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ABSTRACT 

 

This thesis is done mainly to explore the time series dynamics and lead lag 

relationships among the Istanbul Stock Exchange (ISE)  Equity Market Index, called 

ISE30, session to session and daily returns, volume and volatility. In addition to the well 

known classical definition of the returns, a new definition of return is made, namely, the 

returns are also calculated by using the average values. Moreover, many variables, some 

requiring detailed information on individual stock basis were also calculated and included 

in the analysis.  

An expectation survey aimed at answering the question of how the market trade 

variables affect the expectations of brokers was conducted. This survey was found to 

provide very interesting hints about how the expectations of the market people form in 

case of different combinations of return, volume and other trade data variables. A very 

detailed analysis of the survey results are provided in this thesis. Additionally, 

distributional properties of return series are analysed for the whole period spanning 1997-

2005. The period is divided into three sub-periods, namely the pre-crisis period, crisis 

period and post-crisis period and all the analyses are repeated to see whether the 

distribution and the sample moments of session to session and daily returns change 

between different data windows. 

Return series were mainly modeled by using Autoregressive (AR), Moving 

Average (MA) and Autoregressive Moving Average (ARMA) techniques. The return 

series were found to possess the so called “long memory” or “persistency” problem. The 

long term memory property was explored in detail and the series are transformed by using 

the fractional integration method (ARFIMA). After an univariate time series analysis of 
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the returns, a multivariate analysis of the returns with the trade variables were conducted  

by using Vector Autoregressive Model (VAR).  

In summary AR,MA and ARMA models were found to have little explanatory 

power for close to close returns. On the other hand, the returns calculated by the average 

values were found to have significant serial correlations, a fact that makes the AR, MA 

and ARMA models more useful.  ARFIMA method proved to be useful in some cases, 

while it did not help in some others. Although the inclusion of other variables in the VAR 

models contributed to the explanatory power, the improvement is generally regarded to be 

not so prominent. Thus it can be said that changes in volume and volatility were found to 

have limited  explanatory power with regard to the mean return for the next period, a 

result that is contradictory to what was implied by the expectation survey. 
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ÖZET 

 

 Bu tezde temel olarak İstanbul Menkul Kıymetler Borsası’nın İMKB30 olarak 

bilinen endeksinin seanslık ve günlük getirilerinin zaman serisi özellikleri ile hacim ve 

oynaklık gibi işlem bilgilerinden elde edilen veriler arasındaki öncül ardıl ilişkileri 

incelenmiştir. Klasik olarak kapanış değerleri dikkate alınarak hesaplanan getiri serileri 

yanında, ortalama değerlerden hesaplanan getiri serileri de analize dahil edilmiştir. Ayrıca 

işlem verilerinden elde edilen ve bazıları tek tek hisse bazında işlem verilerinden 

hesaplanan değişkenler de analize dahil edilmiştir. 

 Piyasada işlem yapan üye temsilcilerin beklentilerinin nasıl oluştuğunun tespit 

edilmesi amacına yönelik olarak bir beklenti anketi yapılmıştır. Bu anket piyasa 

oyuncularının değişik getiri hacim oynaklık vb. kombinasyonlarında beklentilerinin nasıl 

oluştuğuna ilişkin ilginç ipuçları sağlamıştır. Anketin sonuçlarının detaylı analizleri bu 

tez içinde yer almaktadır. 

 Ayrıca, 1997-2005 yılları arasındaki verilerin yer aldığı zaman dilimi, kriz öncesi 

kriz sırası ve kriz sonrası periyodlara ayrılarak ayrı ayrı incelenmiş ve olasılık 

dağılımlarındaki ve ilgili  istatistiklerdeki değişimlerin analizi yapılmıştır. 

 Getiri serileri temel olarak AR, MA ve ARMA teknikleri kullanılarak 

modellenmeye çalışılmıştır. Getiri serilerinde uzun dönemli hafıza problemi tespit edilmiş 

olup, bu husus detaylı olarak ele alınmış ve getiri serileri ondalıklı entegrasyon yöntemi 

ile dönüştürülerek yeni seriler elde edilmiştir. Getiri serilerinin kendi aralarındaki zaman 

serisi analizi yanında diğer değişkenlerin de dahil edildiği çok değişkenli VAR modeli 

kullanılarak değişkenler arasındaki öncül ardıl ilişkileri ortaya çıkarılmaya çalışılmıştır 
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 Özet olarak, AR,MA ve ARMA modellerinin kapanışlardan hesaplanan getiri 

serilerini açıklamada genel olarak yetersiz kaldığı, ancak ortalamalardan hesaplanan getiri 

serilerinin modellenmesinde  daha çok işe yaradığı tespit edilmiştir. Ondalıklı 

entegrasyon metodu olarak adlandırılan ARFIMA olarak bilinen metodun bazı serilerde 

uzun dönemli hafıza problemini  hallettiği, ancak bazı serilerde fazla işe yaramadığı tespit 

edilmiştir. Diğer değişkenlerin de dahil edilmesi ile yapılan VAR analizinin genel olarak 

getiri dinamiklerinin açıklanmasına katkıda bulunmakla birlikte bu katkının sınırlı olduğu 

sonucuna ulaşılmıştır. Genel olarak, hacim ve oynaklık verilerinin bir sonraki dönem 

getirilerinin tahmin edilmesinde sınırlı katkısı olduğu tespit eidlmiş olup, bu bulgunun 

beklenti anketinde ortaya çıkan sonuçlarla kısmen çelişkli olduğu sonucuna ulaşılmıştır. 
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PREFACE 

 

The exploration of the time series properties of equity market index returns and 

their relationships with volume is not actually a very interesting topic at the first sight 

since quite an extensive amount of research has been done on this subject. However this 

thesis is expected to make some contributions to the current finance literature, mostly in 

terms of the inclusion of new variables into the time series analysis that up to now 

generally have been ignored and moreover the readers will have the results of an 

expectation survey conducted among brokers that will probably propagate some further 

research in this field. 

The main theme of this thesis is to explore the return volume and other trade data 

dynamics. The first question raised was related to the variable “return”. How should 

return be defined? Generally return is defined as the logarithm of the ratio of the closing 

value of the index at time “t” to the closing value of the index at time “t-1”. Why should 

we define return as such? Starting from this question, a new definition of return was 

made, namely, it was also calculated by using the average values in addition to the 

closing values. There are also some other trade variables which are not taken into 

consideration by almost any researchers, those variables proved to bring very interesting 

conclusions. 

Another important point to note is that, the method known as technical analysis 

which is not usually taught in finance schools does have quite large popularity among 

traders. Technical analysts do claim that the prices have some patterns, the volume 

increase or decrease have important implications for the future price changes. Why is this 

method so popular? Is it because it is simple? Or is there something really magic behind 
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it?  Is it really possible to have a better guess for the next period by taking into account 

past values of return, volume volatility and other trade data? 

During the literature survey phase which took long, various papers was examined 

on the discipline of behavioral finance as well as the papers directly related to the return 

volume dynamics. These readings further added to our curiosity for the following 

question: How do the variables related to trades such as return, volume, affect the 

expectation of market people? To answer this question, a survey was conducted and very 

interesting hints about how the expectations of the market people form in case of different 

combinations of return, volume and other trade data variables were documented. 

For preparing this thesis I read many statistics books as well as academic papers in 

various journals. The most influential books during my work are the books titled 

“Analysis of Financial Time Series” written by Ruey S. Tsay and “Time Series Analysis”, 

written by Hamilton, J. D.  both of which were suggested by my thesis advisor whom I do 

thank for his valuable suggestions and confidence on me. The paper written by Karpoff, 

J.M. in 1987 titled “The relation between price changes and trading volume” published in   

Journal of Financial and Quantitative Analysis 22: 109-126 was also very helpful to 

initiate further research on my part. 

I was really astonished by the fact that the Istanbul Stock Exchange does not have 

a handy and easy to use database which poses great problems for researchers. Many 

problems in the data were also discovered, thus the academicians should be very careful 

before using the ISE data in their researches. On the other hand, the prices and the 

volumes of each stock in the index were separately analysed and variables such as total 

volume, return dispersion and volume dispersion for the IMKB30 index were calculated 

for each session and each day, taking into account the trade data of each of the 30 stocks. 
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The stocks in the index do also change from period to period and there is no list of index 

stocks for each period readily available in the ISE. Therefore, collecting all of this 

information and transforming the data to make it ready for statistical analysis was really a 

tedious task.  This is also the reason behind why the IMKB30 index was selected as the 

main market indicator. It is clear that dealing with 30 stocks is much easier than dealing 

with 100 stocks in an environment where many problems do exist as to the availability 

and reliability of the data. 

A final note for the reader is about the structure of this thesis. The thesis starts 

with a discussion of previous research on return volume dynamics, touches upon studies 

of some behavioral finance scientists. It continues with an explanation of the ISE Equity 

Market and the related trade data. The second and third chapters explain the survey 

methodology and the evaluation and analysis of the results of survey with the help of 

empirical data from the market. Interesting conclusions have been reached, a fact that is 

believed to initiate further research in this field. Then, in chapter 4 the distributional 

properties of the returns are analysed, special importance is given to separately analyse 

the data by using the crisis year of 2001 as a benchmark.  In chapter 5 time series analysis 

of the return series are conducted and the stationarity of the series is studied in detail. The 

return series calculated from the closing values and average values were first modeled by 

using Autoregressive (AR), Moving Average (MA) and Autoregressive Moving Average 

(ARMA) techniques. It was found that, although the close to close returns have very 

small, even non-significant autocorrelations, the serial correlations in average returns are 

larger in magnitude and statistically significant. Moreover, both the close to returns and 

the average return series were discovered to have long memory and significant 

heteroskedasticity. To overcome the “long memory problem” the ARFIMA methodology 
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is applied to see whether the series can be redefined. And finally VAR model is applied to 

see the lead lag effects of trade variables on return generating process.  

This thesis is the result of a very rigorous and long lasting study and I do believe 

that the reader will find it relatively easy to progress while reading through the chapters, 

since I did my best to gain knowledge of all the subjects that are included in this thesis. 

Some new variables which are generally ignored in most of the previous studies are 

included in the analyses. Therefore market professionals will find some interesting hints 

with regard to portfolio management strategies; this thesis is also believed to pave way to 

new academic studies in the fields of technical analysis and behavioral finance.  
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CHAPTER I 

INTRODUCTION TO THE RETURN DYNAMICS AND THE ISE EQUITY 

MARKET 

 

Introduction 

 

The predictability of stock index returns based on their own past values and the trading 

volume of previous periods is an important topic that has been extensively researched in 

both empirical and theoretical finance. The presence of some form of relationship (linear 

or non-linear) between index return and its lagged values is often examined and quite 

different results are reported. If the time series do exhibit a linear relation, this means 

that the lagged values are autocorrelated and Autoregressive (AR) and/or Moving 

Average (MA) models can be used do define the functional form of the relationship. 

Whether the existence of autocorrelation implies a violation of market efficiency has 

been discussed extensively and various theoretical explanations have been suggested to 

explain the non-zero autocorrelation phenomenon. On the other hand, even if the 

consecutive returns are found to be uncorrelated this does not necessarily mean that they 

are independent. Consecutive returns may for example, be uncorrelated, but their 

squared values may well be correlated across time. However, there is another 

complication, namely, the relationship between the returns or squared returns and their 

past values across time has been found to be unstable in a number of studies and this 

finding further complicates the theoretical framework. As a rule of thumb, any time 

series should be plotted to see whether the sample moments and the shape of distribution 
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vary over time or not. If, for example, the variance of returns change over the course of 

time and this can be modeled by autoregressive conditional heteroskedasticity (ARCH, 

GARCH) models. 

The buying and selling decisions in the stock market are taken everyday by a 

huge number of market agents and the result is the market price and volume that are 

observed on various media. In the Turkish case, quite an extensive use of technical 

analysis is known to be used, a method that is usually overlooked by efficient market 

proponents. The main objective of this thesis is to explore the lead-lag relationship 

between prices and trading volumes and thus a sound empirical explanation supporting 

the use of technical analysis is sought.  A common notion in handbooks of technical 

analysis is that increasing trading volume strengthens trend, i.e., increases the 

probability that the ongoing trend will continue. Conversely, falling trading volume 

signals that the current trend is going to reverse, i.e., the probability that a trend reversal 

is going to happen increases. Increasing number of financial research is focusing on time 

series properties of not only price but also volume. Thus, as noted before, from the point 

of view of the technical analysis method, lagged volume could be useful to predict price 

movements since market participants can not obtain a full information signal from the 

price alone. If traders frequently use volume data as an additional statistic to observe 

some sort of signal with regard to possible future path of assets, the supporting empirical 

evidence should be found to validate this belief. In our effort towards finding some sort 

of supporting evidence for the wide spread use of technical analysis and volume return 

relation a survey was conducted among the stock brokers. The results, which will be 

documented in detail in coming sections, indicate that brokers do heavily rely on 
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technical analysis and they also give special importance to volume increases or 

decreases along with the magnitude of returns in forming their expectation for future 

returns. 

The variables used in this research are mainly the trading volume (in YTL 

terms), net volume (YTL value of equities changing hands during a trading day after 

netting, a measure that can only take the attention of a market professional), close to 

close return, average return, return dispersion, max-min range (intra-day price range), 

direction of the market measured by the difference between the closing price and the 

weighted average price. A large majority of prior research failed to find any conclusive 

evidence on the nature of the relationship between return and volume. In addition to the 

net volume data, at least for the last three year-time period, the daily foreign investor 

share in total free float was also used to see whether the changes in the foreign holdings 

of Turkish shares produce any signal as to the direction of the whole market. 

The very hot field in the recent financial studies, namely behavioral finance is 

also touched upon and various articles are summarised to gain insights into the return 

process. The fact that the maximum, minimum and the average prices along with the 

closing prices are available in the media, this may well mean that investors might also be 

using those statistics to form their expectations. In addition to measuring the differences 

between the closing prices, the difference between the maximum prices and the 

minimum prices may help to explain the seemingly random behaviour of returns. 
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A Brief Summary of the ISE Equity Market Operational Structure 

 
The ISE Stock Market operates on a fully computerized trading system based on 

a multiple price-continuous auction method in which buy and sell orders match on price 

and time priority. Stock trading activities are carried out in two separate sessions, the 

first being held between 09:30-12:00 and the second between 14:00-16:30. There is also 

an “Accumulated Order Processing” (AOP) period at the beginning of each session. The 

AOP period is between 09:30-09:45 for the first session and 14:00-14:10 for the second 

session. During AOP, only limit orders are received via electronic interface from the 

internal systems of the brokerage firms, or alternatively, accumulated orders are 

downloaded from floppy discs through trading terminals. The main distinction of this 

period is that the brokers are not allowed to use the keyboard of trading terminals, 

therefore, direct manual order entry to the system is not allowed during AOP. 

From the perspective of this study there is an important detail in the ISE Stock 

market trading mechanism. In the trading mechanism, there is a price limit of 10% for 

each stock at each session and the base price on which the price limit is calculated is the 

volume weighted average price of the stocks in the previous session. If any dividend 

payment or stock split occurs, the base price is adjusted accordingly by the ISE.  This 

fact is quite important, because some of the exchanges do not have price limits and still 

many others calculate the price limits based on the closing prices.  

ISE Equity Market transactions are settled at (T+2) (Two days after the trade 

date). At the end of each trading day, Takasbank (Clearing & Custody Bank) 

multilaterally nets transactions made during the day and calculates the settlement 

position on member basis. The Istanbul Stock Exchange Equity Market transactions 
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were settled on a T+1 basis in the past, but for the period to be analysed in this thesis, 

namely (1997-2005) the settlement period was T+2 and did not change during the 

period. 

 

IMKB Indices 

 The IMKB30 index is an important benchmark since it contains very liquid 

stocks and foreign investors usually invest in İMKB30 stocks. The original idea behind 

calculating and publishing this index actually traces back to the second half of the 1990s. 

At that time the İMKB was very keen to start index derivatives trading and the İMKB30 

index was the main underlying index that was planned to be used. 

In this study the main focus is on the Istanbul Stock Exchange 30 Share Index 

(IMKB30), which is composed of the 30 largest stocks in terms of equity capitalization, 

the index represents around 75% of the total equity capitalization of all stocks. The 

trading volume of these 30 stocks consists of approximately 65% of all trading volume. 

On the other hand the other well known index namely the IMKB100, contains 100 

largest stocks and represents around 90% of the total market capitalization and trading 

volume. Both the IMKB30 and IMKB100 are  value-weighted arithmetic mean of the 

constituent stocks based on equity capitalization. Capitalization weighing is done by 

using the free float rate as a multiplier so that the publicly held portion of the total 

capitalization is taken into account.  

Both the IMKB30 and IMKB100 are price indices meaning the dividend 

payments of index stocks are not assumed to be reinvested. Corporate actions such as 

stock splits and equity offerings are taken into account, necessary adjustments are done 
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in order to maintain the continuity of the index. In the calculation method, actual 

transaction prices are used to determine the level of the index. This point is quite 

important, because not all the indices are calculated in this manner. For example the 

very well known FTSE index is calculated by using prices that are based on the midpoint 

of the best (inside) bid-and-ask quotes (the touch) being displayed on the trading screen 

for each of the constituent stocks. This difference is quite important when one deals with 

intraday volatility and returns. This is because if there is no trade during a time interval 

and if in this case prior transaction price is taken into account then this may create 

artificial serial correlations. However, since the main focus of this research is the session 

to session returns and the stocks included in the İMKB30 index do have very liquid 

markets this issue can be ruled out. However, researchers should be careful when they 

concentrate on intraday return process, especially for  very short time intervals. 

Another important point that should be noted is the fact that the ISE30 index 

constituent stocks are revised quarterly by the exchange and the necessary adjustments 

are done accordingly. However, there is still another issue that should be taken into 

account. It is the fact that, in addition to periodic assessments, non-periodic changes in 

the list of index stocks are also made. For example, if a stock is not traded or is closed to 

trading for more than five consecutive trading days it is excluded from the index and 

another stock is added. It should be noted that there were such cases within the period of 

our study and consequently, necessary adjustments were made 

For the whole sample period, both periodic and non-periodic changes to the 

IMKB30 index were all taken into account. This is important, because to calculate the 

variables, volume, volume dispersion and return dispersion, individual stock information 
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was needed. The list of the IMKB30 constituent stocks for each period is provided in 

Appendix A. As seen, the İMKB30 index stocks are revised quarterly; however due to 

the problems related to the financial well-being of the constituent companies, some non-

periodic changes occurred. For example in November 2000 when there should have been 

no change in the index composition Medya Holding (a large conglomerate  with severe 

financial problems during that time) was excluded from the index and (MIGROS) 

company replaced it. The stocks excluded from and included in the index and the 

relevant dates are all provided in Appendix A. The construction of this table took quite a 

lot of time. It should also be noted that the index in this sense has survivorship bias, 

because the investors holding the stocks to mimic the performance of the IMKB30 face  

the problem of having those stocks with no value.  

 

Theoretical Explanations Of The Return- Volume –Volatility Relationship 

 

There are mainly two theories on the lead lag relations among  return volume and 

volatility. The Sequential Information Arrival Hypothesis (SIAH) of Copeland (1976), 

Jennings, Starks & Fellingham (1981) assumes that traders receive new information in a 

sequential, random fashion. From an initial position of equilibrium where all traders 

possess the same set of information, new information arrives in the market and traders 

revise their expectations accordingly. However, traders do not receive the information 

signals simultaneously. Once all traders have reacted to the information signal, a final 

equilibrium is reached. The sequential reaction to information in the SIAH suggests that 
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lagged values of volatility may have the ability to predict current trading volume, and 

vice versa. 

On the other hand, the Mixture of Distribution Hypothesis (MDH) hypothesis 

(Clark (1973), Eps and Eps (1976))  is based on the assumption that all traders 

simultaneously receive the new price signals. As such, the shift to a new equilibrium  is 

immediate and there is no intermediate partial equilibrium. Thus, under the MDH, there 

should be no information content in past volatility data that can be used to forecast 

volume (or vice versa) since these variables contemporaneously change in response to 

the arrival of new information. In other words MDH hypothesis states that volatility and 

volume are driven by the same information flow simultaneously. 

The autocorrelation of returns phenomenon found in empirical studies of equity 

markets is also tried to be explained by researchers  on several grounds. One of the 

explanations on the meaning of return autocorrelations is that, correlations arise due to 

market frictions (nonsynchronous trading, price discreteness etc.) Nonsynchronous 

trading may especially be important in case, all the stocks included in the index are not 

traded simultaneously. This may cause the prices of some stocks to lag behind others. 

Another explanation is that autocorrelations are observed because the economic risk 

premium is time varying. The proponents of this view also argue that in an efficient and 

even frictionless market the returns can be autocorrelated. Yet another group of 

researchers attribute the nonzero autocorrelation to the irrationality of market 

participants. The existence of irrational investors, irrational trading behaviour or 

psychological factors may produce profitable trading strategies for rational or astute 

investors. Especially this approach gained considerable support among the  financial 
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community during the last two decades and lead to the new discipline called behavioral 

finance.  

The behavioral finance perspective seeks to explain the time dependency of 

returns and volatilities by different theoretical approaches. For a true believer of market 

efficiency there is little reason to believe that these past statistics are helpful in making 

investment decisions.  However, the statistics published in the media may be satisfying 

some kind of a demand from the investors’ point of view. The direction and the 

magnitude of the changes in variables such as changes in volume, changes the i.e.,  the 

highest and lowest of the last period, last one week, one month one year period etc. may 

be serving as important benchmark points  rather than the actual transaction price to the 

investors especially in cases where the investor hold the stock for so long that he/she no 

longer recalls the purchase price or the current trading price is far from the purchase 

price. 

The availability bias put forward by Tversky and Kahneman (1982) causes 

people to base their decisions on the most recent events which in turn causes investors to 

over-react to market conditions whether they are "positive" or "negative". This implies 

that the return series should exhibit  reversals. However it is quite crucial to find out on 

what time horizon this is valid. Is it valid for very short periods like intra day or session 

or day or is it valid for the weekly periods or monthly periods. Therefore one should be 

very careful in interpreting the availability bias theory.  

Contrary to the availability bias explanation some researchers like Daniel at 

al.(1998) Barberis, Nicholas & Thaler (2003) focus on the overconfidence bias. The 

overconfidence bias implies that people are too slow to change an established view, as 
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opposed to being too willing to change. This theory is based on the assumption that the 

human mind is conservative. The implication is that people are slow to recognize the 

importance of an information arrival especially when it is contrary to market wide 

expectations. That is, they underweight evidence that disconfirms their prior views and 

overweigh confirming evidence.  

Consequently, both analysts and investors interpret a permanent change as if it 

were temporary; thus the price is slow to adjust. This means that the return process may 

be positively correlated, the effect of an information arrival may show itself slowly in 

the market. The fact that investors gradually realize the effect of the new information, 

the market will probably  underreact which implies that there is a profit chance for 

momentum traders or trend chasers. 

Still another explanation from behavioral finance theory is termed as disposition 

effect. The disposition effect which was first coined by Shefrin and Statman (1985) is 

actually an extension of the prospect theory put forward by Kahneman and Tversky 

(1979). According to the Prospect Theory people value gains and losses relative to a 

reference point like the purchase price, and that they are risk-seeking in the domain of 

possible losses and risk-averse when faced with gain outcomes. Shefrin and Statman 

extended prospect to theory to investment decisions and claimed that investors have “the 

disposition to sell winners too early and ride losers too long”. They labeled this 

behavioral phenomenon as “the disposition effect”. An implication of disposition effect 

is that current volume should be negatively correlated with the volume on previous days 

if the current price is below the previous price(s) and positively correlated with the 

volume on previous days if the current price is above the previous price(s). 
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Additionally, research on learning and memory suggests that individuals are also 

likely to remember extreme observations (Fredrickson and Kahneman 1993; Fiske and 

Taylor 1991). As a result, individuals may focus on extreme observations when making 

investment decisions. Thus for example, an investor trying to decide when to sell a stock 

may view a trade price surpassing a prior high as an opportunity to sell. Similarly, an 

investor considering potential investments may view the stock trading below its historic 

low as a favorable time to buy. 

 

General Findings of Previous Researches 

 

The main path to investigating the lead-lag  relations in the return series starts 

with checking whether there is serial correlation between returns. The shape of the 

distribution is also important in the analysis of return series. The existence of non-

normality might be due to serial correlation and/or heteroskedasticity in return series.  

The empirical investigation of equity returns were initially done by Fama (1965) 

and Mandelbrot(1963). Studies usually have shown that returns, especially in the short 

run are not normal. The return distributions do show positive skewness and a high 

kurtosis value. A kurtosis value larger than three implies of course the distribution has a 

fat tail problem. Efforts have been made to solve the fat tail problem by using the 

models such as ARCH and GARCH which are based on volatility clustering assumption. 

(Bollerslev, Chou & Kroner 1992), Akgiray (1989), Akgiray, Booth, Loistl (1989), 

Aparicio, Estrada (2001).  
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The non-normality property has very important consequences. One is that if a 

stochastic process is not normally distributed, the non- existence of serial correlation 

does not imply statistical independence Akgiray (1989). Another important consequence 

of the return distributions being non-normal is that the conclusions to be drawn from 

Box-Pierce Q test and Dickey Fuller unit root test should be evaluated carefully when 

the distribution is not normal. Lo and McKinlay (1998) showed that the variance ratio 

test is a better measure to test the random walk hypothesis than the Box Pierce Q test 

and Dickey Fuller test.  

  Akgiray (1989) also showed that the daily  return series of the US equity indices 

are not normally distributed and sample moments differ from period to period and also 

concluded that daily returns are not independent of each other. He further showed that 

return series display high first lag autocorrelations.  The significance was found to be 

even higher in absolute and squared return series. He then applies the AR(1) 

transformation of returns and finds that although the resulting residuals of this 

transformation are uncorrelated, they are not independent. He then proceeds to utilize 

the conditional heteroskedastic models namely the ARCH model of Engle (1982) and 

the GARCH model of Bollerslev (1987) to account for the dependence of the squared 

error terms and finds that GARCH (1,1) model fits quite well to the daily return data and 

the hypothesis that standardized residuals of this model are normally distributed  could 

not be rejected. A similar study was conducted by Mougoue and Whyte (1996) for the 

German and French Equity Markets and they found that  stock returns in both countries 

are best described by GARCH(1,1) model. They also documented changes in the mean 
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variance relationship before and after the US stock market crash of 1987. This 

conclusion is consistent with the work of Akgiray (1989).   

 On the other hand, it is quite vital then to break up the sample to find out regime 

shifts if any, in return generating process. For example, Masulis and Victor (1995) 

studied the FTSE index series for the eight year period between 1984 and 1991 and in 

order to study the possibility of regime shifts occurring in the behavior of stock returns 

over the observation period, they divided the observation period into three subperiods 

and then compare the statistical properties of the return series across subperiods. They 

also excluded certain periods such as before and after market crash in order to avoid the 

negative effects of transition periods and to reduce the effects of several large outliers 

that occur at this potential structural breakpoint. Their model distinguishes between 

overnight and daytime return dynamics, permits overnight and daytime return dynamics, 

to follow different leptokurtic conditional distributions. They found that the distribution 

of overnight returns is more leptokurtic than that of daytime returns. In fact, daytime 

returns are found to conform much more closely to a normal distribution than do 

overnight returns. They also found that the probability of more extreme returns is higher 

in the post-crash period, overnight returns are strongly positively correlated with the 

most recent daytime return, mildly negatively correlated with the prior daytime return. 

They examined the serial correlations of squared returns and observed that overnight 

squared returns are strongly positively correlated with the most recent daytime squared 

return and mildly positively correlated with the prior two daytime squared returns. 

On the other hand, Chowdury (1999) analysed the weekly stock returns in eight 

Asian and Pacific Markets and he found that although there is some first order 
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autocorrelation, this does not indicate the availability of profitable short run investment 

opportunities. Taylor(2000) investigated daily returns of FTA(Financial Times All 

Share) index, FTSE100, twelve frequently traded UK stocks, and Dow-Jones Industrial 

Average and S&P500. As a result of his study he rejects the hypothesis that returns are 

uncorrelated and thus finds significant dependence between consecutive returns 

especially for the indices. However whether this finding may result in significant 

opportunities for trading to beat the market is unclear. Another approach is to find out 

whether the stock market overshoots during especially crisis period. For example  Basci 

and Muradoglu (2001) by using weekly national index returns for 21 world markets 

documents international evidence that stock market rebounds after extreme falls. They 

used a third order polynomial model on lagged returns, coupled with GARCH residuals 

and found that the return forecasts from this model are better than the linear alternatives  

in weeks following extreme falls. 

In addition to forecasting the magnitude of returns and volatility some 

researchers concentrated on forecasting the direction of the market. Because profitable 

trading strategies may result if one successful at forecasting market direction, quite apart 

from whether one is successful at forecasting returns themselves. 

For example,  Christioffersen and  Diebold  (2003) used the daily weekly, 

monthly and annual values of S&P100 index and found that if the expected returns are 

non-zero volatility dependence produces sign dependence especially at intermediate 

horizons of two or three months and this fact can not be captured by the widely used 

techniques such as analysis of sign autocorrelations, runs tests or traditional tests of 

market timing due to the fact that the nature of sign dependence is highly nonlinear. 
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They also found that the link between volatility forecastability and sign forecastability 

still holds in conditionally non-Gaussian environments, as for example with time-

varying conditional skewness and/or kurtosis. 

Some academics have tried to explain the price behaviour of assets by including 

the range which is defined as the difference between  the highest and lowest prices 

throughout the day. Alizadeh, Brandt and Diebold (2002),  found substantial gains in 

estimating volatility from using the range. This research and a number of previous 

studies Parkinson (1980), Garman and Klass (1980) showed  that range is more efficient 

volatility proxy. These findings led us to include the daily range of returns as predictor 

variable in our analysis. 

In a paper written by Huddart,Lang & Yetman very interesting results have been 

reached as to the relation between the trading volume and aspects of the stock’s past 

prices. Their research suggests that investors focus on past stock price behaviour in 

making their trading decisions. More specifically, the authors document substantial 

increase in volume when a stock is trading above the highest price attained during the 

year ending 20 trading days before the current week. They also found that the effect is 

more visible the longer the time since the prior maximum is attained. They also find that 

the effect is stronger for NASDAQ stocks where the individual ownership is greater, 

than for NYSE and AMEX stocks, which implies that there is a negative relation 

between investor sophistication and reliance on reference points. 

In addition to analyzing the price changes there is also extensive research 

focusing on the relationship between daily trading volume and stock price movements. 

Karpoff (1987) provides a very good overview of earlier research on the relationship 
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between returns and volume. He classifies the studies into two groups; first, those that 

examine the relationship between absolute price change and trading volume, and second, 

those that examine the relationship between price change per se and trading volume, and 

finds that the majority of them report a positive relationship between price change (per 

se or absolute)  and trading volume. Karpoff (1987) cites four reasons why price-volume 

relation is important. First, empirical evidence on price-volume relation is helpful to 

analyze how information is disseminated to financial markets and whether price by itself 

contains how much of that information. The second reason mentioned is that, 

understanding the joint distribution of returns and volume is important and this will 

probably increase the power of  statistical tests. Third, joint dynamics between returns 

and volume are also important to examine the distribution of returns and changes in 

variances. And fourth, price volume relations may help to explain whether speculation is 

stabilizing or de-stabilizing effect on prices.  

Lamourex and Lastrapes (1990) for example  used daily trading volume as a 

proxy for information arrival and showed that volume has a significant explanatory 

power regarding the variance of daily returns. Contrary to this finding however, Lee, 

Chen and Rui (2001) used daily trading volume as a proxy for information arrival and 

found that volume has no significant explanatory power for the conditional volatility of 

daily returns. They further note that variance ratio tests reject the hypothesis that stock 

returns follow random walk. Silvapulle and Choi (1999) use linear and nonlinear 

causality tests to investigate causality between returns and trading volume on the Korean 

stock exchange. They find significant bilateral linear and nonlinear causality between 

returns and volume. Chen, Firth and Rui (2001) examine the dynamic relation between 
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returns, volume, and volatility of nine national stock index for the period from 1973 to 

2000. Their results show a positive correlation between trading volume and the absolute 

value of the stock price change. Granger causality tests demonstrated that for some 

countries, returns cause volume and volume causes returns. In general, they concluded 

that return cause volume but not vise versa. 

Several recent theoretical papers also examine the role played by trading volume 

in asset markets. Lee and Swaminathan (2000) analyzed monthly returns of NYSE and 

AMEX stocks for the period January 1965 through December 1995 and showed that past 

trading volume predicts both the magnitude and the persistence of future price 

momentum. They found that high(low) volume winners(losers) experience faster 

momentum reversals. They further found that low volume stock generally outperform 

high volume stocks. Lo and Wang (2000) conclude that trading activity is fundamental 

to a deeper understanding of economic interactions.  In a recent study by Connolly and 

Stivers (2003) examined the relationship among turnover shocks and price dispersion 

shocks returns. Their data set is the weekly (Wednesday to Wednesday) large firm 

portfolio returns of US UK and Japanese equity markets.  They find that turnover shocks 

and return dispersion shocks as they define them are positively correlated. They also 

find that the first order autoregressive coefficient of return series is reliably positive and 

increasing when the trading volume increases. They further find that return in time t is 

positively correlated to the volume in time t-1, but the magnitude is found to be smaller 

than the contemporaneous relation of return and volume. They also find that consecutive 

equity index returns tend to display substantial momentum when there is unexpectedly 

high turnover in the latter period and reversals when there is unexpectedly low turnover 

 17



or return dispersion. Fan, Groemewold and Wu (2003) examined the relation between 

trading volume and stock returns in Chinese equity market by using daily return and 

volume data and found that volume has low predictive power on future returns but a 

strong and predictable effect on absolute returns and they further documented stronger 

evidence of return causing volume. They also found that equity returns are not 

independent and GARCH (1,1) model fits well to the data. Salman (2000) recently 

investigated daily return volume and risk dynamics of Istanbul Stock Exchange by using 

the GARCH method. He finds that lagged volume has a statistically significant positive 

effect on returns and he also find a positive contemporaneous relationship between risk 

and return. 

 Another interesting study conducted by Gervals, Kaniel, Mingelgrin (1999) 

documents that stocks (NYSE stocks) experiencing high(low) trading volume over a 

period of one day to a week tend to appreciate(depreciate)  in the following month. This 

effect is found to be stronger when the rise in volume is not accompanied by an 

abnormal rise in returns. They further show that profitable trading strategies can be 

implemented by using the information content of the volume data. Blume, Easley and 

O’Hara (1994) show that lagged volume could be useful to predict price movements. 

Basci, Özyildirim and Aydogan investigated the weekly price and volume series of 29 

individual stocks traded in the Istanbul Stock Exchange for the period between January 

1988 and March 1991, by regressing the price levels with the volume  series, and using 

the lagged values of the residuals from this regression in an error correction model they 

found that it seems possible to forecast the future price changes of some stocks by using 

the current price and trading volume. Although this finding casts significant doubt on the 
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efficiency of the Istanbul Stock Exchange market, data belongs to a period where the 

exchange was in the early stage and the study was concentrated on individual stock basis 

which is subject to the actions of insiders and large portfolio holders especially in the 

period examined. Ciner (2000) also investigates whether trading volume contains 

information to predict both the magnitude and direction of price changes on the Toronto 

Stock Exchange (TSE). He   finds that linear causality tests show no predictive power 

for lagged volume for returns per se, although this conclusion is reversed by nonlinear 

causality tests which suggest nonlinear predictive power for lagged volume.  Saatcioglu 

and Starks (1998) investigate emerging markets in Latin America and they report that 

volume leads returns in these markets.  

The importance of trading volume in forecasting returns is also examined at 

individual stock level. For example Chordia and Swaminathan(2000) investigated the 

stocks in n NYSE/AMEX during the period from 1963 to 1996 found that holding the 

firm size constant, trading volume is a significant determinant of the cross-

autocorrelation patterns in stock returns. More specifically they found that daily or 

weekly (measured as Wednesday close to Wednesday close)  returns of stocks with high 

trading volume lead daily or weekly returns of stocks with low trading volume. 

Additional tests indicate that this effect is related to the tendency of high volume stocks 

to respond rapidly and low volume stocks to respond slowly to market wide information.  

On the other hand Richardson and Peterson (1999) used daily returns of New York 

Stock Exchange  and American Stock Exchange stocks and  found that lagged large firm 

returns  predict current small firm returns after controlling for auto correlation in small 

firm returns. 
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Darrat, Rahman, Zhong (2003) used intraday volume and return volatility of 

Dow Jones Industrial Average Stocks and found that  contemporaneous correlations are 

positive and statistically significant in only three of the 30 DJIA stocks and all the 27 

remaining stocks of the DJIA exhibit no significant positive correlation between trading 

volume and return volatility. They concluded that such weak evidence of 

contemporaneous correlations contradicts the prediction of the MDH in intraday data. 

Contrary to the non existence of  contemporaneous correlations trading volume and 

return volatility are found to follow a clear lead lag pattern in a large number of the 

DJIA stocks which means that the result support the Sequential Information Arrival 

Hypothesis. 

Interaction of autocorrelation and volatility and volume is another interesting 

research area. Yanxiang Gu (2004) provides a brief overview of previous research about 

this issue. LeBaron(1992), by using daily and weekly data of the S&P composite index 

from January 1928 through May 1990 finds that first order autocorrelation is larger 

during periods of lower volatility and smaller during periods of high volatility for both 

daily and weekly returns. Sentana and Wadhwani(1992) reported that when volatility is 

low stock returns at short horizons exhibit positive serial correlation, and in case of high 

volatility they exhibit negative autocorrelation. Campbell Grossman and Wang(1993) 

examined the relation between autocorrelation and volume. They found that the first 

order autocorrelation tends to decline as volume increases. 

  From the market efficiency perspective Fama(1998) summarizes the previous 

research on return dynamics and Asserts that the concept of market efficiency is still 

valid. He bases this conclusion on two reasons. One is that in an efficient market, 
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apparent underreaction will be about as frequent as overreaction. If anomalies split 

randomly between underreaction and overreaction, they are consistent with market 

efficiency. He documents several prior research supporting his view. The other reason 

that Fama cites is the his finding about the sensitivity of results  on the methodology 

used in prior researches. He claims that the findings of previous research tend to become 

marginal or disappear when exposed to different models for expected (normal) returns or 

when different statistical approaches are used to measure them. 
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CHAPTER II 

DATA, VARIABLES AND SURVEY DESIGN 

 

Data 

 The data used in this research were the IMKB30 index minimum, maximum and 

closing values and the minimum maximum, closing , weighted average prices and the 

trading volume of IMKB30 stocks. Data were available on each trading session basis. 

The price and volume data of the individual stocks included in the index were also used 

for some statistical calculations which will be explained in the coming pages. There was 

a huge amount of data collecting effort for the preparation of this thesis. To give an 

example,  one of the main variables of this study is the volume  and the volume of the 

İMKB30 index was found to be not separately kept in the IMKB database, therefore the 

volume of the IMKB30 index was exclusively calculated by using the individual volume 

of the İMKB30 stocks. 

On the other hand, due to the fact that İMKB30 index has been calculated since 

the beginning of 1997,  the data period starts from the beginning of 1997 and ends in 

April 2005. Although the index data are available since the beginning of 1997, a major 

problem in the series was encountered,  for the first quarter in one of the constituent 

stocks and therefore the analysis were started from the beginning of April 1997. The 

whole sample was also divided into three sub-samples to see the effect of the financial 

crisis which occurred during 2000 and 2001 in Turkey, on the mean, variance and the 

shape of the distribution of return series. 
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 For each of the periods, on a trading session basis, minimum, maximum, closing 

and weighted average prices and trading volumes of all 30 stocks of the IMKB30 are 

provided. The adjusted prices of the stocks are supplied by the ISE. For the readers to 

get the logic behind the adjustment, the adjustment is done simply by multiplying all the 

past values of the stocks by the ratio of new opening price/old opening price. The 

opening price is simply the weighted average price of the last session rounded to the 

nearest price tick. The price data before 2005 also is adjusted to account for the adoption 

of the new currency namely the New Turkish Lira (Yeni Türk Lirası). The adjustment on 

each stock basis is necessary because some of the explanatory variables to be used in 

this study depend on values in TL or YTL, such as  the so-called return dispersion, 

which is calculated by the square of the difference between the return of each of the 

index stocks from the index return. Thus, in order to calculate the return of individual 

stocks, adjusted prices are needed. 

An exhaustive list of the data and the variables used in this research is provided 

below: 

 

CI t =    Closing level of the IMKB30 index during period t 

Min t =   Minimum Level of the IMKB30 during period t 

Max t =   Maximum Level of the IMKB30 during period t 

AI t  =    Average  Level of the IMKB30 during period t 

CRt =    Return calculated from the closing values 

AR t  =   Return calculated from average values 
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Ranget =   The difference between the minimum and maximum values of the 

   index divided by the Average value of the index 

DIR t =    Direction of the index as of period t 

Vol t =   TL value of the stocks traded during the time period t 

NetVol t  =   The amount of money actually changing hands during a trading 

    day. 

N(up) =   Number ISE30 stocks went up during time t 

N(down) =   Number ISE30 of stocks went down during time t 

N(nochg) =   Number of ISE30 stocks that did not change 

N(strongup) =   Number of ISE30 stocks which experienced both a price increase 

   and volume increase  

N(Strongdown) =  Number of ISE30 stocks which experienced a price decline and 

    increase in volume 

Artaz =  ( N(up)-N(down) ) / 30 

RDt=    Return dispersion of the ISE30 stocks 

VDt=    Volume dispersion of the ISE30 stocks 

RVt   =   Average of the individual returns multiplied by volume. As the 

   name implies, this variable is calculated by using all the return 

   and trading volume of individual stocks. 

Ret30vol =   Return of the index multiplied by the percent change in total 

   trading volume of the index. 
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The explanations of some of the variables mentioned above are as follows: 

 Return is defined as the natural logarithm of the index level at time t divided by 

the index level at time t-1. In functional form close to close return, for instance, return is 

defined as: 

 

CRt = Ln (CI t / CI t-1) 

 

The Istanbul Stock Exchange does not calculate and publish any average index, 

in other words, an index calculated from the average prices of common stocks. For this 

reason a proxy for the average index defined as follows is used in the analysis 

 

For Each Session: 

AI (Session)=  Average index = (Maximum Value+ Minimum Value + Closing Value)/3 

 

For each day 

AI (Day) = (The first session average + second session average)/2 

 

Consequently, the average return is calculated by the following formula 

 

ARt = Ln (AI t / AI t-1) 

 

In addition to the calculation of index returns, the return series of individual 

stocks in the index is also calculated as the logarithm of the ratio of adjusted closing 
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price of stock at time  “t” to the adjusted closing price of stock i at time “t-1”. This is 

done to find the value of return dispersion to be explained ahead. 

In addition to calculating the returns, the volatility is approximated by the 

squared value of the returns. Additionally, the intra period volatility also is 

approximated by the difference between the minimum and maximum values divided by 

the closing index value. This measure is named as range and calculated as follows: 

 

Ranget  = (Max t – Min t ) / CI t

 

The direction of the index during a session or a trading day is also included in 

analysis. The variable to show the direction of the index is defined as follows: 

 

DIR t = (CI t – AI t ) / AI t

 

A positive value for this variable indicates that the index closing level is above 

the average value and this might imply the index is heading up, and for negative values 

vice versa. 

In addition to the variables related to price levels, trading volume figures (Volt) 

are also taken into account. Volume is defined as the TL value of index constituent 

stocks traded during a trading session or trading day. Total volume of İMKB30 stocks is 

not really available, therefore the total volume of İMKB30 is calculated by summing up 

the individual volume figures of each stock in the index. In order to satisfy the 
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stationarity condition in time series analysis changes in volume which is defined below 

is taken into account. 

 

∆Vol t,t-1          =  Logarithm (Volume at time t / the Volume at time t-1)          

 

In addition to volume, another variable which is defined as Daily Net Volume of 

IMKB30 index (NetVol t ) was used. This variable represents the amount of money 

actually changing hands during a trading day. In other words this value is supposed to 

show the portfolio movements in brokerage houses. Similar to the reasoning applied to 

the volume figures, changes in net volume are calculated and taken into account in order 

to satisfy the stationarity condition. 

The calculation of net volume figures needs some explanation. For example, 

assume for simplicity  that there are four brokerage firms (A,B,C,D) trading in the 

market and there is only one stock, say it is S. Further assume that at time t the following 

trades occurred. 

 

Firm A buys 3 million YTL worth of Stock S 

Firm B sells 1 million YTL worth of stock S 

Firm C sells 1 million YTL worth of Stock S 

Firm D sells 1 million YTL worth of Stock S 

 

After the above trades trading volume and net trading volume can easily be 

calculated as 3 million YTL. Firm A brings 3 million YTL cash and takes the stocks 
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bought. Firm B, C, and D deposit the stocks they sold and take 1 million YTL each. The 

trading volume is 3 million YTL and 3 million YTL changes hands in this case. 

 

 Now assume that at time t+1 the following trades occurred. 

 

Firm A buys 2 million YTL worth of Stock S 

Firm B sells 1 million YTL worth of stock S 

Firm C sells 1 million YTL worth of Stock S 

Firm A sells 1 million YTL worth of Stock S (Firm A, for some reason, sells half of the 

2 million YTL worth of stocks it bought) 

Firm B buys 1 million YTL worth of Stock S 

 

After the above trades the trading volume is 3 million YTL. However this time 

the net trading volume is only 1 million YTL. This is because Firm A sells back 1 

million YTL of Stock S it bought and is obligated to bring only 1 million YTL cash to 

the clearing center. Firm B first makes a sale of stock S and buys back the exact amount 

and thus the net obligation is zero for firm B. Firm C makes just one trade and takes 1 

million YTL cash against the delivery of 1 million YTL worth of Stock S. In this case 

although the trading volume is 3 million YTL, only one million YTL worth of stock S 

and 1 million YTL cash changes hands, thus the net volume is calculated to be one 

million YTL. The net volume is only available for each trading day and not for each 

session. Coming back to the definitions changes in net volume was used in order to get 
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rid of non-stationarity problem. In other words, ∆NetVol t,t-1  is defined as logarithm of 

the ratio of Net Volume at time t to the Net Volume at time t-1.  

Another important variable used in this study is the so called return dispersion. 

This variable measures whether the constituent stocks in index move in accordance with 

each other or not. Return dispersion (RDt ) of the stocks in the index is defined in 

functional form as follows: 
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where  n = 30 since there are 30 stocks in the İMKB30 index. This measure uses the 

individual firm returns included in the index and shows how dispersed are the returns of 

constituent stocks. If all the stocks move together in one direction this variable takes 

small values, on the other hand if there are significant differences among the returns of 

the index constituent stocks this variables takes a large value. 

Another measure called Volume Dispersion VDt  was used to explain return 

series, this variable is defined as follows:  
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here again  n equals to 30 since there are 30 stocks in the İMKB30 index. 

Volume dispersion is normalized by dividing the above value to average volume of the 
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period. This variable measures whether the stocks in the index do have volume figures 

close to each other or not. 

 

RVt = (Return multiplied by Volume) To find this variable, the volume of each stock in 

a session or in a day is multiplied by return of each of the stocks in the period and all 

these figures are summed up. As has been done for the return dispersion, the resulting 

figure is divided by the average daily volume of the index to normalize the series. More 

specifically the following formula will be used. 
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where  n = 30 since there are 30 stocks in the İMKB30 index. 

 

The last variable used in this research is the variable called ret30vol which is 

calculated by the following formula: 

 

11 /*)/(30Re −−= tttt VolVolCICILnVolt  

 

In other words per cent change in the index is multiplied by the per cent change in total 

volume of the index stocks. 
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Survey Of Expectations Of Stock Market Brokers 

 

In order to find out the effect of return, volume, price variables on the 

expectations of market professionals a survey was conducted on the Istanbul Stock 

Exchange Trading Floor. A questionnaire is prepared for this purpose. 

In the questionnaire categorical variables are used to get information as to 

whether the respondent has investment in the Istanbul Stock Exchange Stock Market and 

which investment techniques or methodologies are used. The survey was conducted in 

one shot during the period between session 1 and session 2.  

In order to find out the profiles of respondents in terms of demographic 

characteristics, four questions with categorical answers were asked. These are namely,  

questions about the gender, age group educational level and graduate major of the 

respondents.  

There are also twenty questions mainly aimed at finding the expectations for the 

next day and/or next session of the brokers regarding the direction of the ISE Stock 

Market. The choices of these expectation questions are designed as an ordinal scale 

(likert type scale). The answers can be one of type “strongly up”, “up”, “horizontal”, 

“down” and “strongly down”. To give example, the first of these twenty questions is 

provided below: 

 

“What is your expectation of the market direction for the next session or the next 

day if there is an increased in the index level accompanied with an increase in volume. 

Please write down your expectations as provided below.” 
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Strongly up (SU),   Up(U),  Horizontal (H), Down (D), Strongly Down (SD) 

 

For all the twenty questions aimed at finding out the expectations, the subjects 

were also allowed to choose   a “no idea” option, if they do not really have any idea as to 

the direction of the market.  

 

General Findings From The Survey 

 

Some interesting findings from the survey are provided below: 

 

• A total of  500 questionnaires were distributed to the brokers and traders on the ISE 

Floor, 191 of them were returned, 107 of them being male and 73 of them being 

female while 11 of them did not check either male or female.  

• The age of the brokers is heavily concentrated between 26-40, almost half of the 

brokers are between 31-35.  

• A surprisingly large percentage of brokers (40%) answered the question of whether 

they had any investments in the stock market as “no”. This ratio is approximately the 

same for male and female brokers. It seems however, quite interesting to get this 

answer since the market is actually on the finger tips of these people. This finding 

might be due to the fact that a considerable number of brokerage houses do restrict 

their brokers from investing in the market. Another interpretation might be the fact 

that brokers do not believe that they can earn extra profits by investing themselves. It 

is also interesting to note that six of the respondents did not check either yes or no 
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for the question of whether they have some investments in the stock market or not, 

and that they are all male respondents. 

• The number of subjects who responded to all twenty questions about market 

expectations was 175. The remaining 16 respondents did not provide their answers 

for some of the 20 questions.  

• Some subjects checked more than one expectation. For example, there are cases 

where they wrote both down (D) and horizontal (H). In such cases the first of the 

multiple expectations are taken as the answer. In some cases the respondents answer 

the questions as D/H/U, meaning down/horizontal/up, this kind of answer is regarded 

as  a “no idea” answer. 

• 14 out of 191 respondents replied that they do not use any method to make their 

investments. Of these 14 subjects only one had investment in the stock market while 

others said that they have no investments in the stock market. Therefore only one 

respondent ( female)  who had some investments in the stock market was inclined to 

indicate her method for investment.  

 

The following tables summarize the demographic profile of the brokers who replied our 

“survey. 

 

Table 1 - Ages of Participants 
Age-group Percentage 
26-30 %14 
31-35 %52 
36-40 %27 
41-45 %5 
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Two out of 191 respondents did not give any information about their ages. 

 

Table 2 - Educational Levels of Participants 
Level Percentage 
Graduate %11 
Undergraduate %82 
High school %7 
 

Four out of 191 respondents did not answer this question 

 

Table 3 - School Major of Respondents 
Major Percentage 
Social and 
Administrative Sciences 

%74 

Engineering %11 
Sciences %6 
Other %9 
 

Brokers that had high school degrees high school degree did not check any of the 

above majors. Three respondents out of 191 did not provide any information about their 

educational levels or majors. 

 

The Analysis of Investment Methods From The Survey 

 

  The first important finding of this survey with regard to the investment methods 

used by brokers is that the most popular method for stock market investment among 

brokers is found to be the technical analysis method, more specifically, 73 % of subjects 

declared that they use technical analysis as an investment tool. Fundamental analysis 

method also is found to be  heavily used by the brokers, namely, 62%  of the 
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respondents checked this method. Since respondents were allowed to check more than 

one method the sum of the percentages adds up to more than 100%.   

 A striking result of this question is actually the fact that the third most frequently 

cited method among brokers is intuition or their feelings. This is quite an important 

result since it provides some insights into the hypothesis that the emotional aspects of 

investment behaviour should not be neglected when evaluating the responses of 

investors and  portfolio managers in case certain market conditions. The fact that the 

behavioral finance discipline is gaining importance seems to have a very solid base, and 

will gain more importance in the near future also is seemingly being supported by the 

results of our survey. The following table gives the overall results of the survey 

regarding the methods of stock market investment. As seen, nearly half of the 

respondents rely on their  feelings while they might be using other methods. 

 

Table 4 - Investment Methods 
Method Number of 

respondents 
% of Respondents 

Fundamental Analysis 119 %62 
Technical Analysis 139 %73 
Rumours 56 %29 
Intuition, feelings 87 %46 
Following big investors 64 %34 
Other 15 %8 
 

Since the respondents are discovered to making use of more than one method for 

investment, the following table, which shows the number and percentage of the 

respondents and the total number of methods used for managing their equity portfolios is 

also useful. 
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Table 5 - Number of Methods Used By Brokers 
Number of Methods Used Number of Subjects Percentage 

0 14 %7 
1 25 %13 
2 51 %27 
3 67 %35 
4 21 %11 
5 10 %5 
6 3 %2 
  

From the table above, it can be seen that brokers are generally very cautious in 

making their investment decisions. More specifically, 35% of the subjects rely on three 

methods and 27% rely on two methods, and actually 80% of respondents use at least two 

methods. 

The percentage of methods used by male and female respondents are also shown 

in the table below. Although the most commonly used three methods (technical analysis, 

fundamental analysis and relying on pure intuition) and their rankings do not change 

across gender, the fourth most commonly used method used by male respondents is 

“following the big investors” while it is “Rumour” for women.  

 

Table 6 - Usage of methods By Males and Females 
Method % use by Male 

Respondents 
% use by Female 
Respondents 

Fundamental Analysis %72 %51 
Technical Analysis %78 %63 
Rumours %30 %27 
Intuition, feelings %47 %41 
Following big investors %38 %23 
Other %8 %8 
 

The percentages do not add up to one (or 100%), because the subjects were 

allowed to tick more than one method in this question. As seen, the sum of the 
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percentages are greater for men than women. This might be an indication of males  using 

more methods on the average than females. In our survey the average number of 

methods used by men in their investment decisions is 2.73, while it is 2.14 for women. 

On the other hand, the median of the number of methods used by males is three, while it 

is two for females. A simple t-test also shows that the mean number of methods used by 

male and female respondents are significantly different from each other. 

Another important table is provided below which shows that although the most 

commonly used method is technical analysis, the number of respondents who use solely 

fundamental analysis is slightly greater than that of technical analysis and the other 

methods. However the numbers are small and very close to each other, therefore the 

figures can not be used to reach any conclusion on this subject. 

 

Table 7 - Exclusive Usage of Methods 
Method Number of People Using 

only this method 
Fundamental Analysis 10
Technical Analysis 8
Rumours 2
Intuition, feelings 3
Following big investors 1
Other 1
 

This table reassures the fact that, invetors generally rely on more than one 

method while investing in the market. However this table might also be an indication of 

self confidence of the people using a specific portfolio management method. 

Fundamental analysts seem to be more confident of their method than those using other 

methods.  
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Analysis Of The 20 Expectations Questions In The Survey 

 

In the questionnaire, the brokers were asked to answer the question in the following 

format: 

  Please write your expectation for the next day or the next session for the 

following cases. 

   

1) Equity market index increases and the volume or turnover also increases.  

2) Equity market index increases but the volume  remains the same 

3) Market is down, turnover decreases 

4) Market is down turnover increases 

5) Index reaches a new high of the last twelve month period 

6) Index reaches a new high of the last one month period 

7) Index drops to new low of the last twelve month period 

8) Index drops to a new low of the last one month period 

9) Index increases for the last two or more consecutive session and/or days 

10) Index decreases for the last two or more consecutive session and/or days 

11) Index closes lower after a volatile session or day 

12)  Index closes higher after a volatile session or day 

13) Index drops sharply after a volatile session or day 

14)  Index increases sharply after a volatile session or day 

15) Index increases smoothly (with low volatility) during the day/session 

16) Index decreases smoothly (with low volatility) during the day/session 
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17) Index close higher as of the end of day or session but there is a fall towards the end 

of trading period 

18) Index close lower as of the end of day or session but there is a rise towards the end 

of trading period 

19) Index rises while all the stocks in the index rises accordingly (Return dispersion). 

20) Index rises but some of the stocks in the index experience large increases while some 

of them decreases (Return dispersion) 

 

The choices of the above questions are given as a likert type scale as follows: 

 

a) Strongly down 

b) Down 

c) Horizontal 

d) Up 

e) Strongly Up 

 

Values of 1 to 5 is assigned to the choices “a” through “e”, for example strongly 

down takes a value of 1, while strongly up takes a value of  5. The respondents are also 

allowed to write “no idea” option. In the following table average scores and the total 

number of respondents who checked each option and also checked the “no idea” option 

are provided.  

While interpreting the results of the survey, it should be kept in mind, the notion 

of “up” , “strongly up”, “down”, “strongly down” or “horizontal” expectations, the 
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notion of high and low volatility may differ among brokers. A more detailed survey 

asking the brokers about their expectations by providing cases with numerical values of 

variables might probably provide more insights into the expectation formation process. 

However the researcher in this field should be informed that, the brokers do not 

generally have much spare time to fill in such a “detailed” survey.   

 

Table 8 - The Summary Of Expectations  

QUEST. AVRG. 
SCORE 

STR. 
DOWN 

DOWN HRZNTL UP STR. 
 UP 

NO 
IDEA 

TOTAL RANK 
(*) 

QUEST1 4,337 5 2 2 94 84 1 188 2 
QUEST2 2,984 3 61 61 50 7 4 186 11 
QUEST3 2,800 13 51 87 28 6 1 186 13 
QUEST4 1,640 117 43 6 16 4 2 188 20 
QUEST5 3,545 11 38 8 85 36 9 187 7 
QUEST6 3,580 3 34 16 104 19 9 185 6 
QUEST7 2,469 40 73 19 36 11 6 185 16 
QUEST8 2,486 21 95 17 37 5 10 185 15 
QUEST9 3,287 4 44 37 83 10 4 182 9 
QUEST10 2,750 12 72 42 48 2 6 182 14 
QUEST11 2,358 8 123 20 24 1 6 182 18 
QUEST12 3,678 2 17 23 129 6 6 183 5 
QUEST13 1,806 82 69 11 18 0 3 183 19 
QUEST14 4,181 1 11 14 80 71 5 182 3 
QUEST15 3,706 1 5 58 94 19 5 182 4 
QUEST16 2,418 17 86 59 13 2 4 181 17 
QUEST17 2,934 6 64 32 65 0 11 178 12 
QUEST18 3,256 1 45 38 78 6 11 179 10 
QUEST19 4,412 1 3 11 69 93 3 180 1 
QUEST20 3,329 0 6 97 57 1 14 175 8 

(*) Rank According to the averages score 

 

The most answered question is the first question and the least answered questions 

are the last two questions. This might be due to the fact that the respondents may get 

tired or bored of answering all the questions as he/she proceeds. The questions that 

include a volume increase or volume decrease term with an increase/decrease in the 
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index level  namely the first and the third questions, have the least number of “no idea” 

answer. This might be interpreted as volume change accompanied by the index change 

have some clear implications for the brokers about the next session or the day. The 

largest score is calculated as approximately 4.4 for the 19th question. More specifically, 

the respondents expects a bull market after a rise  in all of the index constituent stocks. 

The overall score for this question is somewhere in between up and strongly up choices. 

The lowest score is taken for the 4th question, which asks the expectations after a fall in 

the index level accompanied by a rise in the volume. In other words, the respondents do 

expect a fall in the index for the next day when the index falls with a rising volume. 

Remembering the scaling methodology, average scores close to the number 3 which 

corresponds to the horizontal expectation means that no up or down expectation is 

formed.  

The average score of the questions numbered 19, 1, and 14 is above four, this 

means that the expectation of the respondents for next period is “up” in these cases. The 

last two expectations in the  above table are also regarded as important since the average 

score of them is below two which corresponds to the down expectation. The other 15 

expectation questions are somewhere around three. 

In order to find out whether the mean score for a question is different from the 

value of three which corresponds to the horizontal expectation, a t-test is performed for 

each of the twenty questions . The null hypothesis is that the mean of the average score 

for any question is equal to three. If  the null hypothesis is rejected, then this will mean 

that the sample on the average does not expect a horizontal market for . An example of 
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the t-test is given below. As seen the average score of question 19 is significantly greater 

than three. 

 

Table 9 - Sample output (t-test) for Question 19 
Hypothesis Testing for CEV19 
Date: 02/15/06   Time: 14:28 
Sample(adjusted): 1 182 
Included observations: 180 
Excluded observations: 2 after adjusting endpoints 
Test of Hypothesis: Mean =  3.000000 
Sample Mean =  4.438889 
Sample Std. Dev. =  0.756084 
Method Value Probability
t-statistic 25.53250 0.0000
 

 

A similar t-test is conducted for all the twenty questions asked to the brokers. 

Except for questions, 2,3, 10 and 17, all the mean of all the other questions are found to 

be different from zero at 0.05 significance level. More specifically the questions can be 

classified to three groups, namely, Up Expectation, Down Expectation and Horizontal 

Expectation cases as follows: 

 

Table 10 - Cases Classification with respect to expectations 
Expectation Cases 
Up 1, 5, 6, 9, 12, 14, 15, 18, 19, 20 
Down 4, 7 ,8, 11, 13, 16 
Horizontal 2, 3, 10, 17 

 

In addition to calculating the average score, the total percentage of “up” and 

“strongly up” answers together and “down” and “strongly down” answers together is 

regarded as more explanatory and a better indicator of the feel of respondents about the 

expectation of the direction of the market.  
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For the first three questions with the largest average expectation score in the 

above table the ratio of “up” and “strongly up” answers to the total is 90%, 95% and 

83% respectively. In other words, 90 % of brokers expects the index to go either up or 

strongly up in the next day or session if the index rises while all the stocks in the index 

rise (question 19). On the other hand, approximately 95% of brokers expectations are 

either “up” or “strongly up” for the next session or day when the market index rises with 

rising volume (Question1) And finally 83% of respondents checked their expectations as 

either “up” or “strongly up” for the question asking their expectations when “index 

increases sharply after a volatile session or day”.  

For the two questions with the lowest expectation score, it can be seen that the 

percentage of the total of “down” and “strongly down” answers are 85% and 83% 

respectively. More specifically, 85% of the brokers expects a fall in the index after a 

sharp fall  in the index with volatile trading period (Question 13) and approximately 83 

% of brokers expects a fall  in the index after a fall in the index with  large turnover. The 

total percentage of “up” and “strongly up” and “down” and “strongly down” 

expectations for each of the questions are provided in the following table. The 

percentages in each of the columns provide insights into the relative importance of the 

effects of different variables related to price, volume, volatility etc on the expectations of 

respondents. A declaration of a strongly up or a strongly down expectation can be 

regarded as an indication on how confident is the respondent in each of the twenty 

different cases. It is quite interesting to observe for example the fact that  the 

expectations of respondents can be very diverse in some cases. For example, in question 

two, the respondents were asked to tell their expectations in case of an up move with no 
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increase in volume, almost equal percentages of brokers have found to posses “strongly 

up” and “strongly down” expectations. Therefore the same information seemingly leads 

to completely different expectations, a result that really needs to be studied further by 

the researchers in this field. 

 

Table 11 - Percentage Of “Up” And “Strongly Up” Expectations 
QUESTION Total % of Up and  

Strongly Up Expectations 
Total % of Down and  
Strongly Down Expectations 

QUEST19 %90 %2 
QUEST1 %95 %4 
QUEST14 %83 %7 
QUEST15 %62 %3 
QUEST12 %74 %10 
QUEST6 %66 %20 
QUEST5 %65 %26 
QUEST20 %33 %3 
QUEST9 %51 %26 
QUEST18 %47 %26 
QUEST2 %31 %34 
QUEST17 %37 %39 
QUEST3 %18 %34 
QUEST10 %27 %46 
QUEST8 %23 %63 
QUEST7 %25 %61 
QUEST16 %8 %57 
QUEST11 %14 %72 
QUEST13 %10 %83 
QUEST4 %11 %85 
 

The survey results also are evaluated to see whether there is any difference in the 

expectations of male and female respondents in each of the twenty cases. The following 

table provide the summary results of the average expectation scores of male and female 

respondents. A quick look at the table reveals the fact that although there is some change 

in their order, the scores for each of the twenty questions are very close to each other for 

male and female respondents. In order to find out whether the average scores are 
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different between males and females a t-test is performed for each of the twenty 

questions. Only for the question number two was  the average scores found to be 

different. For the all other 19 questions the average scores do not significantly differ 

from each other. To repeat, question two was as “Equity market index increases but the 

volume  remains the same”. The overall average for this question has been found to be 

2,984 and interpreted as a “horizontal” expectation since it is close to the Number 3. 

Males and Females differ however, in their responses to this question. Females expect a 

down market (2,710) while males expect a slightly up market (3,173). The null 

hypothesis of the average being equal to three is not rejected for males while it is 

rejected for females.  

 

Table 12 - Scores Of Female and Male Subjects Sorted Acc. To Average Score 
Quest Avrg Score 

(Female) 
Total(female) Avrg Score 

(Male)
Total (male) 

1 4,347 72 4,317 105 
2 2,71 72 3,173 105 
3 2,736 72 2,798 105 
4 1,69 72 1,567 105 
5 3,672 71 3,416 105 
6 3,631 70 3,52 105 
7 2,358 70 2,539 105 
8 2,446 70 2,57 105 
9 3,414 70 3,17 104 

10 2,721 70 2,802 104 
11 2,362 70 2,388 103 
12 3,714 70 3,639 103 
13 1,757 70 1,85 103 
14 4,159 70 4,182 103 
15 3,58 70 3,788 103 
16 2,571 70 2,337 102 
17 2,924 69 2,871 101 
18 3,418 69 3,174 101 
19 4,435 69 4,398 101 
20 3,246 70 3,333 99 
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Additionally, all the twenty expectations questions asked in the survey are also 

evaluated to see whether there is any difference between the group of respondents who 

use technical analysis as one of their investment tools and those who use methods other 

than technical analysis. The below table shows the average scores of the two groups. 

 

Table 13 - Average Scores of Technical Analysis Users versus others 
Question Technical Analysis Users Others
QUEST1    4,360  4,271
QUEST2    2,985  2,979
QUEST3    2,831  2,714
QUEST4    1,594  1,771
QUEST5    3,594  3,400
QUEST6    3,621  3,454
QUEST7    2,448  2,533
QUEST8    2,439  2,628
QUEST9    3,328  3,170
QUEST10    2,664  3,000
QUEST11    2,391  2,256
QUEST12    3,619  3,860
QUEST13    1,761  1,935
QUEST14    4,198  4,130
QUEST15    3,765  3,533
QUEST16    2,382  2,522
QUEST17    2,967  2,841
QUEST18    3,194  3,432
QUEST19    4,462  4,267
QUEST20    3,308  3,386
 

 

The above table indicates that the average scores of technical analysis users and 

the average scores of the respondents who do not use technical analysis do not 

significantly differ from each other. A test is performed for each of the twenty questions 

and the null hypothesis of equal means between the two groups can not be rejected at 5 

% significance level.
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CHAPTER III 

EMPIRICAL ANALYSIS OF SURVEY RESULTS 

 

Introduction 

 

In order to ascertain whether the expectations of the brokers taken from the 

survey have empirical support the mean return of sessions whose previous session have 

different properties with regard to return, volume, volatility and return dispersion have 

been analysed. The analysis is done by tabulating the values of variables for each of the 

cases. 

 

Session to Session Returns 

 

Lead Lag Relations Between The Returns 

 

  The first point to consider is to compare the mean returns after a session with 

positive return and after a session with negative return. As seen from the following table, 

the mean return after sessions with positive returns is greater than zero and the mean 

return after sessions with negative returns is less than zero and they are significantly 

different from zero and from each other. The fact that the absolute value of the t 

statistics is lower for negative returns than that of the positive returns implies that the 
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market expectation for positive returns is stronger after positive returns than the 

expectation for negative returns after negative returns. 

 

Table 14 - Comparison of the mean returns after up and down sessions 
Variable Mean t value probability Anova F 

Value 
F-Prob 

posretson 0,0024 4,9366 0,0000
negretson -0,0011 -2,1469 0,0319

24,7524 0,0000

 

Another important statistics with regard to the expected return for the next 

session after a positive and negative return is the ratio of positive returns to the total 

number of returns after an “up session” and “down session”. It has been calculated that 

56 % percent of the returns after an “up session” is positive and 52 % of the returns after 

a “down session” is negative.  

Next period returns are also analysed by differentiating the first and second 

sessions, normal returns and returns that are high in magnitude. The following table 

shows the results of our analysis for all these samples. 

 

Table 15 - Comparison of returns after up sessions, known session on session basis 
variable Count mean Std. 

Dev. 
Std Err. Of 
Mean 

F-value F-prob. 

Pretson1 1031 0,00319 0,02048 0,00064
Pretson2 1059 0,00167 0,02414 0,00074

2,3940 0,1220

Nretson1 633 -0,00055 0,02279 0,00091
Nretson2 632 -0,00170 0,02651 0,00106

0,6874 0,4072

Phretson 611 0,00505 0,02708 0,00110
Pretson 2090 0,00242 0,02242 0,00049

5,8674 0,0155

Nretson 1923 -0,00109 0,02219 0,00051
Hnegretson 506 0,00072 0,02790 0,00012

0,0989 0,7532

 

 

 48



 The positive returns are grouped as session 1 positive returns and session 2 

positive returns and similarly negative returns are grouped as session 1 negative returns 

and session 2 negative returns. This is done to see whether it makes any difference to 

have a positive return in session one or session two with regard to the mean expectation 

of the next session return. As can be seen from the table above, the mean expected return 

for the next session following a session with a positive return does not differ across 

session number. Therefore, the mean expectation can be said to be positive after an 

increase in the index regardless of the session number. Note, however, that the mean 

return after session 1 is higher than the mean return after session 2. 

The mean return expectation after a negative return also is found to be not 

statistically different across sessions. After a negative return comes another negative 

return regardless of the session number.  Note however, that, the mean expected return 

after a negative session is smaller(more negative), after session 2, compared to session 1. 

The mean return for the next session after a large increase in returns i.e. returns 

which are approximately one standard deviation greater than zero also is calculated to 

see whether it makes any difference with regard to the mean return of the next session.  

There are 612 such cases which are shown by the variable “phretson” standing for 

consecutive return after a positive high return. As seen from the above table, the mean 

return after a large increase is higher than the mean return after just an increase in a 

session. The probability value is very small (0.0155), which implies that the difference is 

statistically significant. The ratio of positive returns after a large increase in returns 

becomes equal to 59 % that supports the above conclusion. 
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The same conclusion can not be drawn, however, for the large negative returns. 

Large negative return is defined as the returns whose magnitude is one standard 

deviation greater than zero. As it can again be seen from the table, the mean return after 

a negative return and after a large negative return are statistically indifferent from each 

other. Contrary to what has been found for the large positive returns, the mean return 

after large falls is even higher than the mean return after negative returns. 

The expected return for the next session after two consecutive sessions are also 

analysed, because there was a question asking about the expectations of broker, the 

general expectation from the survey was favoring the up market. The mean return after 

two consecutive up movements is positive and significantly greater than zero. On the 

other hand, the mean return after three consecutive up sessions are also found to be 

greater than zero but it does not seem statistically significant. See the table below: 

 

Table 16 - The mean return after two ups and three ups 
Variable Mean t value probability
ikiupson 0,002294 3,4386 0,0006
ucupson 0,001582 1,85746 0,0637

 

Additionally the mean return after an up session and the mean return after two up 

sessions are compared to see whether there is any significant difference in the between 

them. As it can be seen from the table below, the mean return after two up sessions and 

after an up session are quite close to each other they are not significantly different from 

each other. There is no sign of a strengthening trend and there is also no no sign of any 

reversal. 
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Table 17 - Comparison of Next period returns after two ups and after positive returns 
Variable Count mean Std. 

Dev. 
Std Err. Of 
Mean 

F-value F-prob. 

Ikiupson 1170 0,0023 0,0229 0,0007
Pretson 2090 0,0024 0,0224 0,0005

0,0236 0,8778 

 

. 

On the other hand the null hypothesis of equal means for the cases of positive 

returns, two consecutive positive returns and three consecutive positive returns can not 

be rejected. However, the mean return after a positive session is greater that the mean 

return after two consecutive positive sessions and this in turn is greater than the mean 

expected return after three consecutive positive movements, which implies some kind of 

a reversal. 

For the negative returns the same analysis is repeated. The following output 

shows that the mean expected return is negative after sessions with negative returns, the 

mean expected return is also negative after two consecutive negative returns, but the 

mean gets a bit closer to zero, and the mean expected return after three consecutive 

negative sessions becomes a bit larger than zero, this is regarded as a sign of reversal.  

On the other hand, the hypothesis that all the three means are equal to each other can not 

be rejected as shown below. 

 

Table 18 - Comparison of down returns with two and three consecutive down returns 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

Ucdownson 501 0.000976 0.024626 0.001100 
Ikidownson 1003 -0.000500 0.023959 0.000757 
Nretson 1923 -0.001086 0.022190 0.000506 

1.603.481 0.2013 
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Another sample is constructed where the index reaches a new high of the last one 

month period. There are 301 such observations and it has been found that if the index 

reaches a new high of the last one month period, the mean return after such  a session is 

greater than zero with a probability value of 0,0007. This means that the index 

trespassing the maximum of the last one period can be regarded an indication of a 

further up move. However when this sample is compared to that with positive returns 

only, the result is that, although the mean return after sessions where the prices closes 

higher than the highest of the last month is higher than the mean returns after positive 

sessions, the two samples are not significantly different from each other (shown below) 

 

Table 19 - Comparison of Returns to returns after index passes the highest of the last one 
period. 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

PSTRETSON 2090 0.002421 0.022421 0.000490 
BAYMAXSON 301 0.004551 0.022914 0.001321 

1,5367 0,1245

 

 

The mean returns after sessions where the highest of the last one year period is 

attained, and there have been found 109 such cases and the mean return after such 

sessions are found to be not significantly greater than zero, i.e. t value is found to be 

small with probability of  0.1570. 

The mean returns after sessions where the index drops to a new minimum of the 

last month period the following output is obtained. The mean return after such sessions 

is not significantly different from zero. It is also interesting to note that, contrary to the 
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sign of the mean return after negative sessions the mean return after sessions with the 

new low of the month is even found to be positive. 

In addition to the above findings, there are only eight cases where the session 

reaches a new low of the last one month period, thus the sample is very small, however 

the mean return after such sessions are found to very close to zero. In fact four out eight 

cases are positive and the remaining four are negative, which means that reaching to a 

new low for the last one year period does not say anything meaningful in terms of the 

direction of the market for the next session. 

 

The Lead Lag Relation Between Return And Volume 

 

Since the brokers responding the survey seem to give special importance to changes 

in volume, the return series are also analysed by taking the variable volume into account. 

There are four cases with regard to return volume relationship, namely: 

 

i) Return is positive volume is up 

ii) Return is positive volume is down 

iii) Return is negative volume is up 

iv) Return is negative volume is down 

 

The positive and negative return series are each divided into two samples where the 

first sample is the returns with increasing volume and the second is the return series with 

decreasing volume. The following table depicts the fact that the mean expected return 

for the next session after an up session accompanied by a rising volume and the mean 
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return after an up session accompanied by a falling volume are found to be not 

statistically different from each other. This means that an increase in return accompanied 

by an increase in volume can not be regarded as a sign of an up market and similarly, an 

increase in return which is not supported by an increasing volume  can not be regarded 

as a  sign of down market for the next period. Note, however, the fact that mean return 

for the next session is higher if the volume is also higher. Thus there is some evidence 

favoring the up expectation for the next session is the increase in the index comes with 

an increase in volume, but it is not statistically significant. A similar conclusion is 

reached for the last two of the four cases above. In other words, a fall in the index 

accompanied by a rise in volume can not be taken as a signal of a further fall and 

besides, a fall in the index level with a concurrent fall in the volume is not a sign of a 

recovery at  least  for the next session. 

 

Table 20 - Comparison of positive negative returns accompanied by a negative and 
positive volume change 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

PRETNVOLSON 825 0.001584 0.020947 0.000729 
PRETPVOLSON 1265 0.002967 0.023324 0.000656 

1,9023 0,1680

NRETNVOLSON 1195 -0.001479 0.021902 0.000634 
NRETPVOLSON 727 -0.000454 0.022668 0.000841 

0,9647 0,3261

 

 

The volume return relationship is further analysed across sessions to see if there 

is any difference. There has been found to be no difference across sessions in terms of 

the volume return lead lag relationship. Therefore, it can be concluded that,  a rising or a 

falling volume with a rising or a falling index can not be suggested to use in forming 
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expectations about the mean return for the next session, this conclusion is valid 

regardless of the session  number.  

It is interesting to see that the above findings about the volume return relationship is 

clearly contrary to the expectations of brokers in the İMKB as taken from the survey. 

Note that the first four questions in the survey was asking the expectations of the brokers 

in he following cases. 

 

21) Equity market index increases and the volume or turnover also increases.  

22) Equity market index increases but the volume  remains the same 

23) Market is down, turnover decreases 

24) Market is down turnover increases 

  

The average scores were 4,337, 2,984,2800 and 1,640 respectively on a 1-5 scale 

where one stands for strongly down expectation and five stands for strongly up 

expectation. The scores of the first and the fourth questions clearly say that the 

expectations favours a bull market if an index rise is accompanied by  a rising volume, 

and people generally expects a down market after a session with negative return and a 

rising volume. The above analysis implies however that, these expectations are 

unfounded. More specifically it has been found that the returns after sessions with a rise 

in the index level and a drop in volume are not statistically different from the returns 

after sessions with a rise in the index level and a rise in volume and similarly  a drop in 

the index level with a falling volume does not cause the return of the next session to be 
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different than the case where a fall in the index is accompanied by an increase in 

volume.  

Since the average score of the first and fourth cases indicate a clear bias of brokers, 

the volume issue seems to deserve to be dwelled upon longer.  For this reason, as a first 

step, the sample with means returns greater than zero is filtered according to the volume 

change criteria as follows:  

 

• The days with  positive return  

• The days with  positive return and an at least a 25% rise in volume 

• The days with positive return and at least a 50% rise in volume 

 

As shown below, the mean return for the next session increases as one moves from a 

mere rise in return,  to at least  a 25% increase in volume accompanying the return and 

further to at least a 50% rise in volume and they seem to have means which are 

statistically significantly different from each other. This result is in accordance with the 

average score of the first question from the survey which implies that the market expects 

an up market after a rise in the index and a rise in the volume. 

Note that although the returns after sessions with positive returns and at least  a 50% 

rise in volume is greater than that of the sessions with positive returns and at least 25 % 

rise in volume, the difference is not statistically significant. The ratio of positive returns 

after a positive return is 56 %, the ratio of positive returns after a positive return and at 

least 25 % rise in volume is 60 %, in other words, the returns are greater if the volume 

rise is more visible with a positive index. 
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A similar test is conducted for large positive returns, i.e. returns which are 

approximately one standard deviation greater than zero.  There are 612 such cases. The 

sample is also filtered according to the volume criteria  as has been done, namely, the 

returns accompanied by a 25 % rise in volume are filtered, and then the returns 

accompanied by a 50 % rise in volume are filtered. As the table shows the expected 

mean returns for the next session are a bit higher when accompanied by a large increase 

in volume, but the three samples namely, large returns, large returns with 25 % increases 

in volume and large returns with 50% increases in volume are found to be not 

statistically different from each other.  Thus it can be concluded that large increases 

accompanied by large volume increases can not be regarded as a sign of a bull market.  

Similarly negative returns are also categorized as negative returns, negative 

returns with at least 25% rise in volume and negative returns with at least 50% rises in 

volume. The mean returns for the next session for each of the three cases are calculated. 

As shown in the output below, the mean return for the three cases are not statistically 

different from each other. Thus one can not conclude that the next session will be lower 

if the index falls and the volume rises. Note that  although the largest negative mean 

return for the next session is obtained  in case of a negative return accompanied by more 

than a 50% rise in volume this result does not seem to have sound statistical support. A 

crosscheck of the ratio of positive and negative returns also assures the same conclusion. 

The ratio of negative changes after  a fall in the index and a rise in the volume is 

approximately 50% in all the three cases above, which means that volume increase 

brings no new information for predicting the direction of the market. 
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To summarize, a positive return with a high volume (a visible volume change 

such as at least 25 %) might be an indication of a further rise in the index. This finding is 

in accordance with the average score of the first question of the survey. A negative 

return with a rise in volume is not however, an indication of a further fall in the index. 

This result is clearly contrary to the findings of the fourth question in the survey.  

In addition to the increases in volume, the sessions with a decrease in volume are 

also analysed.  For example, a negative return accompanied by  large volume drop (25 

%) case is analysed and it has been found that this can not be regarded as recovery sign 

for the next period as shown below.  

 

Table 21 - Comparison of mean returns after session with different return volume 
combinations 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

PSTRET 2090 0.002421 0.022421 0.000490 
HAC_50ARTIS01 311 0.005233 0.023080 0.001309 
HAC_25ARTIS01 700 0.004204 0.023266 0.000879 

3,1409 0,0434

HPOSRET 611 0.005004 0.025903 0.001048 
HPOSRET25_VOLCHG01 324 0.006057 0.025690 0.001427 
HPOSRET50_VOLCHG01 169 0.005990 0.026026 0.002002 

0,2167 0,8052

NEGRTE 1923 -0.001086 0.022190 0.000506 
NEGRET_50HAC01 100 -0.003215 0.028530 0.002853 
NEGRTE_25HAC01 330 -0.000109 0.023462 0.001292 

0,7419 0,4763

NEGRET25_FALLINVOL01 697 -0.001953 0.021216 0.000804 
NRETSON 1923 -0.001086 0.022190 0.000506 

0,7986 0,3716

 

This finding is contrary to the widespread belief among technical analysts who 

generally claim that volume drop during negative sessions should be regarded as a sign 

of recovery. In our survey, however, the average scores of the brokers are very close to 

three in case of a drop in the index accompanied by a high volume. And this result is in 

accordance with our empirical findings. 
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 Additionally session to session negative returns are filtered as large negative 

returns, this series is also filtered according to rise, fall, large rise and large fall in 

volume to see the effect of volume in case of large falls in the index. As  was the case 

for negative returns, any change in volume accompanied by a large fall does not imply 

any direction for the return of the next session. 

 

Lead Lag Relation Between Return And Volatility 

 

Since the brokers were asked to write their expectation for the next session or the 

next day in the case of volatile sessions, the session to session returns were also analysed 

to see whether volatility makes any difference for the mean return of the next session. 

To do that, as a first step, volatility should be defined. In our case the best proxy for  

volatility is assumed to be the variable “range”, which is defined as the difference 

between maximum and minimum values attained during a trading period divided by the 

closing value of the period. All the positive returns are then sorted according to the 

magnitude of “range”. Then the sample is split to half and the returns with large range 

values are compared with the returns with the small range values.  

As seen from the following output, the mean return following the sessions with a 

positive return and with high volatility is found to be significantly higher than the mean 

return after the sessions with a positive return and low volatility. 

On the other hand, by applying the same line of reasoning it has been found that 

the same conclusion can not be drawn for the negative returns when the negative returns 

with low volatility and the negative returns with high volatility are compared. The mean 
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return for the session following a session with negative return and accompanied by  high 

volatility is not significantly different from that of a session with a negative return and 

low volatility as shown below: 

 

Table 22 - Comparison of returns after different return and volatility combinations 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

HIGHVLT 1045 0.003398 0.026181 0.000810 
LOWVLT 1045 0.001444 0.017847 0.000552 

3,9772 0,0463

NRETHIGHVLT 961 -0.000832 0.026824 0.000865 
NRETLOWVLTLTY 962 -0.001341 0.016305 0.000526 

0,2528 0,6152

 

It should be noted however that  the mean return after a highly volatile and down 

session  is higher than the mean return after low volatility. In fact, as shown below, the 

null hypothesis that the mean return after a negative return accompanied by high 

volatility is equal to zero can not be rejected, while the same null hypothesis is rejected 

for the mean return following the session with negative return and low volatility. 

 

Table 23 - Comparison of volatile falls with less volatile falls 
Variable Mean t value probability
Nretlowvltlty  -0,00134 -2,55025 0,0109
nrethighvlt -0,00083 -0,96126 0,3367

 

The perception of an upward move or a downward move in the index might be 

different from the point of view of brokers. Perhaps just a few points up or down market, 

or a very small increase or decrease are not regarded as a rise or a fall but rather it might 

well be regarded as a horizontal move. Therefore, in addition to analyzing mere positive 

returns, the mean return after sessions with high positive returns with different volatility 

 60



levels are also evaluated. High positive or large positive returns is defined as return 

which is at least one standard deviation higher than zero level. It has been found that 

mean return after session with a large increase and  high volatility as measured by the 

variable range is significantly greater than that of the sessions with large return and low 

volatility. The relevant  Eviews output is  shown below: 

The same line of reasoning is applied to the case of negative returns, to see 

whether it makes any difference for the mean return of the next session, if there is a 

large fall in the index accompanied by a high volatility or low volatility. Similar to the 

conclusion drawn for the large negative returns, the mean return after significantly down 

sessions with high volatility is found to be greater than that of the sessions with low 

volatility and the result is statistically significant as shown below: 

 

Table 24 - Large positive and Large negative returns with high and low ranges 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

HRETHRANGE 305 0.007198 0.030572 0.001751 
HRETLOWRANGE 306 0.002899 0.022928 0.001311 

3,8674 0,0497

HNEGRETHRANGE 253 0.001978 0.032329 0.002033 
HNEGRATELOWRANGE 253 -0.003413 0.022368 0.001406 

4,7585 0,0296

 

Lead Lag Relation Between Return And Return Dispersion 

 

Since the brokers are asked about their views for the next period in case of high 

return dispersion, the sample is also analysed to see the effect of  this variable on the 

mean return for the next period. First the positive returns are taken into account and the 

return dispersion is found to have no significant impact on the expected returns in case 

of positive returns. As seen from the output below, the sessions with a positive return 
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and a low return dispersion is not significantly different than the sessions with positive 

returns and high return dispersion. This result is not in accordance with the result from 

the survey. 

The same analysis is repeated for negative returns and a different conclusion is 

reached. As seen from the output below, the mean return for the next session after down 

sessions with low return dispersion is lower than the mean return after down sessions 

with high return dispersion. Put another way, if all the stocks in the index fall together, it 

is more probable that the next session will also close lower  than the case where some 

stocks fall in larger percentage than some other stocks in the index. 

In order to find the reasons behind the positive expectation for the next session if 

the return dispersion is low (the case where all the stocks rise together), large positive 

returns are sampled out from the positive return sample. When this was done , it was 

found that high returns with low return dispersion have a higher mean expected return 

for the next session than that of the high return and high return dispersion sessions. This 

means that if the session is significantly higher than the previous session and if all the 

stocks increase accordingly then a positive return for the next session should be 

expected. The expectation is less strong if all the stocks do not rise. 

The variable return dispersion also seems to be a matter of concern when the 

large negative returns are analysed.  In other words, if the all the stocks fall in a period 

with down movement, the mean return for the next period probably will be lower than 

the case where the returns of index stocks differ much from each other. 
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Table 25 - Comparison of Returns with different return dispersions 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

PRETHIGHRETDISP 1045 0.002795 0.027422 0.000848 
PRETLOWRETDISP 1045 0.002048 0.015925 0.000493 

0,5800 0,4464

NRETHIGHRETDISP 962 0.000658 0.027535 0.000888 
NRETLOWRETDISP 961 -0.002833 0.014857 0.000479 

11,9640 0,0006

HRETLOWRETDISP 305 0.006999 0.022738 0.001302 
HIGHRETHIGHRETDIP 306 0.003097 0.030717 0.001756 

3,1834 0,0749

HNEGRETHIGHRETDISP 253 0.003200 0.033317 0.002095 
HNEGRETLOWRETDISP 253 -0.004635 0.020476 0.001287 

10,1550 0,0015

 

 

Daily Returns 

 

Lead Lag  Relation Between The Daily Returns 

 

The analysis of returns made above is also repeated for the daily return series, it 

is found that although the mean return after positive daily return is larger than the mean 

return after negative returns they are not significantly different from zero and from each 

other. It should be noted that the mean daily return is positive for both after days with 

positive returns and  after days with negative returns. Returns approximately one 

standard deviation greater and less than zero are classified as large positive and large 

negative returns. Although the mean return after positive returns and after large positive 

returns are not significantly different from each other, the mean return after large 

positive returns are found to be significantly greater  than zero as shown below: 
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Table 26 - The mean returns after large falls and rises 
Variable Mean t value Probability
Largepretson 0,005541 2,553505 0,0111
Largenegretson 0,003654 1,362049 0,1744
 

The ratio of positive returns after large positive returns is found to be %53 which 

is not so promising. It is interesting to note that this ratio is even larger, more 

specifically, it is %53.8 after large negative returns. The mean return after large negative 

returns is however found to be not significantly different from zero as shown below: 

The mean return after large positive and large negative returns are found to be 

almost equal to each other. Additionally, the mean return after large negative returns are 

greater than the mean return after negative returns they are found to be not significantly 

different from each other. In summary, it can be said that,  if there is a large rise or large 

fall in the index during a day, for the next day, the probability of observing a positive 

return is greater than the probability of observing a negative return, and the magnitude of 

positive returns is higher after large positive returns. 

The mean return following two consecutive positive returns is found to be 

positive and even  a bit greater than the mean return after just a positive return, but the 

difference is not statistically significant as shown below:  

On the other hand, the mean return after there consecutive up days is found to be 

negative and thus less than the mean return after two consecutive days of positive 

movement. Therefore the probability of a reversal is higher when there are three 

consecutive up movements. This conclusion is approved when the ratio of up moves 

after two consecutive ups and three consecutive ups are compared. The ratio of ups is 

around 52 % after two consecutive ups, and the ratio of ups is only around 46 % after 
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three consecutive ups. For the down days, the same analysis is repeated and it has been 

found that the mean daily return after a negative session, two consecutive negative 

sessions and three consecutive negative sessions are not significantly different from each 

other. There is also no sign of reversal after two or three down movements in daily index 

return series. 

The mean returns are also analysed to see whether it makes any difference if the 

index closes above the maximum of the closing values of the last one month period or if 

the index falls further down to the minimum values of the last one month period. As 

shown from the output below the mean return after index closes above the maximum of 

the last one month period is greater than the mean return after the index falls below the 

minimum of the last one month period. The results can be regarded as almost 

statistically significant. In other words one can strongly expect a positive market after 

the index closes above the maximum of the last one month period, but the expected 

movement is horizontal after the index falls below the minimum of the last one month 

period. 

The expected daily return after the index passes above the maximum of the last 

one year period and the expected return after the index closes lower than the minimum 

of the last one year period are found to be not significantly greater than zero. 

 

Table 27 - Comparison of returns with different characteristics 
Variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

IKIUPSONRASI 532 0.002368 0.032012 0.001388 0,0526 0,8186
PRETSON 1037 0.001966 0.033332 0.001035   
BAYMAX 300 0.006342 0.030004 0.001732 3,5387 0,0606
BAYMIN 170 4.80E-06 0.042634 0.003270   
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Effect Of Lagged Volume On Daily Returns 

 

The return volume relation is also analysed for daily positive and negative returns 

separately. The positive returns are classified into four categories on the basis of volume 

change as described below: 

 

• The mean returns after the days with positive change in the index and a positive 

change in volume 

• The mean returns after days with positive change in the index and at least a 25% 

rise in volume 

• The mean returns after the days with positive change in the index and a negative 

change in volume 

• The mean returns after days with positive change in the index and at least a 25% 

fall in volume 

The above mentioned four  samples are  compared to see the effect of a change or a 

large change in volume accompanied by a rise or a large rise in the index. As shown in 

the output below, the mean returns are all not significantly different from each other. 

Thus volume increase or decrease with a rising index does not make any difference in 

terms of the expectation of the next day’s return 

Large positive returns are also classified to see whether volume change does make 

any difference in cases of large increases in the index 

• The mean returns after days with large positive change and an increase in volume  
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• The mean returns after days with large positive change and at least a 25 % 

increase in volume  

• The mean returns after days with large positive change and a fall in volume  

• The mean returns after days with large positive change and at least a 25 % fall in 

volume  

The mean returns for the next day in all of the above four cases are found to be 

almost equal to each other as was the case for positive returns. Therefore the result 

doesn’t change depending on the magnitude of up movements. 

 

Table 28 - Comparison of rises in the index with different volume combinations 
Variable Count mean Std. Dev. Std Err. 

Of Mean 
F-value F-prob. 

POSRET_25VOLRISESON01 322 0.002641 0.035666 0.001988 
POSRETPOSVOLSON 526 0.003631 0.033565 0.001463 
PRET_25FALLINVOL01 279 0.000468 0.032403 0.001940 
PRETNEGVOL 510 0.000302 0.033049 0.001463 

1,0680 0,3615

LARGEPOSRET_25FALLINVOL0 279 0.000468 0.032403 0.001940 
LARGEPOSRET_25RISEINVOL0 162 0.004553 0.039008 0.003065 

LARGEPOSRETNEGVOL 222 0.005606 0.036722 0.002465 
LARGEPOSRETPOSVOL 98 0.005393 0.043389 0.004383 

1,0116 0,3869

 

The same volume  classification is done for negative returns and large negative 

returns. The mean returns after large negative returns and negative returns are found to 

be almost equal to each other regardless of the volume change.  

Therefore, in general the amount and sign of change in volume does not give any 

significant signal about the direction of the market for the next day. 
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The Effect Of Lagged Volatility And Return Dispersion On Daily Returns 

 

Daily positive and negative returns are each sorted according to the magnitude of 

the volatility as measured by range which is defined as the difference between the 

minimum value and maximum value divided by closing value. Each sample is divided 

into two samples, one being the highest half of the range, and the other belonging to the 

lowest half of the range. Although the mean return of positive session with high 

volatility is found to be higher than the mean return after the days with positive return 

and low volatility, the two samples are not significantly different from each other. For 

the negative returns, on the other hand, the mean returns after negative return and low 

range and the mean return after negative return and high range are found to be almost 

equal to each other. Moreover, the range is found to have no significant effect on the 

next period’s return in case of large positive and large negative returns. 

As has been done for finding the effect of lagged volume change on the returns, 

daily positive and negative returns also are divided into two groups, one being the days 

with high return dispersion and the others with low return dispersion. As shown in the 

output below, the mean return after the days with positive returns and high return 

dispersion is found to be significantly greater than the mean return for the days 

following the days with positive returns and low return dispersion. This result can be 

interpreted as that positive returns accompanied by high return dispersion have a higher 

expected mean return for the next day than the positive returns with low return 

dispersion. 
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On the other hand, as shown below, although the mean return after days where 

all the stocks in the index fall in close magnitude to each other is larger than the days 

where the return dispersion is high, they are not significantly different from each other. 

 

Table 29 - Positive and Negative Returns with different return dispersions 
variable Count mean Std. Dev. Std Err. Of 

Mean 
F-value F-prob. 

PRHIGHDISP 519  0.004384 0.039745  0.001745 5,4915 0,0193
PRLOWDISP 518 -0.000457 0.025137  0.001104   

NRETHRETDISP 488  0.002081 0.039864  0.001805 1,1179 0,2906
NEGRETLOWRD 486 -0.000155 0.024228  0.001099   

 

Similarly, for large negative movements in the index, it has been found that the 

magnitude of the return dispersion does not significantly affect the expected return for 

the next day. 

 

Summary And Comparison Of The Empirical Analysis With The Expectations Survey 

 

The expectation for the return of the next period for each of the cases with 

different session to session and daily return, volume, volatility and return dispersion 

composition are summarized as follows: 

i) An increase in the index during a session implies an up market for the next 

session; however, an increase in the index for the day doesn’t imply an up 

market for the next day. 

ii) A decrease in the index implies a down market for session to session returns, 

however a decrease in the index during the day doesn’t imply a down market 

for the next day.  
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iii) A large increase in the index implies an up market for session to session and 

for daily returns, and the mean expected return for the next session is 

significantly higher than the mean expected return for session to session to 

session mentioned in case 1, while the difference is not statistically 

significant for daily returns. 

iv) A large decrease in the index does not imply a down market, the mean 

expected return is after large negative returns is negative but not significantly 

lower than zero. On the other hand the mean  daily return after large falls in 

the index is positive implying some kind of reversal, but the null hypothesis 

of a zero mean return can not be rejected. 

v) The mean return after an increase in the index and increase in volume is 

higher but not significantly different than the mean return after an increase in 

the index and a decrease in volume. Therefore, volume change does not 

produce any up or down signal for the next period. This conclusion is valid 

for both daily and session to session returns. 

vi) The mean daily return and session to session return after a fall in the index 

and a fall in volume is not significantly larger than the mean return after a fall 

in the index and a rise in volume.  

vii) The mean return after an increase in the index and at least 25 % rise in 

volume is significantly higher than the mean return after an increase in the 

index level. This is not the case however for daily returns. 

 70



viii) The mean return after a large increase in the index accompanied by an at 

least 25 % rise in volume is not statistically different than the mean return 

after a large increase in the index. The same is true for daily returns. 

ix) The mean return after a fall in the index and at least 25 % rise in volume is 

not statistically different than the mean return after a fall in the index.  This is 

true for both session to session and daily returns. 

x) The mean return after a fall in the index accompanied by an least 25 % fall in 

volume is not statistically different than the mean return after a mere fall in 

the index. This is true for both daily and session to session returns 

xi) The mean return after sessions with positive return and high volatility is 

significantly higher than the mean return after sessions with positive return 

and low volatility. 

xii) The mean return after down sessions with high volatility is not significantly  

different than the mean return after down sessions with low volatility. 

xiii) The mean return after up sessions with low return dispersion is not 

significantly different than the mean return after up sessions with high return 

dispersion 

xiv) The mean return after a fall in the index accompanied by low return 

dispersion is significantly lower than the mean return after a fall in the index 

with high return dispersion 

xv) The mean return after a large rise in the index with high volatility is 

significantly greater than the mean return after a large rise in the index with 

low volatility. 
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xvi) The mean return after a large rise in the index accompanied by low return 

dispersion is significantly higher than the mean return after a large rise in the 

index with high return dispersion 

xvii) The mean return after a large fall in the index with high volatility is 

significantly greater than the mean return after a large fall with low volatility. 

xviii) The mean return after a large fall in the index with high return dispersion is 

significantly greater than the mean return after a fall in the index 

accompanied by a low return dispersion. 

xix) The mean return after two consecutive up sessions is lower but not 

statistically different than the mean return after an up session. The mean 

return after three up sessions are lower and not statistically higher than zero.  

xx) The mean return after three consecutive down sessions is higher than the 

mean return after two consecutive down sessions which is higher than the 

mean return after a down session. But all the three cases do not have 

statistically different expected returns. 

xxi) The mean return after a session which closes higher than the highest of the 

last month period is higher but not statistically different from the mean return 

after an increase in a session. 

xxii) The mean return after a session which closes lower than the minimum of the 

last month period is positive but not significantly different from zero and it is 

not also significantly different than the mean return after negative returns. 

xxiii) There are not many cases found for the condition that the index closes over 

the maximum of the last one year period and under the minimum of the last 
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one year period. A general finding is that the mean return after the index 

passes the one year maximum or one year minimum is not significantly 

different from zero. 
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CHAPTER IV 

DISTRIBUTIONAL PROPERTIES OF RETURNS 

 
Introduction 

Returns of the İMKB30 are analyzed for three different time periods, namely, 

from session to session, from one day to the other and from the first session to the 

second session of the same day.   

 

Session To Session Returns 

 

First, the distributional properties of the index return series calculated from the 

closing values and the average values of the index from one session to the other is 

analyzed. For the whole period between March 1997 and April 2005, a total of 4013 

session to session return series are computed.  

The following figure and table shows the distribution of the close to close return 

series by session. The series is called “Ret30seans”. Although the shape of the 

distribution resembles the normal distribution,  the Jarque-Bera statistics is highly 

significant implying that the distribution is not normally distributed. It should be noted 

however, that, this statistics can be misleading in some cases. Although not shown here 

the series is also found be non-normal by using the well-known Kolmogorov Smirnov 

test. The high kurtosis value is also an indication of thick tails and non-normality. The 

series is found to have negative skewness, a property which is generally observed in 

most of the equity markets. 
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Figure 1 - Distribution of session to session returns 
 

 

Table 30 - Em
Empi  Test for R T30SEAN  
Hypothes
Sample(adjusted 014 
Included observation : 4 adjusting endpoints 
Method 
Lilliefors (D) 0.064862    NA    0.0000  
Crame

Anderson-Darling  37.73300 37.74006 0.0000  

r-von Mises 
(W2) 

6.210677 6.211451 0.0000  

Watson (U2) 6.197138 6.197910 0.0000  

Method: Maximum Likelihood - d.f. corrected (Exact Solution) 
Parameter Value    Std. Error z-Statistic Prob.  
MU 0.000742 0.000353 2.101009 0.0356 
SIGMA 0.022377 0.000250 89.57678 0.0000 

3       Mean dependent var. 0.000742 Log likelihood 9554.65
No. of Coefficients 2       S.D. dependent var. 0.022377 
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The mean of the whole series is positive but it needs to be tested to see whether 

e average return from one session to the other is zero or not. The result of this 

hypoth

Table 31 - T-test for session to session returns 
30SEANS 

Date: 07/29/05   Time: 10:54 
Sampl
Included observations: 4013 after adjusting endpoints 

Sample Mean =  0.000742 

th

esis test is shown in the table below: 

 

Hypothesis Testing for RET

e(adjusted): 2 4014 

Test of Hypothesis: Mean =  0.000000 

Sample Std. Dev. =  0.022377 
    
Method Value Probability
t-statistic 2.101009 0.0357 
 

As seen from the table above, the null hypothesis that the session to session 

return is equal to zero is rejected at 5 % significance level, however, it is very close to 5 

percent significance level.  

An alternative view of the distribution is provided in the table below. The 

empirical distribution of returns in tabular form is quite helpful in assessing the shape o

the distribution.  As seen from the table session to session returns are concentrated 

within the +- 2 % interva

f 

l. However the extreme values are quite striking. For example, 

e number of  returns below –10% is 12, which is quite high compared to a normal 

. If the distribution 

uch a return (i.e. less than or equal to –10 %) 

ber of observations within this 

stribution were normal. From the empirical 

 out of 4013 falling out of the interval, 

th

distribution with the same mean  and the same standard deviation

were normal the probability of observing s

is around 0.00001 (1/100,000). In other words, the num

interval would virtually be zero, if the di

distribution however, there are 12 observations
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which means tha ility  nt is considerably higher when compared 

b

ta ET30
by ET3
5 03 

uste
serv 3 aft

 Endpoints
ET30SEANS Mean Std. Dev. Obs. 

t the probab  of such an eve

to normal distri ution.  

 

Table 32 - Frequency Distribution of Session to Session Returns 
Descriptive S tistics for R SEANS 
Categorized  values of R 0SEANS 
Date: 07/29/0   Time: 11:
Sample(adj d): 2 4014 
Included ob ations: 401 er adjusting 
        
R
[-0.14, -0.12) -0.123173 0.003147 4 
[-0.12, -0.1) -0.105076 0.003392 8 
[-0.1, -0.08) -0.089003 0.006207 12 
[-0.08, -0.06) -0.070701 0.004946 28 
[-0.06, -0.04) -0.046664 0.005224 75 
[-0.04, -0.02) -0.027927 0.005800 376 
[-0.02, 0) -0.008462 0.005357 1420 
[0, 0.02) 0.008370 0.005419 1481 
[0.02, 0.04) 0.027751 0.005715 470 
[0.04, 0.06) 0.046936 0.005295 89 
[0.06, 0.08) 0.069198 0.006236 36 
[0.08, 0.1) 0.088403 0.005559 12 
[0.1, 0.12) 0.103347 0.003305 2 
All 0.000742 0.022377 4013 
  

In addition to the calculation of session close to session close returns, session to 

session average return series is also calculated and graphed to see any differences in 

empirical distributions .  

The following figure shows the empirical distribution average return series. As 

seen from the figure, the average return series is found to be closer to normal than the 

distribution of close to close returns. A brief comparison of Figure 1 with (close to close 

session returns) with Figure 2 shows that the Jarque Berra Statistics is much lower for 

average returns and the kurtosis value is also lower. Additionally, the skewness is less 
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and values of extreme values are also lower for the average return series. Therefore 

although the distribution of average returns is still non-normal it is closer to normal than 

the close to close returns. 
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Figure 2 - Distribution of average session to session returns 

e 

 

 

Kurtosis

 

 

Intraday Session to Session Returns 

 

Session to session returns should be analyzed carefully in the sense that the tim

period between the first session and the second session held during a trading day is only 

two hours while the time period between the two consecutive sessions from one day to 

the other (i.e. the second session of day T and the first session of day T+1 is 18 hours

during weekdays and 66 hours for the weekend and even higher for the religious holiday 

periods. Therefore dynamics of return distribution might possibly change depending on

the time interval between two return values. For this reason the returns between two 
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sessions on the same day are analyzed separately from the returns between two session

on different days. The following graph shows the distribution of close to close returns

for two consecutive se

s 

 

ssions on the same day. As seen from the graph the distribution of 

lose to close noon returns is non-normal but closer to normal than the distribution of 

session to session returns. This finding is in accordance with the  results reported by 

 

c

Masulis et al. (1995). 
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Figure 3 - Distribution of Intraday Session to session returns 

 

ual 

Maximum  0.096637
Minimum -0.106058

Skewness  -0.025112
Kurtosis   5.487344

Jarque-Bera  515.7837

 

 

It is also worth noting that the mean return of close to close noon returns is 

greater than the mean return of session close to session close  returns. However a simple

t test shows that the null hypothesis that session to session and noon returns being eq

to each other can not be rejected. 

Although the average of close to close noon returns is greater than the average of 

session close to session close returns (the average of session close to session close 

returns is 0.000742, the average of noon close to close returns is 0.001291), the risk 
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measured both in terms of standard deviation (the standard deviation of close to session

close returns is 0.022377, the standard deviation of noon close to close returns is 

0.0204024) and in terms of empirical probabilities of ex

 

treme events (the sample size for 

the noo

 

r kurtosis compared to close to close noon return 

implying larger deviation from normality compared to close to close returns. In other 

words noon returns calculated from closing values are closer to normal than that of the 

average values, while session to session returns calculated from the average values are 

closer to normal than that of the close to close returns.  

The maximum and minimum values of the averages are also quite large implying 

the higher probability of extreme returns. The standard deviation as measure of risk is 

also higher for average noon return series, while the average is higher for noon returns 

calculated from average values of the index. However  the mean of the noon returns 

calculated from averages can not claimed to be significantly higher than the mean of the 

session to session average returns. 

 

n returns is almost half of the number of the session to session returns and there 

is only 1 observation less than –10 %, and there is no observation greater than 10 %) is

less for the noon returns than that of  the session to session returns. This is quite an 

interesting result and seemingly contrary to the classical risk return trade-off logic. 

On the other hand, noon returns calculated from average values are found to have 

higher Jarque-Bera value and highe
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Daily Returns 
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The average of close to close daily return is positive but again the t value is 

so high as to assure that the daily returns are higher than zero (see below table). The 

probability value is very clo

not 

se to 5% level and although the returns are positive at 5 % 

vel of significance, care should be taken given the nonnormality of the distribution.  

y return 

le

 

Table 33 - T-test for dail
Sample(adjusted): 2 2014 
Included observati 13 aft g ints ons: 20 er adjustin  endpo
Test of Hypothesis 0.0: Mean =  00000 
Sample Mean =  0.001476 
Sample Std. Dev. =    0.033158
Method Value Probability
t-statistic 1.99703 0.0460 5 
 

 

The table b o v  i lyzing the distribution of returns. As 

e table  se rn  concentrated within the +- 4 % interval. 

e of dai is h  t ession to session returns but the standard 

 also hi ost 50 % higher than that of the session to session return 

From the table, it can be seen that the  number of  daily returns below –10 % is  

13 out 

 

elow is als ery useful n ana

seen from th  session to ssion retu s are

The averag ly returns igher than he s

deviation is gher,  alm

series.  

of 2013 observations, while the expected value of such returns should be three if 

the distribution was normal. On the other hand,  the number of daily returns over 10%

reaches  18 while this number should be two if the distribution were normal. The 

probability of extreme positive values for daily returns is considerably higher than 

session to session returns while the probability of extreme negative returns is higher for 

session to session returns.   
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Descriptive Statistics for RET30 
Table 34 - Frequency Distribution of Daily Returns 

Categorized by values of RET30 
Sample(adjusted): 2 2014 
Included observations: 2013 after adjusting endpoints 
RET30 Mean Std. Dev. Obs. 
[-0.22, -0.2) -0.200675    NA    1 
[-0.18, -0.16) -0.163193    NA    1 
[-0.16, -0.14) -0.151398 0.009944 2 
[-0.14, -0.12) -0.128101 0.006862 3 
[-0.12, -0.1) -0.107681 0.006876 6 
[-0.1, -0.08) -0.089485 0.005211 15 
[-0.08, -0.06) -0.068280 0.005854 33 
[-0.06, -0.04) -0.048573 0.005274 90 
[-0.04, -0.02) -0.027892 0.005521 280 
[-0.02, 0) -0.009540 0.005653 545 
[0, 0.02) 0.009146 0.005753 551 
[0.02, 0.04) 0.029102 0.005918 291 
[0.04, 0.06) 0.047824 0.005477 123 
[0.06, 0.08) 0.067177 0.005533 37 
[0.08, 0.1) 0.090257 0.007426 17 
[0.1, 0.12) 0.108659 0.005795 11 
[0.12, 0.14) 0.127119 0.008865 3 
[0.14, 0.16) 0.145709    NA    1 
[0.16, 0.18) 0.170659 0.008316 3 
All 0.001476 0.033158 2013 
 

The distribution of daily returns calculated from the average values of the index 

is closer to normal when compared to that of the close to close daily returns. As seen 

from the figure below, the Jarque-Bera statistics drops to almost half of the value of the 

value that is calculated for close to close return distribution. The extreme values are also 

lower compared to close to close daily returns. The daily return series calculated from 

averages being closer to normal than the return series calculated from daily closing 

values is in accordance with the findings for the session to session returns, but returns 

are quite different in this sense. For the noon returns, the distribution of the returns 
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calculated from averages deviates larger from normality than that of the close to close 

returns. 
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Figure 6 - Empirical Distribution of Average daily returns 

 

When the weekday returns are examined separately, i.e. the weekend returns are 

excluded from the sample, the distribution of the returns calculated from the closing 

values is again non-normal as shown below. But this time the mean of the daily returns 

is almost two times higher than the the mean of daily return series including the 

weekend returns. The standard deviation on the other hand is found to be  almost the 

same. As seen from the higher value of kurtosis and Jarque-Bera statistics the weekday 

returns deviates larger from normality than the daily returns including both the weekend 

and weekday returns. 

Sa
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Weekday Returns 
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Figure 7 - Empirical Distribution of weekday returns 
 

On the other hand, when the distribution of weekday returns calculated from the 

daily average values of the index was analysed, it was observed that the distribution ge

closer to normal compared to close to close returns. This conclusion can easily be d

by looking at the value of Jarque-Berra statistics for each of the return distributions.  

The mean of daily weekday returns calculated by using the average values 

however is smaller than the mean of close to close daily

called Monday effect encountered in rel

daily ret not ble in th ekday daily

from the average

 

 85



0

40

80

120

160

200

240

280

320

-0.10 -0.05 0.00 0.05 0.10 0.15

Series: RET30AVGHICI
Sam ple 1 1583
Observations 1583

Mean  0.001693

Maxim um  0.168343
Minim um -0.116609

Skewness -0.019594
Kurtosis  6.072960

Median  0.001855

Std. Dev.  0.026462

Jarque-Bera  622.9515
Probability  0.000000

 

igure 8 - Empirical Distribution Of Average Weekday Returns 
 

Weekend Returns 

 

Apart from the weekday returns, the distributional properties of weekend returns 

are also analyzed to see whether they posses something different in terms of the 

distributions. For this purpose, two types of returns series are calculated again, one being 

the close to close returns, and the other being the return series calculated from the daily 

average values of the index. The weekend returns calculated from the closing values and 

average values are depicted below. Since the whole series of close to close daily returns 

ave positive mean and the weekday close to close returns further have a larger positive 

ean, the mean of the weekend close to close returns are negative as expected. The 

tandard deviation of the close to close weekend returns is higher while the kurtosis is 

lowe

eans of weekday and weekend returns calculated from closing values are not equal, 

this result  should be evaluated with some care, since the distributions are not normal. 

F

h

m

s

r compared to the weekday returns. Although a simple t-test indicates that the 

m
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Table 3
Test for Equality of Means Between Series 

5 - T-test for the weekday and weekend returns 

Sample: 1 1585 
Included observations: 1585 
Method df Value Probability 
t-test 2011 3.208688 0.0014 
Anova F-statistic (1, 2011) 10.29568 0.0014 
Analysis of Variance 
Source of Variation df Sum of Mean Sq. 

Sq. 
Between 1 0.011268 0.011268 
Within 2011 2.200830 0.001094 
Total 2012 2.212097 0.001099 
 

 

The weekend returns calculated from the averages are still non-normal but gets 

even cl s is 

ed 

oser to normal distribution (the kurtosis is lower, and the Jarque-Bera statistic

also lower) compared to close to close weekend returns. The mean of the returns 

calculated from the averages is not negative but very close to zero. However, compar

to weekday returns being negatively skewed, weekend returns have positive skewness. 
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Figure 9 - Distribution of Weekend Returns (Close to Close) 
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Figure kend erage) 
 

 

 

Three Period (Pre-Crisis, Crisis And Post Crisis) Analysis Of The Return Series 

 

The data spans the period from the beginning of 1997 to the first quarter  2005. 

As known, during the period investigated, Turkey experienced a severe financial crisis 

in which the Turkish Lira (TL) was devalued, interest rates, especially overnight rates 

rose substantially and the liquidity of the bond market almost diminished. During crisis 

periods as such the relationships among market indicators may differ due to changes in 

portfolio compositions and the changes in the risk appetites of the investors. Therefore, 

in order to see whether there is any change in the return distributions, the whole period is 

Proba

10 - Distribution of Wee Returns (Average to Av
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divided into three sub-periods, namely the pre-crisis period, the crisis period and the-

sis perio

 last s in T ed to have begun in 

000 se in r cash TL. Investors especially 

h Central e dem reign currency both by selling from 

y asing terest rate  did not help however and in February 

2001 the TL was devalued substantially and the currency anchoring regim

s 

conomic and financial units of Turkish Economy, the markets 

gradua

mary , the whole period in question is divided 

to three subperiods described below: 

post cri d.  

The  financial market crisi urkey may be assum

November 2  with a sudden increa  demand fo

foreign investors rushed to buy foreign currency due to the fear of devaluation. The 

Turkis  Bank tried to meet th and for fo

reserves and b  incre  the in s. This

e  was 

abandoned and the TL was allowed to float freely. The propagations of the crisis was 

felt after February of 2001, since financial markets calmed down gradually. The 

overnight interest rates and the exchange rates are very useful to pick the different 

phases of the crisis. The first upward spike after a relatively long period of decline in 

overnight rates was observed in November 2000. While there was no big upward move 

in exchange rates at that time,  the crisis is assumed to have started on that date since 

there was a very large amount of foreign currency demand during that period. The crisi

deepened in February 2001 when the TL was  devalued substantially. The Ruling 

Turkish Coalition Government  invited Mr. Kemal Derviş, a former World Bank vice-

president to take control of the economy. After his appointment as a minister in charge 

of almost all the major e

lly calmed down. After May 2001, the volatility of overnight rates and the 

exchange rates fell substantially. In sum

in
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The Pre :

 Cri  vember 2000-April 2001 

 Pos iod y 2001-  

risis Pe

-crisis Period  March 1997-October 2000 

The sis Period :  No

The t-crisis Per : Ma April 2005

 

Pre-C riod 

 

The distribution of daily returns session returns and noon returns calculated from 

the clos

istribution of daily returns and session to session returns calculated from average 

values  is closer to normal than the that of the close to close returns. The noon returns 

owever are an exception. The noon returns calculated from averages are more non-

normal

ing values (close to close returns) and average values of the index (average to 

average returns) are all analyzed during the pre-crisis period. All the series are non-

normal as seen from the table below. The lower value of Jarque Bera statistics and 

kurtosis for the average daily returns and session to session returns imply that the 

d

h

 than the distribution of noon returns calculated from the closing values.  

 

Table 36 - Close To Close Returns 
 RET30 RET30OGLEN RET30SEANS 
 Mean  0.002657  0.001173  0.001337 
 Median  0.001123  0.000965  0.001645 
 Maximum  0.161132  0.087287  0.105685 
 Minimum -0.163193 -0.106058 -0.120521 
 Std. Dev.  0.036149  0.022136  0.024676 
 Skewness -0.016541 -0.088443 -0.357692 
 Kurtosis  4.940202  4.696859  5.599751 
 Jarque-Bera  140.8917  108.1781  542.2567 
 Probability  0.000000  0.000000  0.000000 
 Sum  2.385594  1.046276  2.392862 
 Sum Sq. Dev.  1.172152  0.436593  1.089336 
 Observations  898  892  1790 
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The mea urns, ssion to session (ret30seans), 

clos g the period is higher than the mean daily 

e return 

eries for the whole period. Moreover the means of the return series seem to be in logical 

order; i

s 

es in 

n of close to close ret  namely se

noon(ret30oglen) and daily returns (ret30) are all positive in the pre-crisis period. The 

mean daily e to close return durin  pre-crisis 

return for the whole period, while the noon and session returns in the pre-crisis period 

are very close to the values for the whole period. The standard deviations of all the close 

to close return series are also very close to the standard deviation for the sam

s

n other words, the mean daily return is the highest, the mean session to session 

return comes second and the mean of the noon returns comes third. The average time 

between daily returns is greater than the average time between session to session return

which is again greater than  the time between noon returns. The standard deviations 

follow the same order.  

The following table displays the relevant statistics for the average return seri

the pre-crisis period.  

 

Table 37 - Average Returns 
 RET30AVRG RET30AVRGOGL RET30AVRGSNS 
 Mean  0.002659  0.002679  0.001336 
 Median  0.003290  0.000988  0.001368 
 Maximum  0.111958  0.127266  0.073016 
 Minimum -0.105206 -0.152104 -0.083807 
 Std. Dev.  0.030603  0.033792  0.020249 
 Skewness -0.051631 -0.073832 -0.206475 
 Kurtosis  4.400094  5.086841  4.330624 
 Jarque-Bera  73.74552  162.4853  144.7728 
 Probability  0.000000  0.000000  0.000000 
 Sum  2.387365  2.386907  2.392313 
 Sum Sq. Dev.  0.840054  1.016269  0.733544 
 Observations  898  891  1790 
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As seen retu positive, b cifically the mean of the 

 the average values are considerably higher than the mean 

The Crisis Period

, the mean rns are all ut more spe

noon returns calculated from

of  close to close noon returns during the pre-crisis period. The volatility of the noon 

average returns are also higher than the close to close returns in the pre-crisis period. 

 

 

 

The crisis period starts on the first day of October 2000 and is assumed to end as 

of the end of April 2001.  The selection of this date is of course questionable.  However, 

the end of April 2001 is considered to be an important turning point because the 

chairman of the IMF at that time announced a 10 billion USD amount of support as a 

loan to Turkey. The extreme figures during the crisis are most visible in the daily close 

to close returns, they are  as high as almost an 18 % up and as low as more than a 20 % 

down. 

 

Table 38 - Close To Close Returns 
 RET30 RET30OGLEN RET30SEANS 
 Mean -0.000514  0.003736 -0.000338 
 Median -0.004024  0.004873  3.53E-05 
 Maximum  0.176465  0.096637  0.101010 
 Minimum -0.200675 -0.096875 -0.127436 
 Std. Dev.  0.055319  0.031946  0.034657 
 Skewness  0.097812 -0.179220 -0.286329 
 Kurtosis  5.282969  4.169614  4.927225 
 Jarque-Bera  25.59480  7.295314  39.24239 
 Probability  0.000003  0.026052  0.000000 
 Sum -0.060097  0.437115 -0.078795 
 Sum Sq. Dev.  0.354978  0.118380  0.278660 
 Observations  117  117  233 
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The mo f the statistics is the negative mean returns for daily 

ean daily and session to session 

risk  dev he magnitude of extreme figures 

bst

 closing values compared 

 the pre-crisis period. The crisis period characterized by a positive return in noon 

measured by the standard deviation  and the magnitude of extreme values  is also 

 returns 

rom e v  index i  below. This time all the 

ean values.  The standard 

st prominent feature o

and session to session returns. In addition to the fall in m

returns, the  measured by standard iation and t

increased su antially for these two return series. It is interesting however to observe a 

positive and even larger mean for noon returns calculated from

to

returns and negative daily and session to session returns. The risk of the noon returns 

interestingly lower than the daily and session to session returns. The statistics of

calculated f  the averag alues of the s displayed

return series including the noon returns have all negative m

deviation of all the three return series show that the largest volatility belongs to the noon 

return series.  

 

Table 39 - Average Returns 
 RET30AVRG RET30AVRGOGLEN RET30AVRGSNS 
 Mean -0.000627 -0.000764 -0.000301 
 Median -0.000825 -0.002005 -0.000446 
 Maximum  0.168343  0.171314  0.090699 
 Minimum -0.116609 -0.149465 -0.090169 
 Std. Dev.  0.044934  0.050168  0.029077 
 Skewness  0.240273  0.336051  0.045757 
 Kurtosis  4.728987  4.935083  3.942261 
 Jarque-Bera  15.56488  20.28196  8.700899 
 Probability  0.000417  0.000039  0.012901 
 Sum -0.072674 -0.088617 -0.070075 
 Sum Sq. Dev.  0.232191  0.289434  0.196152 
 Observations  116  116  233 

 

The shape of the distribution of average returns is again non-normal but the it 

approaches to normal distribution . 
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The Post Crisis Period 

 

he return statistics of the post-crisis period is provided below. As in the pre-

crisis and crisis period, the distributions do exhibit high kurtosis and high Jarque-Berra 

riod compared to the pre-crisis period. This is 

robably due to the fact the effects of the crisis did not fade immediately.  

 almost half the 

ose to close series and return series calculated from the 

 crisis als rized  low values of extreme 

 returns after the exclusion of the full 

01 did again give rise ila ion

Table 40 - Close To Close Returns 

T

statistics implying non-normality. One important point to note is that, the distribution is 

more non-normal in the post crisis pe

p

The mean returns are positive and the standard deviations are

crisis period for both the cl

averages.  The post period is o characte  by the

values across all return series. The distribution of

year 20 to sim r conclus . 

 

 RET30 RET30OGLEN RET30SEANS 
 Mean  0.000647 9 33 0.00110  0.000 2 
 Median  0.001394 6 50 0.00117  0.000 6 
 Maximum  0.121478  0.089157  0.096065 
 Minimum -0.135893 -0.078544 -0.121099 
 Std. Dev.  0.026165  0.016762  0.017934 
 Skewness  0.055043  0.115539 -0.100387 
 Kurtosis  5.448219  5.212299  7.201719 
 Jarque-Bera  249.7452  204.2974  1465.715 
 Probability  0.000000  0.000000  0.000000 
 Sum  0.645456  1.098808  0.659295 
 Sum Sq. Dev.  0.682567  0.278156  0.639088 
 Observations  998  991  1988 
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Table 41 - Average Returns 
 RET30AVRG RET30AVRGOGL RET30AVRGSEANS 
 Mean  0.000681  0.000676  0.000336 
 Median  0.000770  0.001232  0.000235 
 Maximum  0.077760  0.101278  0.064736 
 Minimum -0.092663 -0.1 93 -0.022 0 73438 
 Std. Dev.  0.021212 41  0.01 0.023 5 4440 
 Skewness -0.104727 52 -0.1-0.041 4 15867 
 Kurtosis  4.694428  5.665933  5.444463 
 Jarque-Bera  121.0922 293.45 64  499.4105 
 Probability  0.000000 0  0.0 0.000 00 00000 
 Sum  0.678499  0.669570  0.668098 
 Sum Sq. Dev.  0.448140 24  0 0.542 2 .414297 
 Observations  99  17  990 988 
 

The daily returns and session to session returns calculated from averages again 

approach norm

calculated by using the average values have the highest volatility both in terms of the 

A Com

l hypothe i  mean returns during the pre-crisis period, crisis 

eriod and post-c isis period e all e e n in th wing output the 

null hypothesis can not be rejected.  

al distribution compared to the ones calculated from closing values. Noon 

returns again exhibit the same trend as in the pre-crisis and crisis period in which the 

distribution of noon returns calculated from the closing values are closer to normal 

distribution than those calculated from the average values. The noon return series 

standard deviation statistics and the magnitude of extreme values during the post crisis 

period. 

 

 

parison of the Pre-crisis, Crisis and Post-crisis Periods 

 

The ul n s s that the

p r ar qual is test d. As show e follo
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Table 42 - Comp , C Po etarison of Pre-crisis risis and st Crisis R urns 
Test for Equality of Means Between Series 
Included observations: 2000 
Method df Value Probability
Anova F-statistic (2, 2010) 1.092016 0.3357
Analysis of Variance 
Source of Variation df Sum of 

Sq.
Mean Sq.

Between 2 0.002401 0.001201
Within 2010 2.209696 0.001099
Total 2012 2.212097 0.001099
Category Statistics 

    Std. Err.
Variable Count Mean Std. Dev. of Mean
RET30K 117 -0.000514 0.055319 0.005114

RET30KO 898 0.002657 0.036149 0.001206
R30GKS1 998 0.000647 0.026165 0.000828

All 2013 0.001476 0.033158 0.000739
 

On the other hand, the variances of pre-crisis period, crisis period and post crisis 

period exhibit a different pattern. As shown below, the null hypothesis of equal 

variances is rejected. This is regarded as an indication of regime shifts in the volatility of 

the return series. Alternatively, changing variances also mean that the return series is 

heteroskedastic.  

 

Table 43 - Variance Equality Test Results 
Test for Equality of Variances Between Series 
Sample: 1 2000 
Included observations: 2000 
Method df Value Probability
Bartlett 2 198.0780 0.0000
Levene (2, 2010) 57.70799 0.0000
Brown-Forsythe (2, 2010) 56.49496 0.0000
Category Statistics 
   Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median 

Diff.
R30GKS1 998 0.026165 0.019592 0.019583
RET30K 117 0.055319 0.040180 0.040020

RET30KO 898 0.036149 0.026793 0.026748
All 2013 0.033158 0.024001 0.023967

Bartlett weighted standard deviation:  0.033156 
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Since the number of observations during the crisis period which is assumed to 

last only six months  is small. The test is repeated by including the sample before the 

crisis and after the crisis and a similar result is obtained, in the sense that, the variances 

of the t

Test for Equality of Variances Between Series 

wo periods are significantly different from each other as shown below. 

 

Table 44 - Variance Equality Test for the Pre-crisis and Post crisis period 

Date: 05/09/06   Time: 16:14 
Sample: 1 2000 
Included observations: 2000 
      
Method df Value Probability  
      
F-test (997, 897) 1.908717 0.0000  
Siegel-Tukey 6.059410 0.0000  
Bartlett 1 98.02337 0.0000  
Levene (1, 1894) 56.13344 0.0000  
Brown-Forsythe (1, 1894) 55.23939 0.0000  
      
Category Statistics 
   Mean Abs. Mean Abs. Mean 

Tukey- 
Variable Count Std. Dev. Mean Diff. Median Siegel 

Diff. Rank 
R30GKS1 998 0.026165 0.019592 0.019583 1020.769 
RET30KO 898 0.036149 0.026793 0.026748 868.1837 

All 1896 0.031301 0.023003 0.022977 948.5000 
Bartlett weighted standard deviation:  0.031293 
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CHAPTER V 

 

re 

t longer time intervals 

uch as days, weeks, months, quarters, years etc.  In time series models the basic 

motivation is that information contained in the past values of a variable or a number of 

variables  might be useful for forecasting future values of the same variable or som

ther variable.  In this thesis the main focus in on the linear time series analysis. In other 

words, 

 the 

ontext of 

variables should be 

stationary. If the series is not stationary the statistical inference tests using the classical 

e 

TIME SERIES ANALYSIS 

Introduction 

A time series can be defined a sequence of observations of a variable that a

taken at different periodic time points.Time series can be taken at intervals very close to 

each other such as seconds or minutes, the data can also be taken a

s

e 

o

the time series models within the scope of this thesis are aimed at expressing a 

time series as a linear function of its past values or a linear function of its past and

past values of other explanatory variables. The econometric models within the c

linear time series analysis are mainly Autoregressive (AR) Models, Moving Average 

(MA)  Models, Autoregressive Moving Average (ARMA) Models and Fractionally 

Integrated Autoregressive and Moving Average models (ARFIMA) and Vector Auto 

Regressive Models (VAR). VAR model differs from the others due to the inclusion of 

more than one variable in the analysis. 

The main assumption of time series analysis is that the 

regression model, even with large-samples become almost meaningless. Therefor

stationarity of any series should be tested before progressing in time series modeling. 
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A General Overview of Autoregressive (AR) and Moving Average Models 

 

As the name implies in the autoregressive (AR) time series model, an 

observation at time “t” can be written as a function of previous observations. For 

example the following formula expresses the realization of the series at time “t” in terms 

of a constant and the observation at time “t-1” and an error term. 

 

ttt eyy ++= −1φµ                      (2) 

 

where µ is an intercept parameter (constant term), φ  is an unknown parameter to 

be estimated and the et is the error term which is assumed to be independent and 

identically distributed (iid) with m

t

. If 

a rando

 

disturbance. Since the time series is not deterministic there should a disturbance term in 

ean zero and constant variance. In the above 

formulation the variable denoted by y  is modeled solely as a function of its lagged value. 

Since the error term is assumed to be iid with a finite mean and variance, it  is called 

white noise. It should be noted that in time series analysis, the error term need not be 

distributed normally, it is sufficient for error term to have a  well defined distribution

m variable having white noise property is normally distributed with mean zero 

and a constant variance it is termed as Gaussian white noise.  

The equation above is called as autoregressive time-series model of first order 

(AR(1)), since Y depends on its past value in the previous period plus a random
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the equation that is called noise term, error, random shock or residual. According to the 

AR(1) model, the current value of the random variable yt is centered around 1−+ tyφµ  . 

he AR(1) model also assures that the current value of the variable “y” is not correlated 

with its previous values other than yt-1.  The amount of deviation of yt  around this value 

an be expressed by the variability of the error term. The variability of the error term is 

measur  v

s of 

 as: 

T

c

ed by the ariance which is assumed to have some constant value say, σ2. 

Autoregressive processes need not be of first order, in other words, the variable 

Y may depend on its earlier values.  The statistical model of an autoregressive proces

order p, denoted as AR(p) can be written

 

tptpttt eYYYY +++++= −−− φφφµ ........1211    

 

es 

, 

 each of 

the new

   

 

Here again current value of the variable Y is dependent on its p lagged valu

and conditional on this assumption, Yt is not correlated with Yt-i where i > p. Therefore

to determine the order of AR process starting from the first lag significance of

ly added parameters φ i   should be checked. The order p of the AR process is 

chosen so that the parameter  φ i    is not equal to zero for i <= p, and zero for i > p

Another class of tim

. 

e series models is the Moving Average Processes where the 

Y is expressed as a function of past errors. The moving average representation can best 

be understood by the following reasoning. Assume that in a stock market information 

arrival is random which is the case actually. However further assume that the 
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inform

1 ++ += ttt eeY

ation is not fully absorbed in one trading period (be it a session or a trading day). 

This implies that the price change next day can be written as; 

 

1α 1   

 

where et+1 is the random disturbance due to the information arrival at time t+1 

and the α e  is the effect of the yesterday information arrival on today’s return. As seen 

the above representation is a moving average process.  Generally a moving average 

process of order q is written as follows: 

 

1 t

 qtqtttt eeeeeY −−−− +++++= ααααµ 332211   

 

where ui’s are random disturbances  with mean zero and constant variance 

and αi’s are unknown pa he above functional form says that the variable Y 

an be written as function of its first second  and  up to q th  lag of past errors 

It is also interesting to note that the above moving average representation can 

also be obtained from AR processes. To illustrate, let’s have the following AR(1) 

process 

2
eσ   

rameters. T

c

ttt eYY ++= −1φµ  
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For convenience the intercept parameter µ can be assumed to be equal to zero, 

which means that the mean of the time series variable is zero. This adjustment does not 

affect the variances and the covariances of the time series Yt.  So we have; 

 

ttt eYY += −11φ  (*) 

 

Writing the same formula for Y t-1, the formula becomes; 

 

− += 121 −− ttt eYY φ1   

 

When above equation is substituted to the equation (*) ; the following representation can 

be obtained. 

 

tttt eeYY ++= −− )( 1211 φφ   

tttt −− 1121

 

 

2 φφ   

Similarly, the above formula can be written in terms of Yt-3 and ei’s as follows 

 

++ −− 112
2

1 φ   

 

eeYY ++=

ttttt eeeYY += −3
3

1 φφ
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Using t

i
t

i
t eYY ∑

he same logic, by repeated substitution it can easily be found that, 

t
i

∞

=
− += 1 φφ  

fact 

 sum 

∞

=0

 AR(1) 

 

here p is 

tion 

ncing) to assure s tionarity of the series. The algebraic formula for the 

ARMA(p,q)  model is: 

 

0

As one goes further back to previous lags, the first term drops out due to the 

that -1<α1 (stationarity condition). Then Yt can be denoted as an infinite weighted

of uncorrelated random disturbance et and its lagged values et-i as follows: 

t
i

t eY ∑= φ  

  This formulation is called the Moving Average representation (MA) of the

process and actually any AR process can be represented as an infinite weighted sum of 

the uncorrelated random disturbances. 

 In most cases neither of the AR or MA representation may be sufficient, 

therefore it is very common to use time series models that contain both AR and MA

components together, which is called an ARMA(p,q) or ARIMA(p,q) model w

the order of AR and q is the order of MA model and I stands for integra

i

(differe ta

qttttptqtttt eeeeYYYYY −−−−−−− +++++++++++= 121111332211 .................. ααααφφφφµ
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the intercept parameter µ is related to the mean of Yt and errors denoted by ei’s 

are uncorrelated random variables with mean zero and a constant variance 

In time series analysis model, the most important step is to identify the model. In 

other words, to identify the appropriate structure (AR, MA or ARMA) and order of 

model. After identifying the model, the coefficients should be estimated. Box and 

Jenkins (1970) suggest that appropriate model structure and the order of model should 

be decided by looking at autocorrelation function (acf) and partial autocorrelation 

function (pcf) plots. The coefficients of AR models can be estimated by least squares 

regression. The estimation of MA or ARMA parameters is a more complicated and 

actually requires an iterative procedure.  Finally the model should be checked by 

ensuring that the residuals are random and the estimated parameters are statistically 

significant or not. While fitting the model, it is generally suggested that fewest possible 

number of parameters should be included, because simple is usually better.  In time 

series analysis the best fit can be determined by evaluating the significance of Box-

Pierce Q statistics for residuals and also by checking the Akaike Information 

Criterion(AIC)  value,  which is written in functional form as follows: 

IC =

 

s 

ot 

 ( )[ ]NnVLog /21+  A

Where V is the variance of model residuals, N is the length of the time series, 

and n = p +q,  p being the order of AR and q being the order of MA. The best model ha

the one with minimum value of AIC. The model with the minimum AIV value does n

guarantee the fact that residuals are white noise. The randomness of residuals is tested 
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by using the Box-Pierce statistics. Therefore, in identifying the model one should give 

equal importance to having an approximately minimum value for AIC and producing 

random residuals. The order of the autoregressive and moving average processes should 

be chosen such that the number or AR and MA terms should not be large due to the risk 

f high correlation (collinearity)  among regressors (AR and MA terms) 

The classical , MA and ARMA models are usually very helpful when dealing 

ith series with short memory; in other words the order of AR, MA and ARMA models 

should not go back to the remote past of a series. Short mem ry means that the effect of 

 shock eventually dies out and the length of time that this effect ceases to exist should 

not be long. Otherwise the series is said to have the long memory or persistence 

problem, which is documented by financial researchers in the near past. In efforts to 

tackle the problem of persistence a class of fractional models called Autoregressive 

fractional integration models (ARFIMA) were introduced by Granger and Joyeux (1980) 

and Hosking (1981). Long memory  or the persistence problem means that an event 

occurred in the past may affect quite a number future outcomes. 

 

Stationarity 

 

Stationarity is the fundamental assumption of time series analysis. A time series 

 said to be strictly stationary if any consecutive sample of observations taken from any 

part of 

analyses, usually the series are assumed to be weakly stationary. A time series is said to 

o

AR

w

o

a

is

the series random variables follow the same probability density function. This 

condition is usually thought to be very difficult to verify empirically. In time series 

 105



be weakly stationary if it has a constant mean (expected value), constant va

constant lag k au

riance and 

to covariance.  More specifically, a stochastic process (Yt)  is weakly 

tationary or covariance stationary if its mean, variance and covariance remain constant 

e.  That is: 

( ) = =

s

over tim

 

E Y E Yt t s Y( )− µ   

 

[ ] [ ] YYktYtkt YEYEYVar 222 )()()() σµµ =−=−== −−   

 

( )

tYVar(

( )[ ]YktYtkktt YYEYYCov µµγ −−== −− ),(  

 

for all values of t, k 

In the finance literature it is common to assume that the series are weakly 

stationary. In accordance with this assumption, stationarity refers to weak stationarity in 

this thesis. A related function which is used in the modeling of time series is called t

autocorrelation function and is given by: 

 

he 

0γ
γ

ρ k =  

 

or the lag k covariance and the symbol in 

e denominator is the variance of the series. For example, white noise is the simplest 

k

where the symbol in nominator stands f

th
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stationary process. Defining the error terms as  ut, will result in the following 

representation.  

 

 
2

( ) ( )
=  if  h = 0

E u  = 0      E u u  
= 0  otherwise

σ  

 

In other words, the white noise process has a zero mean and a constant variance and 

no autocovariance. 

The first test for stationarity can be done by visual inspection of the 

autocorrelations plot (correlogram). In the Box-Jenkins approach, for example, if the 

correlations are high and decline slowly, then the series is said to be nonstationary. Besides 

t t t h+

visual inspection, stationarity of a series can be tested by the 

ed to 

ean with no time trend. The same conclusion is reached even if  an 

extra term for the tim

Augmented Dickey 

Fuller(ADF) test and Philips Perron(PP) Tests. 

ADF tests and PP tests for all the variables included in our time series analysis 

showed that relevant statistics are negative and large in magnitude (less than the critical 

values). Therefore the series are all said to be stationary. In other words the null 

hypothesis of unit root is rejected. In all of the stationary tests the series was assum

have a constant m

e trend is added. In the next section the e-views outputs for 

stationary tests are provided. 

Cochrane(2005) provides an excellent explanation with regard to the issue of 

stationarity in time series analysis as follows: 
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“Stationarity is often misunderstood. For example, if the conditional covariances of a 

series vary over time, as in ARCH models, the series can still be stationary. The 

efinition merely requires that the unconditional covariances are not a function of time. 

Many p  

thers. Many people say a series is 

nonstationary” if it has breaks in trends, or if one thinks that the time-series process 

changed over time. If we think that the trend-break or structural shift occurs at one point 

 time, no matter how history comes out, they are right. However, if a series is subject 

to occa

at, the variance before, during and after the crisis 

ear of 2001 have been found to be significantly different from each other. Although this 

finding seems to be contradictory to the conclusion of the unit root tests, as Cochrane 

puts it the series can not be claimed to be nonstationary by just taking into account the 

ignificant differences in the second moments. 

 

al Properties Of Autoregressive Models 

In this section the basic properties of AR(1) and AR(2) models will be provided 

nd a generalization of these models to the AR(p) process will be given.  The formulas 

and derivations are a summary of what can generally be found in classical time series 

xtbooks. 

d

eople use “nonstationary” interchangeably  with “has a unit root”. That is one

form of nonstationarity, but there are lots of o

“

in

sional stochastic trend breaks or shifts in structure, then the unconditional 

covariances will no longer have a time index, and the series can be stationary.” 

This explanation is quite important for the stationarity of the IMKB30 stock 

index return series, due to the fact th

y

s

Statistic

 

a

te
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odelAr(1) M  

The mean of an AR(1) process can be found by taking the expectation of both 

 

sides of the classical AR(1) equation below: 

 

ttt eyy ++= −110 φφ  

 

since the error term is assumed to be white noise, its expected value is zero. The 

expected values of yt and y  are equal to the same constant due to the stationarity 

assumption. The expected value of a constant is equal to itself. Therefore denoting the 

expected value of yt by µ we obtain 

 

t-1

1

0

1 φ
φ

µ
−

=  

 

The variance of an AR(1) process can be found by taking the variance of both 

sides of the equation below 

 

ttt eyy ++= −110 φφ  

 

)()( 110 ttt eyVaryVar ++= −φφ  
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The variance of the constant term 0φ  above is zero. The error term et and yt-1 are 

dependent, therefore the equation becomes  

ar += −φ  

 

ince the series is stationary, the variance is time invariant. Therefore    

ar σ== −  

 

eplacing  for  and for variance of the error term we 

obtain; 

solving for  we get; 

in

 

)()()( 1
2

1 ttt eVaryVaryV

S

 

2
1 )()( ytt yVaryV

 2
yσ )( tyVar and )( 1−tyVar 2

eσR

 

222
1

2
eyy σσφσ +=  

 

2
yσ

 

2
1

2σ e  

 

2

1 φ
σ

−
=y

 ) can 

 well known formula for covariance; 

Similarly, the covariance of one period lagged values of y (i.e. yt and yt-1

easily be derived by using the following
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[ ][ ])()(),( 111, −−− −−= tttttt yEyyEyEyyCov  

 

Assuming th )1−t = at, ()( =t yEyE 0  

tt yeEyyCov

 

 

[ ]11, ),( −− = tttt yyEyyCov  

 

writing yt in terms of yt-1, we have, 

 

[ ]1111, )(),( −−− += tttyφ  

tyCov

ince the error term  and  are uncorrelated, we obtain, 

 

 

Due to the stationarity assumption which assures that the mean, variance and the 

covariance of a stationary series is constant across time,  this covariance value must be 

the same for all random variables that are one period apart.  

The autocovariance of variables that are two periods apart can easily be 

calculated by applying the same logic.  

 

 

)()(), 1
2

111, −−− += tttt yeEyEy φ  

 

(

 te 1−tyS

2
11, ),( ytt yyCov σφ=−  
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[ ][ ])()(), 222, −−−( −−= ttttt yEyyEyEy  

 

Here again, )()( 2−= tt yEyE = 0  

 

tyCov

ov  

 

riting yt in terms of yt-2, and making necessary calculations we finally obtain, 

ov σφ=−  

 

The autocorrelation function of an AR(1) model is found by the formula for 

correlation. Correlation is calculated by the f

[ ]22, ),( −− = tttt yyEyyC

w

 

22
12, ),( ytt yyC

ormula below 

 

)()((

),cov(
)( ,

ktt

kktt
yVaryVar

yy
yyCorr

−

−  

 

ktt −== ρ

y using the terms calculated above for covariance and variance we get, 

 

B

k

y

y
k

yy

y
k

kktt yyCorr 12

2
1

22

2
1

, )( φ
σ

σφ

σσ

σφ
ρ ====−  
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This result says that the ACF (Corr(yt,yt-k)) of a stationary series decays 

exponentially with the rate .  If , then the plot of ACF of an AR(1) model 

hows a smooth exponential decay.. On the other hand, if , then the plot alternates 

 negative and positive values and still decays. 

Higher Order AR Models

k
1φ 01 >φ

s 01 <φ

between

 

 

 

AR(2) model is represented with the following formulation, 

 

tttt eyyy +++= −− 22110 φφφ  

 

To find the mean of yt we take the expectation of both sides of the above 

quation as it was done for the AR(1) process. The same reasoning applies here, the 

expected value of any stationary series across all time points are all equal and the 

 is zero since it is assumed to be white noise. The 

e

expected value of the error term

following formula is finally obtained for the mean of the series 

 

21

0

φφ1
φ

µ
−−

=  

 

The variance of an AR(2) process can be found using the expression found for 

the mean of the series. Writing 0φ  in terms of 21 ,, φφµ  and inserting this into the AR(2) 

equation below 
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tttt eyyy +++= −− 22110 φφφ  

 

we get, 

 

ttt eyyyt +−+−= −− )()( 2211− µφµφµ  

 

)( µ−−ktyAt this point let’s multiply both sides of the above equation with ; 

 

)())(())(())(( 2211 µµµφµµφµµ −+−−+−−=−− −−−−−− kttkttkttktt yeyyyyyy  

 

When we take the expected value of both sides; 

 

),(),(),(),( 2211 kttkttkttktt yeCovyyCovyyCovyyCov −−−−−− ++= φφ  

 

The last term is zero, since the error term and the series y is independent. 

 

Dividing both sides of the equation by the variance of yt the following formula is 

obtained. 

 

2211 −− += kkk ρφρφρ  
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 At this point, let 10 =ρ , meaning that the correlation of yt with yt is by definition 

equals to one. Then,  let k=1 then the formula becomes; 

=

 

120 −+ ρφρ11 φρ  

 

 the series is assumed to be stationary  ρ Since

an be written as; 

-1 is equal to ρ1, thus the above 

formula c

 

2

1
1 1 φ

φ
ρ

−
=  

 

r any value greater than or equal to 2. In mathematical terms; 

 

After finding the correlation for k=0 and k=1 it is then easy to find correlation 

fo

2211 −− += kkk ρφρφρ  for 

 

2≥k  

 Taking the terms on the right of the above equation to the left the formula 

becomes, 

 

02211 =−− −− kkk ρφρφρ  

 

Define L as the lag operator(back shift operator), then the above equation can be 

as follows: 

written 
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0)1( 2
21 =−− kLL ρφφ  

 

 AR(2) series can be written  as a polynomial 

f second order. From ordinary algebra, a polynomial of second order defined as 

 has two characteristic roots and these roots can be found by the following 

rmula 

This means that ACF of a stationary

o

cbxax ++2

fo

 

a
b ∆±−x

22,1 =  

 

here  

 

as real roots which means that the 

olynomial can be factored as (1-x1L)(1-x2L). This implies that the autocorrelation 

function is a mixture of two exponential decays. If, on the other hand, the term ∆ is 

egative then the polynomial has complex valued characteristic roots. In this case the 

plot of 

s are very important in the sense that they indicate whether the series is 

tationary or not. More specifically, if the absolute value of the characteristic root(s) of 

w

acb 42 −=∆  

 

If the term ∆ is positive then the polynomial h

p

n

ACF shows kind of a damping sinusoidal wave. The types of cases are usually 

encountered if the series has cyclical components. The characteristic roots of the 

processe

s

 116



an AR(p) is less than one meaning that the series is stationary, otherwise the series is 

aid to be nonstationary. 

 

 

As explained in the previous section moving average(MA) models can be 

regarded as an infinite order AR model. In general, a moving average process represents 

time series observations as weighted average of random disturbances. The functional 

form of a general MA(q) process is provided below 

 

s

The results for ACF of the AR(2) process can be generalized to the general 

AR(p) model. The ACF can be written as  

 

0).............1( 3
3

2
21 =−−−− k

p
p LLLL ρφφφφ  

 The above equation is a polynomial of order p, therefore it has p roots. The plot

of ACF depends on the nature of the roots of the polynomial. 

   

Statistical Properties Of Moving Average (MA) Models 

 

qtqtttt eeeeeY −−−− +++++= ααααµ 332211   

 

The stationarity of the series is again the most fundamental assumption of MA 

elow: 

 

processes as in AR processes. In order to show this let’s consider the MA(1) process 

b
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11 −++= ttt eeY αµ   

 

, 

f the series can be written as; 

The mean of the variable Yt can be found by taking the expectation of both sides 

of the above equation. Since the error term represented by et is assumed to be white 

noise its expected value is zero and the expected value of a constant (µ) is equal to itself

the expected value o µ=)( tYE . 

This value does not depend on time, so the expected value of the variable is 

equal to a constant denoted by the symbol µ. Remembering that stationary series have 

onstant mean, variance and covariance, the constant mean in our case indicates that the 

series s

c

atisfies one of the three conditions of weak stationarity. 

Following the same steps as it was done for the AR processes, now let’s find the 

variance of the MA(1) process. The variance of a  random variable is given by; 

 

[ ]2)()( ttt YEYEYVar −=  

 

Since µ=)( . the above equation can be written as; 

t

tYE

 

eeEYVar  

the term µ cancels out and the equation becomes. 

 

[ ]2
11)( µαµ −++= −tt

 

[ ]2
1

2
11

2 2)( −− ++= ttttt eeeeEYVar α  
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At this point, the property that the error terms represented by the letter “e” are 

sion that the 

xpected value of the product of the error terms et and et-1 is zero. Let the variance of the 

error terms be represented by σe. Then the formula for the variance of the series can be 

ritten as follows; 

 

ar σασσ +==  

he variance of the series in question does not have any index 

at changes with time. So the variance of yt is always equal to a value that is a function 

ariance of the random error is also constant by definition, since the error term is 

assumed to be white noise at the first start. White noise means that the error terms 

elong to a well defined distribution with mean zero and a constant variance. Therefore 

the second condition that is the variance being constant in weak stationarity assumption 

 also satisfied  Now, to test the third and the last condition of stationarity let us 

 

independent and identically distributed (white noise) give rise to the conclu

e

w

22
1

22)( eeytYV

 

The formula for t

th

of α1 and σe.  The first of these two terms is constant, the other term which is the 

v

b

is

calculate the covariance of the series yt. The covariance between Yt and Yt-1 can be

found as follows: 

 

[ ][ ])()(),( 111, −−− −−= tttttt yEyyEyEyyCov  
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W w that, 11 −++= ttt eeYe kno αµ  and 2111 −−− ++= ttt eeY αµ  ,  

 

Inserting this formulas into the covariance formula, the equation becomes 

(),( 2111, −−

 

[ ]))( 111 −− ++== tttt eeEyyCov tt ee ααγ  

 

 

ote that one lag covariance is again a function of the variance of the error term and 

thus it 

The co : 

2
111, ),( ett yyCov σαγ ==−  

N

is time invariant. 

 

variance between Yt and Yt-2 can be found by using the same logic as follows

 

[ ]))((),( 3121122, −−−− ++== tttttt eeeeEyyCov ααγ  

 

[ ])(),( 3131
2
1211222, −−−−−−− +++== tttttttttt eeeeeeeeEyyCov αααγ  

 

Since the error terms are iid, the expected value of all the terms are zero. Thus the 

llowing formula is obtained, fo

 

 0),( 22, ==− γtt yyCov  
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 Applying the same reasoning it can be shown that covariance of the MA(1) 

process for all lags greater 1 is equal to zero. Thus the autocorrelation function for the 

A(1) process is 

 

M

2
1

1

0
, 1

)(
α

α
γ
γ

+
==−

k
ktt yyCorr   for k=1 

 

0)(
0

, − γ
==

γ kyyCorr   for k>1 

narity which is the covariance being constant, 

 also satisfied. So the series represented by MA(1) modeling is stationary. 

Another important property of MA process is clearly visible after the above 

rmulations. This is the fact that the autocorrelation function becomes equal to zero 

 zero after q lags. At this point let’s find the mean, variance and 

ovariance of MA(2) process. The functional form of a MA(2) process is as follows: 

ktt

 

Thus the third condition for statio

is

fo

after the order of the process. It can be shown that the autocorrelation function of a 

MA(q) process  is

c

 

2211 −− +++= tttt eeeY ααµ  

 

The mean of the time series can again be found by taking the expectation of both sides 

nd it can be found that µ=)( tYE . a
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 As the formula implies the mean of MA(2) is constant and time invariant.The 

variance of MA(2) process can also be found by using the following formula, 

]

Since the error terms are iid, all the cross product terms drops out since the 

xpected values of all the cross products of error terms belonging to different point in 

time is zero. Thus the formula becomes; 

tYVar

re it is constant across 

ll points in time 

ne period lag covariance of the MA(2) process can be found by using the well known 

formula for covariance below: 

 

[ ]2)()( ttt YEYEYVar −=  

 

[ 2
2211)( µααµ −+++= −− tttt eeeEYVar  

 

e

 

22
2

22
1

22) eeey σασασσ ++==  

 

The variance of the MA(2) process does not depend on t, therefo

(

a

 

O

 

[ ][ ])()(),( 111, −−− −−= tttttt yEyyEyEyyCov  

 

Using the fact that, 
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µ=)( tYE , 2211 −− +++= tttt eeeY ααµ  and 222111 −−−− +++= tttt eeeY ααµ  , 

 

And inserting these formulas into the covariance formula we get, 

 

[ ]))((),( 32211221111, −−−−−− ++++== tttttttt eeeeeeEyyCov ααααγ  

ee σαασαγ +==  

11, − ett

 

Thus the one period apart covariance is a function of some constants 

oefficients of MA terms) and the variance of the error term which is also assumed to 

be cons

 

 

,( tt yyCov −
2

21
2

111, )

 

)(),( 2 ααασγ +==yyCov  211

(c

tant since the error terms are assumed to be white noise. 

 

Similarly two period covariance is found as follows: 

[ ][ ])()(),( 122, −−− −−= tttttt yEyyEyEyyCov  

 

inserting the formula for yt and yt-2 will result in; 

 

[ ]))((),( 423122211212, −−−−−− ++++== tttttttt eeeeeeEyyCov ααααγ  
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Using the fact the error term is iid and thus the expected value of cross product of the 

rror terms belonging to different points in time is zero we get the following result 

 

 

Two period apart covariance is also time invariant which assures that the series is 

stationary. 

 

The three period apart covariance of the MA(2) process can be written as; 

 

e

2
222, ),( ett yyCov σαγ ==−  

[ ]))((),( 52413221133, −−−−−− ++++== tttttttt eeeeeeEyyCov ααααγ  

 

Note th arentheses that is multiplied by each other contain 

rror terms belonging to different time periods, since the error terms are iid the expected 

value of their products are all equal to zero, thus the equation becomes; 

at the terms in two p

e

C 0),( 33, ==− γtt yyov  

 

o 

 

It can be shown that the covariances at all legs greater than two are all equal t

zero for MA(2) processes. The corresponding autocorrelation function of the MA(2) is 

given below. 
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2
21

21

1
)1(

αα
αα
++

+  

 

21ρ =

2
2

2
1

1
2 1 αα

α
ρ

++
=  

 

0=kρ  for k>2 

 

So MA(2) process has a memory of two periods long. The mean variance and 

covariances of one period, two period and more than two period values of the series are 

all time invariant, meaning that the MA(2) process satisfies all the three conditions of 

stationary series.The autocorrelation function for the general MA(q) process is given by; 

 

  for k=0,1,2,3….q ∑
−

=
+=

kq

i
kiik

0
ααρ

 

0=kρ   for k>q 

 

Note that an AR process can be represented as an infinite sum of random errors 

which is called as “moving average representation”. The reverse is true, in the sense 

ome MA processes satisfying a certain condition which is called “invertibility” can be s

converted to an infinite order AR process. 
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To show that, let us consider a MA(1) process with no constant term that is its 

ean is zero. This assumption is made to simplify the proof, it does not affect the 

validity. So let’s start with the classical  MA(1) definition written below; 

 

tt e

m

11 −+ teY = α   

 

Now, let’s rewrite the equation in terms of Y  and e  ; 

 

t t-1

11 −−= ttt eYe α  

 

By similar logic et-1 can also be written in the same manner as follows: 

 

2111 −−− −= ttt eYe α  

 

If we substitute the above formula into the (*) formula, the equation becomes; 

tt eY

 

)( 2111 −− −+ tt eY= αα  

 

tttt eeYY +−= −− 2
2
111 αα  

 

writing et-2 in terms of Yt-2 and et-3 will result in the following formula; 
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ttttt eeYYY ++−= −−− )( 312
2
111 ααα  

 

eeYYY ++−= 32 ααα  

 

be less than 1. If 

ttttt −−− 312111

 Proceeding the calculations in this manner will give rise to an infinite order AR 

process. The only condition is that the term  must converge to zero so that this 

term can be dropped out of the equation above. Therefore the absolute value of α should 

 it
ie −1α

1<α  then the process is called as “invertible”. 

Statistical Properties Of Autoregressive-Moving Average (Arma) Models 

ity, the 

process is integrated and it is ca egrated Moving Average 

 

 

 

An ARMA(p,q) model can be written as 

 

∑ ∑
= =

−− ++=
p

i

q

i
itiitit eyy

1 0
0 αφφ  

 

An ARMA(p,q) process is a stationary process.  It has all of its characteristic 

roots in the unit circle.  If one or more of the characteristics roots are equal to un

lled an Autoregressive Int

process (ARIMA) 

As  is done in AR and MA models, enough AR & MA terms should be allowed 

so that the error term looks like a white noise process. But special care should be given
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to the case of common factor or the common root problem. In other words, if the AR and 

MA polynomials have the same roots at some point as the lag parameter p and q are 

increas d to 

It is not useful to further 

arametrise the ARMA model after facing the common root problem, because this can 

cause some computational problems and can also cause the coefficients of AR and/or 

A terms to become meaningless.  A time series Yt can be represented by an 

ptttt eeeyyyy −−−−−−

ed, then they are said to have a common root. In such cases the model is sai

be over-parameterised, that means that a model with identical properties can be 

constructed by reducing both p and q by one (Harvey, 1981). 

p

M

ARMA(p,q) model  a follows: 

 

te qttt ++++++++= 12111121110 ......... αααφφφφ  

2
2102

2
21 αααφφφφ +++−+=−−−−  

 

where p stands for the order of autoregressive part and q stands for the order of 

oving

olynomial and 

e MA polynomial. One important thing to note is that, the common roots of the 

polynomial should be different, otherwise the order (p,q) of the model can be reduced. 

oreover, the characteristic equation of the ARMA(p,q) model is the AR polynomial, 

 

Using lag operator and denoting it by L, the above model can be written as 

 

t
q

qt
p eLLLyLLL ).....1()..........1(

m  average part. There are two polynomials in the above equation namely, 

)..........1( 2
2

21
pLLL φφφ −−−− , the AR p ).....1( 2

21
q

q LLL ααα +++− , 

th

M
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meani t the solutions to the chang tha racteristic equation should be less than 1 in absolute 

alue so as to assure the stationarity condition. 

At this point let’s find the general formulas for the mean, variance and the 

covariance of the ARMA process. In order to make the discussion simpler let us have the 

bove formula as ARMA(1,1). The process is shown below: 

v

a

 

11110 −− +++= tttt eeyy αφφ  

 

The mean of the series can be found by taking the expectation of both sides: 

 

[ ]11110)( −− +++= tttt eeyEyE αφφ  

expected value of a constant is itself,  therefore the formula becomes; 

 

 By definition the expected value of the error term is equal to zero and the 

 

)()( 110 −+= tt yEyE φφ  

 

 Since the series is stationary its e ld be constant across all th

points in time by definition meaning that 

xpected value shou e 

 

)()( 1−= tt yEyE  
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Thus )( tyE  can be represented as; 

 

1

0

1
)(

φ
φ

µ
−

==tyE  

 

 The above formula is quite simple, the mean of the series in ARMA model is 

exactly the same as its mean in the AR model.The variance of an ARMA(1,1) process 

can be found by taking the variance of both sides.  

 

[ ]11110)( −− +++= tttt eeyVyV αφφ  

 

Now, for simplicity, assume that the constant term denoted by 0φ  is equal to zero, this is 

somewhat equivalent to defining the series in terms of eviation form the mean, i.e. 

,  then variance formula can be written as; 

 d

)( µ−ty

 

[ ]1111)( −− ++= tttt eeyVyV αφ  

 

 Since the variance is defined as  the variance of the series 

aving an ARMA(1,1) process can be re-written in terms of expected values as follows: 

ar αφ  

 

2)()( µ−= tt yEyV

h

 

2
1111 )()( −− ++= tttt eeyEyV
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The above formula can be re expressed as follows: 

eettt eyEyVar σασαφφ +++= −−−  

The functional form for the term  can be written  as; 

−−−−−−

 

)( tyVar 22
1

2
11111

2
1 )(2)(

 

 )( 11 −− tt eyE

 

[ ])()( 12112111 ++= eeeyEeyE tttttt αφ  

 

where yt-1 is expressed as a function of yt-2 and et-1 and et-2. 

 

Taking the expectation of  each term in the above parenthesis the equation becomes; 

 

)()()()( 1211112111 −−−−−−−− ++= tttttttt eeEeeEeyEeyE αφ  

 

t t-1  t t-1

inition. Therefore the equation simplifies to; 

thus the whole variance equation becomes; 

 Note that the error term  at time t  “e  “and y are not correlated, and e  and e  

are not correlated by def

 

2
11 )( ett eyE σ=−−  

 

 

22
1

22
111

2
1 2)()( eeett yVaryVar σασσαφφ +++= −  
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Since the series is stationary by definition, the variances are equal across time, in other

words; 

 

 

01 )()( γ== −tt yVaryVar  

 

Thus using the above feature; the formula for the variance of the series can be written as; 

 

2
2

11
)( etyVar σ

φ ⎟⎟
⎠

⎜⎜
⎝ −

=  11
2
1 21 αφα ⎞⎛ ++

The variance, by definition should be positive, thus the term in the denominator 

 the formula above, namely  should be greater than zero, which means that 

 

)1( 2
1φ− 1φ  in

< 1. This is exactly the same as the stationary condition of the general AR(1) process. 

he one lag covariance of the series can be found by usual formula for the covariance as 

shown below: 

T

 

[ ])()( 111111 −−−− ++= tttttt eeyyEyyE αφ  

 

[ 1111111 )( −−−−− ]−++= tttttttt yeyeyyEyyE αφ 1  

yEyyE α  

 

)()()()( 1111
2

11 −−−−− ++= ttttttt yeEyeE
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 Note that )( 2
1−tyE is the v  0γ , )( 1−tt yeEariance which is denoted by is equal to 

ero since et and y  are uncorrelated. The final termz t-1  )( 111 −− tt yeEα is equal to , thus 

the formula becomes; 

−

 

The above formula is valid for 1 lag covariance namely .To find a general 

formula for further lags we try lag 2 covariance. Let us now find 

2
1 eσα

 

2yyE σαγφγ +==  10111 )( ett

)( 1−tt yyCov

)( 2−tt yyCov  

 

[ ])()( 111122 −−−− ++= tttttt eeyyEyyE αφ  

 

[ ]21121122 )( −−−−−− ++= tttttttt yeyeyyEyyE αφ  

 

)()()()( 21121212 −−−−−− ++= ttttttt yeEyeEyyEyE ty αφ  

 

On the right hand side of the equation above the first term is the 1 lag covariance, the 

second term is zero since the e  and y  are not correlated, the third term is also zero 

since e  and y  are uncorrelated. Thus; 

t t-2

t-1 t-1

 

1122 )( γφγ ==− tt yyE  
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In general it can be shown that; 

 

11)( −− == kktkt yyE γφγ  

 

Using the simple formula for autocorrelation, Autocorrelation function for lag 1 can

found as 

 

 be 

0
1

0 γγ

2
11

1
σα

φ
γ

ρ e+==  

utocorrelation function for lag 2 and further lags can be found as 

 

A

 

11 −= kk ρφρ  

 

 Therefore the ACF of ARMA(1,1) process  is exactly the same as that of the 

AR(1) process after the lag 2, but it behaves different for lag 1. In other words 

exponential decay starts at lag 2. On the other hand, Partial Autocorrelation Function 

(PACF eral, 

r an ARMA(p,q) process, the autocorrelation function can be written as  

 

) of the ARMA(1,1) process is very similar to that of the MA(1) model.In gen

fo

pkpkkk −−− +++= ρφρφρφρ ....2211     for k>p 
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 This means that for lags k greater than q, the autocorrelation behave like an 

autoregressive process. In other words, moving average component contributes nothing 

to the autocorrelation function after q lags meaning that MA component of the ARMA 

process has a memory of only q periods. The presence of first order autocorrelation can 

e tested by Durbin Watson test while higher order autocorrelation can be tested by 

Breusch-Godfrey serial correlation Lagrange Multiplier test.  This test is generally 

uggested to use in large samples and the following null and alternative hypotheses are 

constru

H1: At 

r 

 

The Implications ation Functions  

 

b

s

cted. 

 

H0 : α1 = …….=αp = 0 

least one of αI is non zero 

 

Where the coefficients αi   ’s cab assumed to be the coefficients of an AR model of orde

p. This test uses an auxiliary regression for the residuals. In other words residuals are 

regressed on the original regressors and lagged residuals of up to order p. The test 

statistic which is asymptotically distributed as χ2 (p) is nR2 where n is the number of 

observations.  

 Of Autocorrelation And Partial Autocorrel

 

The detection of autocorrelation in a series can also be done by looking at the

plots of autocorrelations and partial autocorrelations. In order to see whether there is any 

autocorrelation or partial autocorrelation of return series correlogram of each series are 
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plotted. Correlogram is a very useful diagram, because by visual inspection, the order of 

AR and the order of MA components can more easily be understood.  More specifica

partial autocorrelations chart is often used to determine the order p of the AR process.

To explain in more detail, let’s look at the following AR representation: 

lly, 

 

eY

 

ttt YYY tptp +++ −++= −− αααµ ........    

artial autocorrelation coefficients measure the correlation between 

 Yt-p+1 are taken into account, , the parameters 

quation above.  

On the other hand the autocorrelation function of the MA(1) process becomes 

ero af  

g the 

other words, the order of MA process can be determined by looking at 

l 

 

1211

 

Since the pth p

Yt and Yt-p after the effects of Yt-1 Yt-2,…..

α1 , α2 , α3 … αp   are actually the partial autocorrelations in the AR e

z ter lag 1 while the partial autocorrelations declines geometrically. Thus MA(1)

process has a memory of one period. This property is very useful when evaluatin

correlogram. In 

the lags where the autocorrelations taper off to zero. In summary, in an AR(p) model,  

Acf declines geometrically, Pacf cuts off abruptly after lag p, while in a MA(q) mode

Acf cuts off abruptly after lag q, Pacf declines geometrically. 

 

Long Term Dependence (Arfima Models) 

 

If a series exhibits long memory, this means that there is persistent temporal 

dependence between observations widely separated in time. The autocorrelation of series 

with long memory decay hyperbolically, meaning a relatively sooth decay compared to
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quickly declining autocorrelations of short memory series. The An ARFIMA model has

three parameters, 

 

namely, the order of autoregressive part generally shown by p, the 

rder of moving average component generally called q, and the fractional integration 

parameter d. An ARFIMA (p,d,q) can be written in functional form as follows: 

 

(L)(1-L)d yt = θ (L) et

 

the term (1-L)d  

is allow

0) and Hosking (1981) also show that the series 

 stationary when d is less than one-half, and invertible when d is greater than minus 

one-half. 

To find the value of the fractional integration parameter different methods are 

uggested  by researchers. In this thesis the Geweke and Porter-Hudak (GPH) algorithm, 

which is based on frequency domain regression technique,  is applied to find “d”.  To 

o

φ

L is the lag operator, 

d is the fractional integration parameter 

et  is the error term being iid with mean zero and a constant variance. 

 

 φ(L) and θ (L) are polynomial in L, up to order p and q respectively. Both of 

these polynomials should be outside the unit circle to guarantee stationarity and 

irreversibility.  

 Granger and Joyeux (1980) and Hosking (1981) show that when 

ed to assume non-integer values of the variable d, the result is a fractionally 

differenced time series. The variable “d” stands for the magnitude of fractional 

differencing.   Granger and Joyeux (198

is

s
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explain the method let )(ξI  be the periodogram (spectrum, the spectral density) o

demeaned se

f the 

ries y  ayt − ut freq ency ξ , that is , 

 

2

1
))((

2
1)( ∑

=
t

ral 

er 

ontribution each frequency makes to the total variance. The term 

hite noise, actually takes the name from the shape of the its spectral density of its 

autocovariance function, namely, it has  flat spectrum with all frequencies being of the 

same importance, which is the electromagnetic spectrum of white light. 

After defining the periodogram, the spectral regression of the GPH estimator is 

then computed by regressing logarithmic periodograms on a constant and a nonlinear 

function of the frequencies as follows. 

−−=
T

t

iteyy
T

I ξ

π
ξ  

 

The spectrum, or spectral density of a time series is the Fourier transform of the 

autocovariance function of a stationary process. The basic idea behind fourier transform 

is that the data-generating process can be  approximated by the sum of stochastic sine 

waves of variable frequency. The spectrum or the periodogram is the plot of spect

density function against frequency (angular frequency in the range [0 ,π]). In oth

words, it specifies the c

w

 

{ } jiI ηββξ +⎥
⎦

⎢
⎣

⎟
⎠

⎜
⎝

+=
2

sinln)(ln 10  iξ ⎤⎡ ⎞⎛2
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where j =1…..v , and (v<<T) is the number of periodogram ordinates used in the 

regression, Tji /)2( πξ =  and jη  is the error term, and T is the number of observations. 

The GPH estimate of d is the negative of the OLS estimate of 1β  in this 

regression. GPH method has some deficiencies however. One is the fact that a choice the 

parameter v  must be made. The parameter v can be defined as a function of the sample 

size, the most common choice being T0.5. This choice may lead to biased results, as 

shown by Tolvi (2003), he says that values around T0.5 lead to very random results. He 

r is found to 

RCH effects 

hich is the case in our logarithmic session to session series. Using the binomial 

theorem for non-integer powers, the term (1-L)d can be written by the following 

polynomial expansion 

d LL ∑

suggests T0.8 as a better choice. In spite of this deficiency the GPH estimato

be robust in case of minor deviations from normality and the existence of A

w

 

k

k

k
d k

∞

=

⎟⎜−=− )1()1(  ⎟
⎠

⎞
⎜
⎝

⎛

0

 

!
)1).....(2)(1(

k
kdddd

k
d +−−−

≡⎟⎟
⎠

⎞
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⎝

⎛
 

 

Using the above formulas, (1-L)  can be written in terms of the gamma function 

which is denoted by the symbol  Γ as follows: 

 

d
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=− dL)1( k

k
L

kd
dk

)1()(
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0 +Γ−Γ
−Γ∑

∞

=

 

 

 Basic properties of  the gamma function is available in Appendix B. When the 

bove expansion is applied to the variable yt    , the following formula can be obtained 

 

a

=− t
d yL)1( kt

k
y

kd
dk

−

∞

= +Γ−Γ
−Γ∑ )1()(

)(
0

=∑ =− tktk y εφ  

 The above formulation is actually an nfinite order AR pro i cess. The 

utoregressive coefficients in terms of the gamma function are as follows: 

 

a

)1()(
)(
+Γ−Γ

−Γ
=

kd
dk

kφ  

 

 

Assum

 The coefficients can also be written as an infinite Moving Average Process. To

do that, consider the fact that  

 

t
d

t Ly ε−−= )1(  

 

e that dLL −−= )1()(θ . The above term can be expanded as; 

 

k

k
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or equivalently; 

 

)1).....(2)(1( kdddd
k
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Therefore, the MA coefficients denoted by k

kk
d

≡⎟⎟
⎠

⎞

⎝

−

 

θ can be written as; 

 

)1()(
)(

+ΓΓ
+Γ

=
dk

kθ  
kd

 

Granger and Joyeux (1980) and Hosking (1981) show that d should be strictly 

n 0.5 for stationarity of the series and d should be strictly greater than –0.5 for 

invertibility. They also show that the autocorrelation coeff ally 

feren ies are of the sam  d. Campbell, Lo MacKinlay (1997). It has 

en sh at when d is positi m autocorrelations goes to infinity, when d is 

ativ m collapses to zer

FIMA processes w tional integ ter is within the 

al 0.5 ), the asympto  function is ted by the following 

formula. 

 

γ(h) ∼Ch 2d-1, as h →∝ 

less tha

icients of any fraction

dif ced ser e sign as

be own th ve the su

neg e the su o. 

For AR here the frac ration parame

interv   (-0.5, tic correlation approxima
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 where C is the first order autocorrelation and h denotes the displacement in time. 

It can easily be inferred from the formula that  the correlation function decays at a 

polynomial rate. If it was decreasing at an exponential rate, the rate of decre

higher. Since it decays at polynomial rate, the series is said to have long memory. 

 In order to see the autocorrelation structure of a series with long term memory a 

very good example is provided in Campbell et al. (1997). As shown in the table belo

the autocorrelation of a fractionally differenced series  decays  at a much slower rate 

compared t

ase would be 

w, 

o an AR(1) series. Additionally the rate of decrease in autocorrelations of a 

series w

on 
values 

ith d>0 is faster than that of a series with d<0. This can also easily be inferred 

from the formula that approximates the autocorrelation function. Note also the fact the 

autocorrelations are of the same sign as the fractional integration parameter d. 

 

Table 45 - Behaviour of Autocorrelation Function with different fractional integrati

Lag d = 1/3  
Autocorrelation γ(h) 

d = -1/3 
Autocorrelation γ(h) 

AR(1)  
Autocorrelation γ(h) 

1 0.500 -0.250 0.500 
2 0.400 -0.071 0.250 
3 0.350 -0.036 0.125 
4 0.318 -0.022 0.063 
5 0.295 -0.015 0.031 
10 0.235 -0.005 0.001 
25 0.173 -0.001 2.98 x 10 -8

50 0,137 -3.24 x 10 -4 2.98 x 10 -16

100 0,109 -1.02 x 10 -4 7.89 x 10 -31

 

Notice that at lag 25 the autocorrelation of AR(1) series drops almost to zero 

while the autocorrelation of the series with fractional differencing parameter  d=1/3, is 
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0.173, quite high indicating long memo inus value of fractional 

differencing parameter (d= -1/3) decays at a faster rate compared to the one with d=1/3, 

ut decay rate is still quite low compared to the AR(1) process. The autocorrelation of 

the seri

the 

s seen the rate of decay 

correla

  is first done by Geweke 

and Po east 

mine the contribution of different frequencies 

in expl

ackage.  

ry. The series with a m

b

es with d = -1/3, is different from zero (-0.001) at lag 25, while the 

autocorrelation of the series AR(1) is virtually zero at the same lag value. Note also 

fact that the first order autocorrelation of the series with minus differencing parameter is 

equal to only the half of the AR(1) process in magnitude.  A

tions is quite low. The correlation between t and t-1 is 0.80 while it is 0.15 for t 

and t-20.  

The determination process of the fractional parameter d

rter-Hudak (1993) method which is a semiparametric procedure to obtain the l

squares estimate of the parameter “d” in a frequency domain regression. The frequency 

domain regression is generally used to exa

aining the variance of a series. The relevant algorithm is downloaded from the 

RATs internet site and calculation is done using the RATS p
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Findings 

Stationarity Tests 

 

Since the return series and other variables are studied by using time series 

analysis, stationarity tests are conducted for all of them. The results of the tests are 

provided in Appendix C. In addition to these formal statistical outputs, all the series a

also visually inspected to assure the stationarity condition. 

As seen the ADF test statistics is m

re 

ore negative than the critical value of even 1 

% level.  Therefore the null hypothesis of unit root is rejected for the session to session 

returns calculated from the closing values and average values. 

Like the results found for the return series, all the other series such as return 

dispersion, volume dispersion and returnvolume, ret30vol, volchg, range etc. used in this 

study  were  also found to be stationary.  

The stationarity is re-checked by PP test and similar results are obtained. Two 

sample outputs for this test is alsoprovided in Appendix C. 

In addition to the stationarity test done for the session to session returns and 

other variables above, the stationarity of daily returns, daily volume change, daily return 

dispersion etc are all tested and they are all found to be stationary. 

 

Autocorrelation Tests 

 

The correlogram of close to close session returns, average session returns, daily 

close to close returns and daily average returns are provided in Appendix D. The Q-
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statistics is actually known as Box-Pierce Q statistics and larger values of this statistics 

with very low probability figures at the rightmost column shows the existence of 

autocor

gest autocorrelation and partial 

utocorrelation is observed for the first lag, but the magnitude of Q-statistics imply that 

the series has t

On the other hand the correlogram of average session to session returns reveals 

the fact ally 

 to 

 

 

 

 

2-2005 exhibit stronger sign of white noise property. The 

orrelogram of average daily returns exhibits similar pattern to that of the session to 

ession average returns. The first two lags have relatively large and significant 

relation. 

For close to close return series, the Q statistics are all large and significant up to 

36 lags. However it should be noted that the magnitude of both the Autocorrelation and 

partial autocorrelation are very close to zero. The lar

a

he long memory property. 

 that the autocorrelation of average returns is larger and more visible. Especi

the first lag autocorrelation is quite larger than the first order autocorrelation of close

close return series. Although the Q statistics are also larger for all the lags up lag 36, the 

magnitude of autocorrelations and partial autocorrelations are very close to zero. 

The correlogram of the daily close to close return series exhibit an interesting

property. It can be seen that the autocorrelation and partial autocorrelations are virtually

zero for the first four lags and the Q-statistics are very low for these four lags implying

the non-existence of serial correlation. Autocorrelations for the lags further past  are also

very close to zero, but their Q values are not low enough to assure the non-existence of 

serial correlation. Additionally, the correlogram of daily close to close return series for 

the period between 200

c

s
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correlations. Lag three and further lags have very small but still statistically significant 

ession returns shows that session to 

alculated v wa  hold even for  the 

n  

Autoregressive Model Of Session to Session Return Series

correlations.   

Comparison of daily returns and session to s

session returns have higher autocorrelations, autocorrelations are quite larger when the 

returns are c  from the a erages. This property s found to

average returns belo ging to the period 2002-2005. 

 

 

 

 

rn 

s 

 

 

The analysis is first done by using the session close to session close returns 

denoted by the variable ret30seans. Although the magnitude of autocorrelations and 

partial autocorrelations are close to zero, the values of  Q statistics are large and for this

reason the existence of any significant AR and/or MA terms for session to session retu

series was analysed. As a first step the significant AR term(s) were looked for. The 

following output shows that the series have a statistically significant AR(1) term. Note 

that the stationarity condition for general AR(p) processes is that the inverted roots of 

the lag polynomial lie inside the unit circle. EViews reports these roots as Inverted AR 

Roots at the bottom of the regression output. There is no particular problem if the root

are imaginary, but a stationary AR model should have all roots with modulus (absolute 

values) less than one. 
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Table 46 - AR(1) model of session to session returns 
Dependent Variable: RET30SEANS 
Method: Least Squares 
Date: 10/03/05   Time: 16:50 
Sample(adjusted): 3 4014 
Included observations: 4012 after adjusting endpoints 
Convergence achieved after 2 iterations 
Variable Coefficient Std. Error t-Statistic Prob.   
AR(1) 0.090049 0.015727 5.725651 0.0000 
R-squared pe 1 0.007021     Mean de ndent var 0.00074
Adjusted R-squared 

 
t 

ots 

0.007021     S.D. dependent var 0.022379 
S.E. of regression 0.022300     Akaike info criterion -4.768169 
Sum squared resid 1.994713     Schwarz criterion -4.766600 
Log likelihood 9565.948     Durbin-Watson sta 1.999858 
Inverted AR Ro        .09 
 

As seen from the above output, the AR(1) coefficient is significant; however, the 

R-squared statistics is quite low. Additional AR terms were put into the equation to see 

whether there are any other significant terms. While adding the previous lags the value 

of adjusted R-squared and the value of Akaike information criterion was checked. The 

R-squared should get larger and the value of Akaike information criterion should get 

lower. The point where the Akaike information criterion reaches the minimum value is a 

good candidate to stop.    For example if ar(2) is added, the coefficient of the ar(2) term 

cant, and the overall fit of the equation as measured 

ation criterion gets a higher 

ot be included in the equation. The researcher 

 si  should all be strictly 

n one.The out ta w age is provided below 

g

is found to be statistically insignifi

by the adjusted R-squared gets worse and the Akaike inform

value meaning that ar(2) term should n

should also carefully follow the values of the AR roots, nce they

less tha put from the Eviews s tistical soft are pack

for ar(1) and ar(2) to ether.  
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Table 4
Dependent Variable: RET30SEANS 

Convergence achieved after 2 iterations 

7 - AR(2) model of Session to session returns 

Method: Least Squares 
Date: 10/03/05   Time: 16:53 
Sample(adjusted): 4 4014 
Included observations: 4011 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   
AR(1) 0.089810 0.015793 5.686825 0.0000 
AR(2) 0.001557 0.015792 0.098622 0.9214 
R-squared 0.007028     Mean dependent var 0.000734 
Adjusted R-squared 0.006780     S.D. dependent var 0.022378 
S.E. of regression 0.022302     Akaike info criterion -4.767800 
Sum squared resid 1.993959     Schwarz criterion -4.764660 
Log likelihood 9563.822     Durbin-Watson stat 1.999118 
Inverted AR Roots        .10       -.01 
 

However if the ar(3) term is added the ar(3) term is found to have a statistically 

informa terion ge om tha ua luding only ar(1) 

and ar(2). The output of the equation including the ar(1) ar(2) and (3) terms is provided 

below. 

 

R(3) Mode
RE
es 
e: 14
 401
ns:
ed a

Variable 

significant coefficient. The adjusted R-squared of the equation increases and the Akaike 

tion cri ts lower c pared to t of the eq tion inc

Table 48 - A l for session to session returns 
Dependent Variable: 

ar
T30SEANS 

Method: Least Squ
Date: 10/04/05   Tim

d): 5
:44 

Sample(adjuste 4 
er aIncluded observatio

Convergence achiev
 4010 aft
 after 2 i

djusting en
tions 

dpoints 
ter

Coefficient Std. Error t-Statistic Prob.   
AR(1) 0.090066 0.015792 5.703260 0.0000 
AR(2) 
AR(3) 
R-squared pe

0.004188 0.015853 0.264165 0.7917 
-0.028842 0.015789 -1.826739 0.0678 
0.007881     Mean de ndent var 0.000737 

Adjusted R-squared en  
S.E. of regression 0.022297     Akaike info criterion -4.768005 
Sum squared resid 1.992058     Schwarz criterion -4.763294 
Log likelihood 9562.849     Durbin-Watson stat 1.997117 
Inverted AR Roots    .19+.26i    .19 -.26i       -.28 

0.007386     S.D. dep dent var 0.022380
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By adding and/or deleting the further past lags of the return series and the 

following model which has the minimum value for Akaike criterion was obtained. The 

adjusted R-squared value was found as 0.021488. As seen from the output, all the 

oefficients are significant at 5 % level or more. It is quite interesting to have lag 

number 32 as a significant parameter in our model, this is regarded as an indication of 

emory in return series. 

Method: Least Squares 

Sample(adjusted): 34 4014 
Included observations: 3981 after adjusting endpoints 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 

c

long m

 

Table 49 - Final AR Model for session to session returns 
Dependent Variable: RET30SEANS 

Date: 03/14/06   Time: 11:27 

AR(1) 0.091914 0.015715 5.848772 0.0000 
AR(4) 0.043258 0.015761 2.744670 0.0061 
AR(5) -0.040281 0.015758 -2.556238 0.0106 

AR(30) 0.075790 0.015659 4.840089 0.0000 

R-squared 0.023455     Mean dependent var 0.000713 

AR(8) 0.034088 0.015699 2.171387 0.0300 
AR(11) -0.048708 0.015668 -3.108744 0.0019 
AR(17) 0.033644 0.015681 2.145507 0.0320 
AR(24) 0.034173 0.015688 2.178305 0.0294 

AR(32) 0.033817 0.015666 2.158679 0.0309 

Adjusted R-squared 0.021488     
S.E. of regression 0.022145     Akaike info criterion 

S.D. dependent var 0.022387 
-4.780124 

Sum sq
Log like

uared resid 1.947927     Schwarz criterion -4.765906 
lihood 9523.837     Durbin-Watson stat 1.996742 

Inverted AR Roots        .94    .91+.20i    .91 -.20i    .85 -.37i 
    .85+.37i    .75+.53i    .75 -.53i    .64 -.67i 

    .28 -.85i    .09+.89i    .09 -.89i    .00+.68i 

   -.28+.87i   -.47+.79i   -.47 -.79i   -.63 -.67i 
   -.63+.67i   -.76+.53i   -.76 -.53i   -.84 -.37i 
   -.84+.37i   -.91+.19i   -.91 -.19i       -.94 

    .64+.67i    .48+.79i    .48 -.79i    .28+.85i 

    .00 -.68i   -.09 -.86i   -.09+.86i   -.28 -.87i 
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Adding a constant to the equation does not improve the overall fit and besides 

the constant term is found to have low significance. Therefore the following equation is 

obtained. 

tttt

URR
RRR

++

 

ttttR ++
tRtRt RR +−+−+

−−

−−−−−

3230

171151

033817,0
033644,0048708,0340,00,0

Although the coefficients in the above equation are statistically significant the 

adjuste

= 091914,0

−24 075790,0034173,0
−8 0884 040281,043258

 

d R2 value (0.0235). Since R2 is defined as: 

 

)(
)(2

t

t

yVar
eVar

 

where Var(y

1R −=  

(et) is the variance of 

the residuals of autoregressive and/or moving average model. The value  adjusted R2 

f the total variance can be explained by the 

ich is actually 

inal step in our analysis, the residuals of the above model were plotted to 

e model. The correlogram of residuals shown 

in Append  D is a very ol to the e ess  final AR model. As 

 are  u ing th or terms of the AR 

bove c ise.  Ano hich is called serial 

st is als ollowing Eviews 

t) is the variance of original series and the Var

being equal to only 0.023 means that 2,3 % o

model wh very low. 

As a f

see the effectiveness of the overall fit of th

ix  useful to  assess ffectiven  of the

seen, the residuals ncorrelated up to lag 36 mean at the err

model  specified a an be defined as white no ther test w

correlation LM te o done for lags even greater than 36. As the f
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output led “ 

of no serial correlation.  

 

Test: 
-statistic 0.962018     Probability 0.559397 

Probability 0.633388 

shows,  there is no significant autocorrelation in the series. The statistic labe

Obs*R-squared” is the LM test statistic for the null hypothesis 

Table 50 - Breusch-Godfrey Serial Correlation LM 
F
Obs*R-squared 55.70217     
Test Equation: 
Dependent Variable: RESID 
Method: Least Squares 
Presam ing value sidu  zero
 

O  other han relo squa ua ded in Appendix D 

shows th  squared are d. T s th  is ARCH and/or 

GARCH s in the d fac  be doin ple ARCH-LM test 

which is readily available in Eviews. As the following output shows, even at lag 1 there 

CH e H test trongly suggest the 

eteroskeda he resid

 

Table 51 - ARCH LM test for the residuals 
ARCH Test: 
F-statistic 4 ty  

ple miss  lagged re als set to . 

n the d the cor gram of red resid ls provi

at the residuals correlate his mean at there

 effect ata .This t can also  seen by g a sim

is a significant AR ffect, in other words the ARC  results s

presence of h sticity and nonnormality in t uals. 

114.460     Probabili 0.000000
Obs*R-squared 1 ility 0.000000 
Test Equation: 

111.315     Probab

Dependent Variable: RESID^2 
Method
Sample(adjusted): 35 4014 

: Least Squares 

Variable Coefficient Std. Error t-Statistic Prob. 
C 0.000408 1.98E-05 20.60768 0.0000 

RESID^2(-1) 0.167236 0.015632 10.69862 0.0000 
R-squared 0.027969     Mean dependent var 0.000489 
Adjusted R-squared 0.027724     S.D. dependent var 0.001167 
S.E. of regression 0.001151     Akaike info criterion -10.69657 
Sum squared resid 0.005266     Schwarz criterion -10.69341 
Log likelihood 21288.18     F-statistic 114.4604 
Durbin-Watson stat 2.072309     Prob(F-statistic) 0.000000 
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On the other hand, for the average session to session returns the following 

autoregressive model is obtained for the average return series. 

 

Table 5
 

Sample(adjusted): 32 4014 

2 - Final AR Model for the average returns 

Dependent Variable: RET30AVGSEANS 
Method: Least Squares 

Included observations: 3983 after adjusting endpoints 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 
AR(1) 0.438184 0.015730 27.85744 0.0000 
AR(2) 
AR(3) 

-0.170307 0.016991 -10.02333 0.0000 
0.054283 0.015731 3.450609 0.0006 

AR(5) -0.042461 0.014421 -2.944358 0.0033 
AR(8) 0.049263 0.015558 3.166414 0.0016 
AR(9) -0.044130 0.015543 -2.839242 0.0045 

AR(11) -0.061672 0.014416 -4.277970 0.0000 

14430 2.253501 0.0243 
2.799290 0.0051 

8408 0.014404 4.054903 0.0001 
.175664     Mean dependent var 0.000716 

AR(13) 0.035599 0.014486 2.457392 0.0140 
AR(18) 0.032518 0.0

0.040414 0.014437AR(24) 
AR(30) 0.05

R-squared 0
Adjusted R-squared 0.173588     S.D. dependent var

ke info criterion
 0.018325 
 -5.348987 

arz criterion -5.331616 
Log like     D on 1.9
Inverted AR Roots       .9    .9    .8

S.E. of regression 0.016659     Akai
Sum squared resid 1.102305     Schw

lihood 10663.51 urbin-Wats stat 94531 
    .93 0 -.21i 0+.21i 4+.37i 

      .7    .    .6
   
    
  -
  -
  - 7i 
  -

 .84 -.37i 
 

4+.53i 74 -.53i 4+.68i 
 
 

.64 -.68i 

.27 -.87i 
   .49 -.79i    .49+.79i 
   .10+.91i    .10 -.91i 

  .27+.87i 
 -.08 -.90i 

 .08+.90i   -.25 -.88i   -.25+.88i  
  -.71+.54i 
 -.44 -.80i 

 .44+.80i   -.61 -.67i   -.61+.67i 
 .71 -.54i   -.80 -.37i   -.80+.3   -.87 -.20i 
 .87+.20i       -.91 

 

The above output says that the average returns does posses the long memory 

property that is encountered in the close to close return autoregressive m

important difference is that the adjusted r-squared is quite better than that of the close to 

3,5,8,9,11,13,18,24,30 reveals that the residuals are uncorrelated up lag 36, meaning that 

s of this model can be 

odel. One 

close returns. The correlogram of the autoregressive model including lags 1, 2, 

the model is sufficient in explaining the series. The error term
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termed as white noise gh. The squared 

siduals of the autoregressive model found for the average returns are found to be 

correla

 

rn series with only two lags 
T30AVGSEANS 

Include tions: dju oin
Convergence achieved after 3 iterations 

V  C

. The residuals are found to be non-normal thou

re

ted however, implying the existence of an ARCH and/or GARCH effect. 

 Especially the first two lagged terms of the average returns do have quite large 

explanatory power compared to the other lag terms, the coefficients of the AR terms 

other than lag 1 and lag 2 are quite close to zero although their significance level is high.

So the model is also formed with only lag 1 and lag2 and the relevant statistics are 

shown below. 

 

Table 53 - AR modeling of average retu
Dependent Variable: RE
Method: Least Squares 
Date: 04/25/06   Time: 13:35 
Sample(adjusted): 4 4014 

d observa 4011 after a sting endp ts 

ariable oefficient Std. Error t-Statistic Prob. 
AR(1) 0.432021 0.015619 27.66073 0.0000 
AR(2) -0.148546 0.015618 -9.510959 0.0000 

R-squa     M nd 0.red 0.159067 ean depe ent var 000737 
Adjusted R-squared     S de 0.
S.E. of regression     A  cr -5.

d resid 

   

0.158858 .D. depen nt var 018317 
0.016799 kaike info iterion 334507 

Sum square 1.131354     Schwarz criterion -5.331367 
Log likelihood 10700.35     Durbin-Watson stat 1.985187 
Inverted AR Roots .22+.32i    .22 -.32i 
 

Th above e ou o o a rage return of a 

session is sitive, th e  n   positive. This is 

derived du to the po o  the AR(1) term. On the other 

hand, one can also deduce that the average return of a session is negatively correlated to  

the return of the session preceding the previous session.  

 

tput leads t  us to the c nclusion th t if the ave

po e average r turn of the ext session will also be

e sitive and significant c efficient of
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Autoregressive Model of Daily Return Series 

 

 

Method: Least Squares 

 
td. Error t-Statistic Prob. 

As it has been explained in previous sections, the correlogram of the close to 

close daily return series imply that the series have almost no autocorrelations. However 

an autoregressive model to the daily return series calculated from the closing values is 

still tried The first four lagged terms  are found have no significance a result that is also

implied by the correlogram. By trial and error as it has been done for the session close to 

session close series the following AR model has been reached. 

 

Table 54 - AR Model for daily returns 

Sample(adjusted): 54 2014 
Included observations: 1961 after adjusting endpoints 
Convergence achieved after 3 iterations

Variable Coefficient S
AR(5) -0.053292 0.022450 -2.373824 0.0177 
AR(9) 0.063331 0.022402 2.827029 0.0047 

AR(11) -0.045326 0.022415 -2.022078 0.0433 
AR(15) 0.051712 0.022405 2.308023 0.0211 

AR(44) 0.046178 0.022376 2.063747 0.0392 
AR(52) 0.052246 0.022362 2.336391 0.0196 

R-squared 0.018708     Mean dependent var 0.001460 

AR(32) -0.063890 0.022406 -2.851458 0.0044 

Adjusted R-squared 0.015695     S.D. dependent var 0.033296 
S.E. of regression 0.033034     Akaike info criterion -3.979020 
Sum squared resid 2.132241     Schwarz criterion -3.959097 

Inverted AR Roots        .95    .95+.12i    .95 -.12i    .91+.24i 
Log likelihood 3908.429     Durbin-Watson stat 1.985849 

    .91 -.24i    .87 -.33i    .87+.33i    .84+.43i 

    .72 -.63i    .63 -.72i    .63+.72i    .53+.77i 

   -.33+.87i   -.44 -.85i   -.44+.85i   -.52+.78i 
52 -.78i   -.62+.72i   -.62 -.72i   -.72 -.62i 

  -.78+.53i   -.78 -.53i   -.84+.43i 
   -.84 -.43i   -.87+.32i   -.87 -.32i   -.92+.24i 
   -.92 -.24i       -.95   -.95 -.12i   -.95+.12i 

    .84 -.43i    .78+.53i    .78 -.53i    .72+.63i 

    .53 -.77i    .43 -.83i    .43+.83i    .32+.87i 
    .32 -.87i    .24+.92i    .24 -.92i    .12 -.95i 
    .12+.95i   -.00 -.95i   -.00+.95i   -.12 -.95i 
   -.12+.95i   -.24+.91i   -.24 -.91i   -.33 -.87i 

   -.
   -.72+.62i 
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The final autoregressive model with 7 terms has an  R-squared value of 

 a fact that leads us to say that there 

seems to be almost no  lin ons g th ns through time. On 

the other hand, the  52n  was found to have a significant coefficient which is 

regarded as an indication of long me lo  re ies. The residuals of 

the abo l are found to be sim ite t th ed residuals are 

rrel  ac ith the conclusion 

e for 

session to ssion and r

Fo he averag u ut e analysis show 

similar features to that of the session to session average returns as shown below. 

Average returns in general have  higher adjusted r-squared values. The average returns 

series is fo nd to hav m op  i e case for close to 

close returns. From the above output it can be seen that the 52nd AR term have 

statistically significant coefficient, meaning that there is strong persistence in the series. 

Note also the fact that the adjusted r-squared value of daily average return series is lower 

than that of the session to session average return series. This is an expected result since 

the longer the time interval between the observation the lower the significance of 

autoregressive effects.  

 

0.015695. As seen from the output, all the coefficients are significant at 5 % level or 

more. But the adjusted r-squared value is very low,

 significant ear relati hip amon e retur

d AR term

mory in c se to close turn ser

ve mode ilar to wh  noise, bu e squar

found to strongly co ated over time, this finding is in cordance w

which has been reached for the session to session return series. Therefore the residuals 

are not linearly dependent but the squared residuals show dependence over tim

se  daily retu ns. 

r t e daily returns, the res lts of the a oregressiv

u e the  long emory pr erty which s also th
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able 55 - AR Model for the average daily returns 
Dependent Variable: RET30AVGD 
Method
Date: 05/05/06   Time: 14:38 

Convergence achieved after 3 iterations 

T

: Least Squares 

Sample(adjusted): 54 2014 
Included observations: 1961 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
AR(1) 0.319494 0.022340 14.30153 0.0000 
AR(2) -0.104786 0.022350 -4.688398 0.0000 
AR(5) -0.071588 0.021339 -3.354797 0.0008 
AR(8) 0.053497 0.021410 2.498748 0.0125 

AR(33) -0.047408 0.021365 -2.219024 0.0266 
0.0350 

2.248652 0.0246 
0.107430     Mean dependent var 0.001477 

AR(43) 0.045032 0.021348 2.109389
0.021354AR(52) 0.048017

R-squared 
Adjusted R-squared 0.104689     S.D. dependent var 0.027658 

026170     Akaike info criterion -4.444839 
 -4.424916 

bin-Watson stat 1.997572 
ts        .95    .95+.12i    .95 -.12i    .91+.24i 

S.E. of regression 0.
Sum squared resid 1.338239     Schwarz criterion
Log likelihood 4365.164     Dur
Inverted AR Roo

     .    .8    .85
      .7    .7    .7
     .6       .5
     .4    .    .3
      .2    .2    .1
    -.0   -   -.
    -.2   -.   -.

   -   -.4   -.   -.
  -   -.6   -.   -.
  -.69+.62i   -.82+.45i 
  -  
  - i 

  .91 -.24i 87+.32i 7 -.32i  -.43i 
 .85+.43i 9+.54i 9 -.54i 2 -.63i 
  .72+.63i 

 
3+.72i .63 -.72i 

4
2 -.77i 

 .52+.77i 5 -.82i 5+.82i 4+.88i 
 .34 -.88i 4+.92i 4 -.92i 2 -.95i 
  .12+.95i 

-
1 -.95i .01+.95i 11 -.92i 

 .11+.92i 1 -.92i 21+.92i 32 -.88i 
.32+.88i 3+.85i 43 -.85i 54+.78i 

 .54 -.78i 3+.69i 63 -.69i 69 -.62i 
   -.76+.54i   -.76 -.54i 

i  
 

.82 -.45i 

.92 -.21i 
  -.88 -.34i   -.88+.34
  -.92+.11i   -.92 -.11

 -.92+.21i 
     -.93  

 

The residual a o th el is not fully 

successful to eliminate the serial correlation of residuals. The squared residuals show 

strong sign f depend C  e reover, similar 

results found for the session to session average returns the largest explanation of the 

model stems from the first two ar terms and although not shown here, it can be said that 

if the average return of day is positive, the next day’s return will also be expected to be 

positive. 

nalysis of the above m del shows at the mod

 o ence implying the AR H/GARCH ffects. Mo
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Moving Average Representation Of Session To Session Return Series 

 

The session close to session close returns are also analysed by using the Moving 

Average method. As it has been done for the Autoregressive modeling of the return 

series, by adding and/or deleting the MA terms at different the final model has been 

ached as shown below.  

 

odel session to session returns 

Method: Least Squares 
Date: 0
Sample(adjusted): 2 4014 

Backcast: -30 1 

re

Table 56 - MA m
Dependent Variable: RET30SEANS 

3/14/06   Time: 12:20 

Included observations: 4013 after adjusting endpoints 
Convergence achieved after 6 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 
MA(1) 0.093258 0.015628 5.967446 0.0000 
MA(3) -0.032146 0.015693 -2.048373 0.0406 
MA(4) 0.048602 0.015720 3.091736 0.0020 

MA(11) -0.044715 0.015628 -2.861156 0.0042 

0.0198 
r 0.000742 

MA(8) 0.039006 0.015646 2.493109 0.0127 

MA(17) 0.039243 0.015648 2.507827 0.0122 
MA(30) 0.076970 0.015639 4.921570 0.0000 
MA(32) 0.036467 0.015641 2.331567

R-squared 0.022736     Mean dependent va
Adjusted R-squared 
S.E. of
Sum squared resid 1.963185     Schwarz criterion -4.768308 

Inverted MA Roots    .92+.10i    .92 -.10i    .88 -.28i    .88+.28i 

0.021028     S.D. dependent var 0.022377 
 regression 0.022140     Akaike info criterion -4.780862 

Log likelihood 9600.800     Durbin-Watson stat 1.999321 

    .81 -.46i    .81+.46i    .69 -.60i    .69+.60i 
    .55 -.74i    .55+.74i    .38 -.82i    .38+.82i 
    .21+.87i    .21 -.87i    .00+.69i    .00 -.69i 
   -.02 -.88i   -.02+.88i   -.20+.88i   -.20 -.88i 

   -.70+.62i   -.70 -.62i   -.81+.45i   -.81 -.45i 
   -.40 -.83i   -.40+.83i   -.56+.73i   -.56 -.73i 

   -.89 -.29i   -.89+.29i   -.92+.10i   -.92 -.10i 
 

As it c  

 issue arising in MA analysis. More specifically, in our 

an be seen from the output, quite similar to persistency problem encountered in

the AR analysis we have the same
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final model the MA terms belonging to lag 30 and 32 respectively are statistically 

 this model is slightly poorer than that of the AR model. A 

found to be insignificant at 5 % level. 

 for the moving average representation of the session close to 

session close return series are provided below. 

 

tttt UUUR
ε++

−

significant. The overall fit of

constant is also added to the MA equation but it is 

The functional form

ttU +tU
tUtUtU −−+−= −−−− 171141

036,0076,0
039243,047150.03,00,0

e co ica gnitudes are quite 

 pre lysed. The 

explained riance as b u  i te low, the model 

can explain approxim ri

Wh n the ove r  t MA representations  

is compared the adjusted R-squared values of final AR specification and MA 

pecificati  are foun h 

the following model is obtained. 

−32467−30970
−8 04,0−32146 039006,0048602,93258

 

Although th efficients are statistically signif nt, their ma

low. The adjusted R2 is very similar to the AR model viously ana

va  measured y the R-sq are statistic s again qui

ately 2,3 % of total va ance. 

e rall fit or the explanato y power of he AR and 

s on d be very close to eac other.   

Similar results to those that are found for the AR models are obtained for  the 

correlation of residuals and squared residuals and the distribution of the residuals of MA 

model . In other words, the residuals are found to be uncorrelated up to lag 30, squared 

residuals are found to be correlated and the distribution of residuals are non-normal. 

Thus, our MA model specified above does have error terms which can be called “white 

noise”. 

The same process is repeated for the average session to session return series and 
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Table 57 - MA model for the average session to session returns 

Method: Least Squares 
Date: 04/25/06   Time: 11:46 

Dependent Variable: RET30AVGSEANS 

fficient Std. Error t-Statistic Prob. 

Sample(adjusted): 2 4014 
Included observations: 4013 after adjusting endpoints 
Convergence achieved after 7 iterations 
Backcast: -45 1 

Variable Coe
MA(1) 0.434650 0.014210 30.58851 0.0000 
MA(4) 0.050060 0.0

) 0.050443 0.014157
14215 3.521561 0.0004 

3.563194 0.0004 
-2.357579 0.0184 

0.0040 

7) 4
 

MA(8
MA(12) -0.033491
MA(20) 

0.014206
0.0141980.040838 2.876350

MA(30) 0.058482 0.014109 4.145080 0.0000 
MA(4 -0.031351 0.014140 -2.21723 0.0267 

R-squared 0.172915     Mean dependent var 0.000744 
Adjusted R-squared 

n 
esid 

32     Durbin-Watson stat 1.976803 
   .92+.12i    .92 -.12i        .91    .89 -.25i 

0.171676     S.D. dependent var 0.018315 
S.E. of regression 0.016669     Akaike info criterio -5.348779 
Sum squared r 1.113101     Schwarz criterion -5.337794 
Log likelihood 10739.
Inverted MA Roots 

    .89+.25i    .84+.36i    .84 -.36i    .80 -.47i 

    .43 -.81i    .34 -.86i    .34+.86i    .20+.91i 
1i   -.03 -.93i 

   -.03+.93i   -.17+.92i   -.17 -.92i   -.27 -.87i 
   -.27+.87i   -.41+.85i   -.41 -.85i   -.51+.78i 
   -.51 -.78i   -.60+.71i   -.60 -.71i   -.71+.63i 
 
 
   -.91 -.18i   -.94+.08i   -.94 -.08i 

    .80+.47i    .71 -.58i    .71+.58i    .64+.66i 
    .64 -.66i    .54 -.75i    .54+.75i    .43+.81i 

    .20 -.91i    .09+.91i    .09 -.9

  -.71 -.63i   -.77 -.51i   -.77+.51i   -.85 -.43i 
  -.85+.43i   -.90 -.31i   -.90+.31i   -.91+.18i 

 

As seen from the output the moving average model for the average return series

also exhibits the long memory property. Similar to the conclusion drawn fro the sessio

to session series, the adjusted r-squared value of moving average model is quite clos

that of the AR model. The adjusted r-squared value of the MA model for the average

return series is again found to be quite higher than that of the MA model for the close t

close return series. A careful look at the MA model shows that the first MA term is quite 

significant in explaining the average returns as shown below. The model says that if the

 

n 

e to 

 

o 
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average return is higher than expected (positive error term) then the  next session will 

also be expected to have positive average return and vice versa. 

 

Dependent Variable: RET30AVGSEANS 

Sample(adjusted): 2 4014 
Included observations: 4013 after adjusting endpoints 
Convergence achieved after 7 iterations 
Backcast: 1 

Table 58 - MA(1) model for the average sessions 

Method: Least Squares 

Variable Coefficient Std. Error t-Statistic Prob. 
MA(1) 0.417430 0.014350 29.08943 0.0000 

R-squared 0.158251     Mean dependent var 0.000744 
Adjusted R-squared 0.158251     S.D. dependent var 0.018315 
S.E. of regression 0.016804     Akaike info criterion -5.334195 

1.132836     Schwarz criterion -5.332626 
Log likelihood 10704.06     Durbin-Watson stat 1.961755 
Sum squared resid 

Inverted MA Roots       -.42 
 

The residual analysis of the average returns show similar features, the squared 

residua e ARC A per

 

Moving Average Representation Of Daily Return Series

ls do hav H and/or G RCH pro ty. 

 

 

age lso rately for close to 

first result is the fact r b o  close to close 

returns and for average returns. The second result is the fact that and the adjusted r-

squared va e of the M o a returns are lower 

than the adjusted r-squared value of autoregr el ective return series. 

The residuals of the M il s he autoregressive 

model for the same return series The output below exhibits the statistics belonging to the 

Moving aver  modeling of daily returns are a  done sepa

close and average return series as it has been done for session to session returns. The 

that, the se ies do exhi it long mem ry for both

lu A models for both cl se to close nd average 

essive mod  of the resp

A  model exhibit sim ar propertie  to that of t
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MA mo sted 

l 

at has been found in the AR modeling. It seems that it is 

lmost useless to use a linear autoregressive or moving average model for the daily 

ex. This is mainly because, the 

odels have very low adjusted r-squared values and the series 

uals. 

 

Table 59 - MA model f y r
Method: Least Squares 
Sample d): 2 201
Include ations: 2 dju oi
Conver hieved a tion

0 1 
C tic

del for daily close to close return series. It can easily be noticed that the adju

r-squared value for the daily close to close return series is lower than the AR mode

explained previously. Note also the fact that the nearest MA coefficient belongs to lag 

number 5, in parallel to wh

a

return series calculated from the closing values of the ind

both the AR and the MA m

also exhibit very long memory with nonlinear resid

or the dail eturns 

(adjuste 4 
d observ 013 after a sting endp nts 
gence ac fter 6 itera s 

Backcast: -5
Variable oefficient Std. Error t-Statis Prob. 
MA(5) -0.043610 0.022150 -1.968821 0.0491 
MA(9) 0.063461 0.022148 2.865365

 15
6 6

MA(44) 0.051120 7 3
MA(52) 0.056839 0 7

R-squared pe

0.0042 
MA(28) -0.048447 0.022202 -2.1821 0.0292 
MA(32) -0.063935 0.02223 -2.87527 0.0041 

0.02225 2.29681 0.0217 
0.02226 2.55341 0.0107 

0.015905     Mean de ndent var 0.001476 
Adjusted R-squared en
S.E. of regression fo
Sum squared resid  c
Log likelihood a
Inverted MA Roots 

0.013453     S.D. dep dent var 0.033158 
0.032934     Akaike in  criterion -3.985635 
2.176914     Schwarz riterion -3.968921 
4017.541     Durbin-W tson stat 1.987871 

   .95 -.05i    .95+.05i    .94+.19i    .94 -.19i 
    .88+.29i    .88 -.29i    .86+.38i    .86 -.38i 
    .81+.48i    .81 -.48i 

i 
   .29+.88i    .19+.94i    .19 -.94i 

    .05 -.95i    .05+.95i   -.05+.95i   -.05 -.95i 
   -.19+.94i   -.19 -.94i   -.28 -.88i   -.28+.88i 
   -.38 -.86i   -.38+.86i   -.48+.81i   -.48 -.81i 
   -.58 -.75i   -.58+.75i   -.68 -.68i   -.68+.68i 
   -.76 -.58i   -.76+.58i   -.81+.48i   -.81 -.48i 
   -.86+.38i   -.86 -.38i   -.88+.28i   -.88 -.28i 
   -.94+.18i   -.94 -.18i   -.95+.05i   -.95 -.05i 

   .75+.58i 
6i 

   .75 -.58i 
    .67 -.68i    .67+.68i 

   .48+.81i 
   .58 -.7
   .38 -.86

   .58+.76i 
   .38+.86i  

 
   .48 -.81i 
   .29 -.88i 
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The daily returns calculated from averages do however exhibit somewhat a 

different picture as it was the case in AR modeling of the same return series. The 

Moving average model for the daily average return series with all significant MA terms 

included is shown below.  

 

Table 6
Dependent Variable: RET30AVGD 

Backcast: -51 1 

0 - MA model for the average daily return series 

Method: Least Squares 
Sample(adjusted): 2 2014 
Included observations: 2013 after adjusting endpoints 
Convergence achieved after 8 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 
MA(1) 0.336608 0.020820 16.16786 0.0000 
MA(4) 0.059017 0.020958 2.815989 0.0049 

MA(10) 0.061406 0.020895 2.938800 0.0033 
MA(33) -0.043361 0.020894 -2.075346 0.0381 
MA(53) 0.056957 0.020946 2.719205 0.0066 

R-squared 0.106828     Mean dependent var 0.001486 

MA(6) -0.047669 0.020945 -2.275938 0.0230 

Adjusted R-squared 0.104603     S.D. dependent var 0.027524 
S.E. of regression 0.026044     Akaike info criterion -4.455050 

Log likelihood 4490.007
Sum squared resid 1.361373     Schwarz criterion -4.438336 

    Durbin-Watson stat 2.015712 
Inverted MA Roots    .94 -.05i    .94+.05i    .93 -.17i    .93+.17i 

    .90+.28i    .90 -.28i    .87 -.38i    .87+.38i 
    .81 -.48i    .81+.48i    .74 -.57i    .74+.57i 

   .59+.74i 
   .40 -.86i 

   .19+.93i    .19 -.93i 
94i    .07+.94i   -.03 -.94i   -.03+.94i 
94i   -.15 -.94i   -.26 -.91i   -.26+.91i 

.83i   -.47+.83i 

.71i   -.65+.71i 
.62i   -.79+.53i   -.79 -.53i 

  -.85 -.43i   -.85+.43i   -.89+.32i   -.89 -.32i 
   -.        -.95

   -

    .68 -.66i    .68+.66i    .59 -.74i 
   .51 -.80i    .40+.86i     .51+.80i 

 .30+.89i    .30 -.89i    
    .07 -.

5+.   -.1
   -.36+.88i   -.36 -.88i   -.47 -

.77i   -.65 -   -.56 -.77i   -.56+
  -.73+.62i   -.73 - 

 
  -.93 -.23i 93+.23i  -.95 +.11i 

.95 -.11i 
 

As seen from th em  evident. On the 

other hand the adjusted r-squared value is reasonably high and can not be ignored when 

it is compared the adjusted r-squared value found for close to close daily returns. 

e model, the existence of long m ory is very
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H

e adjusted r-squared value attained in the autoregressive model for the same return 

series (

 

 

d to the session to session average returns it can be concluded that if there is 

n unexpected large return (i.e. the error term is positive), then the return of the next day 

arge negative return in 

 the next day will probably be 

he MA(1) term is positive and 

icant. 

R
are

e:
d): 2 2

ns: er adjusting endpoints 
ed terations 

Variable Coefficient Std. Error t-Statistic Prob. 

owever, it should also be noted that, the adjusted r-squared value is again lower than 

th

average daily return series). The residuals and the squared residuals of the MA 

model below show similar properties (i.e. ARCH/GARCH effects) to that of the 

autoregressive model of the same return series (average daily return series). 

It does also worth mentioning the fact that, moving average analysis of daily

returns show that the first MA term is the most significant term and accounts for the 

largest part of adjusted R-squared value. Similar to the conclusion drawn for the MA

model fitte

a

will probably be positive and similarly, if there is an unexpected l

a day, (i.e., the error term is negative), then the return of

negative. This is mainly because the coefficient of t

statistically signif

 

Table 61 - MA(1) Model for average daily return series 
Dependent Variable: ET30AVGD 
Method: Least Squ s 
Date: 05/05/06   Tim  16:05 
Sample(adjuste 014 
Included observatio  2013 aft
Convergence achiev
Backcast: 1 

 after 5 i

MA(1) 0.326265 0.021069 15.48560 0.0000 
R-squared 0.093076     Mean dependent var 0.001486 
Adjusted R-squared 0.093076     S.D. dependent var 0.027524 
S.E. of regression 0.026212     Akaike info criterion -4.444738 
Sum squared resid 1.382334     Schwarz criterion -4.441952 
Log likelihood 4474.628     Durbin-Watson stat 2.001854 
Inverted MA Roots       -.33 
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Autoregressive And Moving Average Representation Of Session To Session Returns 

alysis of the return series is repeated by allowing both AR and 

A modeling. The first step is to try 

1) and MA( o  th nc  coefficients. As seen 

e output below a et f f the AR(1) and 

s are foun si  R of the equation is 

Method: Least Squares 

Sample(adjusted): 3 4014 

Backcast
Variabl

 

The time series an

MA terms into the equation, a method called ARM

both AR( 1) in the m del watch e significa e of the

from th , when ev luated tog her, the coe ficients o

MA(1) term d to be in gnificant. The adjusted -squared 

even worse than the equation having only AR(1) or MA(1) depicted in the previous 

sections.  

 

Table 62 - MA(1) Model for session to session to session returns 
Dependent Variable: RET30SEANS 

Date: 10/03/05   Time: 16:58 

Included observations: 4012 after adjusting endpoints 
Convergence achieved after 13 iterations 

: 2 
e Coefficient Std. Error t-Statistic Prob.   

AR(1) 0.109031 0.173937 0.626840 0.5308 
MA(1) -0.019152 0.174951 -0.109468 0.9128 
R-squared 0.007025     Mean dependent var 0.000741 
Adjusted R-squared 0.006778     S.D. dependent var 0.022379 
S.E. of regression 0.022303     Akaike info criterion -4.767675 
Sum squared resid 1.994704     Schwarz criterion -4.764536 

Inverted AR Roots        .11 
Log likelihood 9565.957     Durbin-Watson stat 1.999425 

Inverted MA Roots        .02 
 

ARMA model is found to be quite sensitive to the relationship between the AR 

nd MA terms. For example, when AR(2) term is added to the equation, the coefficients 

of all the AR and MA terms become significant as shown below. 

 

a
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Table 63 - An ARMA models for the session to session returns 

ations: 4 dju oint
Conve hieved atio
Backca
Variable C Std t-S Pro

Dependent Variable: RET30SEANS 
Method: Least Squares 

d): 4 4014 Sample(adjuste
Included observ

rgence ac
011 after a

 after 15 iter
sting endp
ns 

s 

st: 3 
 oefficient . Error tatistic b.   

AR(1) -0.886251 0.0 -49.45731 0.0000 17920 
AR(2) 0.102320 0.0 6.457732 0.0000 

0.0000 
0. 0

15845 
MA(1) 0.980059 0.008886 110.2981 

 R-squared 012171     Mean dependent var .000734 
Adjusted R-squared 0.

0.
1. .767785 
95 1.996809 

011678     S.D. dependent var 
n 

0.022378 
S.E. of regression 

esid 
022247     Akaike info criterio -4.772494 

-4Sum squared r
Log likelihood 

983630 
74.237 

    Schwarz criterion 
    Durbin-Watson stat 

Inverted AR Roots        .10       -.99 
Inverted MA Roots       -.98 
 

Note th es 

es very 

e 

eans that. the overall fit of this model is 

worse t

 

able 64 - ARMA(3,3) model for session to session returns 

at the adjusted R squared value improves and the Akaike Criterion becom

lower implying a better fit, but  the roots of the AR and MA polynomials becom

close to each other implying the common roots problem. 

This problem is encountered more visible when the AR(3) and MA(3) terms ar

added to the model as shown below:This output means that the order of the ARMA(p,q) 

model can not go beyond 3 which in turn m

han both the AR and MA models.  In ARMA modeling it is usually 

recommended to make the model as simple as possible, and to use either AR or MA 

terms not both especially when the data shows long term memory. This is quiet evident

in our case. The overall fit could not be improved by using both AR and MA terms. 

 

 

T
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Dependent Variable: RET30SEANS 
Method: Least Squares 
Date: 04/25/06   Time: 18:43 

chieved after 17 iterations 

V  C

Sample(adjusted): 5 4014 
 endpoints Included observations: 4010 after adjusting

Convergence a
Backcast: 2 4 

ariable oefficient Std. Error t-Statistic Prob. 
AR(1) 0.205880 0.163026 1.262868 0.2067 
AR(3) 0.592394 0.102602 5.773690 0.0000 
MA(1) -0.120412

-
0.162052 -0.743046

0.020969
-6.166137

0.010814

0.4575 
MA(2) 0.024239 -0.865124 0.3870 
MA(3) -0.629652 0.102115 0.0000 

R-squared     Mean dependent var 0.000737 
Adjusted R-squared 

-4.769968 
0.009826     S.D. dependent var 0.022380 

S.E. of regression 0.022269     Akaike info criterion 
Sum squared resid 1.986169     Schwarz criterion -4.762117 
Log likelihood 9568.786     Durbin-Watson stat 1.985815 
Inverted AR Roots        .91   -.35+.72i   -.35 -.72i 
Inverted MA Roots   -.39 -.73i        .91   -.39+.73i 
 

Analysis of the correlogram of residuals also shows that AR or MA models by 

themse

t 

asily be said to have the white noise property. In other words ARMA representation 

error terms 

ation seem to be correlated. 

odeling is also repeated for the average return series by addition and 

deletion AR and , t n lem ain encountered, 

 w  be  however the fact 

squared value he del constructed for 

eturn ser

 

lves produce better results than ARMA model with respect to correlation 

structure of residuals.  As seen below, the residuals of the ARMA model above can no

e

could not achieve to remove the autocorrelation inherent in the series, i.e. the 

of ARMA equ

ARMA m

 of the MA terms he commo roots prob  was ag

when the MA(7) term as added to the model as shown low. Note

that the adjusted r-  is larger than that of t ARMA mo

close to close r ies. 
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Table 6
Method: Least Squares 

le Coefficient Std. Error t-Statistic Prob. 

5 - ARMA(6,7) model for average session to session returns 

Sample(adjusted): 8 4014 
Included observations: 4007 after adjusting endpoints 
Convergence achieved after 38 iterations 
Backcast: 1 7 

Variab
AR(1) 0.669171 0.004544 147.2700 0.0000 
AR(6) -0.470575 0.004882 -96.38737 0.0000 
MA(1) -0.249625 0.015255 -16.36382 0.0000 
MA(2) -0.279828 0.011001 -25.43692 0.0000 
M
MA(7) 0.180897

0.161146     Mean dependent var 0.000742 

A(6) 0.484065 0.011986 40.38618 0.0000 
0.014784 12.23606 0.0000 

R-squared 
Adjusted R-squared 0.160098     S.D. dependent var 0.018322 
S.E. of
Sum sq
Log likelihood 10693.51     Durbin-Watson stat 1.968078 

 regression 0.016791     Akaike info criterion -5.334422 
uared resid 1.128065     Schwarz criterion -5.324995 

Inverted AR Roots    .91 -.41i    .91+.41i    .10 -.85i    .10+.85i 
   -.68+.43i   -.68 -.43i 

       -.37   -.69 -.43i   -.69+.43i 
Inverted MA Roots    .91 -.41i    .91+.41i    .09+.85i    .09 -.85i 

 

The above output shows that the order or AR and MA (p,q) should be less than 7. 

 for the average return series. 

era  to session returns 
Convergence achieved after 28 iterations 
Backca

C Prob. 

Thus, the following final ARMA model has been found

 

Table 6 final A el f6 - The RMA mod or the av ge session

st: 2 7 
Variable oefficient Std. Error t-Statistic
AR(1) -1.094642 0.037225 -29.40617 0.0000 
AR(6) -0.102469 0.034956 -2.931384 0.0034 
MA(1) 1.541040 0.040022 38.50506 0.0000 
MA(2) 0

0.041359 84
R-squared  

0.509175 0.024897 20.4514 0.0000 
MA(6) 0.017317 2.3883 0.0170 

0.169742     Mean dependent var 0.000742 
Adjusted R-squared 0.168912     S.D. dependent var 0.018322 

ion     Akaike info criterion 
1.116505  c

atson stat 
Inverted AR Roots    .48 -.32i 

S.E. of regress 0.016703 -5.345222 
Sum squared resid 
Log likelihood 

    Schwarz riterion -5.337366 
10714.15     Durbin-W 1.996106 

   .48+.32i   -.12+.60i   -.12 -.60i 
       -.82       -.98 

Inverted MA Roots    .34+.26i    .34 -.26i 
 

  -.20 -.48i   -.20+.48i 
      -.86       -.96 
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This model seems quite satisfactory, but the residuals and especially the squared 

residuals are again found to have significant autocorrelation. The fit as measured by 

adjusted r-squared is also poorer c

the 

ompared to the AR and MA models for the average 

return series. 

 

Autoregressive And Moving Average Representation Of Daily Returns 

 

e 

 

he 

Method: Least Squares 

The  same line of reasoning is also applied for the Arma modeling of daily clos

to close and average returns. ARMA model for the close to close daily returns not shown

here, produced a very poor fit due to the common roots problem. For average returns t

following final model has been reached. 

 

Table 67 - ARMA model for the average daily returns 

Sample(adjusted): 17 2014 
Included observations: 1998 after adjusting endpoints 
Convergence achieved after 7 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 
AR(5) -0.069424 0.022367 -3.103885 0.0019 
AR(9) 0.050358 0.023503 2.142648 0.0323 

MA(1) 0.329233 0.021172 15.55064 0.0000 
MA(8) 0.054790 0.022301 2.456811 0.0141 

MA(10) 0.049592 0.021263 2.332313
R-squared 0.106634     Mean dependent var 

AR(15) 0.050974 0.022277 2.288208 0.0222 

0.0198 
0.001430 

Adjusted R-squared 0.104392     S.D. dependent var 0.027540 
S.E. of regression 0.026063     Akaike info criterion -4.453575 
Sum squared resid 1.353162     Schwarz criterion -4.436758 
Log likelihood 4455.121     Durbin-Watson stat 2.008821 
Inverted AR Roots        .83    .73 -.35i    .73+.35i    .57+.60i 

    .57 -.60i    .24+.78i    .24 -.78i   -.08 -.81i 
   -.08+.81i   -.41+.73i   -.41 -.73i   -.65 -.46i 

Inverte
   -.65+.46i   -.81+.18i   -.81 -.18i 

d MA Roots    .70+.26i    .70 -.26i    .37 -.61i    .37+.61i 
   -.03 -.68i   -.03+.68i   -.43 -.62i   -.43+.62i 
   -.77+.26i   -.77 -.26i 
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The ARMA model could not be extended to further past lags due to the common 

root problem. The total fit of the model is also not better than the pure AR and MA 

models

 

eries

 for average daily returns. 

Fractional Integration Return S  

 

s seen from all the above AR and MA representations, both session to session 

return s

 is 

ethod. In 

mployed. To do that RATS software was used instead of Eviews, 

A

eries and returns calculated from the averages exhibit persistent long memory 

that is found to be  inherent in most financial time series. In recent years, to remedy this 

problem, increasing number of researchers try to integrate the series fractionally and 

then apply the moving average and autoregressive methods. This approach or method

called Auto regressive fractionally integrated moving average (ARFIMA) m

order to overcome the persistence or long memory problem encountered in this analysis 

ARFIMA method is e

because Eviews does not support this method. The web site of RATS software is 

www.estima.com and this web site contains many procedures written by a researchers 

and programmers for employing newly developed and/or complicated algorithms. The 

procedure used is written by Baum and Barkoulas (1998). 

 

Application Of Arfima Model To Session Close To Session Close Returns  

 

When the procedure was run by using the log session to session return series the 

following output was obtained  for fractional integration parameter “d”. 
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Geweke-Porter-Hudak Regression, Series LNRET30 

Power =        0.50000     Regression Ordinates =  63 

Estimated d =                0.07324 

Asymp Standard Error =       0.09013   (  0.813 ) 

OLS Standard Error =         0.08021   (  0.913 ) 

 

The standard error of the fractional integration parameter is quite high and by 

using a simple t test the null hypothesis that d is equal to zero (no long memory) can not 

be rejec  

 as 

0.08397,0230452). 

T

significance level.  However this conclusion is tentative, because there is another testing 

procedure for the significance of parameter d called Lagrange Multiplier test proposed 

by Robinson (1994) which in some cases produces conflicting results to the results of t 

test.. Another shortcom  GP d i e o n data can bias the 

estimate of the long me meter toward zero (Tolvi 2003).Another important 

imator is pointed out by Jensen who shows that GPH estimation of 

n p ue o order autoregressive 

ec a ti rue value of d in 

ted. Putting it in another way, let’s find the 95 % confidence interval for d. The

95 % confidence interval is found by adding and subtracting 1.96 times the standard 

error. Using asymptotic standard error the confidence interval is found as (-

0.10341,0.2499), while using the OLS standard error the confidence interval is found

(-

 herefore the null hypothesis of no long memory can not be rejected at 95 % 

ing of the H metho s that larg utliers i

mory para

problem of GPH est

fractional integratio arameter is not robust to the val f the first 

parameter. More sp ifically the GPH estim tor underes mates the t
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case of

res called xgamma.src and 

arfsim.src written for the RATS statistical packet is used. By using these two procedures 

a new series which is fractionally integrated ( of order d= 0.07324) is generated. One 

important finding is that , the distribution of the new series becomes very close to 

normal. 

The correlogram of the new series y is plotted and it is observed that the series 

exhibit nonzero significant autocorrelations up to lag 36a shown below.The significant 

AR terms in this new series were then tried to be found. Starting with the fist lagged AR 

terms and gradually adding the further lags the following final output was obtained. 

d session to session returns 

 Coefficient Std. Error t-Statistic Prob. 

 small autocorrelations which is the case we face in our session to session 

logarithmic returns.  Therefore it is assumed that the series have  long memory with 

fractional integration parameter d = 0.07324. 

By using this fractional parameter the log session to session series was 

fractionally integrated. In order to do that the procedu

 

Table 68 - Autoregressive model for the fractionally integrate
Dependent Variable: Y 
Method: Least Squares 
Date: 03/27/06   Time: 19:30 
Sample(adjusted): 5 4013 
Included observations: 4009 after adjusting endpoints 
Convergence achieved after 2 iterations 

Variable
AR(1) 0.062208 0.015790 3.939728 0.0001 
AR(2) 0.049392 0.015803 3.125484 0.0018 
AR(3) 0.047818 0.015799 3.026601 0.0025 
AR(4) -0.038027 0.015792 -2.407930 0.0161 

R-squared     M nd -0.0.010345 ean depe ent var 007530 
Adjusted R-squared 

 
- t 

ots   i  

0.009603     S.D. dependent var 1.028868 
S.E. of regression 1.023916     Akaike info criterion 2.886142 
Sum squared resid 4198.854     Schwarz criterion 2.892425 
Log likelihood 5781.273     Durbin-Watson sta 1.999038 
Inverted AR Ro  .35 -.22i    .35+.22i   -.32+.35  -.32 -.35i 
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The lags further back into the past are found to have insignificant t values. This 

is quite good, since the long memory property was eliminated Only the first four lags

sufficient to model the process. Although the R-squared value is lower than that of the 

AR model with the original return series, we have only four lagged ter

 are 

m here while we 

have 9 AR terms up to lag 32 in the previous model.  

ompared to the 

odel with first four AR terms. The correlogram of the residuals also produces a very 

nice res

d by 

Dependent Variable: Y 
Method
Date: 0

Convergence achieved after 6 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 

Moreover our model here does have a higher R-squared value c

m

ult, namely, the autocorrelations after lag four are all insignificant up lag 36. 

This means that the model applied to the fractionally integrated series produces white 

noise and there is no long memory. Correlogram of squared residuals do also exhibit 

very interesting features. As it can be seen the ARCH effects virtually disappear 

especially after the lag 5. Lag 5 seems to be an exception. A similar result is obtaine

using the MA terms as shown below.. 

 

Table 69 - MA modeling of the fractionally integrated series 

: Least Squares 
3/27/06   Time: 19:48 

Sample(adjusted): 1 4013 
Included observations: 4013 after adjusting endpoints 

Backcast: -3 0 

MA(1) 0.063071 0.015785 3.995567 0.0001 
MA(2) 0.054151 0.015796 3.428257 0.0006 
MA(3) 0.052201 0.015797 3.304603 0.0010 
MA(4) -0.033856 0.015792 -2.143826 0.0321 

R-squared 0.010523     Mean dependent var -0.006866 
Adjusted R-squared 0.009783     S.D. dependent var 1.028763 
S.E. of regression 1.023719     Akaike info criterion 2.885757 
Sum squared resid 4201.431     Schwarz criterion 2.892034 
Log likelihood -5786.271     Durbin-Watson stat 2.000549 
Inverted MA Roots        .32    .05 -.47i    .05+.47i       -.48 
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Note that, the first four MA terms have significant t values and the other lags are

all found to

 

 be insignificant Again, similar results have been found for residuals and 

quared residuals. Moreover the distribution of the residuals of both the Autoregressive 

ally distributed. 

 Session To Session Average Returns

s

and the Moving Average models are found to be norm

 

Application Of Arfima Model To  

lation of return series calculated from 

verages shows a different picture than that of the close to close return series. Namely, 

there is

er 

much 

their squared values exhibit similar 

persiste he 

 

The autocorrelation and partial autocorre

a

 a positive and significant autocorrelation in average return series and a sudden 

drop to zero in autocorrelations after the first lag. The partial autocorrelation on the oth

hand is positive and significant for the first lag and negative and significant for the 

second order lag. All the other lags do have almost zero autocorrelation and partial 

autocorrelation values. In short the return series calculated from averages exhibit 

more significant autocorrelation than session close to session close return series. 

On the other hand the average returns 

ncy problem in autocorrelation and partial autocorrelation values as found in t

close to close return series. 

To tackle the persistency problem of the average return series Arfima is again 

employed. Contrary to the good results obtained for close to close return series, 

ARFIMA model is seemingly not sufficient to make the autoregressive model better. 

This is because the average return series is first analyzed to find the fractional 
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differencing parameter. The following output is taken after running the GPH procedu

in RATS. 

 

Geweke-Porter-Hudak Regression, Series AVGRET 

Power =        0.50000     Regression Ordinates =  63 

Estimated d =                0.07222 

Asymp Standard Error =       0.09013   (  0.801 ) 

OLS Standard Error =         0.07994   (  0.903 ) 

re 

T  to the one that is 

found for close to close return series. The main difference is that the magnitude of the 

close return series. This m on the significance of d. Because as Jensen 

pointed out, the fraction tio ter is biased downward in case low 

autocorrelation value. Since the average return series does not have this property, the 

erp

acti s ap e average return 

ilar 

conclusions, i.e. the distribution was close to normal. The new series exhibits significant 

autocorrelations again a similar result that was found for close to close return series. 

However when an autoregressive model was tried to be fitted to the new series, it was 

found that the series does still exhibit some sort of long memory. The original average 

return series have significant AR terms up to lag 30, the new series have significant AR 

 

he fractional differencing parameter is found to be very close

autocorrelations in average return series is considerably higher than that of the close to 

ay cast some doubt 

al integra n parame

results should be int reted with some care. 

When the fr onal differencing parameter wa plied to th

series a new series was obtained and the distributional checks resulted in sim
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terms up to lag 1 the squared 

siduals shows that the serial autocorrelation and dependence is eliminated, but the long 

term m

, 

58858 with 

nly the first two AR terms (AR(1) and AR(2)), it becomes equal to 0.012029 with 5 AR 

the fractional integration method 

erage return series 
Dependent Variable: Y 
Method: Least Squares 
Sample(adjusted): 15 4013 

Variable Coefficient

4 shown below. The correlogram of residuals and even 

re

emory problem still remains, the series does still exhibit some form of long 

memory and additionally, the value of R-squared becomes equal to a very low value

namely it was 0.174581 in the original series with twelve AR terms and 0.1

o

terms up lag 14 and this value is clearly very low. Thus 

applied to average return series proved to be of almost no use. 

 

Table 70 - AR modeling fractionally integrated av

Included observations: 3999 after adjusting endpoints 
Convergence achieved after 2 iterations 

Std. Error t-Statistic Prob. 
AR(1) 0.082609 0.015782 5.234414 0.0000 
AR(2) 0.047984 0.015792 3.038518 0.0024 
AR(5) 0.035538 0.015728 2.259553 0.0239 

AR(14) 0.035665 0.015763 2.262631 0.0237 
AR(12) -0.032258 0.015762 -2.046616 0.0408 

R-squared 0.013017     Mean dependent var 0.016597 
Adjusted R-squared 0.012029     S.D. dependent var 1.017671 
S.E. of regression 1.011532     Akaike info criterion 2.862059 
Sum squared resid 4086.649     Schwarz criterion 2.869928 
Log likelihood -5717.686     Durbin-Watson stat 2.000679 
Inverted AR Roots        .77    .72 -.30i    .72+.30i    .52 -.61i 

    .52+.61i    .20 -.79i    .20+.79i   -.18 -.78i 

   -.71+.31i   
   -.18+.78i   -.52 -.60i   -.52+.60i   -.71 -.31i 

    -.74 
Similar results have been obtained when the analysis is repeated with MA 

modeling. Thus the fractional integration did not help very much for the average return 

series as it did for the close to close returns. 
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Application Of Arfima Model To Daily  Return Series 

rate daily close to close returns as it 

on returns.  By using the GPH method, fractional 

se) is found as follows: 

eweke-Porter-Hudak Regression, Series DAILYRET 

Power 

  0.581 ) 

OLS St

the dist

nd have no serial correlation, the 

squared residuals are also found to be uncorrelated. Since the fractionally integrated 

series of daily close to close returns exhibit almost strict white noise property, no AR, 

 memory problem the 

al integration a d er ns, as it has been done 

n h w ractional integration 

24

 

A similar method is used to fractionally integ

has been used for session to sessi

integration parameter of daily returns (close to clo

 

G

=        0.50000     Regression Ordinates =  44 

Estimated d =                0.06458 

Asymp Standard Error =       0.11111   (

andard Error =         0.09916   (  0.651 ) 

 

Using the fractional integration parameter found above, the daily close to close 

returns are also integrated and a new series is obtained. The first finding is the fact that, 

ribution of fractionally integrated daily close to close returns becomes almost 

normal.  Moreover, the new series have been fou

MA or ARMA model is needed.  

Since daily average returns are found to  have the long term

fraction  method is lso applie to daily av age retur

for session to sessio  returns. T e following output sho s that the f

parameter is  0.056 . 
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Gewek

 Standard Error =       0.11111   (  0.506 ) 

OLS St

d 

 

 Additionally, the correlogram of the new series obtained from average returns 

show that the new series have somewhat a similar serial autocorrelation structure to that 

of the original average return series (shown below). More specifically the lag 1 and lag 2 

autocorrelations are significant, but the magnitudes are smaller than the original series. 

After some trial and error the following autoregressive model for  the fractionally 

integrated average returns series was obtained.  

 

Table 71 - AR model fitted to the fractionally integrated average return series 
Method: Least Squares 
Sample(adjusted): 24 2013 
Included observations: 1990 after adjusting endpoints 
Convergence achieved after 2 iterations 
Variable Coefficient Std. Error t-Statistic Prob.   

e-Porter-Hudak Regression, Series DAILYAVERDAILY 

Power =        0.50000     Regression Ordinates =  44 

Estimated d =                0.05624 

Asymp

andard Error =         0.09884   (  0.569 ) 

 

After finding the value of the parameter “d”  average return series is fractionally 

integrated by an order of  d (0.05624) using the RATS package. The new series is foun

to be normally distributed as expected.

AR(1) 0.073078 0.022343 3.270714 0.0011 
AR(23) -0.049862 0.022301 -2.235822 0.0255 
R-squared 0.007346     Mean dependent var 0.024590 
Adjusted R-squared 0.006847     S.D. dependent var 1.008111 
S.E. of regression 1.004653     Akaike info criterion 2.848167 
Sum squared resid 2006.545     Schwarz criterion 2.853791 
Log likelihood -2831.926     Durbin-Watson stat 2.003022 
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As seen, the long memory co ated as efficiently as it was done 

for the clos oreover 

the adjusted r-squared value is quite low com are to that of the original average return 

series. 

The correlogram of the residuals of the above AR model is found to have no 

serial c rial 

 the fit 

 of 

the fina

uld not be elimin

e to close return series. The series does have an AR(23) term and m

p

orrelation, correlogram of the squared residuals does seem to have no se

dependence. Thus although the long memory is not fully eliminated, and although

as measured by the low magnitude of the adjusted r-squared statistics, the residuals

l model is almost white noise. 
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CHAPTER VI 

autoregressive representation by the fact that vectors of variables and coefficient 

matrices are used instead of scalar variables and their corresponding coefficients. 

Up to this section, return series are all analysed by using the autoregressive and 

moving average models and fractional integration methods. In all of the above methods 

just a single variable namely the return was analysed and thus the behaviour of returns as 

a function of its past values was tried to be modeled.. However , other variables such as 

volume, volume dispersion, return dispersion etc. may have some effect on the return  

generating process. Therefore this part of the thesis is devoted to analysis of the other 

variables in the process. In other words, using the past values of all the price and volume 

variables which are all endogenous, a better fit for the session to session and  daily 

returns of the İMKB30 index was investigated This model is called vector 

autoregressive model   which is distinguished from a univariate autoregression by the 

fact that single (‘scalar’) variables are replaced by vectors of variables and all 

coefficients are replaced by coefficient matrices. A formal representation of the model 

can be written as follows: 

 

VECTOR AUTOREGRESSIVE MODEL OF INDEX RETURNS 

 

General Representation of the VAR Model 

 

A vector autoregressive (VAR) model is distinguished from a classical 
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titi vy +Θ+ −  

 

The above notation is used for VAR(i) models, where the subscript i stands for 

the number of lags. The first term on the right hand side of the above equation is a 

dimensional vector of constants , coefficient of the term ity −  is a k by k matrix and v

ty = 0φ

k 

nite 

er 

 

ess 

nd y2. For example, y1 can be the return 

hile y2 can be the volume. The model can be represented by the following set of 

equations. 

 

t is 

a sequence of serially uncorrelated random error vectors with a contemporaneous 

variance covariance matrix of shocks Σ. An important property is the fact that, the 

covariance matrix denoted by Σ must be positive definite, meaning that none of the 

shocks is perfectly linearly dependent on the others. Note that a real positive defi

symmetric matrix can always be transformed to a diagonal matrix by a unique low

triangular matrix with 1’s on the diagonal. This is a useful property, because it means the

error terms can be redefined as orthogonal to each other. In other words the matrix of 

dependent error terms can be converted  to another matrix containing orthogonal 

(independent) error terms 

More specifically let’s take the case of a first order vector autoregressive proc

[VAR(1)] with two variables, namely y1 a

w

tttt vyyy 11,2121,11110,1 +++= −− θθφ  

tttt vyyy 21,2221,12120,2 +++= −− θθφ  
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The coefficients denoted by θij is the (i,j)the element of the 2x2 matrix Θ, and φi0 

 the ith element of the vector φ0. The two equations above is called a system of 

ultaneous equations describing the dynamic relationships between the two variables. 

each of the above 

equations this representation was called reduced form. In other words the above equation 

ong variables, it does 

provide inform

is

sim

Since the lagged terms were written as independent variables in 

does not say anything about the concurrent relationships am

ation about the lead lag relationships among variables. The first equation 

says that the variable y1 can be written as a linear function of its first lag and the first lag 

of another variable denoted by y2. The coefficients denoted by ijθ  stands for the 

magnitude of the linear dependence of the dependent variable to the explanatory 

variables on the right hand side. More specifically, 12θ denotes the linear dependence of 

the variable y1 at time t on variable y2 at time t-1, after the effect of the variable y1 at 

time t-1 is accounted for. In other words 12θ  is the conditional effect of y2,t-1 on y1,t given 

y1,t-1. T

t vy 1,1 = φ

 

he variables in vector autoregressive models can be exogenous or endogenous 

depending on their nature. In our case since all the variables are calculated from the 

trade data, they are all endogenous.  

 

In general a VAR(p) model (with two variables) can be written as 

 

ptpptptpptptt yyyyyy ,212,2211,211,112,1121,11110 ............. +++++++++ −+−+−+−−− θθθθθθ
 

t

tptpptptpptpttt vyyyyyyy 2,222,2221,212,122,1221,12120,2 ........ +++++++++= −+−+−+−−− θθθθθθφ
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Where; 

 

( )tvE =0 

E( = )21 st vv 12σ for t=s (the error terms at the same time period) 

=0 otherwise 

jointly stationary which means that, in addition to having constant  variance and constant 

e, their cross correlation should also be constant across time.  

 More specif  

them are individually stationary and the cross correlation function tt=

( )21 st vvE

 

Another assumption of the VAR modeling is the fact all the variables included in 

the model must be stationary. In fact the variables included in the VAR model should be 

auto covariance across tim

ically,two random variables (x and y) are jointly stationary if both of

),( 21xyρ depends 

, otherwise the process can not 

be mod

e 

 the volume data, the 

only on the difference between t1 and t2. 

In VAR modeling AR roots of the polynomial should also be less than one in 

modulus so that the VAR model is assumed to be stable

eled as a finite sum. In VAR modeling, examination of the impulse response 

functions which are responses of all variables in the model to a one unit structural shock 

to one variable in the model can be very informative  The impulse responses are usually 

plotted on the Y-axis with the periods from the initial shock on the X-axis.   

A statistical model of the following form which says that the index return can b

modeled as function of its previous values, the previous values of
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previous values of the other variables such as net volume, range etc. is the main 

t

p

j
iti

p

j
iti

p

iti

p

iti

p

iti

p

RVRDDIRRangeNetVol εγϕφδλ ++++ ∑∑∑∑∑
=

−
=

−−−−

 

 

The alu ou  pr  v d t

values of th il clu ana  th n 

accuracy of the return.   

 

An he o S turn th od

 

In the VAR mod ble  Re e 0v

Ret ube  R l3 isp an i

 the trade 

ed to be endogenous.  

As a first step, the VAR order selection process must be run. The results for the 

rom the table, different 

lag sele z 

 

 

objective of the VAR modeling. 

 

 
1111111

0 iti
i

itit VolRR βαα +++= ∑∑
=

−
=

−
j=j=j=j

P

 squared v es of previ s returns (a oxy for the ariance), an he cubed 

e returns w l also be in ded in the lysis to see eir effect o prediction 

alysis Of T  Session T ession Re  Series Wi The Var M el 

el, 14 varia s, namely, t30seans, R t30sqr, Ret3 ol, 

30c , Ret_disp, etvolsns, Vo 0chg, Vold adj, Dir, R ge, Artaz, M nfark, 

Maxfark, ret30avgseans  are included. The variables are all calculated form

data, therefore they are all assum

various selection criteria is shown in the output below. As seen f

ction criteria  point to different lag lengths.  For example, according to Schwar

Information Criterion with lag 3 should be chosen, while HQ criterion says the proper 

lag length is 5. FPE and AIC selects lag 12, while LR selects 20. Lag 12 was adopted

since both of the FPE and AIC suggest that the same lag length. 
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Table 72 - VAR Order Selection Criteria for session to session returns 

Endogenous variab
RETVOLSNS VOL3

VAR Lag Order Selection Criteria 
les: RET30SEANS RET30SQR RET30VOL RET30CUBE RET_DISP 
0CHG VOLDISPADJ DIR RANGE ARTAZ MINFARK MAXFARK 

RET30
Exogen
Date: 06/11/06   Time: 11:43 

Included observations: 3993 

AVGSEANS  
ous variables: C  

Sample: 1 4015 

 Lag LogL LR FPE AIC SC HQ 
0  75836.16 NA   1.79E-34 -37.97754 -37.95548 -37.96972 
1  102296.0  52720.91  3.46E-40 -51.13249 -50.80157 -51.015
2  103998.4  3380.093  1.63E-40 -51.88702 -51.24723 -51.66021 
3  104950.9  1884.485  1.11E-40 -52.26593  -51.31728* -51.929
4  105550.9  1182.837  9.09E-41 -52.46828 -51.21076 -52.022

6  106375.5  740.8508  7.32E-41 -52.68496 -50.80972 -52.02018

8  106821.5  457.5949  7.13E-41 -52.71201 -50.21904 -51.8
9  107026.8  397.5115  7.09E-41 -52.71666 -49.91483 -51.7
10  107274.2  477.3736  6.92E-41 -52.74242 -49.63173 -51.63966 
11  107466.6  369.7236  6.93E-41 -52.74058 -49.32102 -5

13  107814.8  272.1164  7.08E-41 -52.71864 
14  107964.8  285.3134  7.25E-41 

18 

63 
48 

5  105997.0  876.3980  8.02E-41 -52.59356 -51.02718  -52.03827* 
 

7  106586.1  410.6481  7.27E-41 -52.69225 -50.50814 -51.91797 
2824 
2340 

1.52833 
12  107672.2  393.8136   6.90E-41*  -52.74539* -49.01697 -51.42365 

-48.68136 -51.28740 
-52.69563 -48.34949 -51.15490 

15 
16 
17  108392.9  244.5398  7.86E-41 -52.61552 -47.34279 -50.74631 

 
19  108726.4  293.0460  8.10E-41 -52.58624 -46.69578 -50.49804 

583 
 * indicates lag order selected by the criterion 

 108121.8  297.2804  7.40E-41 -52.67606 -48.02106 -51.02584 
 108262.8  266.2456  7.61E-41 -52.64855 -47.68468 -50.88883 

18  108569.4  330.6745  7.94E-41 -52.60577 -47.02417 -50.62706

20  108897.0   317.2121*  8.21E-41 -52.57353 -46.37420 -50.37

 LR: sequential modified LR test statistic (each test at 5% level) 
 FPE: Final prediction error 
 AIC: Akaike information criterion 
 SC: Schwarz information criterion 
 HQ: Hannan-Quinn information criterion 

 
 

 

ll 

      

 

By using the Eviews software, the VAR model with all the fourteen variables 

cited above  was run. The  VAR model with 14 variables up to 12 lags has an adjusted 

R-squared value of 0.083242  for the session returns. The model is also checked by

looking at the AR roots in order for the model to satisfy the stationarity condition. A
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the AR roots are found to fall within the unit circle, which in turn means that the 

process  is stable. 

 Although the adjusted r-squared value increased about four times with the VAR 

analysis compared to the adjusted R-squared value (0.0215) of the AR model for the 

return series including up the lag 32, the VAR model with 14 variables, 12 l

VAR 

ags is too 

compli

e 

es 

 response functions were all analyzed. From the plot of the 

impuls

e 

s 

, it 

ed r-squared statistics remained around 0.083. 

And finally the variables called “voldispadj” and “vol30chg” were excluded 

from the m

The VAR output with 10 variables, namely, Ret30seans, Ret30sqr, Ret30cube, ret30vol, 

Retvolsns, Dir, Range, Artaz, Maxfark, ret30avgseans with lags up 12 have an adjusted 

r-squared valu sting however to see the fact that, Eviews 

softwar

cated. Therefore a more parsimonious model is to be explored. It is clear that 

when the number of variables and the lag length is quite high and the results becom

difficult to interpret. In order to find  the effect of the lagged values of all the variabl

on the returns, impulse

e response functions for the session to session returns, the variables to be 

excluded from the VAR model were investigated.   

First the variable “ret_disp” which stands for return dispersion was found to hav

almost no effect on the return, thus it was excluded, then the resulting VAR model wa

found to have an adjusted r-squared value of 0.0838. As a second step, the variable 

called “vol30chg” was dropped out of the var model and the VAR model was  re-run

was found that the value of adjust

odel and the VAR model reduced to a model with 10 variables and 12 lags. 

e of 0.82. It is quite intere

e points to different lag length when the lag selection criteria was run with 

different number of variables. On the other hand, HQ and SIC seems more stable 
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compared to AIC and FPE, s the number of variables change. For this reason, as 

suggested by the HQ criterion the VAR model with the first five lagged values of all the

variables was run.  In this case the adjusted R-squared value dropped to 0.076 which can

be regarded as a quite tolerable fall, since the complexity of the VAR equation impr

significantly.  (From 10 variables up to lag 12 to 10 variables up to lag 5).  

The VAR model was also run with three lagged values of all the variables as 

suggested by the SC criterion. This time an adjusted r-squared value of 0.069 was 

obtained and this was regarded as a big drop, thus the VAR model w

 

 

oved 

ith five lagged 

alues was preferred. 

The final VAR model with 10 variables and up to five lagged values are shown 

 graphs are depicted in Appendix F. From the 

impulse response functions the session returns were found to be affected positively by 

their own lag 1 values, by the lag 1 value of return squared, by lag1 value of retvolns 

and taz. T  of gge f th iabl volsns and artaz are more 

visible than that of the ret30seans and ret30sqr. In short, the results mean that an up 

market should be expected after  

il  ( d etu uared) 

on h  s ith ive returns exceeds that of 

in s  

on h  w iti rn dominate the market 

pulse response functions when one 

looks at the impulse response function of retvolsns and ret30seans. If there is a positive 

v

in the Appendix E . The impulse response

 ar he effects the la d values o e var es ret

• a volat e session as measure  by the r rn sq

• a sessi  in whic  number of tocks w posit

the fall g stock

• a sessi  in whic   the stocks ith pos ve retu

with their high volume. 

The effe t of volumc e is quite visible in im
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shock t

e 

 

 

m 

Table 7
 

s: 4008 
Prob. Adj Q-Stat Prob. df 

o retvolsns, then the index for the next session is expected to be higher. Thus if 

the stocks with positive returns do also have large changes in volume, that means ther

is a positive shock to the retvolsns which in turn implies a rise in the index for the next 

period. Conversely if either the individual stock returns are lower or the individual

volume changes of rising stocks are lower then this means that there is a negative shock

to this variable which in turn means that a down market is more probable than an up 

market. Finally the residuals of the VAR model were examined. As it can be seen fro

the output below the residuals are correlated after the VAR length.  

 

3 - VAR Residual Portmanteau Tests for Autocorrelations 

H0: no residual autocorrelations up to lag h 
Sample: 1 4015 
Included observation

Lags Q-Stat 
1  6.642019 NA*  6.643677 NA* NA* 
2  26.14802 NA*  26.15941 NA* NA* 
3  102.1143 NA*  102.1826 NA* NA* 

 205.6479 NA* NA* 
 361.5243 NA* NA* 

0  567.0162  0.0000 100 
0 200 
0 300 

7.903  0.0000 400 
10  1360.4  0.0 500 
11  1489.886  1492.608  0.0000 600 

1  
0  0.0000 800 

14  1933.488  
15  2092.643  0.0000

0  2285.300  100
9  00

18  2553.712  300
19  2654.199  0.0000

96  500
*The test  valid only ge R

4  205.4764 NA* 
* 5  361.1583 NA

0006  566.3425  0.
7  766.5263  0.0000  767.5502  0.000

.1836  0.0008  939.8132  0.0000  941
9  1166.023  0.0000  116

14  0.0000
 0.0000

 1362.780 000

12  1622.32
13  1774.7

  0.0000  1625.441 0.0000 700 
8  0.0000  1778.324 

  0.0000
 0.0000

 1937.660 
 2097.413 

0.0000 900 
1000 

16  2279.78
17  2415.5

  0.0000 0.0000 1  
5  0.0000  2421.694 0.0000 12  

  0.0000
 0.0000

 2560.434 
 2661.399 

0.0000 1
1400 

 

20  2927.3   0.0000  2935.966 0.0000 1  
 is  for lags lar r than the VA  lag order. 

df is degrees of freedom for (approx qu ion
      

 

imate) chi-s are distribut  
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For the average returns the picture is different. As it can be seen from Appendix 

E, the ad sted r-sq e a rn R o f

around 0.3, which is more than th igh t o  to ns. 

The impulse response function are also very helpful in explaining the behavior of 

average returns. The impulse response functions of the average returns are provided in 

Appendix G. As seen from the graphs, the average returns are affected by the lag 1 value 

of  ret30 ans, artaz vo  sa n. ord

returns are expected er ion tive th 

increasin  stocks th ng ig s v

m plified by having ari ly, the session to 

session r urns, ave , r rta p t  th  

output is obtained. 

 

 Mo ve nd
Vector Autoregression Estimates 

   Tim
ed): 4

ation r a po
 in ( s i

R RETVOLSNS RET30AVGS

ju uared for th verage retu s in the VA  model up t ive lags is 

ree times h er than tha f the close  close retur

se  dir and ret lsns on the me directio In other w s average 

 to be high after a sess  with posi  return, wi more 

g an decreasi  and with h her retvolsn alue.  

The VAR odel is sim  the five v ables name

et rage returns etvolsns, a z and dir  u o two lags, e following

Table 74 - VAR del with fi variables a  two lags 

 Date: 06/11/06
just

e: 13:01 
 Sample(ad  4014 
 Included observ

rors
s: 4011 afte djusting end ints 

 Standard er ) & t-statistic n [ ] 
 ET30SEAN

S 
DIR ARTAZ 

EANS 
RET30SEANS(-1) -14.66446 -407.5428 -6.829700 -48.00982 -7.337813 

  (4
 

.22142)  (1.42855)  (103.591)  (3.00714) 
[-3.47382] [-2.97399] [-4.78088] [-0.46345] [-2.44013] 

45  0.060177  6.888351  0.147337 
 (0.08033)  (0.02718)  (1.97129)  (0.05722) 

 [ 2.57738] [ 1.25644] [ 2.21366] [ 3.49433] [ 2.57472] 
      

RETVOLSNS(-1)  0.012949  0.434080  0.003027  0.250478  0.009931 
  (0.00162)  (0.05274)  (0.00055)  (0.03986)  (0.00116) 
 [ 7.97115] [ 8.23134] [ 5.50641] [ 6.28319] [ 8.58186] 

RETVOLSNS(-2) -0.004397 

 (137.036) 

      
RET30SEANS(-2)  0.2070  3.276458 

  (2.60772) 

      
-0.067792 -0.001709 -0.124433 -0.002702 

  (0.00164)  (0.05308)  (0.00055)  (0.04013)  (0.00116) 
 [-2.68913] [-1.27714] [-3.08919] [-3.10102] [-2.31934] 
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  (4.22738)  (137.229)  (1.43056)  (103.738)  (3.01139) 
 [ 3.37182] [ 2.87163] [ 4.66176] [ 0.37369] [ 2.68545] 

DIR(-2) -14.24301 -392.8136 -6.730427 -40.06733 -7.016484 

 [-3.37505] [-2.86741] [-4.71287] [-0.38691] [-2.33401] 
      

ARTAZ(-1)  0.005970  0.216592  0.001974  0.285588  0.003993 
  (0.00135)  (0.04387)  (0.00046)  (0.03316)  (0.00096) 

DIR(-1)  14.25397  394.0714  6.668949  38.76591  8.086940 

      

  (4.22008)  (136.992)  (1.42809)  (103.559)  (3.00619) 

 [ 4.41798] [ 4.93740] [ 4.31558] [ 8.61206] [ 4.14760] 

ARTAZ(-2)  0.000911  0.005446  0.000352 -0.003238  0.000553 

      

S(-1) 

S(-2) 

 [-2.88549] [-1.19445] [-2.73820] [-2.91977] [-2.74350] 
  

-0.005573 -0.000836 
  (0.00043)  (0.01380)  (0.00014)  (0.01043)  (0.00030) 
 [-0.03385] [ 5.92481] [ 5.72694] [-0.53428] [-2.76228] 

 R-squared  0.043603  0.046259  0.033031  0.050460  0.275614 

      

  (0.00134)  (0.04361)  (0.00045)  (0.03297)  (0.00096) 
 [ 0.67786] [ 0.12488] [ 0.77493] [-0.09822] [ 0.57758] 

RET30AVGSEAN  14.22919  392.9183  6.731278  35.49162  7.001020 

  (4.22621)  (137.191)  (1.43017)  (103.709)  (3.01055) 
 [ 3.36689] [ 2.86402] [ 4.70664] [ 0.34222] [ 2.32549] 
      

RET30AVGSEAN -0.134972 -1.813701 -0.043344 -3.351489 -0.091417 

  (0.04678)  (1.51844)  (0.01583)  (1.14786)  (0.03332) 

    
C -1.44E-05  0.081755  0.000824 

 Adj. R-squared  0.041212  0.043875  0.030613  0.048086  0.273803 
20513  2023.798  0.219932  1156.503  0.974557 

12  0.711301  0.007415  0.537704  0.015609 
6357  21.25645  152.1916 

.471  13985.06 -3197.243  10999.55 
 Akaike -4  2 -6  1.599722 -5.479206 
 Schwa -4  2 -6 -5.461937 
 Mean dependent  0.0  0.  7  0.000737 
 S.D. dependent  0.  0. 8  0.018317 
 Determinant Residual 
Covariance 

 8  

 Sum sq. resids  1.9
 S.E. equation  0.0219
 F-statistic  18.23649  19.40115  13.6
 Log likelihood  9639.088 -4319

 AIC 
rz SC 

.800842 

.783573 
.159297 
.176566 

.967871 

.950602  1.616991 
 0.0018300734 116152 0.000867 

022378 727438  0.007531  0.55111
.57E-20   

 Log Likelihood (d.f. adjusted) 
 Akaike Info

 59591.07  
-29.68640  

 
 

 
rite  

 
rmation C

 Schwarz Criteria 
ria 

-29.60006   
 

 

As een, the a q e ra is still quite high 

(0.275). In short the average return is expected to be higher in the next session, if the 

 s djusted r-s uared valu  for the ave ge return  
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return calculated from the closing values of the index is positive in the current session. 

The ave

ent 

ely correlated with the 

average .  

ave a high 

adjuste

Method: Least Squares 

rage return for the next period is also expected to be positive if the variable 

retvolsns has a positive shock and if the variable dir has a  positive shock in the curr

session. Lag 1 and lag2 values of the variable artaz is also positiv

 returns as seen from the impulse response functions provided in Appendix H

An interesting point to note is that the statistics called maxfark and minfark does 

have a relatively high adjusted r-squared value (0.41 ) in the VAR equation. A quick 

check with addition of the variable minfark shows that minfark does also h

d r-squared value in the VAR equation. This finding deserves to be explored in 

more detail. The variables maxfark and minfark are found to be not affected by their 

previous values. For example, the autoregressive model for the minfark is provided 

below. As seen, the model has a very low r-squared value. 

 

Table 75 - AR modeling of the variable Minfark 

Sample(adjusted): 22 4014 
Included observations: 3993 after adjusting endpoints 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error t-Statistic Prob. 
AR(1) 0.219238 0.015793 13.88222 0.0000 
AR(2) -0.048952 0.015842 -3.090082 0.0020 
AR(5) -0.035627 0.015441 -2.307324 0.0211 

AR(12) -0.035757 0.015458 -2.313217 0.0208 
AR(20) 0.063753 0.015580 4.092057 0.0000 

R-squared 0.051726     Mean dependent var 7.092792 
Adjusted R-squared 0.050774     S.D. dependent var 262.7453 
S.E. of regression 255.9880     Akaike info criterion 13.92939 
Sum squared resid 2.61E+08     Schwarz criterion 13.93727 
Log likelihood -27805.03     Durbin-Watson stat 1.992082 
Inverted AR Roots        .87    .85+.27i    .85 -.27i    .71 -.52i 

    .71+.52i    .53 -.70i    .53+.70i    .28 -.84i 
    .28+.84i    .01 -.87i    .01+.87i   -.25 -.84i 

   -.68+.51i   -.82+.27i   -.82 -.27i       -.85 
   -.25+.84i   -.50 -.70i   -.50+.70i   -.68 -.51i 
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Impulse response analysis (shown in Appendix I) for the variables minfark and 

maxfar

ch 

 the 

 

ively 

m of 

um of the current 

session, if the current session has a high volatility and high retvolsns value. It is also 

osite effect on the 

n. In other words, lf we have a larger than expected average 

 to be lower than the current session. 

xfark is affected by its lag 1 value, the current and lag 1 

, lag a  value of retvolsns,  

inf  sp t can be said that 

plies that the m g pe e higher than the 

maximum of the current period. Additionally, if the number of stocks with positive 

k shows that these variables are affected by the values of the other variables 

especially by the previous values of the returns to a great extent. 

As seen from the impulse response graphs,  the variable minfark is not mu

affected by its previous values, rather it is affected by the lag 1 value of the return in

same direction. In other words a positive shock to the return in t-1, causes the minimum 

of the next session to be larger than the minimum of the current session.  

 A positive shock to the lag 1 value of the variable artaz affects the return of the 

next session on the same direction. In other words, if the ratio of number of rising stocks 

in ISE30 index gets higher, than the minimum of the next session will probably be

higher than the minimum of the current session.  Minfark is also influenced, posit

from lag 1 value of maxfark, ret30sqr, range and retvolsns.  Therefore the minimu

the next session should be expected to be higher than the minim

interesting to see that, a positive shock to the average return has an opp

minimum of the next sessio

return, the minimum of the next session is expected

Similarly the variable ma

values of the return 1 and lag 2 values of the variable rtaz, lag 1

and lag 1 value of m ark on the same direction. More ecifically i

positive return im aximum of the comin riod will b

 191



returns (as measured by artaz) are higher, then the maximum of the next period will 

 the opposite direction by the lag 1 

value of  the volatility either measured by square 

easu e  value to be 

 pe the  of the current 

r than th iod aximum of the next 

period will probably be higher. The effect of lagged values of average returns is similar 

to the one observed for the variable minfark. If there is positive shock to average return 

then the maximum of the next period will probably be lower than the current maximum. 

In order to make the case more explanatory, the variable minfark and maxfark  is 

regressed with the variables previous return and previous return squared. As the 

following outputs show, the most significant impact to the variables minfark and 

maxfark comes from the previous return and squared returns. 

 

Table 76 - Relationship between the minfark and the previous returns 
Depend
Method: Least Squares 

probably be higher.  

On the other hand, maxfark is influenced on

 ret30sqr and range.. In other words, if

of the returns or m red by the range  is higher, then th  maximum

attained for the next riod is expected to be lower.  if  maximum

period is highe e maximum of the previous per then  the m

ent Variable: MINFARK 

Date: 06/11/06   Time: 13:56 
Sample(adjusted): 3 4014 
Included observations: 4012 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
RET30SEANS(-1) 5.552386 0.160802 34.52942 0.0000 

RET30SQR(-1) 38.96624 2.765626 14.08948 0.0000 
R-squared 0.247831     Mean dependent var 0.007119 
Adjusted R-squared 0.247644     S.D. dependent var 0.262126 
S.E. of regression 0.227364     Akaike info criterion 
Sum squared resid 207.2952     Schwarz crite

-0.124027 
rion -0.120888 

Log likelihood 250.7989     Durbin-Watson stat 2.063943 
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Table 77 - Rela rns 
Dependent Variable: MAXFARK 

Sample
Include

tionship between the variable maxfark and the previous retu

Method: Least Squares 
Date: 06/11/06   Time: 13:57 

(adjusted): 3 4014 
d observations: 4012 after adjusting endpoints 
Variable Coefficient Std. Error t-Statistic Prob. 

RET30SEANS(-1) 5.892340 0.157372 37.44221 0.0000 
RET30SQR(-1) -12.45855 2.706632 -4.602972 0.0000 

R-squared 0.265956     Mean dependent var 0.007313 
Adjusted R-squared 0.265773     S.D. dependent var 0.259683 
S.E. of regression 0.222514     Akaike info criterion -0.167151 

Log likelihood 
Sum squared resid 198.5459     Schwarz criterion -0.164012 

337.3043     Durbin-Watson stat 2.107072 
 

As seen, reasonably high adjusted r-squared values have been obtained for each 

inimum value and the maximum value of the next session 

will probably be higher than the current session. Conversely if the se n return i

neg e, th  m f th ion we

othe and ion  th imu ex  e

be h her t im d ur , w ve

for t  max e. 

These results ma om ng s f le t

For example, if any time during a session, trades occur at levels under the mini

previous session which was an up session, this migh ed ign

the u ted er ini vi . On the 

other hand,  if prices exceeds the max e p sio as

of the variables. The interpretation of the above results are as follows: If the return of a 

session is positive then the m

ssio s 

ativ en the minimum and the aximum o e next sess  will be lo r. On the 

r h , if the sess  is volatile en the min m of the n t session is xpected to 

ig han the min um attaine d curing the rent session hile the re rse is true 

he imum valu  

y provide s e interesti implication or profitab rading. 

mum of 

t be regard  as a buy s al, since 

 minim m is expec  to be high  than the m mum of pre ous session

imum of th revious ses n which w  a down 

session, this might be regarded as a sell signal. 
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Analysis Of The Daily Return Series With The Var Model 

 

Vector autoregressive model for daily returns and all the other variables was also 

done to

he 

ction Criteria 
30SQR RET30CUBE RET30VOL RET_DISP RETVOLDAY 

VOL30CHG VOLDISP NETVOLCHG MINFARK MAXFARK DIR RANGE ARTAZ RET30AVGD  
Exogen
Sample: 1 2015 

 Lag LogL LR FPE AIC SC HQ 

 see whether there is a similar structure for the daily returns. The same line of 

reasoning is applied, namely, first step is to find the lag of the VAR model. As it was t

case for the session to session returns, different criteria point to different lag lengths as 

shown below.  

 

Table 78 -  VAR Lag Order Sele
Endogenous variables: RET30 RET

ous variables: C  

Included observations: 1795 

0  19613.94 NA   1.07E-28 -21.83726 -21.79136 -21.82031 
1  30984.36  22538.14  4.32E-34 -34.25556 -33.52115 -33.98442 

 
 

6  33845.02  393.3570  6.26E-35 -36.18944 -32.01249 -34.64735 
 

8  34237.90  415.8466  6.68E-35 -36.12580 -30.57184 -34.07533 

1 
13  34996.71  243.8974  1.02E-34 -35.71778 -26.72128 -32.39636 

1 

16  
17  
18  35698.77  200.2063  1.66E-34 -35.24654 -22.80750 -30.65416 

 
20  35942.74  196.2859  2.12E-34 -35.01698 -21.20093 -29.91623 

2  32368.25  2719.983  1.19E-34 -35.54680  -34.12388* -35.02147 
3  32949.34  1132.383  8.00E-35 -35.94355 -33.83213  -35.16403* 
4  33340.43  755.6006  6.65E-35 -36.12861 -33.32868 -35.09490
5  33637.84  569.6371   6.13E-35*  -36.20929* -32.72085 -34.92139

7  34014.95  319.7901  6.66E-35 -36.12808 -31.26262 -34.33180

9  34423.92  343.8470  6.99E-35 -36.08236 -29.83989 -33.77770 
10  34610.98  342.6509  7.30E-35 -36.04009 -29.10911 -33.48124 
11  34727.66  211.7779  8.26E-35 -35.91940 -28.29992 -33.10636 
12  34859.81  237.6511  9.18E-35 -35.81595 -27.50795 -32.7487

14  35129.93  235.1295  1.13E-34 -35.61552 -25.93052 -32.0399
15  35280.56  263.3172  1.23E-34 -35.53265 -25.15914 -31.70285 

 35439.44   275.1031*  1.33E-34 -35.45899 -24.39696 -31.37499
 35580.86  242.5079  1.47E-34 -35.36586 -23.61534 -31.02768

19  35824.82  211.9445  1.87E-34 -35.13629 -22.00875 -30.28973

 * indicates lag order selected by the criterion 
 LR: sequential modified LR test statistic (each test at 5% level) 
 FPE: F
 AIC: A

 

inal prediction error 
kaike information criterion 

 SC: Schwarz information criterion 
 HQ: Hannan-Quinn information criterion 
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The maximum lag length is again implied by the LR test statistic, and the FPE 

and AIC statistics pointed to the same lag length which is was 5, thus the lag length w

chosen to be five for the VAR model of daily returns. 

 The only additional variable added to the VAR model for daily returns is the 

variable called netvochg which is calculated by using the TL value of shares actually

change hand during a day. The VAR model started with 15 variables and up to the fifth 

lag.  The number of variables included in the VAR model is quite large

as 

 

, therefore the 

variabl

 

uared 

an the pure autoregressive model (0.016) found in 

the pre at the 

el. 

 

 

 

in the VAR model 

es were eliminated stepwise by excluding one by one, and monitoring the change 

in the adjusted r-squared value. 

The final VAR model (Appendix J) is constructed by having 10 variables, 

namely, ret30, ret30sqr, ret30cube, ret30vol, artaz, dir, voldisp, maxfark, netvolchg, 

ret30avgd up to lag 5. All the AR roots of the VAR model are found to fall within the

unit circle, which in turn means that the VAR process  is stable. The adjusted R-sq

value for the daily close to close return series of this model is 0.053 which is very low 

but still almost three times higher th

vious sections. Another important point in the VAR analysis of returns is th

newly added variable netvolchg  which is the actual TL value of stocks changed hand 

during a trading day seems to contribute to the explanatory power of the VAR mod

The impulse response functions (Appendix K) are also analysed to see the lead

lag effects of the variables on daily close to close returns. There has been found almost

no significant effect of the variables on the daily returns in impulse response functions.

Although the VAR model is not very successful in explaining the dynamics of 

the close to close returns,  it can be seen that the daily average returns 
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have a 

 

resting 

on daily average returns.  

  it 

 

ily 

 

market has some effect on the adjusted r-squared value for the 

return s

considerably high adjusted r-squared value, namely the adjusted r-squared for the 

average returns in the VAR model up to five lags is 0.375 which is even  higher than 

what has been found for close to close session returns. This means that the average 

returns can be modeled by having the lagged values of itself and the lagged values of the

variables calculated such as volume, range etc. which are all calculated by using the 

trade data. The impulse response function graphs shown below also give very inte

hints for the lead lag effects of the variables 

By looking at the impulse response function for average returns (Appendix L)

can be said that a positive shock to the daily return increase the average return of the 

next day. If the index closes higher than the average during a day (measured by the 

variable dir), the average return of the next day will also be expected to be higher than

today. A similar conclusion can be drawn for the effect of the variable artaz on da

average return. And the last comment is that, the index increases accompanied by 

volume increases has some positive effect on the average returns of days further beyond

t+1, more specifically t+2 and t+3. 

In addition to the variables obtained from the trade data,  such as volume, 

volume dispersion return dispersion etc. the holdings of foreign investors on daily basis 

was also added to the VAR model to see if the information of the share of foreign 

investors in the equity 

eries. The percentage share of foreign investors are published on daily basis in 

Takasbank web site, data starts from the date May 4th  2004. It was found that the past 

values of the changes in the total share of foreign investors in equity market does not 

have any positive effect on the explanatory power of the VAR model. 
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The variable maxfark in the VAR model (Appendix J) of daily returns does have

a large adjusted r-squared value (0.38). The impulse response graphs(Appendix M) for 

this variable reveal that the maximum of the next day will probably be higher tha

 

n 

maximum of today if the index return calculated from closing values is positive, and/or 

if the index closes higher than the average value (the variable DIR). Additionally, If 

there is a positive shock to the variable artaz, then the maximum of next day will 

probably be higher than today’s maximum. 

Similarly just to see the effects of the other variables, the variable minfark is 

added to the VAR model and the impulse response function (Appendix M) is analysed. 

The adjusted r-squared value for maxfark is found to be even higher than the variable 

minfark. Analysis of the impulse response functions reveal that the minimum of next 

day is expected to be higher than today’s maximum if today is  a volatile session 

(measured by the squared value of the returns). On the other hand, if the index closes 

above the daily average (measured by the variable DIR), then the minimum of the next 

day will be probably be higher than today. In case of a positive shock to the lag1 value 

of the close to close return, then the minimum of the next day will probably be higher 

than today. The same conclusion can not be drawn for daily average returns. A positive 

shock to lag 1 value of maxfark and artaz and lag 2 value of ret30vol has also an upward 

effect on the minfark. 

From the portfolio managers point of view some interesting hints can be detected 

by analyzing the impulse response functions. For example, impulse response functions 

imply that, if there is positive shock to the close to close return today, then the minimum 

of the next day will probably be higher than that of today, and maximum of the next day 
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will probably be higher th e next day falls below 

day’s minimum, then it is  signal to buy. Similar examples can be done, by looking at 

the com

an today’s maximum. If the prices in th

to

binations of close to close returns, the variables Dir, Artaz and ret30sqr. 

 198



CONCLUSION AND DISCUSSION 

 

The main subject of this thesis is the return, volume and volatility dynamics in 

equity markets, and ISE Equity Market is investigated in particular. An extensive 

amount of research have been done in this field with an increasing number researchers 

concen

the 

t professionals. The empirical evidence verifying the 

wide sp

om the starting question 

which p

 

ich 

ty 

n 

trating on the behavioral finance explanations. The central mission of this study is 

to uncover equity market return dynamics in Turkish case with a special emphasis on 

formation of expectations of marke

read use of technical analysis methods is looked for, new variables are 

discovered to contribute to the explanatory power of the analyses and  some interesting 

conclusions are reached. 

This dissertation starts by examining the previous research done in explaining 

return volume dynamics. Previous research seems to focus mainly on trying to explain 

the return dynamics by using the returns calculated from the closing prices. 

An important contribution of this dissertation comes fr

roved to be very fruitful. Why should one use or care about the close to close 

returns? Should the closing prices be taken as the prices at which trades mostly occur? It

should be kept in mind that the closing prices are just the prices of the last trades wh

can be as small as one lot of the stocks. When someone wants to trade in the equity 

market it is quite likely that the trade prices will be very different from the closing 

prices. If a price is taken to measure the returns it will be much more convenient to take 

the average or the weighted average prices during a trading period, since the probabili

that the trade price of any trade being close to the average price is generally greater tha
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the probability of being close to the closing price. On the other hand, the fact that mutual

funds evaluate their stock portfolios by using the average prices rather than the

and consequently, the sale or purchase prices of mutual funds by the investors depend on

the average prices of stocks further initiated to use some other measure for calculating 

the returns.  

 

 closes 

 

e 

ed 

 

 

he normal distribution, additionally, the return 

series e

 

 

ple of an 

g 

rns should however be taken with care, because the ISE Equity 

So, the initial question leads us to analyse the average returns as well as the clos

to close returns. It did prove to be a good decision to add the return series calculat

from the averages in the analyses. 

On the other hand, since the variable volume is also used in the time series 

analysis, the return series are calculated on session to session and daily basis. This is due 

to the fact that the volume data is not available for shorter time intervals in the ISE. 

The first finding of this study is that, both close to close and the average returns

are found to deviate significantly from t

xhibit fat tail property and heteroskedasticity. These findings are in accordance 

with the results of almost all the previous studies in the field. 

Another finding is that, close to close returns from session to session and from

day to day have been found to have very low serial correlation. The daily close to close

returns especially for the last three year period of the data exhibited even no serial 

autocorrelation. Therefore the ISE Equity Market seems to be a very nice exam

efficient market. However, the returns calculated from the averages are found to exhibit 

significant autocorrelations and partial autocorrelations at lags one and two. This findin

can be regarded as evidence against the efficient market hypothesis. This conclusion 

about the average retu
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Market  

e 

 for this 

phenom

 

 

the 

thods 

 

ot problem.  

d 

 

s 

lly for session close to session close returns. Fractional 

integra h 

ns 

 base prices on which the prices limits are calculated are taken to be  the average

prices of the previous period. Therefore this may induce some artificial serial 

dependence in average returns. The researchers are strongly recommended to check th

results in different equity markets around the globe to discover the real reasons

enon.  

Due to the low serial correlation of close to close return series, Autoregressive

(AR) models and Moving Average Models (MA) produced very small adjusted r-

squared values. On the other hand, these models produced larger adjusted r-squared

values when the average returns were used as the dependent variable.  In general, 

pure Autoregressive Models produced better fit than the pure Moving Average Me

and these two methods also generally have larger adjusted r-squared value than the

ARMA models. ARMA models generally could not be extended to further lags in the 

past due to the common ro

Both the close to close return series and the average return series are discovere

to exhibit the long memory or the persistence problem, a common finding of recent

literature in the field. This finding leads us to explore fractional integration method

which are known as Autoregressive Fractionally Integrated Moving Average Methods 

(ARFIMA). It was found that fractional integration method is more useful for high 

frequency data especia

tion has been found to transform the close to close return series to a series whic

is normally distributed and has a short term memory. On the other hand the fractional 

integration was found to be of not much use for the average session to session retur

and for daily returns. 
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 When the AR and MA models are applied to the new series obtained from the 

fractionally integrated close to close return series, it is observed that the adjusted r-

squared value gets worse, but the long term memory problem can be sorted out. The 

resultin

aviour using 

psycho

ous 

ifferent expectations among brokers, 

therefo he 

 

 

g series on the other hand are found to exhibit no hetersoskedasticity.  

Another important contribution of this dissertation is the expectation survey 

which provides interesting clues with regard to the effect of lagged variables such as 

return, volume, volatility and return dispersion on the expectations of market people. 

 Technical analysis is found to the most common method used for portfolio 

management among the brokers. Intuition and/or feelings is discovered to have a 

considerable weight on the decision making process, providing further support to 

increasing number of studies focusing on explaining the investor beh

logical theories. It has also been discovered that people use generally more than 

one method for investing. 

The survey revealed the fact that, brokers give special importance to previ

return, volume, volatility and other trade variables in forming their expectations, a 

finding that is seemingly contrary to the efficient markets theory.  The survey also 

revealed that the same information may lead to d

re the well known uniform expectations assumption is also challenged by t

results of this survey. 

Additionally, the results of the survey are empirically investigated to find any 

supportive or contradictory evidence from the data. For example, although brokers seem

to give special importance to changes in volume in forming their expectations, the 

empirical evidence generally pointed to the fact that, volume increase or decrease does
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not contain any evidence for the return of the next period.  Volume changes in session 

session returns may partially add to the information set for the next period return, b

daily returns are not sensitive to previous volume increases or decre

to 

ut 

ases. 

 

ly, in order to find out the lead lag effects of returns and other trade 

variabl

, but 

d 

Empirical evidence in the ISE Equity Market also suggests that the reversal is 

more probable than a further fall when the market falls in large amounts. This is partly in 

accordance with the well-known behavioral finance theory named as “the disposition

effect”. According this theory, investors are risk taker in case of down movements, i.e., 

they generally do not sell the losing stocks. On the contrary, according to our survey, a 

sharp fall in the index implies a down market for the brokers. The survey generally 

resulted in the fact that, the brokers in the ISE are trend followers. Empirical analysis of 

data provided many evidences against such an investor behaviour.  

The survey results should be evaluated with care, because the perception of the 

notions of “up market”, “strongly up market”, “horizontal move”, “down market”, 

“strongly down market” may differ across brokers. Similarly the notions of high 

volatility, low volatility, large return, small return etc. may mean different to various 

investors. Therefore, further research in this field is strongly recommended to use more 

specific definitions using numerical examples.  

Final

es, Vector Autoregressive (VASR) model was also applied. The Adjusted R-

squared value for the session close to session close returns improved to some extent

the improvement was found to be very minor for daily returns calculated from closing 

values. The adjusted r-squared value for the average returns on the other hand was foun

to be quite promising. The relatively high adjusted r-squared value found for average 
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returns, may lead to profitable trading strategies. An analysis of the impulse respons

functions for close to close returns and for the average returns provide some hints

towards making more educated guesses for the next period return. 

Another important finding of the VAR analysis is that the difference betwe

minimum of two consecutive periods and the ma

e 

 

en the 

ximum of two consecutive periods has a 

relative

s and 

ies 

 

his study is important, because it provides some insights into the expectation 

formation process of brokers in the ISE. There are interesting signs of investment 

behaviour that may well shake the foundations efficient markets theory. On the other 

hand, inclusion of some new variables into the study for uncovering return dynamics is 

believed to initiate further research in the field. This thesis also shows that that the use of 

the fractional integration method is not a very useful method to uncover the return 

dynamics.   

Further research in this field is believed to concentrate more on the inclusion of 

new variables which are mostly overlooked up to now.  Since the most extensively 

explored area is the close to close returns, the market seems to give no opportunity for 

profitable trading. However, a detailed analysis of the other variables such as average 

returns, difference between the minimums, difference between the maximums etc.  may 

ly large adjusted r-squared value in the model implying that some profitable 

trading strategies can also be constructed by using this relationship. The investors may 

watch the trade prices and compare the current prices to the previous highs and low

may come up with a profitable trading strategy. But the profitable trading opportunit

should be carefully evaluated since; it is highly probable that if the effect of transaction

costs is taken into account, the possible profits might be swept away. 

T
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give rise to new profitable trading opportunities, taking into account, of course, the 

ansactions costs. An expert system, a neural network model taking the lead lag 

hallenge to see 

hether it is possible to beat the market or not. 

 add 

s are 

st a specific example of the total investor pool. The further research should also 

 be 

ticipating the 

urvey, since they are not generally so willing to dedicate their spare time to such a 

tr

interactions of the close to close returns, the average returns, minimums, maximum, 

volume and return dispersion etc. is believed to be an interesting c

w

A more detailed survey with concrete numerical examples is also believed to

to our understanding of the expectation formation process of the investors. Broker

ju

concentrate on the other investors as well as brokers. The researcher should also

ready however, to face substantial resistance from the respondents in par

s

survey. 
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