
DEPTH-BASED SCENE MAPPING THROUGH SPATIO-TEMPORAL

KNOWLEDGE INTEGRATION

by

Meriç Durukan

B.S., Mechatronics Engineering, Marmara University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Systems and Control Engineering

Boğaziçi University

2021

ii

DEPTH-BASED SCENE MAPPING THROUGH SPATIO-TEMPORAL

KNOWLEDGE INTEGRATION

DATE OF APPROVAL: 22.02.2021

iii

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my supervisor, Prof. H.Işıl Bozma

for all of her support, assistance, and encouragement during the thesis.

I would like to thank Prof. Yağmur Denizhan and Prof. Hakan Temeltaş for being

a member of my thesis committee. Moreover, I would like to thank Prof. Ferit Öztürk

for his contributions on the temporal knowledge accumulation part of my thesis.

This study has been supported in part by TUBITAK EEEAG-118E857.

I would like to express my thanks to Kemal Bektaş, Serhat İşcan, and Doğan

Patar for their valuable support and assistance. I also would like to thank all previous

members of ISL that I worked with before.

I also want to express my special thanks to Mehmet Salih Sakoğlu and Emre Hoş

for their friendship and support.

Finally, I would like to thank my parents Hikmet Durukan and Ahmet Durukan,

my brother Bekir Mert Durukan for their endless patience and support.

iv

ABSTRACT

DEPTH-BASED SCENE MAPPING THROUGH

SPATIO-TEMPORAL KNOWLEDGE INTEGRATION

This thesis is concerned with scene mapping by a mobile robot using point

cloud data. It is a complex process that requires the robot to segment the incoming

data, represent it compactly and efficiently, and then use the resulting knowledge in its

learning and decision-making. Segmentation enables the robot to determine the point

cloud object candidates. The robot bases its learning and reasoning on the detected

segments. Range sensors, such as LIDAR, are essential for a robot to extract envi-

ronmental information. However, they generally create sparse data. For this reason,

the sparse data should be considered specially. A novel approach to segmentation is

proposed based on an extension of density-based clustering in the spherical coordinate

system. We present the deformable sphere approximation (DSA) descriptor as a novel

3D descriptor that encodes point cloud objects. Experimental results show that our

representation method is capable of classifying the objects. Finally, we consider how

the robot can use all knowledge available to it. We propose an approach in which the

robot also considers the knowledge accumulated through tracking the objects’ temporal

continuity. For this, we propose the temporal deformable sphere approximation (T-

DSA) descriptor. Its construction requires the robot to track object candidates. For

this, we propose a novel multi-tracking approach based on combining Kalman Filtering

and multi-object matching considering position and shape similarity. We then com-

pare the various schemes the robot can use in order to utilize the resulting knowledge.

Our experimental results show that the T-DSA descriptor improves the classification

performance compared to only the instantaneous DSA descriptors. As such, the robot

is able to build and evolve a scene map as it is navigating in it.

v

ÖZET

UZAMSAL-ZAMANSAL BİLGİ YARDIMIYLA DERINLİK

TEMELLİ SAHNE HARİTALANDIRILMASI

Bu tezde, robotların nokta bulutu verilerini kullanarak haritalandırma yapması

amaçlanmıştır. Bu zorlu işlem için gelen verilerin bölütlenmesi, kapsayıcı şekilde

tanımlanması ve üretilen bilginin öğrenmede ve karar vermede kullanılması gerek-

mektedir. Bölütleme robota aday nesnelerin tanımlanmasını sağlar. Robot bu bil-

gileri öğrenme ve karar verme aşamalarında kullanır. LİDAR gibi derinlik algılayıcı

sensörler robotların çevresel bilgi edinmeleri için önemlidir. Fakat, genellikle ayrık

verili ortam taramaları üretirler. Bu yüzden, bu sensörlerin verilerinin işlenmesi özel

olarak ele alınmalıdır. Bu çalışmada bölütleme işlemi için küresel koordinat düzleminde

çalışacak yoğunluk esaslı bir yöntem önerilmiştir. Devamında, oluşan bölütleri betim-

leme amaçlı yamulmuş küre yaklaşıklık betimleyicisi önerilmiştir. Elde edilen deneysel

sonuçlar tanımlayıcının nesneleri kategorilere ayırmada başarılı çalıştığı görülmüştür.

Robot hareket ederken oluşan veri akışının anlık olarak değerlendirilmesi sahne an-

lamlandırmada çok önemli olsa da genellikle bu veriler üzerinden zamansal muhakeme

yapılmaz. Fakat, robot hareketiyle oluşan bilgi akışında nesneler üzerinden bir de-

vamlı olarak bir bilgi akışı gerçekleşmektedir. Bu bilgi akışını kullanmak adına za-

mansal yamulmuş küre yaklaşıklık betimleyicisi önerilmektedir. Nesnelerin takibi için

Kalman filtreleme ve konum ve şekil benzerliğinin aynı anda kullanıldığı çoklu nesne

eşleştirme yöntemi önerilmiştir. Böylece, robot hem anlık, hem de zamansal veri-

leri kullanarak etrafındaki nesneleri tanıyabilmekte ve ortama ait anlambilimsel harita

oluşturabilmektedir. Nesne sınıflandırmasına yönelik deneylerde, robotlarda zamansal

yamulmuş küre yaklaşıklık betimleyicisinin anlık oluşturulmuş betimleyicilere göre per-

formans artışı sağladığı gözlemlenmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Problem Statement . 2

1.2. Contribution . 3

1.3. Organization of Thesis . 3

2. SEGMENTATION FOR SPARSELY SCANNED 3D SCENES 5

2.1. Related Literature . 5

2.2. Density Based Spherical Segmentation 7

2.3. Experimental Results . 11

2.3.1. ISL scenes . 11

2.3.2. Velodyne Simulator . 13

2.3.3. KITTI tracking dataset . 16

3. REPRESENTATION OF POINT CLOUD OBJECTS 20

3.1. Related Literature . 20

3.2. Deformable Sphere Approximation Descriptor 22

3.2.1. Deformed Sphere Mapping . 23

3.2.2. Deformed Sphere Approximation 24

vii

3.3. Experimental Results . 28

3.3.1. Approximated Spheres by DSA 28

3.3.2. Classification Performance Across Data Types 31

3.3.3. Comparative Classification Performance 32

3.3.4. Transfer Learning Across Data Types 33

4. OBJECT LEARNING FOR SCENE MAPPING 37

4.1. Related Literature . 37

4.2. Object Learning For Scene Mapping: General Approach 38

4.3. Multi Object Tracking . 39

4.3.1. Model States and State Prediction 40

4.3.2. Segment Matching . 41

4.3.3. State Updates . 42

4.4. Temporal DSA . 44

4.5. Classification Decisions . 46

4.6. Scene Mapping . 47

4.7. Experimental Results . 48

4.7.1. Simulation Results . 48

4.7.2. Real Life Results . 56

5. CONCLUSION AND FUTURE WORK . 58

REFERENCES . 60

APPENDIX A: GROUND SEGMENTATION 71

APPENDIX B: USER GUIDE . 73

B.1. Hardware . 73

B.2. Software . 73

B.2.1. Software Requirements . 73

B.2.2. Running software on the robot 74

viii

LIST OF FIGURES

Figure 2.1. Pseudo-code for Density Based Spherical Segmentation 10

Figure 2.2. The segmentation of simple ISL scene 12

Figure 2.3. The segmentation of hard ISL scene 12

Figure 2.4. Post office scenario to test proposed approach 14

Figure 2.5. Street scenario to test proposed approach 15

Figure 2.6. Two examples of segmentation results for KITTI tracking 19

Figure 3.1. Deformed spheres for a chair object with various sensor types . 24

Figure 3.2. Deformed spheres of objects and their approximations. 30

Figure 3.3. Sample Kinect and LIDAR objects data from ModelNet10. . . . 34

Figure 4.1. Greedy algorithm for multi object matching 43

Figure 4.2. T-DSA is incrementally formed as a track evolves 44

Figure 4.3. Learning objects from Gazebo 48

Figure 4.4. Both instantaneous and accumulated decisions agree. 50

Figure 4.5. Accumulated knowledge corrects instantaneous decisions. 51

Figure 4.6. Accumulated knowledge improves instantaneous decisions. . . . 52

Figure 4.7. Both decisions are false throughout the track. 53

ix

Figure 4.8. Two examples from simulation scenes 55

Figure 4.9. Two examples from Gazebo scenes 57

Figure A.1. Ground segmentation examples 72

Figure B.1. Kobuki Turtlebot . 73

x

LIST OF TABLES

Table 2.1. The parameters for the segmentation of ISL scenes 12

Table 2.2. The parameters for the segmentation of Velodyne Simulator scenes 16

Table 2.3. KITTI tracking results . 18

Table 3.1. The literature search for 3D descriptors and classification methods 23

Table 3.2. DSA performance across data types with different harmonics. . . 31

Table 3.3. Comparative classification performance. 33

Table 3.4. Classification performance with learning transfer across data types. 36

Table 4.1. Parameters for learning and experiments 49

Table 4.2. Precision Recall F-1 scores for different decision models 54

Table 4.3. Simulation mapping results . 56

Table 4.4. Real life mapping results . 56

xi

LIST OF SYMBOLS

Ax State transition matrix for Kalman filter

Ay Observation transition matrix for Kalman filter

D Point cloud set for segments

D′o Centered point cloud

Do Point cloud for an object

E Total error for segmentation

eh1h2(f) The vector of an orthonormal set of trigonometric functions

Fk Kalman gain matrix

G Similarity matrix

H1 The number of first order harmonics

H2 The number of second order harmonics

Ico DSA descriptor of object o at position c

IAco T-DSA descriptor of object o

k Discrete time index

k1 First discrete time index of set Ko
kN Last discrete time index of set Ko
K Set of discrete time indexes

Ko Index sequence of object o

l Index for a segment

L Index set of labels

M1 Minimum neighbors for dense points

M2 The number of the closest set for DSA computation resolution

N () Neighboring points

O Set of object candidates

O Oversegmentation error

o An object candidate

P Non ground point cloud data

p A point in non ground point cloud data

xii

Qp Maximum connectivity set

Q Non-ground point cloud in spherical coordinates

Qo Point cloud of object o spherical coordinates

R The set of real numbers

rok Planar distance of robot to object o at time k

S1 [0, 2π]

S2 Two-dimensional spherical coordinate system

To Track of object o

U Undersegmentation error

U Classification model for DSA descriptor

UA Classification model for T-DSA descriptor

womh1h2 mh1h2 th temporal vector of object o

xok Kalman state of object o at discrete time k

x̂ok Estimated Kalman state of object o at discrete time k

ŷok Observation of object o at discrete time k

zh1h2 h1, h2 th coefficient of DSA descriptor

αk Heading at discrete time k

β1 Position similarity measure

β2 Shape similarity measure

∆µok Mean change of object o at discrete time k

γ1 Coefficient for pan angle threshold

γ2 Coefficient for tilt angle threshold

δψ Tilt scan resolution

δφ Pan scan resolution

µo the mean points of a point cloud

ν1 Weight of position similarity

ν2 Weight of shape similarity

ψ Tilt angle

φ Pan angle

ρ Depth value

ρco Deformed sphere map

xiii

Σo Covariance matrix of Qo

τu Threshold for undersegmentation error

τo Threshold for oversegmentation error

τρ Threshold for depth value

τψ Threshold for tilt angle

τφ Threshold for pan angle

xiv

LIST OF ACRONYMS/ABBREVIATIONS

3D Three Dimensional

2D Two Dimensional

CAD Computer-Aided Design

DSA Deformed Sphere Approximation

ISL Intelligent Systems Laboratory

MLP Multi Layer Perceptron

LIDAR Light Detection And Ranging

RADAR Radio Detection And Ranging

T-DSA Temporal Deformed Sphere Approximation

1

1. INTRODUCTION

Mobile robots must be capable of understanding their surroundings in many tasks

involving human interaction, navigation and mapping. Semantic parsing of objects

constitutes a core part of this. For this reason, they need to identify the objects in

their surroundings correctly. The environmental information is extracted from the

scenes taken by sensors, such as camera, LIDAR, and RADAR. Range sensors such as

Kinect-based sensors and LIDAR sensors provide three-dimensional (3D) point cloud

data. As they enable mobile robots to sense the 3D world around them with high

accuracy and range, most mobile robots are equipped with one or more of these sensors

nowadays. However, semantic parsing of the collected point cloud data is a complex

process. It requires solving three different problems: i) finding object candidates, ii)

representing 3D objects, iii) interpreting the data collected over time. This thesis

focuses on these three problems.

First, the problem of finding object candidates is considered. This requires the

segmentation of the incoming 3D data. This is an integral part of the 3D scene un-

derstanding because it enables the robot to determine the objects of interest. As such,

throughout the thesis, the words object, object candidate and (point cloud) segments

are used interchangeably. As such, the reliability of segmentation highly affects the

performance of the subsequent processes. Kinect-like sensors have a practical ranging

limit of five meters and are used indoors. On the other hand, LIDAR sensors have max-

imum ranges of thirty to a hundred meters. As such, they are mostly used outdoors,

although they are also suitable for indoor usage. Furthermore, the two sensors also

vary concerning their data type - namely, Kinect generates spatially dense data while

LIDAR generates sparse data. Thus, the segmentation algorithm should be capable of

reliably determining the object candidates regardless of point cloud data density.

The next step is the representation of point cloud objects. The representation

enables the robot to build, use and evolve its knowledge of objects internally. Thus,

2

it is critical to the successful completion of many robotic scene tasks involving human

interaction. The point cloud objects can be dense or sparse depending on the sensor

used. Hence, the representation should be usable with all point cloud objects regardless

of its density.

The final step is the usage of the collected data. In most work, the descriptors are

constructed from instantaneous data. However, the robot collects data continuously

as it moving and thus, there is a temporal accumulation of data. While the tempo-

ral accumulation of data can also provide important information, this is not used in

related work with few exceptions. In this work, both instantaneous and temporally

accumulated data are considered. For this, the robot tracks all the detected object

candidates. Then, it accumulates the information from each object and uses its object

recognition-related reasoning.

1.1. Problem Statement

The thesis handles the problem in three stages:

(i) First, the object proposals should be found properly even with sparsely scanned

3D scenes. Moreover, most proposed works segment the sparse scenes by using

user-defined parameters that depend on the scene’s complexity.

(ii) Secondly, the robot needs to represent point cloud objects regardless of their

density. As the robot can see the objects from different viewpoints and angles, if

possible, the representation should be invariant to the robot’s heading.

(iii) As a mobile robot moves, the incoming data has both an instantaneous and

temporal aspect. The robot should be capable of using both in its reasoning.

3

1.2. Contribution

The major contributions of the thesis as follows:

(i) A novel approach is proposed to segment sparsely scanned 3D scenes. Unlike

most works, our approach finds the segments in the spherical coordinate system.

The parameters of the segmentation are selected considering the sensor’s scan

resolution.

(ii) A novel representation method is proposed for instantaneous object candidates’

data. The descriptor is referred to as the Deformed Sphere Approximation (DSA)

descriptor. The representation method works with various types of data-namely

LIDAR, Kinect, and CAD data.

(iii) A novel representation method is proposed for temporally accumulated object

candidates’ data. This is achieved through the temporal extension of the DSA

descriptor - namely temporal deformed sphere approximation (T-DSA) descrip-

tor. As this requires the tracking of object candidates, a novel tracking algorithm

is also presented.

1.3. Organization of Thesis

The organization of the thesis as follows:

• The proposed segmentation method is presented in Chapter 2. First, related

literature is discussed. Following, the segmentation approach is presented. Lastly,

extensive experimental results are discussed.

• The DSA descriptor is presented in Chapter 3. Again, the first related literature

is explained. Next, the formulation of the descriptor is given. Finally, it is eval-

uated experimentally, including a comparative study with previous descriptors

and various sensor data.

• Temporal accumulation of data regarding the object candidates is explained in

Chapter 4. First, we explain the tracking of object candidates. Next, the formu-

4

lation of the T-DSA is explained. Finally, experimental results are discussed.

• In Chapter 5, the thesis concludes with a summary and future work.

5

2. SEGMENTATION FOR SPARSELY SCANNED 3D

SCENES

This chapter focuses on the generation of 3D segments by a robot endowed with

a LIDAR sensor. The segmentation is an essential first step in the standard percep-

tion pipeline associated with semantic parsing. This is because the robot can then

use the resulting three-dimensional (3D) point cloud objects for categorizing and/or

recognizing the 3D objects in its surroundings. Thus, the segmentation needs to be

done without any prior information relating to their specific shapes or categories. This

is a non-trivial problem due to the vast shape, size, and viewpoint variations amongst

the objects - as is the case in typical work or home environments.

The sensors vary in regards to the density of point cloud data they provide. A

point cloud data is considered to be dense if most scanned surfaces’ connectivity can

be captured with the connectivity of non-empty cells - considering a discretization of

the world with a constant resolution [1]. Thus, range sensing based on 360◦ rotating

scanners with 16, 32, or 64 beams such as LIDAR sensors provides sparse point cloud

data. The focus in this chapter is to find possible object candidates even with sparse

point cloud data without using class or category information.

The outline of the chapter is as follows: First, a summary of previous methods

is presented in Section 2.1. The proposed algorithm is detailed in Section 2.2. Finally,

experimental results are given in Section 2.3.

2.1. Related Literature

The proposed approaches can be categorized into two groups depending on whether

they use dense or sparse data.

6

In the former case, the parameters of the dense-data algorithms are adjusted

[2, 3]. These algorithms involve constant resolution grid-based models, and they yield

poor results when used with sparse 3D LIDAR data. This is because the number

of empty cells increases with sparser data, leading to objects being over-segmented.

Consequently, distant objects are inclined to be over-segmented, while nearer objects

can be wrongly merged. In fact, the sparsity and scattering of associated point cloud

data are immensely affected by the distance. As an object’s distance gets further, the

associated point cloud data tends to be more sparse and scattered away from each

other. Otherwise, objects get closer, and their point cloud data tends to be denser and

closer to each other.

In the latter case, this problem is addressed by designing algorithms that specif-

ically consider the sparse nature of the scan data. Commonly, the ground plane from

point cloud data is removed either by assuming flat ground surfaces or non-flat ground

surfaces [1,4–6]. The ground plane extraction is followed by segmenting the remaining

data while using various interpolation schemes to fill the holes due to its sparsity.

The most common approach is to project 3D data onto a 2D plane - using either

occupancy grids [7,8] or LIDAR’s scan line information [6]. The fact that determining

the optimal grid dimensions has an important role in the segmentation performance.

However, finding the optimal grid dimension is difficult as it depends on the scene.

Furthermore, these approaches tend to miss the information on the vertical plane. Sec-

ondly, the segmentation is carried out by using clustering methods based on surface

geometry [1, 9–14]. Here, the descriptive geometrical features are clustered by using

variants of the nearest neighbor search. Moreover, Held et al. propose a learning-based

method using spatial, semantic, and temporal knowledge to enhance the segmentation

performance [15]. A third approach has been to consider the geometry of sense explic-

itly. Indeed, most works consider the cylindrical range image obtained by projecting

the 3D data onto a cylinder whose axis is the rotational axis of the scanner so that the

pixel values correspond to the distance measurements. This type of 3D data structure

is called a range image. The advantage of using range images is that operating range

7

images is substantially faster than reasoning on the 3D point cloud. For instance,

the connected components algorithm is applied on the cylindrical range image, and

only components with angular extend higher than a given threshold are deemed to

segment [16,17]. Finally, many network-based 3D object detection methods have been

developed to find the object with their semantic information [18, 19]. They generate

object proposal volumes before the calculation of semantic features. Although the

methods are very efficient algorithms in detection, their success is highly dependent on

the labeled data.

2.2. Density Based Spherical Segmentation

The proposed segmentation algorithm is based on a density-based clustering

method. The segments are found by clustering dense adjacent points using non-ground

scan points. The first step is to remove the ground data. To extract the ground in-

formation from the scene, we use the method of [6] due to its real-time applicability

and simplicity. The implementation details and experimental results of the ground

extraction are given in Appendix 5.

Let P refers to the non-ground point cloud data. The segmentation aims to

associate an object candidate label with each point p ∈ P . Let L denote the index set

of labels. As such, we can determine the set of object candidates as indexed by the set

O where each object candidate o ∈ O is determined by the point cloud data D ⊂ P

having the same label l ∈ L.

Once the ground data is removed, the proposed algorithm takes advantage of the

fact that the LIDAR sensor’s scanning geometry is defined in the spherical coordinate

system with the origin at LIDAR optical center [20]. Interestingly, this representation

corresponds to the raw data provided by the sensor and thus is available directly. The

proposed method is motivated by the observation that dense regions in the spherical

coordinate system correspond to 3D segments. Hence, the segments are determined

by searching adjacent points with a density-based clustering method. To do this, we

8

propose a novel metric to find the adjacent points. Our method’s main advantage is

that the search parameters are determined by the scan parameters of the scan rather

than the complexity of the scanned scene. Our extensive experimental results show

that our approach finds the segments in the scene successfully.

Each point p ∈ P is associated with a pan φ ∈ [0, 2π) and tilt ψ ∈ [0, π) and

the associated depth reading ρ(φ, ψ). Let Q be the corresponding non-ground point

cloud data expressed in the spherical coordinates. The fact that LIDAR scans the

environment with constant resolutions. For example, with a Velodyne-VLP16 LIDAR,

pan angle resolution is δφ ∈ {0.1◦, 0.2◦, 0.3◦, 0.4◦} and tilt angle resolution is δψ = 2◦.

Hence, the segments cannot be determined by searching adjacent points with a state-

of-the-art density-based clustering method. This is because these approaches use a

L2-norm like metric to detect the neighboring points in Euclidean space. For this

reason, we consider spherical coordinate system and introduce the ellipsoid distance

metric that normalizes the pan, tilt and depth data considering different thresholds

for each. Let these be denoted by τφ, τψ, τρ > 0 , respectively. Then, for a point

q ∈ Q where q =
[
φ ψ ρ(φ, ψ)

]T
, its neighboring points N (q) is determined as in

Equation 2.1:

∀q′ ∈ N (q)
(φ− φ′)2

τ 2
φ

+
(ψa − ψ′)2

τ 2
ψ

+
(ρa − ρ′)2

τ 2
ρ

≤ 1 (2.1)

where q′ =
[
φ′ ψ′ ρ(φ′, ψ′)

]T
. The parameters τφ, τψ, τρ > 0 are determined con-

sidering the respective resolutions - namely

τφ = γ1δφ τψ = γ2δψ τρ = δρ

where γi, i = 1, 2 are determined empirically.

The neighboring points N (q) of a given point need to satisfy a given density

criterion - namely the cardinality of the neighboring points set N (q) should satisfy

a minimum neighbor criterion as |N (q)| > M1. Here, M1 ∈ Z>0 corresponds to the

9

minimum number of neighbors. If the N (q) satisfies the minimum neighbor criterion,

q is interpreted as a dense point. The dense point q is a core point for a new segment

in S. After that, the segment is expanded by implementing this procedure for all found

neighboring sets. Note that the parameter M1 is a user-defined parameter that depends

on selecting the threshold values. Namely, the value γ1, γ2 is an upper bound on the

cardinality of ‖N (q)‖. Hence, M1 is selected to be some percentage of this value. It

is important to state that the minimum density (M1) criterion is questioned for all

queries, and it deals with under-segmentation and the noise in the LIDAR scan.

Moreover, the time complexity another essential issue for searching the points in

the boundary ellipsoid volume because it can be very high if all non-ground scan points

questioned for a query point. To cope with this issue, we used the indexed structure

of the spherical point cloud. Indeed, the constant resolution parameters of the LIDAR

scan enable us to index the point cloud according to its pan and tilt resolution. By

doing this, we can eliminate irrelevant points. The points to consider are selected from

the maximum connectivity set, Qq. The maximum connectivity set includes possible

connectivity distances of the neighboring points, and it is determined at the beginning

of the segmentation. Note that if an element in Qq does not satisfy Equation 2.2,

it will not satisfy Equation 2.1. For this reason, the set Qq is determined by using

Equation 2.2. Pseudo-code for our segmentation approach is given in Figure 2.1.

(φ− φ′)2

τ 2
φ

+
(ψ − ψ′)2

τ 2
ψ

≤ 1 (2.2)

10

Input: Non-ground point cloud in spherical coordinates(Q)

Output: Point wise cluster labels(L)

Parameters: τψ, τφ, τρ: threshold values

M1: minimum number of points for a segment

δψ, δφ: scan resolutions

Initialization: label ⇐ 0 : label for cluster

for i = 1 : |Q| do

Find Qq using Equation 2.2: possible connectivity set

if label(qi) 6= 0 then

continue

end if

neighs ⇐ Search with Qq and find neighs for q using Equation 2.1

if |neighs| > M1 then

label ⇐ label +1

label(qi)⇐ label

it⇐ 0

while |neighs| = it do

Find Qq
′ using Equation 2.2: possible connectivity set

expand⇐ Search with Qq
′ and find neighs for q′ using Equation 2.1

if |expand| > M1 then

label(q′)⇐ label

neighs ⇐ Merge unique expand with neighs

end if

it⇐ it+ 1

end while

else

label(qi)⇐ −1: noise

end if

end for

Figure 2.1. Pseudo-code for Density Based Spherical Segmentation

11

2.3. Experimental Results

Our proposed approach has been tested in three different scenerios :

(i) ISL scenes: We take two indoor LIDAR scans from our laboratory(ISL). In fact,

the LIDAR is Velodyne VLP16, and it is integrated with a mobile robot. The

segmentation labels are not available, so the evaluation of the scenes is carried

out visually.

(ii) Velodyne Simulator: We test our method in Gazebo environment integrated with

ROS. The fact that Velodyne Simulator enables us to simulate both Velodyne

VLP-16 and Velodyne HDL-32E. As in ISL scenes, there is no segment informa-

tion in the scenes, so we evaluate the results visually. Results quantitatively and

test whether it creates under-segmentation or over-segmentation errors.

(iii) KITTI tracking dataset: Our segmentation approach is evaluated on the KITTI

tracking dataset [21]. The tracking KITTI dataset was collected from a moving

car on city streets to evaluate the perception system of autonomous driving. In

the dataset, the point cloud data are taken from Velodyne HDL-64E LIDAR.

Although point-wise labeling is not available, bounding boxes are adequate to

test our approach [15]. The evaluation of the dataset is vital for our method.

This is because the dataset paves the way for evaluating our approach.

2.3.1. ISL scenes

We generate two scenes from our lab. The objects in Figure 2.2 are selected from

among the objects with simple geometry and positioned at nearly without any contact.

However, in Figure 2.3, the scene is more difficult to segment because the scene contains

an object such as a radiator, where proper depth perception can be difficult, and most

objects are in contact with each other. Before the implementation of density-based

segmentation, the ground is extracted from both scenes. The parameters for both

scenes are given in Table 2.1.

12

(a) Simple scene (b) The segmentation of the simple scene

Figure 2.2. The segmentation of simple ISL scene

(a) Hard scene (b) The segmentation of the hard scene

Figure 2.3. The segmentation of hard ISL scene

Table 2.1. The parameters for the segmentation of ISL scenes

Segmentation parameters
ISL Scenes

Simple (Figure 2.2) Hard (Figure 2.3)

τφ 4◦ 4◦

τψ 2◦ 2◦

τρ 0.1m 0.1m

M1 15 15

Scan parameters

δφ 2◦ 2◦

δψ 0.2◦ 0.2◦

13

2.3.2. Velodyne Simulator

Velodyne Simulator includes two different LIDAR sensors, Velodyne VLP-16 and

Velodyne HDL-32E. The most important differentiating feature of the two sensors is

scanning resolution in tilt direction. Velodyne HDL-32E scan the environment with

1.33◦ resolution, but it is 2◦ for Velodyne VLP-16. We test our segmentation method

in the simulator for both the Velodyne VLP-16 scan and the Velodyne HDL-32E scan.

Since we test our segmentation method in an indoor environment (ISL), we construct

two different outdoor environments to be segmented. For two scenes, the segmentation

parameters are given in Table 2.2.

The first scene is taken with Velodyne VLP-16. The simulation view, the raw

point cloud, and the segmented point cloud are given in Figure 2.4. In this scene, the

proposed algorithm works well and segments all fully visible objects. However, some

outdoor objects are not fully detectable for sparse LIDAR scenes. For example, the

tree in our post office scene is sensed with a highly sparse point group even for the

spherical coordinate system. Since our method expects dense points in the spherical

coordinates system, the tree could not be segmented properly.

The second scene is taken with Velodyne HDL-32E. We experiment to gain an

insight to work with the KITTI dataset. For this reason, we design a scene that con-

tains possible street objects, such as pickup trucks, pedestrians, and waste containers.

The simulation view, the raw point cloud, and segmented point cloud are given in

Figure 2.5. It can be seen that the proposed method successfully segments the fully

visible objects in the scene, i.e., between the pickup truck and the pedestrian on the

left side in Figure 2.5b. It is an important state that in LIDAR scenes, some objects

can obstruct other objects’ view. Because the proposed approach needs to find a con-

sistent geometrical relationship between points, this problematic issue can cause an

over-segmentation error for non-fully visible objects.

14

(a) Simulation view

(b) Raw point cloud

(c) Segmented point cloud

Figure 2.4. Post office scenario to test proposed approach

15

(a) Simulation view

(b) Raw point cloud

(c) Segmented point cloud

Figure 2.5. Street scenario to test proposed approach

16

Table 2.2. The parameters for the segmentation of Velodyne Simulator scenes

Segmentation parameters
Velodyne Simulator

Post Office (Figure 2.4) Street (Figure 2.4)

τφ 6◦ 4◦

τψ 1◦ 1◦

τρ 0.5m 0.5m

M1 20 20

Scan parameters

δφ 2◦ 1.33◦

δψ 0.2◦ 0.2◦

2.3.3. KITTI tracking dataset

We evaluate our approach using KITTI tracking dataset. The dataset consists

of 21 sequential frames. For each scene, there are bounding boxes in the camera

frame. We use nearly the same strategies of [15] to detect under-segmentation and

over-segmentation errors. Let O∗ denote the set of ground truth segments. For each

detected object o ∈ O, finding a segment that best matches with the ground truth are

defined as:

o∗ ∈ argmax
o′∈O∗

|Do ∩ D∗o′| (2.3)

Let Do denote the point cloud data of object o and D∗o′ denote ground truth object point

cloud data. After finding the best matches, under-segmentation and over-segmentation

errors can be calculated. Under-segmentation errors can be seen when the object is

segmented with a close object. Over-segmentation errors can be defined as finding

multiple segments instead of one segment. Defined metrics are defined as:

17

U =
1

|O|
∑
(o,o∗)

1(
|Do ∩ D∗o∗|
Do

< τu) (2.4)

O =
1

|O|
∑
(o,o∗)

1(
|Do ∩ D∗o∗|
D∗o∗

< τo) (2.5)

Where, 1 is defined as an indicator function that is equal to 1 when the given input

is true, otherwise 0. τu and τo are defined under-segmentation and over-segmentation

errors, respectively. As stated in [15], over-segmentation is a more problematic issue

than under-segmentation because over-segmentation errors cause the creation of false

objects. However, from our observation, the bounding boxes do not fully cover the

whole segments in the 3D scene because of the bounding boxes’ frame. For this reason,

we set τo to 0.9 instead of 1.0, and we set τu to 0.5. Moreover, the summation of the

two errors can be defined as the overall error rate (E) metric for the segmentation.

We test our segmentation approach using different parameter values for τφ, τψ, τρ,

M1. Results and used parameters are given in Table 2.3. The best segmentation

results are obtained for τφ = 1.44◦, τψ = 2.4◦, τρ = 1.0m,M1 = 10. It is essential to

state that the scans in the KITTI dataset are taken with Velodyne HDL-64E, and its

resolution parameters are δφ = 0.08◦, δψ = 0.4◦. We select τφ, τψ values according to

scan resolutions. We select τρ and M1 values based on our visual experiments. Table 2.3

shows how the change in parameters affects the segmentation performance. As seen in

the table, the low values for τφ , τψ , τρ create low under-segmentation errors; however,

these values increase in over-segmentation errors. Hence, the optimal parameters for

the segmentation should create low total error and low over-segmentation error from

our perspective.

18

Table 2.3. KITTI tracking results

Parameters Results

τφ(◦) τψ(◦) τρ(m) M1 U O E Average Time(ms)

0.96 1.6 1.0 10 0.2116 0.4296 0.6212 18.58

0.96 1.6 1.0 15 0.1780 0.7403 0.9183 19.47

0.96 1.6 1.5 10 0.2667 0.3694 0.6163 18.35

0.96 1.6 1.5 15 0.2284 0.6836 0.9120 19.00

0.96 2.4 1.0 10 0.2402 0.2178 0.4580 33.91

0.96 2.4 1.0 15 0.2316 0.2853 0.5169 34.39

0.96 2.4 1.5 10 0.3056 0.1671 0.4727 33.80

0.96 2.4 1.5 15 0.2942 0.2264 0.5206 34.00

1.44 1.6 1.0 10 0.2694 0.1859 0.4553 34.96

1.44 1.6 1.0 15 0.2504 0.2656 0.5160 34.86

1.44 1.6 1.5 10 0.3375 0.1407 0.4782 34.08

1.44 1.6 1.5 15 0.3167 0.2075 0.5242 34.21

1.44 2.4 1.0 10 0.2805 0.1475 0.4280 39.20

1.44 2.4 1.0 15 0.2607 0.2024 0.4631 39.38

1.44 2.4 1.5 10 0.3473 0.1065 0.4538 38.52

1.44 2.4 1.5 15 0.3333 0.1507 0.4840 38.82

Two examples from the KITTI tracking data set and their segmentation results

are given in Figure 2.6. It can be deduced from the results that our algorithm works

sufficiently to segment the objects in sparsely 3D scenes.

19

(a) Raw point cloud (b) Segmented point cloud

(c) Raw point cloud (d) Segmented point cloud

Figure 2.6. Two examples of segmentation results for KITTI tracking

20

3. REPRESENTATION OF POINT CLOUD OBJECTS

This chapter is on the representation of point cloud objects. As explained pre-

viously, this is integral to many robotic tasks such as those invoving human-robot

interaction and manipulation. It enables the robot to store its sensor-based knowledge

internally. The sensor-based knowledge is typically obtained either using Kinect-like

sensors or LIDAR sensors. Kinect-like sensors have a practical ranging limit of five

meters and are generally used for indoor scenes. On the contrary, LIDAR sensors have

maximum ranges of thirty to hundred meters. As such, they are mostly suitable for

both indoor and outdoor usage. Moreover, the two types of sensors also vary in their

data type-namely sparse or dense. In this chapter, our focus is to find an appropriate

representative descriptor that models the 3D objects, whether their data are sparse or

dense. For this, we propose the deformable sphere approximation (DSA) descriptor.

The DSA descriptor is rotationally invariant concerning the robot’s heading and is also

lightweight. Furthermore, it can be used with both dense and sparse data.

The outline of the chapter as follows: Firstly, related literature will be summa-

rized in Section 3.1. Following, the computation of the DSA descriptor is explained

in Section 3.2.2. The chapter will conclude with experimental results using benchmark

3D point cloud object data sets are presented in Section 3.3 - involving a comparative

study with the state-of-the-art hand-crafted descriptors and learning network-based

representations.

3.1. Related Literature

A 3D point cloud descriptor maps the sensory information from a 3D space to a

feature space. Since its acts as a shape signature, it should keep as much information on

the 3D shape possible. Shape descriptors are primarily used for class-level recognition

because instance-level recognition is not generally possible using only point cloud data,

even for human beings. A plethora of 3D descriptors has been proposed - either through

21

being hand-crafted [22] or more recently as learned by deep networks [23–25].

Deep learning networks simultaneously offer the multilayered representation and

classification of the point cloud data. Network-based representations are mainly not

class-agnostic. This is because obtaining features and learning are done together.

Thus, learning requires class-labeled data in general. Moreover, if the robot encounters

a new type of class, the network should be retrained. However, to cope with these

issues, class-agnostic network-based representations are also being developed [26–28].

Classification networks operate on the level of whole object [29–33]. As such, they do

not require detailed reasoning about the 3D structure of the object, as is the case with

those aimed at reconstruction [34–36].

Another property pertains to whether input conversion is necessary or not. In

most robotic applications, descriptors that are directly derived from point cloud data

are preferred - as input conversion tends to increase the computational cost [37–39].

The raw point cloud data may be directly processed [40] or in most cases converted to

other representations such as voxels [31, 41, 42], octrees [43], meshes [44], graphs [32],

spherical functions [45,46] or multi-views of image data [47,48] before being input to the

network. Unfortunately, some of the associated processing further increases the already

high computational and memory resource requirements. Furthermore, even if the input

conversion does not require for some methods, they still cannot be directly used - since

they cannot be input arbitrarily sized input point cloud data [26–28]. Either the data

needs to be pre-processed to convert it into a standard size, or the network structure

needs to be changed. The former results in loss of information, while the latter requires

learning to be redone.

The representation methods are also considered with respect to rotational in-

variance - particularly rotation around a vertical axis - as this results in recognition

robustness [49]. For example, re-expressing the data as a spherical function yields ro-

tationally invariant representations [45, 46]. The main advantage of spherical function

representation is that it enables independence from the point cloud size.

22

The proposed descriptors also vary with respect to their flexibility of usage with

different types (i.e., dense vs. sparse) data. With dense data such as Kinect, two of

the best hand-crafted descriptors are View Point Feature Histogram (VFH) [50] and

Ensemble of Shape Functions (ESF) [51] [52]. However, these cannot be directly used

with sparse data such as LIDAR data. In such a case, interpolation techniques are

required [53]. Alternatively, descriptors such as Global Fourier Histogram Descriptor

(GFH) are designed specifically for sparse data such as LIDAR [54].

Interestingly, 3D representation has been originally considered within 3D solid

modeling [55, 56] in the computer vision community. Here, one popular approach has

been to use spherical harmonics [57]. For example, the descriptor is constructed from

the coefficients of three spherical functions used to define the given 3D surface [58,59];

however, for a reliable description, the surface type (open, closed, tori or tube) needs to

be known. In another work, the descriptor is obtained through combining the different

coefficients obtained by decomposing the three-dimensional data into a collection of

functions defined on concentric spheres over different radii [60]. As such, the input

needs to be transformed into a voxel representation.

3.2. Deformable Sphere Approximation Descriptor

Consider a segment o and recall Do ⊂ R3 denote the respective point cloud. Let

its mean be denoted by µo ∈ R3. The goal is to derive a d-dimensional vector I such

that it encodes this data. We propose the deformable sphere approximation (DSA)

descriptor for this. It is motivated by previous work on scene representation [63].

Similarly, its representation is derived from encoding the point cloud data distribution

in the spherical coordinate system. However, differing from previous work, it is defined

in an object-centric coordinate system as derived from the point cloud object data.

23

Table 3.1. The literature search for 3D descriptors and classification methods

Representation

+

Learning

Properties

Class
Params.

Input Direct Vertical Rot. Varied

Agnostic? Conversion Usage? Invariance? Data Type?

SPH [60] + SVM 3 544 642 Voxels - 3 7

VFH [50] + MLP 3 308 - 3 3 7

ESF [51] + MLP 3 640 - 3 7 7

GFH + SVM [54] 3 864 - 3 3 7

3DShapeNets [29] 7 38M 303 Voxels - 7 3

ORION [42] 7 4M 323,283 Voxels - 7 3

VoxNet [41] 7 890K 323 Voxels - 7 3

ECC [32] 7 - 323 Voxels - 7 3

PointNet [30] 7 3.5M - 7 7 3

PointNet++ [40] 7 1.7M - 7 7 3

LightNet [61] 7 30K 323 Voxels - 7 3

FoldingNet [27] 3 1M - 7 7 3

Latent-GAN [28] 3 - - 7 7 3

GeoCNN [62] 7 557K - 7 7 3

Spherical-CNN [45] 7 500K 2× 642 - 3 3

SF-CNN [46] 7 - - 3 3 3

LP-3DCNN [33] 7 2M 323 Voxels - 7 3

ClusterNet [26] 3 - - 3 3 7

DSA (proposed) + MLP 3 400 - 3 3 3

The deformed sphere approximation (DSA) descriptor is computed in three stages:

(i) First the point cloud object data Do is mapped to a deformed sphere;

(ii) The deformed sphere is approximated by double trigonometric Fourier series;

(iii) Rotational invariants are derived.

3.2.1. Deformed Sphere Mapping

For each object o, the deformed sphere map ρco : S2 → R≥0 is defined based on

its associated point cloud data Do. Here, the first subindex c indicates robot’s position

dependency and second subindex o indicates object dependency:

ρco(f) =

 ρ0 + r(p) ∃p ∈ D′o s.t. f(p) = f

ρ0 otherwise

24

where D′o is the transformed point cloud with origin at µo. The map f : D′o → S2 is

defined as f(p) =
[
f1(p) f2(p)

]T
with f1(p) ∈ [−π, π] and f2(p) ∈

[
−π

2
, π

2

]
as being

the pan and tilt angles respectively and r(p) is the respective radial distance in the local

coordinate system. Note that the map ρco can be visualized as a deformed S2-sphere

with radius ρ0 based on the respective data set D′o. The deformed sphere examples for

Kinect and LIDAR point clouds for a chair object are shown in Figure 3.1.

(a) Deformed sphere for kinect point cloud data

(b) Deformed sphere for LIDAR point cloud data

Figure 3.1. Deformed spheres for a chair object with various sensor types

3.2.2. Deformed Sphere Approximation

Next, the deformed sphere map ρco is approximated using double trigonometric

Fourier series (DTFS) [64]:

ρco(f) ∼=
H1−1∑
h1=0

H2−1∑
h2=0

λh1h2hz
T
oh1h2

(c)eh1h2(f). (3.1)

25

In this equation, the parameters λh1h2ht are defined as:

λh1h2 =

0.25 if h1 = 0, h2 = 0

0.5 if h1 > 0, h2 = 0 or h1 = 0, h2 > 0

1 if h1 > 0, h2 > 0.

(3.2)

The parameters H1 and H2 are positive-valued integers that correspond to the number

of harmonics. For each pair (h1, h2) of harmonics, the vector eh1h2(f) ∈ R4 is a vector

of an orthonormal set of trigonometric basis functions:

eh1h2(f) =

cos(h1f1) cos(2h2f2)

sin(h1f1) cos(2h2f2)

cos(h1f1) sin(2h2f2)

sin(h1f1) sin(2h2f2)

 , (3.3)

These functions have periods −π ≤ f1 ≤ π and −π
2
≤ f2 ≤ π

2
and are orthogonal on

the corresponding rectangle.

The set of vectors zcoh1h2 ∈ R4, h1 = 0, . . . , H1−1, h2 = 0, . . . , H2−1 is comprised

of double trigonometric Fourier series coefficients defined as:

zoh1h2(c) =
2
π2

∫ π
−π
∫ π

2

−π
2
ρco(f) cos(h1f1) cos(2h2f2)df1df2∫ π

−π
∫ π

2

−π
2
ρco(f) sin(h1f1) cos(2h2f2))df1df2∫ π

−π
∫ π

2

−π
2
ρco(f) cos(h1f1) sin(2h2f2))df1df2∫ π

−π
∫ π

2

−π
2
ρco(f) sin(h1f1) sin(2h2f2)df1df2

(3.4)

Finally, the DSA descriptor Ico ∈ Rd is obtained by considering the rotationally invari-

ant H1H2-dimensional vector:

Ico =
[
Ico00, . . . , Ico(H1−1)(H2−1)

]T
(3.5)

26

Note that the DSA descriptor encodes single segment o as observed from location c

with:

Icoh1h2 = zTcoh1h2
zcoh1h2 . (3.6)

Two remarks are noteworthy: First, while DTFS representation is analogous to

the spherical harmonics representation since they both use orthogonal basis functions

defined over the sphere. However, they differ in terms of used basis functions. The

former uses basic trigonometric functions, while the latter uses the standard spher-

ical representation and spherical harmonic basis functions. Hence, while the coeffi-

cients of DTFS are computed directly as given by Equation 3.4, those of spherical

harmonics need the computation of Legendre polynomials and 3-dimensional vector

integration [65].

In practice, DTFS coefficients are numerically computed. This requires the dis-

cretization of the continuous integral of Equation 3.4. To do this, we use the sphere

surface points as deformed by the centered point cloud object data o. Let δf1, δf2 > 0

denote the corresponding discrete differentials in the pan and tilt directions respec-

tively. Then, the DTFS coefficients are numerically computed as:

zh1h2
∼= 2

π2

∑
p∈Do

ρ(f(p)) cos(h1f1(p)) cos(2h2f2(p))δf1δf2∑
p∈Do

ρ(f(p)) sin(h1f1(p)) cos(2h2f2(p))δf1δf2∑
p∈Do

ρ(f(p)) cos(h1f1(p)) sin(2h2f2(p))δf1δf2∑
p∈Do

ρ(f(p)) sin(h1f1(p)) sin(2h2f2(p))δf1δf2

(3.7)

In general, for two different points p, p′ ∈ Do where p 6= p′, the corresponding discrete

differentials will be different. This is because the density of point cloud object data will

vary depending on the sensor type, 3D object shape and viewing geometry. In order

to get a good estimate of the differentials, we use NM2(p)−neighborhood of each point

27

p ∈ Do - namely the closest M2 point cloud data and take the average of associated

differentials over the whole set O:

 δf1

δf2

 =
1

M2 |Do|
∑
p∈Do

∑
p′∈NK(p)

 ‖f1(p′)− f1(p)‖2π

‖f2(p′)− f2(p)‖π

 (3.8)

Due to the fact that DTFS contains periodical functions, it is important to take into

account Nyquist frequency during sampling. Especially for sparse data, the represen-

tation can be disrupted by false sampling. For this reason, we calculate maximum

sampling rates for f1 and f2, and compare the rates with δf1 and δf2. The calcula-

tion of the maximum sampling rates is given in Equation 3.9, and the comparisons of

calculated sampling rates with maximum sampling rates are given in Equation 3.10.

 δf1max

δf2max

 =

 2π/H1

π/H2

 (3.9)

 δf1

δf2

 =

 min(δf1t, δf1max)

min(δf2t, δf2max)

 (3.10)

The selection of M2 is essential, and it directly affects the sampling rate. Too high

M2 values result in the coarse sampling of the sphere surface, which negatively affects

representativeness. On the other hand, too low M2 values can adversely influence the

descriptor’s generalization with various sensors. Finally, it should be underlined that

two or more points correspond to the same discrete differential surface area, then the

deformation is done, taking into account their average depth values.

28

The DSA descriptor’s computation has two stages: First, DTFS coefficients of

the deformed sphere are computed. Let N = |Do|. This is of order O(N logN +

NH1H2). The first term is due to δf1 and δf2 computation. The coefficients can then

be incrementally computed depending on the sphere’s deformation based on the depth

data and the associated viewing geometry in spherical coordinates. Next, the DSA

descriptor is derived. Here, the associated computation is of order O(H1H2).

3.3. Experimental Results

The proposed descriptor has been evaluated with three well-known data sets

having different data types:

(i) Kinect: The Washington RGB-D objects [66] data set contains 202,549 partial

views obtained from Kinect sensor corresponding to household objects from 51

classes. To consider reliable data, only objects with at least 100 points are used.

(ii) LIDAR: Sydney Urban Object data set contains with Velodyne HDL-64E LIDAR

data of 588 labeled partial views from 14 various classes [53]. As recommended

by the data set authors, the original data set is augmented with 18 rotations.

(iii) CAD: ModelNet10 and ModelNet40 involve mesh data of 10 and 40 object classes,

respectively [29]. There are 4499 mesh objects divided into 3991 objects for

training and 908 objects for the test in ModelNet10. There are 12,311 mesh

objects that are split into 9843 objects for training and 2468 for the test in

ModelNet40. The data uniformly sampled with 1024 points, then the sampled

data is normalized into a unit sphere. [67]

3.3.1. Approximated Spheres by DSA

At first, we want to visually show how DSA descriptors represent the deformed

sphere into an approximated sphere. The fact that no data set contains both Kinect

and LIDAR data in the literature. For this reason, we select a chair object from Model-

Net10, generate Kinect and LIDAR point cloud data of the object. The chair object is

29

first viewed with a Kinect sensor, and the associated point cloud object data is shown

in Figure 3.2a. It is observed to be quite dense. Next, the same object is now viewed

with a LIDAR with the same robot pose. The resulting point cloud data is quite sparse,

as seen in Figure 3.2f. To assess whether the data type affects the descriptor or not,

we compare the approximations of the deformed spheres generated for each data type

as shown in Figure 3.2b and Figure 3.2g respectively. Two observations are notable:

First, despite the big difference in data density, the deformed sphere representations

are quite similar. Second, as the number of harmonics increases, approximation error

decreases as expected. On the other hand, it also results in minute shape details being

unnecessarily encoded within the descriptor.

(a
)

K
in
ec
t

p
o
in
t

cl
ou

d
d
a
ta

(b
)
D
ef
o
rm

ed
S
p
h
er
e

(K
in
ec
t)

(c
)
H

1
=
H

2
=

5
(d
)
H

1
=
H

2
=

10
(e
)
H

1
=
H

2
=

20

(f
)

L
ID

A
R

p
oi
n
t

cl
o
u
d
d
at
a

(g
)
D
ef
or
m
ed

S
p
h
er
e

(L
ID

A
R
)

(h
)
H

1
=
H

2
=

5
(i
)
H

1
=
H

2
=

10
(j
)
H

1
=
H

2
=

20

F
ig

u
re

3.
2.

D
ef

or
m

ed
sp

h
er

es
of

ob
je

ct
s

an
d

th
ei

r
ap

p
ro

x
im

at
io

n
s.

31

3.3.2. Classification Performance Across Data Types

We consider the classification performance of the proposed approach across three

data types. DSA descriptor constructed with ρ0 = 1, and three different number of

harmonics H1, H2 ∈ {5, 10, 20}. We set M2 to 2 for LIDAR and CAD objects, and we

set M2 to 5 for Kinect objects. Therefore, the sizes of obtained DSA descriptors are

25, 100, 400. For learning, Multi-Layer Perceptron (MLP) classifiers are used. MLPs

are trained with different training/test split strategies. For the Kinect data set, we

divide the data into 80% training set and 20% test set. For the LIDAR data set, we

use the strategy of the authors [53]. Accordingly, the augmented LIDAR data is split

into four-folds. The average of the performances classifiers’ performances for the folds

are taken as the result. Lastly, using original training and test splits for ModelNet10

and ModelNet40, we evaluate the proposed descriptor for point cloud data from CAD

objects. It is important to state that differing from most methods; we do not implement

any augmentation on the ModelNet objects. In the tests, the point cloud object’s class

is assigned to the class with the maximum probability score found by the MLPs. For

the Kinect data set, accuracy and F1-score are used as the performance measure. For

the LIDAR dataset, F1-score is used as the performance measure. Finally, we use

accuracy performance for CAD objects. The results are as shown in Table 3.2. The

best performance is obtained with with H1 = H2 = 10. Using a larger number such as

H1 = H2 = 20 can lead to overfitting - as it encodes the object surface with unnecessary

minute detail.

Table 3.2. DSA performance across data types with different harmonics.

H1, H2

Size
Kinect LIDAR CAD

Accuracy F1 Score F1 Score Accuracy (ModelNet10) Accuracy(ModelNet40)

5 25 91.71 0.919 0.790 85.16 70.22

10 100 92.73 0.928 0.803 85.93 68.44

20 400 90.18 0.908 0.793 81.98 62.52

32

3.3.3. Comparative Classification Performance

We compare the classification performance of the DSA descriptor with state-of-

the-art baseline approaches. There are both hand-crafted and network-based descrip-

tors. For the comparison, the DSA descriptor constructed with H1 = H2 = 10 is

used since it shows the best performance. The comperative classication performance

is given in Table 3.3. In the this table means the method needs input conversion,

and - means the algorithm does not work without additional processing. The results

as presented in Table 3.3 can be detailed as follows:

(i) Kinect data set: We consider ESF and VHF that are known to be two of the best

hand-crafted and inherently Kinect-style descriptors [52]. In all experiments, the

same MLP structure is used. To enforce fair comparison, the descriptors are

directly formed from the input point cloud data without any pre-processing to

all. All descriptors are standardized before MLP training. It is observed that the

classification performance of all the descriptors is roughly the same.

(ii) LIDAR data set: We consider both the hand-crafted GFH and network-based

descriptors obtained with ORION, VoxNet, ECC, and LightNet. It is observed

that the DSA descriptor has the best average F1-Score of 0.803.

(iii) CAD (ModelNet10 and ModelNet40) data sets: In general, network-based repre-

sentations are used to evaluate the data sets. It is observed that accuracy varies

between 79.79%-95.3% for ModelNet10 and between 68.23%-93.4% for Model-

Net40. It is observed that all descriptors have a lower accuracy with Model-

Net40. While the proposed DSA descriptor’s performance is not the highest, it is

still relatively high - 85.9% and %68.4 for ModelNet10 and ModelNet40, respec-

tively. It is partially attributed to the fact that since all deformed spheres are

constructed with 1024 points sampled uniformly. Moreover, ModelNet40 objects

are not aligned according to a specific axis differing from ModelNet10. These

situations can cause a decrease in the performance of our proposed method. In a

nutshell, the DSA descriptor can represent point cloud objects consistently across

different data types without any pre-processing required.

33

Table 3.3. Comparative classification performance.

Representation

+

Learning

Data Types

Kinect LIDAR CAD

(Dense) (Sparse) ModelNet10 ModelNet40

Accuracy(%) F1 Score F1 Score Accuracy(%) Accuracy(%)

SPH [60] + SVM - - - 79.79 68.23

VFH [50] + MLP 92.29 0.9240 - - -

ESF [51] + MLP 93.93 0.9352 - - -

GFH + SVM [54] - - 0.710 - -

3DShapeNets [29] - - - 83.5 77.3

ORION [42] - - 0.778 93.9 89.7

VoxNet [41] - - 0.730 92.0 83.0

ECC [32] - - 0.784 89.3 82.4

PointNet [30] - - - - 89.2

PointNet++ [40] - - - - 90.7

LightNet [61] - - 0.796 93.4 88.9

FoldingNet [27] - - - 94.4 88.4

Latent-GAN [28] - - - 95.3 85.7

GeoCNN [62] - - - - 93.4

Spherical-CNN [45] - - - - 88.9

SF-CNN [46] - - - - 91.4

LP-3DCNN [33] - - - 94.4 92.1

ClusterNet [26] - - - 93.8 86.8

DSA (proposed) + MLP 92.73 0.9285 0.803 85.9 68.4

3.3.4. Transfer Learning Across Data Types

Classification experiments show that the DSA descriptor can be used to represent

both Kinect and LIDAR point cloud objects reliably. It suggests that it may be possible

to transfer the learning of objects with one type of sensor to classify those obtained with

other types of sensors. Next, we have investigated how much is possible. To do this, we

use the Kinect and LIDAR point cloud object data obtained from ModelNet10 dataset.

The ModelNet10 dataset has ten different classes with 100 objects selected randomly

34

from each class. In order to be able to create point cloud data, we randomly sample

the mesh of each object with 100,000 points. As the objects have varying scales, these

points are brought to a standard scale by fitting the sampled data in a unit sphere. We

simulated a mobile robot with sensors positioned at 50cm height from the ground is

made to view these objects from varying poses around the objects. Its distance to the

objects varies 1 and 6 meters with increments of 0.2m while its angular position varies

between [−180◦, 180◦] with increments 10◦. Hence, there are 900 various alternatives.

(a) Kinect point cloud

dresser data

(b) Kinect point cloud mon-

itor data

(c) LIDAR point cloud

dresser data

(d) LIDAR point cloud

monitor data

Figure 3.3. Sample Kinect and LIDAR objects data from ModelNet10.

35

We choose 100 different positions randomly for each object. Both Kinect and

LIDAR point cloud object data are obtained. For Kinect, pan and tilt resolutions for

obtaining the point cloud data are set as 0.0895◦ and 0.095◦, respectively. For LIDAR,

they are set as 0.2◦ and 2◦ respectively. Finally, hidden points are eliminated using the

Hidden Point Removal algorithm [68] along with depth buffering. Two samples of the

objects from Kinect and LIDAR can be seen in Figure 3.3.

We consider three different level of harmonics H1, H2 ∈ {5, 10, 20}. Using a

random split strategy, 80% of the samples are used for learning, while the remaining

20% are used in the classification. Four alternative schemes are investigated. In two,

we use the same data types for both learnings - namely either only Kinect or LIDAR

data. This is done to determine the best possible performance levels. Next, we consider

learning transfer across data types: learning based on Kinect data followed by testing

with LIDAR data and learning based on LIDAR data followed by testing with Kinect

data. The results are as shown in Table 3.4.

First, we observe that without any transfer learning, the best performance is

obtained with H1 = H2 = 10. Second, learning transfer across data types yields

around 30-46% accuracy. We find this perfect considering Kinect and LIDAR objects

are very different from each other. Kinect data is rather dense, whereas LIDAR data

is rather sparse. Interestingly, LIDAR to Kinect learning transfer has better accuracy.

It is attributed to the fact that LIDAR objects have a lesser amount of detail on the

respective object surfaces. As such, learning with LIDAR means learning general shape

characteristics. Hence, learning is more easily transferred from LIDAR to Kinect point

cloud object data.

36

Table 3.4. Classification performance with learning transfer across data types.

H1, H2 Training Set Test Set Accuracy (%) F1 Score

5

Kinect Kinect 86, 03 0.8624

Kinect LIDAR 32, 89 0.3016

LIDAR LIDAR 72, 90 0.7105

LIDAR Kinect 44, 46 0.4357

10

Kinect Kinect 88, 61 0.8897

Kinect LIDAR 30, 56 0.2710

LIDAR LIDAR 75, 52 0.7518

LIDAR Kinect 46, 09 0.4504

20

Kinect Kinect 87, 46 0.8795

Kinect LIDAR 20, 34 0.1829

LIDAR LIDAR 73, 95 0.7347

LIDAR Kinect 43, 83 0.4319

37

4. OBJECT LEARNING FOR SCENE MAPPING

The chapter studies the problem of improving object learning through considering

all the knowledge available to the robot. In the previous chapter, the robot considers

the instantaneous sensory data, encodes this data using the proposed DSA descriptor,

and then learns objects or recognizes objects based on these descriptors. However,

if the robot is moving, the incoming data has a temporal aspect. Using this data

will have two advantages. First, the knowledge accumulated through the objects’

temporal continuity can also help the robot better recognize the objects around it. By

the spatio-temporal accumulation of data, a more comprehensive knowledge regarding

these objects can be built. This can be especially beneficial with sparse data such as

3D LIDAR scans. Second, the robot will not need to reason about objects that are

already classified, and hence it can reduce the burden of computational processing. In

this chapter, we propose an approach that considers using temporal data so that the

robot uses both instantaneous and accumulated knowledge. For this, we propose the

temporal deformable sphere approximation (T-DSA) descriptor. The T-DSA descriptor

is designed to encode a stream of point cloud object data about each distinct object

in the scene. As such, it requires the robot to track the detected objects. The robot

then uses the respective track data in order to construct the T-DSA descriptor.

The outline of the chapter is as follows: First, we review the related literature in

Section 4.1. Then the general approach for the proposed method is mentioned briefly in

Section 4.2. After that, our novel multi-object tracking method is given in Section 4.3.

Then, we introduced the strategy for merging instant features in Section 4.4. Finally,

the experimental results are given in Section 4.7.

4.1. Related Literature

As the robot is navigating around in a scene, it has a continuous stream of incom-

ing point cloud data. Typically most work base their reasoning on the instantaneous

38

and do not take advantage of its sequential nature. However, using the temporal na-

ture presents two main advantages for point cloud processing. It requires the robot to

establish the relationship between consecutive frames.

The typical approach is to use ICP-based (or its variants) algorithms in order

to merge the LIDAR frames [69, 70]. Moreover, the ICP-based methods can suffer

from large pose displacements. Statistical methods can be used for alleviating these

problems [71, 72]. They can deal with some drawbacks of ICP-based algorithms, but

they are still computationally expensive methods.

The second approach is to track objects in sequential frames. This problem has

also been studied extensively and many 3D object tracking algorithms have been pro-

posed through extending the existing two-dimensional (2D) tracking methods [73–75].

Thus, most of them are based on bounding boxes with the help of Kalman Filter [76,77].

Some work uses the features or points in the LIDAR scan [78–83] to take advantage of

LIDAR systems’ reliability.

The information from the tracked object should be used for the improvement in

efficiency and reliability. [15, 84] use sequential features in a probabilistic manner to

benefit from the tracked objects. With recent developments in deep learning, some

advanced networks, such as RNN, can keep the frames’ information in a certain time.

In fact, RNN (or its special type LSTMs) can merge the segments with the measured

robot states [85, 86]. Choy et al. [87] propose a modern CNN approach to evaluate

objects temporally. On the other hand, another method is to complete the shape using

either using a trained neural network or auto-encoder [28,88,89].

4.2. Object Learning For Scene Mapping: General Approach

Consider the robot to be navigating through a sequence of locations ck = [ck1 ck2]T

∈ R2 with headings αk ∈ S1. Here, k ∈ K where K = {0, 1, . . . , } is the ordered set

of discrete time index. We propose an approach that enables the problem to consider

39

both instantaneous and temporally accumulated knowledge of objects. Our proposed

approach consists of the following stages: The robot acquires a new point cloud data

frame and determines the object candidates. It then tracks these candidates with

a novel tracking algorithm. It then encodes the tracked objects’ data using a novel

descriptor T-DSA (Temporal Deformable Sphere Approximation) descriptor. Finally,

it combines knowledge from both the DSA and T-DSA descriptors in its learning and

reasoning.

4.3. Multi Object Tracking

Suppose that the robot has determined a set of point cloud objects Ok at time

k. For each object o ∈ Ok, a track To is formed. The track is defined by a ordered

set of states To = {xk | k ∈ Ko}. The states are derived from the respective point

cloud data Do ⊂ R3 with o ∈ Ok. Let the point cloud data mean be defined by µok =[
µok1 µok2 µok3

]T
∈ R3. Furthermore, let ∆µok =

[
∆µok1 ∆µok2 ∆µok3

]T
∈ R3

represent the change in mean from previous scan to the current scan. The mean and

its change ∆µok are used to define the object candidates’ states as:

xok =
[
µok1 , µok2 , µok3 ,∆µok1

,∆µok2
,∆µok3

]T
(4.1)

The ordered set Ko corresponds to the index sequence of the segments in the

track. Furthermore, if Ko = {k1, . . . , kN}, then k1 indicates when the the track starts

and kN indicates the last index in the track. Suppose track ends when kN = kE.

As long as the robot continues with its tracking of segment o, the set Ko expands

accordingly.

The robot uses Kalman Filtering and matching object candidates from adjacent

frames to update the states. For Kalman filtering, we use constant velocity model [90] -

similar to [76,77]. However, our algorithm is different from these works as it does not use

bounding box properties to track the segments. This is because using a bounding box

40

can hinder the detection of under-segmentation or over-segmentation errors. Rather,

we use a novel approach based on matching segments from consecutive frames. As

such, the tracking approach consists of three different stages:

(i) Object candidates’ state prediction

(ii) Matching segments from consecutive point cloud data frames to determine cor-

responding segments

(iii) Updating the object candidates’ states

4.3.1. Model States and State Prediction

The dynamics of the states are defined as:

x̂ok = Axxok−1 + uok−1 (4.2)

ŷok = Ayx̂ok + vok−1 (4.3)

where, ŷok indicates the observation, A indicates state transition matrix, and H indi-

cates observation matrix. We assume constant linear velocity for the center coordinates,

so there is no change for ∆ok1
,∆ok2

,∆ok3
from k − 1 to k. Ax and Ay are defined as

follows:

Ax =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ay =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

Here, x̂ok is calculated upon the previous state xok−1 and process noise uok−1, and

ŷok is calculated upon the current state x̂ok and observation noise vok−1. uok and vok

follow Gaussian distributions with zero means and covariances Σ1 and Σ2. These noise

41

parameters are experimentally determined and influence the prediction performance.

4.3.2. Segment Matching

The core part of multi-object tracking is to match the state predictions with the

detected segments in the current scene. The matching based on a similarity matrix

G that is constructed using the set of objects Ok−1 and Ok as determined in two

consecutive instances. For each tuple (o, o′) ∈ Ok × Ok−1, the entry G(o, o′) of this

matrix measures the similarity of the objects o and o′. The similarity measures encodes

two different metrics:

(i) Similarity of positions β1(o, o′)

(ii) Similarity of overall shapes β2(o, o′)

G(o, o′) = ν1 β1(o, o′) + ν2 β2(o, o′) (4.4)

Here, ν1 and ν2 are the weights for similarity matrix. We set these two parameters to

0.5 to use the average of β1(o, o′) and β2(o, o′).

The similarity of positions is computed based on the average distance between

their respective point cloud data. Recall that for each o ∈ Ok represents the set of

Nk−1 point clouds are associated with object o at time k. It is important to state that

the point clouds of the segments at time k − 1 are shifted according to x̂ok. For each

o′ ∈ Ok−1 we construct nearest neighbors models using KD-tree [91]. Finally, position

similarity measure β1(o, o′) of object o ∈ Ok and o′ ∈ Ok−1 feature (β1(o, o′)) is defined

as follows:

β1(o, o′) =
1

||Do||
∑
p∈Do

ζ(p,Do′) (4.5)

42

where ζ(p,Do′) refers to the closest point cloud point in the setDo′ . In some cases,

searching for all points in Do′ can be computationally expensive. To speed up the

calculation, we use a smaller set of randomly selected points from Do′ .

The shape similarity is computed based on comparing their covariance matrices

using Förstner and Moonen’s covariance distance metric [92]. For each o ∈ Ok, let Qo

denote the respective point cloud data Do expressed in spherical coordinates. Shape

similarity β2(o, o′) of two objects o ∈ Ok and o′ ∈ Ok−1 is defined as follows:

β2(o, o′) =

√
trace(ln2(

√
Σ−1
o Σo′

√
Σ−1
o)) (4.6)

where Σo denotes the covariance matrix of Qo.

Using the similarity matrix, we use a greedy algorithm to find matching pairs [77].

The pseudo-code for the greedy algorithm is given in Figure 4.1.

4.3.3. State Updates

The states are updated using matching information as follows:

xok = Axx̂ok + Fk(yok − ŷok) (4.7)

Here, Fk represents Kalman gain matrix, which is recursively calculated, and yok rep-

resents the center coordinates of the matched segment at time k as determined from

the respective point cloud data - namely yok = µok.

43

Input:

G : Similarity matrix

τm: Threshold for matching

Output:

List of matched pairs

Initialization:

MP ⇐ ∅ : matched pairs

Mk−1 ⇐ ∅ matched object from Ok−1

Mk ⇐ ∅ : matched object from Ok
sortedPairs ⇐ IndexPairsSortbyDistance(G)

for n = 1 : |sortedPairs| do

(l, d) = sortedPairs(n)

if l /∈ Mk−1 and d /∈ Mk then

if G(l, d) < τm then

MP .append((l, d))

Mk−1.append(l)

Mk.append(d)

else

break

end if

end if

end for

return MP

Figure 4.1. Greedy algorithm for multi object matching

44

Figure 4.2. T-DSA is incrementally formed as a track evolves

4.4. Temporal DSA

The Temporal DSA (T-DSA) descriptor is the Spatio-temporal extension of the

DSA descriptor to accumulate tracked objects’ instantaneous DSA features. The accu-

mulation is done over the track path of each object with respect to the robot. This is

preferred to encode the relative position change of the object concerning the robot. For

each tracked object o, consider the path Ro in the x1 − x2 plane described by {ck}Ko
as showed in Figure 4.2. Let the length of the path be defined by 2∆o. Let rok denote

the planar distance of the robot to the object at time k as defined by:

rok =
√
µ2
ok1 + µ2

ok2 (4.8)

Now consider the ϕo : Ro ×F → R over this path with values as follows:

ϕo(r, f) =

 ρco(f) if ∃k ∈ Ko s.t. r = rok

ρ0 otherwise
(4.9)

45

As such, spatial samples of ϕok correspond to observations from rok. Hence, for k ∈ Ko,

the function ϕok encodes the knowledge accumulated across the track of object o upto

index k - namely from the start of change in rok track at location rok1 to location rok.

The map ϕo can then be approximated as:

ϕo(r, f) ∼=
H3−1∑
m=0

λmy
T
m(f)e′m(r) (4.10)

where H3 is the number of spatial harmonics, λm is defined as in Eq. 3.2 and e′m(r) is

defined as:

e′m(r) =

 cos(mrπ
∆o

)

sin(mrπ
∆o

)

 ,
The vectors ym(f) are defined as:

ym(f) = 1
∆o

∫ ∆o

−∆o
ϕo(r, f) cos(

mrπ
∆o

)δr∫ ∆o

−∆o
ϕo(r, f) sin(

mrπ
∆o

))δr

 (4.11)

Now, also using the approximation of ρo on the rhs of Eq. 4.12,

ϕo(r, f) ∼=
H3−1∑
m=0

H1−1∑
h1=0

H2−1∑
h2=0

λmλh2hw
T
omh1h2

(e′m(r)⊗ eh1h2(f)) (4.12)

Here, ⊗ denotes the Kronecker product. Namely if A ∈ Rn×m, B ∈ Rp×q, then

A⊗B ∈ Rnp×mq with an ijth block of size p×q specified by aijB. The vector womh1h2 ∈

R8 is defined as:

womh1h2 = 1
∆o

∫ ∆o

−∆o
zoh1h2(r) cos(

mrπ
∆o

)δr∫ ∆o

−∆o
zoh1h2(r) sin(

mrπ
∆o

)δr

 (4.13)

46

Finally, the T-DSA descriptor is obtained by only considering H3 = 0 and

then observing that only the first four terms of wo0h1h2 are non-zero. The descriptor

IAo is formed based on these terms by considering the rotationally invariant H1H2-

dimensional vector:

IAo =
[
IAo0, . . . , I

A
o(H1−1)(H2−1)

]T
(4.14)

where

IAoh1h2
= wTo0h1h2

wo0h1h2 . (4.15)

In practice, the vectors womh1h2 are numerically computed via the discretization

of the continuous integral of Equation 4.13.

4.5. Classification Decisions

The robot has both instantaneous and accumulated knowledge. The formed is

encoded through the DSA descriptors and the latter is encoded by the T-DSA descrip-

tors.

It can use any learning scheme to learn each separately. In this work, we use

MLP classification models. These models are then used to compute the probability of

a descriptor being a given class c. Let U ic(I) represent the probability of c class for the

DSA descriptor I and UAc (I) represent the probability of of c class for the descriptor

IA using the accumulated T-DSA descriptors.

We can then use a variety of different performance measures for classification.

Recall for a tracked object o, Iokh1h2 represents the instantaneous DSA descriptor taken

at discrete time index k and IAoh1h2
represents T-DSA descriptor. These measures are

defined based on whether they use only instantaneous data, accumulated data or both.

47

The following measures consider only instantaneous data:

(i) Measure-1: maxc U(Ioh1h2)

This measure considers instantaneous DSA descriptors only and chooses the class

with the highest probability.

(ii) Measure-2: maxc
1
K
∑

k∈K U(Iokh1h2)

This measure computes the average until time k and chooses the class with the

highest average probability.

Similarly, the robot can consider only accumulated data:

(i) Measure-3: maxc UA(IAoh1h2
)

This measure considers the T-DSA descriptors and chooses the class with the

highest average probability.

(ii) Measure-4: maxc
1
K
∑

k∈K UA(IAokh1h2
)

This measure considers the average T-DSA descriptors based and chooses the

class with the highest average probability

Finally, the robot can also use both and integrate their results:

(i) Measure-5: maxc
1

2K
∑

k∈K U(Iokh1h2) + 1
2K
∑

k∈K UA(IAokh1h2
)

This measure adds probabilities from DSA and T-DSA descriptors and chooses

the class with the highest weighted probability.

4.6. Scene Mapping

In the scene mapping procedure, each object is assigned with its predicted labels

in a unique position according to their center of points. The map frame is originated

where the robot starts moving. The fact that the classification models can change

their decision while the robot is moving. We update the object’s map decision with the

latest decision from the classification model in these circumstances. Scene mapping

48

procedure can work with various decision models of classification models.

4.7. Experimental Results

In this section, we discuss experimental results regarding scene mapping.

4.7.1. Simulation Results

First, we consider indoor settings. To the best of our knowledge, there is no

sequential LIDAR dataset for indoor environments. For this reason, we conduct our

experiments in Gazebo environment using the Velodyne simulator. We consider 15

objects- considering five Gazebo objects with three different categories [93]. The used

objects are given in Figure 4.3. A sample from each class is placed in an environment.

The robot is also randomly placed in this environment with a random heading. It then

starts moving at a random speed as long as it does not reach workspace boundaries.

Throughout its movement, it acquires point cloud data along. This is repeated 15

times for each object sample. Hence, 45 paths are obtained.

Figure 4.3. Learning objects from Gazebo

49

The parameters for learning and scene experiments are given in Table 4.1.

Table 4.1. Parameters for learning and experiments

δφ δψ τφ τψ τρ M1 H1 H2 M2 τm δr

0.2◦ 2◦ 1.5◦ 6◦ 0.8m 5 10 10 2 1 0.1m

The robot uses the incoming data to construct DSA and T-DSA descriptors which

are then used to learn two separate MLP classification models. The learned models are

then used in object classification tests by having the robot move through 3 paths for

the 15 Gazebo objects in a similar (random) manner. In many paths, the results from

the two models turn out to be similar. A sample case is shown in Figure 4.4. Here, both

the instantaneous and accumulated knowledge correctly classify the tracked object as

class 2. This does not turn out to be always the case, as shown in Figure 4.5. Here, it is

observed that the decisions based on the instantaneous DSA descriptor are not correct

in certain instances. However, the accumulated knowledge can continue with correct

decisions regardless. Such an improvement is even more evident in the next case, as

shown in Figure 4.6. Here while both models are observed to yield a greater number of

wrong decisions nevertheless, the performance with accumulated knowledge based on

the T-DSA descriptors is much better. Of course, there are also cases where both the

instantaneous and accumulated knowledge cannot recover from wrong decisions, as is

the case in Figure 4.7. Here, while the ground truth is class 4, the robot’s classification

decision is false.

F
ig

u
re

4.
4.

B
ot

h
in

st
an

ta
n
eo

u
s

an
d

ac
cu

m
u
la

te
d

d
ec

is
io

n
s

ag
re

e.

F
ig

u
re

4.
5.

A
cc

u
m

u
la

te
d

k
n
ow

le
d
ge

co
rr

ec
ts

in
st

an
ta

n
eo

u
s

d
ec

is
io

n
s.

F
ig

u
re

4.
6.

A
cc

u
m

u
la

te
d

k
n
ow

le
d
ge

im
p
ro

ve
s

in
st

an
ta

n
eo

u
s

d
ec

is
io

n
s.

F
ig

u
re

4.
7.

B
ot

h
d
ec

is
io

n
s

ar
e

fa
ls

e
th

ro
u
gh

ou
t

th
e

tr
ac

k
.

54

Table 4.2. Precision Recall F-1 scores for different decision models

Measure Precision Recall F1

Measure-1 0.8269 0.7917 0.7818

Measure-2 0.9036 0.8258 0.8125

Measure-3 0.8906 0.8113 0.7965

Measure-4 0.9214 0.8376 0.8172

Measure-5 0.9169 0.8415 0.8203

Precision, recall, and F1 rates are computed for each measure. The results are

presented in Table 4.2. It is observed that with the T-DSA descriptor, performance im-

proves considerably. The decision reaches the highest performance with the Measure-5

decisions that are constructed with all accumulation information and all instantaneous

information in a sequence.

55

(a) Simulation scene-3 (b) Map for simulation scene-3

(c) Simulation scene-8 (d) Map for simulation scene-8

Figure 4.8. Two examples from simulation scenes

After that, we test our approach for various Gazebo scenes by using Measure-

5 decision for object label. Two map examples for simulation scenes are given in

Figure 4.8. It can be easily seen that combining instantaneous DSA with T-DSA

works well for mapping. To map each object in the scene, the T-DSA should be

calculated for the object, and sometimes segmentation errors can cause a lag for T-DSA

calculation. This circumstance can be seen in Figure 4.8d. The overall performance

in eight simulation scene is presented in Table 4.3. There are some similar objects in

terms of depth manner, such as desk and sofa. For this reason, the proposed approach

often confuses desk with sofa set. This problem should be solved adding more different

objects in the data set.

56

Table 4.3. Simulation mapping results

Scene Number
Chair Chair set Sofa set Human Desk

Expected Found Expected Found Expected Found Expected Found Expected Found

1 2 2 1 1 0 0 1 1 0 0

2 0 1 1 0 3 3 2 2 0 0

3 1 1 0 0 1 3 2 2 1 0

4 3 3 1 0 0 0 4 4 0 0

5 1 1 1 1 1 1 2 2 1 1

6 1 1 0 0 1 3 2 2 3 1

7 3 3 1 1 2 2 3 3 0 0

8 1 0 3 3 1 1 2 2 1 1

4.7.2. Real Life Results

The proposed approach has also been tested with a real mobile robot. For this,

a Kobuki-Turtlebot endowed with a Velodyne VLP-16 sensor has been used. In these

experiments, the robot uses directly uses the object models as learned in the simulation

experiments. The robot is made to navigate in four different scenes with varying

number of objects. Two sample scenes are shown in Figure 4.9. The task is simplified

so that the robot classifies only nearby objects. Hence, the robot considers point cloud

data only within 2 meters of distance. The results are given in Table 4.4. It is observed

that both recall and precision decreases compared to the simulation results. This is

partly attributed to the fact that the robot uses models trained in simulation.

Table 4.4. Real life mapping results

Scene Number
Chair Chair set Sofa set Human Desk

Robot Movement
Expected Found Expected Found Expected Found Expected Found Expected Found

1 1 1 0 0 0 0 0 0 0 0 1.72m

2 2 1 0 1 0 0 0 0 0 0 1.87m

3 2 2 0 0 0 0 1 0 0 0 1.41m

4 0 0 0 0 1 1 1 1 0 0 1.64m

57

(a) Real scene-1 (b) Map for real scene-1

(c) Real scene-2 (d) Map for real scene-2

Figure 4.9. Two examples from Gazebo scenes

58

5. CONCLUSION AND FUTURE WORK

The main focus of the thesis is to improve the depth data interpretation capability

of a mobile robot. This is a complex task as it requires the robot to address three

important problems - namely segmentation, point cloud object representation, and

using all the information available. Thanks to the progress in 3D sensing technologies,

3D sensors are being widely used for this purpose. Some of these sensors, such as

Kinect, generates dense point cloud data while others, such as LIDAR, generate sparse

point cloud data. Each has its own advantages concerning factors such as field of view,

available data, and cost. Hence, the proposed approaches must be capable of working

with both types of data.

The first contribution of the thesis pertains to finding object candidates. It

has been shown that extracting meaningful information from sparse data tends to be

difficult. Hence, the proposed approach must be applicable with sparse point cloud

data. For this, a novel approach is presented. Differing from the previous works, the

proposed segmentation method is carried out in spherical coordinates. This enables the

robot to set the segmentation parameters based on the scan parameters of the sensor.

We evaluate this method with LIDAR data from indoor and outdoor settings and show

that the proposed approach can be used to segment sparse point cloud data.

Next, we consider the representation of point cloud objects. The representation

is critical to both object learning and recognition. It must be invariant to pose changes

as much as possible and have low complexity. For this, we propose the deformed sphere

approximation (DSA) descriptor. The DSA descriptor satisfies these important prop-

erties. Furthermore, it can represent both dense and sparse point cloud data. Our

experimental results show that our descriptor reaches the best classification perfor-

mance for LIDAR data, and for Kinect and CAD data, its performance is comparable.

59

Finally, we consider the extension of the DSA descriptor to encode temporal

data. This is because the robot’s analysis of its surroundings cannot be based purely

on instantaneous data. Rather the incoming data continual and temporal coherency

of the data should also be considered in its reasoning. In particular, if the robot is

navigating in its environment, it can accumulate the objects’ sensory data. Hence, the

representation must be capable of encoding accumulated data. For this, we propose the

temporal DSA (T-DSA) descriptor. The T-DSA descriptor encodes the accumulated

knowledge of objects as the robot is moving around. It is based on tracking the detected

object candidates and accumulate information based on these tracks. For tracking,

a novel method that combines Kalman filtering with point cloud segment matching

is developed. The sensory data coming from each track is then accumulated with

the T-DSA descriptor. Rather than evaluating objects only using instant views, our

experimental results show that robot creates more reliable object classification results

by using sequential object information.

There can be two extensions as future work. The first is to learn the class infor-

mation considering contextual information among objects. The second one is to use

the enhanced class information in place recognition and localization.

60

REFERENCES

1. Douillard, B., J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton and

A. Frenkel, “On the segmentation of 3D LIDAR point clouds”, IEEE International

Conference on Robotics and Automation, pp. 2798–2805, IEEE, 2011.

2. Rabbani, T., F. Van Den Heuvel and G. Vosselmann, “Segmentation of point clouds

using smoothness constraint”, International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences , Vol. 36, No. 5, pp. 248–253, 2006.

3. Rusu, R. B., Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments , Ph.D. Thesis, Computer Science department, Technische

Universitaet Muenchen, Germany, October 2009.

4. Himmelsbach, M., F. V. Hundelshausen and H.-J. Wuensche, “Fast segmentation

of 3D point clouds for ground vehicles”, IEEE Intelligent Vehicles Symposium, pp.

560–565, IEEE, 2010.

5. Luo, Z., M. V. Mohrenschildt and S. Habibi, “A Probability Occupancy Grid Based

Approach for Real-Time LiDAR Ground Segmentation”, IEEE Transactions on

Intelligent Transportation Systems , Vol. 21, No. 3, pp. 998–1010, 2020.

6. Zermas, D., I. Izzat and N. Papanikolopoulos, “Fast segmentation of 3d point

clouds: A paradigm on lidar data for autonomous vehicle applications”, IEEE

International Conference on Robotics and Automation (ICRA), pp. 5067–5073,

IEEE, 2017.

7. Korchev, D., S. Cheng, Y. Owechko et al., “On real-time lidar data segmentation

and classification”, Proceedings of the International Conference on Image Pro-

cessing, Computer Vision, and Pattern Recognition (IPCV), p. 1, The Steering

Committee of The World Congress in Computer Science, 2013.

61

8. Behley, J., V. Steinhage and A. B. Cremers, “Laser-based segment classification us-

ing a mixture of bag-of-words”, IEEE/RSJ International Conference on Intelligent

Robots and Systems , pp. 4195–4200, IEEE, 2013.

9. Pauling, F., M. Bosse and R. Zlot, “Automatic segmentation of 3d laser point

clouds by ellipsoidal region growing”, Australasian Conference on Robotics and

Automation, Vol. 10, 2009.

10. Moosmann, F., O. Pink and C. Stiller, “Segmentation of 3D lidar data in non-flat

urban environments using a local convexity criterion”, IEEE Intelligent Vehicles

Symposium, pp. 215–220, IEEE, 2009.

11. Choe, Y., S. Ahn and M. J. Chung, “Fast point cloud segmentation for an intel-

ligent vehicle using sweeping 2D laser scanners”, 9th International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI), pp. 38–43, IEEE, 2012.

12. Choe, Y., S. Ahn and M. J. Chung, “Online urban object recognition in point

clouds using consecutive point information for urban robotic missions”, Robotics

and Autonomous Systems , Vol. 62, No. 8, pp. 1130–1152, 2014.

13. Klasing, K., D. Wollherr and M. Buss, “A clustering method for efficient segmenta-

tion of 3D laser data”, IEEE international conference on robotics and automation,

pp. 4043–4048, IEEE, 2008.

14. Wang, D. Z., I. Posner and P. Newman, “What could move? finding cars, pedes-

trians and bicyclists in 3d laser data”, IEEE International Conference on Robotics

and Automation, pp. 4038–4044, IEEE, 2012.

15. Held, D., D. Guillory, B. Rebsamen, S. Thrun, S. Savarese, R. Holladay, S. Jav-

dani, A. Dragan, S. Srinivasa, O. Salzman et al., “A Probabilistic Framework for

Real-time 3D Segmentation using Spatial, Temporal, and Semantic Cues”, Journal

Article, Vol. 32, No. 3, pp. 473–483, 2016.

62

16. Bogoslavskyi, I. and C. Stachniss, “Fast range image-based segmentation of sparse

3D laser scans for online operation”, IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pp. 163–169, IEEE, 2016.

17. Bogoslavskyi, I. and C. Stachniss, “Efficient online segmentation for sparse 3d laser

scans”, PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation

Science, Vol. 85, No. 1, pp. 41–52, 2017.

18. Shi, S., X. Wang and H. Li, “Pointrcnn: 3d object proposal generation and detec-

tion from point cloud”, Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 770–779, 2019.

19. Yan, Y., Y. Mao and B. Li, “Second: Sparsely embedded convolutional detection”,

Sensors , Vol. 18, No. 10, p. 3337, 2018.

20. Velodyne, Velodyne Lidar - VLP 16 User Manual, 63-9243 Rev.D ,

https://greenvalleyintl.com/wp-content/uploads/2019/02/

Velodyne-LiDAR-VLP-16-User-Manual.pdf, accessed in January 2021.

21. Geiger, A., “Are we ready for autonomous driving? The KITTI vision bench-

mark suite”, Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 3354–3361, 2012.

22. Han, X., J. S. Jin, J. Xie, M. Wang and W. Jiang, “A comprehensive review of 3D

point cloud descriptors”, CoRR, Vol. abs/1802.02297, 2018, http://arxiv.org/

abs/1802.02297.

23. Rostami, R., F. S. Bashiri, B. Rostami and Z. Yu, “A Survey on Data-Driven 3D

Shape Descriptors”, Computer Graphics Forum, Vol. 38, No. 1, pp. 356–393, 2019.

24. Su, J.-C., M. Gadelha, R. Wang and S. Maji, “A Deeper Look at 3D Shape Clas-

sifiers”, European Conference on Computer Vision, pp. 645–661, Springer, 2018.

63

25. Georgiou, T., Y. Liu, W. Chen and M. Lew, “A survey of traditional and deep

learning-based feature descriptors for high dimensional data in computer vision”,

Int’l J. of Multimedia Information Retrieval , Vol. 9, pp. 135–170, 2020.

26. Chen, C., G. Li, R. Xu, T. Chen, M. Wang and L. Lin, “Clusternet: Deep hier-

archical cluster network with rigorously rotation-invariant representation for point

cloud analysis”, IEEE Conf. on Computer Vision and Pattern Recognition, pp.

4994–5002, 2019.

27. Yang, Y., C. Feng, Y. Shen and D. Tian, “Foldingnet: Point cloud auto-encoder via

deep grid deformation”, IEEE Conf. on Computer Vision and Pattern Recognition,

pp. 206–215, 2018.

28. Achlioptas, P., O. Diamanti, I. Mitliagkas and L. Guibas, “Learning representations

and generative models for 3d point clouds”, International Conference on Machine

Learning , pp. 40–49, PMLR, 2018.

29. Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao, “3d shapenets:

A deep representation for volumetric shapes”, IEEE Conf. on Computer Vision

and Pattern Recognition, pp. 1912–1920, 2015.

30. Qi, C. R., H. Su, K. Mo and L. J. Guibas, “Pointnet: Deep learning on point

sets for 3d classification and segmentation”, IEEE Conf. on Computer Vision and

Pattern Recognition, pp. 652–660, 2017.

31. Zhi, S., Y. Liu, X. Li and Y. Guo, “LightNet: a lightweight 3D convolutional neural

network for real-time 3D object recognition”, Proceedings of the Workshop on 3D

Object Retrieval , pp. 9–16, 2017.

32. Simonovsky, M. and N. Komodakis, “Dynamic edge-conditioned filters in convolu-

tional neural networks on graphs”, IEEE Conf. on Computer Vision and Pattern

Recognition, pp. 3693–3702, 2017.

64

33. Kumawat, S. and S. Raman, “LP-3DCNN: Unveiling Local Phase in 3D Convo-

lutional Neural Networks”, IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 , pp. 4903–

4912, 2019.

34. Mescheder, L., M. Oechsle, M. Niemeyer, S. Nowozin and A. Geiger, “Occupancy

Networks: Learning 3D Reconstruction in Function Space”, IEEE Conf. on Com-

puter Vision and Pattern Recognition, 2019.

35. Park, J. J., P. Florence, J. Straub, R. A. Newcombe and S. Lovegrove, “DeepSDF:

Learning Continuous Signed Distance Functions for Shape Representation”, IEEE

Conf. on Computer Vision and Pattern Recognition, pp. 165–174, Computer Vision

Foundation, 2019.

36. Tatarchenko, M., S. R. Richter, R. Ranftl, Z. Li, V. Koltun and T. Brox, “What

Do Single-view 3D Reconstruction Networks Learn?”, CoRR, Vol. abs/1905.03678,

2019.

37. Johnson, A. and M. Hebert, “Surface matching for object recognition in complex

three-dimensional scenes”, Image and Vision Computing , Vol. 16, No. 9, pp. 635

– 651, 1998.

38. Guo, Y., F. Sohel, M. Bennamoun, M. Lu and J. Wan, “Rotational Projection

Statistics for 3D Local Surface Description and Object Recognition”, International

Journal of Computer Vision, Vol. 105, No. 1, p. 63, 2013.

39. Rusu, R. B., A. Holzbach, M. Beetz and G. Bradski, “Detecting and segmenting

objects for mobile manipulation”, IEEE 12th International Conference on Com-

puter Vision Workshops, ICCV Workshops , pp. 47–54, IEEE Computer Society,

2009.

40. Qi, C. R., L. Yi, H. Su and L. J. Guibas, “PointNet++: Deep Hierarchical Feature

65

Learning on Point Sets in a Metric Space”, arXiv preprint arXiv:1706.02413 , 2017.

41. Maturana, D. and S. Scherer, “Voxnet: A 3d convolutional neural network for real-

time object recognition”, IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems ,

pp. 922–928, IEEE, 2015.

42. Sedaghat, N., M. Zolfaghari, E. Amiri and T. Brox, “Orientation-boosted voxel

nets for 3d object recognition”, arXiv preprint arXiv:1604.03351 , 2016.

43. Wang, P., Y. Liu, Y. Guo, C. Sun and X. Tong, “O-CNN: Octree-based Convolu-

tional Neural Networks for 3D Shape Analysis”, CoRR, Vol. abs/1712.01537, 2017,

http://arxiv.org/abs/1712.01537.

44. Feng, Y., Y. Feng, H. You, X. Zhao and Y. Gao, “MeshNet: Mesh Neural Network

for 3D Shape Representation”, CoRR, Vol. abs/1811.11424, 2018.

45. Esteves, C., C. Allen-Blanchette, A. Makadia and K. Daniilidis, “Learning SO(3)

Equivariant Representations with Spherical CNNs”, Proceedings of the European

Conference on Computer Vision (ECCV), September 2018.

46. Rao, Y., J. Lu and J. Zhou, “Spherical Fractal Convolutional Neural Networks

for Point Cloud Recognition”, IEEE/CVF Conf. on Computer Vision and Pattern

Recognition, pp. 452–460, 2019.

47. Su, H., S. Maji, E. Kalogerakis and E. Learned-Miller, “Multi-view convolutional

neural networks for 3d shape recognition”, IEEE Int’l Conf. on Computer Vision,

pp. 945–953, 2015.

48. Mitchell, E., K. S. Engin, V. Isler and D. D. Lee, “Higher-Order Function

Networks for Learning Composable 3D Object Representations”, CoRR, Vol.

abs/1907.10388, 2019.

49. Gezawa, A. S., Y. Zhang, Q. Wang and L. Yunqi, “A Review on Deep Learning

66

Approaches for 3D Data Representations in Retrieval and Classifications”, IEEE

Access , Vol. 8, pp. 57566–57593, 2020.

50. Rusu, R. B., G. Bradski, R. Thibaux and J. Hsu, “Fast 3d recognition and pose

using the viewpoint feature histogram”, IEEE/RSJ International Conference on

Intelligent Robots and Systems , pp. 2155–2162, IEEE, 2010.

51. Wohlkinger, W. and M. Vincze, “Ensemble of shape functions for 3d object clas-

sification”, IEEE Int’l Conference on Robotics and Biomimetics , pp. 2987–2992,

IEEE, 2011.

52. Hana, X.-F., J. S. Jin, J. Xie, M.-J. Wang and W. Jiang, “A comprehensive review

of 3d point cloud descriptors”, arXiv preprint arXiv:1802.02297 , 2018.

53. De Deuge, M., A. Quadros, C. Hung and B. Douillard, “Unsupervised feature

learning for classification of outdoor 3d scans”, Australasian Conference on Robitics

and Automation, Vol. 2, p. 1, 2013.

54. Chen, T., B. Dai, D. Liu and J. Song, “Performance of global descriptors for

velodyne-based urban object recognition”, IEEE Intelligent Vehicles Symposium

Proceedings , pp. 667–673, IEEE, 2014.

55. Shilane, P., P. Min, M. Kazhdan and T. Funkhouser, “The Princeton Shape Bench-

mark”, Proceedings of the Shape Modeling International 2004 , p. 167–178, 2004.

56. Tangelder, H. W. H. and R. C. Veltkamp, “A survey of content based 3D shape

retrieval methods”, Multimed Tools Appl , Vol. 39, pp. 441–471, 2008.

57. Driscoll, J. R. and D. M. Healy, “Computing Fourier Transforms and Convolutions

on the 2-Sphere”, Adv. Appl. Math., Vol. 15, No. 2, p. 202–250, 1994.

58. Burel, G. and H. Henocq, “Three-dimensional invariants and their application to

object recognition”, Signal processing , Vol. 45, No. 1, pp. 1–22, 1995.

67

59. Staib, L. H. and J. S. Duncan, “Model-based deformable surface finding for medical

images”, IEEE Transactions on Medical Imaging , Vol. 15, No. 5, pp. 720–731, 1996.

60. Kazhdan, M., T. Funkhouser and S. Rusinkiewicz, “Rotation Invariant Spheri-

cal Harmonic Representation of 3D Shape Descriptors”, L. Kobbelt, P. Schroeder

and H. Hoppe (Editors), Eurographics Symposium on Geometry Processing , The

Eurographics Association, 2003.

61. Zhi, S., Y. Liu, X. Li and Y. Guo, “Toward real-time 3D object recognition: A

lightweight volumetric CNN framework using multitask learning”, Computers &

Graphics , Vol. 71, pp. 199–207, 2018.

62. Lan, S., R. Yu, G. Yu and L. S. Davis, “Modeling local geometric structure of 3d

point clouds using geo-cnn”, Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 998–1008, 2019.

63. Erkent, Ö. and H. I. Bozma, “Bubble space and place representation in topological

maps”, The Int’l J. of Robotics Research, Vol. 32, No. 6, pp. 672–689, 2013.

64. Tolstov, G. P., Fourier Series , Prentice-Hall, 1962.

65. Shen, L., H. Farid and M. McPeek, “Modeling three-dimensional morphological

structures using spherical harmonics”, Evolution; International Journal of Organic

Evolution, Vol. 63, No. 4, pp. 1003–1016, 4 2009.

66. Lai, K., L. Bo, X. Ren and D. Fox, “A large-scale hierarchical multi-view rgb-d

object dataset”, IEEE international conference on robotics and automation, pp.

1817–1824, IEEE, 2011.

67. Qi, C. R., L. Yi, H. Su and L. J. Guibas, “PointNet++: Deep Hierarchical Feature

Learning on Point Sets in a Metric Space”, CoRR, Vol. abs/1706.02413, 2017,

http://arxiv.org/abs/1706.02413.

68

68. Katz, S., A. Tal and R. Basri, “Direct Visibility of Point Sets”, ACM Trans. Graph.,

Vol. 26, No. 3, p. 24–1:10, Jul. 2007, https://doi.org/10.1145/1276377.

1276407.

69. Zheng, Z., Y. Li and W. Jun, “LiDAR point cloud registration based on improved

ICP method and SIFT feature”, 2015 IEEE International Conference on Progress

in Informatics and Computing (PIC), pp. 588–592, IEEE, 2015.

70. Cheng, L., S. Chen, X. Liu, H. Xu, Y. Wu, M. Li and Y. Chen, “Registration of

laser scanning point clouds: A review”, Sensors , Vol. 18, No. 5, p. 1641, 2018.

71. Myronenko, A. and X. Song, “Point set registration: Coherent point drift”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 12, pp.

2262–2275, 2010.

72. Tamaki, T., M. Abe, B. Raytchev and K. Kaneda, “Softassign and em-icp on gpu”,

First International Conference on Networking and Computing , pp. 179–183, IEEE,

2010.

73. Karunasekera, H., H. Wang and H. Zhang, “Multiple object tracking with attention

to appearance, structure, motion and size”, IEEE Access , Vol. 7, pp. 104423–

104434, 2019.

74. Osep, A., W. Mehner, M. Mathias and B. Leibe, “Combined image-and world-

space tracking in traffic scenes”, IEEE International Conference on Robotics and

Automation (ICRA), pp. 1988–1995, IEEE, 2017.

75. Wojke, N., A. Bewley and D. Paulus, “Simple online and realtime tracking with

a deep association metric”, IEEE international conference on image processing

(ICIP), pp. 3645–3649, IEEE, 2017.

76. Weng, X., J. Wang, D. Held and K. Kitani, “3d multi-object tracking: A baseline

and new evaluation metrics”, arXiv preprint arXiv:1907.03961 , 2020.

69

77. Chiu, H.-k., A. Prioletti, J. Li and J. Bohg, “Probabilistic 3d multi-object tracking

for autonomous driving”, arXiv preprint arXiv:2001.05673 , 2020.

78. Moosmann, F. and C. Stiller, “Joint self-localization and tracking of generic objects

in 3D range data”, IEEE International Conference on Robotics and Automation,

pp. 1146–1152, IEEE, 2013.

79. Kaestner, R., J. Maye, Y. Pilat and R. Siegwart, “Generative object detection

and tracking in 3d range data”, IEEE International Conference on Robotics and

Automation, pp. 3075–3081, IEEE, 2012.

80. Dewan, A., T. Caselitz, G. D. Tipaldi and W. Burgard, “Motion-based detection

and tracking in 3d lidar scans”, IEEE International Conference on Robotics and

Automation (ICRA), pp. 4508–4513, IEEE, 2016.

81. Weng, X., Y. Wang, Y. Man and K. Kitani, “GNN3DMOT: Graph Neural Net-

work for 3D Multi-Object Tracking with Multi-Feature Learning”, arXiv preprint

arXiv:2006.07327 , 2020.

82. Zhang, W., H. Zhou, S. Sun, Z. Wang, J. Shi and C. C. Loy, “Robust multi-

modality multi-object tracking”, Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pp. 2365–2374, 2019.

83. Luo, W., B. Yang and R. Urtasun, “Fast and furious: Real time end-to-end 3d

detection, tracking and motion forecasting with a single convolutional net”, Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 3569–3577, 2018.

84. Li, X. and J. Guivant, “Efficient and accurate object detection with simultaneous

classification and tracking”, arXiv preprint arXiv:2007.02065 , 2020.

85. Fan, H. and Y. Yang, “PointRNN: Point recurrent neural network for moving point

cloud processing”, arXiv preprint arXiv:1910.08287 , 2019.

70

86. Huang, R., W. Zhang, A. Kundu, C. Pantofaru, D. A. Ross, T. Funkhouser and

A. Fathi, “An LSTM Approach to Temporal 3D Object Detection in LiDAR Point

Clouds”, arXiv preprint arXiv:2007.12392 , 2020.

87. Choy, C., J. Gwak and S. Savarese, “4d spatio-temporal convnets: Minkowski con-

volutional neural networks”, Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 3075–3084, 2019.

88. Stutz, D. and A. Geiger, “Learning 3d shape completion under weak supervision”,

International Journal of Computer Vision, Vol. 128, No. 5, pp. 1162–1181, 2020.

89. Giancola, S., J. Zarzar and B. Ghanem, “Leveraging shape completion for 3d

siamese tracking”, Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 1359–1368, 2019.

90. Kalman, R. E., “A new approach to linear filtering and prediction problems”,

Transactions of the ASME–Journal of Basic Engineering , Vol. 82, pp. 35–45, 1960.

91. Bentley, J. L., “Multidimensional binary search trees used for associative search-

ing”, Communications of the ACM , Vol. 18, No. 9, p. 509–517, 1975.

92. Förstner, W. and B. Moonen, “A metric for covariance matrices”, Geodesy-the

Challenge of the 3rd Millennium, pp. 299–309, Springer, 2003.

93. Rasouli, A. and J. K. Tsotsos, “The effect of color space selection on detectability

and discriminability of colored objects”, arXiv preprint arXiv:1702.05421 , 2017.

71

APPENDIX A: GROUND SEGMENTATION

This section explains the ground segmentation method [6]. In this approach, the

points in the point cloud are sorted in ascending order according to their height. Then,

a certain number of seed points in the sorted point cloud are selected. As LIDAR data

tends to be noisy, the nosily sensed points needs to be eliminated. This is done by

taking account the height of the sensor. Each points in the point cloud is tested using

the height of the seed points and a given threshold for the seed height. If a point is

below the calculated height, it will be taken as a primitive ground plane. Using these

points a ground plane is estimated, and the estimation of the ground plane is enhanced

iteratively by using detected ground points. Two ground extraction examples from

velodyne simulator and KITTI tracking dataset are shown in Figure A.1

72

(a) Raw simulator data (b) Ground segmented simulator data

(c) Raw KITTI data (d) Ground segmented KITTI data

Figure A.1. Ground segmentation examples

73

APPENDIX B: USER GUIDE

This section explains the hardware and software developed.

B.1. Hardware

During the real life experiments Kobuki Turtlebot is used as shown in the FigureB.1.

The robot uses a Velodyne VLP16 and a NVIDIA Jetson Xavier.

Figure B.1. Kobuki Turtlebot

B.2. Software

B.2.1. Software Requirements

The requirements to run the all algorithms are as follows:

• Ubuntu 16.04 or Ubuntu 18.04

• ROS Kinetic or Melodic

• Frugally-deep

74

B.2.2. Running software on the robot

NVIDIA Jetson Xavier and Velodyne VLP16 should be connected to the power

using external power outputs of Kobuki Turtlebot. Then, in order to use the developed

software, the following steps need to be followed:

• Open a new terminal and execute the command:

roslaunch velodyne pointcloud VLP16 points.launch

• To filter the noise in point cloud points, execute the command:

rosrun lidar process statistical outliers removal

• To segment the ground plane from the velodyne scan, execute the command:

rosrun lidar process ground segmentation

• To run DBS segmentation, execute the command:

rosrun lidar process segmentation image

• To publish robot odometry, execute the command:

rosrun lidar process pose taker

• Tracking, class prediction and decision processes can be run via this command:

rosrun tracker tracker

• To visualize the constructed map, execute this command:

rosrun tracker map.py

• To move the robot, follow this command:

rosrun tracker move velodyne.py

