Insiders and Outsiders in Wage Determination of the Turkish

Manufacturing Industry

Thesis submitted to the Institute of Social Sciences
in partial fulfillment of the requirements for the degree of

Master of Economics

by
Banu Kıvcı

39001100057069

Boğaziçi University

ACKNOWLEDGEMENT

I am grateful to Hakan Ercan for his valuable comments and help through my thesis. I also would like to thank Süleyman Ozmucur and Berna Bayazıtoğlu, who are members of my thesis committee for their interest in my work. Finally, I am indebted to my family for everything they provided with me.

ABSTRACT

Insiders and Outsiders in Wage Determination of the Turkish Manufacturing Industry

by
Banu Kıvcı

The ' Insider-Outsider ' model suggests that both internal and external factors to the sectors play an important role in wage determination. The results of our analysis of a panel data set of Turkish two-digit manufacturing industry support this view. The industry wage determination is best seen as a kind of rent sharing in which the real wage is shaped by a mixture of insider forces (including sales per employee, unionization and financial liquidity) and outsider forces (including unemployment and alternative or outside wage).

ÖZET

Türkiye İmalat Sanayii Ücretlerinin Belirlenmesinde İçeridekiler ve Dışarıdakiler

' İçeridekiler-Dışarıdakiler ' modeli sektör ücretlerinin belirlenmesinde hem iç hem de dış faktörlerin önemli rol oynadığını ileri sürmektedir. Türkiye imalat sanayii alt sektörlerine ait panel veri setimizin analiz sonuçlanı bu görüşü desteklemektedir. Buna göre, sanayi ücretlerinin oluşumu, iç faktörlerin (işçi başına satışlar, sendikalaşma oranı ve finansal likitide) ve dış faktörlerin (işsizlik oranı ve alternatif ya da dışarıdaki ücret) birlikte etkilediği bir çeşit rant paylaşımı olarak görülmektedir.
Acknowledgement iii
Abstract iv
Özet v
Table of Contents vi
List of Figures vii
Introduction 1
Theoretical Background 4
The Model of Wage Setting 9
The Model Specification 13
Estimation Results 17
Conclusions 24
Appendix 29
References 45
LIST OF FIGURES Page
Figure 1: Real Wages of Manufacturing Industries 26
Figure 2: Residuals Plot 27
Figure 3: Residuals vs. Fitted Values of Real Wages Plot 28

I. INTRODUCTION

The focus of the study is the labor market for production workers in Turkish manufacturing industry over the eight years from 1988.I to 1995.IV. The average number of people employed in this market is 2,800 thousand, and this represents, approximately, 14% of total employment in the economy in 1995. The share of this group in total employment does not display significant variation with the 14.5% mean, the 0.78% standard deviation, and so the 0.05% coefficient of variation over the sample period. On the other hand, the share of the manufacturing GNP reveals some movement among quarters of the period. Especially, it takes the value of 18% at the third quarter, while around 25% at the other quarters (The manufacturing GNP share has the 23.2% mean, the 3.70% standard deviation, and so the 0.16% coefficient of variation). Another remarkable trend in manufacturing industry is concerned with the import and export shares. In 1995, these shares rise to 83% and 87%, respectively. The reason behind our choice of manufacturing industry among other sectors of the economy is not only its high shares in GNP and foreign trade but also the availability of data related to the wage determination concept. For example, in the service sector it is not possible to obtain quarterly data concerning the productivity, employment, hours of work, etc., variables. When the disaggregated manufacturing labor market is employed, the emphasis is placed on three sectors, namely, food- beverages-tobacco, textiles and metals-machinery-vehicles, by 20-30 percent of the total manufacturing employment ${ }^{1}$.

[^0]There exist different models of industrial wage determination, namely, the competitive model in which insider workers and outsider workers are equal, the efficiency wage model based on the relationship between the wage and productivity, the insider wage setting and the insider - outsider model. The results under the insider - outsider theory are quite different than those under the insider wage setting where there will be a tendency for the productivity gain to be captured in the form of higher wages. In this situation, the incentive for the firm to expand output and employment is much reduced. Similar attitude is valid when there is an increase in the demand for the firm's product. Under insider wage setting, the tendency will be for wages and hence output prices to be pushed up, translating the demand increase into a wage gain as opposed to an employment gain. The theories therefore predict an inverse relation between the number of insiders and the wage rate.

This thesis provides an illustration of the means by which sectoral wage determination is best seen as a kind of rent sharing in which the real wage is shaped by a mixture of insider forces (including sales per employee, unionization and financial liquidity) and outsider forces (including unemployment and alternative or outside wage). In the rent-sharing theory, the employer and the employees join forces to extract from consumers some surplus over and above that required to pay production costs ${ }^{2}$. Despite the fact that the surplus cannot exceed that amount compensating the agents for their efforts in a purely competitive world, more generally, there may be a rent to be divided somehow between those who organize the firm and those who

[^1]make the product. While workers appropriate a portion of sales, high external unemployment weakens their strength in obtaining higher wages. The general idea is that if the labor market is competitive, the firm will expand output and employment at the given wage when there is a gain in labor productivity. Outside factors, particularly wages paid elsewhere and possibly the overall state of the labor market, will be the key determinants of pay within the firm.

This study attempts to shed light on the determinants of the manufacturing industry wages by using panel data on the industries from the first quarter of 1988 to the last quarter of 1995. In particular, we shall extend the results of Nickell \& Wadhwani (1990) and Christofides \& Oswald (1992) by focusing on the roles of the addional factors to theirs. Namely, the equilibrium wage rate is likely to be shaped by both the outside rate of pay and unemployment rate, and the insider variables such as unionization, sales per employee and minimum lending rate.

4
 II. THEORETICAL BACKGROUND

According to the competitive model, an employer is a wage-taker and must set that wage rate which gives workers the market level of utility. There is no scope for bargaining; employees are unable to appropriate any of the returns to an improvement in their firm's prosperity; there are no rents; insider workers and outsider workers are equal.

Objections to this view began with Lester (1952) and Slichter (1950). They argued that uniformity of wages was the exception rather than the rule, and they provided evidence of large pay disparities across similar people and establishments. A later British study, MacKay (1971), also rejected the validity of the competitive model. He found substantial and persistent wage differentials which could not be explained satisfactorily by non-pecuniary factors. He drew a distinction between insiders who are already employed by a plant and outsiders who are non-employees, and argued that an employee's increases in earnings depend more on the plant in which he is employed than on the demand and supply conditions for his particular type of skill. His explanation relies on the idea that employees can obtain a share of product market rents.

Recent developments in insider-outsider theory offer a way to conceptualize these findings.Blanchard and Summers (1986), Lindbeck and Snower (1987) and Gottfries and Horn (1988) suggest that a small group of insiders will tend towards lower employment and higher pay. Blanchard and Summers (1986) formulate an insider wage setting leading to a high level of hysteresis in the economy which implies that
the impact of shocks may persist for very long periods even under rational expectations. It may also lead to asymmetric behavior and ratchetting, whereby employment responds less, and wages more, to demand increases than to demand falls as shown by Lindbeck and Snower (1987). We are, therefore, interested in a variety of issues. One issue is that whether insider forces is important in wage determination. It is clear, from existing evidence, that the ' insider' phenomenon exists. Managers always say that productivity gains and profitability are important determinants of pay settlements.

A number of relevant studies including Krueger and Summers $(1987,1988)^{3}$ and Gregory, Lobban and Thomson (1987) conclude that in modern US data there is evidence of large unexplained wage differentials and uncover a positive correlation between pay and profitability per employee. Using establishment as well as industry level data, Nickell and Kong (1988), Blanchflower (1990), and Nickell and Wadhwani (1990) suggest that insider power is important although there is a role for outsider forces as well. Blanchflower (1990) favors the idea that British wage determination may be seen as a kind of rent - sharing in which workers benefit from a portion of profits and high external unemployment weakens workers' bargaining strength. He uses British establishment data from 1984 to show that pay depends upon

[^2]a blend of insider pressure (including the employer's financial performance and oligopolistic position) and outsider pressure (including external wages and unemployment). The broad conclusion from his paper is that the classical competitive model of the labor market does not provide an adequate explanation of wage determination in the United Kingdom. Instead, pay levels are shaped by an intricate blend of internal and external forces. Likewise, Nickell and Wadhwani (1990) investigate insider effect and a variety of its determinants, in particular the extent of unionization and the bargaining structure and they also consider the importance of outside labor market conditions in wage bargaining. At this point, our analyses of wage determination seem to be closer. The model they use to illustrate their theme features union-firm bargaining and is similar in spirit to that proposed by Linbeck and Snower (1986). They find that insider forces have a significant impact on wage determination. In particular, price and productivity have well - determined effects at the firm level. They also find that outsider factors, in particular the state of the labor market as captured by aggregate unemployment and the proportion of long term unemployed, play an important role in wage determination at the firm level.

Scaramozzino (1991) investigates insider versus outsider factors in wage determination in microeconomic context. His empirical findings confirm the existence of important structural breaks across firms in wage setting. He implies that there is evidence that investment decisions are affected by the bargaining regimes. He concludes that the industry-wide wage level is a crucial determinant of wages at the outside options, but not in the interior regime. Instead, profits per employee are mainly important in the interior regime.

Another microeconomic research belongs to Christofides and Oswald (1992). They document the microeconomic determinants of pay which are lagged profits and the unemployment rate in the employer's geographical area, and they argue that the results are consistent with a family of models that draw on the concept of rentsharing. The conceptual framework underlying the analysis is one in which rents are divided between the employer and the workers. They imply that prosperity in the product market leads to a large surplus to be divided and so tends to raise the level of pay; high unemployment in the firm's local labor market weakens worker's relative bargaining strength and so tends to depress the wage. They use past profits as an indicator of the firm's financial prosperity and they suggest that real wages are an increasing function of the level of past profits in the employer's industry, and a decreasing function of the level of unemployment in the employer's region. In this respect, our model suggest that real wages are an increasing function of the level of past sales per employee, and a decreasing function of the level of aggregate unemployment.

Nickell and Kong (1992) consider various union and non-union models of wage behavior which imply that wages are a convex combination of internal and external factors. They conclude that the importance of insider forces is directly related to both union power and the degree of monopoly in the product market, and the state of the aggregate labor market is also important.

As an extension of Nickell and Wadhwani (1990), Nickell, Vainiomaki and Wadhwani (1994) focus on the role of market power in wage determination. They set out a theoretical framework based on union bargaining, looking particularly at the
role of market structure. They find a positive effect of product market power on wages which is enhanced in large firms but is not influenced by union status. While firm-specific factors influence wages, they suggest that the size of those effects is not influenced by union status, firm size or product market power. Forslund (1994) adresses the issue of the influence of firm-level performance on wages using a data base with information on individual firms in Swedish manufacturing ${ }^{4}$.

A recent paper related to the test of the insider-outsider hypothesis belogs to Denise J . Doiron (1995). In his paper, models of union wage and employment contracts are developed and estimated based on union preferences in which both membership and employment matter. An insider-outsider model in which the union does not care for employment in excess of membership is estimated and compared with more general models in which the union places some weight on membership growth. Another recent research into this issue belongs to Blachflower, Oswald and Sanfey (1996). They suggest a new test for rent-sharing in the U.S. labor market. Using an unbalanced panel from the manufacturing sector, their paper show that a rise in a sector's profitability leads after some years to an increase in the long-run level of wages in that sector. When firms become more prosperous, workers eventually receive some of the gains. This is the central prediction of noncompetitive theories in which rents are divided between firms and employees.

[^3]
III.THE MODEL OF WAGE-SETTING

Research on unionized labor markets has yielded two leading models of wage and employment determination. According to the first model, the union determines the wage, and the employer chooses the level of employment that maximizes his profits subject to the union wage. This model is called the Monopoly Model by Oswald (1985). In the second model, the levels of wage and employment are chosen by the union and employer so that the outcome lies on their contract curve. Oswald (1985) calls this model the Efficient Bargaining Model. If the union is indifferent to marginal changes in employment, then the outcomes of the two models coincide and there is no reason to choose between them. In this work, I have used the monopoly union model ${ }^{5}$ so that I could avoid the difficulties of finding Turkish data about unemployment benefits, strike funds and possibly earnings while on strike, hiring and firing costs (e.g. training costs and severance payments), bargaining power of the sides, mismatch ratios between jobs and employees. For example, Scaramozzino (1991) characterises the Nash bargain between the firm and the union as follows:
$\max _{\mathrm{W}, \mathrm{N}}\left[\mathrm{U}(\mathrm{W}, \mathrm{N})-\mathrm{U}_{0}\right]^{\alpha}\left[\Pi(\mathrm{W}, \mathrm{N})-\Pi_{0}\right]^{1-\alpha}$ subject to
$\mathrm{U}(\mathrm{W}, \mathrm{N})>\mathrm{U}^{0}\left(\mathrm{u}^{\mathrm{I}}, \mathrm{W}_{\mathrm{a}}, \mathrm{b}\right)$, $\Pi(\mathrm{W}, \mathrm{N})>\Pi^{0}\left(\mathrm{u}^{\mathrm{I}}, \mathrm{W}_{\mathrm{a}}, \mathrm{z}\right)$,
where U_{0} and Π_{0} are the union and firm's status quo for their utility and profits, U^{0}

[^4]and Π^{0} are their outside options $\left(\mathrm{U}^{0}=\mathrm{f}(\mathrm{s})\right.$ and $\Pi^{0}=\mathrm{f}(\mathrm{K})$, s is strike funds plus possibly earnings while on strike and K is the capital input), u^{I} is the industry-specific unemployment rate, W_{a} is a measure of the relevant alternative wage, b is unemployment benefits and z is hiring and firing costs; α reflects the relative bargaining strength of the union.

Let the employer's production function be $f(L)$, where L is the labor input and $f(L)$ is nondecreasing, twice differentiable, and strictly concave. The employer maximizes profits
$f(L)-w L$,
where w is the wage, and the output price is set equal to one. Profit maximization implies $\mathrm{f}_{\mathrm{L}}=\mathrm{w}$, which is inverted to yield the employer's labor-demand function.

Assume that a union utility function, $\mathrm{U}\left(\mathrm{w}, \mathrm{L} ; \mathrm{w}_{\mathrm{a}}, \mathrm{m}\right)$, can be specified for the union where w_{a} is alternative wage and m is union membership rate. In the monopoly model, the union's utility is maximized subject to the employer's labor-demand function. The model's maximization problem can be written
$\max _{\mathrm{w}, \mathrm{L}}\left[\mathrm{U}\left(\mathrm{w}, \mathrm{L} ; \mathrm{w}_{\mathrm{a}}, \mathrm{m}\right): \mathrm{w}=\mathrm{f}_{\mathrm{L}}\right]$, and the first order conditions are
$\mathrm{U}_{\mathrm{L}} / \mathrm{U}_{\mathrm{w}}=-\mathrm{f}_{\mathrm{LL}}$
$\mathrm{w}=\mathrm{f}_{\mathrm{L}}$.

The second equation shows that the employer chooses the level of employment that maximizes profits given the union wage. The term $-U_{L} / U_{w}$ is the slope of the union's indifference curve and $f_{L L}$ is the slope of the employer's demand-for-labor curve.

From the first-order condition of this maximization problem we obtain the wage equation. Then the industry wage equation is
$W=F\left(f(L), L, W_{a}, m\right)$ or
$W=F\left(f(L), u, W_{a}, m\right)$ where u is unemployment rate, and $F_{1}, F_{3}>0, F_{2}<0$ and $\mathrm{F}_{4}<0$ or >0.

As is seen, the wage equation is shaped by a mixture of the factors that are internal to the sector (productivity, union membership rate) and those that are external to the sector (alternative wage and unemployment rate). The expected signs are given above.

Productivity is the key to real wage gains in the economy as a whole, and also the differential growth of productivity across industries has a significant effect on the wage structure. Productivity is a proxy for the size of the rent to be divided between the two parties - the higher the productivity, the more the firm is able to pay, the higher the wage. This is also consistent with a more institutional model in which firms with high rents are expected to pay higher wages ${ }^{6}$.

[^5]While productivity is keyed to the demand side of the firm's labor, alternative wage is contained in the supply side. The logic of the search model points to wage-wage comparisons as the central criterion for both the employer and the worker. The wage increase for experienced workers is meant to keep them from quitting- presumably by keeping their pay favorable relative to the wage offers they would obtain if they were to quit and shop the job market. The firm would like to tell its workers that they have just as much reason to stick with it this year as they had last year. By revealed preference, the experienced workers did find it worth sticking with the firm previously, and they should be persuaded by clear evidence that they have no reason to change their minds currently.

Although pure insider view predicts that unemployment has no impact, insideroutsider view allows unemployment to affect wages. According to this view, aggregate and industrial unemployment both have a downward pressure on wages.

The predicted sign of the union membership is ambigious. A positive correlation between (decentralized) union power and the size of the insider effect is intuitively plausible, and has found some empirical support in studies on U.K. data ${ }^{7}$. On the other hand, some authors argue that a fall in membership will raise wage demands as the reduced number of insiders act to appropriate rents rather than to expand employment for outsiders ${ }^{8}$.

[^6]
IV. THE MODEL SPECIFICATION

This study examines wage, productivity, alternative or outside wage, unemployment rate, union membership rate and financial liquidity data ${ }^{9}$ for a panel of 9 two-digit manufacturing industries over the period 1988.I and 1995.IV: food-beveragestobacco, textiles, wood products, paper products and printing, chemicals-petroleum products, non-metallic minerals, metals, metals-machinery-vehicles, and other industries. The data concern sum of the public and private sectors. Although we are aware of the importance of the distinction between public and private sectors, we could not obtain all the data separately; so we use the total data. The data definitions and sources are given in the Appendix.

For the wage variable, we use average hourly earnings for production workers in each industry, and we use average hourly earnings of the other eight industries, weighted by their hours worked, for the excluded industry's alternative wage. For this model, we assume perfectly substitutable movement between sectors ${ }^{10}$. All wage variables are deflated by the Consumer Price Index. Figure 1 shows that the real wages in all industries except the metal industry behave similarly during the sample

[^7]period. This correlation occurs because each industry's wages are set by the same collective agreement.

As measures of productivity, we use industrial sales from production per employee deflated by industrial implicit price deflator. Industrial sales belong to about 500 private establishments that are the members of Istanbul Chamber of Industry. Since the State Institute of Statistics does not publish quarterly two-digit industrial sales for both public and private sectors, we take the Istanbul Chamber of Industry data. To capture cyclical fluctuations in demand, we use the aggregate unemployment rate for people 12 years old and over.

The liquidity term includes the minimum lending rate and for this variable we use the Treasury bill rates. For the unionization variable, we adjust union membership rates for the two-digit manufacturing industries. The Ministry of Labor and Social Security publishes the unionization rates regarding to work forces. Therefore, we pursue the following process to find the unionization rates belonging to the subsectors of manufacturing industry:

04 Food ind. +05 Sugar ind. $\rightarrow 31$ Food-beverages-tobacco ind.
06 Textile ind. +07 Leather ind. $\quad \rightarrow 32$ Textile wearing apparel and leather ind 08 Wood ind. $\rightarrow 33$ Wood products ind.

09 Paper products ind. +10 Printing ind $\rightarrow 34$ Paper products and printing ind.
03 Petroleum-chemicals-rubber ind. $\rightarrow 35$ Petroleum-chemicals-rubber ind.
12 Non-metallic mineral products ind. $\rightarrow 36$ Non- metallic mineral products ind.

13 Metal ind.
$\rightarrow 37$ Metal ind.

Total manufacturing ind. $\rightarrow 38$ Metals-mach.-vehicles ind., 39 Other ind.

We present the mean, the standard deviation and the coefficient of variation of the variables on the next page.

	Wages			$\frac{\text { Sales }}{(000 \mathrm{TL})}$			Uni.rate			Alt.wag		
	Mean	St.dev	Cf.var				Mean	$\begin{aligned} & (\%) \\ & \text { St.dev } \end{aligned}$	Cf.var	Mean		Cf.var
Food	9.13	2.74	0.30	22.06	4.63	0.21	93.48	7.48	0.08	10.94	2.84	0.26
Textile	7.46	1.72	0.23	21.59	2.81	0.13	75.67	9.84	0.13	11.80	3.30	0.28
Wood	7.98	2.23	0.28	12.24	3.92	0.32	39.62	4.75	0.12	10.63	2.76	0.26
Paper	11.17	2.79	0.25	39.08	10.55	0.27	43.32	7.80	0.18	10.57	2.75	0.26
Chemicals	15.20	4.26	0.28	84.98	11.05	0.13	67.38	6.74	0.10	10.12	2.63	0.26
Minerals	11.25	3.26	0.29	28.54	8.28	0.29	57.49	6.32	0.11	10.53	2.74	0.26
Metal	16.40	6.72	0.41	63.46	19.67	0.31	73.24	5.13	0.07	9.97	2.59	0.26
Machinery	11.48	3.21	0.28	74.79	24.68	0.33	73.60	6.73	0.09	10.36	2.80	0.27
Other	7.61	1.52	0.20	42.05	10.09	0.24	73.60	6.73	0.09	10.59	2.86	0.27
Total	10.58	2.80	0.26	42.87	8.31	0.19	73.60	6.73	0.09			

Unemployment rate (\%) : Mean: 7.96 St.dev: 0.56 Cf.var: 0.07
Interest rate (\%): Mean: 68.15 St.dev: 21.13 Cf.var: 0.31

V. ESTIMATION RESULTS

Once we incorporate all the generalizations and the data information given in the model specification part, and use the log-linear approximation to the wage equation, our empirical model can be written
$\ln \mathrm{W}=\mu_{0}+\mu_{1} \ln (\mathrm{~S} / \mathrm{L})+\mu_{2} \ln \mathrm{~W}_{\mathrm{a}}+\mu_{3} \ln \mathrm{M}+\mu_{4} \ln \mathrm{U}+\mu_{5} \ln \mathrm{I}+\varepsilon$
where $\mathrm{W}=$ Hourly earnings of production workers
S/L= Sales per employee
$\mathrm{W}_{\mathrm{a}}=$ Alternative wage or outside wage for production workers
$\mathrm{M}=$ Union membership rate
$\mathrm{U}=$ Aggregate unemployment rate
I $=$ Minimum lending rate.

The quartely analysis is based on the above equation with the following modifications:
$\ln W=\mu_{0}+\mu_{1} \ln (S / L)_{-1}+\mu_{2}\left(W_{a}\right)_{-1}+\mu_{3} \ln M+\mu_{4} \ln U+\mu_{5} I+\mu_{6} I_{-1}+\mu_{7} D_{M}+\varepsilon$
where D_{M} is the metal industry time-dummy variable. The logarithm of industrial real wages is regressed on the logarithm of one lagged sales per employee, one lagged alternative wage, one lagged and current interest rates, the logarithms of both unionization rate and unemployment rate ${ }^{11}$. Since there is a striking upward movement in real wages related to the metal industry during the last three quarters of

1990, a dummy variable should be included in the regression ${ }^{12}$. The regression is estimated by using pooled cross-section time-series quarterly data on 9 two-digit manufacturing industries for the 1988.I - 1995.IV period. The OLS method is applied to the model on panel data and the estimates of the parameters of wage equation are presented in the Table C. 1 in the Appendix.

According to the estimates, the elasticity of hourly earnings with respect to lagged sales per employee is 0.362 , with respect to union membership it is -0.284 . The effect of lagged alternative wage seems to be important with the value of 0.066 . In other words, an increase of 1 percent in lagged alternative wage pushes up real wages by approximately 7 percent. As is seen, the signs are consistent with our expectations. As insider factors, sales per employee and unionization have, respectively, positive and negative effects, and as an outsider factor, alternative wage has a positive effect on sectoral wages. For the negative effect of unionization, it can be said that it favors the view proposed by Blanchard and Summers (1986) and Lindbeck and Snower (1986) mentioned in the theoretical part. It can be added that the unionization rates are published by the Ministry of Labor and Social Security. In their records, union membership continues even if employees stop working. This sometimes yields sectoral unionization rates over 100%.
${ }^{11}$ In determining the lag length of the variables, Akaike and Schwarz criteria are used. The regressions are run over the same interval, 1988.I-1995.4, using up to four lags. When they are compared with respect to their AIC and Schwarz values, these criteria result in the selection of the model regresses wages on one lagged sales per employee and alternative wages, one lagged and current interest rates, current unionization rates and unemployment rates. The AIC and Schwarz values of the final model are 644.502 and 672.738 , respectively.
${ }^{12}$ This jump in real wages is caused by the public sector wage increases(The data is in the Appendix)

On the other hand, the coefficients of unemployment rate and minimum lending rate are not significant at the 95% confidence level. While current minimum lending rate is unimportant, the lagged one is significant at the confidence level, but with the small effect of 0.002 . The value of D.W., 0.62 , implies a serial positive correlation in the disturbance term.

We should indicate that there is one important thing we have not taken into account so far; that is the sector effect. We use sectoral data in the estimations, so we should control for wage differences across sectors related to various unobserved variables. This is achieved by including sector-specific dummies which will control for all wage differences due to time-invariant unobserved variables. OLS estimates of the manufacturing wage model are reproduced with sectoral dummies, Fixed Effects Model, in the Table C. 2 in the Appendix ${ }^{13}$.

[^8]As we see in the results, significance of the variables increase. The unemployment rate and the minimum lending rate become meaningful in expected signs, -0.291 and -0.002 , respectively. In other words, one percent increase of unemployment rate and of minimum lending rate cause almost 0.3 and 0.2 percent of decrease in real wages.

The table also reveals an interesting change such that significance of the sales variable decreases while significance of the alternative wage variable increases. The elasticity of real wages with respect to lagged sales becomes 0.145 and the response of the real wages to one unit change in lagged alternative wages becomes 0.082 . Since the sector dummies are statistically significant at some confidence levels, we can conclude that the nine manufacturing subsectors' wage functions have statistically the different intercepts. Also the value of correlation coefficient raises to 0.89 and the D.W. takes the 1.52 value that is between the upper and lower limits. When we plot the residuals obtained from the regression of wages on lagged productivity, lagged alternative wage, unemployment rate, union membership rate, lagged and current minimum lending rate, sector dummies and metal time dummy, we cannot see any sign of particular relation, as in Figure 2.a.

Actually, a visual examination of residuals can also provide useful information about heteroscedasticity. If we plot the residuals against the fitted values of the dependent variable, as in Figure 3.a in the Appendix, we do not observe any systematic pattern indicating heteroscedasticity problem. We also carry out White's test in looking for the heteroscedastic residuals. The chi-squared statistic given by White's test is 80.539 , with 152 degrees of freedom. Since the 5 percent and 1
percent critical values exceed the test statistic, we cannot reject the hypothesis of homoscedasticity. Therefore, we can conclude that our estimation results are devoid of the effects of heteroscedasticity.

In addition, we try to allow the slopes to differ across the industries as well. So, we regress the real wages on the explanatory variables by using the products of sector dummies and those variables. In the new regression, except for the alternative wage variable, only one sector's coefficient appears significant among the variables set. In this situation, we test whether the variables in the dummy product form are jointly significant. Once we test them, we find the sales per employee, interest rate and alternative wage variables jointly significant. The current and lagged interest rate, unemployment rate and unionization rate varibles do not seem to be jointly significant in the dummy product form. Instead, they enter the equation with one value belonging to the all sectors. While lagged interest rates have a positive effect on wages, current interest rates, unemployment rates and unionization rates have negative effects consistent with the theoretical model. Yet, for the sales per employee variable in the dummy product form, despite of the jointly significance situation few sectors' coefficients appear to be significant, namely, wood products, paper products and printing, metals-machinery-vehicles. However, the alternative wage variable seems to be significant for all the sectors presented in Table C. 3 in the Appendix ${ }^{14}$.
${ }^{14}$ We use the F statistic in order to determine the favorable model among the models of fixed effects and those with sector-specific variable dummies. Sums of squared residuals of the two regressions are 4.761 and 3.997 , respectively. We have 16 and 32 variables for the first and second models. The $F_{\text {calculated }}$ statistic is 2.95 and this value exceeds $\mathrm{F}_{\text {table }}=1.67$ at 5% significance level and 2.04 at 1% significance level. Therefore, the fixed effect model with sector - specific variable dummies is favored.

When we plot the residuals across observations, and against fitted values of the wage variable, there is no sign for the heteroscedasticity problem (See Figures 2.b and 3.b in the Appendix). We carry out White's test for heteroscedasticity and obtain the chisquared test statistic as 181.127 with 560 degrees of freedom. This value does not exceed the critical values at 5 and 1 percent levels, so we can say that the residuals in the regression are homoscedastic.

We also consider the possibility of gaining an efficiency in the model by estimating the sectoral equations jointly as a generalized regression, Seemingly Unrelated Regression Model (SURE). Since we have 9 sectors and 31 observations for each sector, we do not have the problem of degrees of freedom, so we can apply the SURE Model. To see how much efficiency is gained by using generalized least squares instead of ordinary least squares, we present the results of the SURE model in the Table C. 4 in the Appendix.

A striking improvement is observed in the sales variable, namely, six sectors' coefficients appear to be significant in expected sign, except for the textiles sector, whereas only two sectors' are significant in the ordinary least squares model. For the other variables, only one or two sectors' coefficients are significant except for the alternative wage variable, i.e chemicals, metals, non-metallic minerals and other industries. Alternative wages are significant for all the sectors similar to the previous model. The correlation coefficients take the value between 0.68 and 0.92 , and the D.W. values change between 1.32 and 2.35 for the nine manufacturing sectors.

To summarise, we find some results supporting the insider-outsider view in
determining manufacturing industry's wages. Sales per employee (which is the productivity proxy), unionization rate, and minimum lending rate (which is the financial liquidity proxy) enter the wage equation as the insider variables. Sales per employee enters the equation positively at convential significance levels. The minimum lending rate and unionization rate variables have depressing effects on wages. The alternative wage is a significantly positive factor, while unemployment rate is a significantly negative factor in wage determination as the outsider variables. These results support the existence of a kind of rent-sharing in which the real wage is shaped by a mixture of insider forces and outsider forces.

VI. CONCLUSIONS

The purpose of this study has been to investigate the importance of insider and outsider factors in wage determination. We have developed a theoretical framework based on the monopoly model which indicates that the wage outcome is a weighted sum of that wage which will just ensure the employment of the 'insiders' and the wage which will attract and retain workers in the face of outside competition for their services.

We have presented some evidence on the behavior of hourly earnings of blue-collar workers in Turkish manufacturing industry and offered a model of their determination. According to the model, both internal and external pressures affect real wages. First, pay depends upon a sector's productivity measured by sales per employee. The results suggest that real wages are an increasing function of the level of past sales in the employer's industry. Second, pay also depends upon minimum. lending rate and unionization rate as other insider factors. Current minimum lending rate depresses real wages, whereas its lagged value has a positive effect on wages. Since unionization has a negative effect on real wages, we can say that an increase in membership rate reduces the membership effect on wages. Third, pay moves with factors such as the level of unemployment and the going wage in other subsectors of the manufacturing industry. The empirical findings suggest that unemployment rate has a downward pressure on real wages. Industry wages follow outside wages quite closely in the two-digit manufacturing industry.

These results, when taken together, appear to favor the idea that wage determination concerning the Turkish manufacturing industry may be seen as a kind of rent-sharing in which high productivity and alternative wage increase wages while high external unemployment, unionization rate and minimum lending rate decrease wages. Our findings are compatible with arguments expressed in Nickell and Wadhwani (1990) and Christofides and Oswald (1992).

Figure 1.b. Real Wages of Manufacturing Industries

HECPI_{i} : Real wages in each industry

Figure 2.a. Residuals Plot for the fixed effects model

Figure 2.b. Residuals Plot for the fixed effects model with sector-specific variable dummies

Figure 3.a. Residuals vs. Fitted Values of Real Wages Plot for the fixed effects model

Figure 3.b. Residuals vs. Fitted Values of Real Wages Plot for the fixed effects model with sector-specific var. dummies

A. Data Definitions and Sources

$\mathrm{W}_{\mathrm{i}}=$ Hourly wages in a two-digit manufacturing sector calculated as $\mathrm{TW}_{\mathrm{i}} / \mathrm{H}_{\mathrm{i}}$ where TW_{i} is the real total wages deflated by consumer price index for production workers and H_{i} is the total number of work hours among production workers. Source: 1.
$\mathrm{W}_{\mathrm{ai}}=$ Outside hourly wages in a two-digit manufacturing sector calculated as
$\Sigma_{\mathrm{j} i \mathrm{i}}\left[\left(\mathrm{H}_{\mathrm{j}} / \Sigma_{\mathrm{j} \dot{1}} \mathrm{H}_{\mathrm{j}}\right)\left(\mathrm{TW}_{\mathrm{j}} / \mathrm{H}_{\mathrm{j}}\right)\right](\mathrm{i}, \mathrm{j}=1, \ldots, 9)$. Source : 1 .
$\mathrm{S}_{\mathrm{i}}=$ Sales from production deflated by industrial implicit deflator for a two digit manufacturing sector. Source : 2 .
$\mathrm{L}_{\mathrm{i}}=$ Total number of production workers in a two-digit manufacturing sector. Source: 1.
$\mathrm{U}=$ Aggregate unemployment rate. Source : 3 .
$\mathrm{M}_{\mathrm{i}}=$ Unionization rate in a two-digit manufacturing sector. Source : 4 .
$\mathrm{I}=$ Treasury bill rate as a minimum lending rate. Source : 5 .
Sources: 1. Manufacturing Industry, Employment, Payments, Production and Tendencies, State Institute of Statistics
2. Manufacturing Industry and Rates of Capacity Utilization Statistics, Istanbul Chamber of Industry
3. Statistical Yearbook of Turkey, State Institute of Statistics
4. The Ministry of Labor and Social Security Statistics
5. Main Economic Indicators, The Undersecretary of Treasury and Foreign Trade

B. 1. Data used in the introduction

Table B.1.1. Manufacturing GNP and employment data

	$G N P_{m}$	$G N P$	$\begin{gathered} G N P_{m} / G N P \\ (\%) \end{gathered}$	$\boldsymbol{L}_{\boldsymbol{m}}$	L_{t}	$\begin{gathered} L_{m} / L_{t} \\ (\%) \end{gathered}$
1988.I	4140	14522	28.5			
II	3995	16832	23.7			
III	4039	25614	15.8	2534	17668	14.34
IV	4402	19140	23.0			
1989.1	3908	14395	27.1	2474	18013	13.73
II	4048	16606	24.4			
III	4383	26449	16.6	2673	17997	14.85
IV	4740	19898	23.8			
1990.1	4424	16114	27.5	2382	18047	13.20
II	4474	19073	23.5			
III	4748	27931	17.0	2722	18681	14.57
IV	5083	21473	23.7			
1991.1	4244	15900	26.7	2974	20023	14.85
II	4542	18789	24.2			
III	5110	28893	17.7	2729	19454	14.03
IV	5279	21361	24.7			
1992.1	4695	17294	27.1	2885	19579	14.74
II	4786	19920	24.0			
III	5367	30453	17.6	3284	19958	16.45
IV	5434	22678	24.0			
1993.1	4846	18066	26.8	2730	19705	13.85
II	5462	22014	24.8			
III	5879	32471	18.1	3002	19907	15.08
IV	5980	24434	24.5			
1994.I	5159	19017	27.1	3082	20314	15.17
II	4620	19982	23.1			
III	5260	29960	17.6	2985	20396	14.64
IV	5434	22773	23.9			
1995.I	5088	18970	26.8	2936	20835	14.09
II	5729	22503	25.5			
III	6356	32968	19.3	2947	21277	13.85
IV	6148	24587	25.0			

$\boldsymbol{G N P}_{\boldsymbol{m}}$: Manufacturing GNP at 1987 producers' prices, in billions of TL.
$L_{t} \quad$: Total employment in the economy, in thousands.
$L_{m} \quad$: Civilian employment by manufacturing industry, in thousands.

Table B.1.2. Manufacturing industries employment data

	$\begin{gathered} L_{1} / L_{m} \\ (\%) \end{gathered}$	L_{2} / L_{m}	L_{3} / L_{m}	L_{4} / L_{m}	L_{5} / L_{m}	L_{6} / L_{m}	L_{7} / L	$L_{s} /$	L_{9} / L_{m}
		(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)
1988.1	16.92	27.18	2.01	3.77	9.42	8.29	9.77	22.20	0.46
II	19.45	26.03	1.90	3.66	9.11	8.85	9.27	21.34	0.41
III	20.60	25.81	1.87	3.39	8.97	8.91	9.18	20.86	0.40
IV	19.18	27.28	1.84	2.87	9.25	8.86	9.42	20.91	0.40
1989.1	16.51	28.99	1.97	3.70	10.26	8.48	9.80	19.86	0.44
II	20.07	27.79	1.85	3.58	9.44	9.34	8.67	18.83	0.43
III	21.92	27.26	1.79	3.47	9.04	8.90	8.83	18.36	0.42
IV	18.86	28.73	1.84	3.61	9.59	8.60	9.09	19.23	0.45
1990.1	15.62	30.20	1.87	3.75	9.77	8.11	9.99	20.24	0.46
II	18.73	28.17	1.76	3.56	9.24	8.43	9.62	20.04	0.45
III	20.81	26.91	1.64	3.50	9.05	8.30	9.24	20.18	0.38
IV	19.05	26.94	1.58	3.54	10.57	7.84	9.58	20.52	0.37
$1991 . I$	16.93	28.27	1.80	3.66	9.62	7.51	10.09	21.71	0.41
II	20.04	26.52	1.72	3.61	9.39	8.02	9.37	20.95	0.39
III	22.32	25.21	1.72	3.57	9.21	7.92	9.03	20.61	0.41
IV	20.88	25.87	1.72	3.57	9.36	7.62	9.61	20.99	0.38
1992.1	17.38	27.86	1.78	3.76	9.86	7.25	9.96	21.76	0.39
II	20.13	26.44	1.73	3.73	9.42	7.79	9.42	20.97	0.37
III	22.92	25.51	1.71	3.65	9.17	7.78	8.74	20.14	0.38
IV	20.15	27.42	1.80	3.87	9.15	7.38	8.29	21.55	0.38
1993.1	17.43	28.59	1.94	3.82	9.52	6.70	9.57	22.07	0.36
II	18.93	26.95	1.90	3.57	9.31	7.50	9.57	21.91	0.38
III	22.79	25.49	1.83	3.45	9.03	7.33	8.60	21.12	0.36
IV	20.48	26.21	1.82	3.61	9.03	7.12	9.21	22.18	0.33
1994.I	17.54	29.38	1.92	3.53	9.28	6.94	9.09	21.97	0.35
II	19.18	28.87	1.80	3.50	9.29	7.93	8.81	20.29	0.33
III	23.03	27.98	1.76	3.42	9.03	7.59	8.53	18.36	0.31
IV	20.93	29.79	1.82	3.29	9.08	7.33	8.45	19.01	0.29
1995.1	17.25	32.22	1.96	3.53	9.47	6.89	8.39	19.84	0.44
II	19.31	31.82	1.89	3.28	8.98	7.50	7.80	19.01	0.41
III	20.54	30.16	1.88	3.26	8.95	7.52	7.60	19.66	0.44
IV	19.65	31.14	1.89	3.29	8.98	7.16	7.49	19.96	0.44

$\boldsymbol{L}_{i}:$ Civilian employment by each manufacturing industry $(i=1, \ldots, 9)$

Table B.1.3. Total wages data for metal industry

	$\begin{gathered} T W_{\text {pubic }} \text { e } \\ \text { (billion TL) } \end{gathered}$	$\begin{gathered} T W_{\text {private }} \\ \text { (billion TL) } \end{gathered}$	$\begin{gathered} T W_{\text {total }} \text {) } \\ \text { (billion TL } \end{gathered}$
1988.I	23.8	12.3	36.1
II	31.1	12.6	43.7
III	31.8	14.9	46.7
IV	35.2	22.5	57.7
1989.1	46.1	23.9	70.0
II	43.6	28.3	71.9
III	65.1	34.1	99.2
IV	117.5	44.9	162.4
1990.1	141.0	48.3	189.3
II	*326.8	50.6	*377.4
III	*502.3	51.9	*554.2
IV	*532.6	54.9	*587.5
1991.I	209.6	89.0	298.6
II	256.8	112.4	369.2
III	347.9	113.8	461.7
IV	591.6	126.0	717.6
1992.I	542.3	136.6	678.9
II	664.7	161.0	825.7
III	707.7	175.5	883.2
IV	609.2	189.4	798.6
1993.I	823.8	252.7	1076.5
II	1024.4	292.0	1316.4
III	934.0	307.1	1241.1
IV	1318.4	348.4	1666.8
1994.1	1557.1	390.5	1947.6
III	1294.8	438.5	1733.3
III	1186.6	464.8	1651.4
IV	1554.7	525.3	2080.0
1995.I	1451.9	961.2	2413.1
II	1448.1	1189.7	2583.8
III	1439.4	1180.0	2619.4
IV	1678.7	1333.1	3011.8

[^9]
B.2. Data used in the model

Table B.2.1. Data used in the model for food-beverages-tobacco industry

	TW ${ }_{1}$	H_{1}	M_{1}	L_{1}	\boldsymbol{S}_{1}	DEF ${ }_{1}$
1988.I	42515929	62832953	99.44	310647	220829968	152.5
II	77791377	75007672	99.44	370678	307370755	173.0
III	74189364	78041843	95.80	394093	398720638	193.4
IV	65533044	71284517	95.80	353282	476108715	213.9
1989.1	64969145	59473566	98.35	293491	529100334	251.9
II	110164652	72711903	98.35	374045	542893094	269.9
III	158367456	84647016	68.46	423488	690906730	290.5
IV	173933380	72230295	68.46	353058	1003195761	321.3
1990.1	156926252	57817348	86.55	284814	904508464	391.0
II	224368203	69860791	86.55	357895	972160255	421.0
III	321211934	80406171	89.26	404207	1181643294	417.1
IV	311182905	74474847	89.26	359817	1268167418	465.9
1991.1	304581271	58032277	91.82	292539	1491004667	627.5
II	387147835	69869373	91.82	343938	1623365344	711.9
III	744668997	79448825	91.22	385271	2162942173	700.4
IV	770844038	69929209	91.22	348618	2367609336	803.1
1992.1	682776741	55501484	92.85	272675	2437867111	1140.3
II	996512126	65291688	92.85	328041	2757319717	1186.1
III	1222368514	76144157	95.10	380941	3181455297	1143.7
IV	1225936663	64461551	95.10	318368	3433559148	1317.1
1993.1	1107276697	52607692	94.85	267805	4187227005	1878.0
II	1319527897	60837508	94.85	302927	4637945076	1913.1
III	2036125689	78089417	99.51	379271	6390885997	1862.0
IV	2182981840	65126500	99.51	321381	8148300176	2365.6
1994.1	2111333199	56382320	98.98	276730	4852317295	3222.6
II	2569885757	60219904	98.98	296366	8796453144	4243.4
III	3165851787	73252517	99.10	357266	11685050498	4617.7
IV	3640441638	63664042	99.10	311015	13273013300	5776.7
1995.I	3283115000	52031763	97.39	258422	21760221843	7402.4
II	4332497000	62933018	97.39	310151	13917245094	7846.0
III	4778576000	65548258	96.97	334994	22525876414	8062.5
IV	6407774000	64942625	96.97	319940	24811966434	9589.4

$T W_{i}$: Total wages for production workers in each manufacturing industry, 000 TL
\boldsymbol{H}_{i} : Total man-hours worked by production workers in each manufacturing industry
M_{i} : Unionization rate, \%
$\boldsymbol{L}_{i} \quad:$ Number of production workers in a sector
$\boldsymbol{S}_{\boldsymbol{i}}$: Sales from production in a sector, 000 TL
$D E F_{i}:$ Implicit price deflator for a sector, $1987=100$

Table B.2.2. Data used in the model for textiles industry

	TW ${ }_{2}$	H_{2}	M_{2}	L_{2}	\boldsymbol{S}_{2}	$D E F_{2}$
1988.1	70540620	100328328	71.17	499094	553785236	167.8
II	72383458	98059298	71.17	496013	610783670	190.4
III	82819569	97567288	71.90	493728	615883627	213.0
IV	144968285	106549799	71.90	502549	856842838	235.6
1989.1	134131248	104281432	72.87	515427	903431300	258.9
II	153952905	103878753	72.87	517886	1061440260	288.5
III	189293851	103946497	57.80	526590	1292717062	331.2
IV	240404697	109198688	57.80	537775	1591032086	366.4
1990.I	256938953	109999863	60.59	550756	1474792711	411.9
II	272349344	107154942	60.59	538210	1623793137	456.9
III	307408972	101948908	62.96	522752	1916595467	529.3
IV	369947230	102573827	62.96	508787	2124337260	574.4
$1991 . I$	560821387	96067033	66.92	488405	1981131446	581.2
II	597307217	87558675	66.92	455315	2387020391	727.9
III	655956011	86166776	74.55	435083	2973785540	849.5
IV	765138548	87448999	74.55	431972	3721606601	1023.7
1992.I	779596922	87172865	75.53	436980	3672726787	980.6
II	854478440	83531986	75.53	430779	4060954949	1173.3
III	983713286	83824350	78.05	423897	5199859295	1360.0
IV	1137740370	87096044	78.05	433274	6040612552	1740.2
1993.I	1458510496	85575218	79.26	439427	5641159911	1527.7
II	1599946637	82450987	79.26	431307	6518019173	1938.3
III	1744790424	82407762	87.26	424091	8153669614	2221.0
IV	1991802066	81236830	87.26	411237	8717728495	2779.2
1994.I	2608510177	91300086	87.98	463568	9474275951	2769.7
II	2457105824	84009895	87.98	445994	11136124030	5134.6
III	2756631229	85252942	89.45	434092	16253916293	5687.9
IV	3443049190	89932835	89.45	442788	19423851939	6975.7
1995.I	4226265000	95351345	88.11	482508	18773205243	5990.9
II	4950668000	97351133	88.11	511147	31202367561	9036.9
III	5655307000	99599298	86.37	492029	30890115884	9680.7
IV	7309441000	103765966	86.37	506963	33073820102	11196.0

Table B.2.3. Data used in the model for wood products industry

	TW3	\boldsymbol{H}_{3}	M_{3}	L_{3}	\boldsymbol{S}_{3}	$D E F_{3}$
1988.I	4765451	7459900	47.64	36891	13756358	181.9
II	4933264	7264421	47.64	36236	14564485	206.3
III	5724737	7115671	47.53	35863	24897011	230.8
IV	6569262	6862175	47.53	33982	29843335	255.2
1989.I	7414100	7074447	49.07	34996	32317260	320.5
II	10510667	6915233	. 49.07	34495	48593247	324.7
III	13162532	6768922	31.81	34555	58748992	372.5
IV	14793160	6991329	31.81	34490	66638874	411.9
1990.1	16818744	6859869	43.78	34168	79985287	519.9
II	19488800	6688756	43.78	33635	86784780	530.6
III	23762405	6135038	36.19	31890	87637503	603.1
IV	24351088	6124082	36.19	29910	88837427	610.4
1991.I	29067241	6229600	34.38	31041	131146116	903.0
II	30013712	5751917	34.38	29461	116049933	841.0
III	47469768	5957374	37.45	29697	144038197	1066.3
IV	60089154	5950130	37.45	28643	146646352	960.2
1992.1	61920594	5801080	37.25	27988	102000076	1437.6
II	69710431	5345179	37.25	28112	210448211	1407.8
III	79023024	5609048	37.24	28370	195444077	1708.2
IV	89763716	5636076	37.24	28437	377232374	1755.2
1993.I	104317809	5683346	37.63	29820	277871904	2728.5
II	113345063	5917991	37.63	30456	469667240	2790.3
III	146471486	5999304	36.91	30397	510183626	3112.3
IV	165379081	5818100	36.91	28522	597115768	3078.7
1994.I	186579891	5948305	39.80	30372	398550980	5113.3
II	184334941	5291902	39.80	27816	511066130	6573.8
III	199509886	5391441	39.65	27324	717194641	8207.1
IV	259440348	5490800	39.65	27077	595836346	6880.9
1995.I	286251000	5630630	39.46	29393	661871992	10599.8
II	329432000	5989743	39.46	30300	1098895674	11208.4
III	383794000	6092674	38.07	30606	1538916418	13172.4
IV	484555000	6186682	38.07	30728	1395151163	11209.0

Table B.2.4. Data used in the model for paper products and printing industry

	$T W_{4}$	H_{4}	M_{4}	L_{4}	\mathbf{S}_{4}	$D E F_{4}$
1988.I	13491373	14732466	43.94	69235	118042914	181.7
II	14216243	14843425	43.94	69689	152032594	206.2
III	13959099	13093573	45.23	64920	161811768	230.6
IV	16312952	10209200	45.23	52871	222680016	255.1
1989.I	29123975	13999881	45.89	65745	258224481	341.4
II	33888721	14179499	45.89	66796	263903721	383.9
III	41017067	14753079	28.56	67100	299919459	355.6
IV	46064554	14828724	28.56	67537	377329242	393.4
1990.1	53385601	14625973	30.79	68464	376329258	477.3
III	62578692	14976084	30.79	67966	431468064	603.6
III	62651635	14494007	34.07	68041	467391744	503.5
IV	70256043	14740891	34.07	66884	575380995	632.5
1991.I	95243520	12273673	36.81	63144	515782619	768.9
II	117084063	13192377	36.81	61999	601057433	980.8
III	141698395	13163273	39.73	61683	597810473	843.4
IV	164144877	13106674	39.73	59611	845503187	1060.8
1992.I	174043627	12666977	39.86	59039	943750463	1554.8
III	207033717	12918494	39.86	60789	986851436	1718.3
III	216934643	12790236	40.94	60687	1196894141	1336.8
IV	239920690	13365106	40.94	61198	1993645378	1738.6
1993.I	317909337	12449974	47.28	58689	2532393100	3384.7
II	362001629	12129532	47.28	57122	2868191546	3233.9
III	415678069	12268124	52.68	57463	2669050260	2483.7
IV	470188221	12282457	52.68	56650	3655828405	3058.1
1994.1	533517157	11664538	54.25	55781	3053427105	5855.6
II	504137685	11102010	54.25	54044	3115645670	6209.1
III	587986964	11035131	55.05	53069	3182279044	5272.9
IV	707674327	10583611	55.05	48952	7683962141	7101.0
1995.1	845594000	10835527	49.68	52865	7003837770	15054.7
II	900928000	10602127	49.68	52647	8907144507	13771.8
III	938088000	10587643	48.37	53178	10628751686	12649.6
IV	1238234000	11068094	48.37	53576	11918825483	13889.6

Table B.2.5. Data used in the model for chemicals-petroleum products industry

	TWs	H_{5}	M_{5}	L_{5}	\boldsymbol{S}_{5}	$D E F_{5}$
1988.1	39102240	34450388	73.72	172917	816882050	183.2
II	44696391	32152093	73.72	173617	895988043	207.8
III	51938179	32905851	74.04	171640	931691057	232.4
IV	49893004	34213349	74.04	170455	1279821397	257.0
1989.1	72432787	35594178	74.25	182397	1520057907	325.0
II	98296881	34212985	74.25	175814	1649128678	357.4
III	120888941	33918985	60.27	174610	1884575197	409.3
IV	138404695	35496929	60.27	179433	2515395945	452.6
1990.1	166643455	35283152	61.78	178166	2518849354	495.9
II	183800091	33082239	61.78	176615	2305699100	520.0
III	246507607	33375229	58.50	175698	2774646053	603.2
IV	248306524	34181811	58.50	199633	3291021903	685.7
1991.1	328811422	32391585	61.43	166233	3293720520	785.1
II	413999336	30550335	61.43	161121	3604901608	843.0
III	461543205	30806996	60.58	158924	4749944333	1078.6
IV	504820825	30646299	60.58	156353	5991790439	1195.8
1992.1	566292915	30094671	60.23	154611	5739063571	1475.2
II	683964991	28592165	60.23	153419	6508476782	1342.9
III	743230766	28627281	61.37	152320	7575874402	1907.0
IV	782682758	28111445	61.37	144604	9009422072	1889.3
1993.1	978522313	28013139	62.79	146303	10036851740	2423.7
II	1130565810	28237468	62.79	148948	11949049151	2449.4
III	1278511462	28783216	73.40	150258	12281093694	3070.2
IV	1339974513	27685270	73.40	141673	15304396945	2915.2
1994.1	1694547043	27894326	73.39	146469	14257282399	3921.5
II	1860871028	26685027	73.39	143605	17664424685	5185.4
III	2250583111	27521291	75.01	140076	27092631614	7024.6
IV	2215312812	27023498	75.01	135004	33634067757	7177.3
1995.1	2823658000	27814794	74.85	141896	40862900366	9752:9
II	3390809000	28211417	74.85	144235	48517785228	10184.1
III	3568619000	28782526	72.39	145931	55133040574	12517.9
IV	4042350000	29606496	72.39	146277	63588747534	12560.3

Table B.2.6. Data used in the model for non-metallic minerals industry

	TW6	\boldsymbol{H}_{6}	M_{6}	L_{6}	S_{6}	DEF ${ }_{6}$
1988.1	26546366	30393280	63.40	152192	161963027	153.5
II	32868927	33311005	63.40	168616	178487124	174.2
III	36302833	32265927	61.49	170403	228030143	194.8
IV	37772209	32392923	61.49	163252	238835220	215.5
1989.I	52522713	30263143	61.82	150672	277543167	249.3
II	70794938	33918246	61.82	173982	311756648	298.2
III	72953622	32214128	43.18	171958	375813845	312.8
IV	74666568	31764772	43.18	161050	365777457	346.1
1990.1	108321539	29047074	48.12	147914	447444986	403.3
II	149742502	29626195	48.12	161001	505586415	440.2
III	159979702	30777395	49.17	161136	595119543	482.1
IV	160244860	29210979	49.17	148011	546366789	520.2
1991.I	208466878	25177575	52.25	129694	342347080	584.0
II	252737314	24332627	52.25	137591	708482901	674.4
III	278303630	26486168	55.02	136691	1012164692	719.3
IV	274385631	24926881	55.02	127314	1045906519	832.3
$1992 . I$	381813957	22880200	56.39	113755	1518044350	1062.4
II	465104502	24728696	56.39	126869	1437202304	1075.6
III	464788609	25175285	58.62	129206	1595996361	1179.6
IV	479193439	23276474	58.62	116612	1532529909	1170.2
1993.I	541603095	20060236	60.10	102970	1499672326	1573.4
II	716328570	23285480	60.10	119959	2342826938	1750.0
III	724216280	23813830	60.09	121912	2804028677	1826.1
IV	731207048	22446141	60.09	111792	2869238540	2082.9
1994.1	1007706961	21498192	62.21	109490	3533439121	3047.6
II	1124052018	23502470	62.21	122500	7491070672	4103.8
III	1195409905	22950674	62.15	117689	6298989861	3876.8
IV	1228329220	21633047	62.15	108903	5793068945	4040.9
1995.I	1637628000	20033323	63.49	103257	6051757922	5942:8
II	2020985000	23185882	63.49	120418	9477727389	7321.2
III	2298954000	24345930	62.41	122732	9440585801	6144.7
IV	2322909000	23690212	62.41	116582	10929299021	7002.9

Table B.2.7. Data used in the model for metals industry

	$T W_{7}$	H_{7}	M_{7}	L_{7}	S_{7}	$D E F_{7}$
1988.I	36079014	39476248	79.47	179332	523359162	199.6
II	43672160	36519788	79.47	176631	393478266	226.4
III	46693824	35497403	81.89	175640	647696759	253.2
IV	57725873	38294054	81.89	173479	737655835	280.1
1989.1	69964743	36707388	79.99	174146	927089080	394.2
II	71924537	28228676	79.99	161529	852309646	417.5
III	99231219	30350594	63.16	170501	1092939177	350.2
IV	162385073	35310152	63.16	170119	1243234550	387.4
1990.1	189343693	37838692	66.87	182164	1318738477	479.4
II	377431035	37942212	66.87	183754	2151723233	476.3
III	554166099	35520627	65.41	179411	1559731570	442.6
IV	587549639	37336648	65.41	180980	1456660871	543.5
1991.1	298598607	35357413	67.67	174384	1494353886	701.8
II	369188940	33287447	67.67	160890	2195294448	727.9
III	461694806	30499145	70.41	155894	2583834963	698.0
IV	717618142	32298430	70.41	160440	2603958656	803.8
1992.I	678927554	33009689	70.98	156197	2472747839	883.5
II	825727009	31527275	70.98	153531	2722068308	1006.6
III	883196177	29126962	72.96	145318	3539999596	980.7
IV	798635410	26866328	72.96	130918	4690877051	1383.4
1993.1	1076543287	29508169	73.77	147119	5240056669	1490.5
II	1316428041	31128654	73.77	153146	6026132277	1742.5
III	1241085392	30644178	74.19	143186	5764067512	1539.7
IV	1666809784	30195365	74.19	144473	8688417503	2169.1
1994.1	1947608886	29346113	74.80	143391	9769898157	2568.2
II	1733321813	29220184	74.80	136146	13596778094	4748.2
III	1651370312	26513659	76.03	132398	15117733964	3792.3
IV	2080042270	25943474	76.03	125596	18199350781	6091.0
1995.I	2413134000	24490001	77.61	125649	15724535982	5349:6
II	2583810000	25413644	77.61	125216	28086336754	7412.0
III	2619351000	25155015	76.57	123944	30434034241	6117.0
IV	3011759000	25361630	76.57	121871	32303243591	9307.0

Table B.2.8. Data used in the model for metals-machinery-vehicles industry

	TW8	\boldsymbol{H}_{s}	M_{s}	L_{s}	\boldsymbol{S}_{8}	DEFFs
1988.1	73150572	76820269	76.75	407657	1241323101	162.8
II	72372962	75137764	76.75	406639	929308937	184.7
III	81719794	69294226	77.52	399118	886136024	206.6
IV	115934295	74119006	77.52	385177	1213733626	228.5
1989.I	115351827	69213830	77.26	353037	1140208527	288.0
II	134884001	67149927	77.26	350815	2052786790	325.6
III	159310031	64173129	58.35	354736	2018844089	326.8
IV	223136541	70264193	58.35	360042	2866618537	361.5
1990.1	248777869	71340577	64.27	369156	3323928773	436.6
II	266800231	72329008	64.27	382754	3698312154	487.8
III	305564492	70592645	64.60	391933	3929023109	495.5
IV	367186147	76651883	64.60	387628	5211640514	527.4
1991.1	507630670	67149952	67.48	374997	4134767209	647.5
II	610739258	65647697	67.48	359662	6411977679	772.2
III	750106704	66020276	70.79	355669	6921640600	768.0
IV	891730860	69111481	70.79	350536	9240890274	822.8
1992.I	988841333	67146430	71.62	341273	9725553118	1045.0
II	1130685895	63435573	71.62	341762	11517687077	1213.1
III	1245760695	64852297	73.60	334727	12276892508	1279.5
IV	1550398904	66737116	73.60	- 340545	16934457359	1402.8
1993.I	1702715911	62216915	75.00	339157	19246136997	1807.9
II	2040153825	64563984	75.00	350634	24039060176	2119.2
III	2266172410	66844385	79.35	351446	24512164142	2080.5
IV	2686683341	68570790	79.35	348087	34633632904	2313.2
1994.1	2748834355	62953114	80.00	346681	29039387725	2995.7
II	2695237579	52299075	80.00	313508	23954369313	4060.5
III	2853274451	54176602	80.96	284801	35100574193	4502.2
IV	3666469355	55502694	80.96	282514	47013659115	4945.7
1995.I	4495563000	55804827	80.69	297124	46692267146	6590.5
II	5401840000	57303385	80.69	305375	66180055806	7580.9
III	6026947000	60505288	79.34	320685	73972395749	7644.7
IV	7389385000	64595504	79.34	324996	113620596394	8734.1

Table B.2.9. Data used in the model for other industry and aggregate data

	TW9	H_{9}	M,	L_{9}	\boldsymbol{S}_{9}	DEF9	U	I	CPI
1988.1	1331285	220	76.	8448	10944849	144.7	8.53	52.91	+
II	1293227	1763303	76.75	7731	13423460	164.2	8.53	60.28	169.0
III	1423709	1619858	77.52	7600	15516292	183.7	8.29	45.11	186.2
IV	1781571	1600413	77.52	7342	20021767	203.1	8.29	57.67	212.2
1989.1	2310118	1633735	77.26	7743	19847917	218.2	8.42	52.03	244.2
II	2543449	1661992	77.26	7954	32348980	296.1	8.42	46.11	272.9
III	3021394	1674992	58.35	8085	34910995	348.8	8.51	52.25	307.5
IV	3879781	1809816	58.35	8413	36745407	385.7	8.51	41.64	348.6
1990.1	4448857	1714155	64.27	8324	35867857	397.8	8.54	40.44	397.6
II	4826095	1674882	64.27	8560	49904375	414.2	8.54	40.47	443.6
III	5491875	1458043	64.60	7403	50124023	479.3	7.43	45.03	489.9
IV	5952469	1383537	64.60	6973	53778513	585.9	7.43	51.16	559.2
$1991 . I$	7221543	1407837	67.48	7132	47382971	621.4	7.48	59.51	645.2
II	7693640	1353454	67.48	6657	72435067	739.7	7.48	69.00	731.4
III	9387486	1486130	70.79	7053	92927990	850.8	8.41	67.60	817.4
IV	11185520	1351530	70.79	6356	79324211	930.3	8.41	71.95	957.0
1992.I	12431359	1214720	71.62	6085	94284179	1042.6	8.10	67.67	1152.9
II	11560802	1284596	71.62	6100	129051582	1162.8	8.10	71.67	1212.6
III	16019642	1240800	73.60	6280	147549661	1391.0	8.04	75.47	1370.5
IV	17251995	1252418	73.60	6040	206924073	1349.9	8.04	74.59	1588.3
1993.1	19935558	1216310	75.00	5569	140844269	1639.0	7.54	69.84	1821.7
II	21045687	1279003	75.00	6020	175802511	1776.8	7.54	66.67	2027.9
III	27407525	1291322	79.35	6032	233336215	2174.2	7.96	65.79	2305.8
IV	26790336	1128110	79.35	5246	200820665	2269.2	7.96	66.41	2717.2
$1994 . I$	30996438	1120024	80.00	5547	200274110	2797.8	8.40	88.25	3163.3
II	29952809	1054421	80.00	5069	352262864	3884.1	8.40	137.51	4377.0
III	43893471	1009127	80.96	4825	418067133	5313.7	7.86	95.15	4868.3
IV	43977448	959790	80.96	4355	402776738	5668.5	7.86	88.86	6127.0
$1995 . I$	64005000	1369872	80.69	6557	611108047	6689.5	7.19	104.26	6960.4
II	80682000	1358330	80.69	6657	595364939	8984.0	7.19	76.75	7805.9
III	90568000	1515149	79.34	7217	703356383	8374.4	6.65	76.74	9039.3
IV	124688000	1482548	79.34	7147	554201951	9744.2	6.65	102.07	10442.7

\boldsymbol{U} : Unemployment rate, \%
I : Interest rate, \%
CPI: Consumer Price Index, 1987=100

C. Regression Outputs

Table C.1. Pooled regression

	Coeff	Std Error	T-Stat
Constant	1.799	0.472	3.807
Ln(S/L) -1	0.362	0.021	17.123
I_{-1}	0.002	0.001	2.450
\boldsymbol{I}	-0.002	0.001	-1.544
$\left(W_{a}\right)_{-1}$	0.066	0.005	12.327
Ln M	-0.284	0.048	-5.884
Ln U	-0.165	0.200	-0.827
D_{M}	1.014	0.129	7.841
N	279		
D.F	271		
R^{2}	0.695		
SEE	0.219		
SSR	13.032		
F(7,271)	88.263		
D. W.	0.616		

Table C.2. Fixxed effects model

	Coeff	Std Error	T-Stat
$\boldsymbol{L n}(\mathbf{S} / \boldsymbol{L})_{-1}$	0.145	0.037	3.943
$I_{\text {II }}$	0.002	0.001	3.661
I	-0.002	0.001	-3.304
$\left(W_{a}\right)_{-1}$	0.082	0.004	21.675
LnM	-0.288	0.083	-3.470
Ln U	-0.291	0.124	-2.351
$D_{\text {M }}$	0.772	0.083	9.326
D_{1}	2.742	0.465	5.899
D_{2}	2.424	0.452	5.367
D_{3}	2.478	0.406	6.099
D_{4}	2.683	0.423	6.339
D_{5}	3.033	0.460	6.600
D_{6}	2.814	0.437	6.445
D_{7}	3.087	0.461	6.697
D_{8}	2.784	0.463	6.020
D_{9}	2.444	0.456	5.354
N	279		
D. F	263		
R^{2}	0.889		
SEE	0.135		
SSR	4.761		
$F(15,263)$	139.876		
D.W.	1.520		

Table C.3. Fixed effects model with sector - specific variable dummies

	Coeff	Std Error	T-Stat
I_{-1}	0.002	0.001	3.744
I	-0.002	0.001	-3.536
Ln U	-0.332	0.119	-2.791
$\boldsymbol{L n} \mathbf{M}$	-0.186	0.086	-2.152
$\operatorname{Ln}(\mathrm{S} / 2)_{-11}$	0.129	0.129	0.998
$\boldsymbol{L n}(\mathbf{S} / L)_{-21}$	0.303	0.216	1.401
$\boldsymbol{L n}(\mathbf{S} / \mathbf{L})_{-31}$	0.156	0.078	1.983
$\underline{L n(S / L) ~}$ - 11	0.230	0.096	2.390
$\boldsymbol{L n}(\mathbf{S} / L)_{-51}$	0.116	0.204	0.569
$\boldsymbol{L n}(\mathrm{S} / L)_{-61}$	-0.051	0.098	-0.518
$\mathbf{L n}(\mathbf{S} / 2)_{-71}$	-0.062	0.093	-0.666
$\boldsymbol{L n}(\mathbf{S} / L)_{-81}$	0.232	0.108	2.142
$\boldsymbol{L n}(\mathrm{S} / 2)$ - $_{-9}$	0.252	0.140	1.805
$\left(W_{a}\right)_{-11}$	0.093	0.010	9.737
$\left(W_{a}\right)_{-21}$	0.054	0.009	6.192
$\left(W_{a}\right)_{-31}$	0.083	0.010	8.353
($\left.W_{a}\right)_{-41}$	0.075	0.009	8.781
(Wa)-s1	0.096	0.009	10.207
($\left.W_{\text {a }}\right)_{-61}$	0.099	0.010	9.814
($\left.W_{a}\right)_{-71}$	0.127	0.011	11.345
(Wa) - $_{\text {dr }}$	0.073	0.013	5.443
($\left.W_{a}\right)_{-91}$	0.052	0.011	4.822
D_{M}	0.849	0.080	10.600
D_{1}	2.290	0.570	4.020
D_{2}	1.911	0.747	2.559
D_{3}	2.152	0.447	4.817
D_{4}	2.151	0.503	4.273
D_{5}	2.676	0.971	2.754
D_{6}	2.954	0.487	6.062
D_{7}	3.129	0.577	5.419
D_{8}	2.158	0.575	3.749
D_{9}	2.011	0.621	3.239
N	279		
D.F	247		
R^{2}	0.906		
SEE	0.127		
SSR	3.997		
$F(31,247)$	77.234		
D.W.	1.874		

Table C.4. SURE Model

	Coeff	Std Error	T-Stat
$I_{\text {In }}$	0.002	0.002	1.442
L_{21}	-0.002	0.002	-1.133
I_{-31}	0.002	0.001	1.519
L_{41}	0.002	0.002	1.158
$L_{\text {St }}$	0.003	0.001	2.272
I_{61}	0.001	0.002	0.778
$I_{\text {-71 }}$	0.001	0.001	0.689
L_{-s}	0.003	0.001	1.812
I.91	0.002	0.001	2.022
I_{1}	0.0002	0.002	0.147
I_{2}	-0.003	0.002	-1.398
I_{3}	-0.002	0.001	-1.476
I_{4}	-0.002	0.002	-1.287
I_{5}	-0.002	0.002	-1.643
I_{6}	-0.003	0.002	-1.692
I_{7}	-0.005	0.002	-2.849
I_{8}	-0.002	0.002	-1.409
I_{9}	-0.003	0.001	-2.399
LnU_{1}	-0.109	0.333	-0.327
LnU_{2}	0.010	0.348	0.030
LnU_{3}	-0.074	0.262	-0.284
LnU_{4}	-0.131	0.328	-0.400
LnU_{5}	-0.523	0.290	-1.806
LnU_{6}	-0.801	0.356	-2.250
LnU_{7}	-0.111	0.327	-0.340
LnU_{8}	-0.327	0.296	-1.105
LnU_{9}	-0.644	0.218	-2.949
$\mathrm{Ln} \mathrm{M}_{1}$	-0.231	0.227	-1.021
$\underline{L n M} \mathrm{M}_{2}$	0.258	0.247	1.046
$\operatorname{Ln~}_{\text {M }}$	-0.194	0.130	-1.494
$\mathrm{Ln} \mathrm{M}_{4}$	0.110	0.119	0.922
Ln Ms	-0.212	0.217	-0.977
$\underline{L n} \mathrm{M}_{6}$	0.233	0.230	1.014
LnM_{7}	-0.936	0.301	-3.112
$L_{\text {L }} \mathrm{M}_{s}$	0.151	0.217	0.693
Ln M9	-0.165	0.196	-0.839
$\underline{L n(S / L)})_{11}$	0.159	0.080	1.999
$\underline{L n}(\mathrm{~S} / 2)$ - 21	-0.265	0.123	-2.147
$\underline{L n}(\mathrm{~S} / 2)_{-31}$	0.081	0.035	2.342
$\operatorname{Ln}(\mathrm{S} / 2)-41$	0.152	0.046	3.347
$L n(S / L)$-st	-0.101	0.115	-0.879
$L n(\mathbb{S} / L)_{-61}$	-0.127	0.099	-1.127
$L n(S / L)_{-71}$	0.111	0.072	1.534
$L 3 n(S / L)-81$	0.175	0.045	3.942
$\underline{L n}(\mathbf{S} / L)_{-91}$	0.173	0.079	2.177
($\left.W_{a}\right)_{-11}$	0.083	0.009	9.079
(Wa) 21	0.067	0.009	7.583
$\left(W_{a}\right)_{-31}$	0.086	0.008	10.989
($\left.W_{a}\right)_{-41}$	0.067	0.009	7.604
($\left.W_{a}\right)_{-s 1}$	0.093	0.010	9.576
$\left(W_{a}\right)_{-61}$	0.101	0.010	9.662
$\left(W_{a}\right)_{-71}$	0.122	0.010	11.931
$\left(W_{a}\right)_{-81}$	0.071	0.008	8.405
(Wa) di $^{\text {d }}$	0.055	0.007	7.604
D_{1}	1.885	1.303	1.447
D_{2}	1.188	1.282	0.926
D_{3}	1.810	0.685	2.641
D_{4}	1.012	0.829	1.221
D_{5}	4.131	1.101	3.752
D_{6}	2.575	1.194	2.158
D_{7}	5.487	1.534	3.578
D_{s}	0.930	1.168	0.796
D_{9}	2.863	0.975	2.938
D_{M}	0.701	0.062	11.328
N	279		
D.F	215		
R_{i}^{2}	0.845 ; $0.681 ; 0.889$	0.753 ; $0.855 ; 0.797$	0.920; 0.855; 0.846
SEE ${ }_{i}$	0.137 ; $0.146 ; 0.110$	0.141 ; 0.127 ; 0.153	0.132; $0.124 ; 0.093$
SSR ${ }_{i}$	$0.451 ; 0.508 ; 0.290$	0.477 ; 0.387 ; 0.565	$0.398 ; 0.369$; 0.205
D. $\boldsymbol{W}_{\text {I }}$	$1.801 ; 1.321 ; 2.092$	$1.446 ; 1.909 ; 1.982$	$2.346 ; 1.339 ; 2.156$

REFERENCES

Akerlof, G. (1984), " Gift Exchange and Efficiency Wage Theory: Four Views, " American Economic Review 74, 79-83.

Blanchard, O.J. and L.H. Summers, (1986), Hysteresis and the European Unemployment Problem, Cambridge, Mass.: MIT Press.

Blanchard, O.J. and L.H. Summers, (1987), " Hysteresis in Unemployment, " European Economic Review 31, 288-95.

Blanchflower, D.G., A.J. Oswald and M.D. Garrett, (1990) " Insider Power in Wage Determination, " Economica 57, 143-70.

Blanchflower, D.G., A.J. Oswald and P. Sanfey, (1996) " Wages, Profits, and RentSharing, " The Quarterly Journal of Economics, 227-251.

Christofides, L.N. and A.J. Oswald, (1992), " Real Wage Determination and RentSharing In Collective Bargaining Agreements," The Quarterly Journal of Economics, 985-1002.

Doiron, D.J. (1995), " A Test of the Insider-Outsider Hypothesis in Union Preferences, " Economica 62, 281-90.

Forslund, A. (1994), " Wage Setting at the Firm Level- Insider versus Outsider Forces," Oxford Economic Papers 46, 245-61.

Gottfries, N. and H. Horn, (1988), " Wage Formation and The Persistence of Unemployment, " Economic Journal 97, 877-84.

Gregory, M., P. Lobban and A. Thomson, (1985), " Pay Settlements in Manufacturing Industry, 1979-84, " Oxford Bulletin of Economic and Statistics 49, 129-50.

Holmlund, B. and J. Zetterberg, (1991), " Insider Effects in Wage Determination, " European Economic Review35, 1009-34.

Krueger, A.B. and L.H. Summers, (1987), Unemployment and the Structure of Labor Markets, Oxford: Basil Blackwell.

Krueger, A.B. and L.H. Summers, (1988), "Efficiency Wages and The Inter-Industry Wage Structure, " Econometrica 56, 259-93.

Lester R.A. (1952), " A Range Theory of Wage Differentials, " Industrial and Labor Relations Review 5, 483-500.

Lindbeck, A. and D.J. Snower, (1986), " Wage Setting, Unemployment, and InsiderOutsider Relations, " American Economic Review 76, 235-39.

Lindbeck, A. and D.J. Snower, (1987), " Efficiency Wages versus Insiders and Outsiders," European Economic Review 31, 407-16.

Mackay, D.I. (1971), Labor Markets Under Different Employment Conditions, London: George Allen and Unwin.

Martinello, F. (1989), "Wage and Employment Determination in a Unionized Industry: The IWA and The British Columbia Wood Products Industry, "Journal of Labor Economics 7, 303-30.

Nickell, S. and, S. Wadhwani, (1990), " Insider Forces and Wage Determination, " The Economic Journal 100, 496-509.

Nickell, S. and, P. Kong, (1992), An Investigation into the Power of Insider in Wage Determination, Mimeo (Institute of Economics and Statistics, Oxford University, Oxford).

Nickell, S. and, P. Kong, (1992), " An Investigation into the Power of Insider in Wage Determination, " European Economic Review 36, 1573-99.

Nickell, S., J. Vainiomaki and S. Wadhwani, (1994), " Wages and Product Market Power," Economica 61, 457-73.

Oswald, A.J. (1985), " The Economic Theory of Trade Unions: An Introductory Survey," Scandinavian Journal of Economics 87, 160-93.

Scaramozzino, P. (1991), " Bargaining With Outside Options: Wages and Employment in UK Manufacturing 1974-82," The Economic Journal 101, 331-42.

Shapiro, C. and J.E. Stiglitz, (1984), " Equilibrium Unemployment as a Discipline Device," American Economic Review 74, 433-44.

Slichter, S.H. (1950), " Notes on the Structure of Wages, " Review of Economics and Statistics 32, 80-91.

Wadhwani, S.B. (1987), "The Effects of Inflation and Real Wages on Employment, " Economica, February.

[^0]: ${ }^{1}$ See the related data in the Appendix.

[^1]: ${ }^{2}$ See presentations of the theory in Shapiro and Stiglitz (1984), Solow (1985), Lindbeck and Snower (1988).

[^2]: ${ }^{3}$ Krueger and Summers (1987) favor the 'rent-sharing' view for non-union US labor markets. Their reasons include the following. First, they argue that high wages are paid in industries that are concentrated, have high profits, and have relatively small labor shares. Second, high - wage industries appear to reward all types of workers about equally, despite great differences in their personal and job characteristics. Third, and as an example, the US deregulation of airlines provided a natural experiment of relevance to the rent-sharing explanation.

[^3]: ${ }^{4}$ In his paper, Forslund points out that facilitating an assessment of the link between firm performance and wage setting, the theoretical framework of Nickell and Wadhwani (1990) is also well suited to testing an implication of recent ' insider-outsider ' theories of unemployment.

[^4]: ${ }^{5}$ See Martinello (1989) for his exposition of the monopoly union model.

[^5]: ${ }^{6}$ See Akerlof (1984) for his efficieny wage view on this point.

[^6]: ${ }^{7}$ Nickell and Kong (1988) support this view in their investigation into the power of insiders in wage determination.
 ${ }^{8}$ Blanchard and Summers (1986), and Lindbeck and Snower (1986) conform this view.

[^7]: ${ }^{9}$ Because of bankruptcy costs, firms may be constrained in the amount which they can borrow. If we incorporate this factor into our model, we find that wages are lower, the greater the risk of bankruptcy.Since bankruptcy risk is declining in the level of the firm's liquidity, this suggest that a liquidity variable should be added to our set of insider variables (See Wadhwani (1987)).
 ${ }^{10}$ We also estimated the model by using the total industrial wage per employee (manufacturing, mining and electricity-gas-water) as the alternative wage variable. However, in this case become insignificant.

[^8]: ${ }^{13}$ i. We use the F statistic in order to test the hypothesis that the sector effects are the same. Sums of squared residuals of the two regressions are 13.032 and 4.761 , respectively. We have 9 sector dummies and 31 observations for each sector. The $\mathrm{F}_{\text {calculated }}$ statistic is 57.11 and this value exceeds $\mathrm{F}_{\text {table }}=1.94$ at 5% significance level and 2.51at 1% significance level. Therefore, while determining sectoral wages, the fixed effect model is more appropriate.
 ii. We also test the random effect to see sector-specific constant terms as randomly distributed across sectors. We apply the LM test devised by Breusch and Pagan (1980) for the random effects model based on the OLS residuals. Then we carry out the specification test devised by Hausman (1978) for the random effect versus the fixed effect model. The chi - squared statistic is $\mathbf{7 4 4 . 4 9 0}$ with 7 degrees of freedom and probability of zero.So, the results favor the fixed effect model which is reported in the Appendix.

[^9]: * Notable movements in real wages coming from the public sector

