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ABSTRACT 

The Role of Attention on Scene Recognition 

 

It has been shown that little if any attention is required for scene recognition (Li, 

VanRullen, & Koch, 2002). The absence of the role of attention in scene recognition, 

however, has been challenged by Cohen, Alvarez, and Nakayama (2011) showing 

that basic-level scene categorization and object identification performance degrade 

while simultaneously performing an attention-demanding task. Here, we use the 

same dual-task paradigm but in conjunction with a more reliable psychophysical 

method (Greene & Oliva, 2009a) to measure and compare scene recognition 

performance in different conditions of a broad range of scene recognition tasks, 

including detection, recognition of spatial structure and scene function, 

superordinate- and basic-level categorizations. Analysis of minimum duration at 

which the percentage of correct answers reached 75% showed a threshold increase in 

scene recognition performance from single- to dual-task conditions, suggesting a 

respective degradation in scene recognition performance. The performance of the 

secondary multiple-object tracking task also got worse in dual-task condition, 

implying that scene recognition and multiple-object tracking tasks may share an 

attentional capacity resource. A computational model was used to test whether a 

feedforward model lacking attentional modulation can account for our findings and 

the results showed that human scene recognition performance fits to the predictions 

of the model only in the dual-task conditions, where the attentional mechanisms are 

already occupied to facilitate scene recognition. For scene images categorized as 

“hard to be recognized”	by the model in the single task blocks, however, the 
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behavioral performance did not change, providing evidence for a potential attentional 

facilitation.  
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ÖZET 

Sahne Tanımada Dikkatin Rolü 

 

Li, VanRullen, ve Koch'un 2002 yılında yaptıkları	çalışma sahne tanımada dikkatin 

rolünün çok az, belki de hiç	olmadığını	göstermiştir. Sahne tanımada dikkatin 

rolünün olmadığını	ileri süren bu görüşle çelişir şekilde Cohen, Alvarez, ve 

Nakayama (2011), basit-anlam seviyesinde sahne sınıflandırması	ve nesne tanıma 

performansının aynı	anda dikkat gerektiren başka bir görev ile birlikte 

gerçekleştirildiğinde düştüğünü	göstermiştir. Biz bu tezde, Cohen ve grubunun 

kullanmış	olduğu ikili-görev paradigmasını	daha güvenilir (Greene & Oliva, 2009a) 

bir psikofizik yöntemi ile bir arada kullanarak sahne tanıma performansını	farklı	

dikkat yükü	durumlarında ve sahne tespit etme, sahnenin uzamsal yapısı	ve işlevini 

tanıma, ve yüksek- ve basit-anlam seviyelerinde sınıflandırma gibi geniş	bir 

aralıktaki sahne tanıma görevleri bağlamında	ölçüp karşılaştırdık. Sonuçlar, anlamlı	

sahne uyaranlarını	tanımada doğru yanıtların %75'e ulaştığı	en düşük gösterim 

süresinin tekli-görev durumdan ikili-görev duruma geçişte arttığını	ve buna bağlı	

olarak sahne tanıma performansının düştüğünü	gösterdi. Benzer bir düşüşün ikincil 

görev olarak sunulan	çoklu-nesne takibi performansında da gözlemlenmesi, sahne 

tanıma ve çoklu-nesne takibi görevlerinin aynı dikkat kaynağını	paylaşabiliyor 

olabileceğine işaret etti. Çalışmamızın son aşamasında, literatürde var olan bir 

bilişimsel model kullanarak, dikkat modülasyonu içermeyen ileri beslemeli bir 

modelin davranışsal sonuçları	ne kadar açıklayabileceğini test ettik. Sonuçlar, 

davranışsal sahne tanıma performansının ileri beslemeli modelin tahminlerine sadece 

ikili-görev durumlarında, dikkat mekanizmaları	halihazırda meşgulken uyduğunu, 

tekli-ödev durumlarındaysa modelin “zor”	addettiği sahneler için davranışsal 
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performansta düşüşün olmadığını	ve büyük ihtimalle dikkat mekanizmalarının 

devreye girmiş	olabileceğini gösterdi. 
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CHAPTER 1 

INTRODUCTION 

 

We have a rich visual experience of the world around us. While the information our 

visual system extracts from the outer world consists of contours, edges, luminance- 

and special-contrasts, our phenomenal experience is shaped by the semantic context 

of the complex combinations of those basic visual features. To describe our 

surroundings, for example, we might name nearby objects such as a computer, a desk 

or a coffee cup. Another way of describing such scene, however, could be to name 

the whole scenery as a “study room”, which would implicitly tell us more than 

having a list of relevant objects there. In the visual recognition literature, the term 

scene recognition corresponds to the latter approach. A scene is defined as a view of 

some part of the world containing objects, surfaces and background elements in such 

a meaningful arrangement that it creates together a namable entity (Henderson & 

Hollingworth, 1999; Oliva, 2013). A proposed simple heuristic to distinguish a scene 

from an object is that while we take action on an object, we act within a scene 

(Epstein, 2005). Scene recognition, in its most general definition, is the identification 

of a semantic category, also called a gist, of a scene (Malcolm, Groen, & Baker, 

2016).  

The names we use in daily language to describe scenes have been defined as 

basic-level categorization (Rosch, 1973; Rosch & Mervis, 1975). At basic-level, 

there is a high amount of similarity amongst the members of a category. 

Discriminability from other categories, however, is also at its highest, which together 

might explain why basic-level categories, such as a forest or a store, are the most 

commonly used categorical descriptions (Rosch, Mervis, Gray, & Johnson, 1976). 
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Common attributes of some basic-level categories constitute another higher-level, 

more abstract categorical description that is called superordinate-level categorization. 

A forest and a beach, for example, can be categorized together as natural scenes, 

whereas a store and a playground may be the members of the opposite superordinate-

level category, namely as man-made or urban scenes. Among the members of a 

basic-level category, such as a store, we might also make further specifications like a 

rainforest or grocery store, with even more similarity in the specified sub-category. 

Such finer distinctions are called as subordinate-level categorizations. It has been 

claimed that categorization starts with a distinction at basic-level, an abstraction 

process over which results in a later superordinate-level categorization (Rosch et al., 

1976). Recent studies, however, found that superordinate-level natural/man-made 

distinction can be made even before basic-level categorization, suggesting that there 

is a precedence of superordinate- over basic-level categorization (Loschky & Larson, 

2010; Kadar & Ben-Shahar, 2012). The formation of categorizations at different 

levels was also studied by a free-recall study in which participants were presented 

with scene images for randomly changing brief presentation durations. The results of 

this study, where participants were asked to describe freely what they had just seen 

showed that these hierarchical scene categories manifest themselves also in 

behavioral reports (Fei-Fei, Iyer, Koch, & Perona, 2007). Greene et al. have 

proposed another level of scenes description in which spatial structures, such as 

openness, or functions, such as navigability, of scenes might be mid-level global 

properties mediating scene recognition (Greene & Oliva, 2009b; Greene, Baldassano, 

Esteva, Beck, & Fei-Fei, 2016). Detection of the presence of a scene has also been 

suggested to be a distinct step in the recognition process (Mack & Palmeri, 2010), 

although, it has been reported that categorization is accomplished at the same 
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moment as detection (Grill-Spector & Kanwisher, 2005). These studies together 

suggest the following five general scene recognition tasks at different levels: basic- 

and superordinate-level categorization, scene spatial structure and function 

recognition, and detection of the presence of a scene.  

Considering the large number of components in a scene that define its 

category, such as objects, surfaces, and three-dimensional structures, scene 

recognition may be seen as a very complex and time-demanding task. The seminal 

study of Potter and Levy (1969), however, showed that people are able to recognize 

scenes by viewing them for only 125 ms, suggesting that scene understanding can be 

completed in a single glance. Thorpe, Fize, and Marlot (1996) have further 

investigated the processing speed of recognition using a go/no-go task in an ERP 

paradigm setup. In their study, photographs of natural scenes were serially presented 

for 20 ms without a following masking and participants were required to give a 

response when the target category (animal) was present (go response). Remarkably, 

mean accuracy was 94%, demonstrating that the minimum presentation duration 

required for recognition was even shorter than 125 ms if not followed by a mask. The 

analysis of ERP data also showed that the earliest significant difference between the 

potentials generated on the go and no-go tasks was around 150 ms, which further 

supports that the categorical discrimination had already been made by that time. In 

visual recognition studies, one paradigm to prevent the processing of a stimulus 

further in the system is visual backward masking, where researchers introduce a 

structurally similar masking image following the target onset. This allows 

researchers to control for the presentation duration of a stimulus more accurately 

(Breitmeyer & Ögmen, 2000). Bacon-Macé, Macé, Fabre-Thorpe, and Thorpe 

(2005), for example, have studied scene recognition performance in a go/no-go task 
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using a backward masking method, where the presentation duration was fixed at 6 

ms and the manipulation was made on the stimulus onset asynchrony (SOA) of 

masking images. The results showed that participants were able to recognize scenes 

at around 40 ms SOA with an accuracy over 75%, suggesting that such a brief 

interval was sufficient for scene recognition. Instead of measuring the scene 

recognition performance on different scene recognition tasks with a fixed 

presentation duration, Greene and Oliva (2009a) introduced a different experimental 

regime where they measured the minimum presentation durations required to reach a 

75% accuracy rate using a psychophysical methodology. In their study, participants 

were presented with a scene image for varying levels of presentation durations and 

the scene image was immediately followed by four masking images. The percentage 

of correct answers for each presentation duration were then fit into a function 

(Weibull function), previously reported to fit well on psychometric data (Klein, 

2001), in order to determine the minimum presentation duration thresholds as the 

point that corresponded to 75% accuracy. Using this paradigm, Greene and Oliva 

(2009a) found mean threshold value to be 34 ms for global scene properties and 50 

ms for basic-level categorization. The results were comparable to the 40 ms SOA 

condition of Bacon-Macé et al. (2005), not unexpectedly, considering that in both 

studies, participants were left with approximately the same duration for processing 

images.  

Such a rapid recognition of scenes presents a rather different picture than the 

theories of visual recognition which suggests that the visual system reaches at a more 

complex and abstract representation through a hierarchy consisting of following the 

steps, respectively: extraction of the basic image features, composition of those 

features into object representations, understanding relations among these object 
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representations, and a holistic representation of a scene (Biederman, 1972, 1987, 

1976). As an alternative to this hierarchical explanation of scene recognition, it has 

been proposed that it might rather be the global features of images which facilitate 

scene recognition (Oliva & Schyns, 1997; Oliva & Torralba, 2001; Torralba & Oliva, 

2003). Images can be represented, as any other two-dimensional signal, as the sum of 

sinusoidal signals following Fourier’s theorem. The low-spatial frequency signals 

represent components of an image that change on a larger spatial scale such as large 

objects or the spatial structure of a scene, whereas high-spatial frequency signals 

represent finer details in an image. Single-cell recording studies have shown that 

neurons in the visual system have different spatial frequency preferences (Webster & 

De Valois, 1985). Following this physiological evidence, Oliva and Schyns (1997) 

tested at what extent low- and high-spatial frequency information are used during 

scene recognition. The authors used hybrid stimuli, which consisted of images with 

different category information or noise at different spatial frequency bands. 

Participants were able to recognize scenes using the information at all frequency 

bands, suggesting that the visual system may use information at different spatial 

frequencies in parallel using specialized spatial channels. Recognition of scene 

categories without object recognition has also been supported by a computational 

model that used global spatial features of a scene such as naturalness, openness and 

depth to understand a scene category (Oliva & Torralba, 2001). Global spatial 

features were estimated from the dominant orientations and the rate of change at each 

orientation, the parameters calculated, respectively, from the energy spectra, which is 

the global distribution of the amplitudes of the sinusoidal signals, and the energy 

spectrograms, which are the localized energy distributions, of the scene images. It 

has been shown that such low-dimensional, global image features could accurately 
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discriminate scene categories, might be computed in a rapid, feedforward manner 

and may facilitate object recognition by providing context (Torralba & Oliva, 2003). 

Supportingly, neuroscientific studies have revealed scene-selective regions in 

the brain that process scenes from global features rather than following an object-

based approach. The first observation was on “parahippocampal place area” (PPA), 

which had a greater response to scenes than single objects and faces (Epstein & 

Kanwisher, 1998). Another area with scene-selective response has been 

demonstrated to be “retrosplenial complex” (RSC), which showed a stronger 

response to familiar scenes and thus, was considered to play a role in navigation 

(Epstein, Higgins, Jablonski, & Feiler, 2007). Similarly, impairing activity on 

“occipital place area” (OPA) using a transcranial magnetic stimulation (TMS) 

resulted in a decreased performance on recognition of scenes but not of faces or 

objects, suggesting a critical role of OPA in scene recognition (Dilks, Julian, Paunov, 

& Kanwisher, 2013). A multivoxel pattern analysis (MVPA) showed that activity in 

PPA and RSC might in fact predict scene categories and account for human 

performance at the behavioral level (Walther, Caddigan, Fei-Fei, & Beck, 2009). In 

the same study, activity in V1 and lateral occipital complex (LOC), a region which 

was reported to have object selectivity, also showed significant predictive power, 

suggesting that to some extent, basic image features might be sufficient to 

discriminate scene categories (Oliva & Torralba, 2001) and that there might also be a 

complementary role of object information in scene recognition (Quattoni & Torralba, 

2009).  

Computational studies suggest that such a rapid recognition of scenes without 

object information could be accomplished by using global image features (Oliva & 

Torralba, 2001, 2002; Torralba & Oliva, 2003) and texture analysis (Renninger & 
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Malik, 2004) in a feedforward manner. It has been shown that bio-inspired 

feedforward models of object recognition could in fact account for human 

performance in rapid recognition tasks (Serre, Oliva, & Poggio, 2007; Serre, 

Kreiman, Kouh, & Cadieu, 2007). Recent goal-driven computational models, which 

have a feedforward architecture similar to that of previous models, have reached 

near-human performance in object recognition (LeCun, Bengio, & Hinton, 2015; 

Guo et al., 2015) and have been shown to have similar representations to those at 

human ventral stream (Guclu & van Gerven, 2015; Yamins, Hong, Cadieu, & 

DiCarlo, 2013; Cadieu et al., 2014), which together suggest that a feedforward 

architecture could account for rapid visual recognition. In addition, it has also been 

shown that human performance patterns can be accounted by scene-based models 

with similar features and architecture (Xiao, Ehinger, Hays, Torralba, & Oliva, 2014; 

Xiao et al., 2013; Zhou, Lapedriza, Xiao, Torralba, & Oliva, 2014).  

The very rapid nature of scene recognition, together with relevant 

computational studies provide consistent evidence for a parallel, feedforward and 

low attention demanding account of scene recognition (Fabre-Thorpe, 2011). Lack of 

attentional effects in behavioral experiments further supports this account of scene 

recognition (Rousselet, Fabre-Thorpe, & Thorpe, 2002; Li et al., 2002; Greene & 

Fei-Fei, 2014). Rousselet et al. (2002), for example, tested whether recognition could 

be performed in parallel in a similar manner to low-level image features. In a go/no-

go task, the authors presented participants with either a peripheral single image or 

two images corresponding to different visual fields and asked them to respond when 

a target category is present (go task). While there was a performance decrease in two 

image condition, mean reaction times and d′ scores over reaction times were found to 

be very similar. Analysis of ERP data did not reveal a difference in the activation 
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patterns in single and two image conditions, either, implying that a high-level 

process such as scene recognition could be performed in a parallel, feedforward 

manner, at least across different brain hemispheres. Presenting two scenes, but on 

different visual fields, however, may not be the right approach to test the attentional 

limits on scene recognition as attentional resources might be distributed in a 

hemisphere-specific manner.  

Li et al. (2002) has suggested that scene recognition is robust to dual-task 

interference. In their paradigm, participants were asked to perform a centrally 

presented digit discrimination task while trying to recognize scenes presented in the 

periphery. They found that performances on scene recognition task were similar in 

both single- and dual-task conditions, suggesting that scene recognition may not 

require attentional resources. In this study, Li et al. (2002) controlled that the central 

task demanded enough attention by testing low-level letter and color discriminations 

in the periphery, the results of which showed a decrease in the peripheral task 

performances from single- to dual-task conditions. Their design, however, did still 

not allow to reach a reliable conclusion that scene recognition requires no attention 

as one might argue that whereas central digit discrimination task allocates a 

significant amount of attention from the common resources shared with other 

discrimination tasks, it may not be using similar resources with scene recognition, a 

task completely different in nature.  

Greene and Fei-Fei (2014) provided further evidence that would support a 

rather low-attention-demanding account of scene recognition in a study where they 

tested the automaticity of scene recognition using a Stroop-like paradigm. Here, 

participants were asked to categorize the words presented at the center of the screen 

as object names or scene names at basic-level categories. Images of isolated objects 
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and scenes were presented on a background and the participants were instructed to 

focus their attention only on the word categorization task. Greene and Fei-Fei (2014) 

found a significant difference between the performances in word categorization task 

in congruent (scene image and name of the scene) and incongruent trials (scene 

image and name of another scene), implying that scene recognition was 

automatically performed at the expense of a performance decrease on the main task. 

This interference effect, however, was not observed when participants were asked to 

perform the same task in a trial where central words were rather at superordinate-

level categorization (adjective or noun), presented on a background with incongruent 

scene images. The authors interpreted these results such that scene recognition 

require minimal effort and is obligatory at the basic- but not at the superordinate-

level. The uncontrolled presentation durations of the images in the study, however, 

makes it hard to reach a certain conclusion. The mean reaction times were around 

750 ms and images were shown until a response was obtained from the participants. 

Compared to the previous studies in which presentation durations were on a range 

from 6 to 50 ms, long presentation durations around 750 ms might have allowed 

participants to accomplish the background scene recognition task by dedicating 

relatively low attentional resources — be consciously or out of awareness.  

Despite the aforementioned accumulated evidence that support a feedforward, 

low-attention demanding account of scene recognition, there are also some studies 

reporting that in some conditions scene recognition performance could be 

significantly impaired (Rousselet, Thorpe, & Fabre-Thorpe, 2004b; Evans & 

Treisman, 2005; Cohen et al., 2011). Using a go/no-go method, Rousselet et al. 

(2004b), for example, studied the limits of parallel processing in scene recognition 

by asking participants to report the existence of a target scene (containing an animal) 
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among an array of 1, 2 and 4 scene images presented at a fixed 26 ms presentation 

duration. Behavioral data of this study showed a decrease in performance with an 

increasing array size. The authors, however, have proposed this decrease could still 

be accounted by a feedforward, parallel model of scene processing. In signal 

detection theory, responses are classified according to the true value of the stimuli. If 

a go response (an animal is present) is given when a target stimulus is actually 

present, it is called a hit. In contrast, false alarms are the go responses when a target 

image is absent. Here, by taking into account the different response patterns to 

targets (proportion of hits) and distractors (proportion of false alarms), together with 

the increased number of distractors in 2 and 4 array size conditions, the authors 

adjusted the accuracies of the multiple image conditions to that of the single image 

condition and observed no difference in the adjusted accuracy rates. The ERP 

analysis on occipital regions showed a reduced differential activity for the condition 

where the array was composed of 4 images compared to those with only 1 and 2 

images conditions. Interestingly, the location of the activation has also followed the 

positions of the images, indicating a parallel, retinotopic processing of scenes, rather 

than a limited recognition process. Taken together, the authors concluded that the 

performance decrease in conditions with multiple images might be the result of a late 

response selection mechanism rather than an early-stage attentional limit as was 

suggested by the parallel, feedforward account of scene recognition.  

A different account of the possible source of attentional limit has been given 

by Evans and Treisman (2005). In a series of attentional blink experiments, the 

authors have shown that the recognition performance of a scene is decreased in 

conditions where another scene is to be recognized shortly before the target, with 

only a brief interstimulus interval in between (varying between 220 to 880 ms), 
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suggesting that the recognition performance of the second scene might have declined 

because of a temporal recovery limit, where it takes time for the system to direct the 

attentional resources already allocated to the first image onto the subsequent one. 

The authors claimed that the source of the attentional limit in this task was at a stage 

where low-level features extracted in a parallel manner were bound together to build 

higher-level representations. This interpretation, in contrast to the feedforward model 

proposed by Rousselet et al. (2004b), assigns a role to the attention in the recognition 

process.  

On the basis of a theoretical assumption that awareness should require 

attention, Cohen et al. (2011) hypothesized that scene recognition performance in the 

previous studies not because scene recognition does not require attention but because 

the secondary tasks used in the literature may not have been attentionally challenging 

enough to reduce resources allocated to the scene recognition tasks significantly. In 

inattentional blindness paradigm of Cohen et al. (2011), participants were presented 

with a background scene image, of which no prior notice has been given. On top of 

those background images were moving objects which were to be tracked as part of a 

well-known multiple-object tracking (MOT) task, or alternatively, was a sequence of 

rapidly flashed numbers and letters as part of a rapid serial visual presentation 

(RSVP) task, both of which are known to be highly attention demanding tasks. In 

MOT task, participants were asked to track the position of four target discs among 

four identical distractor discs, whereas in RSVP task, the participants counted the 

number of digits in a stream of letters and digits. Results demonstrated that most of 

the participants did not detect the scene image on the background, a finding 

controversial to what a low attention demanding model of scene recognition would 

predict. In another experiment, to test the hypothesis that scene recognition 
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performance might be degraded with a sufficiently challenging dual-task paradigm, 

Cohen et al. (2011) used two MOT conditions manipulating disc speeds as slower 

and faster, a manipulation which has been reported that makes MOT task more 

difficult, hence require more attentional resources (Alvarez & Franconeri, 2007). As 

predicted by their hypothesis, Cohen et al. (2011) showed a decrease in the scene 

recognition performance only in the more attention demanding condition (faster 

discs) compared to the baseline conditions. In this study, they also showed that the 

accuracy of MOT task was significantly degraded in the difficult condition but not in 

the easy condition, providing evidence that scene recognition and MOT tasks might 

in fact share a common attentional resource. To control that the performance 

difference was due to a higher attentional resource rather than a lower-level motion 

component of the MOT task, a similar dual-task experiment was run using an RSVP 

paradigm, the results of which provided further evidence that both the scene 

recognition and RSVP performances were degraded in dual- compared to single-task 

conditions.  

In the present study, we use a reliable psychophysical methodology to 

measure and compare scene recognition performance in different conditions and test 

the role of attention, for the first time in the literature, on a broad range of scene 

recognition tasks (basic- and superordinate-level categorization, scene spatial 

structure and function recognition, detection of the presence of a scene). Using a 

state-of-the-art computational model, we also test whether feedforward models, that 

lack any attentional modulation, can account for our behavioral data. 
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CHAPTER 2  

EXPERIMENT 1: THE EFFECT OF DUAL-TASK 

ON SCENE RECOGNITION TASKS 

	

In Experiment 1, using a large range of scene recognition tasks, including detection, 

recognition of spatial structure and scene function, superordinate- and basic-level 

categorizations, we aim to test whether attention affects the minimum duration at 

which a scene can be recognized. One way of testing the attentional demand of a task 

is to use a dual-task paradigm (Braun & Julesz, 1998; Pashler, 1994), where attention 

is modeled as the allocation of a limited resource for a given task. In dual-task 

paradigms, it is hypothesized that if a target task requires attention, then the resulting 

performance should get degraded as the capacity of the limited resource is shared 

with a competing secondary task. Studies using dual-task paradigm reported that 

while processing of some low-level visual features such as orientation and color is 

completed in a parallel manner without a significant attentional cost, processing of 

higher-level, feature-bound combinations that, at the end, produce an object or a 

scene shows performance degradation in dual-task conditions (McElree & Carrasco, 

1999; Treisman, 1998). In the context of these results, one might expect to see an 

attentional cost of a high-level task, where participants are asked to recognize 

complex natural scene images. Surprisingly, though, it has been documented that the 

gist of scenes can be obtained at even brief presentation durations (Thorpe et al., 

1996). This led some researchers to conceptualize scene recognition as a rather 

feedforward and low attention demanding task (Fabre-Thorpe, 2011). This view was 

also empirically supported by studies showing the robustness of scene recognition 

performance in parallel processing (Rousselet et al., 2002) and dual-task conditions 
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(Li et al., 2002). In one of these studies, where participants were asked to do a main 

task while passively viewing the secondary scene recognition task on the 

background, Greene and Fei-Fei (2014) have demonstrated a drop in the accuracy 

with which participants completed the main task, implying that scene recognition not 

only does not demand an intentional effort, it is in fact an automatic operation 

processed spontaneously.  

Conceptualization of scene recognition as a low attention demanding, 

automatic task, however was challenged by a number of studies using attention 

demanding parallel performance conditions (Rousselet, Thorpe, & Fabre-Thorpe, 

2004a), attention blink in rapid serial visual presentation (RSVP) (Evans & 

Treisman, 2005) and high attention demanding dual-task conditions (Cohen et al., 

2011). In the study of Rousselet et al. (2004a), for example, increase in the number 

of concurrently presented distractor scenes led to a decrease in the recognition 

performance of a target category (i.e. animal) in the array. Seemingly controversial to 

the automatic processing account of scene recognition, the authors suggested that the 

decrease in performance could result from a late selection mechanism, where visual 

features and semantic information might still be automatically processed in parallel 

at an early categorization level but that the selection of a target in a particular 

category might be subject to a later-stage, spatially-selective attentional limit. A 

similar performance degradation, but this time in temporal domain was observed by 

Evans and Treisman (2005) using an attentional blink paradigm in RSVP. In their 

interpretation, however, the source of this attentional limitation was at a stage where 

low-level features are bound together even before a categorization is made, an 

account which assigns attention a critical role on scene recognition. Such 

interpretation argues against the low attention-demanding parallel accounts of scene 
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recognition. Cohen et al. (2011) suggested that the reason scene recognition might 

appear to be robust to the dual-task interference might be because employed tasks in 

the literature do not require a sufficient amount of attentional capacity sharing. To 

test this hypothesis, they used a multiple-object tracking (MOT) paradigm with 

varying degrees of difficulty by changing the speed at which the objects moved 

(Alvarez & Franconeri, 2007). While the scene recognition performance did not 

differ between the slow-motion-speed MOT condition and the single-task baseline, 

the performances in both scene recognition and MOT tasks had decreased in the fast-

motion-speed MOT condition, suggesting that scene recognition and MOT tasks may 

in fact share a common attentional resource.  

There is no comprehensive study in the literature, which looked at the effect 

of attention on scene recognition using the same paradigm at all conceptual levels 

including detection, recognition of spatial envelope and scene function, 

superordinate- and basic-level categorizations. Inconsistent usage and comparisons 

of these various tasks in scene recognition literature made it harder to reach a reliable 

conclusion from previous studies. As it has been suggested that there might be a 

hierarchical processing between different conceptual levels of scene recognition, 

mainly superordinate- (the most abstract, e.g. natural vs. artificial) and basic-level 

(the most common usage, e.g. mountain vs. beach) categorizations (see, Fabre-

Thorpe, 2011). Thus, here, we tested a range of tasks while studying the effect of 

attention on scene recognition using a single reliable method. In one variation of the 

hierarchical processing hypotheses of scene recognition, it is claimed that coarse 

visual information is processed in a fast, parallel route facilitating superordinate-level 

categorization, which is then followed by a more resource demanding stage that 

results in basic-level categorization (Macé, Joubert, Nespoulous, & Fabre-Thorpe, 
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2009; Poncet & Fabre-Thorpe, 2014). Some empirical evidence, however, was 

contradictory to the prediction of such account in that it showed an obligatory 

automaticity for scene recognition at basic- but not at superordinate-level (Greene & 

Fei-Fei, 2014). As well as these contradictions in the literature, there are also some 

missing links. Although mid-level features such as spatial properties and scene 

functions/affordances, for example, were proposed to facilitate scene recognition 

(Greene & Oliva, 2009b; Greene et al., 2016; Oliva & Torralba, 2001); no study was 

conducted, though, in order to investigate attentional modulation at those levels. 

Another debate in scene recognition literature is on whether detection of the presence 

of a scene is a distinct process (Mack & Palmeri, 2010) or whether it is an operation 

coupled with categorization (Grill-Spector & Kanwisher, 2005). In Experiment 1, 

therefore, we tested the role of attention including all of these five scene recognition 

tasks (basic- and superordinate-level categorization, scene spatial structure and 

function recognition, detection of the presence of a scene) to make a relevant 

comparison.  

Most of the previous studies in the literature follow a similar methodology to 

measure the effect of dual-task interference. In this paradigm, single- and dual-task 

performances are compared in terms of accuracy or reaction time for a fixed-length 

presentation duration. From a psychophysical point of view, this paradigm might be 

misleading because it does not take into account the shape of the performance curve 

as a function of different presentation durations but rather relies on a single sampling 

point. This approach would produce reliable results only if — by any chance — the 

selected interval happens to fall in a small range around the 75% accuracy threshold 

in the relevant task. Following (Greene & Oliva, 2009a), here, we employ a more 

reliable measure of comparison by determining the minimum duration at which a 
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scene can be recognized, finding for each experimental condition, the 75% accuracy 

thresholds separately. Using this method, for the first time in literature, we make a 

reliable standardized comparison of the involvement of attention in different scene 

recognition tasks.  

 

2.1.  Methods 

	

2.1.1  Participants 

Six psychophysically trained Boğaziçi University members participated, four of 

whom were naive to the purpose of the experiment (two other participants were the 

author and one of the supervisors). The study was conducted in accordance with the 

Declaration of Helsinki and approved by the Boğaziçi University Human Research 

Ethics Committee. All participants had normal or corrected-to-normal vision.  

 

2.1.2  Apparatus 

Experiment was conducted in a dark room using a Philips 109B40/20 CRT monitor 

(1024 × 768 pixels screen resolution at 85 Hz refresh rate). A chin rest was used to 

keep head steady at a viewing distance of 45 cm. Stimuli were generated in the 

Matlab environment (The Mathworks, Natick, MA) using Psychtoolbox (Brainard & 

others, 1997; Pelli, 1997; Kleiner et al., 2007) and responses were collected using a 

common keyboard.  

 

2.1.3.  Stimuli 

105 target and 105 distractor scene images were used for each task. Images were 

selected from SUN Database (Xiao, Hays, Ehinger, Oliva, & Torralba, 2010) and 
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SUN Attribute Database (Patterson & Hays, 2017). Categories and attributes 

determined as targets were namely: beach category for basic-level categorization, 

naturalness attribute for superordinate-level categorization, sports attribute for scene 

function recognition, and openness attribute for scene spatial structure recognition 

(Table 1). For detection task, random images from SUN Attribute Database that were 

not selected for other tasks were used as targets and masking images were the 

distractors. All images were resized to 256 × 256 pixels. At a distance of 45 cm and 

given spatial resolution, images subtended 10.9 × 10.9 degrees of visual angle.  

 

Table 1.  Selected Image Categories for Scene Recognition Tasks 

Task Target Distractor 

Scene Function Highest Sports Lowest Sports 

Spatial Structure Highest Openness Lowest Openness 

Superordinate-level Categorization Highest Natural Highest Man-made 

Basic-level Categorization Beach Mountain 

Scene Detection Unused Images Masking Images 
 

 

In order to limit sensory processing of the images, a paradigm with both 

backward (Bacon-Macé et al., 2005) and forward maskings (Cohen et al., 2011) was 

used. For each scene recognition task, selected images from that particular category 

or attribute of the database were synthesized to generate masking images using a 

procedure introduced by Greene and Oliva (2009a) following the parametric texture 

model of Portilla and Simoncelli (2000). This model aims to capture the 

transformations applied to a stimulus in the early stages of the visual system by 

extracting a set of statistics from the image. In the synthesis phase of this model, the 
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input image is first linearly decomposed using multi-orientation, multi-scale filter 

outputs and a set of marginal statistics, coefficient correlations, magnitude 

correlation and cross-scale phase statistics are collected. The collected statistics are 

then imposed on a noise image iteratively, which finally results in a synthesized 

image maintaining the statistics of the input image, yet decomposed in terms of its 

semantic content (Fig. 1).  

 

	

Fig. 1  Examples of synthesized masking images 

 

During MOT task, 6 identical white discs with a radius of 1 deg moved with a 

constant velocity of 10.5 deg/sec in a 7 deg-radius circular zone at the center of the 

screen. The initial positions of the discs were assigned in such a way that each would 

be presented in a random location within the specified circular region, 1 deg away 

from the center of the screen without any overlap with the rest. First moved in 

random directions, their direction of motion would change after each collusion, either 
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with another disc or with the outer boundaries of the circular zone. In addition to the 

visible six, there were also three invisible discs to make visible discs to change 

direction suddenly without an apparent collusion.  

 

2.1.4.  Procedure 

Participants completed five scene recognition tasks. Each scene recognition task was 

composed of 2 blocked-trial conditions, in which participants focused either on a 

single scene recognition task with MOT discs totally ignored on the screen or on 

dual-tasks, making decision on both scene recognition and MOT tasks at the end of 

each trial. As a control condition, participants were also asked to complete two single 

MOT tasks, where attention was supposed to be given to the MOT task only. 

Together these made a total of 12 experimental conditions, the order of which was 

counterbalanced across participants.  

Before each block, participants were first given the procedural instructions 

and the description of the relevant target category. They were then asked to press a 

key on the keyboard to proceed and read onscreen instructions. Instructions were 

followed by the examples of possible target and distractor images. 28 training trials 

were introduced to get participants used to the procedure. Each trial started with the 

presentation of a gray screen, on which six identical discs were randomly located. 

Three of these discs flickered for two seconds to signal them as to-be-tracked discs. 

As soon as the discs began moving, a train of masking images appeared sequentially 

on the background, each with a presentation duration of 117.6 ms (10 frames). The 

durations of the trials were chosen randomly from a range of 3 to 6 seconds and in 

each trial, a target or distractor scene image was presented before the last two 

masking images (235.2 ms) (see Fig. 2). The presentation duration of the scene 
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images varied in seven levels (11.8, 23.5, 35.3, 47, 70.1, 94, 117.6 ms) using the 

method of constant stimuli to generate a psychometric function indicating the 

minimum duration at which a scene category or attribute was recognized.  

 

	

Fig. 2  The general procedure of Experiment 1 

 

At the end of a trial, discs stopped altogether and one of them flickered for two 

seconds as a target MOT stimulus. In a 2-AFC task, subjects were asked to report 

whether the flickered disc was one of to-be-tracked discs and to make a scene 

recognition judgement as to whether scene image was a target or distractor. In half of 

the trials for each presentation duration, the scene image was from the target 

category and the target disc was from the group of to-be-tracked discs. Feedback (a 

“wrong answer” text) was presented at the end of the trials, where participant’s 

decision was not correct. The 75% point on the psychometric function provided an 
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estimate of the duration thresholds for scene recognition. Each data point, to which a 

Weibull function was fit, was composed of 30 trials. As a result, each block consisted 

of 210 trials (7 × 30) in total.  

For single-task scene recognition, at the beginning of each block, participants 

were instructed to ignore the moving discs and focus solely on the background task 

to recognize the scene image as a target or a distractor. They were informed that the 

scene image would always going to be presented before the last two masking images 

of the sequence but that the trial durations and thus, the number of masking images 

would be random. They were also informed that the presentation duration of the 

scene images would going change randomly across trials. At the end of each trial, 

they were expected to report whether the scene image belonged to the target category 

or not.  

For single-task MOT blocks, participants were instructed to ignore the 

background images and follow to-be-tracked discs with a sustained attention. They 

were informed that the discs were identical with a constant speed, and that their 

movement were limited within a 7 deg-radius region at the center of the screen. The 

task of participants was to report whether the target disc flashed at the end of a trial 

was amongst the three to-be-tracked discs or not.  

For dual-task blocks, participants were instructed to focus on both the MOT 

and the scene recognition tasks simultaneously. Decisions with regards to scene 

recognition and MOT tasks were semi-randomly collected to ensure balance across 

different presentation durations and target/distractor image trials.  

Participants were allowed to have breaks during a block to keep themselves 

alert. They were also required to have at least 15 minutes rest across different blocks.  
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2.2.  Results 

If there was a role of attention on scene recognition, one would expect a significant 

difference between minimum presentation duration thresholds in single- and dual-

task conditions of a scene recognition task. Following dual-task paradigm, if this 

difference is the result of an attentional capacity sharing between the two tasks, 

single- and dual-task MOT performances would also be expected to differ. Here, the 

results of Experiment 1 satisfied both of these two criteria, which together suggests 

that there is a role of attention on scene recognition.  

In the data analysis, minimum presentation duration thresholds were 

determined using the Palamedes toolbox (Prins & Kingdon, 2009). First, we 

calculated d′ values for each presentation duration. Because d′ values are unbiased 

sensitivity measures, we could convert them into unbiased percentage of correct 

responses. Finally, the percentage of correct responses were fit into a Weibull 

function (see Fig. A1) to determine the minimum duration at which the percentage of 

correct responses reached 75% point as the minimum presentation duration threshold 

for each task.  

Statistical analyses were conducted in R (R Core Team, 2016) using “ez” 

package (Lawrence, 2016). We reported effect sizes in both partial eta squared and 

generalized eta squared ( η"# ; Olejnik & Algina, 2003), the latter of which is a more 

suitable effect size measure for comparisons between experiments, especially for 

repeated measures designs (Bakeman, 2005). A 5 × 2 repeated measures ANOVA on 

minimum presentation duration threshold values showed that to complete scene 

recognition tasks in dual-task conditions (M = 87.8 ms, SD = 9.0), a longer 

presentation duration was required than in single-task conditions (M = 72.4 ms, SD = 

16.1), F(1, 5) = 7.45, MSe = 475.67, p = .041, 𝜂%# = .60, 𝜂"#  = .19 (Fig. 3). There was  
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Fig. 3  Minimum presentation duration thresholds of Experiment 1 

Note. Bar graph shows means of thresholds and symbols show individual data points 

of participants. Error bars indicate the standard error of the mean. While a paired t-

test showed that the effect of attention was absent in detection task, p > .05, a 

repeated analysis of ANOVA without the inclusion of detection task confirmed the 

main effect of attention, p = .005. The main effect of the type of scene recognition 

task was also significant in the ANOVA analysis, p = .011.   

 

no significant difference, though, among minimum presentation durations required to 

complete different scene recognition tasks, F(4, 20) = 2.33, MSe = 223.38, p > .05, 

𝜂%# = .32, 𝜂"#  = .12. The interaction effect between attention and different recognition 

conditions was not significant, either, F(4, 20) = .23, MSe = 118.81, p > .05, 𝜂%# = 

.18, 𝜂"#  = .03. 
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As the nature of the detection task was different than that of the other 

recognition tasks and the error bars of the box plots for the single- and dual-task 

conditions of the detection task showed a significant overlap (Fig. 3), we ran a 

separate t-test for that particular condition regardless of a non-significant interaction 

between the attention (single-task; double-task) and the type of task. 

The paired t-test showed that, the difference between single- (M = 77.3 ms, 

SD = 23.9) and dual-task (M = 81.5 ms, SD = 27.5) conditions were indeed not 

significant, t(5) = -.29, p > .05. We repeated our analysis by excluding detection task. 

A 4 × 2 repeated measures ANOVA showed an increased effect of attention 

compared to the previous analysis between dual- (M = 89.8 ms, SD = 8.0) and single-

task (M = 71.2 ms, SD = 15.1) conditions, F(1, 5) = 22.59, MSe = 175.28, p = .005, 

𝜂%# = .82, 𝜂"#  = .31. In contrary to the previous analysis, without detection task, there 

was also a significant difference among presentation durations thresholds of scene 

recognition tasks, F(3, 15) = 5.27, MSe = 131.29, p = .011, 𝜂%# = .51, 𝜂"#  = .19. A 

post-hoc pairwise comparison analysis using Bonferroni correction on significance 

level (alpha = .05 / 6 = .008) showed that scene function categorization (sports task) 

(M = 69.3 ms, SD = 14.8) required significantly less presentation duration than basic-

level categorization (beach task) (M = 86.4 ms, SD = 13.2), p = .001; and scene 

spatial structure recognition (openness task) (M = 84.1 ms, SD = 7.0), p = .002. The 

interaction effect between attention and different recognition conditions was again 

not significant, F(3, 15) = .42, MSe = 56.06, p > .05, 𝜂%# = .08, 𝜂"#  = .01. 

We also calculated d′ values for each task by pooling all data points of 

presentation durations to measure difficulty and precision A 5 × 2 repeated-measures 

ANOVA on d′ values confirmed that the difficulty of dual-task conditions (M = .9, 

SD = .2) was higher than that of single-task conditions (M = 1.1, SD = .3), F(1, 5) = 
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18.16, MSe = .04, p = .008, 𝜂%# = .78, 𝜂"#  = .14. The main effect on the difficulty of 

different scene-recognition tasks was also significant, F(4, 20) = 3.04, MSe = .04, p = 

.041, 𝜂%# = .38, 𝜂"#  = .11 (Fig. 4). A post-hoc pairwise comparison analysis using 

Bonferroni correction on significance level (alpha = .05 / 10 = .005) showed that 

 

	

Fig. 4  d' values of Experiment 1 

Note. Bar graph shows means of d' values and symbols show individual data points 

of participants. Error bars indicate the standard error of the mean. There were main 

effects of attention, p = .008, and task, p = .041. Beach task was significantly more 

difficult than natural and sports tasks. 

 

basic-level categorization (beach task) (M = .8, SD = .3) was significantly more 

difficult than superordinate-level categorization (natural task) (M = 1.0, SD = .3), p = 
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.002; and scene function recognition (sports task) (M = 1.1, SD = .2), p = .002. There 

was no other significant difficulty difference across tasks. The interaction between 

the difficulty in different attention and recognition conditions was not statistically 

significant, either, F(4, 20) = .17, MSe = .04, p > .05, 𝜂%# = .17, 𝜂"#  = .04.  

Similar to minimum presentation duration analysis, we further investigated 

detection task because of the overlapping error bars in Fig. 4. A paired t-test showed 

that difference of d' values between single- and dual-task conditions for detection 

task was also not significant, t(5) = 0.16, p > .05. A 4 × 2 repeated measures 

ANOVA without detection task again showed an increased effect of attention 

compared to the previous analysis between dual- (M = .8, SD = .1) and single-task 

(M = 1.1, SD = .3) conditions, F(1, 5) = 22.09, MSe = .04, p = .005, 𝜂%# = .82, 𝜂"#  = 

.23. As in the previous d' analysis, the main effect of task was significant, F(3, 15) = 

4.08, MSe = .04, p = .027, 𝜂%# = .45, 𝜂"#  = .15. A post-hoc pairwise comparison 

analysis using Bonferroni correction on significance level (alpha = .05 / 6 = .008) 

again showed that basic-level categorization (beach task) (M = .8, SD = .3) was 

significantly more difficult than superordinate-level categorization (natural task) (M 

= 1.0, SD = .3), p = .002; and scene function recognition (sports task) (M = 1.1, SD = 

.1), p = .002. The interaction effect was again not significant, F(3, 15) = .90, MSe = 

.02, p > .05, 𝜂%# = .15, 𝜂"#  = .02. 

If the performance difference between single- and dual-task scene recognition 

conditions were due to the capacity sharing with the MOT task, a similar 

performance degradation would also be expected to be observed in MOT 

performance. Thus, we measured dual-task MOT performance together with five 

scene recognition tasks. A one-way repeated measures ANOVA showed no 

significant difference in MOT accuracy when it was performed concurrently with 
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different scene recognition tasks, F(4, 20) = .42, MSe < .01, p > .05, 𝜂%# = .08, 𝜂"#  = 

.01, a result consistent with the threshold analysis which suggested that different 

scene recognition tasks do not require significantly different amount of attentional 

resources. We had conducted two single-task MOT conditions, one with images from 

a detection and the other with images from a basic-level categorization (beach) task. 

Supporting previous analyses, a paired t-test showed that the MOT performance in 

these two conditions did not significantly differ, t(5) = 1.96, p > .05. Since the 

difference between the MOT performance across conditions was not significant, we 

binned their data to compare single- and dual-task MOT performance. A paired t-test 

showed that the percentage of correct answers in a single-task MOT condition (M = 

.87, SD = .05) was significantly higher than that in a dual-task condition (M = .84, 

SD = .05), t(5) = 3.89, p = .01 (Fig. 5). That MOT performance decreased together 

with scene recognition performance in dual-task condition confirmed that both tasks 

share a common attentional capacity.  

Previously, we ran the same experiment without randomizing the order in 

which the scene recognition and the MOT questions were asked, and without control 

blocks for the MOT task. Since such a design could produce memory effects and not 

allow the comparisons of the MOT performances, we modified our procedure and 

presented its results above, which we consider more reliable. The results of the older 

experiment were in fact quite similar to the modified version. A 5 × 2 repeated 

measures ANOVA on minimum presentation duration threshold values showed that 

dual-task conditions required significantly more presentation duration, F(1, 5) = 

13.46, MSe = 1.74, p = .014, 𝜂%# = .73. No significant difference was observed among 

minimum presentation durations required to complete different scene recognition  
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Fig. 5  MOT results of Experiment 1 

Note. Bar graph shows means of the percentage of correct answers for MOT task and 

symbols show individual data points of participants. Error bars indicate the standard 

error of the mean. There was a main effect of attention, p = .01. 

 

tasks, F(4, 20) = 2.14, MSe = 1.50, p > .05, 𝜂%# = .30. The interaction effect between 

attention and different recognition conditions was not significant, either, F(4, 20) = 

.68, MSe = .91, p > .05, 𝜂%# = .12.  

The analysis of d′ values with a 5 × 2 repeated-measures ANOVA showed 

that the difficulty of dual-task conditions was higher than that of single-task 

conditions in the previous experiment, too, F(1, 5) = 21.19, MSe = .04, p = .006, 𝜂%# = 

.81. The main effect on the difficulty of different scene-recognition tasks, however, 

was not significant, F(4, 20) = 2.38, MSe = .04, p > .05, 𝜂%# = .32. There was also no 

interaction effect, F(4, 20) = .65, MSe =.03, p >.05, 𝜂%# =.11.  
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CHAPTER 3  

EXPERIMENT 2: COMPARING PERFORMANCE PATTERNS OF  

A FEEDFORWARD MODEL AND HUMAN PARTICIPANTS 

 

The results of Experiment 1 showed that there is a capacity sharing between the 

scene recognition and multiple-object tracking (MOT) tasks. This suggests that scene 

recognition is an operation requiring flexible visual attention resources similar to the 

MOT task (Alvarez & Franconeri, 2007; Cohen et al., 2011). Previous visual 

recognition studies, however, have provided dual-task (Li et al., 2002), reaction time 

(Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001; Rousselet et al., 2002; Thorpe et 

al., 1996; VanRullen & Thorpe, 2016), presentation duration (Keysers, Xiao, 

Földiák, & Perrett, 2001), event-related potential (ERP) (Rousselet et al., 2002; 

Thorpe et al., 1996), spatial frequency analysis (Oliva & Schyns, 1997; Oliva & 

Torralba, 2001; Torralba & Oliva, 2003) evidence that support a massively parallel 

and feedforward account of scene recognition (Fabre-Thorpe, 2011).  

Following the seminal findings of Hubel and Wiesel (1965), ventral stream of 

the visual system has been modeled as a hierarchical system with increasing 

complexity at each further stage to reach a final view-invariant categorical 

representation. Progress of a visual stimulus into these stages is called a feedforward 

pass. Computational models have been developed to simulate computations of 

neurons in the ventral stream with feedforward connections (Riesenhuber & Poggio, 

1999; Fukushima, 1980). These feedforward models were also shown to account for 

human visual recognition performance (Serre, Oliva, & Poggio, 2007).  

Recently, however, hierarchical convolutional neural networks (LeCun & 

Bengio, 1995) have become more popular as they could successfully model sensory 
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systems with a near-human performance (LeCun et al., 2015; Guo et al., 2015). 

These networks are generalized architectures of previous hierarchical feedforward 

models with more stages (layers in deep learning literature) than their bio-inspired 

counterpart models. In this new paradigm, rather than building the model by 

implementing neural computations in a bottom-up manner as had been in the 

traditional approach, researchers rather put constraints on the goal and the 

architecture of the model and use huge sets of training data to get models develop 

their own solutions to the computations of the network (Yamins & DiCarlo, 2016). 

At first, it may seem that such an approach would yield divergent representations 

than those of biological systems. However, studies showed that they reach similar 

representations (Yamins et al., 2013; Cadieu et al., 2014), and that they can make 

successful predictions of neural responses across ventral stream (Guclu & van 

Gerven, 2015).  

If there is a capacity-limited part of scene recognition as suggested by our 

first experiment, we thought there might also be a systematic shortcoming of 

feedforward models to explain human behavior. Attention demanding processes, by 

definition, requires more attentional capacity in challenging situations. In the MOT 

task, for example, it has been shown that increasing the number of targets or the 

speed of objects makes the task more attention demanding (Alvarez & Franconeri, 

2007). Similarly, one might expect images that are hard to recognize to require more 

attention.  

A machine learning algorithm has been shown that it may be used to assess 

discriminability or difficulty to categorize a stimulus (Sofer, Crouzet, & Serre, 2015). 

Sofer et al. has demonstrated that such an approach could also be used to analyze 

human performance pattern. In convolutional neural networks (CNN), the last layer 
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provides a posterior probability distribution of an image for a set of categories. CNN 

performances, however, are not measured using this number directly but rather by 

analyzing whether the posterior probability of the target category is among the 

highest of all categories. The end result provides a measure of how close an image to 

the learned representation of the category. In Experiment 2, we tested whether a set 

of challenging images for a feedforward model are also challenging to recognize for 

human participants. We hypothesized that as feedforward models can account for 

human scene recognition, participants would have a lower performance when the 

targets are among the set of hard images (low posterior probability) not only in dual-

task but also in single-task conditions. However, with the role of attention in scene 

recognition, we would see a larger decrease in performance from easier to harder 

target trials in dual-task conditions than in baseline conditions, because participants 

would be left with less attentional capacity to overcome the challenge introduced by 

hard images. In other words, their performance in the reduced-attention condition 

would have a similar pattern to a feedforward model, which lacks an attention 

component.  

 

3.1.  Methods 

The experimental setup was identical to the one described above except of the 

specified differences.  

 

3.1.1.  Participants 

Five psychophysically trained Boğaziçi University students and the author 

participated to experiment voluntarily. All participants had normal or corrected-to-

normal vision.  
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3.1.2.  Stimuli 

Posterior probability of Places-CNN model for a set of beach images were taken 

from SUN Database as our difficulty benchmark. Places-CNN is a scene recognition 

convolutional neural network (CNN) that uses ImageNet-CNN architecture 

(Krizhevsky, Sutskever, & Hinton, 2012) and is trained on Places database with a 

state-of-the-art performance on scene recognition benchmarks (Zhou et al., 2014). 

Since there is no “beach” label in Places-CNN, we rather used “coast” and “ocean” 

as target categories for the model and chose the higher probability among them as the 

posterior probability for our “beach” label. Resulting distribution of posterior 

probabilities of beach images had a normal-like shape (M = .28, SD = .14) (Fig. 6).  

 

	

Fig. 6  Distribution of posterior probabilities of beach images 

 

To have enough images for hard and easy conditions, whereas the images with less 

than .15 posterior probability were categorized as hard images, those with more than 
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.4 posterior probability were categorized as easy ones. 98 images from those 

categories were then selected as target images for each condition. Masking images 

were synthesized using the same method in Experiment 1.  

 

3.1.3.  Procedure 

Participants completed basic-level categorization (beach) tasks. Easy- and hard-

category images were used in blocked trials in both single-scene recognition and 

dual-task conditions, making a total of 4 experimental runs. A control single-MOT 

block was also run for each observer. Order of the blocks were counterbalanced 

across different participants.  

Presentation durations of the scene images were as same as those used in 

Experiment 1. Each data point was composed of 28 trials, which made a total of 7 × 

28 = 196 trials in each run. Experimental blocks started with 28 training trials to 

prepare participants to the procedure.  

 

3.2.  Results 

Experiment 1 showed that performing scene recognition concurrently with a MOT 

task makes scene recognition tasks more difficult, indicated by longer presentation 

durations. If the observed effect is the result of a higher-level attentional resource 

sharing, then, one might expect performance of a feedforward computational model, 

which lacks such an attentional component, to be similar to the performance of the 

participants in the dual-task condition, where their attentional capacity is also 

reduced by the concurrent MOT task.  

A 2 × 2 repeated-measures ANOVA on minimum presentation duration 

threshold values showed a main effect of attention that supported the result of 
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Experiment 1, such that to complete scene recognition tasks in dual-task condition 

(M = 85.6 ms, SD = 12.2), a longer presentation duration was required than that in 

single-task condition (M = 69.2 ms, SD = 12.4), F(1, 5) = 11.75, MSe = 138.71, p = 

.019, 𝜂%#  = .70, 𝜂"#   = .29 (Fig. 7). Unlike the computational model, though, there was 

no significant difference between the minimum presentation durations required for  

 

	

Fig. 7  Minimum presentation thresholds of Experiment 2 

Note. Bar graph shows means of thresholds and symbols show individual data points 

of participants. Error bars indicate the standard error of the mean. There was a main 

effect of attention, p = .019. The interaction between attention and difficulty was also 

significant, such that hard images required significantly more presentation duration 

for participants only in dual-task condition, p = .009. 
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participants to categorize hard and easy images, F(1, 5) = 1.00, MSe = 189.77, p > 

.05, 𝜂%# = .16, 𝜂"#  = .05. There was, however, an effect of interaction showing that for 

participants, the recognition duration thresholds of hard images (M = 90.1 ms, SD = 

18.2) were significantly higher than those of easy images (M = 80.5 ms, SD = 9.7) 

only in dual-task but not in single-task conditions, suggesting that the locus of the 

effect observed in Experiment 1 might be higher in the visual hierarchy than the 

layers modeled by feedforward models, F(1, 5) = 17.05, MSe = 7.79, p = .009, 𝜂%# = 

.77, 𝜂"#  = .03 (see Fig. B1 for individual data).  

We also analyzed d′ values by pooling all data points of presentation 

durations to measure the perceived task difficulty in different conditions. A 2 × 2 

repeated-measures ANOVA on d′ values showed that the difficulty of dual-task 

conditions (M = .9, SD = .2) was significantly higher than single-task conditions (M 

= 1.2, SD = .3), F(1, 5) = 9.67, MSe = .08, p = .027, 𝜂%# = .66, 𝜂"#  = .38 (Fig. 8). 

Participants, however, did not have significantly different difficulty in completing 

blocks of trials with either hard or easy images, F(1, 5) = .03, MSe = .05, p > .05, 𝜂%# 

= .05, 𝜂"#  = .01. The interaction effect was not significant, either, for d′ values, F(1, 

5) = 1.73, MSe = .01, p > .05, 𝜂%# = .26, 𝜂"#  < .01.  

While the percentage of correct answers in a single-task MOT condition (M = 

.87, SD = .05) was higher than that in a dual-task condition (M = .83, SD = .07), the 

difference was not significant, t(5) = 1.53, p > .05 (Fig. 9).  
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Fig. 8  d' values of Experiment 2 

Note. Bar graph shows means of d' values and symbols show individual data points 

of participants. Error bars indicate the standard error of the mean. There was a main 

effect of attention, p = .027. 
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Fig. 9  MOT results of Experiment 2 

Note. Bar graph shows means of the percentage of correct answers for MOT task and 

symbols show individual data points of participants. Error bars indicate the standard 

error of the mean. 
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CHAPTER 4  

DISCUSSION 

	

In Experiment 1, we tested the effect of attention on a broad range of scene 

recognition tasks using a dual-task paradigm and a reliable psychophysical 

methodology. Our results showed a performance decrease in both the scene 

recognition tasks and the MOT task from single- to dual-task conditions. Despite the 

evidence in literature that support a parallel, pre-attentive, feedforward account of 

scene recognition (Rousselet et al., 2002; Li et al., 2002; Oliva & Torralba, 2001; 

Torralba & Oliva, 2003; Fabre-Thorpe, 2011), our results supported the findings of 

Cohen et al. (2011) and suggested that there might be an attentional capacity sharing 

between the scene recognition and the MOT tasks.  

The computational analysis of global visual features that can discriminate 

scene categories (Oliva & Torralba, 2001; Torralba & Oliva, 2003) and the 

hierarchical models of visual recognition (Serre, Oliva, & Poggio, 2007; Riesenhuber 

& Poggio, 1999) have shown the feasibility of feedforward accounts in scene 

recognition (Fabre-Thorpe, 2011). One of the main problems of visual recognition is 

to reach invariant representations of target categories such that objects and scenes 

could be recognized under various angles of views and lighting conditions 

(Riesenhuber & Poggio, 2000). Computational studies showed this problem can be 

handled by hierarchical feedforward models, in which neural receptive fields get 

increased up through the hierarchical system, where neurons start to be selective to 

more complex features (Riesenhuber & Poggio, 2000; Serre, Kreiman, et al., 2007). 

If global spatial features proposed by Oliva and Torralba (2001) such as naturalness, 

openness and depth were sufficient for scene recognition, then a group of neurons 
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that are specialized on those features could facilitate scene recognition in a purely 

feedforward manner. Such model might in fact explain the results of behavioral 

studies that failed to show attentional effects on scene recognition (Rousselet et al., 

2002; Li et al., 2002; Greene & Fei-Fei, 2014) and the brief processing times 

reported in the ERP studies (Thorpe et al., 1996; Rousselet, Joubert, & Fabre-Thorpe, 

2005). Another implication of a global feature-based account of scene recognition 

would be a system with a fixed performance characteristic that could not be 

improved by familiarity or experience, a prediction also supported by behavioral 

human data (Fabre-Thorpe et al., 2001). When the information in relation to a feature 

is coded in the pattern of firing across cells, one would observe aftereffects as a result 

of diminished activity of neurons following adaptation. In this context, Greene and 

Oliva (2010) used an RSVP paradigm to test whether global scene properties are 

susceptible adaptation effects and found that performances of observers’ basic-level 

scene categorization are modulated after adapting to a global property, indicating the 

role of global properties in rapid scene categorization. It is important to note, 

however, that although these models seem to provide a relatively low-level account 

of scene recognition, the role of attention is still not completely eliminated. Some 

researchers have argued that attention is involved in a rather later stage, when 

recognition process is already completed and the system is occupied making target 

selection from competing stimuli, or while in the process of response preparation 

(Rousselet et al., 2004b; Reynolds, Chelazzi, & Desimone, 1999).  

It is claimed that top-down modulation might facilitate object recognition via 

feedback connections by providing a context, such as a scene category, that may 

limit the number of possible object categories (Bar & Aminoff, 2003; Torralba, 

Oliva, Castelhano, & Henderson, 2006; Bar & Ullman, 1996). Such models depend 
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on a concept of a fast-track stream, processing scene contexts pre-attentively 

(Kveraga, Ghuman, & Bar, 2007). Our results demonstrating a clear role of attention 

on scene recognition, however, is rather compatible with an alternative account, 

where scene recognition is supposed to be top-down modulated in a manner similar 

to object recognition, where outputs of the initial fast-processing stream is later 

compared to the learnt representations held in the memory to minimize mismatches 

between high-level predictions and low-level activations (Ullman, 1995; Friston, 

2005; Hinton, Dayan, Frey, & Neal, 1995).  

The onset of the feedback activity from frontal and parietal areas which are 

associated with attentional modulation (Bressler, Tang, Sylvester, Shulman, & 

Corbetta, 2008) was reported to be within the 100-300 ms period following the 

stimulus onset (Mehta, Ulbert, & Schroeder, 2000). This range of interval is larger 

than most of the presentation durations we used in this study; thus, it is unlikely that 

it is such a top-down modulation which underlines our observed attentional effects. 

Because of our blocked design in which participants had already known what the 

target category was before they started doing the experiments, however, one might 

argue that in our paradigm top-down modulation might have occurred even before 

the stimulus presentation, making recognition faster during the actual trial. Using a 

pre-cue/post-cue paradigm, Evans, Horowitz, and Wolfe (2011) have shown that the 

number of to-be-recognized target categories and the level of the similarity across 

those categories have an effect on recognition performance, indicating that the visual 

system might in fact be prepared to recognize target categories before the actual 

stimulus presentation. In a pilot experiment, using a similar pre-cue/post-cue design, 

we tested whether the existence of attentional effect in our data might also be 

explained by such a predictory top-down modulation. For this experiment, we chose 
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three target categories (playground, highway, and castle) and asked participants to 

perform a basic-level scene categorization task. The design of the pre-cue condition 

was similar to that of Experiment 1, except that target categories were not presented 

in a blocked order but rather at the beginning of each trial (Fig. C1). The critical 

condition was the post-cue condition, though, where we did not pre-inform our 

participants on the target category and they made judgements as to whether the target 

was a member of a particular category with a possibility that it might have come 

from either of the three categories: playground, highway, or castle. For both pre-cue 

and post-cue conditions, we also separately ran single- and dual-task blocks using the 

same MOT task as was used in Experiment 1. Our hypothesis was that if there were a 

preparatory top-down modulation in the visual system before the actual stimulus 

onset and the additional MOT task in Experiment 1 introduced noise in the 

preparatory signal, then, we would replicate the results of Experiment 1 only in the 

pre-cue condition and would not see a degradation in performance form single- to 

dual-task conditions in the post-cue condition. We observed no significant 

performance difference, though, between pre- and post-cue conditions contrary to the 

results reported by Evans et al. (2011), suggesting that our manipulation had either 

no effect as an independent variable, or more possibly, using a set of three categories 

was simply not challenging enough to reduce preparatory signal in relation to each 

category (Fig. C2). We were not able to increase the number of categories, however, 

as it would get the duration of a block longer than what participants could reliably 

perform. Such a possible source of attention, therefore, remains as an open question 

for future studies.  

It has been shown that attending a temporally preceding stimulus might 

decrease recognition performance for succeeding stimuli (Evans & Treisman, 2005). 
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In a second pilot experiment, we tested whether it was the sustained-attention 

allocated to the MOT task, disrupting the temporal attention given to the target scene 

was the cause of the performance drop observed in the dual-task condition of 

Experiment 1. While there was only a single scene image in our procedure, the MOT 

task might have interfered with a suppression mechanism which reduced the effect of 

masking images or might have alternatively caused participants to miss the short 

temporal window when the target was presented, a particularly possible account as 

the number of masking images and thus the trial length was randomized across trials; 

thus, participants could not reliably predict when exactly the scene image was going 

to appear. In this experiment, we modified our procedure in Experiment 1 by adding 

a fixed trial duration condition and asked participants to perform a basic-level 

categorization using playground images as targets (Fig. D1). We hypothesized that if 

the performance decrease in dual-task condition was due to the MOT task allocating 

from the common temporal attention resources, then, we would see an enhancement 

in the performance degradation from single- to dual-task conditions when the trial 

duration was kept at a fixed rather than a randomized value. The results, however, 

have controversially shown a trend of higher thresholds in the fixed trial duration 

condition (Fig. D2). Predicting that it would be fruitless, we left this data as it is and 

did not pursue this issue in further experiments.  

Following the inconclusive aforementioned experiments, while the type of 

attentional effect on scene recognition observed in Experiment 1 had remained at a 

speculative level, the source was most likely to be in the feedback connections in the 

visual system (Kveraga et al., 2007; Kastner & Ungerleider, 2000). Thus, we thought 

feedforward models might have systematic shortcomings while trying to explain 

human performance. Serre, Oliva, and Poggio (2007) have proposed a feedforward 
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model for visual recognition and shown that the types of images the model had a 

difficulty to recognize were also challenging for their human participants. In 

Experiment 2, by choosing a set of images that was challenging enough to a state-of-

the-art feedforward model (Zhou et al., 2014), we tested to what extent the model 

would be able to account for human performance. Our results showed that the hard 

images classified by the model were significantly harder to recognize for participants 

only in the dual-task, but not in the single-task condition, suggesting that participants 

could fail to compensate for the challenging nature of the images only when some of 

their attention were already allocated to the MOT task.  

One of the recent developments in the computational object recognition 

models is the inclusion of attentional mechanisms that serially select some portions 

of the images to allocate more processing resources with an increased performance 

(Cao, Liu, Yang, Yu, & Wang, 2015; Eslami, Heess, Weber, & Tassa, 2016; Mnih, 

Heess, Graves, & Kavukcuoglu, 2014). While these models show how attentional 

mechanisms could improve feedforward models, such a serial attention modulation 

akin to the spatial attention in humans seems unlikely to explain the observed effect 

in Experiment 1, as we only used brief presentation durations (around 120 ms at 

maximum) that would not allow more than a glance of the stimuli. The recurrent 

neural network (RNN) model proposed by Liao and Poggio (2016) has shown 

another approach to include feedback connections to the computational models. In 

their model, a recurrent network builds more complex representations by simulating 

deeper layers of a feedforward model with a shallower network after an initial 

feedforward feature extraction. While such an approach could explain the 

performance increase in human participants with longer presentation durations, it is 

unclear how a modulatory processing could be integrated into this model to 
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implement capacity sharing between the scene recognition and the MOT tasks. Such 

connections might have similar functions to the local feedback connections in the 

visual system that improve object representations and could be dissociated from 

attentional top-down modulations on the basis of their early onset characteristic 

(Wyatte, Jilk, & O’Reilly, 2014; Bachmann, 2014).  

Next step to understand the role of attention on scene recognition might be 

running computational analyses on the features of the images that are challenging for 

the current feedforward models as done by Oliva and Torralba (2001) for the 

feedforward part. Determination of computations that can facilitate the 

discrimination of such stimuli may allow us to model the attentional resources that 

can be shared across different tasks and modulated in a top-down manner.  
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CHAPTER 5 

CONCLUSION 

	

Despite the accumulated evidence in the literature for a feedforward, low attention 

demanding account of scene recognition, here, using a dual-task paradigm and a 

reliable psychophysical method, we showed that there might be a role of attention in 

scene recognition. While the possible source and the function of the attentional 

modulation, such as top-down preparation and temporal attention, is still open to 

debate, we compared the performance pattern of a feedforward model to human 

participants, and showed that current feedforward models cannot account for human 

performance in scene recognition. These results suggest that the source of the 

observed effect might be a high-level attentional process that can modulate and be 

shared across different tasks.  
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APPENDIX A 

INDIVIDUAL DATA OF EXPERIMENT 1 

	

	

Fig. A1  Individual psychometric functions of Experiment 1 

Notes. Individual data points were fit into Weibull function. Darker lines indicate 

single-task, whereas lighter lines indicate dual-task conditions.  
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APPENDIX B 

INDIVIDUAL DATA OF EXPERIMENT 2 

	

	

Fig. B1  Individual psychometric functions of Experiment 2 

Note. Individual data points were fit into Weibull function. Darker lines indicate easy 

images, whereas lighter lines indicate hard images conditions. 
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APPENDIX C 

TOP-DOWN EXPECTATIONS EXPERIMENT 

	

	

Fig. C1  The procedure of the top-down expectations experiment 
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Fig. C2  Minimum presentation durations of the top-down expectations experiment 

Note. Bar graph shows means of thresholds and symbols show individual data points 

of participants. Error bars indicate the standard error of the mean. There was a trend 

of higher presentation durations from single- to dual-task conditions F(1, 2) = 13.36, 

MSe = 17.16, p = .067, 𝜂%#  = .87, 𝜂"#   = .22. We did not observe, however, a 

significant effect of pre-/post-cue manipulation, which was critical to test our 

hypothesis, F(1, 2) = .78, MSe = 33.31, p > .05, 𝜂%#  = .28, 𝜂"#   = .03. There was also 

no significant interaction effect, F(1, 2) = .32, MSe = 19.67, p > .05, 𝜂%#  = .14, 𝜂"#   = 

.01. 
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APPENDIX D 

TEMPORAL ATTENTION EXPERIMENT 

	

	

Fig. D1  The procedure of the temporal attention experiment 

	



52	
	

	

Fig. D2  Minimum presentation durations of the temporal attention experiment 

Note. Bar graph shows means of thresholds and symbols show individual data points 

of participants. Error bars indicate the standard error of the mean. There was a 

significant main effect of attention, F(1, 3) = 14.56, MSe = 90.42, p = .032, 𝜂%#  = .83, 

𝜂"#   = .37. We did not observe, however, a significant effect of uniform/fixed trial 

duration manipulation, which was critical to test our hypothesis, F(1, 3) = .55, MSe = 

129.67, p > .05, 𝜂%#  = .13, 𝜂"#   = .03. There was also no significant interaction effect, 

F(1, 3) = 1.94, MSe = 166.75, p > .05, 𝜂%#  = .39, 𝜂"#   = .13. 
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