficient as  
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and N(µ, ∑) stands for the bivariate normal distribution with mean vector µ and 

covariance matrix ∑. 

 

2.1.3.1.2 Probability-Weighted Moments 

The next method with which generalized Pareto distribution can be fitted to data on 

excesses of high thresholds is the method of probability weighted moments (PWM). 

Hosking-Wallis (1987) implemented the following probability weighted moment 

approach for the GPD. 

 

The rth probability weighted moment is 

 

( ) { }∫ ==
1

0

)( rr
r ppQEdpppQω  

 

where p has a uniform distribution over [0, 1]. For the order statistics x1≤ x2≤…≤ xn 

from a random sample of size n, then  
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For GPD having γ < 1, 
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where X has GPD σγ ,G . Then immediately the parameter estimates obtained are; 

 

10

0

2
2ˆ

ωω
ωγ
−

−=  

and 

10

10

2
2ˆ

ωω
ωωσ

−
= . 

 

2.1.3.1.3 Comparison of MLE and PWM 

The two classical methods MLE and PWM used for estimation of GPD parameters 

described above have been compared for GPD distributed data in simulation studies 

by Hosking-Wallis (1987) and in the Rootzén-Tajvidi (1997) study. 

 

Hosking-Wallis (1987) found that for particularly small sample sizes and for GPD 

data with shape parameter γ in the range between 0 and 0.4, the PWM method has 

advantages over the MLE method as PWM estimates showed less mean squared 

error. However, as the sample size increases the difference becomes less pronounced. 

Then again, Rootzén-Tajvidi (1997) showed that for heavy tailed data with γ ≥ 0.5 

the PWM method gives seriously biased parameter estimates whereas ML estimates 

are consistent.  

 

2.1.3.2 Nonparametric Approaches 

 

Several different estimators have also been proposed to estimate the tail index. Hill 

(1975) and Dekkers et al.(1989) are the most well-known among these. These non-
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parametric estimators use upper order statistics and they will be further described in 

the following sections. 

 

2.1.3.2.1 Hill Estimator 

Hill (1975) proposed the following estimator for γ. 
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k XX
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−= ∑ loglog1
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.      Equation 13 

 

Here, k = kn is a sequence of positive integers (1 ≤ k < n) which, in theoretical 

asymptotic considerations satisfy the conditions k →∞ and k/n→0 as n→∞ . 

 

However, plotting Hill estimates Hk.n against k, high volatility of the Hill estimate is 

observed. This makes it very difficult to use the estimator without having a guideline 

for the choice of k. 

 

Refined estimators of this type and more general classes of estimators in this spirit 

were discussed in Drees (1995), Drees (1996), and Drees (1998).  

 

2.1.3.2.2 Dekkers Estimator 

Dekkers, Einmahl and de Haan (1989) proposed the following estimator, which 

brings about an adaptation of the Hill estimator to estimate γ. 
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where 
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2.2 Basle and VaR 

After Basle Accord assigned VaR as the risk measurement method, next the question 

of determining the quality of the models that the practitioners use came up. Basle 

Committee thus reinforced backtesting procedure and motivated the practitioners to 

improve the models by imposing low multiplication factors for the models that yield 

good backtesting results.  

 

Bank for International Settlements (BIS) determines the multiplication factors for 

capital requirements using the backtest procedure explained in Basle Committee on 

Banking Supervision (1996).  

 

Accordingly, in the current BIS implementation the practitioners need to produce 

T=250 VaR forecasts at 99% level. VaRt denotes the forecast for day t using the 

information up to time t - 1.  Then the following backtesting procedure form the 

exceedance variable It. 
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Then, by the definition above Pr (It = 1) = Pr (rt < -VaRt ). And by the definition of 

VaR it follows that ( )pFVaR tt −=− − 11 , with F the cumulative distribution function 
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of rt. Combining the equations, we have Pr (It = 1) = (1 – p). Consequently, the 

distribution of It follows a Bernoulli distribution. Then the cumulative distribution of 

the binomial distribution can be used based on the number of exceedances, i.e. 

∑ =

T

t tI
1

. 

 

Zone Number of 
exceedances 

Plus 
factor 

Cumulative 
probability (%) 

0 0 8.11 
1 0 28.58 
2 0 54.32 
3 0 75.81 

Green 
zone 

4 0 89.22 
5 0.40 95.88 
6 0.50 98.63 
7 0.65 99.60 
8 0.75 99.89 

yellow 
zone 

9 0.85 99.97 

red zone ≥10 1.00 99.99 
Table 3: BIS multiplication factors 

 

For a sample of 250 forecasts, the table above shows the plus factors added to the 

constant 3 to determine the multiplication factor, i.e. multiplication factor = 3 + plus 

factor. For other sample sizes the yellow zone start where the cumulative probability 

exceeds 95% and the red zone starts where it exceeds 99.99%.   

 

Kerkhof-Melenberg (2004) mentions the following three shortcomings of this 

procedure. First, the model ignores the clustering phenomenon in the exceedances. 

This is also discussed by Berkowitz-O’Brien (2002) who have studied daily 

performances of VaR estimates of six major U.S. companies. The authors state in 

their study that “…, at times, losses can substantially exceed the VaR, and such 
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events tend to be clustered. This suggests that the banks’ models, besides a tendency 

towards conservatism, have difficulty forecasting changes in the volatility of P&L” 

(1094).  Second, the procedure does not take into account the estimation risk that 

( )pFVaR tt −=− − 1ˆ 1  is not necessarily equal to ( )pFt −− 11  considering the limited size 

of the data. Finally, there is too much relevant information lost regarding the 

distribution function by considering only whether the VaR is exceeded or not. 

Berkowitz (2001) discusses this issue further in detail.     

 

2.3 Empirical VaR calculations using EVT  

Although the use of EVT in finance is a recent development, research work that 

highlights its importance is growing. Longin (1996) was one of the first to apply 

EVT in finance.  In his study he showed that the heavy tails of the daily returns for 

the S&P500 index over the period 1885 to 1990 could be characterized by the 

Fréchet distribution. He emphasized the potential of EVT in risk management 

applications such as VaR estimation, margin setting in futures markets and in 

regulating capital requirements for financial institutions. In the follow up paper, 

Longin (2001) introduced the idea that EVT could be used in portfolio management. 

EVT enables computing the probability of crashes and their associated waiting time 

period so that these risks could be hedged using derivatives. Longin-Solnik (2001) 

analyzed extreme returns on a multivariate scale for a group of international stock 

markets.  

 

Using data on Asian equity markets, Campbell-Koedijk (1999) applied EVT to 

estimate conditional VaR and compared findings to those based on the RiskMetrics 

methodology. In this study, the authors concluded that the model provided improved 
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forecasts of the Value-at-Risk and that conditional VaR estimates are better able to 

capture the nature of downside risk, which is particularly crucial in times of financial 

crises. Jansen et al (2000) illustrated how EVT can be used for portfolio selection by 

constructing the optimal portfolio consisting of US bonds and stocks with safety-first 

approach using VaR-limited downside risk. McNeil and Frey (2000) also proposed 

an interesting combination of GARCH modeling and EVT to estimate tail-related 

risk measures for heteroscedastic time series.  

 

Also papers of European interest include Cotter (2001), who used EVT to calculate 

optimal margins for 12 European stock indices futures and Lux (2001), who used 

intra-daily data of the DAX index to investigate the asymptotic extreme behavior of 

returns in the German stock market. More recently, Këllezi-Gilli (2003) applied EVT 

on thirty-one years of daily returns on Swiss market index to estimate statistical 

models for several tail-related risk measures. Gettingby et. al. (2004) employed an 

EVT approach to investigate the distribution of extreme share returns in the UK from 

1975 to 2000. They found that the Generalized Logistic (GL) distribution provided 

an adequate description of both the minima and maxima data. Following this study 

Tolikas-Brown (2005) used a similar methodology to investigate the asymptotic 

distribution of the lower tail for daily returns in the Athens Stock Exchange (ASE) 

over the period 1986 to 2001. 

 

Also, Da Silva-De Melo Mendez (2003) used EVT to analyze ten Asian stock 

markets and their results suggested that compared to traditional methods estimating 

VaR via EVT approach is more conservative in determining capital requirements 
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than traditional methods. Ganief-Biekpe (2003) applied POT technique to the South 

African Rand/Dollar one year futures contract. 

 

3 Methodology 

3.1 The Data 

The data contain adjusted daily closing prices of 6 companies traded in the ISE, the 

index value ISE100 and an artificial price-weighted index. The price weighted index 

is calculated by taking the average of the adjusted prices of 20 companies that are 

among constituent stocks of the 2005 third quarter ISE National 30 index. The 20 

stocks selected are of the most formerly firms that are publicly traded. Below is a list 

of these 20 stocks’ tickers used in computation of the price weighted index.  

 

AKBNK EREGL HURGZ PETKM TOASO 
ARCLK FINBN ISCTR PTOFS TUPRS 

DISBA FROTO KCHOL SISE VESTL 
DOHOL GARAN MIGRS THYAO YKBNK 

Table 4: The list of the stocks used in the computation of price weighted index. 

 

Other than the ISE National 100 and price weighted index of the 20 companies, six 

individual stocks are selected for equity risk calculations. These six stocks can be 

grouped into two such that, the first group consists of companies that are well traded. 

The tickers of this first group are: “YKBNK”, “EREGL”, and “ISCTR”. The other 

group of poor traded companies is randomly selected among the stocks that are not 

the constituent stocks of ISE National 100 index. The tickers of this next group are: 

“BFREN”, “KARTN”, and “GOODY”.  
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Thus, a total of 8 data series; ISE National 100 index (“ISE100”), price weighted 

index of the 20 companies (“AVE20”), “ISCTR”, “YKBNK”, “EREGL”, “BFREN”, 

“KARTN”, “GOODY” are used in computations. 

 

The dataset is available from June 22nd, 1993 onwards. Only “BFREN” stock data 

begins at January 4th, 1994. Hence, 3066 daily returns are calculated for the period 

between June 22nd, 1993 and October 17th, 2005 regarding the five individual stocks; 

“ISCTR”, “YKBNK”, “EREGL”, “KARTN”, “GOODY”, together with “AVE20” 

and “ISE100” indices. Only for “BFREN” 2928 daily returns are computed for the 

period between January 4th, 1994 and October 17th, 2005. 

 

3.2  Descriptive Statistics 

The stocks traded in ISE are highly volatile and within the period chosen in this 

study, a daily return as high as 17.8% and a daily loss as high as 20% has been 

observed. Within the 12 years period, the two highest daily returns on the ISE100 

index occurred on consecutive days in December 2000. Only two months later, in 

February 2001 the first and third highest losses were observed. This shows that the 

well known clustering property of the financial return data is also present in ISE 

returns.  The same property can also be observed in the individual stocks’ daily 

returns.  

 

Table 5 and Table 6 below list the first five highest and lowest daily returns of the 

dataset used in the study. 
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1st 2nd 3rd 4th 5th
2000-12-05 2000-12-06 1998-09-18 2000-01-04 2001-04-27

17.8% 17.1% 15.6% 14.1% 12.7%
2000-12-06 2000-12-05 1998-09-18 2000-01-04 1997-01-27

17.9% 16.9% 15.8% 15.6% 14.4%
2000-12-05 1997-01-27 1998-09-18 1996-11-20 2000-12-06

20.3% 18.4% 18.0% 17.4% 16.8%
1995-04-21 1995-04-24 2000-01-04 2000-12-05 1998-09-18

21.5% 21.4% 20.8% 18.7% 17.2%
1997-01-24 2000-12-06 1999-12-10 2001-04-27 1997-12-29

19.6% 18.2% 18.2% 17.7% 17.5%
2004-05-12 2000-12-05 1995-02-15 2004-10-05 2004-09-21

193.1% 22.9% 21.2% 20.0% 20.0%
1999-12-15 2000-12-05 2000-04-25 2000-01-05 2001-03-30

21.0% 18.4% 18.2% 18.0% 18.0%
2000-01-17 2004-10-26 2003-09-30 2004-11-02 1994-06-01

20.8% 19.6% 17.6% 15.7% 15.1%

Highest Returns

YKBNK

BFREN

GOODY

KARTN

XU100

AV20

EREGL

ISCTR

 

Table 5: Date and scale of highest daily returns 

 

1st 2nd 3rd 4th 5th
2001-02-21 1998-11-11 2001-02-19 1998-08-27 2003-03-03

-20.0% -16.1% -15.8% -14.1% -13.3%
2001-02-21 1998-11-11 2001-02-19 1997-10-27 2003-03-03

-18.9% -16.1% -15.8% -13.8% -12.5%
2001-02-21 1998-01-12 2001-02-19 2000-12-07 1997-10-27

-22.3% -20.5% -18.6% -16.8% -15.2%
2001-02-21 1998-03-13 1998-11-11 2003-03-03 2000-01-06

-20.8% -17.4% -16.6% -16.4% -16.0%
2002-06-24 2002-06-26 2002-06-25 2001-02-21 2000-12-07

-24.1% -23.5% -21.7% -20.8% -18.2%
1995-04-24 2004-05-14 2004-05-17 1998-11-11 1994-04-26

-20.8% -20.5% -20.4% -19.9% -19.6%
1998-11-11 1994-02-10 2000-12-07 2001-02-19 1997-01-28

-17.2% -15.4% -14.7% -14.6% -14.1%
2003-10-02 1997-01-28 1995-04-24 1997-10-28 2000-11-28

-16.3% -14.7% -14.1% -13.6% -13.6%

Highest Losses

XU100

AV20

EREGL

ISCTR

YKBNK

BFREN

GOODY

KARTN
 

Table 6: Date and scale of lowest daily returns 
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In Table 7, it can be seen that all of the eight data series’ daily logarithmic returns 

have positive means. RiskMetrics assumes that daily returns have a mean of zero. 

However, testing the null hypothesis that the mean of daily returns is zero is rejected 

at 5% significance level.    

 

For ISE100 the skewness is slightly negative indicating that the returns are not 

exactly symmetric but in fact skewed to the left. For “YKBNK” and “AV20” the 

daily returns are symmetric and for the rest of the return series, the skewness is 

positive. Positive skewness implies that the returns are skewed to the right. The 

companies in the poor traded group, i.e. “BFREN”, “KARTN”, and “GOODY” have 

the highest positive skewness. “BFREN” in particular has the highest skewness.  

 

The heavy tailed property of financial returns can also be observed in the data series 

used in the study. The excess kurtosis for all eight data series is greater than 0 

(implying kurtosis is greater than three). This suggests that the tails of the return 

distribution is heavier than the normal distribution. Again as in the case of skewness, 

the poorly traded stocks have higher kurtosis values compared to well traded stocks. 

 

XU100 AV20 EREGL ISCTR YKBNK BFREN GOODY KARTN
Mean 0.18% 0.20% 0.21% 0.25% 0.22% 0.30% 0.17% 0.21%
Stan. Error 0.05% 0.06% 0.08% 0.08% 0.09% 0.11% 0.06% 0.06%
Stan. Dev. 3.04% 3.33% 4.21% 4.35% 4.76% 5.92% 3.56% 3.54%
Kurtosis 3.51 2.49 2.05 2.23 2.05 383.92 3.49 3.32
Skewness -0.08 0.01 0.11 0.34 0.00 12.02 0.39 0.47
Minimum -19.98% -18.93% -22.31% -20.76% -24.12% -20.76% -17.19% -16.25%
Maximum 17.77% 17.87% 20.25% 21.54% 19.63% 193.11% 21.03% 20.76%
Count 3066 3066 3066 3066 3066 2928 3066 3066
Conf. Lev (95%) 0.11% 0.12% 0.15% 0.15% 0.17% 0.21% 0.13% 0.13%  

Table 7: Descriptive statistics of daily log returns  
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3.3 Normality Tests 

The descriptive statistics above point out that the daily returns may not be normally 

distributed. Checking for normality, the Kolmogorov-Smirnov statistic with 

Lilliefor’s significance correction, Shapiro–Wilk statistics, and Jarque-Bera statistic 

also known as the Bowman-Shelton statistic all strictly reject normality at very low 

p-values.  

  

 
Statistic df Sig. Statistic df Sig. Statistic Sig.

XU100 0.054 3066 7.1E-23 0.963 3066 3.0E-27 1577 0
AV20 0.049 3066 1.1E-18 0.973 3066 1.9E-23 795 2.3E-173
EREGL 0.088 3066 1.3E-64 0.973 3066 9.2E-24 545 4.7E-119
ISCTR 0.091 3066 8.1E-68 0.969 3066 3.4E-25 693 3.8E-151
YKBNK 0.084 3066 2.1E-58 0.972 3066 3.1E-24 536 4.5E-117
GOODY 0.124 3066 1.4E-129 0.947 3066 8.9E-32 1633 0
KARTN 0.142 3066 3.7E-171 0.939 3066 1.1E-33 1519 0
BFREN 0.142 2928 1.1E-163 0.658 2928 1.4E-60 18052414 0

Kolmogorov-Smirnov Shapiro-Wilk Jarque-Bera

 

Table 8: Normality tests of daily log returns 

 

3.4 VaR Estimation Models Used in the Study 

Knowing that the daily logarithmic returns of ISE are not normally distributed and 

heavy tailed, the VaR for the two indices as well as the six individual stocks 

described in Section 3.1, are estimated with different approaches: Historical 

simulation (HS), RiskMetrics approach (RM), nonparametric GPD approach, and 

parametric GPD approach. The more modern classes of EVT models known as Peaks 

over Threshold models are applied in estimating the distribution of the tail.  

 

The models are applied on the data using a rolling window style analysis. A window 

width is specified for each model: HS, RM, nonparametric GPD or parametric GPD. 
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Then a range of data in the specified window width is drawn from the beginning of 

the whole data range which consists of daily log returns. This first window is used to 

forecast VaR for day ‘windowsize+1’. This window is then moved forward by one 

day, and the data in this new window is used to predict the distribution function for 

day ‘windowsize+2’.  This process is repeated until the last observation of the dataset 

is reached.  Thus having n observations in a dataset, a sequence of (n - windowsize) 

VaR forecasts are calculated. 

 

The R-Project, an open-source statistical software is used for the following analysis. 

 

3.4.1 Historical Simulation 

Historical simulation is a nonparametric approach that estimates the distribution of 

the return series as the empirical distribution of the past returns. It is simply finding 

the quantile of a given past data series and considering this quantile as the VaR for 

the next day. This approach assumes that the distribution of returns for the next days 

is the same as the distribution for the past historical data.  

 

For the study, the quantiles have been computed using a windowsize of past 250 

daily returns, which corresponds approximately to the number of trading days in a 

year. Two different types of probability functions have been used in the quantile 

estimations: 
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Type I   p(k) = k/n 

Type II  p(k) = (k-1)/(n-1) 

 

Using these probability functions 95% and 99% VaR estimates for the next day are 

computed by taking the 1% and 5% quantiles of past 250 daily returns respectively. 

The 250 day window data is rolled over each day such that VaR levels of the next 

days can be estimated. 

 

The main drawback of this nonparametric approach is that it is impossible to 

extrapolate for loss levels that have never occurred before.  Furthermore, at very low 

quantile levels depending on the windowsize being used, the quantile estimate will 

have very high variance; hence the estimates will tend to be inefficient. On the other 

hand, as financial returns have alternating periods of high and low volatility, 

widening the windowsize makes it impossible to reflect the effect of changing 

volatility on the estimates.   

 

3.4.2 RiskMetrics™ approach 

RiskMetrics is a methodology developed by J.P. Morgan, which estimates market 

risk measured by value-at-risk. J.P. Morgan (1996) published the techniques they 

apply in their methodology in RiskMetrics technical document in very detail. The 

backbone of the methodology is that the volatility clustering phenomenon mentioned 

in Section 1 is taken in hand via choosing an autoregressive moving average process 

to model the price process. The particular autoregressive moving average that is 

incorporated in RiskMetrics avoids the problem of uniformly weighted moving 
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averages. The model gives more weight to the more recent returns observed using the 

so called exponentially weighted moving average (EWMA) method.  

 

The volatility estimate that the model chooses to use is: 
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In the equation above the λ parameter used by RiskMetrics is 0.94.  This λ parameter 

is determined by an optimization procedure that produces the best backtesting results. 

In the methodology described above, the number of past returns that effectively 

affect the volatility estimate is 75 days. As for the past 75th day return, the 

exponential weight is as low as 0.9475, which is less than 0.01. Hence, the model 

represents a finite memory of the market.  

 

The notation 2
1 tt+σ  emphasizes that the volatility estimated on a given day t is 

actually used as a predictor for the volatility of the next day t+1. For equity risk 

calculations, the model estimates the return series to be normally distributed 

conditional on the information set at time t, which consists of the past return series 

available at time t. Thus, the probability distribution function for the next day is 

estimated as a normal distribution with a mean of zero. The standard deviation for 

that day’s normal distribution is calculated by the EWMA model described above.  

 

The daily VaR at confidence level p (e.g. 95% or 99%) is then calculated by 

multiplying tt 1+σ with the p quantile of the standard normal distribution. 
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Additionally, RiskMetrics uses the technique described above to measure VaR of 

individual assets as well as portfolios of assets. In the case of portfolios containing 

no options, i.e. linear portfolios, the volatility is estimated by multiplying portfolio 

weights by the covariance matrix of EWMA of asset returns. The portfolio volatility 

is thus,  

∑=
ji

jijip ww
,

,
2 σσ  

where wi is the weight of asset i in the portfolio.  Equivalently, however, one can 

calculate the return of the portfolio first and then apply the EWMA technique 

directly to the calculated portfolio returns. 

 

The very strong assumption of conditional normality of RiskMetrics has received 

many criticisms. The well-known leptokurtic property of financial returns, imply that 

VaR estimates of the RiskMetrics methodology will tend to underestimate the true 

VaR.  

 

However, as the model is easy to apply and it captures the changing volatility 

conditions via EWMA model, the model is very widely used and popular.  

 

3.4.3 Nonparametric Peaks over Threshold approach 

The Hill estimator and a variation of Hill estimator used by Dekkers et al (1989) both 

described in section 2.1.3.2 is applied to the data. A windowsize of 250 days is used 

in determining the marginal distribution. For example, for determining the 

distribution function for day 251, the returns between day 1 and day 250 are 

considered. At 90% and 94% threshold levels, the number of order statistics used, k, 
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is 25 and 15 respectively. Next, the tail index parameter γ is estimated by either one 

of the two famous estimators, Hill or Dekkers. 

 

3.4.3.1 Hill Estimator 

If Hill estimator is used, then γ is estimated by Equation 13. As mentioned in 

2.1.3.2.1, we expect the Hill plot of k against the estimated tail index parameter )(ˆ Hγ  

to be volatile. This property of Hill estimates on one of the samples we have used can 

be seen in Figure 7. The figure shows how )(ˆ Hγ  changes as number of exceedances 

used in estimate increases.  

 

The figure below is a sample Hill plot of “ISE100”, which uses the data window of 

250 daily returns between “28th September 2000” and “2nd October 2001”, to predict 

the distribution function for the day “3rd October 2001”. This distribution is selected 

randomly among all the distributions that are estimated for the forecast window. 

 

Figure 7: A sample Hill plot 
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However, since a rolling data window approach is applied, selecting the best choice 

of k regarding )(ˆ Hγ  being estimated for each day in the forecast period (3066 – 250 = 

2816 days) is not feasible. Hence, 90% and 94% threshold percentiles for the tail are 

set as a rule of thumb for selection of k.  

 

Xk+1 of the ordered statistics is taken as the threshold. Then, for the two different 

cases of tail estimation at 10% and 6%, the thresholds are 26th and 16th largest losses 

observed in the data window, respectively. 

 

Having )(ˆ Hγ as the Hill tail index estimate and Xk+1 as the threshold, the estimated 

distribution function of the tail becomes: 
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Then the quantile xp defined by G(xp)=p is estimated by 
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Consequently, the estimated p-level VaR is computed by 
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where n is the windowsize of 250 days and k is either 25 or 15 depending on the 90% 

or 94% threshold level selected. 
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3.4.3.2 Dekkers Estimator 

If the estimator recommended by Dekkers et al. (1989) is used, then γ is estimated by 

Equation 14.  

 

Figure 8: A sample Dekkers plot 

 

The figure above is a plot of )(ˆ Dγ  tail index estimates against k number of 

exceedances chosen. The data window used in the plot is the same as that of Figure 

7’s: daily returns of “ISE100” between “28th September 2000” and “2nd October 

2001”.  

 

As the rolling data window argument is still valid in this approach, again the same 

rule of thumb used in Hill estimate is set: k is chosen such that there are 10% and 6% 

observations in the tail. 
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Having )(ˆ Dγ  as the Dekkers tail index estimate and Xi as the ordered statistics then 

the quantile xp can be estimated by the following equation (Embrechts et al. 1997: 

350) 
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Consequently, the estimated p-level VaR is also computed by this equation where n 

is the windowsize of 250 days and k depends on the 90% or 94% threshold level 

selected. 

 

3.4.4 Parametric Peaks over Threshold approach 

As mentioned in Section 2.1.3.1.1, the MLE is known to have the two important 

properties of consistency and asymptotic efficiency when γ > -0.5. And since the data 

series this study is applied to is heavy tailed and hence we expect γ to be positive, 

usage of MLE in estimating parameters is found appropriate. 

 

Comparisons of PWM and MLE discussed in Section 2.1.3.1.2 also guide us to using 

MLE approach since the database consists of heavy tailed high frequency daily return 

data.   

 

A windowsize of 250 days have been used in Historical Simulation and 

nonparametric GPD methods. The selection of this 250 days windowsize was 

deliberate to be consistent with BIS regulations, encouraging the use of recent data 
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covering the past year. In the RiskMetrics approach, the most recent 75 days data is 

used effectively in the calculations due to the EWMA method the model applies. 

 

However the optimization procedure used in maximum-likelihood estimation in POT 

approach can only be applied with a certain amount of data. With too few data 

optimization can not be achieved.  Hence larger windowsizes of 750, 1000, and 1250 

days are taken in POT applications. Taking larger windowsizes also enable the 

database to cover large shocks observed in past three to five years (approximately 

750 days to 1250 days).  

 

Selecting the threshold in POT models is as crucial as selecting k in upper order 

statistics. Two different approaches in determining the threshold has been studied. 

The first approach is the classical approach of calculating the quantile of the window 

data being used.   

 

The idea in second approach is close to the methodology that McNeil-Frey (1999) 

used. McNeil-Frey (1999) combined pseudo-maximum-likelihood fitting of GARCH 

models to estimate the current volatility and EVT for estimating the tail of the 

innovation distribution of the GARCH model. Rather than using a GARCH approach 

however, in this study only the quantile of the normal distribution fit to the data is 

calculated to be taken as the threshold.  

 

Thresholds are taken either at 90% or 94% quantiles. In the case that quantile 

approach is applied in determining the threshold, then 10% or 6% quantile of returns 

in the window data are used.  
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Then again, if normal distribution approach is applied in determining the threshold 

then first the mean µ̂ and standard deviation σ̂ of the window data are calculated. 

Using 90% and 94% quantiles of the standardized normal distribution (Zq=1.282552 

and Zq=1.554774 respectively) the threshold u is determined by qZu σµ ˆˆ += . 

 

After the threshold u is assigned, the losses greater than the threshold value are 

extracted. Suppose that the values 
unyy ,...,1  are the nu excesses of a threshold u. 

Next, the log-likelihood functions in Equation 11 and Equation 12 are maximized 

using Nelder-Mead (1965) method. Initial values for the parameters σ and γ to be 

optimized over are taken 1 and 0.3 respectively. 

 

Once the parameters σ and γ are estimated, having the threshold u and the 

distribution function of the tail, VaR can also be estimated by, 
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In summary, using the steps mentioned above, the study is repeated using 

windowsizes of 750, 1000 and 1250 days. Thresholds are either the empirical 

quantiles of the window data or quantiles of normal distribution fit to the window 

data.  

 

As stated in 2.1.3, threshold selection is crucial in correct estimation of the tail index. 

One guideline is choosing the threshold such that the mean excess function is linear 

after the selected u. However, this guideline is impossible to be applied for each 
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estimated distribution as the mean excess plot has to be visually inspected and the 

threshold subjectively determined thereafter. Hence, consistent with the rule of 

thumb used in nonparametric GPD estimations, 90% and 94% thresholds levels are 

again used in parametric GPD model estimations.  

 

To give an example of the mean residual life plot, a forecast day for one of the data 

series needs to be selected. To be consistent, the tail fit of distribution functions 

concerning the same forecast day (“3rd October 2001”) and the same data series 

(“ISE100” index) that is used in Hill and Dekkers plots (in Figure 7 and Figure 8) is 

depicted. The sample mean residual plots in Figure 9 use 1000 days windowsize. 

 

 

Figure 9: Sample mean residual life plots 

 

The unstable behavior especially towards the higher values of u is typical and makes 

the precise interpretation of the plot difficult (Embrechts et.al. 1997: 298). For this 

particular day the mean residual life plot is implemented for “ISE100” data series, 
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taking 90% or 94% threshold levels doesn’t give the impression that the thresholds 

are problematic. For other dates and other series the residual life plots are similar to 

these plots in the sense that for higher values of threshold levels at 95% or above, the 

mean excess function becomes very volatile.  

 

Once a GPD model is estimated, the estimated parameters γ̂ and σ̂  can be used in 

Equation 10, to compute the expected exceedance e(u) given that a loss level higher 

than u is observed. Thus Conditional-VaR or ES measure would be computed.  

 

3.5 Model Forecasts 

HS estimates the VaR as the empirical quantile of the past returns. The other 

approaches, on the other hand aims to estimate a distribution function for the next 

day’s return and the 95% or 99% quantiles of the estimated distribution function is 

used to determine the corresponding VaR. 

 

Extreme Value Theory claims that the models proposed are advantageous in 

estimating the tail of the distribution function as the focus is on the extreme 

observations and central values are ignored. It is worthwhile to depict the fit of the 

estimated distributions to empirical data used. However, as the study estimates 

thousands of models considering the number of days in the forecast period, it is 

impractical to show the fit for each estimated model. 

 

To show the fit of estimated distributions again the same forecast day (“3rd October 

2001”) and the same data series (“ISE100” index) is used. Six different distribution 
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functions and their fit to the lower tail of the empirical data are plotted. The vertical 

lines show 99% VaR estimations. 
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Figure 10: Tail fit of distribution functions estimated 

 

In Figure 10, the first two upper plots show the fit of estimated generalized Pareto 

density functions, using normal distribution and quantile methods for 90% threshold 

selection. The windowsize used for the estimation is 1000 days and lowest 100 daily 

returns of the past 1000 days are plotted as the empirical data in the lower tail. 
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The two plots in the middle show GPD distributions using Hill and Dekkers 

estimates. As the windowsize used in the estimations is 250 days, 25 highest daily 

losses are used to plot the empirical data. 

 

The left lower plot show the tail of the distribution function estimated by RM 

approach. The only parameter estimated in this approach is the volatility which is 

estimated by EWMA method. As only past 75 daily returns are needed in the 

estimation process, only the lowest 7 returns are plotted in the tail.  

 

The right lower plot is simply the tail of the normal distribution function with a mean 

and standard deviation equal to those of past 1000 daily returns. 

 

Visually one can clearly inspect that the best fit is achieved by the GPD models. As 

expected, the heavy tails cannot be estimated effectively using normal distributions. 

Since the probabilities of extreme observations are estimated with lower 

probabilities, VaR at high quantiles are seriously underestimated. 

 

3.6 Backtesting 

Parallel to the current BIS implementation, the computed VaR forecasts for day t 

using the information up to time t – 1 are backtested against the daily returns of day t.  

The exceedance variable It is computed for each model using Equation 15. 

 

The performance tests for the models described in the following section use these 

backtesting results. If a model is adequate the VaR is expected to have an exceedance 
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rate of (1-VaR level). For instance, for a forecast horizon of 1000 days and 99% VaR 

level, the VaR forecasts are expected to be exceeded in 10 incidences. Furthermore, 

an adequate VaR model is expected to handle the clustering volatility phenomenon. 

Then an acceptable model would adapt to the new conditions of changing volatility 

quickly enough that successive exceedances are not dependent. 

 

3.7 Selection Criteria for Models 

In order to choose among the VaR estimation models described in Section 3.4., five 

criteria have been evaluated. The two of these criteria have been put forth by 

Christoffersen (1998). These are unconditional and conditional likelihood ratios. The 

null hypothesis being tested in unconditional likelihood ratio test is similar to the null 

hypothesis that of binomial proportion test. Also, conditional likelihood ratio test is 

asymptotically equivalent to Pearson’s chi-squared independence test. Because the 

application and motivation is much simpler for the Binomial proportion test and 

Pearson’s chi-squared independence test, these two tests have also been applied on 

the models. So, in the study two groups of tests will be applied to test if the models 

satisfy the two unconditional and conditional coverage criteria. The first group 

consists of the unconditional and conditional likelihood ratio tests. And in the next 

group of tests, the binomial proportion and a test of independence using contingency 

tables appear. 

 

For models that satisfy both criteria in either group tests, a loss function has been 

computed to compare successful models pairwise.  
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3.7.1 Likelihood Ratio Statistics 

Unconditional likelihood ratio test is used to determine whether the frequency of 

violations are in the range of their expected values for given VaR levels, i.e. whether 

the coverage is correct. Christoffersen (1998) states that testing this unconditional 

coverage of the forecasts for the interval being analyzed is not sufficient and that 

conditional coverage should also be tested. Conditional coverage likelihood ratio 

tests the null hypothesis that successive observations are statistically independent.  

 

3.7.1.1 Unconditional Coverage   

Likelihood ratio statistic for the test of “unconditional coverage” 
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p = VaR level 

n1 = Number of violations (number of 1’s in backtesting) 

n0 = Number of compliances (number of 0’s in backtesting) 
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3.7.1.2 Conditional Coverage   

Likelihood ratio statistic for the test of “correct conditional coverage” 
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where  

nij = Number of i values followed by a j value in the It series (i, j = 0, 1) 
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πij = Pr{It = i | It-1 = j } (i, j = 0, 1)  
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3.7.2 Testing for Proportions and Association 

In order to test unconditional coverage, binomial proportion test is applied in this 

group of selection criteria. To test independence (conditional coverage), contingency 

table framework is applied. 

 

3.7.2.1   Binomial Proportion Test 

The null hypothesis that proportion of compliances i.e. the occurrence of actual 

returns not exceeding the VaR forecast, is equal to the VaR level is tested. 

The test statistic = ( )
( ) TlevelVaRlevelVaR

levelVaRTn
−
−−

1
1)/(  

where 

n = number of violations, i.e. the actual day return exceeding VaR forecasted for that 

day. 

T = number of days that VaR is forecasted = length of data series – windowsize 

 

3.7.2.2   Contingency Table Framework 

In this case, the hypothesis that no association exists between the successive 

observations or that these successive observations are independent is tested.  
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To test the null hypothesis of independence between two successive day forecasts, 

first the contingency table and the expected values under the independence 

assumption are calculated. Contingency table used in the study is a matrix with two 

rows and two columns. 

Contingency Table=
1110

0100

nn
nn

  

where 

n00 = the number of occurrences when the actual returns of both successive days do 

not exceed the VaR level forecasted (compliance on both consecutive days) 

n01 = the number of occurrences when the actual returns of the first day do not 

exceed the VaR forecasted but the actual return of the next day exceed the 

forecasted VaR (compliance followed by violation) 

n10 = the number of occurrences when the actual returns of the first day exceed the 

VaR forecasted but the actual return of the next day do not exceed the 

forecasted VaR (violation followed by compliance) 

n11 = the number of occurrences when the actual returns of both successive days 

exceed the VaR level forecasted (violation on both consecutive days) 

 

The expected values are calculated using, 

n
CR

E ji
ij =  

where  

Ri =row totals 

Cj =column totals 

n = n00 + n01 + n10+ n11 
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A test of independence of successive day forecasts at a significance level of 5% is 

based on the decision rule: Reject H0 if
( ) 2

05.0,11,0 1,0

2

χ>
−

∑ ∑= =i j
ij

ijij

E
En

. 

 

3.7.3 Results of Performance Tests 

The results of performance tests of these HS, RM, nonparametric GPD and 

parametric GPD models can all be followed in the Appendix in Tables 15 through 

21. In these tables “ws” column stands for windowsize. The p-values of performance 

tests of the second group of selection criteria; Binomial test and Chi-Square 

Contingency Table test are given in the columns “BT” and “CT”, respectively. 

Similarly, the p-values of performance tests of the first group of selection criteria; 

Unconditional Likelihood Ratio test and Conditional Likelihood Ratio test are given 

in the columns “ULR” and “CLR”, respectively. 

 

3.7.3.1 Performance Tests of HS Models 

The backtesting results of VaR forecasts using HS is given in Table 15. A model 

passes the performance test if the null hypothesis of that test cannot be rejected, i.e. if 

p-value is larger than the chosen significance level of 0.05. In the table it can be 

observed that Binomial and Unconditional Likelihood Ratio tests, testing the same 

null hypothesis that the exceedances of the forecasted VaR are in the range of the 

expected values for given VaR levels, lead to similar conclusions. The columns BT 

and ULR show that the null hypothesis cannot be rejected 30 out of 32 cases, i.e. HS 

model is successful in general in this performance criterion. For the 32 HS models 

computed, accept or reject decisions regarding the null hypothesis never 

contradicted. 
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Comparing the unconditional coverage performances of type I and type II percentile 

methods, whereas type I is better in 99% VaR forecasting, type II is better in 95% 

VaR forecasting. 

 

The second performance criterion of independence of successive observations is 

tested under similar null hypothesis by 2χ  Contingency Table and Conditional 

Likelihood Ratio tests. The regarding tests’ p-values given in columns CT and CLR 

show that among 36 HS models computed only 6 of them pass the second criterion. 

CT and CLR agree on the successful performance of 4 models. 

 

In sum, models using HS approach are observed to satisfy the first success criterion 

and fail to satisfy the second criterion in general. And, among the 32 HS models 

computed in this study there are only 8 models that satisfy either set of performance 

tests: the first set of performance tests being BT and CT and the second set of 

performance tests being ULR and CLR.  

 

Equity VaR Quantile Test Set 1 Test Set 2 
  Method Criterion I Criterion II Criterion I Criterion II 

ISCTR 95 Type I Pass Pass Pass Fail 
BFREN 99 Type I Pass Fail Pass Pass 
GOODY 99 Type I Pass Pass Pass Pass 
ISCTR 99 Type I Pass Pass Pass Pass 
ISE100 99 Type I Pass Fail Pass Pass 
KARTN 99 Type I Pass Pass Pass Pass 
ISCTR 95 Type II Pass Pass Pass Fail 
ISCTR 99 Type II Pass Pass Pass Pass 

Table 9: Successful HS models 
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The table above shows the performances of the 8 successful HS models on all four 

tests. It can be observed that 4 of these models satisfy both test sets. Two of them 

satisfy only the first test set but not the second test set. And again two of the models 

satisfy the second test set but not the first test. 

 

3.7.3.2 Performance Tests of RM Models 

Table 16 lists the p-values of selection tests on VaR forecasts of RM approach. In the 

table, results of all four tests both for 95% and 99% VaR forecasts are given. The 

Binomial test and Unconditional Likelihood Ratio test results again direct us to 

exactly the same conclusions. Both tests reject the same 8 models out of 16 models 

computed. Among the 8 successful models satisfying unconditional coverage 

requirement, 5 are for 99% VaR and the remaining 3 for 95% VaR. Regarding the 

second success criterion, there are 6 models that pass 2χ  Contingency Table test and 

4 models that pass the Conditional Coverage test.  

 

Comparing RM models with HS, HS models are observed to be much better in terms 

of unconditional coverage whereas RM models satisfy the conditional coverage 

requirement better than HS.  

 

Test Set 1 Test Set 2 Equity VaR 
Criterion I Criterion II Criterion I Criterion II 

BFREN 99 Pass Pass Pass Pass 
ISCTR 99 Pass Pass Pass Pass 
KARTN 99 Pass Pass Pass Pass 
YKBNK 99 Pass Fail Pass Pass 

Table 10: Successful RM models 
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In Table 10, among 16 models -computed for 95% and 99% VaR levels of 8 data 

series- those that satisfy either set of performance criteria are listed. Thus, a total of 4 

models are considered to be successful. 

 

3.7.3.3 Performance Tests of Nonparametric GPD Models 

In Tables 17 and 18, p-values of the tests on VaR forecasts of the GPD models using 

Hill (1975) and Dekkers et. al. (1989) estimates are given respectively. In these 

tables it can again be observed that BT and ULR selects the same models successful. 

Among 32 models computed with Hill estimate 27 of them are successful in 

unconditional coverage. Similarly, among the other 32 models that are computed 

with Dekkers estimate 24 of them are successful. 

 

The second success criterion of conditional coverage again picks a fewer number of 

models as successful. Whereas the contingency table test selects 6 models as 

successful among the models estimated by the Hill estimate, it selects 8 models 

among the models estimated by Dekkers. The other test of conditional coverage, i.e.  

CLR test categorizes 7 and 6 models as successful models amongst those models that 

use Hill and Dekkers estimates respectively. 

 

Even though Dekkers estimate is successful in satisfying the unconditional coverage 

requirements in all models at 95% VaR level, the performance is very poor at 99% 

level. All GPD models using Hill or Dekkers estimates are poor in predicting 95% 

VaR and are better in 99% VaR level in terms of conditional coverage requirement.  
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Test Set 1 Test Set 2 
  VaR Equity Th BT CT ULR LR 

ISCTR 90 Pass Pass Pass Fail 95 
ISCTR 94 Pass Pass Pass Fail 
EREGL 94 Pass Fail Pass Pass 
GOODY 90 Pass Pass Pass Pass 
ISCTR 90 Pass Pass Pass Pass 
ISCTR 94 Pass Pass Pass Pass 
ISE100 90 Pass Fail Pass Pass 
KARTN 90 Pass Pass Pass Pass 

H
ill

  

99 

KARTN 94 Pass Fail Pass Pass 
ISCTR 90 Pass Pass Pass Pass 
ISCTR 94 Pass Pass Pass Fail 95 
KARTN 94 Pass Fail Pass Pass 
EREGL 90 Pass Pass Pass Pass 
GOODY 94 Pass Pass Pass Pass 
ISCTR 90 Pass Pass Pass Pass 

D
ek

ke
rs

 

99 

KARTN 90 Pass Pass Pass Pass 
Table 11: Successful models using nonparametric estimators 

 

Among 64 models computed, 16 models pass either set of performance tests. Five of 

these successful models forecast 95% VaR whereas 11 of them forecast 99% VaR. 

Among the 5 successful models forecasting 95% VaR, 3 of them use 94% threshold 

level. However, at 99% VaR level, 7 out of 11 successful models use 90% threshold 

level. Nine of these 16 successful models use Hill estimate and the remaining 7 use 

Dekkers estimate.  

However these results do not give a clear guidance of which estimate –either Hill or 

Dekkers- to use or which threshold level to select in forecasting 95% and 99% VaR.  

 

3.7.3.4 Performance Tests of parametric GPD Models 

The performance tests of parametric GPD models are given in tables 19 through 22. 

Table 19 and Table 20 lists the results of the tests for parametric GPD models that 
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use normal distribution in determining the threshold. Table 19 lists results for the 

90% threshold level and Table 20 lists results for 94% level. Table 21 and Table 22, 

on the other hand, list the p-values of performance tests of parametric GPD models 

that determine the threshold using the quantile approach. The tables list the results of 

models with thresholds calculated at 90% and 94% quantiles respectively.  

 

In Table 21 and Table 22, there are 48 (8 data series x 2 VaR levels x 3 windowsizes) 

model test results. However, in the tables showing GPD test results of the models 

that use normal distribution percentiles as thresholds, there are fewer models. Among 

the data series studied, “BFREN” has highest volatility and kurtosis (Please see 

Table 7). As the volatility is too high for “BFREN”, the threshold set as the 90% and 

94% quantiles of normal distribution, leave too few exceedances to work with. 

Hence, with few data in hand the optimization process can not be achieved and 

maximum likelihood estimate cannot be attained. A similar situation comes up again 

in the case of “AVE20” index when 750 days windowsize and 94% threshold level is 

used for normal distribution percentile. In this particular case, again no maximum 

likelihood estimate could be attained.  Thus, Table 19 and Table 20 list the results of 

42 and 40 models that could be computed respectively. 

 

Yet again, whilst first criterion of unconditional coverage is easily satisfied by 139 

out of 178 models, the second criterion is satisfied by 52 models by CT and 57 

models by CLR test.  
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Test Set 1 Test Set 2 threshold 
model 

th 
% equity Ws BT CT ULR LR 

EREGL 1000 Pass Fail Pass Pass 
750 Pass Pass Pass Pass 

1000 Pass Pass Pass Pass 
Normal 

Distribution 94 
ISCTR 

1250 Pass Pass Pass Pass 
Table 12: Successful parametric GPD models forecasting 95% VaR 

 

Among 89 models that forecast 95% VaR, only 4 of them pass either set of 

performance tests. These successful models that forecast 95% VaR all use 94 

percentile of the normal distribution as the threshold return level. VaR of “ISCTR” 

can be forecasted by any of the 750, 1000 or 1250 windowsize levels. 95% VaR for 

“EREGL” can be successfully forecasted if the windowsize is selected as 1000 days. 

Normdist quantile 
 90 94 90 94 

# of 
models 

AVE20 
EREGL 
ISCTR 
ISE100 

ISCTR AVE20 
BFREN 
EREGL 
ISCTR 
ISE100 

AVE20 
BFREN 
EREGL 
ISCTR 
ISE100 

15 

Ws=750 

(7) (6) (8) (8) (29) 
AVE20 
EREGL 
GOODY 
ISCTR 
ISE100 
KARTN 

AVE20 
EREGL 
GOODY 
ISCTR 
ISE100 
KARTN 

AVE20 
ISCTR 

AVE20 
BFREN 
ISCTR 
ISE100 
KARTN 
YKBNK 

20 

Ws=1000 

(7) (7) (8) (8) (30) 
EREGL 
GOODY 
ISCTR 
ISE100 
KARTN 

AVE20 
EREGL 
GOODY 
ISCTR 
ISE100 
KARTN 

AVE20 
EREGL 
ISCTR 
ISE100 

EREGL 
GOODY 
ISCTR 
ISE100 
KARTN 

20 

Ws=1250 

(7) (7) (8) (8) (30) 
15 13 11 16 55 # of models (21) (20) (24) (24) (89) 

Table 13: Successful parametric GPD models forecasting 99% VaR 
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At 99% VaR level there are 55 successful models out of 89 computed models. Table 

13 shows the distribution of these successful models. The numbers in parentheses 

show the total number of models computed for each section. 

 

In those sections where high threshold levels at 1000 and 1250 days windowsizes are 

used, the models performed well almost for every data series computed. All data 

series but “YKBNK”, that is seven out of eight data series could be forecasted 

successfully by the models that use 1000 day windowsize and normal distribution in 

determining threshold both at 90% and 94% quantile and also those that use 1250 

days windowsize and 94% quantile of normal distribution for threshold selection. 

 

3.7.4 Loss Function 

For these successful models that pass either group of tests on unconditional and 

conditional coverage, a loss function measuring their performance is calculated. This 

loss function was proposed first in the study of Angeledis-Benos (2004). The authors 

named the loss function as Quantile Loss (QL) function. The QL function has the 

following form: 
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This loss function penalizes a model such that if a violation occurs i.e. ttt VaRy 11 ++ ≥  

then the penalty is the square of the loss that exceeds VaR forecasted. In the other 
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cases the penalty is the squared distance between the p-quantile of the realized future 

returns and the estimated VaR i.e.  { }( )211100, tt
T VaRpyQuantile +− .  

 

In order to overcome the problem that one can never know the “true” VaR whilst 

working with real financial data Angelidis-Benos (2004) proxied the “true” VaR by 

the empirical distribution of the realized returns.  The authors claim that the proxy 

they use at least meets the unconditional coverage requirement as the total number of 

violations will be equal to the expected one. Thus having set a proxy for the “true” 

VaR the authors penalized the models if the estimated forecasts of the model 

diverged from the “true” VaR. 

 

3.8 Successful Models and their Loss Functions. 

3.8.1 Picking the Best Model 

Having calculated the daily loss values for VaR estimations of 89 successful models, 

next these models are being compared pairwise. Two selected models are compared 

using the following methodology described in Sarma et al.’s 2004 paper: 

Testing for the superiority of a model vis-a-vis another in terms of the 
loss function 

Consider two VaR models model i and model j. The superiority of 
model i over model j with respect to a certain loss function can be 
tested by performing a one-sided sign test. The null hypothesis is: 

H0: {θ=0}  

against the one-sided alternative hypothesis: 

H1: {θ<0} 

where θ is the median of the distribution of zt defined as zt = lit - ljt 
where lit and ljt are the values of a particular loss function generated 
by model i and model j respectively for the day t. Here zt is known as 
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the loss differential between model i and model j at time t. Negative 
values of zt indicate a superiority of model i over j. 

Testing procedure 

Define an indicator variable 
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The sign statistic S is the number of non-negative z's: 
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If zt is i.i.d. then the exact distribution of Sij is binomial with 
parameters (T, 0.50) under the null hypothesis. For large samples the 
standardized version of the sign statistic Sij is asymptotically standard 
normal: 
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H0 is rejected at the 5% level of significance if a
ijS < -1.66. Rejection 

of H0 would imply that model i is significantly better than model j in 
terms of the particular loss function under consideration; otherwise 
model i is not significantly better than model j. (344) 

 

Having the methodology to compare the performances of models regarding the QL 

function, for each data series combinations of two models among successful models 

are selected. These two models’ performances are compared against each other. 

Next, models are sorted in terms of their performances in these comparison tests. The 

best models that outperform all the remaining models are described in the following 

section. 
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3.8.2 Best Estimated Models  

Table 14 lists the results of comparison tests of 87 successful model forecasts based 

on their performances regarding the QL function. The study shows that the best 

models are always GPD models.  

 

On the 8 data series this empirical study is applied only for 3 of them 95% VaR 

forecast methods is acceptable given the unconditional and conditional coverage 

criteria set by the study. On the other hand, at 99% VaR level for all data series there 

are models satisfying these success criteria. These statements can also be followed in 

the tables in the Appendix on pages 74 through 81.  

 

Best Model 
Equity VaR number of 

successful model 
Approach Method 

Threshold 
percent 

window-
size 

EREGL 95 1 GPD Normdist 94 1000 
GPD Normdist 94 1000 ISCTR 95 9 
GPD Normdist  94 1250 

KARTN 95 1 GPD Dekkers 94 250 
KARTN 99 11 GPD Normdist 90 1250 
GOODY 99 8 GPD Normdist 90 1250 
EREGL 99 11 GPD Normdist 90 1000 
AVE20 99 9 GPD Normdist 90 1000 
YKBNK 99 2 GPD Quantile 94 1000 
ISE100 99 12 GPD Quantile 90 1250 
ISCTR 99 18 GPD Quantile 90 1000 
BFREN 99 5 GPD Quantile 90 750 

Table 14: Best models 

 

For “EREGL” and “KARTN” at 95% there is a single model satisfying both 

unconditional and conditional coverage requirement. Hence the QL functions of 

these models are not needed to be compared with a second model. 
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For “ISCTR” however there are nine models that satisfy the performance tests at 

95% VaR level. For these 9 successful models, 36 different combinations of model 

pairs can be made. After testing all these 36 pairs of models against each other, we 

conclude that two GPD models listed in Table 14 outperform the rest of the seven 

models. When these two most successful models are tested against each other, the 

test does not give a significant result that one outperforms the other. Hence we 

conclude that these two models are the best models in forecasting 95% VaR for 

“ISCTR”. Both GPD models estimate the parameters using exceedances over the 

94% quantile of the normal distribution of different data windows of past 1000 days 

and 1250 days.  

 

At 99% VaR forecasting, for all of the 8 data series, a single model significantly 

outperforms the remaining models. GPD models that use 90% quantile of the normal 

distribution of data windows of past 1250 days are best in forecasting 99% VaR of 

“GOODY” and “KARTN”. Also the models that again use 90% quantiles of normal 

distribution as thresholds but 1000 day windowsizes are best in forecasting 99% VaR 

of “EREGL” and “AV20”.  

 

In general among models that determine thresholds as quantiles of normal 

distribution, at the same windowsizes 90% level thresholds are better than 94% 

thresholds.  

 

Among the two successful models forecasting 99% VaR of “YKBNK”, the GPD 

model using the threshold of 94% quantile of the empirical distribution of data 

windows of past 1000 days is better. 
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GPD models using 90% empirical quantiles as thresholds are best in forecasting 99% 

VaR for “ISE100”, “ISCTR,” and “BFREN” at 1250, 1000, and 750 day 

windowsizes respectively.  

 

Among the parametric GPD models that best forecast 10 different VaR levels (95% 

VaR for “EREGL” and “ISCTR”, and 99% VaR for all 8 data series) six of them use 

past 1000 daily returns.  

 

Considering Table 14 unfortunately no clear-cut recipe can be given for windowsizes 

and threshold selection of GPD models. However, it can clearly be said that 

parametric GPD models are powerful tools in estimating the lower tail of ISE stock 

returns. 

 

In Figures 11 through 18 in the Appendix, all the models computed for all 8 data 

series are plotted such that their performances can be compared. For each data series 

there are four plots available, depicting unconditional and conditional coverage 

performances of 95% and 99% VaR forecasts against the median values of the 

computed loss functions.  

 

In the scatterplots, “r” is used as the point character for a model estimated by 

RiskMetrics approach. Likewise “s” is the point character used for HS models. The 

characters “h” and “d” denote GPD models using Hill and Dekkers estimators 

respectively. Similarly, the letters “q” and “n” are used for GPD models taking 

thresholds of the empirical or Gaussian quantiles respectively.  
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The unconditional coverage performance of a model is better if the percent of 

exceedances are close to (1 –VaR level) shown with the horizontal line. The 

conditional coverage figures were calculated using −2χ statistic as described in 

3.7.2.2. Since the null hypothesis being tested is aimed to be accepted, lower values 

of −2χ statistics are preferred. Thus, models that are closer to the vertical lines and 

simultaneously at the most left position outperform others. 

 

In general, plots reveal the fact that for the chosen loss function GPD models are 

superior. Even though conditional and unconditional coverage performance of each 

parametric GPD model tried at different windowsizes (750, 1000 and 1250 days) and 

different thresholds cannot be guaranteed, especially at 99% level it is almost always 

possible to find a GPD model outperforming other approaches. 

 

4 Conclusion 

 

As the case in Basel, if just unconditional coverage is considered as the success 

criterion of a VaR forecast model, then one should rather simply employ Historical 

Simulation. Particularly Type II quantiles should be used for forecasting 95% VaR 

and Type I quantiles for forecasting 99% VaR. However, if conditional coverage is 

desired as well as unconditional coverage, then other approaches such as RM and 

GPD should be considered. 

 

Extreme Value Theory, emphasizes that the models perform best in explaining the 

extreme tail events. Otherwise, the asymptotic approach of the theory is violated. 
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Nonparametric and parametric GPD models are observed to perform better in 

predicting 99% VaR, in line with the extreme value theory.  

 

In fact, all approaches (HS, RM, nonparametric GPD and parametric GPD) perform 

better at 99% VaR forecasting rather than 95% VaR forecasting given the conditions 

that they satisfy not only unconditional coverage but also conditional coverage. 

 

Particularly, parametric GPD models are found to estimate VaR more efficiently than 

other approaches both for the poorly and well traded group of stocks in ISE together 

with the indices the empirical study is applied to. 

 

Considering the better performance of GPD models, the study shows that RM 

approach is inadequate for VaR estimation in emerging market conditions like ISE. 

Comparing the nonparametric and parametric models, the main advantage of 

nonparametric approach is that it enables to work with smaller windowsizes, whereas 

MLE approach of GPD cannot be optimized if too few extreme data is used.  

 

Considering the tail distribution plots and results of loss function tests, both visually 

and computationally GPD is verified to estimate VaR better than the other 

approaches. Using MLE also enables computation of the standard errors of estimated 

parameters so that confidence intervals for VaR forecasts can also be computed. 

 

GPD models enable estimating tail distribution functions, which are not only 

valuable in forecasting correct VaR but also in that the models make it possible to 

compute other important risk measures like Conditional VaR or Expected Shortfall. 
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It is also possible to extrapolate the probability of an extreme incident beyond the 

ones observed so far which is very important in stress tests. It is also possible to 

estimate how long it will take for a particular extreme event to happen. 
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5 Appendix 

 EQUITY VaR Ws BT CT ULR CLR 
AVE20 95 250 25% 0% 23% 0% 
BFREN 95 250 27% 0% 21% 0% 
EREGL 95 250 33% 0% 30% 0% 
GOODY 95 250 53% 0% 50% 1% 
ISCTR 95 250 48% 17% 35% 1% 
ISE100 95 250 53% 0% 50% 0% 
KARTN 95 250 53% 0% 50% 1% 
YKBNK 95 250 92% 0% 89% 0% 
AVE20 99 250 56% 0% 49% 0% 
BFREN 99 250 100% 0% 98% 8% 
EREGL 99 250 100% 0% 93% 0% 
GOODY 99 250 100% 15% 92% 53% 
ISCTR 99 250 70% 10% 62% 42% 
ISE100 99 250 70% 0% 62% 6% 
KARTN 99 250 44% 6% 37% 28% 
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YKBNK 99 250 85% 0% 77% 1% 
AVE20 95 250 100% 0% 97% 0% 
BFREN 95 250 84% 0% 81% 0% 
EREGL 95 250 99% 0% 96% 0% 
GOODY 95 250 80% 0% 77% 0% 
ISCTR 95 250 94% 11% 90% 2% 
ISE100 95 250 92% 0% 89% 0% 
KARTN 95 250 87% 0% 83% 2% 
YKBNK 95 250 49% 0% 47% 0% 
AVE20 99 250 57% 0% 51% 0% 
BFREN 99 250 15% 0% 14% 1% 
EREGL 99 250 1% 0% 2% 0% 
GOODY 99 250 2% 0% 3% 1% 
ISCTR 99 250 18% 40% 17% 29% 
ISE100 99 250 13% 0% 12% 0% 
KARTN 99 250 45% 0% 40% 1% 
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YKBNK 99 250 57% 0% 51% 1% 
Table 15: Performance tests of HS models.  
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EQUITY VaR BT CT ULR CLR 
AVE20 95 8% 1% 7% 0% 
BFREN 95 0% 1% 0% 0% 
EREGL 95 0% 0% 0% 0% 
GOODY 95 4% 0% 3% 0% 
ISCTR 95 2% 31% 2% 4% 
İSE100 95 41% 0% 38% 0% 
KARTN 95 4% 16% 3% 4% 
YKBNK 95 9% 0% 8% 0% 
AVE20 99 0% 0% 0% 0% 
BFREN 99 7% 50% 7% 15% 
EREGL 99 6% 0% 6% 1% 
GOODY 99 0% 1% 0% 0% 
ISCTR 99 9% 46% 8% 13% 
İSE100 99 0% 13% 0% 1% 
KARTN 99 9% 46% 8% 13% 
YKBNK 99 82% 0% 75% 12% 

Table 16: Performance tests of RM approach.  
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EQUITY VaR th ws BT CT ULR CLR 
AVE20 95 90 250 4% 0% 4.6% 0% 
AVE20 95 94 250 49% 0% 46% 0% 
BFREN 95 90 250 43% 0% 41% 0% 
BFREN 95 94 250 91% 0% 88% 0% 
EREGL 95 90 250 5% 0% 5% 0% 
EREGL 95 94 250 94% 0% 90% 0% 
GOODY 95 90 250 0% 0% 0% 0% 
GOODY 95 94 250 34% 0% 32% 0% 
ISCTR 95 90 250 34% 27% 32% 2% 
ISCTR 95 94 250 94% 23% 90% 3% 
ISE100 95 90 250 7% 0% 7% 0% 
ISE100 95 94 250 80% 0% 77% 0% 
KARTN 95 90 250 1% 1% 2% 0% 
KARTN 95 94 250 30% 0% 28% 1% 
YKBNK 95 90 250 1% 0% 1% 0% 
YKBNK 95 94 250 44% 0% 42% 0% 
AVE20 99 90 250 56% 0% 49% 0% 
AVE20 99 94 250 8% 0% 8% 0% 
BFREN 99 90 250 15% 0% 14% 1% 
BFREN 99 94 250 1% 0% 1% 0% 
EREGL 99 90 250 56% 0% 49% 4% 
EREGL 99 94 250 13% 2% 12% 7% 
GOODY 99 90 250 70% 10% 62% 42% 
GOODY 99 94 250 34% 0% 31% 1% 
ISCTR 99 90 250 85% 12% 77% 48% 
ISCTR 99 94 250 57% 27% 51% 53% 
ISE100 99 90 250 85% 0% 77% 7% 
ISE100 99 94 250 34% 0% 31% 0% 
KARTN 99 90 250 100% 18% 93% 56% 
KARTN 99 94 250 34% 1% 31% 11% 
YKBNK 99 90 250 45% 0% 40% 0% 
YKBNK 99 94 250 9% 0% 8% 0% 

Table 17: Performance tests of the GPD models using Hill estimator.  
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EQUITY VaR th ws BT CT ULR CLR 
AVE20 95 90 250 100% 0% 97% 0% 
AVE20 95 94 250 79% 0% 76% 0% 
BFREN 95 90 250 46% 0% 43% 0% 
BFREN 95 94 250 20% 0% 18% 0% 
EREGL 95 90 250 92% 0% 89% 0% 
EREGL 95 94 250 33% 0% 30% 0% 
GOODY 95 90 250 6% 0% 6% 0% 
GOODY 95 94 250 53% 0% 50% 1% 
ISCTR 95 90 250 38% 62% 35% 55% 
ISCTR 95 94 250 38% 17% 35% 1% 
ISE100 95 90 250 61% 0% 58% 0% 
ISE100 95 94 250 66% 0% 62% 0% 
KARTN 95 90 250 66% 1% 62% 4% 
KARTN 95 94 250 100% 4% 97% 17% 
YKBNK 95 90 250 92% 0% 89% 0% 
YKBNK 95 94 250 72% 0% 69% 0% 
AVE20 99 90 250 13% 0% 12% 0% 
AVE20 99 94 250 2% 0% 3% 0% 
BFREN 99 90 250 0% 0% 1% 0% 
BFREN 99 94 250 0% 0% 1% 0% 
EREGL 99 90 250 34% 33% 31% 42% 
EREGL 99 94 250 34% 1% 31% 0% 
GOODY 99 90 250 0% 0% 0% 0% 
GOODY 99 94 250 45% 30% 40% 48% 
ISCTR 99 90 250 6% 51% 6% 14% 
ISCTR 99 94 250 1% 65% 1% 3% 
ISE100 99 90 250 2% 0% 3% 0% 
ISE100 99 94 250 2% 0% 3% 0% 
KARTN 99 90 250 25% 51% 23% 32% 
KARTN 99 94 250 0% 27% 0% 0% 
YKBNK 99 90 250 13% 0% 12% 1% 
YKBNK 99 94 250 6% 0% 6% 0% 

Table 18: Performance tests of the GPD models using Dekkers estimator. 
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EQUITY VaR ws BT CT ULR CLR 
AVE20 95 750 0% 0% 0% 0% 
AVE20 95 1000 0% 0% 0% 0% 
AVE20 95 1250 0% 2% 0% 0% 
EREGL 95 750 17% 0% 15% 0% 
EREGL 95 1000 13% 0% 11% 0% 
EREGL 95 1250 0% 79% 0% 0% 
GOODY 95 750 57% 0% 54% 0% 
GOODY 95 1000 79% 0% 75% 0% 
GOODY 95 1250 12% 0% 10% 1% 
ISCTR 95 750 3% 6% 2% 2% 
ISCTR 95 1000 3% 2% 2% 1% 
ISCTR 95 1250 1% 6% 0% 0% 
ISE100 95 750 62% 0% 59% 0% 
ISE100 95 1000 32% 0% 29% 0% 
ISE100 95 1250 4% 1% 3% 0% 
KARTN 95 750 85% 0% 82% 0% 
KARTN 95 1000 28% 0% 25% 0% 
KARTN 95 1250 12% 0% 10% 0% 
YKBNK 95 750 99% 0% 95% 0% 
YKBNK 95 1000 71% 0% 67% 0% 
YKBNK 95 1250 15% 0% 13% 0% 
AVE20 99 750 20% 1% 15% 9% 
AVE20 99 1000 73% 4% 65% 32% 
AVE20 99 1250 3% 85% 1% 4% 
EREGL 99 750 53% 0% 47% 8% 
EREGL 99 1000 91% 67% 82% 80% 
EREGL 99 1250 9% 81% 5% 14% 
GOODY 99 750 0% 0% 0% 0% 
GOODY 99 1000 15% 1% 14% 5% 
GOODY 99 1250 81% 70% 71% 80% 
ISCTR 99 750 67% 5% 59% 33% 
ISCTR 99 1000 43% 72% 35% 56% 
ISCTR 99 1250 63% 72% 54% 72% 
ISE100 99 750 21% 1% 19% 7% 
ISE100 99 1000 74% 0% 66% 7% 
ISE100 99 1250 47% 74% 38% 60% 
KARTN 99 750 9% 0% 9% 1% 
KARTN 99 1000 31% 21% 28% 34% 
KARTN 99 1250 63% 10% 56% 40% 
YKBNK 99 750 67% 0% 61% 1% 
YKBNK 99 1000 91% 0% 82% 4% 
YKBNK 99 1250 47% 0% 38% 1% 

Table 19: Performance tests GPD models (threshold is 90% quantile of Φ) 
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EQUITY VaR ws BT CT ULR CLR 
AVE20 95 1000 4% 0% 3% 0% 
AVE20 95 1250 0% 7% 0% 0% 
EREGL 95 750 17% 0% 15% 0% 
EREGL 95 1000 23% 3% 21% 6% 
EREGL 95 1250 0% 42% 0% 0% 
GOODY 95 750 69% 0% 65% 1% 
GOODY 95 1000 97% 0% 93% 0% 
GOODY 95 1250 15% 0% 13% 0% 
ISCTR 95 750 50% 5% 48% 16% 
ISCTR 95 1000 89% 8% 85% 26% 
ISCTR 95 1250 37% 6% 34% 14% 
ISE100 95 750 24% 0% 21% 0% 
ISE100 95 1000 44% 0% 40% 0% 
ISE100 95 1250 3% 0% 2% 0% 
KARTN 95 750 5% 0% 5% 0% 
KARTN 95 1000 87% 0% 83% 0% 
KARTN 95 1250 37% 0% 34% 0% 
YKBNK 95 750 12% 0% 12% 0% 
YKBNK 95 1000 29% 0% 27% 0% 
YKBNK 95 1250 32% 0% 28% 1% 
AVE20 99 1000 14% 77% 9% 22% 
AVE20 99 1250 5% 83% 2% 7% 
EREGL 99 750 100% 0% 92% 1% 
EREGL 99 1000 100% 7% 100% 43% 
EREGL 99 1250 9% 81% 5% 14% 
GOODY 99 750 9% 0% 9% 1% 
GOODY 99 1000 15% 1% 14% 5% 
GOODY 99 1250 81% 70% 71% 80% 
ISCTR 99 750 39% 2% 32% 20% 
ISCTR 99 1000 43% 72% 35% 56% 
ISCTR 99 1250 23% 77% 16% 34% 
ISE100 99 750 21% 0% 19% 0% 
ISE100 99 1000 91% 0% 83% 6% 
ISE100 99 1250 33% 75% 26% 47% 
KARTN 99 750 29% 0% 26% 1% 
KARTN 99 1000 74% 12% 66% 45% 
KARTN 99 1250 100% 6% 91% 40% 
YKBNK 99 750 84% 0% 76% 1% 
YKBNK 99 1000 91% 0% 82% 4% 
YKBNK 99 1250 47% 0% 38% 1% 

Table 20: Performance tests GPD models (threshold is 94% quantile of Φ) 
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EQUITY VaR ws BT CT ULR CLR 
AVE20 95 750 0% 0% 0% 0% 
AVE20 95 1000 0% 0% 0% 0% 
AVE20 95 1250 0% 6% 0% 0% 
BFREN 95 750 68% 0% 64% 0% 
BFREN 95 1000 41% 0% 38% 0% 
BFREN 95 1250 8% 0% 6% 0% 
EREGL 95 750 28% 0% 25% 0% 
EREGL 95 1000 13% 0% 11% 0% 
EREGL 95 1250 0% 79% 0% 0% 
GOODY 95 750 15% 0% 10% 0% 
GOODY 95 1000 9% 0% 9% 0% 
GOODY 95 1250 50% 0% 46% 4% 
ISCTR 95 750 3% 6% 2% 2% 
ISCTR 95 1000 1% 1% 1% 0% 
ISCTR 95 1250 1% 5% 0% 0% 
ISE100 95 750 69% 0% 65% 0% 
ISE100 95 1000 57% 0% 53% 0% 
ISE100 95 1250 2% 0% 1% 0% 
KARTN 95 750 64% 0% 60% 0% 
KARTN 95 1000 50% 0% 46% 0% 
KARTN 95 1250 27% 0% 24% 0% 
YKBNK 95 750 24% 0% 21% 0% 
YKBNK 95 1000 50% 0% 46% 0% 
YKBNK 95 1250 12% 0% 10% 0% 
AVE20 99 750 100% 9% 91% 45% 
AVE20 99 1000 22% 76% 15% 0% 
AVE20 99 1250 23% 77% 16% 34% 
BFREN 99 750 94% 0% 85% 6% 
BFREN 99 1000 4% 0% 4% 0% 
BFREN 99 1250 100% 0% 97% 3% 
EREGL 99 750 29% 0% 26% 8% 
EREGL 99 1000 74% 0% 66% 0% 
EREGL 99 1250 15% 79% 9% 23% 
GOODY 99 750 0% 0% 0% 0% 
GOODY 99 1000 0% 0% 0% 0% 
GOODY 99 1250 15% 0% 14% 4% 
ISCTR 99 750 100% 11% 92% 48% 
ISCTR 99 1000 91% 5% 82% 38% 
ISCTR 99 1250 63% 72% 54% 72% 
ISE100 99 750 29% 0% 26% 8% 
ISE100 99 1000 22% 0% 20% 0% 
ISE100 99 1250 47% 74% 38% 60% 
KARTN 99 750 0% 0% 0% 0% 
KARTN 99 1000 0% 57% 0% 1% 
KARTN 99 1250 2% 0% 2% 0% 
YKBNK 99 750 67% 0% 61% 1% 
YKBNK 99 1000 43% 0% 39% 1% 
YKBNK 99 1250 81% 0% 71% 0% 

Table 21: Performance tests GPD models (threshold is 90% empirical quantile)  
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EQUITY VaR ws BT CT ULR CLR 
AVE20 95 750 0% 0% 0% 0% 
AVE20 95 1000 0% 0% 0% 0% 
AVE20 95 1250 0% 3% 0% 0% 
BFREN 95 750 75% 0% 71% 0% 
BFREN 95 1000 26% 0% 22% 0% 
BFREN 95 1250 8% 0% 6% 0% 
EREGL 95 750 14% 0% 12% 0% 
EREGL 95 1000 13% 0% 11% 0% 
EREGL 95 1250 0% 71% 0% 0% 
GOODY 95 750 78% 0% 74% 0% 
GOODY 95 1000 89% 0% 85% 1% 
GOODY 95 1250 18% 1% 16% 2% 
ISCTR 95 750 3% 19% 2% 4% 
ISCTR 95 1000 4% 3% 3% 2% 
ISCTR 95 1250 1% 6% 0% 0% 
ISE100 95 750 49% 0% 46% 0% 
ISE100 95 1000 38% 0% 34% 0% 
ISE100 95 1250 2% 0% 1% 0% 
KARTN 95 750 69% 0% 65% 0% 
KARTN 95 1000 32% 0% 29% 0% 
KARTN 95 1250 10% 0% 8% 0% 
YKBNK 95 750 33% 0% 30% 0% 
YKBNK 95 1000 57% 0% 53% 0% 
YKBNK 95 1250 15% 0% 13% 0% 
AVE20 99 750 20% 1% 15% 9% 
AVE20 99 1000 9% 79% 5% 14% 
AVE20 99 1250 3% 85% 1% 4% 
BFREN 99 750 77% 0% 69% 7% 
BFREN 99 1000 51% 0% 45% 6% 
BFREN 99 1250 93% 0% 83% 4% 
EREGL 99 750 100% 9% 91% 45% 
EREGL 99 1000 74% 0% 66% 0% 
EREGL 99 1250 9% 81% 5% 14% 
GOODY 99 750 0% 0% 0% 0% 
GOODY 99 1000 0% 0% 0% 0% 
GOODY 99 1250 63% 63% 56% 66% 
ISCTR 99 750 83% 7% 74% 40% 
ISCTR 99 1000 57% 70% 49% 67% 
ISCTR 99 1250 33% 75% 26% 47% 
ISE100 99 750 40% 0% 36% 8% 
ISE100 99 1000 58% 0% 51% 7% 
ISE100 99 1250 33% 75% 26% 47% 
KARTN 99 750 21% 0% 19% 1% 
KARTN 99 1000 22% 25% 20% 28% 
KARTN 99 1250 63% 10% 56% 40% 
YKBNK 99 750 67% 0% 61% 1% 
YKBNK 99 1000 100% 0% 100% 5% 
YKBNK 99 1250 81% 0% 71% 0% 

Table 22: Performance tests GPD models (threshold is 94% empirical quantile) 
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Figure 11: Performances of VaR models at 99% and 95% for ‘AVE20’ data. 
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Figure 12: Performances of VaR models at 99% and 95% for ‘BFREN’ data. 
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Figure 13: Performances of VaR models at 99% and 95% for ‘EREGL’ data. 
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Figure 14: Performances of VaR models at 99% and 95% for ‘GOODY’ data. 



86 

 

 

Figure 15: Performances of VaR models at 99% and 95% for ‘ISCTR’ data. 
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Figure 16: Performances of VaR models at 99% and 95% for ‘ISE100’ data. 
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Figure 17: Performances of VaR models at 99% and 95% for ‘KARTN’ data. 



89 

 

 

Figure 18: Performances of VaR models at 99% and 95% for ‘YKBNK’ data. 
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