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core. I also would like to thank Ömer Faruk Irmak for his support in machine code

generation using compilers. I am also thankful to Anılcan Çakır for all the help on the
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ABSTRACT

SIMDIFY: FRAMEWORK FOR APPLICATION SPECIFIC

SIMD-PROCESSING WITH RISC-V SCALAR

INSTRUCTION SET

Most of the hardware accelerators communicate with the processor via custom

instructions. Since custom instructions are not standardized, each accelerator requires

a different compiler and user code, which can be a tedious process for the user. To

reduce the user burden, we propose a parallel programming framework called SIMDify,

which generates single-instruction-multiple-data (SIMD) processors that can achieve

SIMD processing without using custom instructions.

SIMDify takes an application machine code compiled for scalar RISC-V ISA and

simulates it to determine the SIMD processing regions. Then, SIMDify configures

and generates the application-specific SIMD processor that executes scalar RISC-V

instructions concurrently on the SIMD datapath. SIMD processor consists of a single

master and multiple slave processing elements (PE). Slaves focus on SIMD level tasks,

whereas the master is responsible for the central control. Proposed architecture is the

first SIMD capable RISC-V processor designed in HLS and can operate with a faster

clock frequency than the existing SISD RISC-V HLS cores. SIMDify relieves the user

from using custom instructions with rigid programming models and offers a flexible

solution. The processor is designed and tested in Vivado High Level Synthesis 19.2. It

operates at 78 MHz on Zynq Zedboard FPGA. Master PE uses 5% and each slave uses

3.5% of FPGA resources. Test results show that execution time can be improved by

8.5x with 9 slaves and 19x with 29 slaves.
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ÖZET

SIMDIFY: RISC-V SKALER KOMUT SETİ İLE

UYGULAMAYA ÖZEL SIMD İŞLEME İSKELETİ

Donanım olarak tasarlanmış hızlandırıcıların büyük bir kısmı, işlemciyle özel

komutlar aracılığıyla iletişim kurar. Özel talimatlar standart olmadığından, her

hızlandırıcı farklı bir derleyici ve kullanıcı kodu gerektirir ve bu da kullanıcı için zorlu

bir süreç olabilir. Kullanıcı yükünü azaltmak amacıyla, tek komut çoklu veri (SIMD)

komutlarını kullanmadan SIMD işlemcileri üreten SIMDify adlı paralel bir program-

lama çerçevesi sunuyoruz.

SIMDify, skaler RISC-V komut kümesi mimarisi (ISA) için derlenen makine ko-

dunu alır ve SIMD işleme bölgelerini belirlemek için simüle eder. Ardından, SIMD veri

yolunda skaler RISC-V komutlarını eşzamanlı yürüten ve uygulamaya özel olan SIMD

işlemcisini yapılandırır. Üretilen SIMD işlemcisi, bir ana ve birden çok köle işlem

öğesinden oluşur. Köleler, SIMD işlemlerine odaklanırken, ana işlem öğesi kontrolden

sorumludur. Önerilen mimari, yüksek seviyeli sentez (HLS) araçlarında tasarlanan ilk

SIMD özellikli RISC-V işlemcisidir. Mimarinin mevcut tek komut tekli veri (SISD)

RISC-V HLS çekirdeklerinden daha hızlı bir frekansta çalıştığı gösterilmiştir. SIMD-

ify, kullanıcıyı esnek olmayan programlama modelleriyle özel komutları kullanmaktan

kurtarır ve esnek bir çözüm sunar. İşlemci Vivado HLS 19.2’de tasarlanmış ve test

edilmiştir. Zynq Zedboard alanda programlanabilir kapı dizisi (FPGA) üzerinde 78

MHz’de çalışır. Ana öğe, FPGA kaynaklarının %5 ini kullanır ve her köle kaynak kul-

lanımını %3,5 arttırır. Test sonuçları, işlem süresinin 9 köle ile 8,5 kat ve 29 köle ile

19 kat hızlanabileceğini göstermektedir.
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1. INTRODUCTION

A processor is the main component of the most digital electronic systems. Device

designers use different types of processors depending on their area, power and cost

constraints. For instance, due to their flexible and low-cost nature, general purpose

processors or central processing units (CPUs) are more suitable to be used in tasks with

multiple applications. General purpose processors trade computer power and flexibility

with energy consumption and chip area. However, for processors that are used in

single type of applications, such as neural-networks [3], cryptography [4], implants [5],

wearables [6] and, Internet of Things (IoT) [7] area, power, cost and performance

efficient processors are required.

In terms of area and performance, best pick is to use application-specific inte-

grated circuits (ASICs). ASICs, as the name suggests, are devices that are created

with a specific purpose in mind. They are not re-programmable and can only be used

for a specific task. ASICs are quite expensive in terms of cost, resources and design

time, but they do offer incredible high performance and low power consumption.

In recent years the main attention has been optimizing general-purpose processors

for a given application domain to make them more efficient [8]. These optimized pro-

cessors are called as application specific instruction set processors (ASIPs). An ASIP

utilizes special properties of applications to accommodate the desired cost, power, area

and performance requirements. ASIPs are in the middle of CPU and ASIC approaches:

they can be programmed with a high-level language, the software can easily be modi-

fied if a bug is found, and yet the custom instructions can accelerate the application’s

performance far beyond the level of a general-purpose processor at a much lower power

budget.
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With the adoption of ASIP design, area-efficient [9, 10], power-efficient [11–14]

and performance-efficient [9,10,15–17] processors have been designed. Optimizing the

area is done by reducing its number of registers and functional units which removes

unnecessary instructions and reduces the chip area. Optimizing performance is done

by adding custom instructions or hardware to accelerate execution. One frequent way

to enhance performance-efficiency of ASIP is to exploit inherent data parallelism in the

algorithms and execute them concurrently.

High-Performance Computing (HPC) is another area that benefits from ASIP

design. HPC is used in various fields such as weather modelling [18], physics [19],

and biomedical modelling [20]. HPC algorithms make use of inherent data parallelism

of the algorithms to increase performance. However, processors cannot automatically

recognize this parallelism. Programmers must use Message Passing Interface (MPI)

and Open Multi-Processing (OpenMP) standards to guide compiler and processors to

execute in an efficient manner. On top of that, the task must be parsed in a way

that there will be minimum or no data dependency between each sub-process. For

instance, in weather modeling, map is parsed in grids where data dependency only

occurs in the edges. Each grid can then be executed in similar parallel computations.

Concurrently executing the same operation on multiple data groups is called SIMD

(Single instruction, multiple data) processing.

For hardware, SIMD instructions are inherently simple to implement, since they

only require the duplicated structure of the main execution unit’s datapath. But not all

processors have built-in instructions for SIMD processing. Traditional approaches to

this problem are solved by extending standard instruction set with non-standard cus-

tom instructions (compiler retargeting) [21] or using Just-in-time (JIT) compilers [22],

both of which requires a non-standard compiler as well as non-standard instructions

in the custom hardware. Since custom instructions are not standardized, each indi-

vidual accelerator requires a different compiler modification. On top of the compiler

modification, to properly introduce new instructions, simulators and debuggers must

be additionally retargeted.
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Accelerators are used in various fields such as machine learning [23], speech recog-

nition [24], raw data processing [25], cryptography [26] and image detection and recog-

nition [27] especially after the rise of IoT. Though designed accelerators may extremely

speed up the execution, using them with custom instructions and compilers is a te-

dious process that discourages software programmers from using these accelerators [28].

SIMDify offers a flexible parallel processing solution that reduces the user burden and

removes the custom instructions.

In this thesis, we present SIMDify [29], an open-source hardware-software par-

allelization framework to design special purpose SIMD processors without using any

just-in-time compilation, extending the default instruction set or retargeting the com-

piler. SIMDify takes an application machine code compiled for scalar core and SIMD

parameters, and generates a customization header files. Using Vivado High-Level Syn-

thesis (HLS) [30], SIMDify processes the generated header files and automatically syn-

thesizes the desired SIMD capable special purpose processor architecture. Processor

is compatible with the RISC-V Instruction Set Architecture (ISA), and executes the

native instruction set even during SIMD execution. The main contributions of this

thesis can be summarized as follows:

• A flexible parallel programming framework called SIMDify for generating, cus-

tomizing and scaling SIMD capable processors with minimal software level modi-

fication and using a standard compiler. To generate the special purpose processor,

user only requires to write an algorithm in C, and compile it in RISC-V com-

piler. SIMDify will generate custom header files for the HLS, then synthesizes the

SIMD soft processor that accelerates the given algorithm. Generated processor

then can be mapped to an FPGA.

• A new RISC-V soft processor architecture that enables in-memory SIMD pro-

cessing is proposed. Generated processor is the first SIMD capable RISC-V core

designed using HLS. Processor can achieve similar frequency with other HLS gen-

erated RISC-V cores even with 30 slaves, and it can execute applications as SIMD

by using only the base RISC-V ISA without modifying the existing compiler.
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Traditional ASIP design flow has five key steps according to [31]. First two is

analysing and design space exploration of the architecture. Third step is the extending

the instruction set. SIMDify does not extend the existing instruction set and we leave

the application analysis part to the user. Other two steps (code and hardware synthesis)

is automated by the SIMDify. In this project, our aim is automating ASIP processor

design using Vivado High Level Synthesis [32] tool and to make the ASIP design process

much easier and efficient. User codes and compiles the task in C language, and SIMDify

handles the rest. Applicability of the SIMDify is tested on selected algorithms. Clock

speed, area and performance-efficiency of the generated soft-processors are studied for

Zynq Zedboard FPGA [33].

The rest of the thesis is organized as follows. The second chapter discusses SIMD

processing, RISC-V, and HLS related works. In third and fourth chapters proposed

hardware-software system is introduced. In Chapter 5, detailed experimental analysis

on resource usage and performance is given. The last chapter summarizes our work

and broadly provides outputs of the study.
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2. RELATED WORKS

In this chapter, we will set forth related research under three sections. In first

section we discuss the application specific processors that utilizes SIMD processing. In

second section High Level Synthesis is explained. In the last section RISC-V ISA that

we use in our design is explained.

2.1. Single Instruction Multiple Data Application Specific Processor

Design

Computer Architecture consists of four widely accepted main classifications based

upon the number of concurrent stream of instruction and data available [34]. Single

Instruction Single Data (SISD) architectures are sequential in nature and does not

exploit any parallelism. In SIMD architectures, single instruction operates on multiple

data at the same time. SIMD architectures exploit inherent data parallelism of the

algorithms and they require minimum or no data dependency between its data streams

to be effective. In conventional SIMD, SIMD instructions are used to inform processor

about when to use SIMD processing. If the SIMD instructions are not standardized

in the architecture, users must introduce SIMD instructions by themselves. This can

be done by either using inline assembly or modifying the compiler toolchain. SIMDify

does not force users which compiler to use. Intermediate representation generated by

the compiler front end can also be used to detect SIMDifiable regions with cost of

forcing users to a custom compiler.

In Just-in-time (JIT), compiling binary instructions to be executed by processors

are interrupted, dynamically interpreted, and modified [22]. Instructions are modified

ahead of time to introduce minimum overhead and modified to best suit the custom

processor. JIT compiling is mainly used to translate bytecodes of high-level languages

to custom SIMD instructions, and overhead is not entirely avoidable.



6

In the literature, SIMD computation is achieved using custom instructions in

[35–37] by extending RISC-V ISA, and in [38] by extending SimpleRISC ISA. To process

these instructions, mentioned ASIPs either use inline assembly or modify the compiler

toolchain. So for each individual custom SIMD processor user must modify its compiler.

On top of the compiler modification, to properly introduce new instructions, simulators

and debuggers must be additionally retargeted.

Automated tools like Codasip Studio [39] or ASIP Designer [40] where ISA ex-

tended processors can be generated together with SDK exist, but this also limits the

user by forcing one IP ecosystem. Chipyard RoCC [41] is another commonly used

framework for designing accelerators for Rocket processor. However, communicating

accelerators with its RoCC interface also requires a custom software toolchain. SIMD-

ify solution can be applied to any SIMD loop that satisfies the memory constraints,

whereas, contemporary approaches might require different custom instruction for each

new application.

The solution proposed in this thesis is scalable, user-friendly, open-source, and

does not depend on non-standard compilers. Hardware-level parallelization is achieved

without using additional instructions. The only thing dependent on the user is coding

the algorithm in a partitionable way and default tools for compiling and high-level

synthesis. SIMDify framework only requires four inputs in the C code. Other inputs

are only for parameter configuration and are not compulsory. Inputs are compiled

as data memory values using default compiler. Then, an automated framework reads

these values and configures the processor.

2.2. High Level Synthesis

Best performance in application specific processors are achieved by manually cus-

tomizing an application for a specific target architecture and customizing the hardware

for a specific application. However, the trade-off is the cost of portability, development

expenses, and time cost. Furthermore, hardwired circuits are inappropriate for devices
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that need to adapt to ever-changing algorithms. FPGAs, on the other hand, are re-

configurable hardware blocks. The FPGA architecture is relatively simple; array of

programmable logic blocks connected to programmable interface. Since FPGAs can

be configured after manufacturing by the user, they can be used to implement wide

range of logic functions (from full adder to processor core). This makes them ideal for

application tailored processing. Soft ASIPs are used as a viable strategy to reduce the

design time without sacrificing performance and due to its reconfigurable nature.

To configure and program FPGAs, hardware description languages (HDLs) such

as Verilog HDL and VHDL (VHSIC-HDL, Very High-Speed Integrated Circuit Hard-

ware Description Language) is used. HDLs describe combinational and sequential logic.

An IDE (Integrated Development Environment) such as Vivado Design Suite from Xil-

inx, Intel Quartus Prime Software Suite from Intel, and HDL Designer from Mentor

Graphics interprets, optimizes, and tests HDL code and synthesizes and configures the

FPGA with the equivalent logic.

However, the traditional FPGA design flow demands specialized hardware design

expertise and familiarity with Hardware description language (HDL), which is difficult

for non-hardware designers. With the advent of the High-Level Synthesis (HLS) tools,

it is possible to prototype, synthesize, and simulate hardware using a high-level lan-

guages such as C or C++. Just as HDL is interpreted to synthesize gate-level logic,

HLS tool such as Vivado HLS, Intel HLS Compiler or Catapult HLS interprets C code

to generate an HDL text file. In the case of Vivado HLS, the text file is formatted as

Verilog and VHDL. Typical Vivado HLS design flow [30] consists of:

• Compiling, simulating and debugging the C algorithm.

• Synthesize the C algorithm as an register transfer level (RTL) implementation.

Optional user directives called pragmas can be used to guide the HLS tool.

• Generate reports and analyze the design.

• Verify the RTL implementation using co-simulation.

• Package the RTL implementation into an IP.
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C++ code is used to describe the behavior, and the HLS tool synthesizes the

corresponding register transfer level (RTL) circuit. HLS inputs consists of function

written in C, C++, or SystemC, constraints such as clock period, uncertainty and

target FPGA, optional directives (pragmas) that guides the synthesis process, opti-

mizes the system, and implements specific behavior and finally the test bench files for

verification. HLS outputs consists of RTL implementation files in HDL and report files.

The tool gives designers better authority over-optimization of their design archi-

tecture. However, there are more ways than one to synthesize the C code. So, tools

must be guided by the user through pragmas. Quality of the design is directly dictated

by the selected pragmas. Hence, iterative design process for finding the best solution

takes a considerable design effort and time. In our approach, we have already designed

the template SIMD processor architecture. The SIMDify framework, which generates

application specific SIMD architecture, greatly reduces the design effort and time of

the user. SIMDify fully utilizes HLS and its C like header structure to reduce design

time.

HLS has many built-in pragmas that correspond to design constraints such as

parallel and pipelined design. Vivado HLS is chosen as the primary tool due to its fast

design process, built-in pragmas, and accessible and flexible nature. In [42] it is shown

that HLS can reduce the design effort compared to non-HLS RTL. In terms of area,

the processor designed in HLS is %50 larger than its RTL equivalent.

Example processors designed using a HLS in the literature are Comet core [43] in

RISC-V ISA and Catapult HLS, HL5 [42] in RISC-V ISA and SystemC and, approxi-

mate CPU [44] in RISC-V ISA and Vivado HLS. All mentioned processors doesn’t have

a SIMD support, but Comet does allow instruction extensions by modifying the HLS

code. However, compiler modification must be done by the user. HL5 and Comet have

stable riscv32im instruction support. [45] and [46] are MIPS architecture based proces-

sors, utilizing Vivado and LegUp [47] HLS tools, respectively. In [14] SIMD processor

for software-defined radio (SDR) applications is designed using OpenCL language [48].
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Bespoke processor article [49] mentions HLS is costly and increases design and

verification effort. However, designed SIMDify framework automates this process with

the guidance from user. So user won’t be needed to verify the design all the time. User

can generate the application machine code and SIMDify automatically applies SIMD

processing and trims the unnecessary blocks.

Another article presents Trimmed VLIW approach [50]. It trims down the HDL

code depending on the application. For instance, 4:1 mux is trimmed down to 2:1 if

the select signal has two constant values. HLS does that automatically for the given

process. Since it exists in a high level abstraction, constants will be defined before

muxes. So, HLS will trim down the constant switch case arguments in the code.

Therefore, using HLS is beneficial with respect to design time, flexibility and overall

control.

2.3. RISC-V Instruction Set Architecture

Most ISAs used by major companies such as ARM, Intel, and AMD are propri-

etary. For this reason, free, open-source ISAs like Open RISC [51] and RISC-V [1]

based processors are gaining momentum in custom processor designs. RISC-V is rec-

ommended as an open-source ISA standard by [52]. Currently, RISC-V lead by the

RISC-V foundation [53] and its members.

In this work, RISC-V ISA [1] is chosen due to its open-source, free, active, and

well-documented nature. The base RISC-V ISA from University of California, Berkeley

had been released in 2011 and it is still rising in popularity with its open source GitHub

applications, public Google groups and meetings. RISC-V attracts a wide variety of

researchers from both academic community [54, 55], and private companies [56–59].

RISC-V has a compiler, simulator, QEMU support, and a cycle-accurate verification

suite.
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The main goal of RISC-V is to create a long-lasting open-source ISA ecosystem

with a wide range of uses. For this reason, it can be both scaled down using its

embedded ISA and scaled up using its single, double and, quadruple precision floating-

point support. Its 32, 64, and 128 bit base instruction set is suitable for all ranges of

devices from IoT to warehouse scale computing systems. A number of hard and soft

core designs ranging from simple single cores [60,61] to complex out-of-order superscalar

cores [57,62,63] have been shared as open-source and many RISC-V related academic

papers have been published. Some commercial products from different vendors are also

available in the market [56, 58,59].

As a part of the European processor initiative (EPI) processor with RISC-V

ISA will be developed using fully European IPs [64]. Manufacturers such as Western

Digital Corporation [57], Google [65], and Alibaba [66], also designed processors using

RISC-V ISA. Several implementations [67–69] of RISC-V have been made in Chisel

language [70]. Even though Chisel is different than the traditional HDL, it is closer to

the HDL than to the HLS [71].

Even though RISC-V ISA has two extensions for parallel computation, i.e., “P”

(Packed SIMD) and “V” (Vector) extensions, currently, both extensions are not ratified.

Also, ”V” extension is not tailored for packed SIMD applications, and the ”P” extension

is not scalable. Since these extensions are subject to change, the designed processor

might be obsolete in the future. This problem can be solved using compiler retargeting

and extending standard instruction set with non-standard custom instructions [21] or

using Just-in-time (JIT) compilers, which compiles the program in run-time [22]. Both

approaches yield non-standard compilers as well as non-standard instructions in custom

hardware. So, compiler must be modified for each individual accelerator.

”V” extension can work with small scale vector lengths, however it’s intended for

high performance computing with its OpenMP support. Allowing vector processing

requires significant changes in the processor architecture, whereas SIMDify can unroll

loops with its simple core architecture. In ”V” extension, width of a vector can only
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be a power of 2 whereas SIMDify can take custom unroll factors as an input. However,

custom unroll factors must exactly divide the number of iterations in the loop.

”P” extension requires a different machine code for different the number of parallel

computing units. SIMDify does not have this constraint. Hence, the user can easily

explore design space to optimize the overall design without recompiling the software.

Currently, ”P” extension is not supported by the standard RISC-V compiler. Both ”V”

and ”P” extensions are not standardized and there are no existing open source designs

with these extensions. We released SIMDify as an open source project on Github [29].
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3. SIMDIFY FRAMEWORK

SIMDify can parallelize and accelerate an application with minimal software level

modification and using the standard RISC-V compiler. It utilizes HLS pragmas and C

like header structure of the HLS. Using HLS, SIMDify processes the RISC-V compiler

machine code and HLS simulator outputs and automatically generates desired SIMD

processor architecture. SIMDify is fully automated and it requires only 4 variables to

configure the software, which reduces the design time.

Figure 3.1. Block diagram of SIMDify Framework.

Operation of SIMDify framework is shown in Figure 3.1. It takes the compiled

machine code that contains the algorithm and necessary configuration parameters. The

machine code is fed to the Memory Map Extraction block to generate the Local Memory

header file. Then, the Local Memory header and the SISD (Single-instruction-single-

data) RISC-V ISS (Instruction Set Simulation) Model is fed to the next block to detect

the regions that will be executed as SIMD (SIMDifiable Regions) and write them to

the Address Header. After that, the SIMDification block generates the SIMD header

file using the Address and Local Memory Header. Lastly, SIMD RISC-V processor

description code in C++ and all header files are synthesized in Vivado HLS to generate

SIMD RISC-V Core. All steps are automated inside the SIMDify Framework. A

detailed explanation for each block in the figure is given in the rest of this section.
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3.1. Application Code with SIMD configuration

Four variables must be included in the C code to generate and configure the

SIMD processor successfully:

• StartPar: Determines the region which SIMD processing will be executed. The

user has to set StartPar to 1 just before the loop begins and to 0 just after the

loop ends.

• par num: Unroll factor. Determines the number of SIMD processes. Number

must exactly divide the loop count. Denoted by n.

• arr str: Start local data memory address of the SIMD array. Used in SIMD

slaves. Equals to &SMA[0]; where SIMD memory array (SMA) is the name of

the array accessed in the SIMD loop with size X. Denoted by Adata,start.

• arr end: Last local data memory address of the SIMD array. Used in SIMD slaves.

Equals to &SMA[X-1] + (&SMA[X-1] - &SMA[X-2]); where SIMD memory array

(SMA) is the name of the array accessed in the SIMD loop with a size X. Denoted

by Adata,end.

In the local memory, variables have specific addresses which are generated using

the “section” command. This command is a GCC variable attribute which is used for

setting particular variables to appear in individual sections (address ranges). Only the

unroll factor can be modified after compilation. To change the other three, code must

be re-compiled. Section names and addresses are determined from the linker file.

Our SIMD processor template processing system consists of one master process-

ing element (PE) and n− 1 slave PEs. Master can access the complete local memory

and executes the sequential code. During SIMD execution, master also executes con-

currently with the slaves. So, during SIMD processing, n PEs execute concurrently. In

order to fully benefit from SIMD operation, memory access range of each PE has to be

contiguous as shown in Figure 3.2. To achieve this, the user must write the SIMD loop

part of the C code while considering memory adjacency. For example, consider a four
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Figure 3.2. Accessible regions in the Local data memory for n-1 Slave PEs and the

Master PE. Different Tag values are generated for each partition.

iteration loop for matrix vector multiplication A[i][0..4] · v[0..4] = r[i] like in Figure 3.3

where A is the name of the 4 × 5 matrix, v is the multiplied vector with size 5 and

r is the result vector, Figure 3.4.a. In i-th iteration each element in i-th row of A is

multiplied with elements in the vector and summed up.

Figure 3.3. Non-SIMDifiable C code of the matrix multiplication example.

The example code results in one matrix, one vector, and one result block in the

memory, Figure 3.4.b. To design a SIMDifiable C code, all addresses accessed in only

one iteration in the SIMD loop, i-th row of A and r, must be adjacent in the memory.

So, code shown in Figure 3.4.a, cannot be executed in our designed SIMD processor.

We solve this problem by adding another column to the matrix to store the result

vector by modifying the multiplication as A[i][0..4] · v[0..4] = A[i][5], Figure 3.4.c. In

this way, all arrays that are read and written in one iteration are compiled as adjacent

memory partitions 3.4.d. Hence, each SIMD slave Si will be able to execute in its own

dedicated partition Partition Si, as shown in Figure 3.2. Note that the master M can

access the entire local memory.
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Figure 3.4. Coding example (a) Vector matrix multiplication

(b) Default memory allocation of arrays after declaration.

(c) Suggested SIMDifiable vector matrix multiplication.

(d) SIMDifiable memory allocation after suggestion.

Local data memory in Figure 3.2 consists of data and tag fields. Tag field is used

for local data memory access and the data field stores the local data. It is a single

block that contains address-to-partition mapping. Tag field makes a trade-off between

memory access latency and area. By using tag field, area is increased. In return, the

SIMD architecture does not require many comparison and multiplexer blocks, which

increase the latency of the address-to-partition mapping process.

Size of the tag field is proportional to the size of the data field, and each tag

contains values from 0 to n − 1. 0 value is for regions that are only accessed by the

master, and 1 to n − 1 is for slave regions S1 through Sn−1. How tag field is used for

memory access is detailed in Chapter 4.1.

C code of the example matrix multiplication structure should be written as Figure

3.5. Variables that are not accessed in only one iteration in the parallelized loop need

not be adjacent in the memory. So, user only has to modify its SIMD execution loop

and include the four variables. Rest of the code remains the same.
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Figure 3.5. SIMDifiable C code of the matrix multiplication example.

As another example, we can present matrix matrix multiplication (MMM). Figure

3.6 shows MMM for loop, A[i][0..1] ·B[0..1][0..2] = A[i][2..4], is SIMDified and each PE

executes A[i][0..1] ·B[0..1][x] = A[i][x+ 2] operation. In Figure 3.6.d, B is the common

memory and can be accessed by all slaves and A is the partitioned memory and can

only be accessed by single slave. Master can access to the entire local memory.

Figure 3.6. Coding example (a) Matrix matrix multiplication

(b) Default memory allocation of arrays after declaration.

(c) Suggested SIMDifiable matrix matrix multiplication

(d) SIMDifiable memory allocation after suggestion



17

3.2. RISC-V-compiler

In this work standard RISC-V compiler such as riscv32-unknown-elf, riscv-none-

embed, riscv64-unknown-elf GCC is used. To synthesize memory in a partitionable

way, the compiler optimization level must be 3. The compiler generates the machine

code, which consists of the data memory before the execution, and the instructions to

be executed.

3.3. Memory Map Extraction

Memory Map Extraction block reads the machine code and generates the cor-

responding Local Memory header file for the HLS. Local Memory header contains

instruction and data array. In the instruction array, each element contains 32-bit in-

structions. The size of the instruction array depends on the generated machine code.

The data array contains 32 bits as 4x8, partitioned as 4 dual port 8 bit sized mem-

ory arrays. The length of the data array depends on the linker file. The header also

contains macros for each instruction in the instruction binary. For example, if instruc-

tion binary contains an ADDI instruction, header contains #define ADDI directive.

Macros are used in HLS to remove unused instructions of RISC-V and to create an

area efficient core.

3.4. SISD RISC-V Instruction Set Simulation (ISS) Model

This model is written in C++ to be simulated with the Vivado HLS. With the

use of HLS-specific constructs like ap int library and HLS directives, overall design

time is reduced. SISD model is only used in HLS C simulation to read instruction and

data arrays in the local memory and generate the address header, as explained in the

next part.
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3.5. Detection of SIMDifiable Regions

Instructions in the local memory header are simulated in HLS without Register-

Transfer Level (RTL) synthesis using the SISD RISC-V ISS model. While simulating,

the model constantly reads the four variables (StartPar, n, Adata,start, Adata,end) from

their respective local addresses, Figure 3.7. When the StartPar is read as “1”, it

means that simulation is entering the SIMD loop and when it is read as “0”, it means

that simulation is exiting the SIMD loop. Meanwhile values Adata,start, Adata,end, and

par num, which are set before SIMD loop, are saved to the Address Header.

Figure 3.7. Flow diagram for Detection of SIMDifiable Regions block.

After exiting the loop, the model checks the branch instruction of the SIMD loop.

The start of the SIMD loop, branch target address, is equal to the sum of sign extended

immediate offset, imm[12:1], and branch program counter (PC) address (Figure 3.8).

Together with the branch target address and next value after branch PC address, the

register numbers and contents given in the source register (rs1 and rs2) fields of the

branch instruction are saved to the Address Header. Detailed explanation about how

register numbers and contents are used for transition between normal processing mode

and SIMD processing mode is given in Chapter 4.1.
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Figure 3.8. B-type instruction structure for RISC-V, rs1 and rs2 are the source

registers for branch operation [1].

3.6. SIMDification

SIMDification block generates the HLS SIMD header file that consists of slave

PE and cache parameters, partitions, and functions used in the SIMD execution. By

default, this block uses the unroll factor determined in the C code, but it can be over-

written to reconfigure SIMD processor without re-compiling it from scratch. SIMD

processing can be applied to any memory partitionable loop in the application. SIMD-

ified local data memory is generated by allocating all the data between the Adata,start

and Adata,end into n equisized partitions, as shown in Figure 3.9. The master PE acts

as n-th slave during SIMD processing. Start and end addresses of the partitions are

saved to the SIMD header. These are also used while transitioning between standard

processing mode and SIMD processing mode. SIMDification block also generates con-

stant memory tags for every word in the local data memory. CPU looks at the tags to

determine which memory address belongs to which memory partition. Tagged memory

architecture will be detailed in Chapter 4.1.

3.7. SIMD RISC-V processor description Code in C++

SIMD RISC-V processor description Code is a HLS code that is written in C++

and is responsible for generating processor system with dynamic branch prediction. It

generates two types of datapath:

Figure 3.9. Example partitioning for a) n=2 , b) n=4
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• Master Datapath: It is always executed, unique and responsible for branch pre-

diction, stalls, and other control signals. Master datapath can access all the local

memory (data and instruction), external memory, and register file array.

• Slave Datapath: There are n − 1 slaves, which are executed only during SIMD

processing. Each slave can only access its own register file and its own memory

partition. In SIMD processing, slaves are not executed if the instruction is a

branch or a jump, or an instruction is accessing a different memory address than

its own partition (common memory).

Master and slave datapaths are entangled in the processor and not single blocks,

but for the sake of clarity they will be referred as Master and Slave processing elements

throughout this thesis. An illustrative partitioning is given in Figure 3.9 for n=2 and

n=4 for the matrix-vector multiplication code. In a memory partitionable loop, every

load or store is accessing a different part of the memory or a common memory address.

So, there are no dependencies between iterations. In each iteration, SIMD loops either

access to the common memory (like vector load) or they all access to a different part

of the memory (like matrix load/store). In matrix multiplication, SIMD Slaves are not

executed when the code is accessing the common memory (v block). Instead, master

LOADs v array and writes to all n registers. Memory of the matrix is partitioned

amongst PEs, the vector memory will reside in the non-partitioned common memory,

and only the master PE can access it and write to all registers. If v must be STOREd

inside SIMD loop, it must be a part of the partitioned matrix A.

3.8. High Level Synthesis

Using HLS, SIMDify synthesizes the processor using generated headers and PE

codes written in C++. For different applications the flow must start from the begin-

ning. For the same application with different unroll factors, starting from the SIMDi-

fication step is enough.
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4. CORE ARCHITECTURE

Our soft application-specific SIMD-processor consists of two main parts: A rel-

atively large master PE and small slave PEs. Using HLS, SIMDify can combine and

connect master and slaves to generate various SIMD processors for an application de-

pending on the unroll factor. The processor is designed in C++ and synthesized in

Vivado High-Level Synthesis 2019.2.

4.1. SIMD Processor

In our system, software loop is unrolled in hardware level to be executed in parallel

as SIMD. Execution results in n times the latency gain for the SIMD executed part.

The user guides the SIMDify, and the framework configures the processor accordingly.

This process does not require inline assembly or custom instructions. It only requires

modification on the SIMDified loop itself, thus, rest of the application does not need

to be modified. Also, no extra instruction overhead is added to instructions generated

by the compiler.

Figure 4.1. Block diagram of overall system with 1 master PE and n-1 slave PEs.

Local data memory is detailed in Figure 3.2.

The overall SIMD processor architecture is shown in Figure 4.1. SIMD processor

consists of a master and n − 1 slaves. Using HLS, SIMDify combines and connects

these PEs to generate different SIMD processors for each application and unroll factor.

Proposed processor architecture is the first RISC-V processor with SIMD support de-
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signed using HLS. In the figure, thin lines are for single data and exclusive to master.

Thick lines indicate busses where both master and slaves execute. Dashed lines are

stall outputs. The designed processor runs in one of two different modes at any given

time:

• Standard mode where the only active PE is the master.

• Parallel mode for SIMD processing where all PEs are active.

In the fetch stage, the master checks the PC value to start or end the SIMD

processing. Before beginning the SIMD processing, the master initializes all slaves by

writing different values of the SIMD loop iterator to the register files. These values are

pre-calculated by the SIMDify tool as explained in the previous section.

In a SIMD loop machine code, rs1 and rs2 of branch source registers are set as

initial and final addresses of the memory partition. Register of the initial address is

incremented until it’s the same as final address. This is purely done by compiler and

similar for every SIMDifiable loop.

Consider an example where, unroll factor is 3, and SIMD loop accesses addresses

1 to 30. So, initial address is 1 and final address is 30. Master PE overrides “set rs1

and rs2” instruction and sets rs1 and rs2 values of the slave PEs as 1, 11 and 10, 20

and master PE as 21 and 30 respectively. This approach is similar to loop unrolling.

This does not take additional time, since initialization is executed instead of “set rs1

and rs2” instruction. After the loop, master PE continues its normal operation. Since

memory accessed in each iteration corresponds to different memory partitions, the

system can be executed as SIMD.

The master determines execution mode by checking the PC value in fetch stage.

System runs in parallel mode if the PC value corresponds to the SIMD loop and runs

in standard mode if it doesn’t. Additionally, only master is active if instruction is LUI,

AUIPC, JUMP, or BRANCH, or accesses to non-partitioned (common) local memory.
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Figure 4.2. Plot of tag field size vs data field size for different unroll factors up to 32.

For all unroll factors Tag field size can be calculated with Equation 4.1. Data field is

given as multiples of 32.

Local data memory consists of a data field that has random access data and a

tag field that identifies this data. Tag field is generated by the SIMDify and cannot

be accessed by instructions. In the execute stage, the tag of the data is read from the

tag field, and it is used to set the enable signals of the memory partitions. Then, in

the memory stage, enable signals are used by the PEs to access the correct memory

partition. There are three possible outcomes depending of the tag values and current

mode:

• In standard mode: Only the master is active and tag value is used to give access

to the master PE to the demanded memory partition.

• In parallel mode and all addresses are the same: That means PEs are reading

from a common memory like v. In this case only the master PE accesses the

memory and writes to all register files.

• In parallel mode and all addresses are different: That means core is executing

as SIMD and every PE reads and writes to its own partition, by using their

dedicated RFs.
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Size of the tag field depends of size of the data field and the unroll factor, Equation

4.1, which can be seen in Figure 4.2. If the unroll factor is 1, tag field is not generated

since there is only single memory partition and single PE.

TagF ieldSize =
DataF ieldSize

32
∗ dlog2(n)e (4.1)

4.2. Master (Scalar) PE

The scalar PE in Figure 4.3 is master for slave PEs and supports riscv32i instruc-

tion set and MUL, MULH, MULHSU, MULHU multiplication instructions. Riscv32m

exclusive multi-cycle instructions (REM and DIV) are not implemented. DIV and

REM should be implemented in a way that does not change the behaviour of single

cycle instructions. We observed that if they are implemented as a/b, HLS compiles the

DIV instruction, but timing of the single cycle instructions also changes. Master has a

standard five-stage pipeline [72]. Instructions are fetched and issued without changing

the order of execution. Using the aforementioned directives unused instruction blocks

are removed, which reduces the area. All data dependency hazards are solved via

stalling.

Branch hazards are handled with dynamic one-level branch prediction with a

1-bit saturating counter, as shown in Figure 4.4. A saturating counter records the

last branch result as 0 for not-taken, and 1 for taken. If taken, the branch address

is also recorded. Jump instructions are resolved in the decode stage, which results

in 1 cycle overhead. Branch instructions are also resolved in the decode stage to

reduce misprediction penalty. Misprediction is solved with flushing fetch register and

correcting the PC value. In the figure, top input of the pipe registers indicates flush,

and bottom indicates stall. The core has a local memory for faster processing, and

memory can be expanded with a cache connected to external memory. All instructions



25

Figure 4.3. Block diagram of Scalar Datapath with a standard RISC five-stage

pipeline with 1-bit branch prediction and optional cache.

are stored in the local instruction memory. Latency for memory stage is a single cycle

for local memory. If the cache is implemented, the overall pipeline depth does not

change, but the memory stage may take multiple cycles to execute. All local memories

and cache memories are asynchronous read and synchronous write. It should be noted

that block diagram is behaviorally correct, however, in HLS register file, writeback, and

decode stages are written as one block. This is done to generate two port asynchronous

read, one port synchronous write register file (RF). Generated RF Verilog code can be

observed in Figure 4.5. Operands are sent to the decode first, and sent to the execute

from there.

The master PE is also responsible for starting and ending the SIMD processing.

Before beginning the SIMD processing, the master PE initializes slave PEs as explained

in the Chapter 4.1.

Blocks of the unused instructions of the application are removed. This results in

area and speed improvements. Normally each multiplication instruction (MUL, MULH,

MULHSU, MULHU) requires 3 DSP blocks per instruction. So if an application only

has MUL in its machine code, 3, if it has MUL and MULHSU 6 DSP blocks are used.

If core were generated in non-application specific way, 12 DSP blocks would be used.
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Fetch Stage

if Instruction = Branch then

if SaturatingBit = Taken then

NextPC = BTA ;

else

NextPC = PC + 4;

end if

end if

Decode Stage

if Instruction = Branch then

Check for misprediction

if IsBranchTaken != SaturatingBit or BTA != calculated address then

Flush Fetch Register;

SaturatingBit = IsBranchTaken;

if IsBranchTaken then

BTA = calculated address;

NextPC = calculated address;

else

NextPC = PC + 4;

end if

end if

end if

Figure 4.4. Algorithm for 1-bit Branch Prediction. BTA stands for branch target

address.
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Figure 4.5. HDL of the Generated Register File

4.3. Slave PE

Slave PEs structure is shown in Figure 4.6. It only consist of decode, execute,

memory, and writeback units. All slave PEs can only access to their individual 32-bit

register files, and their partition in the main memory. Since it is guaranteed that all

PEs will execute the same instruction at any given time, redundant signals are trimmed

to reduce area. Slave PEs also do not have a stall, fetch, or branch units. They are

generated only when the user demands a SIMD processing and are fully controlled by

the master PE.

Figure 4.6. Block diagram of kth Slave PE.

Slave PEs are generated by using HLS loop unroll pragmas with case blocks. So,

they use same blocks and same unified local memory as the master. SIMDify detects

SIMD loops and guides HLS to generate slave PEs accordingly. This approach gen-

erates general purpose slaves and removes the need for designing custom modules per

application. Slave PEs can execute most instructions of the supported ISA. Slave and

master PEs are further reduced to only execute necessary instructions per application

basis, which reduces area. If master PE is modified to include extra instructions, slave

PEs can be easily scaled to include these instructions as well.
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5. ILLUSTRATIVE EXAMPLE

5.1. Application Code with SIMD configuration

In this chapter illustrative example for the SIMDification of a matrix vector

multiplication in Figure 5.1.a will be given. C code shows the multiplication of 25

by 4 matrix with 4 by 1 vector. par num is the unroll factor, which is set globally

before the main is called. Other three variables (arr str, arr end and startPar) are

set during main call. Attribute fixes the location of the 4 variables. When compiling,

matrix static variable is preloaded in data memory. We preloaded the matrix as an

illustrative example. It is also possible to load the matrix using the external cache.

Matrix starts at 0x4000 and ends at 0x4000+500. Data memory is given in the Figure

5.1.b.

Figure 5.1. (a) C code of Matrix-Vector Multiplication. (b) Data memory preloaded

with matrix data.
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5.2. RISC-V-compiler

After compiling the C code, we get Figure 5.2. Start code resets the registers,

initializes the stack pointer, and calls the main(). ebreak stops the execution. There is

a total of 104 instructions. In main code, addresses between 0x13c and 0x190 show the

loop that will be SIMDified. Second for loop in the C code is automatically unrolled by

the compiler. Before the loop, arr str (0x114), arr end (0x124) and startPar (0x130)

variables are set. And after the loop, startPar (0x194) is set back to zero. Setting

these values puts 10 additional instructions to the algorithm. Since the designed SIMD

processor overrides existing instruction (0x134) to switch between SIMD processing

mode and normal processing mode, transition does not cost extra cycles. Instead of

executing instruction in the PC=0x134 and setting a4, it sets all a4 and a7 registers

of the slave and master PE to their respective values. These values are calculated in

the SIMDification step and correspond to start and end register values of the pseudo

unrolled loop.

Figure 5.2. Assembly code of matrix vector multiplication.

a) Start Code, b) Main Code
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5.3. Memory Map Extraction

After the memory map extraction, we get Figure 5.3. It contains the necessary in-

formation to run the algorithm without SIMDifying it. In instruction array inst mem,

each element contains 32-bit instructions. The size of the inst mem depends on the

generated machine code, which is 104 words in this case. This part is synthesized as

the instruction memory of the processor. The data array mem contains 32 bits as 4x8,

synthesized as 4 dual port 8-bit memory arrays. Size of the mem is taken from the

text file. To reduce the occupying space in the figure inst mem and mem variables are

cut off. The header also contains definitions for existing instructions in the instruction

binary. These are used to trim unnecessary blocks in HLS. For example, there isn’t

any MULH instruction. So we do not generate extra multiplication blocks for MULH.

GLUT part trims large blocks (ALU, STORE) for non-used group of instructions.

Other constants set the size of the local data and instruction memory and locations of

the 4 variables.

Figure 5.3. Local Memory header file of matrix vector multiplication.
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5.4. Detection of SIMDifiable Regions

After Memory Map Extraction, algorithm is simulated once to extract necessary

values for SIMD processing. These values are stored in a header, Figure 5.4. Variables

for init and for end hold the start and end addresses of matrix variable - the common

memory offset (memory start address, Figure 5.3). Variables start reg and end reg

show the incremented (a4, 0x14 in [1]) and constant (a7, 0x17 in [1]) register numbers

of the branch instruction in Figure 5.4 address 0x190, respectively. As it can be seen in

Figure 5.4, a4 is incremented and a7 is constant throughout the loop. Register a4 starts

at memory start address + 0 value and is incremented by 500, which corresponds to

for init and for end variables. Variables Par start addr and Par end addr hold the

boundary start and end PC values of the SIMDify loop. Variable init simd offset

refers to negative offset from Par start addr to last modified PC of a4 or a7 between

Par start addr (0x13c in Figure 5.4) and StartPar = 1 (0x130 in Figure 5.4). This

offset value corresponds to PC = 0x134 in Figure 5.4. Tool uses init simd offset and

overrides that instruction for switching SIMD processing mode, so that core won’t lose

extra cycles when switching between modes.

Figure 5.4. Address Header file of matrix vector multiplication.
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5.5. SIMDification

After SIMDifiable regions are detected, unroll factor can be changed manually.

Since 25 is not divisible by 3 (par num in the C code), it will be changed to 5 in this

stage, Figure 5.5. There are n + 1 = 6 enumerated tags, tag ext = n is generated for

external cache, others are used for n PEs. Since the example does not use external mem-

ory, tag field does not contain any ext. Variable Addrlut is the tag field, and mem par

is the partitioned memory blocks of the PEs. Register file and partition numbers are

dependent on the unroll factor. This is handled with SETRF and GETSET macros,

and they are used in writeback and memory stages respectively. When PC = 0x134

a7 and a4 values of PE registers set to for array parstart and for array end values,

respectively. This simulates unrolling the loop. Variable for array init is the offset

for each memory partition.
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Figure 5.5. SIMD header file of matrix vector multiplication.
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6. EXPERIMENTS AND RESULTS

6.1. Experimental Setup

Experiments are carried out on Zynq-7020-2CLG484-1 FPGA as hardware sim-

ulation. Each test uses less than 32KB of total memory, which fits in the local mem-

ory. C code is compiled with riscv64-unknown-elf-gcc 7.2.0 with following options

−mabi = ilp32− g0−O3−march = rv32im−Wl,−− no− relax− nostartfiles.

We implemented algorithms of matrix vector multiplication (MVM), matrix ma-

trix multiplication (MMM), sum of absolute distances (SAD), sum of squared distances

(SSD), artificial neural networks (ANN), k-nearest neighbors with selective sort (KNS),

k-nearest neighbors with qsort (KNQ), K-means clustering (KMN) and Discrete Cosine

Transform (DCT). Both massively parallelizable algorithms with large parallel portions

(MVM, SAD, SSD, ANN, DCT) and partially parallelizable algorithms with smaller

parallel portions (KNS, KNQ, KMN) are tested. Both large and small scale applica-

tions only requires user modification on the SIMD loop, rest of the application does

not change. SIMDify focuses on unrolling user picked critical loops in the application.

6.2. Overall Results

We verified the HDL generated by SIMDify against SISD RISC-V ISS Model and

confirmed that their outputs agree. To measure the latency, HLS cosimulation results

are used, which are based on synthesized HDL code. Resource usage and clock speed

values are taken from the synthesis report. Generation time is around 4 min on a

four-core Intel Xeon server.
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6.2.1. Clock Speed

Clock speeds are calculated when the target clock is 15ns, and uncertainty is

%12.5. Three different parameters affect the clock speed: multiplication, cache and

the number of PEs, i.e. n. If an algorithm uses one of multiplication instructions,

MUL block is inserted, and its 11 ns slack causes the bottleneck. However, if it does

not use any multiplication instructions, its period changes depending on the number

of slave PEs, Table 6.1. In the algorithms mentioned above, only SAD does not use

any multiplication instructions. If the unroll factor is one, only the scalar PE with one

partition is used, so extra logic for slave PE routing is removed. Cached clock-speed,

11.827 ns, is faster than the non-cached core, but, it requires three times more clock

cycles to complete. Different master and slave PE architectures might change the clock

speed of the generated processor. However, SIMDify framework itself is independent

from the master and slave PEs.

6.2.2. Latency

Speed-up and latency values for each algorithm are given in Table 6.1. Latency

without SIMD processing is given in terms of the number of clock cycles, and the

latency speedup is calculated as Equation 6.1.

Speedup =
Lat1
Latn

=
Lat1

Latserial +
Latparallel

n

(6.1)

150 iteration MVM, MMM, SAD, SSD, KNS, KNQ, KMN and DCT and 75

iteration ANN algorithms are SIMDified with 5, 15, and 25 unroll factors. ”Max” is

used to show maximum achievable parallelism where
Latparallel

n
term goes to 0. KNS,

KNQ and KMN algorithms have maximum speed-up around 1.5 and MVM, MMM,

SAD, SSD, and DCT algorithms have maximum speed-up between 50 and 100. The
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processor does not lose any clock cycles when going into or exiting the SIMD mode. So,

calculated latency values are in correspondence with the Amdahl’s law [73], Equation

6.2. However, since clock speed is different with and without the slave PEs, it must

also be considered when calculating the true speed-up, which is also given separately

in Table 6.1.

Latn = Lat1 − Latparallel(1−
1

n
) (6.2)

Table 6.1. Latency (clock cycles), Clock Speed and Speed-up for unroll factor 5, 15,

25, and maximum achievable parallelism.

Algorithm MVM MMM SAD SSD ANN KNS KNQ KMN DCT

Single PE
Latency
(Cycles)

6580 9134 10640 8680 14051 13189 9213 42084 13938

Clock
Period

(ns)

1 12.75 12.75 11.92 12.75 12.75 12.75 12.75 12.75 12.75

5 12.78 12.78 12.69 12.78 12.78 12.78 12.78 12.78 12.78

15 12.78 12.78 12.64 12.78 12.78 12.78 12.78 12.78 12.78

25 12.78 12.78 12.66 12.78 12.78 12.78 12.78 12.78 12.78

Speedup
(Cycles)

5 4.63 4.73 4.75 4.72 4.76 1.36 1.60 1.41 4.81

15 11.75 12.44 12.67 12.40 12.76 1.45 1.78 1.51 9.18

25 16.96 18.49 19.00 18.39 19.22 1.47 1.83 1.54 20.2

Max 50.62 68.16 76.00 66.77 79.84 1.49 1.89 1.57 101

Speedup
(Time)

5 4.62 4.72 4.46 4.71 4.75 1.35 1.54 1.40 4.80

15 11.72 12.41 11.95 12.37 12.73 1.44 1.69 1.50 9.16

25 16.92 18.47 17.89 18.34 19.17 1.46 1.72 1.53 20.1

Max 50.50 68 71.56 66.58 79.38 1.49 1.78 1.56 100
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6.2.3. Area

The resource used for MVM algorithm is given in the Table 6.2. The number of

BRAM required for each algorithm is dependent on the number of instructions in the

algorithm. The number of LUTs and FFs required is roughly similar for each tested

algorithm. The number of DSP blocks required is dependent on the number of mul-

tiplication instructions used in the algorithm. So if all of MUL, MULH, MULHSU,

MULHU instructions are used, the processor will require 12 DSPs per PE. For appli-

cations with no multiplication instructions, such as the SAD algorithm, no DSP blocks

are used. DSP usage improved drastically by application specific block removal men-

tioned in the Scalar PE subsection. With the same technique, BRAM and FF usage

does not change, and LUT usage is improved by ∼4%. In all test cases, number of

LUTs was the limiting factor in deciding the maximum number of slave PEs (unroll

factor). Maximum 25-30 PEs can be implemented inside the Zynq-7020-2CLG484-1

FPGA. It can be seen that DSP increase is linear w.r.t unroll factor. For MVM with

unroll factor 25, the application finishes 16.9 times faster by using 8.53 times more

BRAM, 25 times more DSP blocks, 12.09 times more FF, and 13.66 times more LUT.

Table 6.2. Resource usage of Matrix Vector Multiplication for unroll factor 5, 15, 25.

Type Available
Utilization

1 5 15 25

BRAM 280 13 46 70 111

DSP 220 3 15 45 75

FF 106400 637 1619 4787 7699

LUT 53200 3406 9958 27649 46541

In MVM, MMM, SAD, SSD, DCT and ANN, we showed experimentally that

if the latency is mainly due to partitionable loop, SIMDify can speed-up the design

drastically. However, this isn’t the case with KNS, KNQ and KMN, which can only

be reduced to 60% of single cycle latency due to Amdahl’s law. KNS, KNQ and KMN

all parallelizes their distance calculation portion inside their algorithm. When using
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SIMDify, users must decide if SIMDifing can improve the application, and how much.

It should also be mentioned that Comet [43] also reports around 70 MHz on Artix

7 FPGA and takes around 2 minutes to synthesize. In [43], Rocket Core [71], another

core written in Chisel HDL, has been mentioned to have 76 MHZ on Artix 7 FPGA.

HL5 article does not indicate its FPGA speed, but it has clock frequency between

700 MHz and 2GHz in 32 nm CMOS. Proposed SIMD processor architecture has a

similar clock frequency with aforementioned HLS cores even with 24 slaves, Table 6.1.

The solution proposed in this thesis is scalable, open-source, and does not depend on

non-standard compilers to minimize the user workload. Using SIMDify, hardware-level

parallelization is achieved without the use of additional instructions.

6.3. Algorithms in Detail

6.3.1. MVM

SIMDified part of the matrix vector multiplication algorithm is given in Figure

6.1. 150 × 4 and matrix variable is concatenation of 150 × 3 array that is multiplied

with the 150×1 vector common variable and 150×1 array which is holding the result.

In this example unroll factor can be dividends of 150 and its latency vs. unroll factor

graph is given in Figure 6.2. Here, 150 × 5 matrix by 150 × 1 vector multiplication

latency is also tested. Tested values are highlighted. Expected lines are calculated

using Equation 6.2 using Lat1 = 6580, 7630 and Latparallel = 6450, 7500 for 150 × 4

and 150× 5 cases respectively. Resource utilization is given in Figures 6.3 and 6.4.

Figure 6.1. SIMDified part of the matrix vector multiplication algorithm
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Figure 6.2. Latency vs. unroll factor graph for MVM algorithm

Figure 6.3. BRAM and DSP utilization of MVM algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.4. FF and LUT utilization of MVM algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.2. MMM

SIMDified part of the matrix matrix multiplication algorithm is given in Figure

6.5. 150× 7 and matrix variable is concatenation of 150× 5 matrix that is multiplied

with the 5× 2 secondmatrix common variable and 150× 2 array which is for holding

the result. In this example unroll factor can be dividends of 150 and its latency vs.

unroll factor graph is given in Figure 6.6. Here, 150× 5 matrix by 5× 4 multiplication

latency is also tested. Tested values are highlighted. Expected lines are calculated

using Equation 6.2 using Lat1 = 9134, 12902 and Latparallel = 9000, 12750 for 5 × 2

and 5× 4 cases respectively. Resource utilization is given in Figures 6.7 and 6.8.

Figure 6.5. SIMDified part of the matrix matrix multiplication algorithm
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Figure 6.6. Latency vs. unroll factor graph for MMM algorithm

Figure 6.7. BRAM and DSP utilization of MMM algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.8. FF and LUT utilization of MMM algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.3. SAD

SIMDified part of the sum of absolute distances algorithm is given in Figure 6.9.

In image processing, SAD is used to measure the correlation between two images. It

is calculated by subtracting the main image from the the pattern image and getting

absolute value of the result. 150×11 A variable is concatenation of 150×5 pixel image

array that is compared with the 150× 3 pixel pattern array. Result is written to rest

of the A, a 150× 3 array.

Figure 6.9. SIMDified part of sum of absolute distances algorithm
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In this example unroll factor can be dividends of 150 and its latency vs. unroll

factor graph is given in Figure 6.10. Here, 150×6 image 150×3 pattern latency is also

tested. Tested values are highlighted. Expected lines are calculated using Equation

6.2 using Lat1 = 10640, 12752 and Latparallel = 10500, 12600 for 150× 5 and 150× 6

cases respectively. Resource utilization is given in Figures 6.11 and 6.12.

Figure 6.10. Latency vs. unroll factor graph for SAD algorithm

Figure 6.11. BRAM and DSP utilization of SAD algorithm for different unroll

factors. All results are taken from Vivado HLS tool. Note that SAD algorithm does

not use any multiplication instructions, So DSP utilization is 0%.
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Figure 6.12. FF and LUT utilization of SAD algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.4. SSD

SIMDified part of the sum of squared distances algorithm is given in Figure 6.13.

In image processing, SSD is used to measure the correlation between two images. It

is calculated by subtracting the main image from the the pattern image and squaring

the result. 150 × 11 A variable is concatenation of 150 × 5 pixel image array that is

compared with the 150 × 3 pixel pattern array. Result is written to rest of the A, a

150× 3 array.

Figure 6.13. SIMDified part of the sum of squared distances algorithm
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In this example unroll factor can be dividends of 150 and its latency vs. unroll

factor graph is given in Figure 6.14. Here, 150×6 image 150×3 pattern latency is also

tested. Tested values are highlighted. Expected lines are calculated using Equation 6.2

using Lat1 = 8680, 11086 and Latparallel = 8550, 10950 for 150 × 5 and 150 × 6 cases

respectively. Resource utilization is given in Figures 6.15 and 6.16.

Figure 6.14. Latency vs. unroll factor graph for SSD algorithm

Figure 6.15. BRAM and DSP utilization of SSD algorithm for different unroll factors.

All results are taken from Vivado HLS tool.
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Figure 6.16. FF and LUT utilization of SSD algorithm for different unroll factors. All

results are taken from Vivado HLS tool. Note that n=30 LUT result requires more

than 100% utilization.

6.3.5. ANN

SIMDified part of the artificial neural networks algorithm is given in Figure 6.17.

Dataset used is the banknote authentication dataset taken from UCI Machine Learning

Repository [74]. Neural network consists of 4 input neurons, 1 hidden layer with 2

neurons and 2 output neurons. 75× 8 input variable is concatenation of 75× 4 input

layer, 75 × 2 hidden layer and, 75 × 2 output layer. weights common variable is 16

length array and contains 4× 2 = 8 weight and 2 bias values for the first hidden layer

and 2× 2 = 4 weight and 2 bias values for the output layer.

Genann activation function is the activation function. In this example Rectified

Linear Unit (ReLU) function is used. Each row of the input variable corresponds to

different input set and result can be observed in output neuron. In this example unroll

factor can be dividends of 75 and its latency vs. unroll factor graph is given in Figure

6.18.
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Figure 6.17. SIMDified part of the artificial neural networks algorithm
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In 6.18, 4 input neurons, 2 hidden layer with 2 neurons and 2 output neurons is

also tested. Tested values are highlighted. Expected lines are calculated using Equation

6.2 using Lat1 = 14051, 20670 and Latparallel = 13875, 20475 for 4−2−2 and 4−2−2−2

cases respectively. Resource utilization is given in Figures 6.19 and 6.20.

Figure 6.18. Latency vs. unroll factor graph for ANN algorithm

Figure 6.19. BRAM and DSP utilization of ANN algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.20. FF and LUT utilization of ANN algorithm for different unroll factors.

All results are taken from Vivado HLS tool.

6.3.6. KNS

SIMDified part of the k-nearest neighbors with selective sort algorithm is given

in Figure 6.21. KNN algorithm classifies a new case using the feature difference with

available cases. 150×6 arr variable is concatenation of 150×1 feature difference vector,

150 × 4 feature matrix, and 150 × 1 class vector. New case p is classified by checking

the feature difference of all available cases (arr). In this example unroll factor can be

dividends of 150 and its latency vs. unroll factor graph is given in Figure 6.22.

Figure 6.21. SIMDified part of the k-nearest neighbors with selective sort algorithm
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Figure 6.22. Latency vs. unroll factor graph for KNS algorithm

In 6.22, 150× 5 feature matrix is also tested. Tested values are highlighted. Ex-

pected lines are calculated using Equation 6.2 using Lat1 = 13189, 14253 and Latparallel

= 4350, 5400 for 150× 4 and 150× 5 cases respectively. Resource utilization is given

in Figures 6.23 and 6.24.

Figure 6.23. BRAM and DSP utilization of KNS algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.24. FF and LUT utilization of KNS algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.7. KNQ

SIMDified part of the k-nearest neighbors with qsort algorithm is given in Figure

6.25. Both KNS and KNQ SIMDifies the only distance calculation (SSD part). Only

difference between KNS and KNQ is, KNQ uses the C library function qsort to sort

a calculated array. 150 × 6 arr variable is concatenation of 150 × 1 distance vector,

150 × 4 feature matrix, and 150 × 1 classification vector. New case p is classified by

checking the distance of all available cases (arr). In this example unroll factor can be

dividends of 150 and its latency vs. unroll factor graph is given in Figure 6.26.

Figure 6.25. SIMDified part of the k-nearest neighbors with qsort algorithm
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Figure 6.26. Latency vs. unroll factor graph for KNQ algorithm

In 6.26, 150× 5 feature matrix is also tested. Tested values are highlighted. Ex-

pected lines are calculated using Equation 6.2 using Lat1 = 9213, 10641 and Latparallel

= 4350, 5400 for 150× 4 and 150× 5 cases respectively. Resource utilization is given

in Figures 6.27 and 6.28.

Figure 6.27. BRAM and DSP utilization of KNQ algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.28. FF and LUT utilization of KNQ algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.8. KMN

In K-Means, 150 item array with 4 features is assigned to 2 clusters. This as-

signment is done base on their distances. Full code is omitted since it was too long,

only SIMDified part ,distance calculation (SSD part) is shown. arr is 150× 6 length,

consists of 150× 4 features and 150× 1 cluster number and 150 × 1 distance. In this

example unroll factor can be dividends of 150 and its latency vs. unroll factor graph

is given in Figure 6.30.

In 6.30, 150 item array with 5 features and 2 clusters is also tested. Tested values

are highlighted. Expected lines are calculated using Equation 6.2 using Lat1 = 42084,

51323 and Latparallel = 15300, 15600 for 150×4 and 150×5 cases respectively. Resource

utilization is given in Figures 6.31 and 6.32.
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Figure 6.29. SIMDified part of the k-means clustering algorithm

Figure 6.30. Latency vs. unroll factor graph for KMN algorithm
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Figure 6.31. BRAM and DSP utilization of KMN algorithm for different unroll

factors. All results are taken from Vivado HLS tool.

Figure 6.32. FF and LUT utilization of KMN algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.
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6.3.9. DCT

In DCT, 8 point one dimensional fixed point DCT algorithm is applied to 150

item array with 8 values.

Figure 6.33. 1-dimensional 8 element Discrete Cosine Transform algorithm
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We didn’t compile generalized DCT algorithm since the generated SIMD proces-

sor does not use DIV instruction. data is 150×8 length, consists of 150×8 data. In this

example unroll factor can be dividends of 150 and its latency vs. unroll factor graph

is given in Figure 6.34. Tested values are highlighted. Expected lines are calculated

using Equation 6.2 using Lat1 = 13938 and Latparallel = 13800. Resource utilization is

given in Figures 6.35 and 6.36.

Figure 6.34. Latency vs. unroll factor graph for DCT algorithm

Figure 6.35. BRAM and DSP utilization of DCT algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.36. FF and LUT utilization of DCT algorithm for different unroll factors.

All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.10. Multiple Parallel Loops

With SIMDify, it is possible to parallelize multiple loops. Clock period of multiple

loops is 12.84 ns, which is slightly larger than the single loop period. SIMDified loops

cannot be nested, data in the loops cannot be dependent, and if the same data is

SIMDified they must have same unroll factor. As a proof of concept multiple parallel

loops is tested with artificial neural networks algorithm. ANN consists of an input

layer with 4 neurons, 2 hidden layers with 3 neurons each and an output layer with 3

neurons, Figure 6.37. Each layer will be parallelized in itself. So there will be three

loops with factor 3 each, Figure 6.38.

Figure 6.37. Diagram of the Neural Network. Drawn using free tool [2].
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Figure 6.38. Parsed diagram of the Neural Network. All three loops and all 9 PEs

viewpoint is shown.

In this example unroll factor can be dividends of 3 and its latency vs. unroll factor

graph is given in Figure 6.39. Note that, in Chapter 6.3.5, 75 inputs are parallelized

and each PE was executing the same ANN for different input sets. In this Chapter,

ANN itself is parallelized and there is only single input set and three partitioned loops

with separate Startpar’s, Figure 6.40. In code we used pragma ”#GCC unroll 0” to

stop compiler from unrolling SIMDified loops. In the third loop, nop operation inserted

since there was no suitable Init simd offset PC value for switching to SIMD processing

mode. So processor overrides the ”nop” operation instead. Resource utilization is given

in Figures 6.41 and 6.42.

Figure 6.39. Latency vs. unroll factor graph for multiloop ANN algorithm
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Figure 6.40. 1-dimensional 8 element Discrete Cosine Transform algorithm
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Figure 6.41. BRAM and DSP utilization of multiloop ANN algorithm for different

unroll factors. All results are taken from Vivado HLS

Figure 6.42. FF and LUT utilization of multiloop ANN algorithm for different unroll

factors. Note that all results are taken from Vivado HLS tool, and n=30 LUT result

requires more than 100% utilization.
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7. CONCLUSION AND THE FUTURE WORK

In this thesis, SIMDify, hardware-software parallelization framework for gener-

ating SIMD capable application-specific RISC-V instruction set processors, and the

generated application specific SIMD processor structure are presented. SIMDify com-

bines HLS with standard RISC-V compiler to generate a five-stage pipelined SIMD

processor written in C++. SIMD processor consists of master and slave PEs. Using

HLS, SIMDify combines and connects these PEs to generate different SIMD processors

for each application. SIMD processor architecture is the first HLS designed RISC-V

processor with SIMD support. System runs on Zynq-7020-2CLG484-1 FPGA and it

operates in approximately 78 MHz.

Applicability of the SIMDify is tested on selected algorithms. System runs on

Zynq-7020-2CLG484-1 FPGA and it operates at approximately 78 MHz. Processor

is designed for an FPGA as the target hardware, so it can be combined with other

applications as an accelerator. Since it’s designed in HLS, it can be easily modified

and improved by many users.

In terms of scalar PE, cache implementation can be improved. Also, forwarding

structure can be implemented to reduce the number of stalls, and multi-cycle instruc-

tions such as DIV and REM can be implemented for full riscv32im support. The main

bottleneck of the core is 11 ns single cycle 32x32 multiplication instruction, which can

be improved by using a custom multiplication block or supporting multi-cycle multi-

plication operation.

Existing external memory and cache structure can be used to increase the total

data memory size. However, data in the external memory cannot be used in SIMD

processing. So, to increase the size of the SIMD processed memory, tag field size must

also increase. Since, SIMDification block generates constant memory tags for every

word in the local data memory, generated tag field size increases proportionally with
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the local data field size. This problem can be solved by decreasing tag field size per

word or by changing the memory structure to extend local memory without increasing

the tag size.

Designed ASIP and SIMDify framework can be applied to any iterative loop

if the loop does not include any conditional branching and if the loop satisfies the

memory constraints. We believe SIMDify solution is better and more comprehensive

than the alternative: modifying an each application to make it compatible with each

custom instruction. SIMDify automates processor generation and creates open source

framework that can easily be used by anyone to achieve SIMD computation. Even

though there are some limitations in current HLS tools, the time to design the custom

SIMD processor has significantly decreased compared to traditional RTL flow.
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agency funding the research on which the Work is based, and (4) any
non-commercial  repository or aggregation that  does not duplicate ACM tables
of contents,  i .e. ,  whose patterns of l inks do not substantially duplicate an
ACM-copyrighted volume or issue.  Non-commercial  repositories are here
understood as  reposi tor ies  owned by non-profi t  organizat ions that  do not
charge a fee for accessing deposited art icles and that do not sell  advertising or
otherwise profit  from serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record
in the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer  reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if  applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and 

(ix) Use any Auxiliary Material independent from the Work. 

When preparing your paper for submission using the ACM TeX templates,  the rights
and permissions information and the bibliographic str ip must appear on the lower left
hand port ion of  the f irst  page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates
and posit ions these text  blocks for  you based on the code snippet  which is
system-generated based on your  r ights  management  choice and this  par t icular
conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
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statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing. 

Please put the fol lowing LaTeX commands in the preamble of  your document -
i .e. ,  before \begin{document}:

\copyrightyear{2021} 
\acmYear{2021} 
\setcopyright{acmlicensed}\acmConference[ACSW '21]{Australasian Computer
Science Week Multiconference}{February 1--5, 2021}{Dunedin, New Zealand}
\acmBooktitle{Australasian Computer Science Week Multiconference (ACSW
'21),  February 1--5, 2021, Dunedin, New Zealand}
\acmPrice{15.00}
\acmDOI{10.1145/3437378.3444364}
\acmISBN{978-1 -4503-8956-3 /21 /02}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or
older versions of the ACM SIGCHI template, you must copy and paste the
following text  block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all  or part of this work for personal
or classroom use is  granted without fee provided that  copies are not  made or
distributed for profit  or commercial  advantage and that  copies bear this notice
and the full  citation on the first  page. Copyrights for components of this work
owned by others than the author(s)  must be honored.  Abstracting with credit  is
permitted.  To copy otherwise,  or republish,  to post  on servers or to redistribute
to l ists ,  requires prior specific permission and/or a fee.  Request  permissions
from Permissions@acm.org.

ACSW '21, February 1–5, 2021, Dunedin, New Zealand 
© 2021 Copyright is held by the owner/author(s).  Publication rights l icensed to
ACM.
ACM ISBN 978-1-4503-8956-3 /21 /02…$15.00  
h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 4 3 7 3 7 8 . 3 4 4 4 3 6 4

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library.
Once you have your camera ready copy ready, please send your source files and PDF
to your event contact for processing.
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4.  ACM Citation and Digital  Object  Identif ier.  

(a) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).
(b) In connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following: 

"© [Owner] [Year]. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in {Source Publication}, https://doi.org/10.1145/{number}." 

5 .  Audio /Video  Record ing

I hereby grant permission for ACM to include my name, l ikeness,  presentation and
comments in any and all  forms, for the Conference and/or Publication. 

I  further grant permission for ACM to record and/or transcribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device,  streaming video or any other media format now or hereafter known.

I  understand that  my presentat ion wil l  not  be sold separately as a s tand-alone
product without my direct consent. Accordingly, I give ACM the right to use my
image, voice,  pronouncements,  l ikeness,  and my name, and any biographical  material
submitted by me, in connection with the Conference and/or Publication,  whether
used in excerpts or in full ,  for distribution described above and for any associated
advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

6.  Auxil iary Material 

Do you have any Auxiliary Materials? Yes No 

7. Third Party Materials 
In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me),  I  understand that i t  is  my
responsibil i ty to secure any necessary permissions and/or l icenses for  print  and/or
digital publication, and cite or attach them below. 

We/I have not used third-party material .  
We/I  have used third-party materials  and have necessary permissions.  

8 .  Art i s t i c  Images
If  your paper includes images that  were created for any purpose other than this paper
and to which you or your employer claim copyright,  you must complete Part IV and be
sure to include a notice of copyright with each such image in the paper.  

We/I do not have any artistic images. 
We/I have any artistic images. 
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9 .  Representat ions ,  Warrant ies  and Covenants 

The undersigned hereby represents,  warrants and covenants as fol lows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is  authorized to enter  into this  Agreement and grant  the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials  consistent  in scope and duration with
the rights granted to ACM have been obtained,  copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit  to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not  been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers on any such prior  postings;  

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other  sof tware rout ines  or  hardware components  designed to  permit  unauthorized
access or  to disable,  erase or  otherwise harm any computer systems or software;
a n d

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

I agree to the Representations,  Warranties and Covenants.  

1 0 .  E n f o r c e m e n t .  

11 .  Governing  Law 

This Agreement shall  be governed by, and construed in accordance with,  the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.  

Funding  Agent s

1. TUBITAK award number(s):58135

DATE: 1 2 / 1 8 / 2 0 2 0 sent to alp.sarkisla@boun.edu.tr  at  1 4 : 1 2 : 4 1 

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
in i ts  defense or enforcement.  
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