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ABSTRACT

TARGETING IN CHAOS USING ANALYTICALLY DESCRIBED
CLUSTERS

The OGY method provides a simple but powerful approach of controlling chaotic
dynamics. This method can stabilise inherently unstable equilibrium modes of dissipative
chaotic systems under the lack of knowledge about the system equations. However, it has
the typical drawback of a long waiting time until the system starting from random initial
conditions enters the close neighbourhood of the equilibrium mode to be stabilised, where
the controller can be activated. The reduction of this drawback is known under the name of

targeting.

The Extended Control Regions method is a targeting approach, which can operate
under the lack of knowledge about the system equations by employing local models of the
system dynamics extracted from empirical data. The method is based on the idea of
identifying and modelling those regions of the phase space, starting from which the system
can be steered to a close neighbourhood of the target within a few steps applying small
perturbations in the control parameters. So far, the modelling of the system dynamics

within these phase space regions have been realised using artificial neural networks.

In this study, two different strategies are developed in order to realise the clustered
version of the Extended Control Regions method on basis of simple analytical models
rather than neural networks. Each cluster obtained from the gathered data is'analytically
described as a hyper-ellipsoid. Subsequently, the analytical models of the clusters are used

for targeting purposes by applying small discrete variations in the control parameter.

Simulation results on several chaotic systems with single control parameter show that
the proposed method can achieve targeting using less memory and computation time than

the Clustered Extended Control Regions method on cost of a slower targeting performance.



OZET

ANALITIK OLARAK BETIMLENMIS KUMELER YARDIMIYLA
KAOTIK SISTEMLERIN HEDEFE YONELTILMESI

OGY yontemi, kaotik sistemlerin kontrolil icin basit, ancak gii¢li bir yaklagim
sunmakta ve enerji tiketen kaotik sistemlerin orijinalde kararsiz olan denge modlarint,
sistem denklemlerini bilmeksizin kararh hale getirebilmektedir. Ancak, bu yontemin en
tipik dezavantaji, rastgele bir baslangic noktasindan baglandiginda, sistemin kararli hale
getirilecek denge modu civarina oldukca uzun siirede yaklagabilmesi ve sadece denge
modu civarinda kullanilabilen denetleyicinin oldukga geg devreye girmesidir.  Bu

dezavantaji azaltma galismalan, literatiirde hedefe yoneltme olarak adlandiriimaktadir.

Genigletilmis Denetim Bolgeleri yontemi, deneysel verilerden elde edilen yerel
modelleri kullanarak, sistem denklemlerinin bilinmedigi durumlarda da caligabilen bir
hedefe yoneltme yaklasimdir. Bu yontem, denetim parametrelerine kiigiik deSisimler
uygulayarak, sistemin hedef civarma bir kag adimda yonlendirilebildigi ¢ikis bolgelerini
belirleyip modelleme digiincesine dayanmaktadir. Bugtine kadar, bu ¢ikig bolgelerindeki

sistem dinamiginin modellenmesi, yapay sinir aglart yardimiyla gergeklegtirilmstir.

Bu caligmada, Genisletilmis Denetim Bolgeleri yonteminin  kiimelendirilmis
versiyonunun sinir aglarl yerine, basit analitik modellerle gerceklestirilmesini saglayan iki
farkl strateji gelistirilmigtir. Farkli metotlarla toplanan verilerden elde edilen alt-kiimeler,
analitik olarak bir hiper-elipsoid olarak modellenmekte; ardindan bu modeller kullanilarak,

denetleme parametresinde kiigitk ayrikst oynamalarla sistem hedefe yoneltilmektedir.

Tek denetim parametreli gesitli kaotik sistemler tizerinde yapilan benzetim sonuglari,
onerilen yontemin Kiimelendirilmis Genisletilmis Denetim Bolgeleri yonteminden daha az
bellek ve islem siiresi ile ancak daha disik hizla hedefe yoneltmeyi gergeklestirebildigin,

gOstermigtir.
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1. INFTRODUCTION

Many physical systems show sensitive dependence on initial conditions and behave
in a long-term unpredictable manner for certain parameter regimes. This behaviour is
referred to as chaos. A deterministic system is said to be chaotic whenever its evolution
sensitively depends on the initial conditions. This property implies that two trajectories
starting from two nearby initial conditions diverge exponentially in the course of time

making long-term predictions of the system's behaviour impossible.

Modern studies of chaos started with Lorenz's work about modelling the convection
in the atmosphere by computer simulations [1]. Due to a slight numerical error in initial
conditions Lorenz accidentally discovered that a deterministic system could exhibit
sensitive dependence on initial conditions. The fact that certain dynamical systems show
such a critical dependence on initial conditions was known since the end of the last
century. However, only in the last thirty years, experimental observations have showed
that chaotic systems are common in nature. They can be found, for example, in Non-linear
Optics (lasers), in Electronics (Chua-Matsumoto circuit), in Fluid Dynamics (Rayleigh-
Benard convection), in Chemistry (Belouzov-Zhabotinski reaction) and elsewhere. Many
natural phenomena, which can be found in meteorology, the solar system, heart and brain

of living organisms, can also be characterised as chaotic.

For many years, such a characteristic was considered as something to be strongly
avoided, this made chaos undesirable. This problem has been first addressed by Ott,
Grebogi and Yorke [2] and since then, gained much interest and found many important

engineering, physical or medical applications.

The most important advantages of the OGY method and its extensions are the facts
that, they do not require any @ priori knowledge about the system dynamics and allow
parameter-based-control with small control power expenditure. The OGY method is based
on choosing one out of the rich repertoire of unstable equilibrium points and unstable
periodic orbits as the desired behaviour and stabilising it using an empirically obtained

local linear model. However, the major drawback of these methods is the usually long



waiting time until the system visits a close neighbourhood of the target where the local
linear model is valid and the controller is activated. The problem of reducing this waiting

time is referred to as the targeting problem in the literature.

Concerning real world applications which are influenced by noisy and non-stationary
environments and where no analytical description in terms of a map or a vector field is
available, an ideal, general targeting method for chaotic systems should have some basic
features: It (1) should not require an analytical description of the system, (2) should be
robust against noise and non-stationarity, (3) should allow the stabilisation of any unstable

equilibrium point or unstable periodic orbit of any order, and (4) should offer the

possibility of real time performance.

In the following chapter, basic concepts of dynamic system theory, the fundamental
properties of chaotic systems and notation used will be reviewed. Also relevant

mathematical concepts of chaotic dynamics will be considered.

In Chapter 3, the OGY Control Scheme, other OGY-Based control and targeting
methods will be considered. In addition, main characteristics of these methods will be

explained and some preliminary concepts used in the proposed method for targeting of

chaotic systems will be introduced.

Chapter 4 presents the proposed methods in detail with an explanatory summary of
another targeting method, namely Extended Control Regions (ECR) Method, which has
mnspired this study.

In Chapter 5, simulation results obtained from different chaotic systems will be
presented and discussed. A comparison of different versions of the proposed method and a

performance comparison between the proposed method and ECR methods will be given.

In the last chapter, interpretation of results, both weak and strong points of the
proposed method will be summarised and future work and further possible improvements

will be discussed.



2. INTRODUCTION TO DYNAMIC SYSTEMS AND THE
RELEVANT MATHEMATICAL CONCEPTS

2.1. Dynamic Systems

Many physical systems can be well described in terms of finite-dimensional
continuous-time dynamical systems. In this case the state x of the system depends only on

a finite set of # state variables,

(1) =[x, @), %,0)..x,Of <R” 2.1)

and the system dynamics can be expressed as a of first-order non-autonomous ordinary

vector differential equation
X0 = fxO,p,0), x(DeR", feR" (2.2)

Still a large class of physical systems can also be described in terms of first-order

autonomous ordinary vector differential equations
(D)= f(x(0),p), xX()eR", feR" (2.3)

with a set of parameters p. The vector field f describes the time evolution of the states x

and the n-dimensional space R” spanned by the variables x; , ..., x, is referred to as the state
space or phase space. The graph of a particular solution x(7) in phase space. is called a
trajeciory or phase curve. An orbit specifies the set of all points on a trajectory.
Uniqueness of solutions to the system of equations (2.3) implies that no crossings of

trajectories exist in phase space.

Certain systems are not described by a continuous set of differential equations but

rather by a map or firsi-order, autonomous, vector difference equation



X = 8(Xe, P) (2.4)

Given a continuous system, a discrete map can be associated with it either
analytically or experimentally in various ways, which will be discussed in Section 2.3.

The discrete formulation is often more convenient since the analysis of the system can be

performed without integration.

2.2. Basic Concepts of Chaotic Dynamics

Due to the critical dependence on the initial conditions, and due to the fact that, in
general, experimental initial conditions are never known perfectly, chaotic systems are
unpredictable. Indeed, the prediction trajectory emerging from an experimental initial
condition and the real trajectory emerging from the reql initial condition diverge
exponentially in course of time, so that the error in the prediction (the distance between
prediction and real trajectories) grows exponentially in time, until the system's real

trajectory becomes completely different from the predicted one at long times.

Lyapunov exponents are a measure for the relative behaviour of initially close
trajectories of a chaotic system. On the attractor, trajectories of a chaotic system show
exponential divergence and convergence in different directions. The properly averaged
exponents of this divergence or convergence are called Lyapunov exponents. A chaotic
system must have at least one positive Lyapunov exponent. Chaotic systems with more
than one positive Lyapunov exponent (divergence in at least two directions) are called

hyper-chaotic.

The largest positive Lyapunov exponent provides a measure for the pfedictability

horizon of a chaotic system. Consider two trajectories x;(?), xo(t) and let x4} = x;(1)-x(?)
and x40) = x,(0)-x>(0). Suppose that the initial conditions are close (||x(0)|| small) and let

2" be the largest positive Lyapunov exponent. Then

(@)l = ™" lpxa(0)) (2.5)



is an estimate of the divergence of the trajectories.

Depending on f (or g) and initial values, trajectories will either go to infinity or
stay in a bounded area forever. The set of initial conditions leading to the same asymptotic
behaviour of the trajectory is called the basin of attraction [4]. The systems discussed in
this thesis typically do not only have bounded solutions but are also dissipative, which
means that on the average the phase space volume containing initial conditions is
contracted under the dynamics. As a result, trajectories approach an attracting set 4 of

measure zero that describes the asymptotic behaviour of the system and has the following

properties [3]:

i. It is a compact set, invariant under the flow J ormap g, ie. any trajectory x(?) or x;
starts in A stays in 4 for all time.

ii. A attracts an open set of initial conditions: there is an open set U containing A such
that if x(0) € U, (or xy € U) then the distance from x(?) to 4 tends to zero as t — o
(the distance between x; and 4 tends to zero as k —» o). This means that 4 attracts

all trajectories that start sufficiently close to it. The largest such U is called the basin

of attraction of 4.
iti. A is minimal (there is no proper subset of 4 that satisfies conditions i and ii.).
Regular (non-chaotic) attractors such as stable periodic orbits and stable equilibrium

oints characterise regular behaviour. Equilibrium point x* of a continuous dynamic
p gu q p X y

system is defined as,

S5 p)=0 - (26)
and equilibrium point x* of a discrete-time system is given by,

gx*, p)=x* (2.7

On the other hand, dissipative chaotic systems have strange attractors as their

attracting sets. Strange attractors usually have a fractal structure. Strange attractors can be



defined in different ways. Wiggins [4] defines a strange attractor 4 as an attractor, which

has the properties (i) through (ii) and in addition the following property (iv).

iv. The dynamics in 4 are sensitive dependent on initial conditions: There is an ¢ > 0

such that, for any x(0) € 4 and any neighbourhood N of x, there exists a y(0) N and
t>Osuchthat {|x (@ -y@) | > ¢.

Properties (i) - (iii) together with (iv) can be considered as conditions for defining a

chaotic attractor. Devaney [5] adds a further characteristic property of chaotic attractors:

v. The periodic orbits of the dynamics are dense in A: Every s neighbourhood of a point

x & 4 contains a point that belongs to a periodic orbit.

A chaotic system has many Unstable Equilibrium Points (UEPs) and usually
infinitely many Unstable Periodic Orbits (UPOs) embedded into its strange attractor.
Furthermore, all UEPs and UPOs in the strange attractor are of saddle-type.

The existence of saddle type UEPs and UPOs leads us to the concept of ergodicity.
System dynamics in the chaotic attractor is called ergodic, which refers to the fact that
during its temporal evolution the system visits a close neighbourhood of every point in the
chaotic attractor. In other words, the behaviour of a dissipative chaotic system on its
strange attractor can be considered as consisting of a single infinitely long trajectory
approaching eventually any saddle-type UEP and UPO, but never staying at any of them

because they are unstable.

In Figure 2.1 examples of regular and chaotic attractors are shown and Figure 2.2

shows several different UPQO's of the Lorenz attractor in a two-dimensional projection.



Figure 2.1. Examples of regular (a),(b) and strange (c) attractors

2.3. Discrete Representation of Continuous Dynamics and Determination of UPOs

Calculation of the equilibrium points is easy if the system dynamics is known but the
determination of the periodic orbits is difficult, in general, and may be impossible. A
method proposed by H. Poincaré [6] provides the possibility of introducing a discrete
description for a continuous-time system in terms of the so-called Poincaré map illustrated
in Figure 2.4. This mapping is important because it reduces the dimension of the system
by one and often allows a good interpretation of the continuous dynamics in a discrete
manner. The idea is to record the continuous trajectory whenever it pierces a certain

surface-of-section X, which is a hyper-plane of dimension (7 — 1), in a specified direction.

The Poincaré map F is a mapping from X to X showing a piercing of a system
trajectory as a function of the previous piercing [4]. With x; denoting the & piercing of 3

in the specified direction, the Poincaré map is defined by
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Figure 2.2. Hlustration of a Poincaré map

It should be noted that the Poincaré map of an n-dimensional continuous-time system
is (n-1) dimensional. The periodic points of the Poincaré map correspond to periodic
orbits of the original continuous-time system. In particular, if the periodic orbit of the
continuous-time system pierces . in a single loop, the piercing point will correspond to an
equilibrium point (= period-1 point) of the Poincaré map. Hence, the detection and
stabilisation of an unstable equilibrium point of a discrete-time system and that of an

unstable periodic orbit of a continuous-time system using the Poincaré method are

equivalent.

Methods to identify the location of UPOs can be divided into those, which assume
experimental data, and others, which require an analytical description of the system
dynamics. The simplest method to identify UPOs from experimental data relies on finding

points of close return (recurrent points) in the Poincaré phase space [7].
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Figure 2.3. Different unstable periodic orbits of the Lorenz attractor

Assuming that dynamics are described by a map, a point X, satisfying |, — X.|| < &
is called a (k&) recurrent point and corresponds to a periodic point of period k. A
disadvantage of this method is that a large number of data points are necessary in order to
accurately identify UPOs of large period. Furthermore, if ¢ is too large different UPOs
might not be resolved. However, if £is too small, not enough recurrent points might occur
in reasonable time to allow the estimation of the UPO. In spite of these disadvantages, this

method of close returns has been successfully applied to experimental data obtained from

many chaotic systems for the detection of UPQOs.
2.4. Lyapunov’s Linearisation Method and Extraction of the Local Linear Model

In the late 19™ century, the Russian mathematician Alexandr Mikhailovich Lyapunov
introduced a general approach for studying the stability of non-linear systems. Lyapunov’s
approach includes two methods namely the linearisation method and the direct method.
The linearisation method is concerned with the local stability of a non-linear system and
describes mathematical relations between the non-linear system’s local stability and
stability properties of its local linear approximation. Lyapunov’s linearisation method is

considered as a justification of the usage of local linear approximation [8].

Equation (2.3) can be approximated near this equilibrium point by equation (2.9)

Zin-L¥= é (z-2* YT B(P-Prom) (2.9)



where 4 is an nxn Jacobian matrix of f and b is an n-dimensional column vector. 4 and

b are defined by the partial derivatives as,

o
é :5; i (Z> 'p) z, Prom

a— (2.10)
ézé_g Z (z’ p) l z% Prom

and can be calculated by using a least-square error approach with experimental system

data, assuming a polynomial behaviour.

2.3. Delay Coordinates Method

In many practical applications, as a result of the observation of just one system

variable, system dynamics needs to be reconstructed. In this case, generally the delay

coordinates method has to be employed.

If we denote this measurable variable by (1), choosing an appropriate delay time T
and delay dimension d,, a delay coordinate vector s(t) can be reconstructed as given in
(2.11)

sO=0(), ¥ (-T), y (2T), . . ., y (t- &.T)] 211

Takens' Delay Map Embedding Theorem says that a delay map of dimension 2d + /

is an embedding of a compact manifold with dimension d.

If T and d, are appropriately chosen [9, 10], there exists a diffeomorphism between
the dynamics of the reconstructed new state vector and the real state vector [11]. Asa
result, reconstructed attractor is in one-to-one correspondence with the original attractor.
The equilibrium points and periodic orbits in the real system have their counterparts in the

delay coordinate system exhibiting the same stability properties.

10
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3. OGY CONTROL AND TARGETING

3.1. The Basic OGY Method

Chaos was regarded as undesirable due to its complexity and unpredictability. In
engineering sciences, systems were designed such that chaotic dynamics would not occur.
Pioneering work of Ott, Grebogi and Yorke [2], who proposed to control chaos by using
the characteristics of chaos itself and showed that applying small perturbations to a
parameter, could stabilise chaotic systems. This idea of chaos control is fundamentally
different from the conventional engineering approach in control. The system stays in the

chaotic regime during control but is stabilised at one of its unstable equilibrium modes.

In the OGY method, properly chosen small time-dependent perturbations, Ap, is
applied to the system parameter p,. After perturbation, local linear properties of the

system dynamics around the desired target are slightly shifted. Since the OGY method is
model independent, all necessary analytical knowledge can be extracted from experimental

data.
Assuming that the dynamics can be described by a two-dimensional map,
x, =[x, P+ Ap) xR, pyeR (3.1

the following formula will be used for calculation of the perturbation Ap, .

;{’14 -f;_l

YT G0 g

(x, =x,(py)) (3.2)

In (3.2) x,(p,)denotes the location of the desired fixed point of the unperturbed system.

The gain g describes how x , changes with p,
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such that

*_Vf(p)"isf(po)

where 4, denotes the unstable eigenvalue associated with the unstable eigenvector e, of

U

the Jacobian matrix of f evaluated at x,(p,), e, represents the stable eigenvector, f,

u

denotes the adjoint unstable eigenvector defined as

u eu ':1 (3.5)
<f -e.>=0 (3.6)

The idea of the OGY method can be understood from Figure 3.1.

System state would approach the fixed point along the stable direction and move
away from it along the unstable direction with nominal parameter value (Figure 3.1a).
Because of perturbation, the local linear properties, stable and unstable manifolds, are
slightly shifted such that the trajectory approaches the stable direction of the unperturbed
system (Figure 3.1b}. Consequently, the system state falls exactly on the stable manifold
of the unperturbed system and the dynamics will approach the desired fixed point in the
ideal case (Figure 3.1¢). Since the OGY control scheme uses the local linear model,
controller is only activated after the system state has reached a closed neighbourhcod, N, of
the desired target. Due to the ergodic behaviour of chaotic dynamics on the strange

attractor, it is guaranteed that every trajectory eventually visits N.

The OGY control scheme has a local character, which results in an initial waiting
time before control can be activated. This will be referred to as the waifing fime 7. Letting
u(N) denote the rate at which random orbits fall into the region ¥, it follows that the

average waiting time is {z)={/uW(N) [12].



B x(1)

Figure 3.1 The idea of the OGY method

The size of the local control region, where OGY method’s local linear model is valid,
depends on the maximum allowed perturbation & (|Ap|< 3) and the local dynamics of f in

this region. For one-dimensional maps one can show {7 ogg)~8" and for two-dimensional

maps [12]

(rOGY>~5‘?,y:1+M 3.7
2Mn|i/ A,

Besides small control power expenditure, the main advantage of the OGY control
scheme is that it is model independent. All necessary quantities describing the local
dynamics close to the desired state can be approximated from experimental data.
However, to compute the control formula, the desired state must be determined by
analysing the experimental data. Any accessible system parameter can be used as the

control parameter.

On the other hand, given an accurate control formula, small noise can destabilise the
chaotic orbit. In real applications, in case of existence of noise, the determination of the
desired UPQO and in particular the estimation of the linearised dynamics will become less
accurate. Thus the influence of noise s twofold: it can kick the dynamics out of the

controllable region and it can affect the accuracy of the control formula.



To apply the OGY method, the location of the fixed point has to be known in
advance. In addition to that, in the case of non-stationarity this location will shift and the
OGY control formula will become inaccurate. Besides its drawbacks, the OGY method

remains one of the most popular chaos control method and has been successfully applied to

many experimental systems.

Many extensions and improvements of the OGY method have been proposed. In
[13] the multi-parameter control case is investigated and the application of the OGY
control method to delay coordinates is discussed in [14, 15]. The extension concerning

high-dimensional chaotic systems is discussed in [16, 17, 18].

The OGY method has been revised and extended to higher dimensions by allowing a
more general choice of the feedback matrix by Romeiras et a/ [16]. In this extension
involving the pole placement technique, the OGY method is formulated as a pole

placement problem and is solved by placing the regulator poles at desired locations.
In this extension, first, the dependence of the system dynamics on the parameter

change has to be determined. For this purpose, the parameter change is assumed to be a

linear function of the variable z, of the form given in (3.8),
(-Prom)=-h" (z-2*) (3.8)
where h is an n-dimensional row vector. Substituting (3.8) into (2.11) yields
zen-z*=(4-b h') (zz*) (3.9)

If the eigenvalues of (é -b hT) have an absolute value smaller than unity, (_4 -b 1_1T) is

asymptotically stable, and (z-1-z*) goes to zero as time goes to infinity. This means that

the equilibrium point will be stable.

15



The problem is to determine h' such that (A-b h'") is stable. The solution is referred

to as the Pole Placement Technique and the desired locations of the poles of (4-8 h') are

accomplished by choosing the proper h'.

A further popular variant of the OGY method is the occasional proportional
feedback (OPF) method [19]. This method and its variants [20, 21] feed deviations of the
chaotic variable from an a priori fixed point back into the system as parameter

perturbations whenever the system variable enters a specified window.

A prediction-correction scheme based on the OGY method has been suggested by
Schwartz ef al. [22]. Bielawski ef al. [23] have modified the control formula directly to
use the difference between consecutive iterates of the map instead of the difference
between each iterate and the fixed point as in the OGY formula. In a later work Bielawski

et al. [24] have extended the discrete- time version to continuous-time parameter

perturbations.

3.2, Targeting

In the literature, the first attempt to reduce the transient time was done by Shinbrot ef
al [25] who have theoretically and numerically demonstrated that trajectories on a chaotic
attractor can be steered to a desired target by small perturbations of the system parameter.
Then, they have implemented their method for a system describable by a one-dimensional
map [26], and have applied it to real system [27]. In [26] it is stated that this method is
applicable only to chaotic systems, whose strange attractor have a Poincaré section with a
fractal dimension close to one. Nevertheless, the method has been extended to higher
dimensions (four-dimensional double rotor map with two positive Lyapunov éxponents)

and been refined via tree-type hierarchy in [28].

Barreto ef al used the same method to steer the trajectories of the double rotor to any
of the unstable periodic orbits chosen as targets, and then it has been shown that it is

possible to switch the system between those chosen unstable periodic orbits [29]. In [30],
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targeting is realised by creating periodic orbits via P-chain perturbations without changing

the topology of the system such that the system repeats itself at each M™ iteration.

In [31], Paskota et al have employed optimal control techniques to bring the system
states to a desired state under some constraints [32]. Another goal of Paskota ef a/ when
developing this method was to improve the performance of the system against random
noise [33]. However, their method is still initial condition dependent, i-e., it is not global.
In {34}, in order to eliminate this initial condition dependence, a mixed strategy is
developed making the controller more giobal. Paskota and Lee have also employed the
optimal control techniques for targeting the systems to a moving target [35]. However, the
methods proposed in [31-34] necessitate the exact equations of system dynamics. The
method proposed in [30] is implemented in {36}, where the global system model is
obtained via wavelet networks. Baptista used e-bounded orbit correction perturbations for

targeting purposes in a kicked double rotor [37].

Another technique for chaos control based on reinforcement learning combined with
a vector quantisation of the state space, is introduced by Gadaleta ef a/ [38]. Since this
method does not require an analytical description of the undeilying dynamics, it can handle
both perturbations of a control parameter as well as perturbations in the form of

proportional pulses applied to a state variable.

Extended Control Regions (ECR) method, which will be explained in further detail
in the next section and does not require any analytical information about the system
dynamics, has been developed and implemented by the use of neural networks by Iplikei

and Denizhan [39, 40].



4. ANALYTICALLY MODELLED CLUSTERS METHOD

The idea of identifying different regions of the phase space, starting from which the
system can be steered towards the chosen target within some steps using allowable
parameter variations, has been developed and improved by Iplikei and Denizhan [39, 40,
41]. This method and its improved versions, namely Extended Control Regions (ECR)
Methods, are based on modelling of these control regions and the corresponding control

policies by the aid of Radial Basis Function (RBF) based Neural Networks.

The method proposed in this thesis referred to as Analytically Modelled Clusters
(AMC) Method is an application of the Clustered-ECR-II approach without using neural
networks. Rather than that a simple analytical description is used as a modelling tool. The
employment of such an analytical description requires some modifications in the data
gathering and control phases. For this purpose two different data gathering strategies and

the related control strategies have been developed, which are referred to as AMC-1 and
AMC-IIL.

4,1. Introduction

The waiting time until the system enters the close neighbourhood of the target (the
OGY region) may be quite long depending on the initial conditions and the size of the
strange attractor. Therefore, before the application of OGY control most chaotic systems
require targeting, i.e. a way of steering the system from any initial point towards the OGY

region.

Since targeting requires global information about the strange attractor, local
approximations are no longer sufficient. The proposed methods, which will be referred to
as AMC-I and AMC-IL, do not use a complete model of the strange attractor but cover a

sufficiently large part of the attractor by hyper-ellipsoids for satisfactory targeting.

Before going into the details of AMC methods, it will be helpful to explain briefly
the basic idea behind the ECR approach.
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4.2. Extended Control Regions Method (ECR)

The approach used in the ECR method is to extend the phase space regions where the
controller is activated. These regions and the corresponding control actions are modelled
by the aid of Radial Basis Function (RBF) based neural networks. After these regions and
corresponding control policies have been modelled, it is supposed that the system can be

steered step by step from one of these regions to the OGY region and the chosen target can
be stabilised.

In the ECR-L, firstly, the chaotic system is run while perturbing the control parameter
randomly within its allowable range to gather experimental system data. Analysing
experimental data obtained from this randomly perturbed system, data points, which fall

into the OGY region in a few steps, are used to identify control regions of the phase space.

In the first version of the Extended Control Regions method, ECR-1, a single neural
network is used for both targeting and local control purposes. After this single neural
network is trained by experimental data, it is used to obtain the necessary control
parameter perturbation for steering the system state to the chosen target. In this version,
information about the region of the current system state is hidden in the neural network and
cannot be observable. If the neural network gives a parameter value out of the allowable

range, the parameter value is set to its nominal value and wait for the next iteration.

As a result of using a single neural network, modelling errors in ECR-I are highly
probable especially between different control regions. In addition to that, the region of the
current state is not available externally. In spite of such disadvantages, ECR-I exhibited an
acceptable improvement in terms of the average waiting time. While defining waiting time
as the time necessary to steer the system to the OGY region starting from an initial
condition, average waiting time can be defined as the average of the waiting times over

many randomly chosen initial conditions.

In the second version, ECR-II, the targeting performance has been improved by
dedicating a separate neural network to each control region. After determining the regions

of the phase space from experimental data, each neural network is trained using data from
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the corresponding control region. In ECR-IT also & heuristic method has been introduced
for the determination of the region of the current state. Current state is fed to the trained
neural networks in a sequential manner starting from the lowest index and when a neural
network gives a control parameter value within the allowable range, it is assumed that the
current system state belongs to the region associated with that neural network.
Consequently, this neural network is activated for targeting. ~ Although this improved
version shows a better performance in most chaotic systems, there still exist some

modelling errors due to the fact that data belonging to higher-level control regions are

more scattered.

In the last version of the ECR, Clustered-ECR-11, the modelling performance is
improved by subdividing each control regjon into sub-regions, where the experimental data
are clustered. In this version a separate neural network is assigned to each sub-cluster.
This improvement reduces the modelling errors in ECR-II in inter-cluster regions on cost

of increasing the number of neural networks employed.

Besides this modification, clusters are represented analytically by their means and
normalised covariance matrices. Using this analytical description, the region of current
system state can be determined analyticall. The same approach is adopted in the
proposed method and will be explained in further detail in the following sections.
Although the number of neural networks used in Clustered-ECR-IT is larger than in ECR-
II, most of the performance criteria such as memory usage and total training time of neural
networks are improved. These performance criteria and the comparison of different
versions of ECR methods are summarised in Table 5.1 and also their performances are

compared to the proposed method’s results for the same chaotic systems.
Targeting and control approach of ECR methods is illustrated in Figure 4.1.
4.3. Main Idea of the Analytically Modelled Clusters (AMC) Method

Having observed the improvement of the targeting performance by the introduction

of sub-clusters, the next question was whether a simpler model of the system dynamics



within these clusters might be possible. This question finally has given rise to the

proposed targeting method, namely the Analytically Modelled Clusters (AMC) method.

Chaotic system .

Figure 4.1. Control loop for targeting and control via neural networks

The Analytically Modelled Clusters (AMC) method is a targeting method applicable
to chaotic systems with unknown dynamics. Although theoretically applicable to systems

with several control parameters, the AMC approach is more efficient for single control

parameter applications.

AMC adopts a similar approach like in Clustered-ECR-1I, namely system data
belonging to different regions are gathered and subsequently grouped into sub-clusters.
Likewise, the sub-clusters are represented in terms of their means and normalised
covariance matrices. The basic innovation in AMC is the elimination of neural networks

for modelling purposes providing a considerable simplification in the modeller and the

controller.

In order to be able to model the system dynamics without the aid of neural networks
the dynamics has to be simplified imposing additional constraints. In AMC this is
achieved by replacing the continuous allowable range of the control parameter as used in
the ECR methods (IT; as defined in equation (4.3)) by 3 discrete allowable parameter

values, namely minimum (Pynin), nominal (Prom) and maximum (Pmax) values.

In this work two different versions of the AMC approach have been developed.

21



The basic idea behind the AMC Method is to identify different regions { S7;i=0, 1,

..., K; q = min, nom, max} for AMC-I and {I7,i=0, 1, .., K; q = min, nom, max} for
AC-II of the phase space, where the controller will be activated. Hence, the control region
of the controller is extended from Sy (as used in the OGY control) to the union of S and all

SP’s(i=1, .., K; q= min, nom, max) in AMC-I and union of Ty and all TPs(i=1, .. K;

2

q = min, nom, max) in AMC-II.
AMC Methods have four different phases,

i. Data gathering with appropriate control parameter values
ii. Analysis of data sets and determination of the control regions
iti. Determination of analytical descriptions of the sub-clusters of the control regions

iv. Control of the chaotic system using the analytical descriptions obtained

While the first three phases, (off-line phase) are different in AMC-I and AMC-II, the

last phase, (on-line or control phase) is entirely the same in both versions.

As in the OGY control, it is assumed that a priori knowledge about system dynamics
is not available, and that only system parameter(s) can be used for control purposes. The
AMC methods are also applicable when delay coordinates are employed. The AMC
method will be presented for n-dimensional discrete-time chaotic systems with a single
control parameter only. This model covers both continuous-time systems with an unstable
periodic orbit as the target (via Poincaré section method) and discrete-time systems with an
unstable equilibrium point as a target. Such a system is represented by the following

equation {(4.1).
zca= Gla, p) 4.1)
where z is the nx1 state vector, and p 1s the rX1 control parameter vector.

Assume that this system has an equilibrium point at z* described by,
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z*= G(z*, Poom) (4.2)

where pnom is the rX1 control parameter vector..

The control variable (parameter), which will be used for control purposes in the OGY

region, can be changed within an allowable range as given in (4.3).
HI:{p  Pnom - 8pmax <p <pnom + 6pmax } (43)
where 8pmax is the maximum allowable parameter change for the control parameter.

Outside the OGY regjon, the control variable {parameter) can be chosen in a discrete

manner from the set given in (4.4)

Iy = { py } where g = min, nom, max. (4.4)

where

p min pnom - Spmax and pmax = pnom + Bpmax (45)

When explaining the procedures for AMC-T and AMC-II it will be assumed that the
necessary pre-processing (Poincaré section for continuous time systems or delay
coordinates construction for systems where a single output can be observed) to represent
the system in the form of (4.1) have been accomplished and z* has been chosen as the

target.

In order to explain the determination of these control regions, some definitions, have

to be introduced.
Definition 4.1: z, € Soif it satisfies (4.6)

llzx - 2*(1<8, and  ||G(z, p) - 2*||<6  with pelly (4.6)



24

In other words, starting from any zeS, the system can be kept within the &

neighbourhood of z* at the next step using a pelT;.

Definition 4.2: z e §7 ifit satisfies (4.7)

Glzi, pg) € So “4.7)

Definition 4.3: zc e S ifit satisfies (4.8).
Glz, pg) € §7,,1=2,.. K, pge I, (4.8)

In other words, S is the set of states starting from which the system can be steered

to §7, in one step using corresponding parameter value Py

In what follows, new regions 7,%’s in addition to the S? regions in AMC-I will be

defined for AMC-II.

Definition 4.4: zc e T ifit satisfies (4.9).

Glzi, py) € T7,,1=2,...,K ;j = min, nom, max ; p, € I, (4.9)

The region 7,? is the set of states, starting from which the system can be steered to

i

one of three lower lever control region 7./, in one step by applying a control parameter

value p,.

Before going into the detail of the application procedures of the AMC methods, it
can be useful to give some information about data clustering and explain the clustering

algorithm used in both Clustered-ECR-II and the AMC Methods.
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4.4. Data Clustering

Data analysis is a very important part of computational applications. Data analysis
procedures can be classified as either exploratory or eonfirmatory, based on the availability
of appropriate models for the data source. The key element in both types of procedures is

the grouping, or classification of measurements based on either goodness-of-fit to a model,

or natural groupings (clustering).

Cluster analysis is the organisation of a collection of patterns (usually represented as
a vector of measurements) into clusters based on similarity. Intuitively, patterns within a

valid cluster are more similar to each other than they are to a pattern belonging to a
different cluster [42].

It is important to understand the difference between clustering (unsupervised
classification) and discriminant analysis (supervised classification). In supervised
classification, a collection of labelled (pre-classified) patterns is provided; the problem is
to label a newly encountered, yet unlabeled, pattern.  Typically, the given labelled
(training) patterns are used to learn the descriptions of classes, which in turn are used to
label a new pattern. In the case of clustering, the problem is to group a given collection of
unlabeled patterns into meaningful clusters. In a sense, labels are associated with clusters

also, but these category labels are obtained from the data.
4.5. The Clustering Algorithm Used in the AMC Methods

It should be noted that theoretically an identified control region § 7 (or T7) extracted

from experimental data does not need to be simply connected or connected; furthermore,
successive regions can even be interlaced. As a matter of fact, the real regions have most of

the time a fractal geometry.

On the other hand, any description of S7’s (or 7,7 ’s) will usually fail to capture their
fractal nature because they are based on finite data. Consequently, the analytical

description of S s (or 7,*’s) will only be approximations of the real S7s (or 777s).

&> Botiazigi Universiiesi Kutiphanesi @
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It is quite reasonable to expect that data belonging to higher-level control regions are
more scattered than those of the lower-level control regions. Theoretically it may seem
paradoxical to try to cluster such data originating from a fractal pattern. However, it should
be noted that in practice only finite data are available from such a fractal pattern.

Consequently, the data fail to capture the fractal geometry and therefore the representation

of data clusters as Euclidean objects is justified. Clustering provides more accurate

analytical descriptions for these regions, especially for the higher-levels, and hence reduces
the insufficient identification of control regions. Another point that has to be mentioned is
the fact that, although the clustering algorithm used in ECR and AMC methods is very

simple, it improves the controlling performance enormously.

The clustering algorithm used for determining any cluster C; of a control region S}

(or 7,) can be explained as follows:

An arbitrary data point in a control region, 7,7, is taken as a centre of a hyper-sphere

i

with a radius r and all data points that lie in that hyper-sphere are labelled with the same
index, which is equal to 1 (j = 1) at the beginning. Next, another data point in same control

region is taken as a new centre of the hyper-sphere. At this step, there are two possible

situations:

1. Ifthis new data point has a label, the clustering continues with another point.
it.  If not, a hyper-sphere is considered, the centre of which is the new data point. In
this hyper-sphere a labelled datum is searched for.
e If alabelled datum can be found in that hyper-sphere, all new data points in that
hyper-sphere are labelled with the same index as the pre-labelled data point.
e If not, this new data point is labelled by an incremented index number, j=j + 1.
iii.  The clustering algorithm is terminated when all data points in the control region

under consideration are exhausted.

In this algorithm, the radius of the hyper-sphere, r is obtained from the regicn data
by visual analysis of the histogram of inter-data distances as the first minimum of the

histogram. The clustering algorithm explained above is illustrated in Figure 4.2.



Figure 4.2. Tllustration of the clustering algorithm used in AMC Methods
4.6 Application of the AMC Method
Since the off-line phases for different versions of the AMC method are different, they
will be explained in subsections 4.6.1 and 4.6.2 consequently and in the subsection 4.6.3
control phase of this method will be discussed.

4.6.1. Off-line Phase of the AMC-I Method

Application of the procedure associated with the off-line phase of the AMC-I method

can be described as follows:

The system is run three times with three different control parameter values, which are
Drmin, Pnom and Pmay, until some predetermined termination criterion is satisfied. Three data

sets containing the successive state pairs (zx, zx:1) are obtained from each a run.
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These data sets are analysed and the control regions S7’s (q = min, nom, max) are

determined separately for each of the three different parameter values using Definition 4.2.

By analysing the same sets of data, the control regions S7’s (i=2,... K ; q = min,

nom, max) are determined separately for three different parameter values using Definition

4.3 and this approach is illustrated by Figure 4.3.
4.6.2. Off-line Phase of the AMC-II Method

The improvement in AMC-II is the use of a different approach for the determination

of the control regions.

The off-line phase of the AMC-II is similar to the previous method with the
difference that a single data set is used for extracting the control regions and the use of

Definition 4.4. for determining the control regions. This method can be summarised as

follows:

The system is run while changing the control parameter randomly in a discrete
manner between the three possible values (Dmin, Prom and pmay) until some predetermined
termination criterion is satisfied. The data set obtained from such a run contains the

successive state pairs (zi, zx+1) and the corresponding parameter values (pq °s where q =

min, nom, max).

The procedure associated with the determination of the first level control regions

(7}7’s) of the AMC-1I method is same as in the first method.

After the extraction of data belonging to Toand 7;?’s according to Definition 4.1 and
Definition 4.2 (To = So), the data belonging to 7,7 (for i = 2,... K) are extracted according

to Definition 4.4 as opposed to AMC-1.

The idea of this second method is illustrated in Figure 4.7.
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Figure 4.3 The idea of AMC-I Method

Before determining the analytical descriptions of the control regions, experimental
data belonging to these regions need to be clustered for higher modelling accuracy.
Although these data sets have a fractal nature, in order to cope with highly scattered finite
number of data points belonging to the control regions, it is indispensable to pre-process

data by a clustering algorithm like the one explained in the subsection 4.4.

After the clusters, C belonging to the regions S for AMC-I and 7;* for AMC-II
have been obtained, the “Normalised Covariance Matrix” of the cluster C] denoted by

N? and the mean of cluster C;’ denoted by ,ui are calculated and the regions are
=i e

analytically described as hyper-ellipsoids in terms of ﬁ; 'sand N ;’ 's.

Off-line phases of the two different versions of AMC methods are illustrated in
Figure 4.4 and data point belonging to first level control regions for Logistic Map for

different versions of AMC Methods are given in the Figure 4.6.



Run system three times with
three different control parameter

values Puin, Poom, Prmax 10 Obtain
three different data sets.

Run system while changing
control parameter in a discrete
manner between three values

Pmin, Prom, Pmax

to obtain a single data set.

Extract data points belonging to
control regions using definition
41,42 and 4.3.

Extract data points belongimng to
control regions using definition
41,42and 4 4.

Cluster the data belonging to
each control region and
determine the analytical

Cluster the data belonging to
each control region and
determine the analytical
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description of each cluster.

description of each cluster.

(a) (b)
Figure 4.4. Flow-charts describing off-line phases of (a) AMC-I and (b) AMC-II

Data points belonging to some clustered control regions determined for different

chaotic systems are illustrated ((a) 7, for Lorenz System (Poincaré section) with r = 0.3,
(b) 7™ for Logistic Map witht = 0.2, (¢) 7;™ for Hénon Map with r = 0.2, (d) 7;°" for
Hénon Map with r = 0.2) in Figure 4.5.

4.6.3, Control Phase of the AMC Methods

Analytical representation obtained after the clustering process allows the

determination of the current state location in an analytical manner as follows:

For the current state z, “Normalised Mahalanobis Distances™ (NMD) from all C}’s

are calculated using the following equation.

(NMD]Y* = (2, ) N (z, — 1) .10 -

=i
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Figure 4.5. Some clustered control regions determined for different chaotic systems

The cluster C', which has the minimum Normalised Mahalanobis Distance NMD}]

from the current state, is regarded as the region of the current state and the corresponding
control parameter p(k) = p, applied to the system for targeting. If all distance
measurements obtained by using equation (4.10) from current state are larger than unity,
the current state is assumed to be in none of the control regions and no targeting action is
taken which means that p(k) is set to the nominal control parameter value pyom. After this

perturbation, controller waits until the next value of the new state of the system is obtained.
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Figure 4.7. The idea of the AMC-II method



This targeting scheme is continued until the system enters the OGY region and the

approximate local linear model is used for the stabilisation of the target state. On-line
(control) phase of this scheme is ilustrated in Figure 4.8.

Analytical
determination of the
region of current system |——
state

d=min min(NMD%)
4,d.q

- If z¢eS, (or Ty), OGY Controller acti ted .
e :11; 1o ;S(k) =O)pm)m ntroller activate 2(6) Chaotic N
-Ifd<1, p(k) = p, 7] System

Figure 4.8. On-line (control) phase of the AMC method
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5. SIMULATION RESULTS

3.1. Investigated Chaotic Systems

In this study, in order to compare the performance of the AMC method with that of
the ECR methods, the original ECR simulations [43] have been used as a benchmark.
These include various chaotic systems both under noiseless and noisy conditions. In order
to determine the robustness of the AMC methods with respect to measurement noise, some
random noise proportional to the root mean square value of the measured data (state
measurement) is added. The maximum tolerable (i.e. allowing the stabilisation of the
target) percentage measurement error is determined separately for each chaotic system and
each control method (OGY, AMC-I and AMC-IT). Furthermore, the average waiting time
is determined for each system and each method under noisy conditions. The average
waiting time is calculated as the average of the time it takes the system to enter the OGY
region starting from many different initial conditions (500 different initial conditions for
both discrete-time and continuous-time systems except for Double Rotor Map which was
tested for 200 different initial conditions). Results obtained for various chaotic systems

presented below are summarised in  Table 5.1.
S.1.1. The Logistic Map

The Logistic map is a well known one-dimensional discrete-time system represented

by the equation,

Xn+1 = PXa(1-Xn) 41D

where p is the control parameter. The Logistic map exhibits chaotic behaviour for
Puom = 3.9, and for that value it has an unstable equilibrium point at x* = 0.7435. In
stmulations, maximum allowed parameter change is taken as 8puaex = 0.10 and the radius of

local control region as § = 0.01. The root mean square of the measured state is found as

XL = 0.6608.



S5.1.2. The Hénon Map

The Hénon map is a two-dimensional discrete-time non-
represented by the relations,

linear system, which is

Xat1 = P+ 0.3y, - x,2

(4.12)
Y1 = Xy

where p is the control parameter of the map. The Hénon map exhibits a chaotic behaviour
at the nominal parameter value Prom = 1.37. For this parameter value one of its unstable
equilibrium points is at x* = y*=0.8717. In our stmulations, maximum allowed parameter

change is taken as Spmy = 0.03 and the radius of local control region is & = 0.02. The root

mean square of one of the measured state is found as X ot =1 327
3.1.3. The Lorenz System

The Lorenz system is a three-dimensional continuous-time chaotic system governed
by the equations,

£ =oly-x)
Y =(px-y-xz) (4.13)
z = (xy - fz)

where G, p, and § are the system parameters. The nominal values o = 10, p =28, and B =
8/3 constitute the most investigated parameter set corresponding to chaotic behaviour. In
simulations, for both real coordinates and delay coordinates, maximum allowed parameter
change is chosen as 806 = 0.30 and the radius of local control region as § = 0.30. In
general, the Poincaré surface can be chosen arbitrarily provided that it cuts the unstable
periodic orbit under consideration. Here it is taken as a surface with y = 8 4853 with a

downwards piercing direction, i.e. y< 0. In real coordinates, the root mean square of one
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: Lorenz __ . .
of the measured state is Xms = 13.43, while in the delay coordinates, the root mean

square of measured delay coordinate is yhowm - 2.675, In the latter case 3 delay

coordinates have been used with a delay time T = 100 ms.
S.1.4. The Double Rotor Map

The Double-Rotor map is a four-dimensional discrete-time chaotic system obtained

as the Poincaré map of a 4-dimensional continuous-time, non-autonomous system. The

dynamic equations of the Double-Rotor map are as follows:

[X(kﬂ)} { MY (ky+ X (k) J

Yle+1y || ZY (k) + G(X (k) (4.14)
where
REAG . REAG)
X(k)_[xz(k)}eS xS ,Y(k)—_yz(kj (4.15)
GOX(h)) = ¢, sin(x, (k)) | (4.16)
e, sin(x, (k) |
e 0.48 021 ;_[024 027
— 1021 069/= 1027 051 (.17)

S'is the circle R (mod 27). The constants ¢; and ¢; are given by ¢; = Joli , where f) =

9,1, =1/+/2 and =1 (Refer to (Romeiras ef al., 1992) for further details). For f) =9, the
map possesses two positive Lyapunov exponent, which implies hyper-chaotic behaviour.

In the simulations, among others the equilibrium point
I % 7
[x, X, Y, yzj} =[48719 23688 -4.5547 10.3743] is chosen as the target, and maximum

and minimum parameter values are taken as_fuar = 10, fou, = 8.9 respectively and the radius

of local control regionis 8 = 0.1.
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3.2 Simulation Results

Table 5.1 summarises the performances of OGY, AMC-I and AMC-II methods for
the different chaotic systems under investigation.

The OGY method implemented here corresponds to the basic OGY algorithm where
the coefficient matrices of the local linear model are calculated from the training data by
the least square error approach. The maximum tolerable percentage noise is defined as the
maximum amount of white noise (as a percentage of the root-mean-square value of the
measured state), which can be added to the state measurements without endangering the

stabilisation of the target. The table also shows the average waiting times under noisy

conditions.

From Table 5.1 it can be observed that for the optimal number of extended control
regions AMC-IT provides better results than AMC-1 with respect to average waiting time
both with and without measurement noise. Although in both versions of AMC on-line
phase is the same, this performance improvement is the result of the difference between

approaches used in identification of control regions.

As illustrated in figure 4.3 and 4.4, in the first version, it is assumed that system can
be steered into a lower level control region if and only if that region has the same control

parameter value index with the previous one, which is not the case for the second version.

In AMC-1I, basic assumption is that, system can be steered to the OGY region with
properly chosen parameter perturbation from three different possible values, which are
Pmin, Poom OF Pmax. As a result, these regions, which are different from the regions of the
previous version, are modelled more accurately than before, which can be observed from
Table 5.1 except for Lorenz system with delay coordinates. In this case, AMC-I gives the
best performance in terms of average waiting time (number of piercing of Poincaré
surface) but this performance can be different for different choice of Poincaré surface and

delay time.
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On the other hand, Table 52 shows the results obtained for the same chaotic systems

ECR methods as explained in section 4.2. Although ECR gives better results than our

proposed method, AMC method does not require any additional computational cost, except

by

the data gathering process, such as training time. Especially in Logistic and Hénon maps,
AMC methods show quite reasonable performance levels, although there is no modelling
tool such as neural networks. Also it has to be mentioned that, the required memory size is
also smaller in AMC methods. Since parameters such as weights of neurons of the neural
networks assigned to each an every cluster in ECR methods require more memory size

than AMC methods. It can be seen as a trade-off between cost and performance of the

targeting task.

Furthermore, robustness against measurement noise has been observed from results.
This property of AMC methods is the result of analytical descriptions for the clusters and
can be explained as follows: Since clusters are represented as hyper-ellipsoids in terms of
their means and covariance matrices, expected effects of addition of some white noise are

minimised by the stability of these statistical quantities against measurement noise.

Figure 5.1 shows the values of the system state and applied parameter values during
the realisation of the targeting and control task for Logistic Map with 3 clustered control
regions by AMC-IT Method.

Figure 5.1 Application of the AMC-II Method to the Logistic map with 3 clustered control

regions
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6. CONCLUSION

In this thesis, a method hag been developed, which allo
Clustered-ECR-1I

ws the application of the
targeting method using simple analytical models rather than artificial

neural networks. Both variants of the proposed method, AMC-I and AMC-IT maintain the
basic assumptions of the OGY control.

The main advantage of this method ig the fact that, it uses very simple models of the
system dynamics in a larger portion of the phase. The analytical description of the regions
in terms of hyper-ellipsoids results in very small computational memory usage. AMC
methods maintain some desirable properties of the ECR targeting method like small
control power expenditure and applicability to high dimensional chaotic systems and delay
coordinates. On the other hand, the employment of simple analytical models in AMC
methods requires some additional restriction, namely the usage of finite number of discrete

values of the control parameter instead of continuous parameter variations and single

control parameter usage.

In this thesis simulations have been performed on dissipative chaotic systems using
single contral parameter with three discrete allowable values. This restriction reduces the
coverage of the phase space by control regions and results in a longer average waiting time
compared to the Clustered-ECR-II method. The average waiting time can be reduced by
increasing the number of control parameters and the number of allowed values of the
control parameter(s). This, however, will increase the computational burden. Hence, the
number of allowed values of the control parameter has to be determined considering the

trade-off between targeting speed and computational burden.

The simplicity of the data gathering process allows some successive trial and error
iterations for optimisation of some controller parameters like the radius of the OGY region,

the clustering radius etc.
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The clustering algorithm employed both in Clustered-ECR-II and AMC methods is a

very simple one. The usage of 5 more sophisticated clustering algorithm can improve the

average waiting time in all thege methods while increasing the computational burden.
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