
AUTOMATED REQUIREMENTS CLASSIFICATION USING FEATURE

SELECTION BASED ON LINGUISTIC FEATURES

by

Sercan Çevikol

B.S., Electrical and Electronics Engineering, Boğaziçi University, 1997

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Systems and Control Engineering

Boğaziçi University

2021

iii

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Asst. Prof. Fatma Başak Aydemir.

After a long break of my study, she accepted me as a thesis student, and during the

difficult pandemic times, she always supported me whenever I had a problem or a

question about my research or writing. She consistently encouraged me and kept her

patience for my prolonged thesis work.

I would also like to thank Dr. Fabiano Dalpiaz, Assistant Professor in the Depart-

ment of Information and Computing Sciences at Utrecht University in the Netherlands,

and Dr. Davide Dell’Anna, a postdoctoral researcher in the Department of Control and

Operations of Delft University of Technology in the Netherlands. Without their par-

ticipation, input and support, this study could not have been successfully conducted.

Finally, I must express my very profound gratitude to my wife, Betül, and my

friend Emre Hayretci for providing me with unfailing support and continuous encour-

agement throughout my study. This accomplishment would not have been possible

without them. Thank you.

Sercan Çevikol

iv

ABSTRACT

AUTOMATED REQUIREMENTS CLASSIFICATION

USING FEATURE SELECTION BASED ON LINGUISTIC

FEATURES

Requirements classification is an important problem in organizing the systems

and requirements, and it is widely used in handling large requirements data sets. A

basic example of a requirements classification problem is the distinction between the

functional and non-functional (quality) requirements. The state-of-the-art classifiers

are most effective when they use a large set of word features such as text n-grams

or part of speech n-grams. However, as the number of features increases, it becomes

more difficult to interpret the approach, because many redundant features have to

be explored that do not capture the meaning of the requirements. In this study, we

propose the use of more general linguistic features, such as dependency types, for the

construction of interpretable machine learning classifiers for requirements engineering.

Through a feature engineering effort, assisted by tools that interpret graphically how

classifiers work, we derive a set of linguistic features. While classifiers that use the

proposed features fit the training set slightly worse than those that use high-dimensional

feature sets, this approach performs generally better on validation data sets and is more

interpretable. We use industry data sets, and we perform experimental runs using

several automated feature selection algorithms to explore whether our feature set can

be optimized further using one of the automated selection algorithms. Although in

some data sets, impressive results were obtained. the automated selection algorithms

did not prove a significant improvement, and even, on average, the results were worse

than the results we obtained using the set based on linguistic features.

v

ÖZET

DİL ÖZELLİKLERİNE GÖRE ÖZNİTELİK SEÇİMİ

KULLANILARAK YAZILIM İSTERLERİNİN OTOMATİK

SINIFLANDIRILMASI

Yazılım isterlerinin sınıflandırılması, sistemlerin ve isterlerin organize edilmesinde

önemli bir sorundur ve büyük yazılım isterleri veri setlerinin işlenmesinde yaygın olarak

kullanılır. Yazılım isterlerinin sınıflandırma probleminin temel bir örneği, işlevsel

ve işlevsel olmayan (kalite) isterler arasındaki ayrımdır. Son nesil sınıflandırıcılar,

metin n-gramları veya sözcük türleri n-gramları gibi geniş kelime özellikleri kümesi

kullandıklarında en etkilidir. Bununla birlikte, özelliklerin sayısı arttıkça, yaklaşımı

yorumlamak daha zor hale gelir çünkü gereksinimlerin anlamını yakalayamayan birçok

gereksiz öz niteliğin de araştırılması gerekir. Bu çalışmada, yazılım gereksinim mühendis-

liği için yorumlanabilir makine öğrenimi sınıflandırıcılarının oluşturulmasında bağlılık

türleri gibi daha genel özniteliklerin kullanılmasını öneriyoruz. Sınıflandırıcıların nasıl

çalıştığını grafiksel olarak yorumlayan araçlarla desteklenen bir öznitelik mühendisliği

ile bir dizi dilsel öznitelik türetiyoruz. Önerilen öznitelikleri kullanan sınıflandırıcılar

eğitim setine yüksek boyutlu öznitelik setlerini kullananlara göre biraz daha kötü per-

formans gösterse de, bu yaklaşım genellikle doğrulama veri setlerinde daha iyi perfor-

mans gösterir ve daha yorumlanabilirdir. Çalışmamızda sektör veri setlerini kullaniy-

oruz ve öznitelik setimizin daha da optimize edilip edilemeyeceğini keşfetmek için birkaç

otomatik öznitelik seçim algoritması kullanarak deneysel çalışmalar gerçekleştiriyoruz.

Bazı veri setlerinde etkileyici sonuçlar elde edilmesine rağmen otomatik seçim algorit-

maları önemli bir gelişme göstermedi ve hatta ortalama olarak sonuçlar, dil öznitelikleri-

ne dayalı seti kullanarak elde ettiğimiz sonuçlardan daha kötüydü.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ACRONYMS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

1.1. Problem Statement . 1

1.2. Purpose of the Study . 3

1.3. Approach . 4

1.4. Organization . 5

2. BACKGROUND AND RELATED WORK 6

2.1. Classification of Functional vs. Non-functional Requirements 6

2.2. Automated Classifiers in Requirements Engineering 7

2.3. Automated Feature Selection . 9

3. IMPLEMENTATION . 10

3.1. Preparing the Data sets . 10

3.2. Tagging . 13

3.3. Method . 16

3.3.1. Training Approach . 16

3.3.2. Metrics and tools . 16

3.4. Reference Classification based on Kurtanović and Maalej’s Study . . . 18

3.5. Classification using Dependency Parsing and Linguistic Features 26

3.5.1. Feature Creation with Dependency Parsing and Linguistic Features 26

3.5.2. Feature selection via interpretable ML 30

3.5.3. Enhancing the Feature Selection with Features for Root Verbs . 34

3.5.4. Experimental Feature Selection with Automated Feature Selection 39

3.6. Threats to Validity . 55

vii

4. CONCLUSIONS . 56

REFERENCES . 58

APPENDIX A: FEATURE SETS . 64

APPENDIX B: FUNCTIONAL FEATURES PER FEATURE SET 65

APPENDIX C: QUALITY FEATURES PER FEATURE SET 71

viii

LIST OF FIGURES

Figure 3.1. Example Data Set. 15

Figure 3.2. Illustration of the ROC plot and of the AUC. 19

Figure 3.3. ROC plots for the top 500 features: F (top-left), Q (top-right),

OnlyF (bottom-left), OnlyQ (bottom-right). 24

Figure 3.4. ROC plots for the top 100 features: F (top-left), Q (top-right),

OnlyF (bottom-left), OnlyQ (bottom-right). 25

Figure 3.5. Example Requirements from data sets showing the dependency types. 27

Figure 3.6. Interactive rule visualization interface of RuleMatrix. 34

Figure 3.7. ROC plot for F with the final 17 features. 38

Figure 3.8. ROC plot for OnlyQ with the final 17 features. 39

Figure 3.9. FFS - ROC Plot for F with selected features by FFS from FS 3. . 40

Figure 3.10. FFS - ROC Plot for Q with selected features by FFS from FS 3. . 41

Figure 3.11. Genetic Algorithm - ROC Plot for F with selected features by GA

from Feature Set 3. 42

Figure 3.12. Genetic Algorithm - ROC Plot for Q w ith selected features by GA

from Feature Set 3. 43

ix

Figure 3.13. AutoVIML - Feature Importances for predicting F. 44

Figure 3.14. AutoVIML - Feature Importances for predicting Q. 44

Figure 3.15. AutoVIML - ROC Plot for F with selected features by AutoVIML

from Feature Set 3. 44

Figure 3.16. AutoVIML - ROC Plot for Q with selected features by AutoVIML

from Feature Set 3. 45

Figure 3.17. RFE - Feature Importances for predicting F. 46

Figure 3.18. RFE - Feature Importances for predicting Q. 46

Figure 3.19. Recursive Feature Selection - ROC Plot for F with selected features

by RFE from Feature Set 3. 47

Figure 3.20. Recursive Feature Selection - ROC Plot for Q with selected features

by RFE from Feature Set 3. 47

x

LIST OF TABLES

Table 3.1. Data sets . 12

Table 3.2. Overview of the tagged data sets 15

Table 3.3. Project-fold splitting of the PROMISE NFR dataset. 17

Table 3.4. Descriptive statistics of Top 100 features for our reproduction of [1]

for the classifier targets: F and Q. 20

Table 3.5. Top 100 features for our reproduction of [1] for OnlyF and OnlyQ. 21

Table 3.6. Top 500 features for our reproduction of [1] for F and Q. 22

Table 3.7. Top 500 features for our reproduction of [1] for OnlyF and OnlyQ. 23

Table 3.8. Precision, Recall, and F1-score with the three feature sets. 31

Table 3.9. Results with the features selected by Skoperules and Rulematrix. . 35

Table 3.10. The final feature set. 36

Table 3.11. Results with additional features for root verbs. 38

Table 3.12. AUC Comparison of all feature sets for F classifier target. 49

Table 3.13. AUC Comparison of all feature sets for Q classifier target. 52

xi

LIST OF ACRONYMS/ABBREVIATIONS

AUC Area under ROC Curve

CP Clause and Phrase

DL Deep Learning

FFS Forward Feature Selection

FR Functional Requirement

FS Feature Set

ML Machine Learning

NFR Non-functional Requirement

POS Part of Speech

RE Requirements Engineering

RFE Recursive Feature Elimination

ROC Receiver Operating characteristic

SULOV Searching for Uncorrelated List of Variables

SVM Support Vector Machine

1

1. INTRODUCTION

Requirement classification is the categorization of requirements into different

classes to form a logical group for their usage in the design, implementation, decision

making, and other processes [2]. With classification, we can decompose a system into

sub-components of related requirements, and we can define the relationship between

these sub-components.

Requirements are generally classified as functional requirements and non-functional

requirements. Glinz [3] defines a functional requirement as “a requirement concerning a

result of behavior that shall be provided by a function of a system or of a component or

service, where a non-functional requirement as a quality requirement or a constraint”.

A functional requirement specifies what function the system should perform and a

non-functional requirement specifies how the system should perform that function.

Machine learning is widely used concept in requirements classification. Auto-

mated classifiers have been used for many purposes, including the classification of

non-functional requirement [1, 4–6], the user feedback analysis to distinguish between

bugs, features, and complaints [7], or the distinction of requirements from information

in big requirements specification data sets [8].

1.1. Problem Statement

Classification is a fundamental challenge in requirements engineering. Glinz [9]

identified three main challenges like the lack of agreement on i. the definition, ii.

the sub-classification, and iii. the representation of non-functional requirements. The

classification of requirements is a multi-level problem. First, it starts with the identifi-

cation of whether a text is a requirement or information. If it is a requirement, it needs

to be decided whether it is a functional requirement or a non-functional requirement.

2

If the requirement includes quality aspects, we need to find out what kind of a quality

requirement that is, i.e. security, usability, etc.

In practice, there are even further problems in the classification of the require-

ments. The requirements are mostly tagged and classified by users, and the users

mostly have different perceptions and do not reach a consensus on the classification.

Users’ experience, knowledge, as well as state of mind have an impact on this problem:

a security expert approaches the requirements from a security perspective, meanwhile,

a business expert may identify the same requirement as functional and a programmer

as reliability. It is difficult to achieve a fully correct classification. In most cases, there

is no single answer, neither. The classification process is not a binary classification: a

requirement can include quality aspects from multiple areas, such as a requirement can

be functional as well as non-functional at the same time. When being non-functional,

it can be a security as well as a usability requirement. This makes the agreement as

well as classification quite difficult.

Many requirements classification approaches exist, and they mainly differ from

each other in the creation and selection of the features, the classifiers they employ

(SVM, decision trees, Näıve Bayes, etc.), the metrics that they use to interpret the

outputs, or the data sets that are used for training and validation [5]. The main

commonality is that the most effective classifiers [1] rely on a high-dimensional word

feature set: a large number of features are used to guide the classifier (100 to 500

in [1]), and these features are at the word level, e.g., text N-grams or Part-of-Speech

(POS) n-grams.

An N-gram model is the prediction of the occurrence of a word compared to the

occurrence of its N – 1 previous word, defining how far the prediction goes back in the

past sequence of words to predict the next word. For example, a bigram model (N=2)

predicts the occurrence of a word given only its previous word (as N – 1 = 1 in this

case). Similarly, a trigram model (N = 3) predicts the occurrence of a word based on

its previous two words (as N – 1 is 2 in this case).

3

A POS (part-of-speech) tag is a label assigned to each word in a text to label the

words that have specific purposes such as nouns, verbs, and adjectives.

Highly dimensional feature sets often lead to classifiers that suffer from overfit-

ting [10]: their performance is excellent on the training set, but it degrades signifi-

cantly with other data sets. The high number of features in the feature sets reduces

the interpretability of those classifiers. Since the algorithm’s decision rule may have a

combination of hundreds or thousands of features. it is very difficult to analyze why the

classifier performs well or poorly. Furthermore, the features represent the requirements

at the word level, rather than focusing on the meaning of a requirement.

1.2. Purpose of the Study

In this study, we target the classification of functional and non-functional require-

ments. Theoretical foundations on this topic [5] such as the distinction between func-

tional requirements, non-functional requirements, quality constraints, etc., are widely

discussed in RE [9, 11]. We propose a classification approach that uses smaller sets

of linguistic features based on dependency types which are interpretable [12]. We use

interpretable machine learning tools to select the features [13] which help to achieve a

deeper understanding of the implicit classification rules of automated classifiers. We

show that it is possible to build more general classifiers using high-level linguistic fea-

tures, which apply to different data sets with a little performance degradation as well

as easier to inspect. We also show that interpretable ML can contribute to the scientific

discussion on classification problems through explainable classifiers.

Our study was published in the IEEE 27th International Requirements Engineer-

ing Conference (RE’2019) Proceedings [14]. As being one of the authors, this thesis is

mainly based on our study and we extend our findings with additional data sets and

with automated feature selection algorithms.

4

1.3. Approach

In this study, we take the concepts of Li et al. [11] as the baseline and build our

distinctions in two aspects:

• Functional aspect (F): a requirement includes either a functional goal or a func-

tional constraint;

• Quality aspect (Q): a requirement includes a quality goal or a quality constraint.

The decision on the functional aspect is independent of the decision on the quality

aspect; thus, a requirement can possess only F aspects, only Q aspects, both aspects

(F+Q), or none of them, which indicates that requirement is information [8].

Although Hey et al. [15] use the same data sets and achieved slightly better

results, we do not use NorBERT, as it is important to be able to analyze and explain

the results, especially when working on different domains and different terminology.

The overall approach can be summarized as follows:

• Building on recent studies about the nature of functional and quality require-

ments [11], we take the approach that every requirement can possess both func-

tional and quality aspects. With the other authors of the paper, we tagged a set

of more than 2500 requirements, which includes the PROMISE data set [16] and

requirement data sets from thirteen industrial projects.

• To define the baseline, we reconstructed a word-level classification approach that

relies on a high-dimensional feature set [1] and applied it to the revised classifi-

cation problem. The results confirm its excellent performance on the training set

and show limited generality when applied to the industrial data sets.

• We develop a classification approach based on smaller sets of linguistic features

such as dependency types [12]. We selected the features by using interpretable

machine learning tools [13] that provide if-then-else rules.

5

• We compare the new approach with the state-of-the-art [1] both quantitatively

and qualitatively. The results show that the performance of the two approaches is

generally comparable, while classifiers that select the features using interpretable

ML can be more easily interpreted.

• We construct a set of automated feature selection algorithms and apply several

combinations to our feature sets to find the optimal feature sets, and compare

the results.

1.4. Organization

This thesis is structured as follows. Section II overviews the related work and

´previous studies on non-functional requirements and automated classifiers which de-

fine theoretical framework. Section III presents the methodology used, describes our

reference classifier by assessing its performance, describes the creation and selection

of the feature set that we use in our approach, and experiments with the automated

feature selection algorithms. Section IV concludes the findings and discusses the future

work.

6

2. BACKGROUND AND RELATED WORK

In this section, the previous related works about the classification of requirements

have been presented.

2.1. Classification of Functional vs. Non-functional Requirements

Glinz [9] proposes a classification based on the taxonomy of the terms that are

based on concerns, which are the matter of interests in the system. According to Glinz,

the set of all requirements of a system is partitioned into functional requirements, per-

formance requirements, specific quality requirements, and constraints. Glinz defines

a functional requirement as a requirement that pertains to a functional concern. A

performance requirement is a requirement that pertains to a performance concern. A

specific quality requirement is a requirement that pertains to a quality concern other

than the quality of meeting the functional requirements and a constraint is a require-

ment that constrains the solution space beyond what is necessary for the meeting. This

approach does not deal with project and process requirements.

Li et al. [11] adopt a quality-oriented approach to model nonfunctional require-

ments as quality goals. Quality is a basic perceivable or measurable characteristic that

inheres in and existentially depends on its subject, and it has a quality type (e.g.,

usability) and a quality value (e.g., acceptable). Quality goals map a quality type to a

quality value. A quality constraint is similar but maps to measurable values. We take

the approach of Li et al. as our baseline and propose a simplification that combines

their concepts into two aspects:

• Functional aspect (F): a requirement includes either a functional goal or a func-

tional constraint;

• Quality aspect (Q): a requirement includes a quality goal or a quality constraint.

7

The decision on the functional aspect is independent of the decision on the quality

aspect; thus, a requirement can possess only F aspects, only Q aspects, both aspects

(F+Q), or none. In the last case, the requirement denotes information [8].

Casamayor et al. [17] extract non-functional requirements from natural language

text. Mahmoud [18] associates keywords with classes of non-functional requirements,

calculates co-occurrence of these terms and creates clusters using this metric. Then,

the clusters are classified under sub-categories of non-functional requirements with an

average accuracy of 73%.

2.2. Automated Classifiers in Requirements Engineering

Zhang et al. [19] investigate different ML techniques to automatically classify

non-functional requirements and conclude that individual words are the best index

terms in text to indicate non-functional requirements.

Hussain et al. [20] use linguistic features such as cardinals, adverbs, modals,

and so on to train a classifier that identifies non-functional requirements in software

requirements specifications documents. The approach is also trained and tested on

PROMISE.

Singh and Sharme [21] combine automated identification and classification of re-

quirements into non-functional requirement sub-classes with the help of a rule-based

classification technique using thematic roles. They identify the priority of the extracted

non-functional requirements according to their occurrence in multiple classes. Appli-

cation of this method within the PROMISE corpus results in F1-measure of 97%.

Abad et al. [6] introduce an approach for preprocessing requirements that stan-

dardizes and normalizes requirements before applying classification algorithms. They

show that preprocessing and standardization of the PROMISE NFR dataset improves

the results of the classification.

8

This result is not surprising since PROMISE includes requirements from 15 distinct

projects written in different styles.

Hey et al. [15] address similar problems and use NoRBERT that fine-tunes BERT,

a language model that has proven useful for transfer learning to overcome the same

issues. They highlight the problem of poor generalization and try to improve the

performance of classification when applied to unseen projects. They investigate the

performance of NoRBERT using multi-class classification and show that training data

evenly distributed over the classes is a major factor for better results and difficulties

rise mostly on highly imbalanced data sets.

Contents of a requirements specification document can not be considered as re-

quirements only. The document also includes information such as constraints and

domain assumptions. Vogelsang and Winkler [8] introduce an approach to automat-

ically classify the content elements of a natural language requirements specification

document as “requirement” or “information” using convolutional neural networks with

high precision.

Navarro-Almanza et al. [22] use Deep Learning (DL) to classify software require-

ments using CNNs that have been the state of the art in other natural language-related

tasks. They also use the PROMISE corpus in their evaluation and achieved precision,

recall, and f-measure values of 0.80, 0.785 and 0.77 respectively.

Kurtanović and Maleej [1] study how accurately and automatically requirements

can be classified as functional (FR) and non-functional (NFR) with supervised machine

learning using meta-data, lexical, and syntactical features. They also evaluate how

accurately various types of NFRs can be identified, in particular usability, security,

operational, and performance requirements.

9

2.3. Automated Feature Selection

Creating and selecting the right features is one of the difficult parts of automated

classifiers. All features that exist in a data set do not have the same priority. Some

features are redundant or some features are more important than others. Selecting the

right features are also important to speed up the learning and to improve the quality

of the classifier [23]. The classifiers rely mainly on domain knowledge and instincts of

the developers, therefore the final feature set is limited by human subjectivity and also

by time.

Feature selection is an optimization problem that selects the most relevant fea-

tures from an original feature set to increase the performance of classification [24].

Feature selection algorithms have different evaluation criteria and the filter model, the

wrapper model, and the hybrid model are the widely used models [25]. The filter model

is based on the general characteristics of the data to evaluate and select feature sub-

sets. The wrapper model has a single predefined algorithm and it selects the features

better suited to the mining algorithm to have an improved mining performance, but

it is computationally heavier than the filter model. The hybrid model tries to use the

advantages of the both models by using their different evaluation criteria in different

search stages.

Khurana et al. [26] performs automatic feature engineering by exploring different

feature selection scenarios in a hierarchical and non-exhaustive manner, and tries to

increase the accuracy through deep mining. Additionally, the system allows users to

specify the domain or data-specific choices to prioritize the exploration. The system,

Cognito, is capable of handling large data sets through sampling and built-in parallelism

and integrates well with a state-of-the-art model selection strategy.

10

3. IMPLEMENTATION

We select a high-dimensional, word-level feature set [1] as a reference in terms of

classification performance and interpretability. This work is described in detail so that

we were able to reconstruct it and demonstrated very good results, therefore we believe

it would be an excellent reference set. After reconstructing the feature set, we use this

set in an automated classifier, train the classifier on a data set (PROMISE NFR [27]),

and assess the performance on heterogeneous data sets. We also implement additional

experimental feature selection algorithms to select features and we compare the results

with our feature set using the same data sets, classifier, and training approach.

3.1. Preparing the Data sets

We first started the study with 8 data sets. The number of requirements per data

sets differs from 625 to 62, although one of them is a collection of 15 distinct projects.

Out of the eight data sets, two data sets are not open to the public. After the first

results, we extended the data sets and included 6 more data sets. Table 3.1 summarizes

the information on the datasets.

• PROMISE [27] is a collection of 625 requirements from 15 different projects,

created and classified by students, and has previously been used to train and test

other requirements classification approaches (e.g. [1, 11]).

• The ESA Euclid data set is a subset of system requirements of the European

Space Agency for the Euclid mission [28]; and includes 236 requirements mainly

elicited from sections: reliability and safety, safe mode, altitude and orbit control,

propulsion, telemetry, tracking, and command.

• The Dronology dataset [29] has 97 system requirements for Unmanned Aerial

Systems (UASs).

• The ReqView data set [30] details the requirements specification for the ReqView

requirements management tool.

11

We have converted the format of the requirements from separate modal verbs and

adverbial clauses to full sentences.

• Leeds library data set includes requirements for Leeds’s University Library online

management system and is documented in an online spreadsheet [31]. We have

removed lines of text that are not related to requirements.

• Helpdesk data set is a private data set from IT domain, and contains 172 user

requirements for implementing an off-the-shelf help desk system.

• User mgmt data set is another private data set, again from the IT domain and

includes 138 requirements for a bespoke user account request and management

application.

• WASP data set [32] consists of requirements for the Web Architectures for Ser-

vices Platforms (WASP) application.

• The rds4 data set is an extract of example non-functional requirements from the

book “The Quest for Software Requirements” [33,34].

• OAppT data set is a private data set from the IT domain and the data set contains

140 requirements for implementing an off-the-shelf Online Application Tool for

recruitment.

• RepReq data set has 75 user requirements for an off-the-shelf Reporting Applica-

tion. This data set is also private data set.

• The rds8 data set has 291 requirements and includes the requirements of an

internal project from a NATO agency regarding a streaming platform [35].

• The rds9 data set has 228 requirements and includes the requirements for Elec-

tronics Record Management Systems, a project led by Public Record Office in

the UK [36].

• The rds12 data set has 148 requirements and includes the requirements for Michi-

gan Department of Transportation’s Vehicle Infrastructure Integration Data Use

Analysis and Processing System [37].

12

Table 3.1. Data sets.

ID Name Rows Availability

DS1 PROMISE [16] 625 Public

DS2 ESA Euclide 236 Public

DS3 non-disclosed 172 Private

DS4 non-disclosed 138 Private

DS5 dronology 97 Public

DS6 ReqView 87 Public

DS7 Leeds Library 87 Public

DS8 WASP 62 Public

DS9 rds4 130 Public

DS10 OAppT 140 Private

DS11 RepReq 75 Private

DS12 rds8 291 Public

DS13 rds9 228 Public

DS14 rds12 148 Public

13

3.2. Tagging

The taggers for the requirements are the authors of our paper. They are all ex-

perienced in the requirements engineering. Dr.Fatma Başak Aydemir is an assistant

professor in the Department of Computer Engineering at Boğaziçi University, Turkey.

She leads the requirements engineering group. Dr.Fabiano Dalpiaz is an assistant pro-

fessor in the Department of Information and Computing Sciences at Utrecht University

in the Netherlands. He is the principal investigator in the department’s Requirements

Engineering lab. Dr.Davide Dell’Anna is a postdoctoral researcher in the Department

of Control and Operations of Delft University of Technology and he obtained a Ph.D.

from Utrecht University recently, with a thesis in the fields of Artificial Intelligence

and Requirements Engineering, on data-driven supervision of autonomous systems.

Finally, I am working in the IT sector for the last 24 years, and have been actively

involved in the procurement, implementation, and operation of many IT systems in-

cluding gathering and eliciting the related functional and non-functional requirements

of those systems.

For the tagging, we applied a supervision learning method. Before the tagging

process, we extracted a random set of requirements from the data sets. We had a

meeting to review and discuss the classification approach and agreed on the guidelines.

Then we created 2 sub-groups, each composed of 2 taggers. The groups tagged each

set independently. For each requirement in the set, we classified it as a requirement

or not, and if it is a requirement, we classified it as functional or quality, or both.

where the meanings are whether the requirement includes functionality and quality, or

both respectively. Then, the taggers organized reconciliation meetings to go over the

differences in tagging and re-conciliated the results. If the taggers failed to convince

each other, a third tagger was consulted for the final tagging. The taggers went overall

differences and managed to resolve them. For example, in PROMISE data set, an

agreement was not reached for the requirement “The system shall refresh the display

every 60 seconds.’ where one tagger tagged the requirement as functional, and the

other tagged as both functional and non-functional.

14

After the discussion with the other team, it has been reconciled as functional.

There were some tricky cases, in which one ‘requirement’ clearly refined another.

For example, “The application shall display a list of open vacancies.” is defined by

“The list of open vacancies shall display Vacancy number”, “The list of open vacancies

shall display Vacancy title”, etc. Therefore, there were discussions about whether the

latter two are requirements, at the end, we tagged them as functional. There were

quite discussions about the usability requirements that define user interface design

choices, for example, the requirements ”The following fields shall be a Yes/No tick box

field: “Have you applied for a job here before?”.” Although there is a clear reference

to the user interface, the sub-characteristics of usability are not reflected. Therefore

discussions took place on whether this would just be a functional requirement but also a

quality requirement with consideration for usability in a generic sense. User protection

error was another tricky case, especially for input validation to avoid errors. Generally,

whenever there is user protection from errors, there is a function to implement: the

one that validates the input, which makes them both functional and quality. In some

requirements, the use of the word “only” caused doubts and confusion. For example,

“The report shall only display information for Staff Positions” where the requirement

has a function to display the staff positions, however, the word “only” brings a quality

constraint. The requirements which include the verb “Manage” are considered as not

functional, because they are too abstract in saying what has to be implemented unless

they are further specified. Figure 3.1 illustrates an example view of the tagged data

set.

Table 3.2 summarizes the output of the tagging process. The data sets are ordered

by the number of requirement rows. As described, the taggers assigned F and Q tags.

Using these two tags, we then automatically calculated whether the row is tagged with

only F (OnlyF), only Q (OnlyQ), both F and Q (F+Q), or neither of them (¬R). The

reconciled classification is then used for training and testing the classifiers.

15

Figure 3.1. Example Data Set.

Table 3.2. Overview of the tagged data sets.

Dataset Public Rows F Q Only F Only Q F+Q R

PROMISE Yes 625 310 382 230 302 80 13

rds8 Yes 291 135 233 45 143 90 13

ESA Euclid Yes 236 91 211 23 143 68 2

rds9 Yes 228 163 149 65 51 98 14

RepReq No 75 40 47 20 27 20 8

Helpdesk No 172 143 51 121 29 22 0

rds12 Yes 148 138 110 37 9 101 1

User mgmt No 138 126 25 113 12 13 0

OAppT No 140 84 56 55 27 29 29

rds4 Yes 130 15 117 3 105 12 10

Dronology Yes 97 94 28 68 2 26 1

ReqView Yes 87 75 32 54 11 21 1

Leeds library Yes 85 44 61 23 40 21 1

WASP Yes 62 55 19 42 6 13 1

Totals 2514 1513 1521 899 907 614 94

16

3.3. Method

In this section, we explain the approaches we took on the training of the data set

as well as describe the metrics and the tools we use on the evaluation of the results.

3.3.1. Training Approach

Our training approach considers 5 different conditions: The first one is the full

usage of PROMISE (fit)bas the training data set. It tries to answer the question, how

well does the high-dimensional classifier, which is trained on a high-dimensional feature

set, fit the training data set that is used to construct the classification model. The

second one is the 75%-25% splitting of PROMISE (75/25) which is applied by randomly

splitting the data set into two: 75% of the entries are used to train the classifier, the

remaining 25% for testing it. The third one is the k-fold cross-validation of PROMISE

(kfold) where The data set is split into k evenly sized parts (folds), and the classifier is

tested k times by training it on the k-1 folds and testing it on the selected kth fold. We

use a stratified k-fold, which ensures a similar class ratio (positive/negative) in each of

the folds. The fourth one is the project-level cross-validation (pfold) which choosing

some projects within the data set as a training set, and the others as the test set. Since

PROMISE consists of 15 projects, we used 12 of them as the training set, and 3 as

the test set. To increase generality, we produce 10 variants of such partitioning such

that every partition has at least 100 requirements and has a balanced F and Q ratio.

Moreover, we ensure that two projects co-occur in at most one test set. At last, we use

the industrial data sets (ind) where the classifier trained on PROMISE is evaluated on

the industrial data sets of Section 3.1.

3.3.2. Metrics and tools

The study of Kurtanović and Maalej [1] had a single binary classification problem

(F vs. Q) and used metrics for each of the two classes F and Q.

17

Table 3.3. Project-fold splitting of the PROMISE NFR dataset.

Proj Size F Q 1 2 3 4 5 6 7 8 9 10

1 28 19 15 x x

2 40 22 26 x x

3 80 45 33 x x

4 55 26 37 x x

5 73 37 37 x x

6 74 31 49 x x

7 23 15 10 x x

8 93 38 74 x x

9 24 17 7 x x

10 53 43 15 x x

11 13 3 13 x x

12 22 8 22 x x

13 19 3 18 x x

14 16 3 14 x x

15 12 0 12 x x

Size 117 123 146 137 114 126 114 135 107 131

Totals F 65 64 77 60 53 62 51 56 48 84

Q 53 74 82 103 67 76 70 102 75 62

18

We extend this approach and our framework of Section 3.1 leads to four binary classi-

fication problems to be studied:

• F: does a requirement possess functional aspects?

• Q: does requirement possess quality aspects?

• OnlyF: does a requirement possess functional aspects but no quality aspects?

• OnlyQ: does a requirement possess quality aspects but no functional aspects?

For each classification problem, we use the most popular metrics in the RE lit-

erature to assess the performance of binary classifiers. These are the precision, recall,

and F1 score. Additionally, we use the receiver operating characteristic (ROC) plot

and its associated metric, the area under the ROC curve (AUC).

ROC plots [38] are 2-dimensional charts that show the trade-off between recall

(y-axis) and false negative rate (x-axis). In ROC plots, classifiers are represented

as a line that is plotted by calculating recall and the false positive rate at different

levels of the discrimination threshold. The discrimination threshold is the value in the

[0, 1] range that a classifier uses to determine when a data item should be classified

as a positive. While this threshold is set to 0.5 by default for a binary classification

problem, it can be adjusted to alter the sensitivity to false positives. Better classifiers

are characterized by a curve that stays closer to the top-left corner. The ROC plot

provides a single performance metric for a classifier, the AUC [39], that measures the

degree of separability between the two classes. A perfect classifier has an AUC of 1.0,

an always-wrong classifier has an AUC of 0.0, and a classifier with random performance

has an AUC of 0.5. Figure 3.2 [14] illustrates these notions.

3.4. Reference Classification based on Kurtanović and Maalej’s Study

The original classifier by Kurtanović and Maalej [1] is not available online and we

could not get access to a working copy, however, as being one of the reasons to select

it as a reference, the original publication [1] is relatively clear on the feature set.

19

Tr
ue
 p
os
iti
ve
 r
at
e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Ran
dom

 cla
ssif

ier
Bet

ter

Wo
rse

Perfect classifier

AUC for a random
classifier (0.5)

Figure 3.2. Illustration of the ROC plot and of the AUC.

We complemented this knowledge with the classifier that the same authors developed

to classify app reviews [40], whose code is partially available online [41].

While reconstructing the original, we applied a few minor modifications to the

original version:

• We built the parse trees using Berkley’s benepar library, a state-of-the-art con-

stituency parser that outperforms [42] the Stanford parser used in [1].

• We could not reproduce the feature “CP features”, which was described as “un-

igrams of part of speech (POS) tags on the clause and phrase-level (CP)”. This

text was insufficient for us to make a correct re-implementation.

• We did not use the data set taken from Amazon software reviews that the authors

had used to artificially balance the minority class of NFRs.

• We tested the classifier in its configuration with the 500 most informative features

(best performance) and the 100 most informative features.

• Our four classification problems entailed that we had to train the classifier four

times, for the most informative features depend on the target class: F, Q, OnlyF,

OnlyQ.

20

The reconstructed code can be accessed through two publicly available Jupyter Note-

books [43].

Table 3.4. Top 100 features for our reproduction of [1] for F and Q.

Data set F Q

Prec Rec F1 AUC Prec Rec F1 AUC

PROMISE train 0.877 0.897 0.886 0.95 0.919 0.955 0.922 0.97

PROMISE test 0.819 0.797 0.822 0.891 0.909 0.891 0.873 0.917

PROMISE k-fold 0.755 0.684 0.712 0.80 0.785 0.867 0.822 0.84

PROMISE p-fold 0.749 0.602 0.663 0.78 0.714 0.877 0.781 0.80

Industry (macro-avg) 0.710 0.658 0.654 0.668 0.599 0.625 0.577 0.602

Industry (std-dev) ±.23 ±.15 ±.08 ±.06 ±.24 ±.14 ±.13 ±.08

ESA Euclid 0.477 0.451 0.597 0.59 0.898 0.706 0.665 0.54

Helpdesk 0.903 0.972 0.890 0.78 0.542 0.510 0.727 0.67

User mgmt 0.583 0.643 0.594 0.65 0.151 0.560 0.348 0.47

Dronology 1.000 0.670 0.680 0.77 0.370 0.607 0.588 0.66

ReqView 0.898 0.707 0.678 0.66 0.409 0.562 0.540 0.58

Leeds library 0.654 0.773 0.671 0.72 0.700 0.689 0.565 0.52

WASP 0.898 0.800 0.742 0.66 0.311 0.737 0.419 0.61

RepReq 0.579 0.825 0.587 0.688 0.625 0.319 0.453 0.554

rds4 0.190 0.533 0.685 0.681 0.925 0.838 0.792 0.68

rds8 0.600 0.422 0.601 0.619 0.837 0.794 0.711 0.637

rds9 0.805 0.607 0.614 0.625 0.622 0.497 0.474 0.501

rds12 0.988 0.587 0.608 0.689 0.910 0.555 0.628 0.717

OAppT 0.671 0.560 0.571 0.582 0.488 0.750 0.586 0.684

We analyzed the results from our experiments: precision, recall, and F1 score are

reported in Table 3.4, Table 3.5, Table 3.6 and Table 3.7 with two high-dimensional

feature sets that included the most informative features automatically selected through

scikit-learn libraries: the top-100 and the top-500.

21

Table 3.5. Top 100 features for our reproduction of [1] for OnlyF and OnlyQ.

Data set OnlyF OnlyQ

Prec Rec F1 AUC Prec Rec F1 AUC

PROMISE train 0.927 0.887 0.933 0.98 0.884 0.884 0.888 0.95

PROMISE test 0.870 0.870 0.911 0.94 0.896 0.852 0.873 0.91

PROMISE k-fold 0.766 0.630 0.681 0.86 0.741 0.798 0.766 0.82

PROMISE p-fold 0.752 0.475 0.573 0.81 0.683 0.794 0.728 0.81

Industry (macro-avg) 0.475 0.440 0.626 0.640 0.403 0.494 0.651 0.639

Industry (std-dev) ±.27 ±.19 ±.11 ±.10 ±.24 ±.13 ±.09 ±.09

ESA Euclid 0.068 0.174 0.686 0.48 0.708 0.524 0.581 0.64

Helpdesk 0.785 0.843 0.727 0.69 0.368 0.241 0.802 0.72

User mgmt 0.872 0.301 0.391 0.63 0.622 0.578 0.610 0.61

Dronology 0.783 0.529 0.567 0.66 0.050 0.500 0.794 0.74

ReqView 0.639 0.426 0.494 0.60 0.333 0.636 0.793 0.70

Leeds library 0.250 0.217 0.612 0.51 0.645 0.500 0.635 0.73

WASP 0.850 0.405 0.548 0.64 0.176 0.500 0.726 0.66

RepReq 0.400 0.600 0.653 0.736 0.300 0.222 0.533 0.447

rds4 0.111 0.667 0.869 0.879 0.847 0.581 0.577 0.620

rds8 0.234 0.244 0.759 0.579 0.604 0.587 0.608 0.639

rds9 0.293 0.415 0.548 0.545 0.261 0.353 0.632 0.619

rds12 0.397 0.622 0.669 0.716 0.098 0.667 0.608 0.683

OAppT 0.500 0.273 0.607 0.661 0.226 0.519 0.564 0.474

22

Table 3.6. Top 500 features for our reproduction of [1] for F and Q.

Data set F Q

Prec Rec F1 AUC Prec Rec F1 AUC

PROMISE train 0.981 0.984 0.982 0.997 0.985 1.000 0.990 1.000

PROMISE test 0.795 0.784 0.803 0.90 0.910 0.901 0.879 0.95

PROMISE k-fold 0.819 0.742 0.774 0.87 0.817 0.909 0.858 0.89

PROMISE p-fold 0.805 0.699 0.742 0.85 0.752 0.917 0.823 0.85

Industry (macro-avg) 0.755 0.680 0.690 0.746 0.614 0.573 0.590 0.606

Industry (std-dev) ±.21 ±.13 ±.10 ±.11 ±.22 ±.13 ±.12 ±.08

ESA Euclid 0.526 0.549 0.636 0.660 0.904 0.711 0.674 0.593

Helpdesk 0.914 0.972 0.901 0.865 0.767 0.451 0.797 0.736

User mgmt 0.898 0.627 0.780 0.854 0.191 0.680 0.420 0.575

Dronology 1.000 0.734 0.742 0.968 0.452 0.500 0.680 0.710

ReqView 0.961 0.653 0.678 0.858 0.410 0.500 0.552 0.611

Leeds library 0.698 0.682 0.682 0.729 0.667 0.557 0.482 0.449

WASP 0.915 0.782 0.742 0.639 0.344 0.579 0.532 0.603

RepReq 0.537 0.725 0.520 0.609 0.615 0.340 0.453 0.587

rds4 0.265 0.600 0.762 0.752 0.932 0.821 0.785 0.700

rds8 0.613 0.481 0.619 0.676 0.852 0.768 0.708 0.634

rds9 0.788 0.822 0.715 0.734 0.732 0.477 0.544 0.588

rds12 0.973 0.514 0.534 0.711 0.667 0.600 0.480 0.523

OAppT 0.728 0.702 0.664 0.642 0.456 0.464 0.564 0.566

23

Table 3.7. Top 500 features for our reproduction of [1] for OnlyF and OnlyQ.

Data set OnlyF OnlyQ

Prec Rec F1 AUC Prec Rec F1 AUC

PROMISE train 1.000 0.987 0.995 1.00 0.990 0.964 0.978 1.00

PROMISE test 0.863 0.815 0.892 0.96 0.859 0.753 0.809 0.90

PROMISE k-fold 0.818 0.674 0.732 0.90 0.785 0.808 0.795 0.82

PROMISE p-fold 0.816 0.515 0.616 0.86 0.745 0.802 0.770 0.81

Industry (macro-avg) 0.476 0.636 0.645 0.658 0.466 0.425 0.716 0.688

Industry (std-dev) ±.29 ±.21 ±.10 ±.10 ±.30 ±.25 ±.12 ±.14

ESA Euclid 0.149 0.478 0.682 0.634 0.693 0.490 0.559 0.633

Helpdesk 0.789 0.926 0.773 0.630 0.818 0.310 0.872 0.881

User mgmt 0.910 0.540 0.580 0.659 0.784 0.766 0.776 0.833

Dronology 0.820 0.603 0.629 0.719 0.000 0.000 0.866 0.816

ReqView 0.707 0.759 0.655 0.663 0.375 0.818 0.805 0.800

Leeds library 0.100 0.130 0.447 0.409 0.774 0.600 0.729 0.748

WASP 0.854 0.833 0.790 0.715 0.250 0.333 0.839 0.735

RepReq 0.378 0.700 0.613 0.710 0.158 0.111 0.467 0.362

rds4 0.074 0.667 0.800 0.892 0.886 0.590 0.608 0.654

rds8 0.230 0.378 0.708 0.652 0.653 0.566 0.639 0.712

rds9 0.351 0.815 0.518 0.585 0.378 0.275 0.737 0.660

rds12 0.354 0.622 0.622 0.611 0.106 0.556 0.689 0.560

OAppT 0.469 0.818 0.564 0.668 0.176 0.111 0.729 0.552

24

As a classifier, we used scikit-learn’s Support Vector Machines (SVM) implemen-

tation that we executed with the linear kernel. This is the same classifier that was used

in [1]. The ROC plot for top-500 is shown in Figure 3.3. and for top-100 is shown in

Figure 3.4.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.89)
Mean k-fold (AUC = 0.80 ± 0.08)
Mean p-fold (AUC = 0.78 ± 0.04)
ESA Euclid (AUC = 0.59)
Helpdesk (AUC = 0.78)
User mgmt (AUC = 0.67)
ReqView (AUC = 0.66)
Leeds library (AUC = 0.72)
Reqreq (AUC = 0.69)
Rds4 (AUC = 0.68)
Rds8 (AUC = 0.62)
Rds9 (AUC = 0.62)
Rds12 (AUC = 0.69)
OAppT (AUC = 0.58)
± 1 std. dev. from k-fold

(a) Functional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.92)
Mean k-fold (AUC = 0.84 ± 0.10)
Mean p-fold (AUC = 0.80 ± 0.04)
ESA Euclid (AUC = 0.54)
Helpdesk (AUC = 0.67)
User mgmt (AUC = 0.47)
Dronology (AUC = 0.66)
ReqView (AUC = 0.58)
Leeds library (AUC = 0.52)
WASP (AUC = 0.61)
Reqreq (AUC = 0.55)
Rds4 (AUC = 0.68)
Rds8 (AUC = 0.64)
Rds9 (AUC = 0.50)
Rds12 (AUC = 0.72)
OAppT (AUC = 0.68)
± 1 std. dev. from k-fold

(b) Quality

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.94)
Mean k-fold (AUC = 0.86 ± 0.07)
Mean p-fold (AUC = 0.81 ± 0.04)
ESA Euclid (AUC = 0.48)
Helpdesk (AUC = 0.69)
User mgmt (AUC = 0.63)
Dronology (AUC = 0.66)
ReqView (AUC = 0.60)
Leeds library (AUC = 0.51)
WASP (AUC = 0.64)
Reqreq (AUC = 0.74)
Rds4 (AUC = 0.88)
Rds8 (AUC = 0.58)
Rds9 (AUC = 0.55)
Rds12 (AUC = 0.72)
OAppT (AUC = 0.66)
± 1 std. dev. from k-fold

(c) Only Functional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.91)
Mean k-fold (AUC = 0.82 ± 0.10)
Mean p-fold (AUC = 0.81 ± 0.05)
ESA Euclid (AUC = 0.64)
Helpdesk (AUC = 0.72)
User mgmt (AUC = 0.65)
ReqView (AUC = 0.70)
Leeds library (AUC = 0.73)
Reqreq (AUC = 0.45)
Rds4 (AUC = 0.62)
Rds8 (AUC = 0.64)
Rds9 (AUC = 0.62)
Rds12 (AUC = 0.68)
OAppT (AUC = 0.47)
± 1 std. dev. from k-fold

(d) Only Quality

Figure 3.3. ROC plots for the top 500 features: F (top-left), Q (top-right), OnlyF

(bottom-left), OnlyQ (bottom-right).

For the top-500 features setting in Table 3.6 and Table 3.7, the results for Q

outperform those for F and OnlyF on the PROMISE-derived validation data sets (test,

k-fold, and p-fold), especially in terms of recall. Conversely, in the industrial data

sets, the results for F are way worse. However, In both top-100 and top-500, the

classifiers perform best on the F class, especially in industry data sets. A possible

reason is that this is the majority class in the dataset: 1513 out of 2514 rows possess

a functional aspect, according to the taggers. An exception is the ESA Euclid dataset,

which performs much better with Q.

The performance of the classifiers in identifying quality aspects (Q, OnlyQ) de-

grades considerably with the industry data sets.

25

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.90)
Mean k-fold (AUC = 0.87 ± 0.05)
Mean p-fold (AUC = 0.85 ± 0.04)
ESA Euclid (AUC = 0.66)
Helpdesk (AUC = 0.86)
User mgmt (AUC = 0.85)
ReqView (AUC = 0.86)
Leeds library (AUC = 0.73)
Reqreq (AUC = 0.61)
Rds4 (AUC = 0.75)
Rds8 (AUC = 0.68)
Rds9 (AUC = 0.73)
Rds12 (AUC = 0.71)
OAppT (AUC = 0.64)
± 1 std. dev. from k-fold

(a) Functional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.95)
Mean k-fold (AUC = 0.89 ± 0.05)
Mean p-fold (AUC = 0.85 ± 0.07)
ESA Euclid (AUC = 0.59)
Helpdesk (AUC = 0.74)
User mgmt (AUC = 0.57)
Dronology (AUC = 0.71)
ReqView (AUC = 0.61)
Leeds library (AUC = 0.45)
WASP (AUC = 0.60)
Reqreq (AUC = 0.59)
Rds4 (AUC = 0.70)
Rds8 (AUC = 0.63)
Rds9 (AUC = 0.59)
Rds12 (AUC = 0.52)
OAppT (AUC = 0.57)
± 1 std. dev. from k-fold

(b) Quality

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.96)
Mean k-fold (AUC = 0.90 ± 0.05)
Mean p-fold (AUC = 0.86 ± 0.07)
ESA Euclid (AUC = 0.63)
Helpdesk (AUC = 0.63)
User mgmt (AUC = 0.66)
Dronology (AUC = 0.72)
ReqView (AUC = 0.66)
Leeds library (AUC = 0.41)
WASP (AUC = 0.72)
Reqreq (AUC = 0.71)
Rds4 (AUC = 0.89)
Rds8 (AUC = 0.65)
Rds9 (AUC = 0.59)
Rds12 (AUC = 0.61)
OAppT (AUC = 0.67)
± 1 std. dev. from k-fold

(c) Only Functional

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.89)
Mean k-fold (AUC = 0.87 ± 0.06)
Mean p-fold (AUC = 0.86 ± 0.03)
ESA Euclid (AUC = 0.63)
Helpdesk (AUC = 0.88)
User mgmt (AUC = 0.83)
ReqView (AUC = 0.80)
Leeds library (AUC = 0.75)
Reqreq (AUC = 0.36)
Rds4 (AUC = 0.65)
Rds8 (AUC = 0.71)
Rds9 (AUC = 0.66)
Rds12 (AUC = 0.56)
OAppT (AUC = 0.55)
± 1 std. dev. from k-fold

(d) Only Quality

Figure 3.4. ROC plots for the top 100 features: F (top-left), Q (top-right), OnlyF

(bottom-left), OnlyQ (bottom-right).

26

Some key examples are Q, losing ∼0.3 in recall and ∼0.2 precision in both cases, com-

pared to PROMISE, and OnlyQ, whose recall worsens ∼0.3 for top-100 and ∼0.2 for

top-500. The performance for OnlyF and OnlyQ on industrial data sets shows high

variance; the standard deviation for their precision is in the [0.25, 0.31] range. An

indication that the feature set did not lead to a general classifier.

Results for Q and OnlyF clearly illustrate that a significant degradation occurs

when applying the classifier, trained on PROMISE, to more heterogeneous datasets

like the industrial ones. The top-100 ROC plots show a similar situation, with the

difference that two data sets (ReqView and User mgmt) outperform PROMISE-test in

the F and OnlyQ settings. This is probably explained by class imbalance (75:11 and

126:12).

3.5. Classification using Dependency Parsing and Linguistic Features

With the mixed results of the industrial data sets after applying on our reference

classifier, we use linguistic features like dependency types. Dependency types can

improve the determination of whether a requirement contains functional or quality

aspects. We test three selected feature sets on PROMISE and the industrial data sets

through an SVM classifier configured as in Section 3.4 After introducing dependency

parsing (Section 3.5.1), we use interpretable ML tools to select a feature subset that

performs well and has a low size (Section 3.5.2).

3.5.1. Feature Creation with Dependency Parsing and Linguistic Features

Dependency parsing [12] is the task of identifying the grammatical structure of a

sentence by determining the linguistic dependencies between the words. For instance,

in the requirement ‘The system shall clear the history every 2 hours’, ‘history’ is the

direct object (dobj) of the main (root) verb ‘clear’, ‘shall’ is the auxiliary verb (aux)

that affects ‘clear’, ‘2’ is the numeric modifier (nummod) of ‘hours’, etc. Each of these

relationships is a dependency type.

27

Figure 3.5 shows some examples from from our data sets showing the dependency types

included as features in our approach.

Figure 3.5. Example Requirements from data sets showing the dependency types.

For the creation of the features that we test, we adopt the following approach:

We consider two categories of linguistic information: dependency types (e.g., nummod

and dobj) and branches of the dependency tree of a requirement (e.g., a branch from

the ROOT to a det passing through a dobj). For example, in the sentence ‘clear the

history’, the branch type ROOT → dobj → det connects the root verb ‘clear’ to the

determinant ‘the’ via the direct object ‘history’. We also consider the combination of

two and three of them together (i.e., two/three dependency types or two/three branches

together in the same requirement). In summary, we analyze six groups of linguistic

features:

(i) single dependency types;

(ii) combinations of two dependency types;

(iii) combinations of three dependency types;

(iv) types of branches

(v) combinations of two types of branches together

(vi) combinations of three types of branches together

28

After determining the type of features to be considered, we analyze the set of

requirements to determine the values (the existence) of these features and the results

against the tags of the requirements (F, Q, F+Q, OnlyFor OnlyQ). We calculate the

coverage (percentage) of each feature for these four tags. For example, the direct

object dependency (dobj) dependency is present in 90% of all requirements, the direct

object and determinant (det) occur together in 60% of OnlyFrequirements and 30% of

OnlyQrequirements. We calculate the coverage difference between OnlyQ and OnlyF

and sort the above-described features by the difference for each of the six groups:

∆ = |cov(OnlyQ) − cov(OnlyF)|, determining the ones that are more common in

quality requirements but not in functional (highest ∆) and vice versa.

We inspect the 10 most significant (i.e. highest ∆) features for each category and

determine several sets of features by combining differently some of them. The three of

them performed better on average:

• Feature Set 1: The top 10 single dependency features plus other single dependency

features that appeared in the top 10 combinations of two or three dependency

types and that were not in the first ten selected. This resulted in 17 different

dependency types.

• Feature Set 2: We take the top 10 features of each of the six groups, and we filter

only those features with ∆ > 0.2. This resulted in 12 different linguistic features.

To those we add additional features that were used in the literature [1, 20]:

(i) length of the requirement in characters;

(ii) the number of modals,

(iii) the number of adjectives,

(iv) the number of nouns,

(v) the number of adverbs,

(vi) the number of cardinals,

(vii) the number of comparative and superlative adjectives,

(viii) the number of comparative and superlative adverbs,

(ix) the number of words;

29

(x) the number of constituency parse subtrees in the requirement,

(xi) the height of the consistency parse tree,

(xii) the max height of the dependency tree of a sentence of a given requirement,

(xiii) the number of adverbial modifiers that link a verb to an adverb:

x
advmod−−−−→ y. x : VERB , y : ADV

(xiv) the number of adjectival modifiers that link a noun to an adjective, and the

noun is not the subject of the sentence:

x
amod−−−→ y. x : NOUN , y : ADJ , @z. z nsubj−−−→ x

(xv) the number of adjectival phrases that complement a verb, and the adjectival

phrase head differs from the word ‘able’:

x
acomp−−−→ y. x : VERB , y : ADJ , y 6= ′able ′

In total, Feature Set 2 includes 27 features.

• Feature Set 3: The 10 most significant features for each of the six categories of

linguistic information above-described plus the features in Feature Set 2. In total

this resulted in 60+12+3=75 different linguistic features.

Table 3.8 reports the results that we obtained with an SVC classifier using feature

sets 1, 2, and 3, for 75/25 on PROMISE and for the average ind. We can notice how

the results are comparable to the results obtained with the approach of Kurtanovic and

Maalej, reported in Table 3.6 and Table 3.7. Differently from Kurtanovic and Maalej

we only use a limited number of features and do not rely on lexical information but

only on more general linguistic features. The advantage of using linguistic features

comes from their interpretability and generality. Having a set of lexical information as

features makes it hard to understand the reasons why a requirement is classified with

a certain class.

30

Linguistic features, instead, give us insights into the rationale behind the classification.

For instance, the presence of the three dependency types aux, dobj and det indicates

the presence in a requirement (e.g., in “The system shall have the...”) of a structure

such as shall have the, which is typical of functional requirements. The same three

dependencies capture also analogous requirements that however use different lexicon

(e.g., must instead of shall), without the need of specifying every possible word as a

feature.

3.5.2. Feature selection via interpretable ML

Best performing classifiers are the ones that are most complex and most difficult

to explain their predictions. Although various visualizations have been developed,

domain experts with little knowledge of machine learning have been quite neglected.

With the growing adoption of ML techniques, there is an increasing trend towards

making ML systems more transparent and interpretable [44]. Therefore, we employ

two tools that facilitate the interpretation of ML classifiers.

Ming et al. [13] provide an interactive visualization technique to help users with

little expertise in ML to understand, explore and validate predictive models. In this

technique, they extract a standardized rule-based knowledge representation from its

input-output behavior and design a RuleMatrix, a matrix-based visualization of rules

to help users navigate and verify the rules and the black-box model.

SkopeRules [45] is another interpretable model that generates a list of rules but

does not visualize them. Under the hood, SkopeRules applies a bagging estimator

training where multiple decision tree classifiers are trained. The best rules are selected

based on their performance trying to avoid duplicate rules. However, this approach

mainly differs in the way that decision rules are chosen. Given the interpretable nature

of the features that we identified, we aim at understanding better why requirements

were classified as F or Q by our classifier.To do so, we use SkopeRules and RuleMatrix,

and we identify rules of the form if-then-else that are used to classify the requirements.

31

Table 3.8. Precision, Recall, and F1-score with the three feature sets.

Set Data set F Q

Prec Rec F1 AUC Prec Rec F1 AUC

FS 1 PROMISE test 0.67 0.73 0.70 0.73 0.84 0.75 0.75 0.78

Ind.(macro-avg) 0.71 0.81 0.71 0.63 0.63 0.52 0.60 0.60

Ind.(std-dev) ±.22 ±.10 ±.13 ±.15 ±.24 ±.16 ±.10 ±.07

FS 2 PROMISE test 0.67 0.81 0.72 0.76 0.85 0.78 0.77 0.81

Ind.(macro-avg) 0.78 0.93 0.80 0.74 0.58 0.28 0.62 0.60

Ind.(std-dev) ±.17 ±.08 ±.13 ±.09 ±.24 ±.15 ±.13 ±.08

FS 3 PROMISE test 0.70 0.74 0.73 0.76 0.86 0.83 0.80 0.84

Ind.(macro-avg) 0.71 0.85 0.72 0.69 0.69 0.39 0.59 0.58

Ind.(std-dev) ±.23 ±.11 ±.14 ±.12 ±.22 ±.17 ±.12 ±.09

Set Data set OnlyF OnlyQ

Prec Rec F1 AUC Prec Rec F1 AUC

FS 1 PROMISE test 0.61 0.74 0.75 0.78 0.73 0.68 0.70 0.73

Ind.(macro-avg) 0.71 0.60 0.62 0.61 0.71 0.31 0.56 0.58

Ind.(std-dev) ±.23 ±.16 ±.12 ±.12 ±.20 ±.14 ±.12 ±.06

FS 2 PROMISE test 0.65 0.78 0.78 0.83 0.78 0.62 0.71 0.76

Ind.(macro-avg) 0.83 0.82 0.77 0.77 0.76 0.17 0.59 0.57

Ind.(std-dev) ±.18 ±.12 ±.10 ±.07 ±.20 ±.10 ±.16 ±.11

FS 3 PROMISE test 0.67 0.65 0.77 0.85 0.75 0.69 0.72 0.76

Ind.(macro-avg) 0.74 0.71 0.70 0.65 0.78 0.19 0.53 0.59

Ind.(std-dev) ±.23 ±.15 ±.11 ±.10 ±.18 ±.11 ±.13 ±.07

32

We report here an example of the set of rules identified using Feature Set 1 to

classify functional requirements from the PROMISE data set. We report the simplest

example of rules, even though not the best in performance, to avoid a too verbose

section. SkopeRules identifies the following 3 exclusive rules. Requirements that fall

in one of these rules are classified as functional, the remaining ones as not functional.

(i) ¬advmod ∧ dobj ∧ nsubj ∧ ¬nsubjpass ∧ ¬nummod

(ii) ¬acl ∧ dobj ∧ ¬nmod ∧ nsubj ∧ ¬nummod

(iii) acl ∧ dobj ∧ nsubj ∧ ¬nummod ∧ pobj

For instance, the first rule states that requirements, where there is a direct object

dependency and the nominal subject of the sentence is not passive, and where there

is neither a numeric nor an adverbial modifier, should be classified as functional. An

example of such type of requirement is “The system shall display Events or Activities”.

Noting that with 3 simple rules that make use of only 8 different features, SkopeRules

reaches a precision of 0.69 and a recall of 0.73 on the PROMISE test set, which is not

that far from Kurtanovic and Maalej’s results (see Table ?? and Table 3.7).

For the same feature set, RuleMatrix identifies the following rule. Each ‘if’ state-

ment denotes one rule. Rules are therefore applied in cascade: a rule can fire only if

none of the previous ones are fired. Additionally, a pair [p,q] in the rule indicates

probability q for the class functional, and probability p for the class not functional.

We refer to the original paper [13] for a detailed explanation of the visualization.

Each row corresponds to one of the above reported if statements. Such statements are

applied in cascade, this is represented via the waterfall diagram on the left of the figure

and the horizontal flow represents the amount of data satisfying the condition. Each

column (e.g., nummod and dobj) represents one feature. Each feature has a grey area

in the rows where such feature is considered and shows which values of the features

are captured by the condition (e.g., condition 2 is activated for value 1 of feature

nummod).

33

Column Output contains the probability of classifying a requirement with the class

indicated by the color of the numerical value (e.g., requirements that satisfy condition

2 are classified as NFR with probability 1). Column Fidelity indicates the fidelity

of such a rule with the outcome from the original classifier when the same conditions

apply. Finally, column Evidence describes the amount of data correctly and wrongly

predicted.

The three rules identified by RuleMatrix, for example, are similar to, but simpler

than those produced by SkopeRule. RuleMatrix’s ruleset uses only two features: dobj

and nummod, and the rules reach a performance that is very similar to Feature Set

1’s classifier on PROMISE for the F problem: a precision of 69% and a recall of 73%

with only two features. Note that this is only 8% and 4% less than the results of the

high-dimensional, word-level classifier with the top-500 features.

RuleMatrix and SkopeRules are powerful machine learning tools that allow the

analysis of the output of a classifier. A simple visual exploration of the rules generated

by such tools allows us to select a set of 15 most meaningful features starting from the

three feature sets. Such set can be used for all the classification tasks we performed (F,

Q, OnlyF and OnlyQ). Table 3.9 reports the results with such a feature set. The results

show that the selected 15 most meaningful features, as expected, perform analogously

to the three feature sets Feature Set 1, Feature Set 2, Feature Set 3. If compared to

the results of Table 3.6 and Table 3.7, despite the performances are generally worst in

the case of PROMISE, the performances in classifying functional (and especially only

functional) requirements are better on average on the industrial data sets.

34

IF dobj THEN prob: [0.0133 , 0.9867]

ELSE IF nummod THEN prob: [0.9981 , 0.0019]

ELSE IF ¬dobj THEN prob: [0.0011 , 0.9989]

ELSE DEFAULT prob: [0.9504 , 0.0496]

IF nummod THEN prob: [0.9761 , 0.0239]

ELSE IF ¬dobj THEN prob: [0.9503 , 0.0497]

ELSE DEFAULT prob: [0.0011 , 0.9989]

Figure 3.6. Interactive rule visualization interface of RuleMatrix.

3.5.3. Enhancing the Feature Selection with Features for Root Verbs

After observing the loss of performance with Q and OnlyQ, we combine the idea

that uses keywords as features for non-functional requirement [4] with the dependency

type root, the main verb of a sentence to improve the performance of our feature set for

quality aspects. We identify two lists of root verbs that frequently occur in OnlyF and

OnlyQ requirements: We select a list of root verbs in the data sets that occur 3 times

more often in requirements tagged with quality aspects rather than in requirements

tagged with functional aspects, and vice versa.

35

Table 3.9. Results with the features selected by Skoperules and Rulematrix.

Target Dataset Prec Rec F1 AUC

F
PROMISE 0.67 0.73 0.69 0.75

Industry 0.83 ± 0.16 0.87 ± 0.08 0.8 ± 0.09 0.69 ± 0.09

Q
PROMISE 0.83 0.75 0.75 0.79

Industry 0.57 ± 0.18 0.36 ± 0.14 0.65 ± 0.09 0.62 ± 0.05

OnlyF
PROMISE 0.71 0.64 0.69 0.74

Industry 0.82 ± 0.19 0.78 ± 0.15 0.75 ± 0.1 0.67 ± 0.13

OnlyQ
PROMISE 0.84 0.64 0.71 0.78

Industry 0.63 ± 0.2 0.29 ± 0.12 0.65 ± 0.12 0.58 ± 0.05

We also list verbs with functional prevalence, each occurring 3 times more often in

OnlyF than in OnlyQ as well as in F than in Q; and similarly list verbs with quality

prevalence. We set a minimum threshold of 10 occurrences in our data sets to exclude

rare verbs.

Table 3.10 lists the final feature set using definitions adapted from the Universal

Dependencies project [46], a worldwide attempt to reconcile the existing dependency

parsing tag sets. Based on these verbs, listed in Table 3.10, we integrate the 15 most

meaningful features from Section 3.5.2, with two additional boolean features fverb and

qverb, which are true when a requirement contains one of the verbs in the list of most

frequent verbs respectively in OnlyF and OnlyQ as a root verb, and we obtain a final

feature set composed by 17 features. Table 3.11 reports the results obtained using such

features for the classification.

36

Table 3.10. The final feature set.

Name Tag Description

Adjectival clause acl Clause that acts as an adjective and modifies

a nominal.

Adverbial modifier advmod Adverb or adverbial phrase that modifies a

predicate or a modifier word.

Adjectival modifier amod Adjectival phrase modifying a (pro)noun.

Passive auxiliary auxpass Non-main verb of the clause that contains

passive information.

Direct object dobj The noun phrase that denotes the entity

acted upon.

Nominal subject nsubj The nominal phrase which is the syntactic

subject of a clause.

Nominal modifier nmod Noun acting as a non-core argument.

Numeric modifier nummod Number phrase that modifies the meaning

of a noun with a quantity.

Passive nominal nsubjpass Noun phrase which is the syntactic subject

subject of a passive clause.

Object of preposition pobj Link between a preposition and its object

Prepositional modifier prep A prepositional phrase that modifies the

meaning of a verb, adjective, noun or another

prep.

Adjectival complement acomp Number of adjectival phrases that function as

complements of a verb

(only root verbs included).

Cardinal CD Number of cardinal numbers (POS tag).

Modal MD Number of modal verbs (POS tag).

Adverb RB Number of adverbs (POS tag).

37

Table 3.10. The final feature set. (cont.)

Functional verb fverb Is the root verb one of {allow, display, send,

track, include, notify, shall, add, assign, gen-

erate, request, create, define, record, indicate,

save}?

Quality verb qverb Is the root verb one of {be, use, ensure,

interface, handle, take, comply, run}?

While the results for F are comparable to those of Table 3.9, the additional

features provide a slight improvement for OnlyQ and significantly better results for

Q the recall on the industrial data sets increased from 0.36 to 0.70. Conversely, the

features lead to a lower recall for OnlyF: -0.28. Further exploration is necessary to

determine which are the appropriate linguistic features that denote quality aspects.

Finally, comparing our results to the top-500 version of the high-dimensional classifier

of Section 3.4, we observe that:

• On PROMISE, the results are slightly worse, but the degradation is limited (max

-0.12);

• On the industry data sets, our approach shows substantial improvements in recall

for F (+0.2), OnlyQ (+0.15), and especially OnlyF (+0.35).

• For the OnlyQ target, our approach is considerably worse in recall (-0.3), but

shows a large gain in precision (+0.23).

• In our paper, we had used a subset of data sets, not all industrial data sets. Com-

paring the results with the paper, the results we obtained using the full data sets

are worse. The performance of the newer industrial data sets turned out to have

a much lower performance in F and Q both for our feature sets and our reference

classifier so that the overall averages are lower (-0.8) compared the paper.

38

• The ROC plot of Figure 3.7 shows that, for the F case, a classifier with our

features trained on PROMISE does not degrade on the industrial data sets. The

plots for the other targets, instead, are similar to those in Figure 3.3.

Table 3.11. Results with additional features for root verbs.

Target Data Set Prec Rec F1 AUC

F
PROMISE 0.71 0.76 0.73 0.78

Industry 0.82 ± 0.16 0.87 ± 0.09 0.8 ± 0.09 0.80 ± 0.09

Q
PROMISE 0.77 0.80 0.92 0.80

Industry 0.55 ± 0.22 0.70 ± 0.11 0.65 ± 0.09 0.68 ± 0.07

OnlyF
PROMISE 0.77 0.83 0.72 0.82

Industry 0.89 ± 0.16 0.50 ± 0.17 0.61 ± 0.11 0.80 ± 0.08

OnlyQ
PROMISE 0.71 0.75 0.78 0.64

Industry 0.73 ± 0.16 0.32 ± 0.09 0.64 ± 0.11 0.66 ± 0.07

Figure 3.7. ROC plot for F with the final 17 features.

39

Figure 3.8. ROC plot for OnlyQ with the final 17 features.

3.5.4. Experimental Feature Selection with Automated Feature Selection

We apply additional experiments using automated feature selection algorithms to

compare the performance of the automated feature selection algorithms and to see if

we can improve the performance of our feature selection. As the most extended feature

set with 75 features, we use Feature Set 3 (FS3) that we obtained in Section 3.5.1

as the basis to apply the automated feature selection algorithms. We select several

algorithms using the known methods as well as some known phyton libraries, to see

the applicability in industrial data sets. The source codes for our experiments can be

found publicly in github [47]. We apply the following algorithms:

40

• Forward Feature Selection: This algorithm is a wrapper method which has a

mining algorithm and uses the performance as its evaluation criteria to search

and find the best feature [48].

In the forward feature selection, the feature that performs the best is selected

from all features which is tried in combination with all the other features. The

number of features to be selected are defined at the beginning, so that the selection

process continues until the specified number of features are selected. With this

approach, the critical decision factor is to set the right number of target features

to find the optimal feature set.

In our experiments, we limited the number of features as 17 to compare the

results set with the most successful feature set that we obtained in Section 3.5.3.

Even with this limited feature set, the execution of the selection algorithm lasted

around 4 hours for each F and Q, and the selected feature set was quite different

from ours and the results were not impressive. After applying our classifier, the

ROC Plot for F with the 17 Features selected using FFS from Feature Set 3 can

be found in Figure 3.9 and Figure 3.10.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test (AUC = 0.78)
Mean k-fold (AUC = 0.71 ± 0.10)
Mean p-fold (AUC = 0.73 ± 0.07)
ESA Euclid (AUC = 0.64)
Helpdesk (AUC = 0.77)
User mgmt (AUC = 0.93)
ReqView (AUC = 0.73)
Leeds library (AUC = 0.75)
Reqreq (AUC = 0.43)
Rds4 (AUC = 0.67)
Rds8 (AUC = 0.61)
Rds9 (AUC = 0.58)
Rds12 (AUC = 0.67)
OAppt (AUC = 0.56)
± 1 std. dev. from k-fold

Figure 3.9. FFS - ROC Plot for F with selected features by FFS from FS 3.

• Exhaustive Feature Selection: Being another wrapper algorithm, the exhaustive

feature selection evaluates the performance of the classifier against all possible

combinations of the features in the data set.

41

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Promise test (AUC = 0.85)
Mean k-fold (AUC = 0.82 ± 0.06)
Mean p-fold (AUC = 0.80 ± 0.05)
ESA Euclid (AUC = 0.64)
Helpdesk (AUC = 0.65)
User mgmt (AUC = 0.62)
Dronology (AUC = 0.56)
ReqView (AUC = 0.52)
Leeds library (AUC = 0.56)
WASP (AUC = 0.57)
Reqreq (AUC = 0.52)
Rds4 (AUC = 0.61)
Rds8 (AUC = 0.48)
Rds9 (AUC = 0.53)
Rds12 (AUC = 0.37)
OAppt (AUC = 0.60)
± 1 std. dev. from k-fold

Figure 3.10. FFS - ROC Plot for Q with selected features by FFS from FS 3.

The feature subset that returns the best performance is selected. However, since

it tries all the combinations of features and selects the best and therefore, the

execution had performance problems. We wanted to select the best 17 features

from the Feature Set 3, which had 75 features to compare the feature set and

its results to our best selection, however, it was not possible to conclude the ex-

ecution of the selection algorithm, even after running the algorithm in a few days.

• Genetic Feature Selection: Genetic algorithms are global optimization techniques

for searching big data, like a sort of randomized search. They work throughout

combinations of possible solutions, wherein each solution in the search space is

represented as a finite length string over some finite set of symbols, which then

uses an objective function to evaluate the suitability of each solution. In terms

of feature selection, each string will represent a feature subset, and it will be

represented with binary encoding: 1 means “choose” a given feature, and 0 means

“do not choose” a feature. So for instance, the string 1001 means choose the first

and the last feature as a feature subset [49].

42

Our genetic algorithm based on “Select from model” which is one of sklearn’s

built-in feature selection methods did not provide a satisfactory simplification

in the number of features (53 features for Functional and 43 features for Non-

functional requirements) nor in the results of the classifier. After applying our

classifier, the ROC Plot for F with the 53 Features selected using Genetic Algo-

rithm from Feature Set 3 can be found in Figure 3.11, and the ROC Plot for Q

with the 53 Features selected using Genetic Algorithm from Feature Set 3 can be

found in Figure 3.12.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test (AUC = 0.75)
Mean k-fold (AUC = 0.72 ± 0.12)
Mean p-fold (AUC = 0.74 ± 0.08)
ESA Euclid (AUC = 0.57)
Helpdesk (AUC = 0.73)
User mgmt (AUC = 0.89)
ReqView (AUC = 0.73)
Leeds library (AUC = 0.78)
Reqreq (AUC = 0.53)
Rds4 (AUC = 0.64)
Rds8 (AUC = 0.66)
Rds9 (AUC = 0.55)
Rds12 (AUC = 0.48)
OAppt (AUC = 0.57)
± 1 std. dev. from k-fold

Figure 3.11. Genetic Algorithm - ROC Plot for F with selected features by GA from

Feature Set 3.

• Featurewiz : Featurewiz is a python library to find the best features in a data

set using the data frame and the name of the target feature. It removes highly

correlated features automatically and then recursively does feature selection [50].

Featurewiz uses two back-to-back methods to remove any unnecessary features;

SULOV (Searching for Uncorrelated List of Variables) and Recursive XGBoost.

SULOV means Searching for Uncorrelated List of Variables. It finds all pairs of

highly correlated variables exceeding a limit and assigns a score for that pair.

After that, it removes the one with the lower score. Then, it uses the XGBoost

to repeatedly find the best features among the remaining variables after SULOV.

43

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Promise test (AUC = 0.85)
Mean k-fold (AUC = 0.80 ± 0.07)
Mean p-fold (AUC = 0.81 ± 0.05)
ESA Euclid (AUC = 0.61)
Helpdesk (AUC = 0.69)
User mgmt (AUC = 0.74)
Dronology (AUC = 0.57)
ReqView (AUC = 0.56)
Leeds library (AUC = 0.56)
WASP (AUC = 0.59)
Reqreq (AUC = 0.55)
Rds4 (AUC = 0.63)
Rds8 (AUC = 0.51)
Rds9 (AUC = 0.57)
Rds12 (AUC = 0.38)
OAppt (AUC = 0.61)
± 1 std. dev. from k-fold

Figure 3.12. Genetic Algorithm - ROC Plot for Q w ith selected features by GA from

Feature Set 3.

The Recursive XGBoost method selects all variables in the data set and the

full data split into train and valid sets. It finds top X features on the train data

set and repeats these multiple times to find the best features [51]. We have ob-

tained the best results using Featurewiz, even better than our reference classifier

as well as the final feature set we used in our paper. However, we realized that

each time we execute the feature selection, Featurewiz returns different feature

sets, which may end up with different results, therefore we concluded that this

selection algorithm is not stable and reliable for now, and we decided to try a

very similar but stable version, which is AutoVIML.

• AutoVIML Selection Algorithm: Auto-ViML is an open-source project that cre-

ates select the features, and builds a highly interpretable model based on the

features [51]. AutoViML removes highly correlated variables and uses important

features from XGBoost Tree Algorithm. Using this method, from 75 features, we

ended up with 20 important functional features and 16 non-functional features.

Figure 3.13 and Figure 3.14 display the importance level of respective features.

After applying our classifier, the ROC Plot for F with the 20 Features selected

using AutoVIML from Feature Set 3 can be found in Figure 3.15 and the ROC

Plot for Q with the 16 Features from Feature Set 3 can be found in Figure 3.16.

44

Figure 3.13. AutoVIML - Feature Importances for predicting F.

Figure 3.14. AutoVIML - Feature Importances for predicting Q.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test (AUC = 0.79)
Mean k-fold (AUC = 0.76 ± 0.11)
Mean p-fold (AUC = 0.75 ± 0.08)
ESA Euclid (AUC = 0.62)
Helpdesk (AUC = 0.70)
User mgmt (AUC = 0.88)
ReqView (AUC = 0.84)
Leeds library (AUC = 0.70)
Reqreq (AUC = 0.51)
Rds4 (AUC = 0.70)
Rds8 (AUC = 0.63)
Rds9 (AUC = 0.57)
Rds12 (AUC = 0.59)
OAppt (AUC = 0.56)
± 1 std. dev. from k-fold

Figure 3.15. AutoVIML - ROC Plot for F with selected features by AutoVIML from

Feature Set 3.

45

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Promise test (AUC = 0.85)
Mean k-fold (AUC = 0.82 ± 0.05)
Mean p-fold (AUC = 0.81 ± 0.05)
ESA Euclid (AUC = 0.66)
Helpdesk (AUC = 0.66)
User mgmt (AUC = 0.71)
Dronology (AUC = 0.60)
ReqView (AUC = 0.46)
Leeds library (AUC = 0.57)
WASP (AUC = 0.53)
Reqreq (AUC = 0.53)
Rds4 (AUC = 0.66)
Rds8 (AUC = 0.48)
Rds9 (AUC = 0.58)
Rds12 (AUC = 0.31)
OAppt (AUC = 0.62)
± 1 std. dev. from k-fold

Figure 3.16. AutoVIML - ROC Plot for Q with selected features by AutoVIML from

Feature Set 3.

• Recursive Feature Selection: The recursive feature elimination (RFE) selects fea-

tures by grouping the features smaller and smaller recursively. The algorithm is

trained on the initial set of features and each feature is assigned a value. This

value is either through a coefficient attribute or through an importance attribute.

Then, the least important features are removed from the current set of features.

This process is recursively repeated on the feature set until the desired number of

features to select is eventually reached [52]. This method returned the best result

consistent feature set with 28 features for functional and 10 for non-functional

requirements. Figure 3.17 and Figure 3.18 display the importance level of fea-

tures.

After applying our classifier, the ROC Plot for F with the 28 Features selected

using Recursive Selection from Feature Set 3 can be found in Figure 3.19 and

the ROC Plot for Q with the 10 Features selected using Recursive Selection from

Feature Set 3 can be found in Figure 3.20.

• A hybrid approach applying first Recursive then AutoVIML selection: Since we

did not achieve a big simplification in the number of features using the Recursive

Feature Selection, we decided to try combinations. First, we chose to apply

AutoVIML selection algorithm to the feature set selected by Recursive Selection.

46

Figure 3.17. RFE - Feature Importances for predicting F.

Figure 3.18. RFE - Feature Importances for predicting Q.

47

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test (AUC = 0.80)
Mean k-fold (AUC = 0.76 ± 0.10)
Mean p-fold (AUC = 0.76 ± 0.07)
ESA Euclid (AUC = 0.58)
Helpdesk (AUC = 0.84)
User mgmt (AUC = 0.86)
ReqView (AUC = 0.71)
Leeds library (AUC = 0.76)
Reqreq (AUC = 0.49)
Rds4 (AUC = 0.63)
Rds8 (AUC = 0.66)
Rds9 (AUC = 0.60)
Rds12 (AUC = 0.69)
OAppt (AUC = 0.54)
± 1 std. dev. from k-fold

Figure 3.19. Recursive Feature Selection - ROC Plot for F with selected features by

RFE from Feature Set 3.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test (AUC = 0.86)
Mean k-fold (AUC = 0.84 ± 0.06)
Mean p-fold (AUC = 0.82 ± 0.05)
ESA Euclid (AUC = 0.65)
Helpdesk (AUC = 0.71)
User mgmt (AUC = 0.71)
Dronology (AUC = 0.59)
ReqView (AUC = 0.42)
Leeds library (AUC = 0.60)
WASP (AUC = 0.60)
Reqreq (AUC = 0.51)
Rds4 (AUC = 0.63)
Rds8 (AUC = 0.49)
Rds9 (AUC = 0.56)
Rds12 (AUC = 0.43)
OAppt (AUC = 0.57)
± 1 std. dev. from k-fold

Figure 3.20. Recursive Feature Selection - ROC Plot for Q with selected features by

RFE from Feature Set 3.

48

This experiment resulted in 14 features, however, the results were slightly worse

than the Recursive Selection.

• A hybrid approach applying first AutoVIML then Recursive selection: As the next

attempt, we applied the recursive selection to the 20 features that were selected

with AutoVIML, which ended with 17 features and the results were disappointing.

The results of our experiments can be found in Table 3.12 and Table 3.13. Due

to space constraints, we do not list the features selected by each algorithm, however,

all features selected can be found in B and C. Using the automated feature selection,

although we have achieved a simplification of the feature set, the features selected by

each experiment was completely different from each other, and the results did not bring

any improvement compared to the results we obtained using the feature set we chose

using interpretable machine learning components.

Table 3.12. AUC Comparison of all feature sets for F classifier target.

Feature Selection # Feat. Promise Euclid Helpdesk User mgmt Dronology Reqview

Kurtanovic Top 100 100 0.90 0.66 0.87 0.85 0.97 0.86

Kurtanovic Top 500 500 0.89 0.59 0.78 0.67 0.77 0.66

FS1 17 0.73 0.67 0.78 0.95 0.31 0.60

FS2 27 0.68 0.62 0.80 0.92 0.70 0.52

FS3 75 0.76 0.63 0.80 0.89 0.55 0.80

FS3 with Interpretable ML 15 0.75 0.63 0.68 0.91 0.30 0.77

FS3 with Interpretable ML + verbs 17 0.84 0.63 0.78 0.93 0.66 0.82

FS3 with Recursive Feature Elimination 28 0.80 0.58 0.84 0.86 0.53 0.71

FS3 + Featurewiz 15 0.89 0.69 0.94 0.99 0.59 0.95

FS3 + Featurewiz 2nd try 17 0.89 0.71 0.93 0.99 0.70 0.89

FS3 + Forward Feature Selection 17 0.78 0.64 0.78 0.93 0.42 0.73

FS3+ Genetic Search Algorithm 53 0.87 0.66 0.71 0.71 0.59 0.42

FS3 with AutoVIML and Recurs.FS 17 0.85 0.58 0.64 0.74 0.28 0.81

FS3 with Recurs.FS and AutoVIML 14 0.78 0.65 0.77 0.90 0.71 0.79

FS3 with AutoVIML 20 0.79 0.62 0.70 0.88 0.47 0.84

Table 3.12. AUC Comparison of all feature sets for F classifier target. (cont.)

Feature Selection # Feat. Leeds WASP Repreq Rds4 Rds8 Rds9

Kurtanovic Top 100 100 0.73 0.64 0.61 0.75 0.68 0.73

Kurtanovic Top 500 500 0.72 0.66 0.69 0.68 0.62 0.63

FS1 17 0.68 0.63 0.50 0.75 0.57 0.60

FS2 27 0.62 0.55 0.58 0.58 0.58 0.59

FS3 75 0.78 0.85 0.52 0.65 0.65 0.61

FS3 with Interpretable ML 15 0.75 0.66 0.46 0.66 0.61 0.58

FS3 with Interpretable ML + verbs 17 0.75 0.86 0.60 0.77 0.65 0.64

FS3 with Recursive Feature Elimination 28 0.76 0.80 0.49 0.63 0.66 0.60

FS3 + Featurewiz 15 0.82 0.82 0.65 0.64 0.67 0.58

FS3 + Featurewiz 2nd try 17 0.85 0.93 0.62 0.67 0.75 0.61

FS3 + Forward Feature Selection 17 0.75 0.78 0.43 0.67 0.62 0.58

FS3+ Genetic Search Algorithm 53 0.60 0.60 0.51 0.63 0.49 0.56

FS3 with AutoVIML and Recurs.FS 17 0.72 0.86 0.62 0.53 0.34 0.45

FS3 with Recurs.FS and AutoVIML 14 0.66 0.75 0.55 0.75 0.64 0.57

FS3 with AutoVIML 20 0.70 0.75 0.51 0.70 0.63 0.57

Table 3.12. AUC Comparison of all feature sets for F classifier target. (cont.)

Feature Selection # Feat. Rds12 OAppt Ind.Avg. Std-dev

Kurtanovic Top 100 100 0.71 0.64 0.75 0.11

Kurtanovic Top 500 500 0.69 0.58 0.67 0.06

FS1 17 0.50 0.60 0.63 0.15

FS2 27 0.45 0.62 0.62 0.12

FS3 75 0.60 0.57 0.69 0.12

FS3 with Interpretable ML 15 0.49 0.65 0.63 0.15

FS3 with Interpretable ML + verbs 17 0.70 0.74 0.73 0.09

FS3 with Recursive Feature Elimination 28 0.69 0.54 0.67 0.12

FS3 + Featurewiz 15 0.58 0.57 0.73 0.15

FS3 + Featurewiz 2nd try 17 0.71 0.62 0.77 0.13

FS3 + Forward Feature Selection 17 0.67 0.56 0.66 0.14

FS3+ Genetic Search Algorithm 53 0.43 0.57 0.58 0.09

FS3 with AutoVIML and Recurs.FS 17 0.40 0.53 0.58 0.17

FS3 with Recurs.FS and AutoVIML 14 0.59 0.60 0.69 0.10

FS3 with AutoVIML 20 0.60 0.56 0.66 0.12

Table 3.13. AUC Comparison of all feature sets for Q classifier target.

Feature Selection # Feat. Promise Euclid Helpdesk User mgmt Dronology Reqview

Kurtanovic Top 100 100 0.948 0.593 0.736 0.575 0.71 0.611

Kurtanovic Top 500 500 0.917 0.537 0.673 0.472 0.657 0.584

FS1 17 0.775 0.636 0.632 0.728 0.598 0.495

FS2 27 0.625 0.553 0.626 0.579 0.619 0.568

FS3 75 0.839 0.624 0.733 0.714 0.592 0.49

FS3 with Interpretable ML 15 0.803 0.616 0.671 0.705 0.578 0.486

FS3 with Interpretable ML + verbs 17 0.877 0.614 0.739 0.761 0.749 0.641

FS3 with Recursive Feature Elimination 10 0.864 0.654 0.708 0.712 0.586 0.424

FS3 + Featurewiz 14 0.827 0.685 0.657 0.713 0.622 0.476

FS3 + Forward Feature Selection 17 0.849 0.642 0.654 0.617 0.556 0.519

FS3+ Genetic Search Algorithm 42 0.852 0.613 0.691 0.738 0.568 0.564

FS3 with AutoVIML and Recurs.FS 7 0.829 0.68 0.63 0.732 0.602 0.468

FS3 with Recurs.FS and AutoVIML 12 0.835 0.661 0.647 0.692 0.572 0.575

FS3 with AutoVIML 16 0.846 0.663 0.659 0.709 0.596 0.455

Table 3.13. AUC Comparison of all feature sets for Q classifier target. (cont.)

Feature Selection # Feat. Leeds WASP Repreq Rds4 Rds8 Rds9

Kurtanovic Top 100 100 0.449 0.603 0.587 0.7 0.634 0.588

Kurtanovic Top 500 500 0.523 0.613 0.554 0.68 0.637 0.501

FS1 17 0.638 0.536 0.457 0.597 0.551 0.629

FS2 27 0.551 0.421 0.493 0.472 0.636 0.642

FS3 75 0.609 0.565 0.568 0.625 0.527 0.574

FS3 with Interpretable ML 15 0.627 0.558 0.492 0.643 0.477 0.579

FS3 with Interpretable ML + verbs 17 0.641 0.581 0.489 0.652 0.488 0.583

FS3 with Recursive Feature Elimination 10 0.6 0.597 0.513 0.633 0.489 0.556

FS3 + Featurewiz 14 0.592 0.559 0.536 0.635 0.472 0.583

FS3 + Forward Feature Selection 17 0.558 0.57 0.524 0.613 0.478 0.531

FS3+ Genetic Search Algorithm 42 0.561 0.591 0.551 0.63 0.51 0.571

FS3 with AutoVIML and Recurs.FS 7 0.628 0.602 0.527 0.631 0.495 0.543

FS3 with Recurs.FS and AutoVIML 12 0.516 0.541 0.54 0.655 0.517 0.588

FS3 with AutoVIML 16 0.569 0.528 0.528 0.661 0.483 0.578

Table 3.13. AUC Comparison of all feature sets for Q classifier target. (cont.)

Feature Selection # Feat. Rds12 OAppt Ind.Avg. Std-dev

Kurtanovic Top 100 100 0.523 0.566 0.606 0.075

Kurtanovic Top 500 500 0.717 0.684 0.602 0.076

FS1 17 0.664 0.573 0.595 0.07

FS2 27 0.348 0.59 0.546 0.086

FS3 75 0.385 0.556 0.582 0.086

FS3 with Interpretable ML 15 0.561 0.628 0.586 0.069

FS3 with Interpretable ML + verbs 17 0.368 0.622 0.61 0.108

FS3 with Recursive Feature Elimination 10 0.432 0.57 0.575 0.089

FS3 + Featurewiz 14 0.37 0.612 0.578 0.092

FS3 + Forward Feature Selection 17 0.373 0.604 0.557 0.073

FS3+ Genetic Search Algorithm 42 0.38 0.611 0.583 0.082

FS3 with AutoVIML and Recurs.FS 7 0.418 0.567 0.579 0.084

FS3 with Recurs.FS and AutoVIML 12 0.402 0.618 0.579 0.075

FS3 with AutoVIML 16 0.315 0.618 0.566 0.102

55

3.6. Threats to Validity

We have spotted several challenges and threats during this study.

Internal validity: Tagging of requirements as Q and F is a tagger-biased objective

evaluation. Based on their experiences and knowledge, taggers may tag the same

requirement differently. Although we mitigated this through the tagging reconciliation

meetings, yet it is still highly possible that other taggers with different backgrounds

may have produced different tagging results with different standards, and that the

results may have been slightly different.

Construct validity: Despite our thorough efforts and our attempt to obtain the

source code of [1], we failed, and we had to reconstruct our reference classifier, how-

ever, our reconstruction of their feature set is not perfect. The analysis of the most

informative features, however, reveals a high degree of similarity. Also, it is possible

that we could have omitted some elements of [40] during the reconstruction process.

External validity: Our attempt in identifying requirements data sets that repre-

sent heterogeneous industrial practices led to a varying performance across the data

sets. Our feature set is the basis for constructing classifiers that possess sufficient initial

performance, but domain adaptation is still needed. To mitigate this possible threat

to the generalization, we publicly share our code and data for further replications and

studies.

Conclusion validity: Unbalanced data sets are data sets where all classes are not

evenly represented. This is a general problem in the RE field: with large-scale data

sets, it is not possible to use mitigation techniques like under-sampling. This situation

is a great risk for the validity of the statistical results.

56

4. CONCLUSIONS

This study explores interpretable ML as a tool to build and evaluate classifiers in

RE by investigating the well-known problem of distinguishing functional and quality

aspects in requirements collections. Through this approach, we build a feature set

that is applied to an ML classifier. The quantitative and qualitative results show that

our feature set, largely based on linguistic dependencies, achieves similar performance

to high-dimensional feature sets with lower-level feature types (e.g., text n-grams and

POS n-grams). On the other hand, the experiments to further optimize the feature

set with automated feature selection algorithms did not return any success. This is

mainly because of the reason that automated feature selection algorithms try to find

the statistically best relationships between features and feature combinations, but do

not take the linguistic dependencies into account.

For interpretable ML to be effective, it is important to rely on a limited set of

features that have clear semantics. We rely on linguistic dependencies that define the

main relationships in a sentence as opposed to the low-level short sequences of words

(n-grams) used by other researchers [1]. The limited number of features (only 17)

facilitates the analysis of the inner working of a classifier. Nevertheless, the results

also show that identifying features that denote quality aspects is more difficult than

determining those that denote functional aspects. This feature set that we put forward,

alongside our followed design process that is assisted by interpretable ML, constitutes

the basis for the construction of new requirements classifiers that rely on higher-level

linguistic features.

Future work should focus in improvements on constructing classifiers. While we

do not prescribe a single way of using our feature set, some possible ways to use our

results are the following:

57

• Since the root verb types features degrade the performance for OnlyF, one could

use an earlier feature set for that classification task, leading to a significant gain

in recall;

• The binary classifier can be turned into a recommendation tool that provides

degrees of membership for the various quality aspects: if we take F and Q, the

probability that a classifier assigns can be kept explicit instead of using it as a

yes/no threshold. For example, a requirement could have 90% likelihood to have

functional aspects, and 60% likelihood to have quality aspects.

• The list of functional and quality verbs can be customized for the domain of use,

for certain qualities may be more prevalent in a domain rather than in another.

• The interpretable ML techniques we employ can be applied to introspect the

classifier’s inner workings as it is being used, aiming at further improving the

feature set.

58

REFERENCES

1. Kurtanović, Z. and W. Maalej, “Automatically classifying functional and non-

functional requirements using supervised machine learning”, IEEE International

Requirements Engineering Conference (RE), pp. 490–495, 2017.

2. Minhas, N. M., S. Majeed, Z. Qayyum and M. Aasem, “Controlled vocabulary

based software requirements classification”, 2011 Malaysian Conference in Soft-

ware Engineering , pp. 31–36, IEEE, 2011.

3. Glinz, M., “A glossary of requirements engineering terminology”, Standard Glos-

sary of the Certified Professional for Requirements Engineering (CPRE) Studies

and Exam, Vol. 1, p. 56, 2011.

4. Cleland-Huang, J., R. Settimi, X. Zou and P. Solc, “Automated classification of

non-functional requirements”, Requirements Engineering , Vol. 12, No. 2, pp. 103–

120, 2007.

5. Binkhonain, M. and L. Zhao, “A review of machine learning algorithms for iden-

tification and classification of non-functional requirements”, Expert Systems with

Applications , 2019.

6. Abad, Z. S. H., O. Karras, P. Ghazi, M. Glinz, G. Ruhe and K. Schneider, “What

works better? A study of classifying requirements”, IEEE International Require-

ments Engineering Conference (RE), pp. 496–501, 2017.

7. Maalej, W., Z. Kurtanović, H. Nabil and C. Stanik, “On the automatic classifi-

cation of app reviews”, Requirements Engineering , Vol. 21, No. 3, pp. 311–331,

2016.

8. Winkler, J. and A. Vogelsang, “Automatic classification of requirements based

on convolutional neural networks”, IEEE International Requirements Engineering

59

Conference Workshops (REW), pp. 39–45, 2016.

9. Glinz, M., “On non-functional requirements”, IEEE International Requirements

Engineering Conference (RE), pp. 21–26, 2007.

10. Gheyas, I. A. and L. S. Smith, “Feature subset selection in large dimensionality

domains”, Pattern Recognition, Vol. 43, No. 1, pp. 5–13, 2010.

11. Li, F.-L., J. Horkoff, J. Mylopoulos, R. S. Guizzardi, G. Guizzardi, A. Borgida and

L. Liu, “Non-functional requirements as qualities, with a spice of ontology”, IEEE

International Requirements Engineering Conference (RE), pp. 293–302, 2014.

12. Kübler, S., R. McDonald and J. Nivre, Dependency parsing , Morgan & Claypool

Publishers, 2009.

13. Ming, Y., H. Qu and E. Bertini, “RuleMatrix: Visualizing and understanding clas-

sifiers with rules”, IEEE Transactions on Visualization and Computer Graphics ,

Vol. 25, No. 1, pp. 342–352, 2019.

14. Dalpiaz, F., D. Dell’Anna, F. B. Aydemir and S. Çevikol, “Requirements classifi-

cation with interpretable machine learning and dependency parsing”, 2019 IEEE

27th International Requirements Engineering Conference (RE), pp. 142–152, 2019.

15. Hey, T., J. Keim, A. Koziolek and W. F. Tichy, “NoRBERT: Transfer learning

for requirements classification”, 2020 IEEE 28th International Requirements En-

gineering Conference (RE), pp. 169–179, 2020.

16. “The PROMISE repository of empirical software engineering data”,

https://terapromise.csc.ncsu.edu/!/repo/view/head/requirements/nfr,

[accessed 8-April-2019].

17. Casamayor, A., D. Godoy and M. Campo, “Identification of non-functional require-

ments in textual specifications: A semi-supervised learning approach”, Information

60

and Software Technology , Vol. 52, No. 4, pp. 436–445, 2010.

18. Mahmoud, A., “An information theoretic approach for extracting and tracing non-

functional requirements”, IEEE International Requirements Engineering Confer-

ence (RE), pp. 36–45, 2015.

19. Zhang, W., Y. Yang, Q. Wang and F. Shu, “An empirical study on classification of

non-functional requirements”, International Conference on Software Engineering

and Knowledge Engineering (SEKE), pp. 190–195, 2011.

20. Hussain, I., L. Kosseim and O. Ormandjieva, “Using linguistic knowledge to clas-

sify non-functional requirements in SRS documents”, International Conference on

Application of Natural Language to Information Systems (NLDB), pp. 287–298,

2008.

21. Singh, P., D. Singh and A. Sharma, “Rule-based system for automated classifica-

tion of non-functional requirements from requirement specifications”, 2016 Inter-

national Conference on Advances in Computing, Communications and Informatics

(ICACCI), pp. 620–626, 2016.

22. Navarro-Almanza, R., R. Juarez-Ramirez and G. Licea, “Towards supporting soft-

ware engineering using deep learning: A case of software requirements classifica-

tion”, International Conference in Software Engineering Research and Innovation

(CONISOFT), pp. 116–120, 2017.

23. Kira, K. and L. A. Rendell, “A Practical approach to feature selection”, Machine

Learning Proceedings 1992 , pp. 249–256, Morgan Kaufmann, San Francisco (CA),

1992.

24. Tabakhi, S., P. Moradi and F. Akhlaghian, “An unsupervised feature selection

algorithm based on ant colony optimization”, Engineering Applications of Artificial

Intelligence, Vol. 32, pp. 112–123, 2014.

61

25. Liu, H. and L. Yu, “Toward integrating feature selection algorithms for classifi-

cation and clustering”, IEEE Transactions on Knowledge and Data Engineering ,

Vol. 17, No. 4, pp. 491–502, 2005.

26. Khurana, U., D. Turaga, H. Samulowitz and S. Parthasrathy, “Cognito: Auto-

mated feature engineering for supervised learning”, 2016 IEEE 16th International

Conference on Data Mining Workshops (ICDMW), pp. 1304–1307, 2016.

27. Boetticher, G., T. Menzies and T. Ostrand, “The PROMISE repository of empir-

ical software engineering data”, Department of Computer Science, Vol. 52, 2007,

https://terapromise.csc.ncsu.edu/!/repo/view/head/requirements/nfr.

28. “ESA Euclide mission system requirements”, http://sci.esa.int/euclid/, [ac-

cessed 8-April-2019].

29. Cleland-Huang, J., M. Vierhauser and S. Bayley, “Dronology: An incubator for

cyber-physical systems research”, International Conference on Software Engineer-

ing: New Ideas and Emerging Results (ICSE-NIER), pp. 109–112, 2018.

30. “ReqView example requirements”, https://www.reqview.com/doc/example

requirements-documents.html, [Online; accessed 8-April-2019].

31. “Leeds University library requirements”, https://leedsunilibrary.files.

.com/2013/06/repositoryfunctionalrequirementsv1-1web1.xlsx.

32. “Web architectures for services platforms (WASP) requirements”,

https://www.zenodo.org/record/581655, [Online; accessed 8-April-2019].

33. “Non-functional requirements”, https://requirementsquest.com/wp-content

uploads/2017/01/Nonfunctional-Requirement-EXAMPLES.pdf, [accessed

8-December-2019].

34. Miller, R. E., The quest for software requirements , MavenMark Books,

62

Oconomowoc, WI, USA, 2009.

35. “System requirements: NATO CSD ISR streaming services (CISS)”,

https://mpit.bip.gov.pl/fobjects, [accessed 8-December-2019].

36. “Functional requirements for electronic records management systems”,

https://www.nationalarchives.gov.uk/documents/requirements.pdf,

[accessed 8-December-2019].

37. “Michigan Department of Transportation’s (MDOT’s) vehicle infrastruc-

ture integration (VII) data use analysis and processing (DUAP) sys-

tem.”, http://fmt.isti.cnr.it/nlreqdataset/SRSComparison, [accessed 8-

December-2019].

38. Fawcett, T., “An introduction to ROC analysis”, Pattern Recognition Letters ,

Vol. 27, No. 8, pp. 861–874, 2006.

39. Hanley, J. A. and B. J. McNeil, “The meaning and use of the area under a receiver

operating characteristic (ROC) curve”, Radiology , Vol. 143, No. 1, pp. 29–36, 1982.

40. Kurtanović, Z. and W. Maalej, “On user rationale in software engineering”, Re-

quirements Engineering , Vol. 23, No. 3, pp. 357–379, 2018.

41. MAST, “Applied software technology: App and user review analysis”,

https://mast.informatik.uni-hamburg.de/app-review-analysis/, [accessed

8-April-2019].

42. Kitaev, N. and D. Klein, “Constituency parsing with a self-attentive encoder”,

Annual Meeting of the Association for Computational Linguistics (ACL): Volume

1, Long Papers , 2018.

43. Anonymous, “Supplementary material for the paper: Featurewiz”,

https://github.com/AutoViML/featurewiz.

63

44. Gunning, D., “Explainable artificial intelligence (XAI)”,

https://www.darpa.mil/attachments/XAIProgramUpdate.pdf, 2017, [On-

line; accessed 8-April-2019].

45. “SkopeRules”, https://skope-rules.readthedocs.io/en/latest/, [accessed 8-

April-2019].

46. “Universal dependencies”, http://universaldependencies.org/, [accessed 8-

April-2019].

47. Github source codes for automated feature selection algorithm experiments ,

https://github.com/cevikol/SCO690 Thesis Repository.

48. Visalakshi, S. and V. Radha, “A literature review of feature selection techniques

and applications: Review of feature selection in data mining”, 2014 IEEE Inter-

national Conference on Computational Intelligence and Computing Research, pp.

1–6, 2014.

49. Madhu, G. and K. Reddy, “Data mining for genetics: A genetic algorithm

approach”, J. Convergence Inf. Technol., Vol. 3, No. 3, pp. 39–45, 2008,

http://www.aicit.org/jcit/ppl/jcit vol3no3 6.pdf.

50. “Featurewiz”, https://towardsdatascience.com/featurewiz-fast-way-to-

select-best-features-in-a-data-9c8611, [accessed 8-April-2021].

51. “Featurewiz”, http://universaldependencies.org/, [accessed 8-April-2021].

52. “sklearn.feature selection RFE”, https://scikit-learn.org/stable/modules

/generated/sklearn.featureselection.RFE.html, [accessed 8-April-2021].

APPENDIX A: FEATURE SETS

ID Feature Set # of F Features # of Q Features

FS1 Feature Set 1 17 17

FS2 Feature Set 2 27 27

FS3 Feature Set 3 75 75

FS4 FS3 enhanced with Interpretable ML 15 15

FS5 FS4 enhanced with verbs 17 17

FS6 FS3 with Recursive Feature Elimination 28 10

FS7 FS3 with Featurewiz 17 14

FS8 FS3 with Forward Feature Selection 17 17

FS9 FS3 with Genetic Search Algorithm 53 42

FS10 FS3 with AutoVIML 20 16

FS11 FS3 with AutoVIML and Recursive Feature Elimination 17 7

FS12 FS3 with Recursive Feature Elimination and AutoVIML 14 12

APPENDIX B: FUNCTIONAL FEATURES PER FEATURE SET

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

acl

AComp

Adjective

advcl

Adverb

advmod

AdvMod

amod

AMod

aux

aux+det+dobj

aux+dobj

aux+nummod

aux+nummod+punct

aux+ROOT+nummod

auxpass

Table B. Functional Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

Cardinal

CompSupAdj

CompSupAdv

det

det+aux+nummod

det+nummod

det+nummod+punct

det+ROOT+nummod

dobj

dobj+pobj

DTreeHeight

hasFverb

hasQverb

Length

Modal

nmod

Noun

Table B. Functional Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

nsubj

nsubj+aux+dobj

nsubj+det+dobj

nsubj+dobj

nsubj+nummod

nsubjpass

nummod

nummod+pobj

nummod+punct

pobj

prep

punct

ROOT_aux

ROOT_aux+ROOT_aux

ROOT_aux+ROOT_aux+ROOT_nsubj_det

ROOT_aux+ROOT_aux+ROOT_punct

ROOT_aux+ROOT_dobj_acl_aux

Table B. Functional Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

ROOT_aux+ROOT_dobj_acl_aux+ROOT_dobj_det

ROOT_aux+ROOT_dobj_acl_aux+ROOT_punct

ROOT_aux+ROOT_dobj_det

ROOT_aux+ROOT_dobj_det+ROOT_nsubj_det

ROOT_aux+ROOT_dobj_det+ROOT_punct

ROOT_aux+ROOT_punct+ROOT_punct

ROOT_auxpass

ROOT_ccomp_aux

ROOT_dobj_acl_aux

ROOT_dobj_acl_aux+ROOT_dobj_det

ROOT_dobj_acl_aux+ROOT_dobj_det+ROOT_punct

ROOT_dobj_acl_aux+ROOT_nsubj_det

ROOT_dobj_acl_aux+ROOT_punct

ROOT_dobj_acl_dobj_det

ROOT_dobj_det

ROOT_dobj_det+ROOT_nsubj_det

ROOT_dobj_det+ROOT_nsubj_det+ROOT_punct

Table B. Functional Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

ROOT_dobj_det+ROOT_punct

ROOT_nsubj

ROOT_nsubj_det

ROOT_nsubj_det+ROOT_punct+ROOT_punct

ROOT_nsubj_nummod

ROOT_prep_pobj_compound

ROOT_prep_pobj_det

ROOT_prep_pobj_det+ROOT_punct

ROOT_prep_pobj_nummod

ROOT_punct

ROOT_punct+ROOT_punct

ROOT+det+dobj

ROOT+dobj

ROOT+nummod

ROOT+nummod+punct

SubTrees

TreeHeight

Table B. Functional Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

Words

APPENDIX C: QUALITY FEATURES PER FEATURE SET

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

acl

AComp

Adjective

advcl

Adverb

advmod

AdvMod

amod

AMod

aux

aux+det+dobj

aux+dobj

aux+nummod

aux+nummod+punct

aux+ROOT+nummod

auxpass

Table C. Quality Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

Cardinal

CompSupAdj

CompSupAdv

det

det+aux+nummod

det+nummod

det+nummod+punct

det+ROOT+nummod

dobj

dobj+pobj

DTreeHeight

hasFverb

hasQverb

Length

Modal

nmod

Noun

Table C. Quality Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

nsubj

nsubj+aux+dobj

nsubj+det+dobj

nsubj+dobj

nsubj+nummod

nsubjpass

nummod

nummod+pobj

nummod+punct

pobj

prep

punct

ROOT_aux

ROOT_aux+ROOT_aux

ROOT_aux+ROOT_aux+ROOT_nsubj_det

ROOT_aux+ROOT_aux+ROOT_punct

ROOT_aux+ROOT_dobj_acl_aux

Table C. Quality Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

ROOT_aux+ROOT_dobj_acl_aux+ROOT_dobj_det

ROOT_aux+ROOT_dobj_acl_aux+ROOT_punct

ROOT_aux+ROOT_dobj_det

ROOT_aux+ROOT_dobj_det+ROOT_nsubj_det

ROOT_aux+ROOT_dobj_det+ROOT_punct

ROOT_aux+ROOT_punct+ROOT_punct

ROOT_auxpass

ROOT_ccomp_aux

ROOT_dobj_acl_aux

ROOT_dobj_acl_aux+ROOT_dobj_det

ROOT_dobj_acl_aux+ROOT_dobj_det+ROOT_punct

ROOT_dobj_acl_aux+ROOT_nsubj_det

ROOT_dobj_acl_aux+ROOT_punct

ROOT_dobj_acl_dobj_det

ROOT_dobj_det

ROOT_dobj_det+ROOT_nsubj_det

ROOT_dobj_det+ROOT_nsubj_det+ROOT_punct

Table C. Quality Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

ROOT_dobj_det+ROOT_punct

ROOT_nsubj

ROOT_nsubj_det

ROOT_nsubj_det+ROOT_punct+ROOT_punct

ROOT_nsubj_nummod

ROOT_prep_pobj_compound

ROOT_prep_pobj_det

ROOT_prep_pobj_det+ROOT_punct

ROOT_prep_pobj_nummod

ROOT_punct

ROOT_punct+ROOT_punct

ROOT+det+dobj

ROOT+dobj

ROOT+nummod

ROOT+nummod+punct

SubTrees

TreeHeight

Table C. Quality Features per Feature Set (cont.)

Feature FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12

Words

