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ABSTRACT

SIMDIFY: FRAMEWORK FOR APPLICATION SPECIFIC
SIMD-PROCESSING WITH RISC-V SCALAR
INSTRUCTION SET

Most of the hardware accelerators communicate with the processor via custom
instructions. Since custom instructions are not standardized, each accelerator requires
a different compiler and user code, which can be a tedious process for the user. To
reduce the user burden, we propose a parallel programming framework called SIMDity,
which generates single-instruction-multiple-data (SIMD) processors that can achieve

SIMD processing without using custom instructions.

SIMDify takes an application machine code compiled for scalar RISC-V ISA and
simulates it to determine the SIMD processing regions. Then, SIMDify configures
and generates the application-specific SIMD processor that executes scalar RISC-V
instructions concurrently on the SIMD datapath. SIMD processor consists of a single
master and multiple slave processing elements (PE). Slaves focus on SIMD level tasks,
whereas the master is responsible for the central control. Proposed architecture is the
first SIMD capable RISC-V processor designed in HLS and can operate with a faster
clock frequency than the existing SISD RISC-V HLS cores. SIMDify relieves the user
from using custom instructions with rigid programming models and offers a flexible
solution. The processor is designed and tested in Vivado High Level Synthesis 19.2. It
operates at 78 MHz on Zynq Zedboard FPGA. Master PE uses 5% and each slave uses
3.5% of FPGA resources. Test results show that execution time can be improved by

8.5x with 9 slaves and 19x with 29 slaves.



OZET

SIMDIFY: RISC-V SKALER KOMUT SETI ILE
UYGULAMAYA OZEL SIMD ISLEME ISKELETI

Donanim olarak tasarlanmig hizlandiricilarin biiyiik bir kismi, iglemciyle o6zel
komutlar aracihfiyla iletigim kurar. Ozel talimatlar standart olmadigindan, her
hizlandiricr farkli bir derleyici ve kullanici kodu gerektirir ve bu da kullanici i¢in zorlu
bir stireg olabilir. Kullanier yiikiinii azaltmak amaciyla, tek komut goklu veri (SIMD)
komutlarin1 kullanmadan SIMD islemcileri tireten SIMDify adli paralel bir program-

lama gergevesi sunuyoruz.

SIMDify, skaler RISC-V komut kiimesi mimarisi (ISA) i¢in derlenen makine ko-
dunu alir ve SIMD igleme bolgelerini belirlemek igin simiile eder. Ardindan, SIMD veri
yolunda skaler RISC-V komutlarin1 eszamanl yiirtiten ve uygulamaya 6zel olan SIMD
islemcisini yapilandirir. Uretilen SIMD islemcisi, bir ana ve birden c¢ok kéle iglem
ogesinden olugur. Koleler, SIMD islemlerine odaklanirken, ana iglem 6gesi kontrolden
sorumludur. Onerilen mimari, yiiksek seviyeli sentez (HLS) araclarinda tasarlanan ilk
SIMD 6zellikli RISC-V iglemcisidir. Mimarinin mevcut tek komut tekli veri (SISD)
RISC-V HLS cekirdeklerinden daha hizli bir frekansta caligtigi gosterilmigtir. SIMD-
ify, kullaniciy1 esnek olmayan programlama modelleriyle 6zel komutlar: kullanmaktan
kurtarir ve esnek bir ¢oziim sunar. Islemeci Vivado HLS 19.2'de tasarlanmis ve test
edilmistir. Zynq Zedboard alanda programlanabilir kap1 dizisi (FPGA) iizerinde 78
MHz'de ¢aligir. Ana 6ge, FPGA kaynaklarimin %5 ini kullanir ve her kole kaynak kul-
lanimim %3,5 arttirir. Test sonuclari, islem siiresinin 9 kole ile 8,5 kat ve 29 kole ile

19 kat hizlanabilecegini gostermektedir.
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1. INTRODUCTION

A processor is the main component of the most digital electronic systems. Device
designers use different types of processors depending on their area, power and cost
constraints. For instance, due to their flexible and low-cost nature, general purpose
processors or central processing units (CPUs) are more suitable to be used in tasks with
multiple applications. General purpose processors trade computer power and flexibility
with energy consumption and chip area. However, for processors that are used in
single type of applications, such as neural-networks [3], cryptography [4], implants [5],
wearables [6] and, Internet of Things (IoT) [7] area, power, cost and performance

efficient processors are required.

In terms of area and performance, best pick is to use application-specific inte-
grated circuits (ASICs). ASICs, as the name suggests, are devices that are created
with a specific purpose in mind. They are not re-programmable and can only be used
for a specific task. ASICs are quite expensive in terms of cost, resources and design

time, but they do offer incredible high performance and low power consumption.

In recent years the main attention has been optimizing general-purpose processors
for a given application domain to make them more efficient [8]. These optimized pro-
cessors are called as application specific instruction set processors (ASIPs). An ASIP
utilizes special properties of applications to accommodate the desired cost, power, area
and performance requirements. ASIPs are in the middle of CPU and ASIC approaches:
they can be programmed with a high-level language, the software can easily be modi-
fied if a bug is found, and yet the custom instructions can accelerate the application’s
performance far beyond the level of a general-purpose processor at a much lower power

budget.



With the adoption of ASIP design, area-efficient [9, 10], power-efficient [11-14]
and performance-efficient [9,10,15-17] processors have been designed. Optimizing the
area is done by reducing its number of registers and functional units which removes
unnecessary instructions and reduces the chip area. Optimizing performance is done
by adding custom instructions or hardware to accelerate execution. One frequent way
to enhance performance-efficiency of ASIP is to exploit inherent data parallelism in the

algorithms and execute them concurrently.

High-Performance Computing (HPC) is another area that benefits from ASIP
design. HPC is used in various fields such as weather modelling [18], physics [19],
and biomedical modelling [20]. HPC algorithms make use of inherent data parallelism
of the algorithms to increase performance. However, processors cannot automatically
recognize this parallelism. Programmers must use Message Passing Interface (MPI)
and Open Multi-Processing (OpenMP) standards to guide compiler and processors to
execute in an efficient manner. On top of that, the task must be parsed in a way
that there will be minimum or no data dependency between each sub-process. For
instance, in weather modeling, map is parsed in grids where data dependency only
occurs in the edges. Each grid can then be executed in similar parallel computations.
Concurrently executing the same operation on multiple data groups is called SIMD

(Single instruction, multiple data) processing.

For hardware, SIMD instructions are inherently simple to implement, since they
only require the duplicated structure of the main execution unit’s datapath. But not all
processors have built-in instructions for SIMD processing. Traditional approaches to
this problem are solved by extending standard instruction set with non-standard cus-
tom instructions (compiler retargeting) [21] or using Just-in-time (JIT) compilers [22],
both of which requires a non-standard compiler as well as non-standard instructions
in the custom hardware. Since custom instructions are not standardized, each indi-
vidual accelerator requires a different compiler modification. On top of the compiler
modification, to properly introduce new instructions, simulators and debuggers must

be additionally retargeted.



Accelerators are used in various fields such as machine learning 23], speech recog-
nition [24], raw data processing [25], cryptography [26] and image detection and recog-
nition [27] especially after the rise of IoT. Though designed accelerators may extremely
speed up the execution, using them with custom instructions and compilers is a te-
dious process that discourages software programmers from using these accelerators [28].
SIMDify offers a flexible parallel processing solution that reduces the user burden and

removes the custom instructions.

In this thesis, we present SIMDify [29], an open-source hardware-software par-
allelization framework to design special purpose SIMD processors without using any
just-in-time compilation, extending the default instruction set or retargeting the com-
piler. SIMDify takes an application machine code compiled for scalar core and SIMD
parameters, and generates a customization header files. Using Vivado High-Level Syn-
thesis (HLS) [30], SIMDify processes the generated header files and automatically syn-
thesizes the desired SIMD capable special purpose processor architecture. Processor
is compatible with the RISC-V Instruction Set Architecture (ISA), and executes the
native instruction set even during SIMD execution. The main contributions of this

thesis can be summarized as follows:

e A flexible parallel programming framework called SIMDify for generating, cus-
tomizing and scaling SIMD capable processors with minimal software level modi-
fication and using a standard compiler. To generate the special purpose processor,
user only requires to write an algorithm in C, and compile it in RISC-V com-
piler. SIMDify will generate custom header files for the HLS, then synthesizes the
SIMD soft processor that accelerates the given algorithm. Generated processor
then can be mapped to an FPGA.

e A new RISC-V soft processor architecture that enables in-memory SIMD pro-
cessing is proposed. Generated processor is the first SIMD capable RISC-V core
designed using HLS. Processor can achieve similar frequency with other HLS gen-
erated RISC-V cores even with 30 slaves, and it can execute applications as SIMD

by using only the base RISC-V ISA without modifying the existing compiler.



Traditional ASIP design flow has five key steps according to [31]. First two is
analysing and design space exploration of the architecture. Third step is the extending
the instruction set. SIMDify does not extend the existing instruction set and we leave
the application analysis part to the user. Other two steps (code and hardware synthesis)
is automated by the SIMDify. In this project, our aim is automating ASIP processor
design using Vivado High Level Synthesis [32] tool and to make the ASIP design process
much easier and efficient. User codes and compiles the task in C language, and SIMDify
handles the rest. Applicability of the SIMDify is tested on selected algorithms. Clock
speed, area and performance-efficiency of the generated soft-processors are studied for

Zynq Zedboard FPGA [33].

The rest of the thesis is organized as follows. The second chapter discusses SIMD
processing, RISC-V, and HLS related works. In third and fourth chapters proposed
hardware-software system is introduced. In Chapter 5, detailed experimental analysis
on resource usage and performance is given. The last chapter summarizes our work

and broadly provides outputs of the study.



2. RELATED WORKS

In this chapter, we will set forth related research under three sections. In first
section we discuss the application specific processors that utilizes SIMD processing. In
second section High Level Synthesis is explained. In the last section RISC-V ISA that

we use in our design is explained.

2.1. Single Instruction Multiple Data Application Specific Processor
Design

Computer Architecture consists of four widely accepted main classifications based
upon the number of concurrent stream of instruction and data available [34]. Single
Instruction Single Data (SISD) architectures are sequential in nature and does not
exploit any parallelism. In SIMD architectures, single instruction operates on multiple
data at the same time. SIMD architectures exploit inherent data parallelism of the
algorithms and they require minimum or no data dependency between its data streams
to be effective. In conventional SIMD, SIMD instructions are used to inform processor
about when to use SIMD processing. If the SIMD instructions are not standardized
in the architecture, users must introduce SIMD instructions by themselves. This can
be done by either using inline assembly or modifying the compiler toolchain. SIMDify
does not force users which compiler to use. Intermediate representation generated by
the compiler front end can also be used to detect SIMDifiable regions with cost of

forcing users to a custom compiler.

In Just-in-time (JIT), compiling binary instructions to be executed by processors
are interrupted, dynamically interpreted, and modified [22]. Instructions are modified
ahead of time to introduce minimum overhead and modified to best suit the custom
processor. JIT compiling is mainly used to translate bytecodes of high-level languages

to custom SIMD instructions, and overhead is not entirely avoidable.



In the literature, SIMD computation is achieved using custom instructions in
[35-37] by extending RISC-V ISA, and in [38] by extending SimpleRISC ISA. To process
these instructions, mentioned ASIPs either use inline assembly or modify the compiler
toolchain. So for each individual custom SIMD processor user must modify its compiler.
On top of the compiler modification, to properly introduce new instructions, simulators

and debuggers must be additionally retargeted.

Automated tools like Codasip Studio [39] or ASIP Designer [40] where ISA ex-
tended processors can be generated together with SDK exist, but this also limits the
user by forcing one IP ecosystem. Chipyard RoCC [41] is another commonly used
framework for designing accelerators for Rocket processor. However, communicating
accelerators with its RoCC interface also requires a custom software toolchain. SIMD-
ify solution can be applied to any SIMD loop that satisfies the memory constraints,
whereas, contemporary approaches might require different custom instruction for each

new application.

The solution proposed in this thesis is scalable, user-friendly, open-source, and
does not depend on non-standard compilers. Hardware-level parallelization is achieved
without using additional instructions. The only thing dependent on the user is coding
the algorithm in a partitionable way and default tools for compiling and high-level
synthesis. SIMDify framework only requires four inputs in the C code. Other inputs
are only for parameter configuration and are not compulsory. Inputs are compiled
as data memory values using default compiler. Then, an automated framework reads

these values and configures the processor.

2.2. High Level Synthesis

Best performance in application specific processors are achieved by manually cus-
tomizing an application for a specific target architecture and customizing the hardware
for a specific application. However, the trade-off is the cost of portability, development

expenses, and time cost. Furthermore, hardwired circuits are inappropriate for devices



that need to adapt to ever-changing algorithms. FPGAs, on the other hand, are re-
configurable hardware blocks. The FPGA architecture is relatively simple; array of
programmable logic blocks connected to programmable interface. Since FPGAs can
be configured after manufacturing by the user, they can be used to implement wide
range of logic functions (from full adder to processor core). This makes them ideal for
application tailored processing. Soft ASIPs are used as a viable strategy to reduce the

design time without sacrificing performance and due to its reconfigurable nature.

To configure and program FPGAs, hardware description languages (HDLs) such
as Verilog HDL and VHDL (VHSIC-HDL, Very High-Speed Integrated Circuit Hard-
ware Description Language) is used. HDLs describe combinational and sequential logic.
An IDE (Integrated Development Environment) such as Vivado Design Suite from Xil-
inx, Intel Quartus Prime Software Suite from Intel, and HDL Designer from Mentor
Graphics interprets, optimizes, and tests HDL code and synthesizes and configures the

FPGA with the equivalent logic.

However, the traditional FPGA design flow demands specialized hardware design
expertise and familiarity with Hardware description language (HDL), which is difficult
for non-hardware designers. With the advent of the High-Level Synthesis (HLS) tools,
it is possible to prototype, synthesize, and simulate hardware using a high-level lan-
guages such as C or C++. Just as HDL is interpreted to synthesize gate-level logic,
HLS tool such as Vivado HLS, Intel HLS Compiler or Catapult HLS interprets C code
to generate an HDL text file. In the case of Vivado HLS, the text file is formatted as
Verilog and VHDL. Typical Vivado HLS design flow [30] consists of:

Compiling, simulating and debugging the C algorithm.

Synthesize the C algorithm as an register transfer level (RTL) implementation.

Optional user directives called pragmas can be used to guide the HLS tool.

Generate reports and analyze the design.

Verify the RTL implementation using co-simulation.

Package the RTL implementation into an IP.



C++ code is used to describe the behavior, and the HLS tool synthesizes the
corresponding register transfer level (RTL) circuit. HLS inputs consists of function
written in C, C4++, or SystemC, constraints such as clock period, uncertainty and
target FPGA, optional directives (pragmas) that guides the synthesis process, opti-
mizes the system, and implements specific behavior and finally the test bench files for

verification. HLS outputs consists of RTL implementation files in HDL and report files.

The tool gives designers better authority over-optimization of their design archi-
tecture. However, there are more ways than one to synthesize the C code. So, tools
must be guided by the user through pragmas. Quality of the design is directly dictated
by the selected pragmas. Hence, iterative design process for finding the best solution
takes a considerable design effort and time. In our approach, we have already designed
the template SIMD processor architecture. The SIMDify framework, which generates
application specific SIMD architecture, greatly reduces the design effort and time of
the user. SIMDify fully utilizes HLS and its C like header structure to reduce design

time.

HLS has many built-in pragmas that correspond to design constraints such as
parallel and pipelined design. Vivado HLS is chosen as the primary tool due to its fast
design process, built-in pragmas, and accessible and flexible nature. In [42] it is shown
that HLS can reduce the design effort compared to non-HLS RTL. In terms of area,
the processor designed in HLS is %50 larger than its RTL equivalent.

Example processors designed using a HLS in the literature are Comet core [43] in
RISC-V ISA and Catapult HLS, HL5 [42] in RISC-V ISA and SystemC and, approxi-
mate CPU [44] in RISC-V ISA and Vivado HLS. All mentioned processors doesn’t have
a SIMD support, but Comet does allow instruction extensions by modifying the HLS
code. However, compiler modification must be done by the user. HL5 and Comet have
stable riscv32im instruction support. [45] and [46] are MIPS architecture based proces-
sors, utilizing Vivado and LegUp [47] HLS tools, respectively. In [14] SIMD processor
for software-defined radio (SDR) applications is designed using OpenCL language [48].



Bespoke processor article [49] mentions HLS is costly and increases design and
verification effort. However, designed SIMDify framework automates this process with
the guidance from user. So user won’t be needed to verify the design all the time. User
can generate the application machine code and SIMDify automatically applies SIMD

processing and trims the unnecessary blocks.

Another article presents Trimmed VLIW approach [50]. It trims down the HDL
code depending on the application. For instance, 4:1 mux is trimmed down to 2:1 if
the select signal has two constant values. HLS does that automatically for the given
process. Since it exists in a high level abstraction, constants will be defined before
muxes. So, HLS will trim down the constant switch case arguments in the code.
Therefore, using HLS is beneficial with respect to design time, flexibility and overall

control.

2.3. RISC-V Instruction Set Architecture

Most ISAs used by major companies such as ARM, Intel, and AMD are propri-
etary. For this reason, free, open-source ISAs like Open RISC [51] and RISC-V [1]
based processors are gaining momentum in custom processor designs. RISC-V is rec-
ommended as an open-source ISA standard by [52]. Currently, RISC-V lead by the
RISC-V foundation [53] and its members.

In this work, RISC-V ISA [1] is chosen due to its open-source, free, active, and
well-documented nature. The base RISC-V ISA from University of California, Berkeley
had been released in 2011 and it is still rising in popularity with its open source GitHub
applications, public Google groups and meetings. RISC-V attracts a wide variety of
researchers from both academic community [54,55], and private companies [56-59].
RISC-V has a compiler, simulator, QEMU support, and a cycle-accurate verification

suite.
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The main goal of RISC-V is to create a long-lasting open-source ISA ecosystem
with a wide range of uses. For this reason, it can be both scaled down using its
embedded ISA and scaled up using its single, double and, quadruple precision floating-
point support. Its 32, 64, and 128 bit base instruction set is suitable for all ranges of
devices from IoT to warehouse scale computing systems. A number of hard and soft
core designs ranging from simple single cores [60,61] to complex out-of-order superscalar
cores [57,62,63] have been shared as open-source and many RISC-V related academic

papers have been published. Some commercial products from different vendors are also

available in the market [56, 58, 59].

As a part of the European processor initiative (EPI) processor with RISC-V
ISA will be developed using fully European IPs [64]. Manufacturers such as Western
Digital Corporation [57], Google [65], and Alibaba [66], also designed processors using
RISC-V ISA. Several implementations [67-69] of RISC-V have been made in Chisel
language [70]. Even though Chisel is different than the traditional HDL, it is closer to
the HDL than to the HLS [71].

Even though RISC-V ISA has two extensions for parallel computation, i.e., “P”
(Packed SIMD) and “V” (Vector) extensions, currently, both extensions are not ratified.
Also, ”V” extension is not tailored for packed SIMD applications, and the ”P” extension
is not scalable. Since these extensions are subject to change, the designed processor
might be obsolete in the future. This problem can be solved using compiler retargeting
and extending standard instruction set with non-standard custom instructions [21] or
using Just-in-time (JIT) compilers, which compiles the program in run-time [22]. Both
approaches yield non-standard compilers as well as non-standard instructions in custom

hardware. So, compiler must be modified for each individual accelerator.

"V” extension can work with small scale vector lengths, however it’s intended for
high performance computing with its OpenMP support. Allowing vector processing
requires significant changes in the processor architecture, whereas SIMDify can unroll

loops with its simple core architecture. In ”V” extension, width of a vector can only
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be a power of 2 whereas SIMDify can take custom unroll factors as an input. However,

custom unroll factors must exactly divide the number of iterations in the loop.

”P” extension requires a different machine code for different the number of parallel
computing units. SIMDify does not have this constraint. Hence, the user can easily
explore design space to optimize the overall design without recompiling the software.
Currently, ”P” extension is not supported by the standard RISC-V compiler. Both ”V”
and "P” extensions are not standardized and there are no existing open source designs

with these extensions. We released SIMDify as an open source project on Github [29].
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3. SIMDIFY FRAMEWORK

SIMDify can parallelize and accelerate an application with minimal software level
modification and using the standard RISC-V compiler. It utilizes HL.S pragmas and C
like header structure of the HLS. Using HLS, SIMDify processes the RISC-V compiler
machine code and HLS simulator outputs and automatically generates desired SIMD
processor architecture. SIMDify is fully automated and it requires only 4 variables to

configure the software, which reduces the design time.

User Input SIMDIFY Framework
Application SIMD RISC-V
Code with SISD RISC-V processor
SIMD 1SS Model description
configuration Code |n C++

Detection of
RISC.-V Memory_Map SIMDifiable SIMDification High Level SIMD RISC-V
Compiler Extraction Reglons Synthesis Core

Figure 3.1. Block diagram of SIMDify Framework.

Operation of SIMDify framework is shown in Figure 3.1. It takes the compiled
machine code that contains the algorithm and necessary configuration parameters. The
machine code is fed to the Memory Map Extraction block to generate the Local Memory
header file. Then, the Local Memory header and the SISD (Single-instruction-single-
data) RISC-V ISS (Instruction Set Simulation) Model is fed to the next block to detect
the regions that will be executed as SIMD (SIMDifiable Regions) and write them to
the Address Header. After that, the SIMDification block generates the SIMD header
file using the Address and Local Memory Header. Lastly, SIMD RISC-V processor
description code in C++ and all header files are synthesized in Vivado HLS to generate
SIMD RISC-V Core. All steps are automated inside the SIMDify Framework. A

detailed explanation for each block in the figure is given in the rest of this section.
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3.1. Application Code with SIMD configuration

Four variables must be included in the C code to generate and configure the

SIMD processor successfully:

e StartPar: Determines the region which SIMD processing will be executed. The
user has to set StartPar to 1 just before the loop begins and to 0 just after the
loop ends.

e par num: Unroll factor. Determines the number of SIMD processes. Number
must exactly divide the loop count. Denoted by n.

e arrstr: Start local data memory address of the SIMD array. Used in SIMD
slaves. Equals to &SMAJ0]; where SIMD_memory_array (SMA) is the name of
the array accessed in the SIMD loop with size X. Denoted by Agatq,start-

e arr_end: Last local data memory address of the SIMD array. Used in SIMD slaves.
Equals to &SMA[X-1] 4+ (&SMA[X-1] - &SMA[X-2]); where SIMD_memory_array
(SMA) is the name of the array accessed in the SIMD loop with a size X. Denoted

by Adata,end-

In the local memory, variables have specific addresses which are generated using
the “section” command. This command is a GCC variable attribute which is used for
setting particular variables to appear in individual sections (address ranges). Only the
unroll factor can be modified after compilation. To change the other three, code must

be re-compiled. Section names and addresses are determined from the linker file.

Our SIMD processor template processing system consists of one master process-
ing element (PE) and n — 1 slave PEs. Master can access the complete local memory
and executes the sequential code. During SIMD execution, master also executes con-
currently with the slaves. So, during SIMD processing, n PEs execute concurrently. In
order to fully benefit from SIMD operation, memory access range of each PE has to be
contiguous as shown in Figure 3.2. To achieve this, the user must write the SIMD loop

part of the C code while considering memory adjacency. For example, consider a four
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Figure 3.2. Accessible regions in the Local data memory for n-1 Slave PEs and the

Master PE. Different Tag values are generated for each partition.

iteration loop for matrix vector multiplication A:][0..4] - v[0..4] = r[é] like in Figure 3.3
where A is the name of the 4 x 5 matrix, v is the multiplied vector with size 5 and
r is the result vector, Figure 3.4.a. In i-th iteration each element in i-th row of A is

multiplied with elements in the vector and summed up.

:for (int 1 0; 1 < X; 1i++){
for (int 7 0; 3 < 5; 3 ++) |
r{i] [5] r{i] [5] + A[i][3] = w[3i];

}

Figure 3.3. Non-SIMDifiable C code of the matrix multiplication example.

The example code results in one matrix, one vector, and one result block in the
memory, Figure 3.4.b. To design a SIMDifiable C code, all addresses accessed in only
one iteration in the SIMD loop, i-th row of A and r, must be adjacent in the memory.
So, code shown in Figure 3.4.a, cannot be executed in our designed SIMD processor.
We solve this problem by adding another column to the matrix to store the result
vector by modifying the multiplication as A[i][0..4] - v[0..4] = A[i][5], Figure 3.4.c. In
this way, all arrays that are read and written in one iteration are compiled as adjacent
memory partitions 3.4.d. Hence, each SIMD slave S; will be able to execute in its own
dedicated partition Partition S;, as shown in Figure 3.2. Note that the master M can

access the entire local memory.
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Figure 3.4. Coding example (a) Vector matrix multiplication
(b) Default memory allocation of arrays after declaration.
(c) Suggested SIMDifiable vector matrix multiplication.
(d) SIMDifiable memory allocation after suggestion.

Local data memory in Figure 3.2 consists of data and tag fields. Tag field is used
for local data memory access and the data field stores the local data. It is a single
block that contains address-to-partition mapping. Tag field makes a trade-off between
memory access latency and area. By using tag field, area is increased. In return, the
SIMD architecture does not require many comparison and multiplexer blocks, which

increase the latency of the address-to-partition mapping process.

Size of the tag field is proportional to the size of the data field, and each tag
contains values from 0 to n — 1. 0 value is for regions that are only accessed by the
master, and 1 to n — 1 is for slave regions S through S,_;. How tag field is used for

memory access is detailed in Chapter 4.1.

C code of the example matrix multiplication structure should be written as Figure
3.5. Variables that are not accessed in only one iteration in the parallelized loop need
not be adjacent in the memory. So, user only has to modify its SIMD execution loop

and include the four variables. Rest of the code remains the same.



int X=4; // size of the iteration and the SIMD array
// three variables must set before SIMD loop:
par_num=4; //can be 1,2, and 4
arr_str= &A[0];
arr_end=8A[X-1] + (BA[X-1] - &A[X-21);
//startPar must be set before and after the SIMD loop.
startPar=1;
SIMD_loop:for(int i = @; 1 < X; i++){

for (int j = 0; j <5; j++) {

A[i105] = A[i105] + ACi103] = vI3d;
13

startPar=0;

Figure 3.5. SIMDifiable C code of the matrix multiplication example.

only be accessed by single slave. Master can access to the entire local memory.

A

Row 1
A B r Row 2

Row 1 X _
Row 2 - &

(a)

A B A[l[2] A[I[3] All[4]
Row 1 X _ Row 1
Row 2 B Row 2

(c)

(d)

Figure 3.6. Coding example (a) Matrix matrix multiplication

(b) Default memory allocation of arrays after declaration.

(c) Suggested SIMDifiable matrix matrix multiplication
(d) SIMDifiable memory allocation after suggestion
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As another example, we can present matrix matrix multiplication (MMM). Figure
3.6 shows MMM for loop, A[é][0..1] - B[0..1][0..2] = A[i][2..4], is SIMDified and each PE
executes A[i][0..1] - B[0..1][z] = A[i][z + 2] operation. In Figure 3.6.d, B is the common

memory and can be accessed by all slaves and A is the partitioned memory and can
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3.2. RISC-V-compiler

In this work standard RISC-V compiler such as riscv32-unknown-elf, riscv-none-
embed, riscv64-unknown-elf GCC is used. To synthesize memory in a partitionable
way, the compiler optimization level must be 3. The compiler generates the machine
code, which consists of the data memory before the execution, and the instructions to

be executed.

3.3. Memory Map Extraction

Memory Map Extraction block reads the machine code and generates the cor-
responding Local Memory header file for the HLS. Local Memory header contains
instruction and data array. In the instruction array, each element contains 32-bit in-
structions. The size of the instruction array depends on the generated machine code.
The data array contains 32 bits as 4x8, partitioned as 4 dual port 8 bit sized mem-
ory arrays. The length of the data array depends on the linker file. The header also
contains macros for each instruction in the instruction binary. For example, if instruc-
tion binary contains an ADDI instruction, header contains #define ADDI directive.
Macros are used in HLS to remove unused instructions of RISC-V and to create an

area efficient core.

3.4. SISD RISC-V Instruction Set Simulation (ISS) Model

This model is written in C4++ to be simulated with the Vivado HLS. With the
use of HLS-specific constructs like ap_int library and HLS directives, overall design
time is reduced. SISD model is only used in HLS C simulation to read instruction and
data arrays in the local memory and generate the address header, as explained in the

next part.
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3.5. Detection of SIMDifiable Regions

Instructions in the local memory header are simulated in HLS without Register-
Transfer Level (RTL) synthesis using the SISD RISC-V ISS model. While simulating,
the model constantly reads the four variables (StartPar, n, Agutastart, Adataend) from
their respective local addresses, Figure 3.7. When the StartPar is read as “17, it
means that simulation is entering the SIMD loop and when it is read as “0”, it means
that simulation is exiting the SIMD loop. Meanwhile values Agquia start, Adata,end, and

par_num, which are set before SIMD loop, are saved to the Address Header.

-

Wait for next instructionJ<— —»[‘Nailfor next instruction <& READ register
l i " | values, pc adress of
0

the branch from
instruction. Also read
the incruction adress

READ startPar - | READstartPar | i.e. the pc value.
variable vanable A
l I
1 v
Branch Exists
READ par_num, Check
arr_str, arr_end the last branch
variables from instruction
memory

|
Branch not found after startPar =1

Error

Figure 3.7. Flow diagram for Detection of SIMDifiable Regions block.

After exiting the loop, the model checks the branch instruction of the SIMD loop.
The start of the SIMD loop, branch target address, is equal to the sum of sign extended
immediate offset, imm[12:1], and branch program counter (PC) address (Figure 3.8).
Together with the branch target address and next value after branch PC address, the
register numbers and contents given in the source register (rsl and rs2) fields of the
branch instruction are saved to the Address Header. Detailed explanation about how
register numbers and contents are used for transition between normal processing mode

and SIMD processing mode is given in Chapter 4.1.
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limm [12]10:5] | rs2 | rs1 | funct3 | imm[4:1]11] | opcode |

Figure 3.8. B-type instruction structure for RISC-V, rsl and rs2 are the source

registers for branch operation [1].

3.6. SIMDification

SIMDification block generates the HLS SIMD header file that consists of slave
PE and cache parameters, partitions, and functions used in the SIMD execution. By
default, this block uses the unroll factor determined in the C code, but it can be over-
written to reconfigure SIMD processor without re-compiling it from scratch. SIMD
processing can be applied to any memory partitionable loop in the application. SIMD-
ified local data memory is generated by allocating all the data between the Aguq, start
and Agata ena into n equisized partitions, as shown in Figure 3.9. The master PE acts
as n-th slave during SIMD processing. Start and end addresses of the partitions are
saved to the SIMD header. These are also used while transitioning between standard
processing mode and SIMD processing mode. SIMDification block also generates con-
stant memory tags for every word in the local data memory. CPU looks at the tags to
determine which memory address belongs to which memory partition. Tagged memory

architecture will be detailed in Chapter 4.1.
3.7. SIMD RISC-V processor description Code in C++4
SIMD RISC-V processor description Code is a HLS code that is written in C++

and is responsible for generating processor system with dynamic branch prediction. It

generates two types of datapath:

M r
Slave 1 Row 1 Slave 1
_ Row 2 “Slave 2
Master Row 3 Slave 3 Master
- Row4_ -
VT

(B)

Figure 3.9. Example partitioning for a) n=2 , b) n=4
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e Master Datapath: It is always executed, unique and responsible for branch pre-
diction, stalls, and other control signals. Master datapath can access all the local
memory (data and instruction), external memory, and register file array.

e Slave Datapath: There are n — 1 slaves, which are executed only during SIMD
processing. Each slave can only access its own register file and its own memory
partition. In SIMD processing, slaves are not executed if the instruction is a
branch or a jump, or an instruction is accessing a different memory address than

its own partition (common memory).

Master and slave datapaths are entangled in the processor and not single blocks,
but for the sake of clarity they will be referred as Master and Slave processing elements
throughout this thesis. An illustrative partitioning is given in Figure 3.9 for n=2 and
n=4 for the matrix-vector multiplication code. In a memory partitionable loop, every
load or store is accessing a different part of the memory or a common memory address.
So, there are no dependencies between iterations. In each iteration, SIMD loops either
access to the common memory (like vector load) or they all access to a different part
of the memory (like matrix load/store). In matrix multiplication, SIMD Slaves are not
executed when the code is accessing the common memory (v block). Instead, master
LOADs v array and writes to all n registers. Memory of the matrix is partitioned
amongst PEs, the vector memory will reside in the non-partitioned common memory,
and only the master PE can access it and write to all registers. If v must be STOREd
inside SIMD loop, it must be a part of the partitioned matrix A.

3.8. High Level Synthesis

Using HLS, SIMDify synthesizes the processor using generated headers and PE
codes written in C++4. For different applications the flow must start from the begin-
ning. For the same application with different unroll factors, starting from the SIMDi-

fication step is enough.
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4. CORE ARCHITECTURE

Our soft application-specific SIMD-processor consists of two main parts: A rel-
atively large master PE and small slave PEs. Using HLS, SIMDify can combine and
connect master and slaves to generate various SIMD processors for an application de-
pending on the unroll factor. The processor is designed in C++ and synthesized in

Vivado High-Level Synthesis 2019.2.

4.1. SIMD Processor

In our system, software loop is unrolled in hardware level to be executed in parallel
as SIMD. Execution results in n times the latency gain for the SIMD executed part.
The user guides the SIMDify, and the framework configures the processor accordingly.
This process does not require inline assembly or custom instructions. It only requires
modification on the SIMDified loop itself, thus, rest of the application does not need
to be modified. Also, no extra instruction overhead is added to instructions generated

by the compiler.

Dynamlc Branch Prediction [EXPANDED MEMORY]

Local Data Memory
4—— PC ‘—BRANCH JUMP
i RESOLVE Tag Data CACHE

Local Instruction Memory

UNIT :
Instruction
FETCH DECODE JEXECUTE | | MEMORY ™ WRITEBACK
] Fetch Dec Dec.Dec. _Ex.Ex. “|A| " Mem._Mem.Mem.—| [-"Wb. Wb. Wb.

S,—,1 M E Sq Sn—1 M S4 Sp-1 M S1 Sn—J M

I | 4
_ _________ RF. RF RF
| STALL : : NSt 178l Mk

______________ Register File Array

Figure 4.1. Block diagram of overall system with 1 master PE and n-1 slave PEs.

Local data memory is detailed in Figure 3.2.

The overall SIMD processor architecture is shown in Figure 4.1. SIMD processor
consists of a master and n — 1 slaves. Using HLS, SIMDify combines and connects
these PEs to generate different SIMD processors for each application and unroll factor.

Proposed processor architecture is the first RISC-V processor with SIMD support de-



22

signed using HLS. In the figure, thin lines are for single data and exclusive to master.
Thick lines indicate busses where both master and slaves execute. Dashed lines are
stall outputs. The designed processor runs in one of two different modes at any given

time:

e Standard mode where the only active PE is the master.

e Parallel mode for SIMD processing where all PEs are active.

In the fetch stage, the master checks the PC value to start or end the SIMD
processing. Before beginning the SIMD processing, the master initializes all slaves by
writing different values of the SIMD loop iterator to the register files. These values are

pre-calculated by the SIMDify tool as explained in the previous section.

In a SIMD loop machine code, rs1 and rs2 of branch source registers are set as
initial and final addresses of the memory partition. Register of the initial_address is
incremented until it’s the same as final_address. This is purely done by compiler and

similar for every SIMDifiable loop.

Consider an example where, unroll factor is 3, and SIMD loop accesses addresses
1 to 30. So, initial_address is 1 and final_address is 30. Master PE overrides “set rsl
and rs2” instruction and sets rsl and rs2 values of the slave PEs as 1, 11 and 10, 20
and master PE as 21 and 30 respectively. This approach is similar to loop unrolling.
This does not take additional time, since initialization is executed instead of “set rsl
and rs2” instruction. After the loop, master PE continues its normal operation. Since
memory accessed in each iteration corresponds to different memory partitions, the

system can be executed as SIMD.

The master determines execution mode by checking the PC value in fetch stage.
System runs in parallel mode if the PC value corresponds to the SIMD loop and runs
in standard mode if it doesn’t. Additionally, only master is active if instruction is LUI,

AUIPC, JUMP, or BRANCH, or accesses to non-partitioned (common) local memory.
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Figure 4.2. Plot of tag field size vs data field size for different unroll factors up to 32.
For all unroll factors Tag field size can be calculated with Equation 4.1. Data field is

given as multiples of 32.

Local data memory consists of a data field that has random access data and a
tag field that identifies this data. Tag field is generated by the SIMDify and cannot
be accessed by instructions. In the execute stage, the tag of the data is read from the
tag field, and it is used to set the enable signals of the memory partitions. Then, in
the memory stage, enable signals are used by the PEs to access the correct memory
partition. There are three possible outcomes depending of the tag values and current

mode:

e In standard mode: Only the master is active and tag value is used to give access
to the master PE to the demanded memory partition.

e In parallel mode and all addresses are the same: That means PEs are reading
from a common memory like v. In this case only the master PE accesses the
memory and writes to all register files.

e In parallel mode and all addresses are different: That means core is executing
as SIMD and every PE reads and writes to its own partition, by using their

dedicated RFs.
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Size of the tag field depends of size of the data field and the unroll factor, Equation
4.1, which can be seen in Figure 4.2. If the unroll factor is 1, tag field is not generated

since there is only single memory partition and single PE.

DataFieldSt
TagFieldSize = aa ;g Size * [loga(n)] (4.1)

4.2. Master (Scalar) PE

The scalar PE in Figure 4.3 is master for slave PEs and supports riscv32¢ instruc-
tion set and MUL, MULH, MULHSU, MULHU multiplication instructions. Riscv32m
exclusive multi-cycle instructions (REM and DIV) are not implemented. DIV and
REM should be implemented in a way that does not change the behaviour of single
cycle instructions. We observed that if they are implemented as a/b, HLS compiles the
DIV instruction, but timing of the single cycle instructions also changes. Master has a
standard five-stage pipeline [72]. Instructions are fetched and issued without changing
the order of execution. Using the aforementioned directives unused instruction blocks
are removed, which reduces the area. All data dependency hazards are solved via

stalling.

Branch hazards are handled with dynamic one-level branch prediction with a
1-bit saturating counter, as shown in Figure 4.4. A saturating counter records the
last branch result as 0 for not-taken, and 1 for taken. If taken, the branch address
is also recorded. Jump instructions are resolved in the decode stage, which results
in 1 cycle overhead. Branch instructions are also resolved in the decode stage to
reduce misprediction penalty. Misprediction is solved with flushing fetch register and
correcting the PC value. In the figure, top input of the pipe registers indicates flush,
and bottom indicates stall. The core has a local memory for faster processing, and

memory can be expanded with a cache connected to external memory. All instructions
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Figure 4.3. Block diagram of Scalar Datapath with a standard RISC five-stage

pipeline with 1-bit branch prediction and optional cache.

are stored in the local instruction memory. Latency for memory stage is a single cycle
for local memory. If the cache is implemented, the overall pipeline depth does not
change, but the memory stage may take multiple cycles to execute. All local memories
and cache memories are asynchronous read and synchronous write. It should be noted
that block diagram is behaviorally correct, however, in HLS register file, writeback, and
decode stages are written as one block. This is done to generate two port asynchronous
read, one port synchronous write register file (RF). Generated RF Verilog code can be
observed in Figure 4.5. Operands are sent to the decode first, and sent to the execute

from there.

The master PE is also responsible for starting and ending the SIMD processing.
Before beginning the SIMD processing, the master PE initializes slave PEs as explained

in the Chapter 4.1.

Blocks of the unused instructions of the application are removed. This results in
area and speed improvements. Normally each multiplication instruction (MUL, MULH,
MULHSU, MULHU) requires 3 DSP blocks per instruction. So if an application only
has MUL in its machine code, 3, if it has MUL and MULHSU 6 DSP blocks are used.

If core were generated in non-application specific way, 12 DSP blocks would be used.
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Fetch Stage
if Instruction = Branch then

if SaturatingBit = Taken then

NextPC = BTA ;
else
NextPC = PC + 4;
end if
end if

Decode Stage
if Instruction = Branch then
Check for misprediction
if IsBranchTaken != SaturatingBit or BTA != calculated address then
Flush Fetch Register;
SaturatingBit = IsBranchTaken;
if IsBranchTaken then
BTA = calculated address;
NextPC = calculated address;
else
NextPC = PC + 4;
end if
end if
end if

Figure 4.4. Algorithm for 1-bit Branch Prediction. BTA stands for branch target

address.
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assign q0 ram[addr0];
assign ql ram[addrl];
always @ (posedge clk)
begin

if (we2)

begin

ram[addr2] <= dZ2;

end

end

Figure 4.5. HDL of the Generated Register File

4.3. Slave PE

Slave PEs structure is shown in Figure 4.6. It only consist of decode, execute,
memory, and writeback units. All slave PEs can only access to their individual 32-bit
register files, and their partition in the main memory. Since it is guaranteed that all
PEs will execute the same instruction at any given time, redundant signals are trimmed
to reduce area. Slave PEs also do not have a stall, fetch, or branch units. They are
generated only when the user demands a SIMD processing and are fully controlled by

the master PE.

Ll X

w S w = W i m%
< << O <C = m
o Mg Mg WEE
a) ﬁ = @\ 7
f _ =

_ _ Partition k
Register RF ‘ Local Memory
File Array k e

Figure 4.6. Block diagram of kth Slave PE.

Slave PEs are generated by using HLS loop unroll pragmas with case blocks. So,
they use same blocks and same unified local memory as the master. SIMDify detects
SIMD loops and guides HLS to generate slave PEs accordingly. This approach gen-
erates general purpose slaves and removes the need for designing custom modules per
application. Slave PEs can execute most instructions of the supported ISA. Slave and
master PEs are further reduced to only execute necessary instructions per application
basis, which reduces area. If master PE is modified to include extra instructions, slave

PEs can be easily scaled to include these instructions as well.



5. ILLUSTRATIVE EXAMPLE

5.1. Application Code with SIMD configuration
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In this chapter illustrative example for the SIMDification of a matrix vector

multiplication in Figure 5.1.a will be given. C code shows the multiplication of 25

by 4 matrix with 4 by 1 vector. par_num is the unroll factor, which is set globally

before the main is called. Other three variables (arr_str, arr_end and startPar) are

set during main call. Attribute fixes the location of the 4 variables. When compiling,

matrix static variable is preloaded in data memory. We preloaded the matrix as an

illustrative example. It is also possible to load the matrix using the external cache.

Matrix starts at 0x4000 and ends at 0x40004-500. Data memory is given in the Figure

5.1.b.

finclude <stdio.h>
$include <stdlib.h>

$define SIZEX 25
fdefine SIZEY 4
volatile int __attribute__ ((section(
volatile int _ attribute ((section(
volatile int __attribute__ ((section(
volatile int _ attribute ((section(

static int matriz [SIZEX] [SIZEY+1] = {

static int vector [SIZEY] = { B . . }i

int main() {
arr_str = &matrix[0] ;

))) startPar —

)) par_num = ;

)) arr_str — ; 4020
4"))) arr_end = B 4030

>
o
o

o

Contents ot section

arr_end = &matrix[SIZEX-1] + (&matrix[SIZEX-1] - &matrix[SIZEX-2]); 41p0

startPar = ;
for (int i = 0; i < SIZEX; 1 ++) {
for (int j = 0; j < SIZEY; j ++) {

matrix[i] [SIZEY] = matrix[i] [SIZEY] + matrix[i]l[j] * vector([jl;

}
//printf("result: %d = %d\n", i, matrix[i] [SIZEY]);
}
startPar =
return i
}
(a)

51000000
00000000
02000000
14000000
31000000
59000000
00000000
16000000
48000000
2b000000
©3000000
00000000
11000000
04000000
2c000000
64000000
00000000
13000000
44000000
30000000
6c000000
00000000
1b000000
48000000
29000000
58000000
00000000
10000000
3e000000
2b000000
56000000
00000000

38000000
42000000
00000000
01000000
18000000
2e000000
€b000000
00000000
18000000
41000000
23000000
59000000
00000000
1c000000
40000000
28000000
61000000
00000000
14000000
46000000
2c000000
6b000000
00000000
18000000
38000000
26000000
58000000
00000000
13000000
51000000
30000000
00000000

(b)

.data:

16000000
30000000
4b000000
00000000
03000000
39000000
31000000
59000000
00000000
10000000
48000000
28000000
52000000
00000000
14000000
42000000
2c000000
66000000
00000000
16000000
04000000
30000000
60000000
00000000
10000000
3c000000
26000000
5c000000
00000000
19000000
48000000
00000000

03000000
16000000
33000000
49000000
00000000
14000000
46000000
30000000
5c000000
00000000
18000000
32000000
33000000
61000000
00000000
18000000
4b000000
2e000000
69000000
00000000
16000000
50000000
2e000000
5b000000
00000000
11000000
3b000000
2b000000
60000000
00000000
18000000
00000000

Figure 5.1. (a) C code of Matrix-Vector Multiplication. (b) Data memory preloaded

with matrix data.
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5.2. RISC-V-compiler

After compiling the C code, we get Figure 5.2. Start code resets the registers,
initializes the stack pointer, and calls the main(). ebreak stops the execution. There is
a total of 104 instructions. In main code, addresses between 0x13c and 0x190 show the
loop that will be SIMDified. Second for loop in the C code is automatically unrolled by
the compiler. Before the loop, arr_str (0x114), arr_end (0x124) and startPar (0x130)
variables are set. And after the loop, startPar (0x194) is set back to zero. Setting
these values puts 10 additional instructions to the algorithm. Since the designed SIMD
processor overrides existing instruction (0x134) to switch between SIMD processing
mode and normal processing mode, transition does not cost extra cycles. Instead of
executing instruction in the PC=0x134 and setting a4, it sets all a4 and a7 registers
of the slave and master PE to their respective values. These values are calculated in

the SIMDification step and correspond to start and end register values of the pseudo

unrolled loop.

Disassembly of ssction .text:

Disassembly of s=ction .text.startup:
<_start>: <main>:
1i ra, lui a4,
1li sp, mv a7,a4
1i  gp, 1ui a3,
a: 1li  tp, sw a7,2(a2) # <arr_str>
1i to, lui a5,
1i  t1, addi a7,a’l,
11 t2, lui t2,
1i so0, sw a7, (a5) # <arr_snd>
1li =1, mv t3,t3
1i a0, 1i a5,
1i  al, sw  a5,0(t3) § <startPar>
1li a2 mv a4,a4
11 a3 1i  t1,
1li a4, 1w a5,4(a4) #
1li a5 1w a3, (a4)
auipc gp. 1w a2, (a4)
fc418183 addi gp.gp.— i < _start> mul al,tl,a5
auipe 1w  a6,1¢(ad)
fbcl0113 addi # <_stack_start> s111i a5,a3,
auipc 1w ab,12(a4)
Jalr (ra) # <__libc_init_array> add a5,a5,a3
auipe ra, s1li a3,az,
jalr (ra) £ <__DTCOR_END__ > sub a3,a3,a2
ebreak s1li as,as,
< _£ini>: add a5,a5,a6
ret s11i ald,al3,
<_ libc_init array>: sub a3,a3,a2
££010113 addi sp,sp,- add a5,a5,al
- s11i a2,al,
f4: ret add a5,a5,a3
<__CTOR_LIST_ >: sub a2,a2,al
add a5,a5,a3
<_ CTOR_END__ >: sw  a5,16(a4)
addi a4,a4d,
faeB856e3 bne a7,a4, <main+ >

(a)

(k)

sw
11
ret

zero,
al,

(£3)

Figure 5.2. Assembly code of matrix vector multiplication.

a) Start Code, b) Main Code
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5.3. Memory Map Extraction

After the memory map extraction, we get Figure 5.3. It contains the necessary in-
formation to run the algorithm without SIMDifying it. In instruction array inst_mem,
each element contains 32-bit instructions. The size of the inst_mem depends on the
generated machine code, which is 104 words in this case. This part is synthesized as
the instruction memory of the processor. The data array mem contains 32 bits as 4x8,
synthesized as 4 dual port 8-bit memory arrays. Size of the mem is taken from the
text file. To reduce the occupying space in the figure inst_mem and mem variables are
cut off. The header also contains definitions for existing instructions in the instruction
binary. These are used to trim unnecessary blocks in HLS. For example, there isn’t
any MULH instruction. So we do not generate extra multiplication blocks for MULH.
GLUT part trims large blocks (ALU, STORE) for non-used group of instructions.
Other constants set the size of the local data and instruction memory and locations of

the 4 variables.

//Hex file path ../hex/illustrativemultiply3.hex

//Mem file path ../hex/illustrativemultiply3.mem

#include "riscv_cache 1ll.hpp"

Istatic ap_int<32> inst mem[ 1 =1 . . , e e —

- .0 //0x0
Local Instruction Memory

//memory address offset

const uint32_t mem_ start_adress =
const uint32 t whole memory size =
const uint32_ t data memory size
const uint32_t par_start_address
const uint32_t par_num_address =
const uint32_t arr_str_address
const uint32 t arr_end address
//required data memory size
static ap int<o> mem[ 4096 1[4] = { {&

Instruction

~~316383
//0x4000-1

//LUT instructions
#define RDDI ta Memorv
#define AUIPC
#define JALR
#define EBREAK
#define sSW

#define SUB

#define SRAI
#define BEQ

#define LW

#define BNE

#define LUI

#define MUL
#define SLLI
#define ADD

//GLUT instructions
#define ALU

#define JUMP
#define STORE
#define SHIFT
#define BRANCH
#define LOAD
#define MULDIV
#define MULTI
#define XNALU M 32767
#define ALUMULDIV £/0x8000-1
#define XNMULDIV

16384 //0x4000

Partition S

" Note that, partitions
Partition 82 are finalized in the

SIMDification step.

Partition S3

Q>\rtmon s,

24576 startPar
24580 par_num
24584 arr_str
24588 arr_end

Figure 5.3. Local Memory header file of matrix vector multiplication.
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5.4. Detection of SIMDifiable Regions

After Memory Map Extraction, algorithm is simulated once to extract necessary
values for SIMD processing. These values are stored in a header, Figure 5.4. Variables
for_init and for_end hold the start and end addresses of matrix variable - the common
memory offset (memory_start_address, Figure 5.3). Variables start_reg and end_reg
show the incremented (a4, 0x14 in [1]) and constant (a7, 0x17 in [1]) register numbers
of the branch instruction in Figure 5.4 address 0x190, respectively. As it can be seen in
Figure 5.4, a4 is incremented and a7 is constant throughout the loop. Register a4 starts
at memory_start_address 4+ 0 value and is incremented by 500, which corresponds to
for_anit and for_end variables. Variables Par_start_addr and Par_end_addr hold the
boundary start and end PC values of the SIMDify loop. Variable init_simd_of fset
refers to negative offset from Par_start_addr to last modified PC of a4 or a7 between
Par_start_addr (0x13c in Figure 5.4) and StartPar = 1 (0x130 in Figure 5.4). This
offset value corresponds to PC = 02134 in Figure 5.4. Tool uses init_simd_of fset and
overrides that instruction for switching SIMD processing mode, so that core won’t lose

extra cycles when switching between modes.

Figure 5.4. Address Header file of matrix vector multiplication.



32

5.5. SIMDification

After SIMDifiable regions are detected, unroll factor can be changed manually.
Since 25 is not divisible by 3 (par_num in the C code), it will be changed to 5 in this
stage, Figure 5.5. There are n + 1 = 6 enumerated tags, tag ext = n is generated for
external cache, others are used for n PEs. Since the example does not use external mem-
ory, tag field does not contain any ext. Variable Addrlut is the tag field, and mem _par
is the partitioned memory blocks of the PEs. Register file and partition numbers are
dependent on the unroll factor. This is handled with SETRF and GET'SET macros,
and they are used in writeback and memory stages respectively. When PC = 0x134
a7 and a4 values of PE registers set to for_array_parstart and for_array_end values,
respectively. This simulates unrolling the loop. Variable for_array_init is the offset

for each memory partition.



33

e rrnewﬁdﬂine.n"_____________-———-—'—_% comment to shut down all slave PEs

#define parallel mode .

//#define activatecache % uncomment to activate cache and external memory
const int extramem size = 1 ; // size of cutside memory 32xextramem size

const uinc32_t addlutsize = 1 : // size of outside memory 32xextramem size
#ifdef parallel_mode

const int par_num = 5 ;//par_num —————————3 number of slave PEs+ master PE

#else

const int par_num = 1 ;//par_num

$endif Tag
#ifdef parallel modes

typedef enum { L 0
0 =0, ——3p 128 of non-partitioned memory

1, —————3 TagofSlave 1 Partition
_2 4 =————— Tag of Slave 2 Partition

,‘31 ! =—————3  Tag of Slave 3 Partition 2
e 4 Tag of Slave 4 Partition

ext
} memorybits;

#else

typedef enum {

a=0,

ext

} memorybits; 0
#endif

#ifdef parallel mode
const memorybits addrlut[

#endif

#define GETSET MACRO AN

getset0<0> (address[0], mask, (isparmode_or_addr_arr[0] valueToWrite[0], result[0] )/ AY
getsetO<1> (address[1], mask, (isparmode_or_addr_arr[1l] )2 : valueToWrite[1],result[1] ): A\

getset0<2> (address[2], mask, (1sparmode or addr arr[2] ) ?0pType:NONE, valueToWrite[2],result[2] )
getset0<3> (address[3], mask, (isparmode_or_addr_arr[3] ) ?0pTvpe:NONE, valueToWrite[3],result[3] )/
template <int dd>

wvoid SETRF MACRO(memorybits rf addr,ap_uint<é> rd, ap_uint<i2> * result , uint32 t rf[par_num] [32]){
#pragma HLS inline

#ifdef parallel_mode

switch (rf addr) {

5 Slave Partition access functions

case 0: Partition dependent part of the register file writeback
for(int i = Oyi<par_num;i++){
#pragma HLS UNROLL
rf[i][zd] = (uint3Z_t)result[0]
1 break;
case _1:
for{int i = O:i<par_num;i++){
#pragma HLS UNROLL
rf[i][zd] = (uint32_t)resulc[l]
} break; D
case _2: ata
for{int i = O;i<par_num;i++){
#pragma HLS UNROLL
rE[il[zd] = (uint3Z_t)resulc[2]
} break;
case _3:
for(int 1 = ;i<par num;i++){ 241
$pragma HLS UNROLL Partition S1
f[i][zd] = (uint3Z_t)resulc[3]
} break; sar
case 4: Pal"tltlon 82
for(int i1 = 0;i<par_num;i++){
$pragma HLS UNROLL .
Tf[i][rd] = (uint32_t)result[4] Partition S
} break: 3
defanlt: 1
preak; Partition S
} 4
#else
rf[0][rd] = (uint32 t)resulc[C0]
#endif
1
#ifdef parallel mode
const int for_delta = (for_end-for init)/par_nugt // / 5 100 Data
const int for_delta by% = for_deltaf<; //25
const ap_int<32>» for_array init[par_num ] = m_start_glress+for_igic+’ *for_delta ,
mem start_adress+for init+! *for delta mem start pdress+for init+2 *for delta ,
mem start_adress+for_init+: *for_del B mem_start_adress} ; —_— Start addresses of the Slave and MasterMemorv
const ap_int<3il> for array parstart[par num ] = { mem start_adress+ for init+0 *for delta , e
mem start adress+ for init+l *for delta , mem start_adress+ for init+Z *for delta , ,Ipal'tltlon 81
mem start_adress+ for_init+: *for delta , mem_start_adress+for_inic+s *for_delta } ;
initial a4 values when entering parallel mode
const ap_int<3Z> for array end[par num ] = { mem start adress+for_end-< *for delta , part|t|0n 82
mem start_adress+for_end-3 *for_delta , mem_start_adress+for_end-2 *for delta ,
mem_start_adress+for_end-!| *for_delta , mem start_adress+ for_end};
a7 values when entering parallel mode iti
static ap_int<Z> mem par [par_num] [for_delca by4][<] [gp Panltlon S 3
{ { 0, Oy 0 T { 56, oy 2y be { o 0, + {
: { S ' ‘}; ‘l ' . }}- [{ U S ) +y . i 9Pal'tltI0nS
{ { O . T i o o be { 0 o 0, +. { -
{ i Je ' b, i = 2y 0 + i it Jr Je 2 T i 178 e
T \j . : -
zelse Pre-loaded matrix variable, same as mem but for partitions.
const ap_int<32> for array_init[par num ] ={mem start_adress}; Last one isn't used, it is generated to prevent error.
#endif

Figure 5.5. SIMD header file of matrix vector multiplication.
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6. EXPERIMENTS AND RESULTS

6.1. Experimental Setup

Experiments are carried out on Zyng-7020-2CLG484-1 FPGA as hardware sim-
ulation. Each test uses less than 32KB of total memory, which fits in the local mem-
ory. C code is compiled with riscv64-unknown-elf-gee 7.2.0 with following options

—mabi = 1lp32 — g0 — O3 — march = rv32im — Wi, — — no — relax — nostart files.

We implemented algorithms of matrix vector multiplication (MVM), matrix ma-
trix multiplication (MMM), sum of absolute distances (SAD), sum of squared distances
(SSD), artificial neural networks (ANN), k-nearest neighbors with selective sort (KNS),
k-nearest neighbors with gsort (KNQ), K-means clustering (KMN) and Discrete Cosine
Transform (DCT). Both massively parallelizable algorithms with large parallel portions
(MVM, SAD, SSD, ANN, DCT) and partially parallelizable algorithms with smaller
parallel portions (KNS, KNQ, KMN) are tested. Both large and small scale applica-
tions only requires user modification on the SIMD loop, rest of the application does

not change. SIMDify focuses on unrolling user picked critical loops in the application.

6.2. Overall Results

We verified the HDL generated by SIMDify against SISD RISC-V ISS Model and
confirmed that their outputs agree. To measure the latency, HLS cosimulation results
are used, which are based on synthesized HDL code. Resource usage and clock speed
values are taken from the synthesis report. Generation time is around 4 min on a

four-core Intel Xeon server.
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6.2.1. Clock Speed

Clock speeds are calculated when the target clock is 15ns, and uncertainty is
%12.5. Three different parameters affect the clock speed: multiplication, cache and
the number of PEs, i.e. n. If an algorithm uses one of multiplication instructions,
MUL block is inserted, and its 11 ns slack causes the bottleneck. However, if it does
not use any multiplication instructions, its period changes depending on the number
of slave PEs, Table 6.1. In the algorithms mentioned above, only SAD does not use
any multiplication instructions. If the unroll factor is one, only the scalar PE with one
partition is used, so extra logic for slave PE routing is removed. Cached clock-speed,
11.827 ns, is faster than the non-cached core, but, it requires three times more clock
cycles to complete. Different master and slave PE architectures might change the clock
speed of the generated processor. However, SIMDify framework itself is independent

from the master and slave PEs.
6.2.2. Latency

Speed-up and latency values for each algorithm are given in Table 6.1. Latency
without SIMD processing is given in terms of the number of clock cycles, and the

latency speedup is calculated as Equation 6.1.

LCLtl L(Itl

Lat - . Latparallel
n Latsemal + n

Speedup = (6.1)

150 iteration MVM, MMM, SAD, SSD, KNS, KNQ, KMN and DCT and 75
iteration ANN algorithms are SIMDified with 5, 15, and 25 unroll factors. "Max” is

Laty,

used to show maximum achievable parallelism where =——22“% term goes to 0. KNS,

KNQ and KMN algorithms have maximum speed-up around 1.5 and MVM, MMM,
SAD, SSD, and DCT algorithms have maximum speed-up between 50 and 100. The
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processor does not lose any clock cycles when going into or exiting the SIMD mode. So,
calculated latency values are in correspondence with the Amdahl’s law [73], Equation
6.2. However, since clock speed is different with and without the slave PEs; it must

also be considered when calculating the true speed-up, which is also given separately

in Table 6.1.

1
Latn = Lat1 — Latpam”el(l — —) (62)
n

Table 6.1. Latency (clock cycles), Clock Speed and Speed-up for unroll factor 5, 15,

25, and maximum achievable parallelism.

Algorithm MVM | MMM | SAD | SSD | ANN | KNS | KNQ | KMN | DCT

Single PE

Latency 6580 | 9134 | 10640 | 8680 | 14051 | 13189 | 9213 | 42084 | 13938
(Cycles)

1 || 1275 | 1275 | 11.92 | 1275 | 12.75 | 12.75 | 12.75 | 12.75 | 12.75
1%3313 5 | 1278 | 12.78 | 12,69 | 12.78 | 12.78 | 12.78 | 12.78 | 12.78 | 12.78
(ns) 15 || 12.78 | 1278 | 12.64 | 12.78 | 12.78 | 12.78 | 12.78 | 12.78 | 12.78
25 | 12.78 | 12.78 | 12.66 | 12.78 | 12.78 | 12.78 | 12.78 | 12.78 | 12.78
5 | 463 | 473 | 475 | 472 | 476 | 1.36 | 1.60 | 1.41 | 4.81
Speedup | 15 || 11.75 | 12.44 | 12.67 | 12.40 | 12.76 | 145 | 1.78 | 1.51 | 9.18
(Cycles) o5 | 16.06 | 1849 | 19.00 | 18.39 | 19.22 | 147 | 1.83 | 1.54 | 202
Max || 50.62 | 68.16 | 76.00 | 66.77 | 79.84 | 1.49 | 1.89 | 1.57 | 101
5 | 462 | 472 | 446 | 471 | 475 | 1.35 | 1.54 | 1.40 | 4.80
Speedup | 15 || 11.72 | 12.41 | 11.95 | 12.37 | 12.73 | 1.44 | 1.60 | 1.50 | 9.16
(Time) o2 11602 | 1847 | 17.80 | 18.34 | 1917 | 146 | 1.72 | 153 | 20.1

Max || 50.50 68 71.56 | 66.58 | 79.38 | 1.49 | 1.78 | 1.56 100
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6.2.3. Area

The resource used for MVM algorithm is given in the Table 6.2. The number of
BRAM required for each algorithm is dependent on the number of instructions in the
algorithm. The number of LUTs and FFs required is roughly similar for each tested
algorithm. The number of DSP blocks required is dependent on the number of mul-
tiplication instructions used in the algorithm. So if all of MUL, MULH, MULHSU,
MULHU instructions are used, the processor will require 12 DSPs per PE. For appli-
cations with no multiplication instructions, such as the SAD algorithm, no DSP blocks
are used. DSP usage improved drastically by application specific block removal men-
tioned in the Scalar PE subsection. With the same technique, BRAM and FF usage
does not change, and LUT usage is improved by ~4%. In all test cases, number of
LUTs was the limiting factor in deciding the maximum number of slave PEs (unroll
factor). Maximum 25-30 PEs can be implemented inside the Zyng-7020-2CLG484-1
FPGA. It can be seen that DSP increase is linear w.r.t unroll factor. For MVM with
unroll factor 25, the application finishes 16.9 times faster by using 8.53 times more

BRAM, 25 times more DSP blocks, 12.09 times more FF, and 13.66 times more LUT.

Table 6.2. Resource usage of Matrix Vector Multiplication for unroll factor 5, 15, 25.

Utilization

1 ) 15 25

Type | Available

BRAM 280 13 46 70 111

DSP 220 3 15 45 1)
FF 106400 | 637 | 1619 | 4787 | 7699
LUT 53200 | 3406 | 9958 | 27649 | 46541

In MVM, MMM, SAD, SSD, DCT and ANN, we showed experimentally that
if the latency is mainly due to partitionable loop, SIMDify can speed-up the design
drastically. However, this isn’t the case with KNS, KNQ and KMN, which can only
be reduced to 60% of single cycle latency due to Amdahl’s law. KNS, KNQ and KMN

all parallelizes their distance calculation portion inside their algorithm. When using
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SIMDify, users must decide if SIMDifing can improve the application, and how much.

It should also be mentioned that Comet [43] also reports around 70 MHz on Artix
7 FPGA and takes around 2 minutes to synthesize. In [43], Rocket Core [71], another
core written in Chisel HDL, has been mentioned to have 76 MHZ on Artix 7 FPGA.
HL5 article does not indicate its FPGA speed, but it has clock frequency between
700 MHz and 2GHz in 32 nm CMOS. Proposed SIMD processor architecture has a
similar clock frequency with aforementioned HLS cores even with 24 slaves, Table 6.1.
The solution proposed in this thesis is scalable, open-source, and does not depend on
non-standard compilers to minimize the user workload. Using SIMDify, hardware-level

parallelization is achieved without the use of additional instructions.
6.3. Algorithms in Detail
6.3.1. MVM

SIMDified part of the matrix vector multiplication algorithm is given in Figure
6.1. 150 x 4 and matriz variable is concatenation of 150 x 3 array that is multiplied
with the 150 x 1 vector common variable and 150 x 1 array which is holding the result.
In this example unroll factor can be dividends of 150 and its latency vs. unroll factor
graph is given in Figure 6.2. Here, 150 x 5 matrix by 150 x 1 vector multiplication
latency is also tested. Tested values are highlighted. Expected lines are calculated
using Equation 6.2 using Lat; = 6580, 7630 and Lat,arque = 6450, 7500 for 150 x 4

and 150 x 5 cases respectively. Resource utilization is given in Figures 6.3 and 6.4.

startPar = 0Oxl;
for (int i = 0; 1 < SIZEX; i ++) {
for (int j = 0; J < SIZEY; J ++) |

A ve a n over result vect

nuit Id1T10 2V E SULt Vecrtor

SIZEY] = matrix[i] [SIZEY] + matrix[i][]j] = vector[j];

matrix([i] [
}
/printl ("result: <d saA\n", 1, matrix|1) [S51l4arY]);

}

startPar = 0x0;

Figure 6.1. SIMDified part of the matrix vector multiplication algorithm
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Figure 6.3. BRAM and DSP utilization of MVM algorithm for different unroll

® 150x4 tested - 150x4 expected + 150x5 tested - 150x5 expected

7630

5580

1420 W 220

77 880 30 430 330

39

560 388 345

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Unroll Factor
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Figure 6.4. FF and LUT utilization of MVM algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.2. MMM

SIMDified part of the matrix matrix multiplication algorithm is given in Figure
6.5. 150 x 7 and matrix variable is concatenation of 150 x 5 matrix that is multiplied
with the 5 x 2 secondmatrixz common variable and 150 x 2 array which is for holding
the result. In this example unroll factor can be dividends of 150 and its latency vs.
unroll factor graph is given in Figure 6.6. Here, 150 x 5 matrix by 5 x 4 multiplication
latency is also tested. Tested values are highlighted. FExpected lines are calculated
using Equation 6.2 using Lat; = 9134, 12902 and Lat,arane = 9000, 12750 for 5 x 2

and 5 x 4 cases respectively. Resource utilization is given in Figures 6.7 and 6.8.

#define SIZEX 150
#define SIZEY &
#define SIZEZ 2
startPar = 0x1;
for (int i = 0; i < SIZEX; i++) { //rouMatrizi
for (int k = 0; k < SIZEZ; k++){
for (int j = 0; j < SIZEY; j++) { //ColumnMatrizl rouMatriz2
/7 Accumulative addition over result wectors
matrix[i] [STZEY+k] = matrix[i] [STZEY+k] + matrix[i][j] * secondmatrix[j] [k];
Tr}

startPar = 0x0;

Figure 6.5. SIMDified part of the matrix matrix multiplication algorithm
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Figure 6.6. Latency vs. unroll factor graph for MMM algorithm
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Figure 6.7. BRAM and DSP utilization of MMM algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.8. FF and LUT utilization of MMM algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.3. SAD

SIMDified part of the sum of absolute distances algorithm is given in Figure 6.9.
In image processing, SAD is used to measure the correlation between two images. It
is calculated by subtracting the main image from the the pattern image and getting
absolute value of the result. 150 x 11 A variable is concatenation of 150 x 5 pixel image
array that is compared with the 150 x 3 pixel pattern array. Result is written to rest

of the A, a 150 x 3 array.

L eIl L

= imége_column_lenght-pattern_column_lenght;

startPar = 1;
for (int 1 = 0; i <row_lenght; i++) |{
for (int j = 0; J <= image_column_lenght - pattern_column_lenght; j++) {
for (int k = 0; k<pattern_column_lenght; kt++) {
A[i] [J+result_overhead] += abs(A[i][k] - A[i][k+]Jj+pattern_coclumn_lenght]);

}
}
)

startPar = 0;

Figure 6.9. SIMDified part of sum of absolute distances algorithm
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In this example unroll factor can be dividends of 150 and its latency vs. unroll
factor graph is given in Figure 6.10. Here, 150 x 6 image 150 x 3 pattern latency is also
tested. Tested values are highlighted. Expected lines are calculated using Equation
6.2 using Lat; = 10640, 12752 and Latparaue = 10500, 12600 for 150 x 5 and 150 x 6

cases respectively. Resource utilization is given in Figures 6.11 and 6.12.

® 150x5 tested = 150x5 expected » 150x6 tested - 150x6 expected

15000
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10000
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Figure 6.10. Latency vs. unroll factor graph for SAD algorithm
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Figure 6.11. BRAM and DSP utilization of SAD algorithm for different unroll

factors. All results are taken from Vivado HLS tool. Note that SAD algorithm does

not use any multiplication instructions, So DSP utilization is 0%.
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Figure 6.12. FF and LUT utilization of SAD algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.4. SSD

SIMDified part of the sum of squared distances algorithm is given in Figure 6.13.
In image processing, SSD is used to measure the correlation between two images. It
is calculated by subtracting the main image from the the pattern image and squaring
the result. 150 x 11 A variable is concatenation of 150 x 5 pixel image array that is

compared with the 150 x 3 pixel pattern array. Result is written to rest of the A, a
150 x 3 array.

startPar = 1;
for (int i = 0; 1 <row_lenght; i++) {
for (int j = 0; j <= image_column_lenght - pattern_column_lenght; j++) {
for (int k = 0; k<pattern_column_lenght; k++) {
temp = A[i][k] - A[i] [k+j+pattern_column_lenght];
A[i] [j+result_overhead] += temp * temp;

}
}

startPar = 0;

Figure 6.13. SIMDified part of the sum of squared distances algorithm
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In this example unroll factor can be dividends of 150 and its latency vs. unroll
factor graph is given in Figure 6.14. Here, 150 x 6 image 150 x 3 pattern latency is also
tested. Tested values are highlighted. Expected lines are calculated using Equation 6.2
using Lat; = 8680, 11086 and Lat,araie = 8550, 10950 for 150 x 5 and 150 x 6 cases

respectively. Resource utilization is given in Figures 6.15 and 6.16.

@ 150x5 tested - 150x5 expected + 150x6 tested - 150x6 expected
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Figure 6.14. Latency vs. unroll factor graph for SSD algorithm
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Figure 6.15. BRAM and DSP utilization of SSD algorithm for different unroll factors.
All results are taken from Vivado HLS tool.
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Figure 6.16. FF and LUT utilization of SSD algorithm for different unroll factors. All
results are taken from Vivado HLS tool. Note that n=30 LUT result requires more

than 100% utilization.

6.3.5. ANN

SIMDified part of the artificial neural networks algorithm is given in Figure 6.17.
Dataset used is the banknote authentication dataset taken from UCI Machine Learning
Repository [74]. Neural network consists of 4 input neurons, 1 hidden layer with 2
neurons and 2 output neurons. 75 X 8 input variable is concatenation of 75 x 4 input
layer, 75 x 2 hidden layer and, 75 x 2 output layer. weights common variable is 16
length array and contains 4 x 2 = 8 weight and 2 bias values for the first hidden layer
and 2 x 2 = 4 weight and 2 bias values for the output layer.

Genann_activation function is the activation function. In this example Rectified
Linear Unit (ReLU) function is used. Each row of the input variable corresponds to
different input set and result can be observed in output neuron. In this example unroll
factor can be dividends of 75 and its latency vs. unroll factor graph is given in Figure

6.18.



gdefine INFUT SIEZE 75

const int input_neuron_size = 4;
const int hidden_layer size = 1;
const int hidden neuron_size = 2;
const int ouwtput_neuron_size = 2Z;

fS+ Total number of weights, and size of weights buffer. =/
const int ann_total_weights = total_weights_g;
void genann_run {wolatile int +inputs) |
int const «w = welghts;
volatile int «o = inputs + input_neuron_size;
volatile int «#i inputs;
int h, Jj, K;
F# Figure input layer =/
for (j = 0; 1 < hidden_neuron_size; ++73) |
int sum = *wW++ = —1;
Sum = sum =« 2563
for (k = 0; k < input_neuron_size; ++k} |
sum += #wW++ = 1[k];

!

«g++ = genann_activationi sum) ;
}
i += input_neurcon_size;
S Figure hidden layers, 1f any. 7

for (h = 1; h < hidden_laver size; ++h) {

for (j = 0; 7 < hidden_neuron_size; ++3)1 |
int sum = *w++ + -1;:
sum = sum * 2583
for (k = 0; k < hidden_neuron_size; ++k) |

sum += =w++ « 1[k];

}

=0++ = genann_activation({ =um);
!
i += hidden_neuron_size;
}
d# Figure output layer. «/
for (j = 0; 1 < output_neuron_size; ++73) |
int sum = #*wW++ = -1;
sum = sum * 25&;
for (k = 0; k < hidden_ neuron_=size; ++k} |
sum += #w++ = 1[k];
!
«0++ = genann_activation( sum);
}
raturn ;

startPar = 0xl;
for (imt j = 0; § < INPUT_SIEE; j++) |
genann_run {input []1);
b

startPar = 0x0;

Figure 6.17. SIMDified part of the artificial neural networks algorithm
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In 6.18, 4 input neurons, 2 hidden layer with 2 neurons and 2 output neurons is
also tested. Tested values are highlighted. Expected lines are calculated using Equation

6.2 using Lat, = 14051, 20670 and Latparaner = 13875, 20475 for 4—2—2 and 4—2—-2-2

cases respectively. Resource utilization is given in Figures 6.19 and 6.20.

e 4-2-2 tested = 4-2-2 expected + 4-2-2-2 tested - 4-2-2-2 expected

25000
20670
20000
o
9 15000
[&]
=
o
=
2 10000
Q
(1]
-
5000
1560 1014
‘I"I'ﬂ:li-——-___?_ﬂb
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Figure 6.18. Latency vs. unroll factor graph for ANN algorithm
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Figure 6.19. BRAM and DSP utilization of ANN algorithm for different unroll
factors. All results are taken from Vivado HLS tool.
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Figure 6.20. FF and LUT utilization of ANN algorithm for different unroll factors.

All results are taken from Vivado HLS tool.

6.3.6. KNS

SIMDified part of the k-nearest neighbors with selective sort algorithm is given

in Figure 6.21. KNN algorithm classifies a new case using the feature difference with

available cases. 150 x 6 arr variable is concatenation of 150 x 1 feature difference vector,

150 x 4 feature matrix, and 150 x 1 class vector. New case p is classified by checking

the feature difference of all available cases (arr). In this example unroll factor can be

dividends of 150 and its latency vs. unroll factor graph is given in Figure 6.22.

woid selectionscrt (Point+ arr, int size, int amount) {

for (int i = 0; 1 < amount; i++){
int min = i;
for (int j = i; j <= size-1; j++){

if (arr[j].distance < arr[min].distance) {
min = j;
}
}

Point temp = arr[i] ;

arr[i] = arr[min] ;
arr[min] = temp;
}
}
const int n = 150; // Number of data points
startPar = 0Oxl;
for (int i = 0; 1 < n; i++){
arr[i] .distance = (arr[i] .x p.x) + f{arr[i].x p.x)+(arr[i] .z p.z) + larr[i].z pP-z)
f(arr[i).k - p.k) » (arr[i].k - p.k} + (arr[i].y - p.y) * {arr[il.y - p.y);
}
startPar = 0x0;

selectionsort (arr, n,k);

Figure 6.21. SIMDified part of the k-nearest neighbors with selective sort algorithm
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Figure 6.22. Latency vs. unroll factor graph for KNS algorithm

In 6.22, 150 x 5 feature matrix is also tested. Tested values are highlighted. Ex-
pected lines are calculated using Equation 6.2 using Lat; = 13189, 14253 and Latparairer
= 4350, 5400 for 150 x 4 and 150 x 5 cases respectively. Resource utilization is given
in Figures 6.23 and 6.24.

= BRAM (Total 280) = DSP (Total 220)

150

Figure 6.23. BRAM and DSP utilization of KNS algorithm for different unroll
factors. All results are taken from Vivado HLS tool.
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Figure 6.24. FF and LUT utilization of KNS algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.7. KNQ

SIMDified part of the k-nearest neighbors with gsort algorithm is given in Figure
6.25. Both KNS and KNQ SIMDifies the only distance calculation (SSD part). Only
difference between KNS and KNQ is, KNQ uses the C library function gsort to sort
a calculated array. 150 x 6 arr variable is concatenation of 150 x 1 distance vector,
150 x 4 feature matrix, and 150 x 1 classification vector. New case p is classified by
checking the distance of all available cases (arr). In this example unroll factor can be

dividends of 150 and its latency vs. unroll factor graph is given in Figure 6.26.

int comparison(const wvoid+ a, const wvoid+ b){

const Point+ pl = a;
const Point+ p2 = b;
return (pl->distance pZ-=distance);
1
censt int n = 150; // Number of data points
startPar = 0xl;
for (int i = 0; 1 < n; i++4){
arr[i] .distance = (arr[i].x p.x) + (arr[i].x p.x)+tlarr[i].z p.z) + (arr[i].z p.z)
Flarr[i] .k p.k) » (arr[i].k p.k) + (arr[i].y D.y) * (arr[i].y p.Y)
}

startPar = 0x0;
’/ Sort the Points by distance from p

gsort (arr, n, sizeof (Point), &Lcomparison);

Figure 6.25. SIMDified part of the k-nearest neighbors with gsort algorithm
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Figure 6.26. Latency vs. unroll factor graph for KNQ algorithm

In 6.26, 150 x 5 feature matrix is also tested. Tested values are highlighted. Ex-
pected lines are calculated using Equation 6.2 using Lat; = 9213, 10641 and Latparairer
= 4350, 5400 for 150 x 4 and 150 x 5 cases respectively. Resource utilization is given
in Figures 6.27 and 6.28.
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Figure 6.27. BRAM and DSP utilization of KNQ algorithm for different unroll

factors. All results are taken from Vivado HLS tool.
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Figure 6.28. FF and LUT utilization of KNQ algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.8. KMN

In K-Means, 150 item array with 4 features is assigned to 2 clusters. This as-
signment is done base on their distances. Full code is omitted since it was too long,
only SIMDified part ,distance calculation (SSD part) is shown. arr is 150 x 6 length,
consists of 150 x 4 features and 150 x 1 cluster number and 150 x 1 distance. In this
example unroll factor can be dividends of 150 and its latency vs. unroll factor graph

is given in Figure 6.30.

In 6.30, 150 item array with 5 features and 2 clusters is also tested. Tested values
are highlighted. Expected lines are calculated using Equation 6.2 using Lat; = 42084,
51323 and Lat,araner = 15300, 15600 for 150 x 4 and 150 x 5 cases respectively. Resource

utilization is given in Figures 6.31 and 6.32.
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Figure 6.29. SIMDified part of the k-means clustering algorithm
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pick_k_points_as_initial_centroids ();
while (error < old_error && error > tolerance){
startPar = 0x1;
for (int h = 0; h < num_points; h++) {
for (int i = 0; i < number_of_clusters; i++) {

for (int j = 0; j < feature_number; j++){

arr[h] [distance_offset+i] = arr[h] [distance_offset+i]

+ (arr[h] [j] - cl[il[j1)*(arr[h] [j] - c[il[j1);
111
startPar = 0x0;
update_all_centroids_based_on_distances() ;

}

® 150x4 tested - 150x4 tested + 150x5 tested - 150x5 expected
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Figure 6.30. Latency vs. unroll factor graph for KMN algorithm
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Figure 6.31. BRAM and DSP utilization of KMN algorithm for different unroll
factors. All results are taken from Vivado HLS tool.
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Figure 6.32. FF and LUT utilization of KMN algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.
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6.3.9. DCT

In DCT, 8 point one dimensional fixed point DCT algorithm is applied to 150

item array with 8 values.

atartPar = Oxl;
for (int ctr = 0 ; ctr < SIZEX; ctr++) {
tmp0 = datalctr] [0] + datalctr] [7];
tmp7 = datalctr] [0] - datalctr][7];
tmpl = dataletr] [1] + datalctr] [6];
tmpf = datalctr] [1] - datalctr] [6];
tmp2 = datalctr] [2] + datalctr] [5];
tmps = datalctr] [2] - datalctr] [5];
tmp3 = datalctr] [3] + datalctr] [4];
tmp4 = datalctr] [3] - datalctr][4];
/* Even part #/
tmpl0 = tmp0 + tmp3; tmpll = tmpl + tmp2;/* phase 2 #/
tmpl3 = tmp0 - tmp3; tmpl2 = tmpl - tmp2;

data[ctr][0] = tmpl0 + tmpll; /* phase 3 */
dataletr] [4] = tmpl0 - tmpli;

zl = MULTIPLY (tmpl2 + tmpl3, FIX_0_TO7106781); /* cf #/
datalctr] [2] = tmpl3 + z1; /* phase 5 +/
datalctr] [E] = tmpl3 - =z1;

/* 0dd part */

tmpl0 = tmpd + tmp5; /#* phase 2 */

tmpll = tmpb + tmpd; tmpl2 = tmp6 + tmp7;

/* The rotator is modified from fig 4-8 to aveid eztra negations. #/

zb = MULTIPLY(tmpl0 - tmpl2, FIX_0_382683433); /* c6 */
22 = MULTIPLY (tmpl0, FIX_0_541196100) + z5; /# c2-c6 #/
z4 = MULTIPLY (tmpl2, FIX_1_306562965) + z5; /¥ c2+c6 +/
23 = MULTIPLY(tmpll, FIX_O_TOTL06781); /#* c4 +/

zl1 = tmp7 + 23; =13 = tmp7 - =3;/#* phase & */
datalctr] [5] = 213 + 22; datalctr][3] = 213 - 22; /% phase 6 =/

datalctr][1] = z11 + z4; datalctr][7] = =11 - =z4;

}

startPar = 0x0;

Figure 6.33. 1-dimensional 8 element Discrete Cosine Transform algorithm
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We didn’t compile generalized DCT algorithm since the generated SIMD proces-
sor does not use DIV instruction. data is 150 x 8 length, consists of 150 x 8 data. In this
example unroll factor can be dividends of 150 and its latency vs. unroll factor graph
is given in Figure 6.34. Tested values are highlighted. Expected lines are calculated
using Equation 6.2 using Lat; = 13938 and Lat,graie = 13800. Resource utilization is
given in Figures 6.35 and 6.36.
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Figure 6.34. Latency vs. unroll factor graph for DCT algorithm
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Figure 6.35. BRAM and DSP utilization of DCT algorithm for different unroll
factors. All results are taken from Vivado HLS tool.
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Figure 6.36. FF and LUT utilization of DCT algorithm for different unroll factors.
All results are taken from Vivado HLS tool. Note that n=30 LUT result requires

more than 100% utilization.

6.3.10. Multiple Parallel Loops

With SIMDitfy, it is possible to parallelize multiple loops. Clock period of multiple
loops is 12.84 ns, which is slightly larger than the single loop period. SIMDified loops
cannot be nested, data in the loops cannot be dependent, and if the same data is
SIMDified they must have same unroll factor. As a proof of concept multiple parallel
loops is tested with artificial neural networks algorithm. ANN consists of an input
layer with 4 neurons, 2 hidden layers with 3 neurons each and an output layer with 3
neurons, Figure 6.37. Each layer will be parallelized in itself. So there will be three

loops with factor 3 each, Figure 6.38.

Input Layer 1st Hidden Layer 2dHidden Layer Output Layer

Figure 6.37. Diagram of the Neural Network. Drawn using free tool [2].
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Input Layer tstHidden Layer 2nd Hiddlen Layer Output Layer

LOOP1 LOOP2 LOOP3

Figure 6.38. Parsed diagram of the Neural Network. All three loops and all 9 PEs

viewpoint is shown.

In this example unroll factor can be dividends of 3 and its latency vs. unroll factor
graph is given in Figure 6.39. Note that, in Chapter 6.3.5, 75 inputs are parallelized
and each PE was executing the same ANN for different input sets. In this Chapter,
ANN itself is parallelized and there is only single input set and three partitioned loops
with separate Startpar’s, Figure 6.40. In code we used pragma ”#GCC unroll 0”7 to
stop compiler from unrolling SIMDified loops. In the third loop, nop operation inserted
since there was no suitable Init_simd_offset PC value for switching to SIMD processing

mode. So processor overrides the "nop” operation instead. Resource utilization is given

in Figures 6.41 and 6.42.
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Figure 6.39. Latency vs. unroll factor graph for multiloop ANN algorithm



void genann_run(volatile int *inputs) {
volatile int *i = inputs;

if (lann hidden layers) {//Input layer if no hidden layers

for (int j = 0; j < ann outputs;

output_weights_arr[j]1[1] = output_weights_arr[j][0]
output_weights _arr[j]l[1] = output_weights arr[j][1] * 25&;

++3) {
*

~r

for (int k = 0; k < ann_inputs; ++k) {

output_weights_arr[jI[1]
}

output_weights_arr[jl[1]= genann_activation( output_weights_arr[jI1[11);

}

return ;

arr_str = &input_weights_arr([0] ;

arr_end = &input weights arr[hidden g-1] + (&input weights arr[hidden g-1] - \\

&input _weights arr[hidden g-21);
startPar = (=l ;
/* Input layer */
#pragma GCC unroll O
for (int j = 0; j < ann_hidden; ++3j)

input_weights_arr[jl[1] = input_weights_arr[j]1[0] * -1;
[11 *

+= output weights_arr([j] [k+1] * i[k];

{

input_weights_arr[j]1[1] = input_weights_arr[j][’ 256;
for (int k = 0; k < ann_inputs; ++k) {
input_weights_arr[j]1[1] += input_weights_arr[j][k+1] * i[k]:;

}

input_weights_arr[j]l[.] = genann activation( input_weights_arr[j]1[11);
}
startPar = (=0}
for (int j = 0; j < ann hidden; ++3j) {

hidden weights_arr[0U][Jj]1[1] = input_weights_arr[jl1[.1;

}

/* Hidden layers, if any. */
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for (int h = 0; h < ann_hidden layers-1; ++h) {
arr_str = &hidden weights_arr[h][0] ;
arr_end = &hidden weights_arr[h] [hidden g-1] + (&hidden weights_arr[h] [hidden g-1] - \\
&hidden weights_arr[h] [hidden g-21);
startPar = 0Oxl;
#pragma GCC unroll 0
for (int j = 0; j < ann_hidden; ++3j) {

hidden weights arr[h][Jj]1[2] = hidden weights arr[h][j][0] *
hidden weights_arr[h] [j]1[2] = hidden weights arr[h] [j]1[2] *

for (int k = 0; k < ann _hidden;

hidden weights_arr[h] [j]1[2] += hidden weights_arr[h] [J][k+1] * \\

hidden weights_arr[h] [k][1]
}

hidden weights_arr[h] [J]1[Z2] = genann_activation({ hidden weights_arr[h]l[j1[Z21);

}
startPar = 0=0;

}

/* output layer. */
arr str = &output weights arr[0] ;

arr_end = &output weights_ arr[outputs g-1] + (&output weights arr[outputs g-1]1 -\\

&output_weights arr[outputs_g-21) ;
startPar = U= ;
asm volatile ("n

o)

++k) {

r

#pragma GCC unroll 0
for (int j = 0; j < ann_outputs; ++j) {
output_weights_arr[j]l[1] = output_weights_arr[j]1[0] * -1;
output_weights_arr[j][1] = output_weights_arr[jI1[1] * 256;
for (int k = 0; k < ann_hidden; ++k) {

output_weights_arr[j]1[1] += output_weights arr[j] [k+2] * \\
hidden weights_arr[hidden layers g-21[kI[11;

}

output_weights_arr[j]1[1] = genann_activation( output_weights arr[j]1[1]);
}
startPar = Ux=0;
return ;

Figure 6.40. 1-dimensional 8 element Discrete Cosine Transform algorithm
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= BRAM (Total 280) = DSP (Total 220)
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No loop unroll 1 loop unroll 2 loop unroll 3 loop unroll

Figure 6.41. BRAM and DSP utilization of multiloop ANN algorithm for different

unroll factors. All results are taken from Vivado HLS

= FF (Total 106400) = LUT (Total 53200)
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Figure 6.42. FF and LUT utilization of multiloop ANN algorithm for different unroll
factors. Note that all results are taken from Vivado HLS tool, and n=30 LUT result

requires more than 100% utilization.
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7. CONCLUSION AND THE FUTURE WORK

In this thesis, SIMDify, hardware-software parallelization framework for gener-
ating SIMD capable application-specific RISC-V instruction set processors, and the
generated application specific SIMD processor structure are presented. SIMDify com-
bines HLS with standard RISC-V compiler to generate a five-stage pipelined SIMD
processor written in C++. SIMD processor consists of master and slave PEs. Using
HLS, SIMDify combines and connects these PEs to generate different SIMD processors
for each application. SIMD processor architecture is the first HLS designed RISC-V
processor with SIMD support. System runs on Zyng-7020-2CLG484-1 FPGA and it

operates in approximately 78 MHz.

Applicability of the SIMDify is tested on selected algorithms. System runs on
Zynqg-7020-2CLG484-1 FPGA and it operates at approximately 78 MHz. Processor
is designed for an FPGA as the target hardware, so it can be combined with other
applications as an accelerator. Since it’s designed in HLS, it can be easily modified

and improved by many users.

In terms of scalar PE, cache implementation can be improved. Also, forwarding
structure can be implemented to reduce the number of stalls, and multi-cycle instruc-
tions such as DIV and REM can be implemented for full riscv32im support. The main
bottleneck of the core is 11 ns single cycle 32x32 multiplication instruction, which can
be improved by using a custom multiplication block or supporting multi-cycle multi-

plication operation.

Existing external memory and cache structure can be used to increase the total
data memory size. However, data in the external memory cannot be used in SIMD
processing. So, to increase the size of the SIMD processed memory, tag field size must
also increase. Since, SIMDification block generates constant memory tags for every

word in the local data memory, generated tag field size increases proportionally with
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the local data field size. This problem can be solved by decreasing tag field size per
word or by changing the memory structure to extend local memory without increasing

the tag size.

Designed ASIP and SIMDify framework can be applied to any iterative loop
if the loop does not include any conditional branching and if the loop satisfies the
memory constraints. We believe SIMDify solution is better and more comprehensive
than the alternative: modifying an each application to make it compatible with each
custom instruction. SIMDify automates processor generation and creates open source
framework that can easily be used by anyone to achieve SIMD computation. Even
though there are some limitations in current HLS tools, the time to design the custom

SIMD processor has significantly decreased compared to traditional RTL flow.
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institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work.

When preparing your paper for submission using the ACM TeX templates, the rights
and permissions information and the bibliographic strip must appear on the lower left
hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates
and positions these text blocks for you based on the code snippet which is

system-generated based on your rights management choice and this particular
conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
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statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

Please put the following LaTeX commands in the preamble of your document -
i.e., before \begin{document}:

\copyrightyear{ 2021}

\acmY ear{ 2021}

\setcopyright{ acmlicensed}\acmConference[ ACSW '21]{ Australasian Computer
Science Week Multiconference}{February 1--5, 2021} { Dunedin, New Zealand}
\acmBooktitle{ Australasian Computer Science Week Multiconference (ACSW
'21), February 1--5, 2021, Dunedin, New Zealand}

\acmPrice{ 15.00}

\acmDOI{10.1145/3437378.3444364}
\acmISBN{978-1-4503-8956-3/21/02}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or
older versions of the ACM SIGCHI template, you must copy and paste the
following text block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

ACSW '21, February 1-5, 2021, Dunedin, New Zealand

© 2021 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 978-1-4503-8956-3/21/02...$15.00
https://doi.org/10.1145/3437378.3444364

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library.
Once you have your camera ready copy ready, please send your source files and PDF
to your event contact for processing.




4. ACM Citation and Digital Object Identifier.

(a) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).

(b) In connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following:

"© [Owner] [Year]. Thisis the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in { Source Publication}, https://doi.org/10.1145/{ number}."

5. Audio/Video Recording

| hereby grant permission for ACM to include my name, likeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

| further grant permission for ACM to record and/or transcribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DV D, webcast, USB
device, streaming video or any other media format now or hereafter known.

I understand that my presentation will not be sold separately as a stand-alone
product without my direct consent. Accordingly, | give ACM the right to use my
image, voice, pronouncements, likeness, and my name, and any biographical material
submitted by me, in connection with the Conference and/or Publication, whether
used in excerpts or in full, for distribution described above and for any associated

advertising or exhibition.

Do you agree to the above Audio/Video Release? ! Yes'® No

6. Auxiliary Material
Do you have any Auxiliary Materials? ! Yes® No

7. Third Party Materials

In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me), | understand that it is my
responsibility to secure any necessary permissions and/or licenses for print and/or
digital publication, and cite or attach them below.

11‘ We/l have not used third-party material.
! Well have used third-party materials and have necessary permissions.

8. Artistic Images
If your paper includes images that were created for any purpose other than this paper

and to which you or your employer claim copyright, you must complete Part 1V and be
sure to include a notice of copyright with each such image in the paper.

® We/l do not have any artistic images.

-» We/l have any artistic images.
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9. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials consistent in scope and duration with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other software routines or hardware components designed to permit unauthorized
access or to disable, erase or otherwise harm any computer systems or software;
and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

| agree to the Representations, Warranties and Covenants.

10. Enforcement.

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
in its defense or enforcement.

11. Governing Law

This Agreement shall be governed by, and construed in accordance with, the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.

Funding Agents
1. TUBITAK award number(s):58135

DATE:12/18/2020 sent to alp.sarkisla@boun.edu.tr at 14:12:41



