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ABSTRACT

CLASSIFICATION AND DETECTION OF WHEEZES IN

RESPIRATORY SOUNDS

Analyzing respiratory sounds and detecting anomalies in them with intelligent

computer algorithms has opened a new era for auscultation that has 250 years of

history. These algorithms can overcome the drawbacks of conventional stethoscopes

and support medics about auscultation.

In this thesis, a new intelligent algorithm to detect wheezes superimposed on

vesicular sounds is developed and presented. Detection of wheezes with intelligent al-

gorithms is one of the hot topics currently being researched by many researchers. They

are continuous musical adventitious respiratory sounds. Their duration, intensity, and

phase in respiratory sounds give essential information for the diagnosis and prognosis

of respiratory diseases.

In this study, one of the aims is to determine the best discriminative features

among nine features which are mostly used in other researches. The other aim is

to find the best-performed machine learning classifier to classify wheezes and normal

respiratory sounds.

Last, we created a novel detection algorithm is presented to detect correctly the

wheeze interval in recorded respiratory sounds by employing selected machine learning

model to respiratory sounds.
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ÖZET

SOLUNUM SESLERİNDE BULUNAN HIRILTI SESLERİNİ

SINIFLANDIRMA ve TESPİT ETME

Solunum seslerini akıllı bilgisayar algoritmaları ile analiz etmek ve içindeki nor-

mal olmayan solunum seslerini teşhis etmek 250 yıllık geçmişe sahip oskultasyon yönte-

minde yeni bir çağ başlatmıştır. Bu algoritmalar oskultasyon konusunda geleneksel

steteskopların problemlerini çözebilir ve sağlık çalışanlarını destekleyebilirler.

Bu tezde, hırıltı seslerini normal solunum seslerinin arasından tespit etmeyi sağla-

yan yeni bir akıllı algoritma geliştirildi ve sunuldu. Hırıltı seslerini akıllı algortimalar

ile tesbit etmek günümüzde bir çok araştırmacı tarafından çalışılmaktadır. Hırıltılar

sürekli ve normal olmayan solunum sesleri olarak tanımlanabilirler. Müzikal bir yapıya

sahiptirler. Süresi, yoğunluğu ve nefes alış verişinini hangi evresinde olduğu verisi,

akciğer hastalıklarının teşhisi ve durumu hakkında önemli bilgiler verir. Bu çalışmadaki

hedeflerden biri daha önceki araştırmalarda hırıltı belirlemede kullanılan 9 tane ses

özelliği arasıdan, en ayırıcı olanlarını belirlemektir. Ayrıca, bu özellikleri kullanarak

hırıltı seslerini ayırt edebilen en başarılı makine öğrenmesi algoritmasını da bulunması

hedeflendi.

Son olarak, en başarılı sonuçları veren makine öğrenmesi modelini kullanarak

hırıltı seslerini normal solunum seslerinden ayırt etmeyi sağlayan yeni bir algoritma

geliştirildi.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xviii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Respiratory Sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Lung sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2. Normal Respiratory Sounds . . . . . . . . . . . . . . . . . . . . 5

1.2.3. Adventitious sounds . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3.1. Crackles . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3.2. Wheezes . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3. Computerized Wheeze Detection Algorithms . . . . . . . . . . . . . . . 12

1.4. Motivation and Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1. Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1. Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Renyi Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. Percentile Frequency Ratios . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4. Mean Crossing Irregularity . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5. Autoregressive Model (AR) parameters . . . . . . . . . . . . . . . . . . 34

3.6. Mel Frequency Cepstral Coe�cients . . . . . . . . . . . . . . . . . . . . 39

3.7. Audio Spectral Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8. Tonality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vii

3.9. FFT Peak-Baseline Di↵erence in dB . . . . . . . . . . . . . . . . . . . . 52

4. CLASSIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1. Result Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2. Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . . . . . 55

4.2.1. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2. Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3. k-Nearest Neighbour (k-NN) . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2. Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4. Bayesian Classifier with Gaussian Likelihood . . . . . . . . . . . . . . . 64

4.4.1. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2. Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5. Result: Best Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5. FEATURE SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1. P Values of Each Feature . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2. Forward Sequential Feature Selection Algorithm . . . . . . . . . . . . . 69

5.3. Backward Sequential Feature Selection Algorithm . . . . . . . . . . . . 71

5.4. Brute-Force Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 73

5.5. Correlations Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6. Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . 77

5.7. Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . . . . 83

5.8. Computational Time Consumption of Each Feature . . . . . . . . . . . 86

5.9. Result: Best Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6. DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1. Windowing and Feature Calculation . . . . . . . . . . . . . . . . . . . . 88

6.2. Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3. Wheeze decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4. Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



viii

LIST OF FIGURES
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1

1. INTRODUCTION

1.1. Background

Over the centuries, mankind has been trying to understand human physiology

and trying to diagnose diseases by trying many kinds of methods. To understand the

nature of the lungs and heart, it was apparent that body sounds play a crucial role in

examining patient. Listening to the chest wall and understanding the sound of lungs

and hearth opened a new way to cure the lung and heart diseases [1].

Before the invention of the stethoscope in 1816, physicians used to listen to body

sounds with ”immediate auscultation” in order to uncover possible respiratory and

heart diseases. A French doctor, Rene’ The’ophile Hyacinth Laënnec, was the first

physician using a conic paper to amplify the chest sound. Laënnec rolled a piece

of conic paper and put slim side on the chest wall of the patient. When he gave

ear the other side of the conic paper, he noticed that sound was louder and more

apparent than the earlier method ”immediate auscultation.” After the discovering the

exceptional benefit of conic paper in auscultation, he developed the idea by inventing

monaural wooden tubes in Figure 1.1 which were later named stethoscope [2]. The

word ”stethoscope” is combined with two Greek words which are stethos and scopos.

Stethos means ”chest or breast” and the su�x -scope used for the instruments for

seeing. After the invention, this iconic device has changed and improved many times

to become the present form [1].

For decades, conventional stethoscope auscultation has been the primary tool

for monitoring the lungs in order to detect possible respiratory diseases. Though it

is a widely used method, it has many disadvantages that lower the diagnostic quality

because of its old architecture between the body surface and physician’s ear. The most

prominent drawback of the conventional stethoscope is the frequency response of the

device. It only amplifies lower than 112 Hz and attenuates higher frequencies [3]. On
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Figure 1.1. Laënnec’s stethoscope: Monaural wooden tubes

the other hand, this study [4] shows frequency of normal respiratory sounds spreads up

to 2000 Hz and this value approaches to 6000 Hz in pathological conditions. Therefore,

traditional stethoscopes are not capable of detecting high pitched adventitious sounds

superimposed on vesicular sounds.

The weakness of human hearing capability is the other drawback of a traditional

stethoscope. Individuals mainly focus on what they desire to hear while neglecting

other sounds. This inclusive ability in our auditory system is described as selective

hearing or selective auditory attention [1]. Even though selective hearing is a facilitator

of human life, it can be a di�culty for physicians in detecting adventitious respiratory

sounds. Typically, adventitious sounds can easily coincide with other abnormal sounds

in vesicular sounds so that physicians have a probability of dismissing some of the

abnormal sounds that occur simultaneously or sequentially. One study states that

family physicians in the United States are only able to detect about 80% of wheeze in

recorded a series of recorded pulmonary sounds [5].

Advances in computer systems in today’s world lead to rapid development in

healthcare. Recording health data and graphical representations of health analysis

open improved ways in diagnosing diseases and making assessments. Unfortunately,
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conventional stethoscopes have not such technology for recording respiratory sounds

or making graphical output representations [3].

Several electronic stethoscopes have been introduced to fulfill the need for a bet-

ter auscultation tool for the last two decades. These modern stethoscopes have clear

advantages in recording respiratory sounds and amplifying them. After the starting

of usage of the electronic stethoscopes, digitized respiratory sound analysis techniques

have been developed fast and created structured and objective ways to overcome draw-

backs mentioned above.

Figure 1.2. An electronic Stethoscope

Electronic stethoscopes and new pulmonary sound analysis techniques can solve

the information loss problem, which is originated from the frequency response of tra-

ditional stethoscope. They also increase the diagnostic value of auscultation by using

intelligent algorithms, which detect and classify anomalies in respiratory sounds. Also,

remote medical screening may be possible even by non-medics who are unable to reach

doctors and medical facilities. Respiratory sounds can be stored for further assessments

of individuals and for teaching purposes in respiratory lectures at medical schools by

the help of electronic stethoscopes.
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These studies [3, 6, 7] show the improvement of the development of electronic

stethoscopes and possible abilities they o↵er improving healthcare in pulmonary spe-

cialty.

1.2. Respiratory Sounds

Breathing or ”external respiration” was developed around 428 million years ago on

land [8] for making gas exchange with the internal environment of livings by transferring

air into and out of the lungs. In human physiology, respiratory sounds are defined as

all sounds corresponding to respiration, which includes adventitious sounds, breath

sounds, snoring sounds, couch sounds, and respiratory muscle sounds [9]. Figure 1.3

shows the basis of the respiratory sound terminology and their classification.

Figure 1.3. Basis of the respiratory sound terminology

1.2.1. Lung sounds

All respiratory sounds which are heard over the chest wall are defined as lung

sounds, which include the adventitious sounds and normal sounds, as seen in Figure 1.3.

Airflow into and out of airways in the lungs generates these sounds, which have two-
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phase, inspiratory and expiratory phases.

Lung sounds di↵erentiate for every individual because they are highly correlated

with body anatomy and physiology. Moreover, many factors such as gender, age, body

mass and height, the location that sounds are heard at, a↵ect these sounds [10].

1.2.2. Normal Respiratory Sounds

Respiratory sounds consist of both normal and adventitious sounds, which are

heard over the chest wall and trachea. Normal breath sounds or normal respiratory

sounds are nonmusical sounds which are recorded over chest of healthy subjects. These

sounds usually include no adventitious sound. They are generally heard in the inspi-

ration phase rather than the expiration phase, and they peak on low-frequency com-

ponents so that high-frequency components are not audible. However, the amplitude

of normal breath sounds is a↵ected by the body and chest locations where they are

heard [3].

The normal respiratory sounds above 300 Hz originate from the turbulent airflow

vertex; on the other hand, the source of sound below 300 Hz is uncertain [11]. On the

other hand, nearly 500 Hz (131–552.5 Hz) is the median frequency (F50) for normal

breath sounds and their peak is between 100 and 200 Hz [10]. The chest wall and the

lungs attenuate the normal respiratory sounds heard, and they act as low pass filters so

that most of the energy of normal respiratory sounds drops above 300 Hz [11]. Because

of the internal structure of the human anatomy, it is hard to hear normal respiratory

sounds especially when they mix with the cardiovascular system sounds and muscle

sounds. Fortunately, the normal sounds above 800 Hz can be recorded with the proper

microphones such as electret microphones.

Figure 1.4 shows graphical representations of the 15 seconds healthy individual’s

normal breath sounds according to time.
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Figure 1.4. Plot of a Normal Respiratory Sound waves

1.2.3. Adventitious sounds

In certain pathological conditions of lungs and airways, respiratory sounds contain

additional abnormal sounds when individuals inhale and exhale. These unusual sounds

can also be called adventitious sounds. There are two main types of adventitious

sounds, which are continuous, e.g., wheezes, and discontinuous adventitious sounds,

e.g., crackles [9]. On the other hand, some adventitious sounds like squawks can possess

both continuous and discontinuous characteristics. Adventitious sounds mostly are

the indication of pulmonary diseases, and they are essential for earlier detection and

prognosis of respiratory diseases.

1.2.3.1. Crackles. Crackles are nonmusical, brief, explosive, and intermittent adventi-

tious sounds heard mostly during inspiration rather than during expiration [10]. They

are examples of discontinuous adventitious sounds. According to Paul Forgacs, they

are caused by sudden opening and closing of airways to equalize gas pressures inside

and outside of airways. He thought that opening and closing of each airway induces
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a single crackle and he was the first person who theorized the crackles as above in

1967 [12].

Later, stress-relaxation quadrapoles were submitted as a mathematical model

of crackles by Fredberg and Holford. Their theory enhances Forgacs theory. Forgacs

theory defend that crackles are triggered by the gas pressure change inside lung airways.

Fredberg and Holford introduce the elastic stress change inside and near airway surfaces

as a reason of the crackles. Stress change in airways produces the dynamic events which

generates sound waves. They also showed the authentic waveform of crackle signals,

as seen in figure 1.5 [13].

Figure 1.5. Plot of a pathological respiratory sound with crackles and a crackle wave

Another study [14] also showed that the properties of airways a↵ect the type

of crackles. Shorter airways generate crackles of shorter duration. Moreover, crackles’

duration and pitch di↵erentiate them as course crackles and fine crackles. Fine crackles

have relatively short duration in contrast to coarse crackles. Moreover, low-frequency

components are dominant in course crackles rather than fine crackles [15].
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Crackles may also exist in breath sounds of healthy people [16,17]. In one study

[16], the lung sounds of 44 volunteers who are non-smokers and have no lung disease are

recorded over the anterior chest. More than 50 per cent of healthy lung sounds contains

crackles during the inspiration phase from a low-level lung volume. Additionally, it is

observed that the occurrence of crackles may disappear in repeated auscultation after

coaching due to the increased lung volume. These indications show that occurring of

crackles are not always the indication of pathological lung diseases. The number of

crackles decreases naturally because of deflated airways opening.

Number of detected crackles, their specific location and their phase during the

respiratory cycle (inspiration and expiration) are essential symptoms for the degree of

lung disease and airways disorder. Because of their short duration and low intensity,

their detection and characterization is not simple by traditional normal auscultation.

Furthermore, the frequency range of crackles is specified as 100 to 2000 Hz. The

frequency of crackles are highly correlated with the diameter of airways. Airways with

higher diameter produces low-frequency crackles and vice-versa [10].

Figure 1.6. A crackle waveform and its measurements

Subsequent measurements are employed to the waveform to detect crackles. Fig-
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ure 1.6 shows the general waveform of crackles which arises with an initial deflection

and continues with a damped sinusoidal wave along. The duration between the first

deflection and the beginning of crackle is defined as initial deflection (IDW). Addition-

ally, the duration from the beginning of crackle to the point which two-cycle completed

is the two-cycle duration (2CD). Total duration width (TDW) is the total duration of

crackle waveform.

Table 1.1 summarizes the American Thoracic Society (ATS) and Computerized

Respiratory Sound Analysis (CORSA) groups suggestions about the above measure-

ments in milliseconds.

Table 1.1. Properties used for the classification of crackles according to ATS and

CORSA

Intensity Pitch IDW (ATS) 2CD (ATS) 2CD (CORSA)

Course Crackles Loud Low About 1.5 ms About 10 ms >10 ms

Fine Crackles Less loud Higher About 0.7 ms <5 ms <10 ms

1.2.3.2. Wheezes. Wheezes are continuous adventitious sounds which are superim-

posed on breath sounds. They play a vital role in the diagnosis and prognosis of res-

piratory diseases such as obstructive airway pathologies. They have a musical nature

because of their narrow frequency bands rather than crackles [10].

The interaction between gas moving through lung airways and airway wall causes

oscillation, which generates musical sounds. These musical sounds, wheezes, are often

associated with musical instruments that use the wind to generate sound [18]. For

example, Forgacs [12] linked the mechanism of wheeze with the toy trumpet. Toy

trumpet produce sounds by vibrating reed, and these sounds are characterized by the

elasticity and mass of reed. Like in toy trumpets, he stated that the pitch of wheeze

is influenced by mass and flexibility of airways, not by the size or length of the lung

airway, which was suggested by Laënnec.
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Figure 1.7. Plot of a pathological respiratory sound with wheezes and a wheeze wave
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The mathematical model of wheezing was presented by Grotberg and Davis in

1980 [19]. Their model gives a prediction about the oscillation of airways’ wall in col-

lapsible tubes when the gas flow velocity is greater than limitation of airways diameter.

They suggested that flow is always limited when wheezing occurs; however, a limited

flow may not always generate wheezes.

Wheezes can be divided into two categories according to their frequency charac-

teristics. Monophonic wheezes that have a single dominant frequency behaves like a

single musical tone, whereas poly-phonic wheezes have more than one musical tone [20].

Wheezes are not always an indication of pulmonary diseases, and they can be

detected in healthy subjects’ lung sounds through forced expiration [18]. Also, the

detection of wheezes is relatively easier than the detection of crackles because wheezes

are generally louder than normal breath sounds. They can be heard by auscultation

over the larynx and at the subjects’ mouths [10].

The word ”continuous” is mostly used for wheezes because of their longer duration

than crackles. According to the American Thoracic Society (ATS), wheezes are longer

than 250 ms, on the other hand, Computerized Respiratory Sound Analysis (CORSA)

groups defined that duration of wheezes is longer than 100 ms. Besides, these studies

[21, 22] defend that their duration is longer than 50 and 100 ms relatively. Another

study [22] also defends that the duration of wheezes is shorter than 250 ms.
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Table 1.2. Durations of Wheezes

Duration(ATS) Duration(CORSA) Duration(Taplidou et al. [22])

Wheeze > 250 ms > 100 ms > 100 ms < 250 ms

The frequency range of wheezes is also not entirely clear. ATS specifies that

400 Hz is the dominant frequency for wheezes [23]; on the other hand, according to

definitions of CORSA guidelines, wheezes have a dominant frequency higher than 100

Hz [9]. One study [15] presents that wheezes have a frequency band between 100 to

2500 Hz.

Table 1.3. Frequency Ranges of Wheezes

DF (ATS) DF (CORSA) Frequency Range (Reichert et al. [15])

Wheeze About 400 Hz >100 Hz >100 Hz <2500 Hz

DF: Dominant Frequency

Many pathologies are interconnected with continuous adventitious sounds, wheezes.

Their dominant frequency, numbers, and locations on lungs are crucial clinical features

to evaluate the hardness of airway obstruction and to observe its progress. The list

which is presented by Meslier and Charbonneau [18] in table 1.4 is the list of diseases

associated with wheezes.

1.3. Computerized Wheeze Detection Algorithms

According to the World Health Organization, chronic obstructive pulmonary dis-

eases are the third cause of death all over the world. They are in charge of more than

18% percent of deaths every year [24]. Monitoring this illnesses and early detection of
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Table 1.4. Diseases related with wheezes

Asthma

Infections, whooping cough, croup, acute tracheobronchitis

Tracheal stenosis

Foreign body aspiration

Pulmonary oedema

Chronic obstructive pulmonary disease

Bronchorrhoeal states, for example bronchiectasis, chronic bronchitis

Tracheal stenosis

them play an essential role in decreasing the death rate. For this reason, automatic de-

tection of respiratory anomalies such as identification and detection of wheezes has been

a notable research of interest. With the help of the electronic stethoscopes, researchers

attain a new chance to record respiratory sounds and develop new algorithms to au-

tomatically label wheezes in these recorded breath sounds. Di↵erent discriminatory

features with various classifiers have been used to label abnormal sounds in di↵erent

studies for years. Some of the features which several studies use are briefly reviewed

in the following.

Orjuela-Canon et al. [25] created 13 artificial neural network classifier with Mel

frequency cepstral coe�cients (MFCC). By using the Leave One Out Cross -Validation

method, he achieved to detect all wheeze with a 100 % detection rate. On the other

hand, their algorithm detects normal breath sounds with an accuracy of 80%.

Another study [26] also revealed that Mel frequency cepstral coe�cients (MFCC)

are more discriminative than Linear Predictive Coding features and wavelet transform

features. Bahoura et al. found the best accuracy as 94.2% specificity and 97.2%

sensitivity by using Gaussian Mixture Model (GMM) with 24 MFCC among Vectorial
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Quantification (VQ) and Multilayer Perceptron (MLP).

Oweis et al. [27] announced a 98.6% accuracy by applying 32 averaged power

spectrum features to the Artificial Neural Network to classify normal and abnormal

respiratory sounds, including events of wheeze events.

Mendes et al. [28] used features from spectrogram space and features usually

employed in the context of Music Information Retrieval. Mendes reached the best

result as 92.7% sensitivity and 90.9% specificity with the Random Forest Algorithm.

Wisniewski and Zielinski [29] worked with two features: Tonality Index (TI) and

Audio Spectral Envelope (ASE). They are widely used technics for compressing sound

files with MPEG standards. Wisniewski and Zielinski reported Area Under Curve

(AUC) performance of 0.905 for TI and 0.951 for ASE by using the Support Vector

Machine (SVM) classifier.

Kurtosis, Renyi entropy, quartile frequency ratios, and Mean Crossing Irregularity

(MCI) are applied with Fischer Discriminant Analysis by Aydore et al [30]. They

reached the accuracy of 93.5% in detecting wheeze and non-wheeze sound pieces.

Oletic et al. [31] worked on the LPC error ratio to detect wheeze, which is su-

perimposed on normal respiratory sound. They used a simple threshold classifier and

reached an accuracy of 90.29% in classifying wheezes.

Also, Liu et al. [32] employed entropy features with a simple threshold classifier

to detect wheeze, stridor, crackle, and normal respiratory sound. They achieved 70%

accuracy for wheezes and 99 for normal lung sounds on 45 recordings.

Finally, the di↵erentiation of monophonic and polyphonic wheezes is another

major topic that was researched by Ulukaya et al. [33]. They used mean crossing irreg-

ularity and multiple quartile frequency ratios with several classifiers (Support Vector
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Machine, k-Nearest Neighbour and Naive Bayesian). They achieved 75.78% accuracy

as the best result by using k-Nearest Neighbour.

1.4. Motivation and Aim

This thesis aims to state the highest discriminative features and to select the

best-performed classifier to detect wheezes superimposed on respiratory sound.

The issues originated from the conventional auscultation mentioned in Section 1.1

can be alleviated by the intelligent algorithms which detect the anomalies in respira-

tory sounds recorded by electronic stethoscopes. Wheezes contain valuable information

about lung diseases so that monitoring the occurrence of wheezes in respiratory sounds

plays a vital role in diseases mentioned in Table 1.4. On the other hand, in day to

day management of these diseases, patients are generally asked to log the experience of

wheezes because wheezes that occur at night give diagnostic information, and logging

them is essential. Wearable smart stethoscopes can solve this problem and help contin-

uous monitoring of wheezes. Automatic wheeze detection algorithms identify wheezes

from recorded respiratory sounds by the help of smart stethoscopes. So, wheeze detec-

tion algorithms are a crucial part of the automatic lung sound analysis.

In another study, Renard et al. [34] reviewed 25 di↵erent types of features prac-

ticed in earlier studies. They presented the performance of the features individually

by using a simple linear threshold to classify wheeze and normal respiratory sounds.

Their main aim is to find the feature that gives the best-performance in mobile, battery-

powered wearable devices. So, they choose simple classifiers that consume less compu-

tational load. Today, many IoT devices connect to the servers with high computational

power via the internet. So, running algorithms on the IoT devices will no longer be

needed. Fast server computers can analyze respiratory sounds and perform compli-

cated classifiers to detect wheezes. Figure 1.9 shows the system schematics of the

block diagram of a smart stethoscope system.
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Figure 1.8. The block diagram of a Smart Stethoscope System

In this thesis, more complex classification methods such as Support Vector Ma-

chines are used to distinguish wheeze and non-wheeze sounds to increase the perfor-

mance of accuracy. Moreover, using multiple features are suitable for many applica-

tions with the help of server computers with high computational ability. Therefore,

the best feature set that includes numerous features is presented with the best classifi-

cation method. Following properties will be considered to select the best classification

method:

• Model accuracy

• Model sensitivity

• Model specificity

• Model F1 score

In this thesis, nine features in Table 1.5 are selected to observe their discriminative

abilities on classifying wheezes.

First, features are calculated for every window as detailed in Chapter 2, and

relative frequency histograms of features for the wheeze and non-wheeze windows are
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Table 1.5. Features which are selected to observe their discriminative abilities on

classifying wheezes

Kurtosis

Renyi Entropy

Percentile Frequency Ratios

Mean Crossing Irregularity

Auto Regression Paramaters

Tonality Index

Audio Spectral Envelope

Mel Frequency Cepstral Coe�cient

FFT Peak Baseline Di↵erence in dB

shown to distinguish the di↵erence between classes visually.

Second, the following classifiers are applied to the feature set, and their perfor-

mance metrics are compared.

• Support Vector Machines (SVM)

• K Nearest Neighbour (K-NN)

• Bayesian Classifier with Gaussian Likelihood

Third, the next feature selection techniques are used to state the best set of features

that separates wheeze and normal sounds.

• P Values

• Forward Sequential Feature Selection Algorithm

• Backward Sequential Feature Selection Algorithm

• Brute-Force Feature Selection

• Principal Component Analysis (PCA)
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• Linear Discriminative Analysis (LDA)

• Computational Time of Each Feature

As the last step, the wheeze detection algorithm for all fifteen seconds of respiratory

sounds is developed with the best classifier obtained.This thesis presents the result and

details of the detection algorithm.

Figure 1.9. The block diagram of wheeze classification and detection
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2. DATA

The dataset used in this work contains 34 recordings from 7 subjects (four

males and three females). Three subjects have chronic obstructive pulmonary dis-

ease (COPD) and the others have Asthma. Furthermore, all the patients were under

treatment in the Istanbul Yedikule Teaching Hospital for Chest Diseases and Thoracic

Surgery. Their ages were between 33 and 67.

Each respiratory sound recording session has a duration of 15 seconds. The

sound signal was sampled at 9600 Hz with 12 bit sample resolution. The system used

for recordings was developed at Bogazici University, and the dataset was created in

2012.

The system which is used to record respiratory sounds in the dataset is a fourteen

channel device which is capable of acquisition and processing analog sound data. The

system uses 14 electret microphones (Sony ECM-44BPT) attached inside Teflon cap-

sules with a conical air cavity. These microphones are located on 14 predefined points

on the posterior chest wall. Figure 2.1 shows these points’ locations. More detailed

information about the system can be found in [7].

Two experts labelled all recordings by auditory confirmation by visually inspect-

ing the time-expanded sound signals. They labelled the total number of 308 wheezes,

and they marked the location of wheeze intervals. Because finding the correct start

points and endpoints of wheezes is almost impossible with the human sense, 106 ms

(512 samples long) before and after of wheeze signals were labelled as undecided area.

After labelling wheezes and undecided intervals, the remaining parts of the sounds

were labelled as non-wheeze sounds which are normal respiratory sounds. An example
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Figure 2.1. Microphone locations on the posterior chest wall

Figure 2.2. Example label of a respiratory sound partition that includes wheeze sound
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partition of respiratory sound that includes wheeze is showed in Figure 2.2.

2.1. Preparation

Each respiratory sound recording session which is sampled at 9600 Hz, with 12-

bit sample resolution has a duration of 15 seconds. In this study, every recording is

divided into shorter windows that contain 512 samples with a 25 per cent overlap.

Windowing operation divides 34 recordings to 12716 windows. Experts labeled

308 wheeze intervals and these intervals consist of 3238 windows. Also, 8280 windows

are labelled as non-wheeze. 1198 windows are marked as undecided.

Table 2.1. Properties of wheezes’ duration in dataset

Maximum duration 1417 ms

Minimum duration 75 ms

Mean of durations 474ms
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3. FEATURES

In this study, nine features are evaluated to classify wheeze and normal respiratory

sounds. We selected these nine features both in frequency and time domain because we

believe that their discriminative abilities are suitable for the wheeze signal according

to researches in Section 1.3 and our experience.

After the feature calculations via MATLAB, every window has 33 dimensional

space. Some features like Mel Frequency Cepstral Coe�cients (MFCC) and Auto

Regression Parameters (AR) account to more than one value. MFCC has 13 parameters

and AR has 7 parameters with error term, therefore the dimension of dataset with nine

features increased to 33 dimensions.

3.1. Kurtosis

Kurtosis gives a degree of how much the sample distribution fits the normal

distribution. It is also a prediction about the shape of the distribution. Any normal

distribution has a kurtosis value as 3. If the kurtosis value of the distribution is

lower than 3, distribution is more like uniform distribution and less outlier-prone. On

the other hand, the sample distributions which have higher kurtosis values are more

outlier-prone. The below formula defines the kurtosis for random variable X.

k =
E (X � µ)4

�4
(3.1)

where mean of X is µ, kurtois value is k and � is the standard deviation.

Every sound sample in respiratory sounds in the time domain has been assumed

as a real-valued discrete random variable. Respiratory sound distribution over lungs

is non-uniform distribution.Moreover, normal respiratory sounds and wheezes have

di↵erent distribution characteristics. Because of the wheeze’s steady signal type, its
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distribution is more similar to the uniform distribution, so its kurtosis value is expected

to be lower than the kurtosis value of normal sounds. Figure 3.1 shows the relative

frequency histogram of the kurtosis values regarding both classes.

Figure 3.1. Relative frequency histogram of the kurtosis values regarding both classes

As seen in Figure 3.1, windows labeled as normal sounds have kurtosis value

mostly distributed near 3. On the other hand, wheeze labeled windows’ kurtosis values

are distributed around 2. The result is expected because normal respiratory signals

have a normal distribution, whereas wheeze signals have a uniform distribution.
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3.2. Renyi Entropy

Claud Shannon [35] published the paper ”A mathematical theory of communi-

cation” in 1948, which has led to the birth of information theory and informational

entropy. According to Shannon, the information entropy is the measure of the average

level of uncertainty inherent in the random variable’s possible outcomes.

Renyi entropy, which is used in this study, is the generalized variant of Shannon

entropy. The only di↵erence is that Shannon entropy has an order value of 1. The

following formula defines the Renyi entropy of discrete random variable with order ↵.

H↵(X) =
1

1� ↵
log2(

nX

i=1

p
↵
i ) (3.2)

where pi are sound samples for i = 1,...,n. In this thesis, three ↵ values were chosen

to classify wheeze and non-wheeze sounds. Figures 3.2, 3.3 and 3.3 show the relative

frequency histograms of the Renyi entropy of order 1,2 and 3 regarding both classes,

respectively.

Wheezes, as abnormal sounds, cause more uncertainty in sound characteristics in

contrast to normal respiratory sounds. The most obvious reason is the high frequency

components in their frequency response. Consequently, windows which are labeled as

wheeze is expected to have higher entropy values in opposition to windows labeled

normal. Figures 3.2, 3.3 and 3.3 have no discriminating di↵erences according to their

distributions.
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Figure 3.2. Relative frequency histogram of the Renyi Entropy values with order 1
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Figure 3.3. Relative frequency histogram of the Renyi Entropy values with order 2
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Figure 3.4. Relative frequency histogram of the Renyi Entropy values with order 3
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3.3. Percentile Frequency Ratios

The power spectral density shows the power of a signal as a function of frequency.

f25, f50, f75, f90 are the frequencies which 25%, 50%, 75% and 90% of the total area

under the normalized power spectral density function is reached, respectively.

The Welch method is used to estimate the power spectral density of the sound

signal. The segment length and overlapping ratio used in the Welch method are 128

and 50%, respectively. Each segment windowed with the Hamming Window, and 256

is the number of Fourier Transform points to calculate power spectral density.

When a single frequency or a group of similar frequencies make a peak in power

spectral density function, some percentile frequencies are expected to be close to each

other according to peak frequency value. Four frequency ratios, which are f25/f50,

f25/f90, f50/f75, and f50/f90 are used to find the best discriminative percentile frequency

ratio.

Wheezes usually make a peak in the range of high frequencies on its frequency

response. On the other hand, normal respiratory sounds usually have a peak in the

range of low frequencies. Figure 3.5 shows the plots of normalized power spectral

density of wheeze and normal sounds.

Figures 3.6, 3.7, 3.8, and 3.9 show the relative frequency histograms of f25/f50,

f25/f90, f50/f75, and f50/f90 ratios.
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Figure 3.5. Plots of normalized power spectral density of wheeze and normal sounds.
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Figure 3.6. Relative frequency histogram of the f25/f75 values regarding both classes

Figure 3.7. Relative frequency histogram of the f25/f90 values regarding both classes
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Figure 3.8. Relative frequency histogram of the f50/f75 values regarding both classes

Figure 3.9. Relative frequency histogram of the f50/f90 values regarding both classes
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3.4. Mean Crossing Irregularity

Zero crossing is a mathematical term defined as the point where the function

of the signal changes its sign by crossing the axis (zero value). It is widely used in

acoustic, sound - image processing, and electronics. In this study, the regularity level

of the intervals between zero crossings can be a clue of the occurrence of wheezes. Mean

crossing irregularity is defined as following equation.

MCI =

p
V ar (X)

E(X)
(3.3)

where X is the interval between two sequential zero crossing in signal.

Wheeze and non-wheeze signals have di↵erent mean crossing behaviour because

wheeze waveform has more regular oscillations than non-wheeze waveform [30]. Figure

3.10 shows the relative frequency histograms of the MCI values regarding both wheeze

and non-wheeze signals.
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Figure 3.10. Relative frequency histogram of the Mean Crossing Irregularity values

regarding both classes
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3.5. Autoregressive Model (AR) parameters

The autoregressive model is widely used in signal processing, statistic, and econo-

metrics. It estimates the current sample of a sound signal by creating the linear function

of previous sound samples. The autoregressive model gives an accurate estimation of

the speech signal, and it is widely used in the transmission of these signals. It is also

used in stock market prediction, channel prediction, and many other applications. The

following equation is the fundamental equation behind the autoregressive model:

yt = �1yt�1 + �2yt�2 + ...+ �pyt�p + ✏t (3.4)

where ✏t is the error of model and �1,�2....�p are the AR coe�cients. The number of

parameters, p, in 3.4 represents the order of AR model. In this thesis, 6’th order AR

paremeters are used [36].

AR model, solving by Yule-Walker equations method, is a discriminative technic

when the sound signal within the window is stationary. So, the respiratory signals can

be represented well with AR Model because of their stationary structures. The used

algorithm in estimating AR parameters is the Autocorrelation Levinson Durbin method

just like in Liner Predictive Coding (LPC) paramaters’ calculation. AR parameters

are same as the LPC parameters when Yule-Walker equations and Autocorrelation

Levinson Durbin method is used.

Coe�cients of AR model can exceptionally provide information about the wave-

form of stochastic concern. Figure 3.11, Figure 3.12, Figure 3.13, Figure 3.14, Figure

3.15, Figure 3.16 and, Figure 3.17 shows the relative frequency histograms all six AR

coe�cients and error term.



35

Figure 3.11. Relative frequency histogram of AR 1 values regarding both classes

Figure 3.12. Relative frequency histogram of AR 2 values regarding both classes
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Figure 3.13. Relative frequency histogram of AR 3 values regarding both classes

Figure 3.14. Relative frequency histogram of AR 4 values regarding both classes
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Figure 3.15. Relative frequency histogram of AR 5 values regarding both classes

Figure 3.16. Relative frequency histogram of AR 6 values regarding both classes
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Figure 3.17. Relative frequency histogram of AR Error Term values regarding both

classes
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3.6. Mel Frequency Cepstral Coe�cients

Mel frequency cepstral coe�cients (MFCC) are the representation of speech sig-

nals according to the hearing ability of human being. MFCC uses the Discrete Fourier

Transform (DFT) with a di↵erent approach. The frequency bands are placed loga-

rithmically according to Mel scale in DFT to compute MFCC so that sounds can be

represented more like a human hearing auditory model.

First, the Discrete Fourier Transform is calculated for every respiratory sound for

computation of MFCC. Then, thirteen overlapping triangular filters are applied to the

spectrum according to Mel Frequency scale. The logarithmic equation in 3.5 is used to

convert the energy of each Mel frequency bands to the logarithmic scale. Finally, the

amplitudes of discrete Cosine Transform of Mel frequencies in logarithmic scale give

the Mel frequency coe�cients.

M(f) = 1125 ln(1 + f/700) (3.5)

Even though Mel Frequency Cepstral Coe�cients (MFCC) are developed mainly for

speech recognition, it also used to to classify abnormal sounds superimposed on res-

piratory sounds [25]. Figure 3.18 - 3.31 shows the relative frequency histograms of

fourteen Mel Frequency Cepstral coe�cients.
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Figure 3.18. Relative frequency histogram of MFCC 1 values regarding both classes

Figure 3.19. Relative frequency histogram of MFCC 2 values regarding both classes



41

Figure 3.20. Relative frequency histogram of MFCC 3 values regarding both classes

Figure 3.21. Relative frequency histogram of MFCC 4 values regarding both classes
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Figure 3.22. Relative frequency histogram of MFCC 5 values regarding both classes

Figure 3.23. Relative frequency histogram of MFCC 6 values regarding both classes
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Figure 3.24. Relative frequency histogram of MFCC 7 values regarding both classes

Figure 3.25. Relative frequency histogram of MFCC 8 values regarding both classes
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Figure 3.26. Relative frequency histogram of MFCC 9 values regarding both classes

Figure 3.27. Relative frequency histogram of MFCC 10 values regarding both classes
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Figure 3.28. Relative frequency histogram of MFCC 11 values regarding both classes

Figure 3.29. Relative frequency histogram of MFCC 12 values regarding both classes
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Figure 3.30. Relative frequency histogram of MFCC 13 values regarding both classes

Figure 3.31. Relative frequency histogram of MFCC 14 values regarding both classes
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3.7. Audio Spectral Envelope

Spectral envelope of a signal gives valuable information about the spectral content

of the signal. It is an envelope curve in the plane of the Fourier magnitude spectrum.

In these studies, audio spectral envelope is first introduced to classify wheeze and non-

wheeze respiratory signals. The Audio Spectral Envelope (ASE) is a technique which

is used widely in ISO/IEC MPEG-7 standard to compress the audio signal, and it is a

primary low-level descriptor of the energy of the signal.

To compute of Audio spectral envelope, the following steps are followed.

(i) Discrete Fourier Transform (DFT) is applied every window with 256-point.

Xm(k) =
NX

n=0

xm(n)w(n)e
�j 2⇡

N kn (3.6)

where N = 512 (window size) and k is kmin = 4 and kmax = 38 for m’th window.

(ii) The sampling frequency of the respiratory signals in the database is 9600 Hz.

With 256 points DFT, frequency resolution becomes 9600 Hz /256 = 37, 5 Hz.

For wheeze detection, the frequency range of concern is 100 Hz to 1400 Hz so that

points between kmin = 4 and kmax = 38 in DFT covers the all frequency range.

(iii) Power of m’th window is calculated as Pm(k) for every k bin.

(iv) Averages of spectra fragments of every window are computed in time. In this

study, LASE is chosen as 13. It means that spectra fragments averaged for last

13 signal frames.

(v) Every spectra windows are normalized into the rang [0,1].

(vi) The spectrum fluctuation is computed finally.

Because of the di↵erent spectral characteristic of a wheeze, audio spectral enve-

lope is expected to be a discriminative feature when classifying wheeze and non-wheeze

sounds. Figure 3.33 shows the relative frequency histograms of the ASE according to

classes.
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repeat kmin = 4 to kmax = 38

Pm(k) =| Xm(k) |2 power calculation

ASEm(k) =
1

LASE

Pm
l=m�LASE+1 Pl(k) mean

ASE
norm
m (k) = ASEm(k)�mink(ASEm(k))

maxkASEm(k)�mink(ASEm(k)) norm

end

fluctASEm =
Pkmax

k=kmin+1 | ASEnorm
m (k)� ASE

norm
m (k � 1) | final

Figure 3.32. Audio Spectral Envelope Algorithm

Figure 3.33. Relative frequency histograms of the Audio Spectral Envelope values

regarding both classes
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3.8. Tonality Index

The tonality index (TI) is widely used audio feature to compress audio files in

MPEG-audio standard. In a MP3 encoder, it switches the working decision of second

filter bank in the psychoacoustic model no 2. To compress sounds in MP3 encoder, the

acoustic signal first divided into 32 frequency subbands. Then, according to whether a

subband is tonal or not, signals additionally are divided into 18 sub-channels for better

resolution. [37]

Tonality index is a likelihood measure which decides if a sound signal segment is

more tone-like or noise-like. This index estimates the current spectral components by

creating a function of two previous spectral components.To calculate tonality index,

following steps are applied. Also, The tonality index algorithm is depicted in Table

3.8.

(i) Discrete Fourier Transform (DFT) is applied every window with 256-point.

Xm(k) =
NX

n=0

xm(n)w(n)e
�j 2⇡

N kn (3.7)

where N = 512 (window size) and k is kmin = 4 and kmax = 38 for m’th window.

(ii) The sampling frequency of the respiratory signals in the database is 9600 Hz.

With 256 points DFT, frequency resolution becomes 9600 Hz /256 = 37, 5 Hz.

For wheeze detection, the frequency range of concern is 100 Hz to 1400 Hz so that

points between kmin = 4 and kmax = 38 in DFT covers the all frequency range.

(iii) Magnitude and phase of k’th bin are calculated as rm(k) and �m(k) for m’th

window.

(iv) Prediction of magnitude and phase by using 2 previous windows are calculated

as rm(k) and �m(k) for m’th window.

(v) Spectral unpredictability is calculated for every bin k’th as cm(k).

(vi) Total energy and weighted spectral unpredictability are computed for m’th win-

dow.
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(vii) Averages of energy and unpredictability of every window are computed by using

seven previous windows. In this study, LTI is chosen as 7.

(viii) The Tonality Index is computed finally.

repeat for kmin = 4 to kmax = 38

rm(k) =| Xm(k) |

�m(k) = angle(Xm(k))

rm(k) = 2rm�1(k)� rm�2(k) predict magnitude

�m(k) = 2�m�1(k)� �m�2(k) predict phase

Am(k) = rm(k)cos(�m(k))� rm(k)cos(�m(k))

Bm(k) = rm(k)sin(�m(k))� rm(k)sin(�m(k))

cm(k) =
p

Am(k)2+Bm(k)2

rm(k)+|rm(k)| spectral

unpredictability

end

em =
Pkmax

k=kmin
r
2
m(k) energy

c
(w)
m =

Pkmax

k=kmin
cm(k)r2m(k) weighted spectral unpredictability

em = 1
LTI

Pm
l=m�LTI+1 el energy mean

c
(w)
m = 1

LTI

Pm
l=m�LTI+1 c

(w)
l unpredictability mean

TIm = log10(
c
(w)
m
em

) final

Figure 3.34. Tonality Index Algorithm

The sound of wheeze is a musical, which is described in Chapter 1. So, wheezes are

more likely to have tonal components rather than normal respiratory sounds. Figure

3.35 shows the relative frequency histograms of the TI according to classes.
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Figure 3.35. Relative frequency histograms of the Tonality Index values regarding

both classes
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3.9. FFT Peak-Baseline Di↵erence in dB

The feature, FFT peak-baseline di↵erence in dB (FPBD), was first introduced

by Ipek Sen in 2005 [7]. Wheezes have dominant frequencies and make noticable peak

around its dominant frequency on Fourier magnitude spectrum plane. FPBD proposes

a method that uses the discrete Fourier transform of sound window and its polynomial

fit to detect an unusual peak around the dominant frequency. The order of polynomial

of fit is chosen as 10 in this thesis.

The next steps are followed to calculate FPBD.

(i) Discrete Fourier Transform (FPBD) is applied every window with 512-point.

(ii) Tenth order polynomial fit is calculated.

(iii) Local maxima of polynomial fit is found.

(iv) FPBD is the maximum di↵erence around (±100 points) local maxima between

DFT and its polynomial fit.

The FPBD values are expected to separate the wheeze and non-wheeze sounds be-

cause of the spectral characteristic of wheeze. Figure 3.36 shows the relative frequency

histograms of the FPBD according to classes.
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Figure 3.36. Relative frequency histograms of FFT peak baseline di↵erence in dB

regarding both classes



54

4. CLASSIFIERS

In chapter 3, nine features are calculated to compare their discriminatory abilities.

Because some features contain more than one parameter, the feature vector consists

of 33 columns. There are three classifiers used in this thesis. The comparison of these

classifiers is made with the following metrics.

4.1. Result Metrics

There are four metrics in this thesis to evaluate the discriminatory ability of the

classifiers. These metrics are accuracy, sensitivity, specificity, and F1 score. They are

described as follows:

Accuracy =
TP+TN

TP+FN+TN+FP
(4.1)

Sensitivity =
TP

TP+FN
(4.2)

Specificity =
TN

TN+FP
(4.3)

F1 =
2TP

2TP+FP+FN
(4.4)

In the above equations, true Positive (TP) means the number of correctly labeled

wheezes. True negative (TN) describes the number of correctly marked normal respi-
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ratory sounds. On the other hand, false positive (FP) means the number of normal

sounds labeled as wheezes incorrectly. Contrary to FP, FN is the number of wheezes

mislabeled as normal respiratory sounds.

Accuracy is the ratio of how much the system labels samples correctly. Sensitivity

is the capability to label wheezes correctly among all wheezes; besides that, specificity

is the ratio of how well classifier labels normal respiratory sounds correctly among all

normal sounds.

F1 score represents the harmonic mean of the sensitivity and the positive pre-

dicted value (PPV). It is generally used to define the trade-o↵ between sensitivity and

PPV. Its value changes between zero to one. F1 score is usually used to compare two

machine learning algorithm. Following equation shows the positive predicted value

equation.

PPV =
TP

TP+FP
(4.5)

The training data set is used with the 20-fold cross-validation to determine the

accurate performance of the classifiers. Because of the limited number of training data,

cross-validation increases the performance of the classifier by training more samples.

4.2. Support Vector Machines (SVM)

4.2.1. Description

Support vector machines (SVM) is supervised machine learning method widely

used in classification and regression. It tries to find the best hyperplane, which sepa-

rates the data points belongs to di↵erent classes. SVM is also named as a maxiumum

margin classifier because it minimizes the classification error iteratively and maximizes

the geometric margin at the end.
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A hyperplane is a subspace of dimension n-1 with n-dimensional ambient space

and the generalized equation of hyperplane is given in Equation 4.6:

w · x+ b = 0 (4.6)

where w is p-dimensional hyperplane vector and b is bias term.

Given a data set D = {(xi, yi) | xi 2 R
n
, yi 2 {�1, 1}}mi=1 for any i = 1, ...,m

where m is number of samples, two parallel hyperplanes are needed and created by

adding a o↵set to b in Equation 4.6 to increase margin. Hyperplanes are defined as:

w · x+ b = 1

w · x+ b = �1
(4.7)

Two hyperplanes must be located according to two basic rules to classify linearly

separable training data: There must be no data points inside these hyperplanes, and

the distance between hyperplanes is maximized. The distance between hyperplanes is

2
|w| so that | w |must be minimized.

Data points on hyperplanes are the only points that a↵ect the distance between

hyperplanes so that they are called support vectors in SVMs. These support vectors

satisfy the following equation.

yj[w
T · xj + b] = 1 (4.8)
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The optimization problem in soft margin SVM eventually becomes:

minimize
w, b, ⇣

1

2
w

t
w + C

mX

i=1

⇣i (4.9a)

subject to

yi(w�(xi + b)) + ⇣i � 1 � 0, (4.9b)

⇣ � 0 (4.9c)

for any i = 1, ...,m where m is number of samples, ⇣ is regularization parameter which

makes SVM do error. C is called box constraint. The optimization problem can be

solved by using Wolfe’s dual Lagrangian function. The Wolfe’s dual problem of this

optimization problem is:

maximize
↵

mX

i=1

↵i �
1

2

mX

i=1

mX

j=1

↵i↵jyiyjK(xi, xj) (4.10a)

subject to

C � ↵i � 0, (4.10b)
mX

j=1

↵iyi (4.10c)

for any i = 1, ...,m where m is number of samples. K is the kernel function which

calculates the dot products of vectors in other space. The final hypothesis function is

defined in following equation:

h(xi) = sign(
SX

ji=1

↵jyjK(xj, xi) + b) (4.11)

Kernels are special dot product functions used in SVM to map data in higher

dimensions.There are many di↵erent kernel functions used in SVM. The most widely

used ones are the linear kernel, polynomial kernel, and radial basis kernel (RBF). In

this thesis, SVM with these three types of kernels are trained to classify wheeze and
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normal sounds.

The linear kernel in K(x, x́) = x
T
x́ + � is the easiest kernel given by inner dot

product of samples with parameter �.

The polynomial kernel in K(x, x́) = (�xT
x́ + 1)d maps samples to higher space

to separate them with degree parameter d and scale parameter �.

The Gaussian kernel or Radial Basis Function kernel in K(x, x́) = exp(�� k

x � x́ k2) also maps samples to higher space. It uses fewer hyperparameters, unlike

polynomial kernel.� is the only paramater in RBF kernel.

The other crucial parameter which controls the SVM algorithm is box parameter

C. The parameter is used to control SVM on how to respond to errors. Higher C values

increase the sensitivity of SVM to errors, which means that the classifier chooses a

smaller margin hyperplane to improve accuracy in the train set. On the other hand,

lower C parameters make classifier numb to misclassification.

4.2.2. Result

Three SVM classifiers with linear, polynomial and RBF kernels are trained with

20-fold cross validation with all features.

In linear SVM, C parameter is choosen as 1 after parameter tuning. The final

accuracy is 88.6%. Table 4.1 gives the details.
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Table 4.1. Performance of SVM with Linear Kernel

Metrics Results

Accuracy 88.62%

Sensitivity 82.49%

Specificity 90.64%

F1 Ratio 0.78

Training time 12.11 seconds with 20-fold cross validation

In polynomial SVM, polynomial kernel is used with order 3. C parameter is

choosen as 1 and � parameter is decided as 4.05 after parameter tuning. The final

accuracy is 91.7%.

Table 4.2. Performance of SVM with Polynomial Kernel

Metrics Results

Accuracy 89.51%

Sensitivity 84.45%

Specificity 91.16%

F1 Ratio 0.82

Training time 480.33 seconds with 20-fold cross validation

Lastly, C parameter is choosen as 1 and � parameter is decided as 4.12 for SVM

with Radial Basis Function (RBF) kernel. The final accuracy is 92.66%.

As a result, SVM with RBF kernel separates normal sounds and wheezes best

with 92.6 percent accuracy. Also, polynomial SVM performs significant accuracy, with

91.7%. But, polynomial SVM’s training time is 430.6 seconds and much higher than

SVM with RBF kernel, so that the SVM with RBF kernel is chosen for feature selection.

The details of the performance of the chosen SVM classifier is shown in Table 4.3 and

Figure 4.1
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Table 4.3. Performance of SVM with RBF Kernel

Metrics Results

Accuracy 92.66%

Sensivity 89.92%

Specificity 93.62%

F1 Ratio 0.86

Training time 72.33 seconds with 20-fold cross validation

Figure 4.1. Confusion Matrix of SVM with RBF Kernel
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4.3. k-Nearest Neighbour (k-NN)

4.3.1. Description

k-nearest neighbor(k-NN) is a well-known supervised nonparametric machine

learning algorithm that is widely used in classification and regression. Despite its

simplicity, it is still popular and has high accuracy rates.

First, k is defined by user. After k is selected, the algorithm assigns the sample

in the test set to class according to the majority of its number of k nearest neighbors

in the training set. The distance, Euclidean or Mahalanobis, between samples defines

the nearest neighborhood rule. The parameter k should not be multiple of the number

of classes because the final class selection can stay in uncertainty.

The Euclidean distance is a popular distance method in k nearest neighbor. Eu-

clidian distance for two samples, x1 and x2 with m dimension, is:

dist(A,B) =

rPm
i=1(x1i � x2i)

m
(4.12)

A significant disadvantage of k-NN is that distance between all samples in the

training set must be calculated when a new sample is added.

4.3.2. Result

Since deciding the right k parameter is the backbone of the k-NN algorithm,

k-NN classifiers with k parameters 1 to 100 are trained with 20-fold cross validation

and their accuracies are plotted in Figure 4.2. As seen in Figure 4.2, when k is chosen

as 9, maximum accuracy is achieved. Then the k-NN classifier is trained with 20-fold

cross-validation and gives the best accuracy as 91.43% with 20-fold cross-validation.

Also, the distance metric is chosen as Euclidian. The details of the performance of
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Figure 4.2. k-NN accuracy vs k parameters
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k-NN classifier with 9 number of neighbors and Euclidean distance are shown in Table

4.4 and Figure 4.3.

Table 4.4. Performance of Euclidian k-NN with 9 number of neighbors

Metrics Results

Accuracy 91.43%

Sensivity 88.1%

Specificity 92.5%

F1 Ratio 0.84

Training time 4.20 seconds for 20-fold cross validation

Figure 4.3. Confusion Matrix of K-NN
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4.4. Bayesian Classifier with Gaussian Likelihood

4.4.1. Description

Maximum likelihood estimation is a method that estimates the probability distri-

bution parameters by maximizing the likelihood function of the distribution. Because

of the high dimensionality of the dataset, multivariate gaussian distribution is used

for the modeling feature set. The probability density function of multivariate gaussian

distribution with d-dimensional x:

p(x|µ,⌃) = 1p
(2⇡)n|⌃|

exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆
(4.13)

where statistic ⌃ is covariance matrix and statistic µ is the mean vector. The

probability density function (pdf) in Equation 4.13 becomes the class likelihood func-

tion as following equation:

p(x|Ci) =
1p

(2⇡)n|⌃i|
exp

✓
�1

2
(x� µi)

T⌃�1(x� µi)

◆
(4.14)

Then we need posterior probability p(Ci|x) to compare the probability of class

for a given new x. Bayesian theorem helps at this point.

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
(4.15)

where p(x) is the evidence and its value is same for every class. Then, decision rule

becomes for the Ci:

If p(Cwheeze|x) > p(CnonWheeze|x) then x belongs to wheeze

If p(CnonWheeze|x) > p(Cwheeze|x) then x belongs to normal sounds
(4.16)
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The classification algorithm first finds the parameters of the Gaussian distri-

bution, which are the mean vector and covariance matrix of each classes. Then it

calculates the posterior probability of the new sample for every class using Bayesian

theorem. Then the algorithm assigns the new sample to class of the highest posterior

probability.

4.4.2. Result

The Bayesian classifier has the lowest accuracy rate among three classifier trained

in this thesis. The details of the performance of Bayesian classifier are shown in Table

4.5 and Figure 4.4.

Table 4.5. Performance of Bayesian Classifier

Metrics Results

Accuracy 87.31%

Sensitivity 88.32%

Specificity 90.57%

F1 Ratio 0.83

Training time 0.38 seconds 20-fold cross validation
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Figure 4.4. Confusion Matrix of Bayesian Classifier
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4.5. Result: Best Classifier

When the performance metrics of all classifiers are compared, SVM with RBF

kernel has the best performance. Its accuracy is 92.66 and F1 ratio is 0.86. In Figure

4.5, all performance metrics are given for all classifiers.

Figure 4.5. Performance metrics of all classifiers
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5. FEATURE SELECTION

The training set consists of 33 columns with nine features. In this chapter, the

main aim is to reduce the number of features to find features with the best discrimi-

natory ability. To do this, SVM with RBF Kernel is chosen because it gives the best

performance among the three classifiers with the 92.66 percent accuracy. Also, k-NN

needs adaptive k parameter optimization when the feature set is changed iteratively.

In the first section, the P values of the two-sample t-test are presented. In the second

and third sections, two popular feature selection algorithm, forward feature selection,

and backward feature selection are employed with the SVM with RBF Kernel.

5.1. P Values of Each Feature

Two-sample t-test is a test for determining whether the two samples belong to

the same population or not by testing equality of their sample means. The test statistic

of two-sample t-test with unequal variance is:

t =
x� yq
s2x
m +

s2y
n

(5.1)

where x and y are two sample set of wheezes and normal respiratory sounds. Also,

n and m are the sample sizes.sx and sy are the sample standard deviations which are

calculated with following equations:

s =

sPn
i=1 xi � x

n� 1
(5.2)

The null hypothesis for this test is that means of the wheeze samples and normal

samples are equal for every feature. P value is the probability value under the null

hypothesis. Small P values indicate that the rejection of the null hypothesis is the
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right choice. In this test, the features with lower P values are more discriminative than

the features with higher P values. Table 5.1 shows the P values for each features.

Table 5.1. Two-sample t-test P values of each feature in ascending order

Features P Values Features P Values Features P Values

f25/f75 Ratio 0 Renyi alpha 3 0 AR 4 5.7308e-31

f25/f90 Ratio 0 MFCC 5 8.7416e-312 AR 5 7.0106e-31

f50/f75 Ratio 0 MFCC 7 1.9013e-247 MFCC 6 2.6988e-22

f50/f90 Ratio 0 Kurtosis 6.1195e-208 MFCC 9 2.8669e-20

Mean Cross. Irr. 0 MFCC 3 7.9878e-208 MFCC 4 8.4801e-20

FPBD 0 AR 6 3.0064e-120 MFCC 14 1.01e-07

Tonality Index 0 AR Error 9.7557e-91 MFCC 11 4.839e-05

MFCC 1 0 MFCC 12 2.8626e-89 AR 2 0.0017216

MFCC 2 0 MFCC 8 1.5978e-49 AR 5 0.032718

Renyi alpha 1 0 ASE 1.2393e-45 MFCC 13 0.69849

Renyi alpha 2 0 MFCC 10 4.5168e-44 AR 1 0.73861

5.2. Forward Sequential Feature Selection Algorithm

Forward sequential feature selection is a well-known method to reduce data di-

mensionality. Reducing the number of features, decreases the computational time and

increases simplicity. Forward feature selection starts with having no feature in the data

set, and iteratively adds new features with the best accuracy to set. Figure 5.1 shows

the accuracy graph versus the newly added features to the training set. Also, Table

5.3 shows the change in F1 ratios of the model when the most discriminative feature

added.

As seen in Table 5.2 and Figure 5.1, Mel frequency cepstral coe�cients have the

most discriminatory ability to distinguish wheezes among normal respiratory sounds

with the accuracy of 92.04%. When FPDB feature is included in the feature set, accu-
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Figure 5.1. Accuracy graph of the model when the most discriminative feature added

Table 5.2. A change in accuracy of the model when the most discriminative feature

added

Features Accuracy Features Accuracy

MFCC 87.44% Audio Spectral Envelope 92.74%

FPBD 91.40% f25/f75 Ratio 92.94%

Renyi alpha 2 91.86% f50/f75 Ratio 92.82%

Tonality Index 92.39% Renyi alpha 1 92.79%

Mean Cross. Irr. 92.51% f50/f90 Ratio 92.87%

f25/f90 Ratio 92.72% Kurtosis 92.83%

Renyi alpha 3 92.83% AR Parameters 92.35%
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Table 5.3. A change in F1 ratios of the model when the most discriminative feature

added to feature set

Features F1 Ratio Features F1 Ratio

MFCC 0.787 f50/f75 Ratio 0.859

FPBD 0.828 Renyi alpha 2 0.859

Renyi alpha 3 0.846 f25/f75 Ratio 0.859

Tonality Index 0.851 f25/f90 Ratio 0.858

Mean Cross. Irr. 0.855 Audio Spectral Envelope 0.858

Kurtosis 0.859 13. Renyi alpha 1 0.860

f50/f90 Ratio 0.863 14. AR Parameters 0.851

racy ascends to about 91.5%, which is only one point smaller than optimum accuracy of

92.6%. After the Renyi Entropy with order 2 and Tonality Index are added, accuracy

rises to about 92.4%.

5.3. Backward Sequential Feature Selection Algorithm

Backward feature selection is another method to reduce data dimensionality. It

starts with all features in the set. Then it eliminates the least significant feature one

by one. Each elimination must improve the accuracy of the classifier with a remaining

feature set. Figure 5.2 shows the accuracy graph versus eliminated features from the

training set. Also, Table 5.5 shows the change in F1 ratios of the model when the most

discriminative feature added.

As seen in Table 5.4 and Figure 5.2, Ar parameters, the Renyi Entropy with

order 3, and the Renyi Entropy with order 1 and Kurtosis are the least significant

features when detecting wheezes. AR parameters’ frequency histograms give a clue

about their inconsistency in Chapter 3. Also, Renyi Entropies with order 1 and 3 are

a surprise when their histograms are evaluated first. Nevertheless, when the table is
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Figure 5.2. Accuracy graph of the model when the least discriminative feature

eliminated

Table 5.4. A change in accuracy of the model when the least discriminative feature is

eliminated according to accuracy

Features Accuracy Features Accuracy

AR Parameters 92.77% Audio Spectral Envelope 91.50%

Renyi alpha 3 91.91% Mean Cross. Irr. 91.34%

Renyi alpha 1 91.81% f50/f90 Ratio 91.16%

Kurtosis 91.77% Tonality Index 91.00%

f50/f75 Ratio 91.68% Renyi alpha 2 90.02%

f25/f75 Ratio 91.73% FPBD 87.43%

f25/f90 Ratio 91.59% MFCC 86.12%
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Table 5.5. A change in F1 ratios of the model when the least discriminative feature

eliminated from feature set

Features F1 Ratio Features F1 Ratio

AR Parameters 0.869 f50/f90 Ratio 0.842

Renyi alpha 3 0.851 Mean Crossing Irregularity 0.838

f25/f90 Ratio 0.848 Tonality Index 0.835

f50/f75 Ratio 0.848 Kurtosis 0.834

f25/f75 Ratio 0.847 Renyi alpha 2 0.811

Renyi alpha 1 0.844 FPBD 0.791

Audio Spectral Envelope 0.844 MFCC 0.786

investigated carefully, Renyi Entropy with order 2 is at the end of the list, and it is the

third discriminative feature. This situation is understandable because the correlation

among Renyi entropies with di↵erent alpha is high.

5.4. Brute-Force Feature Selection

In this thesis, we also decided to train the SVM classifier with all combination

of feature set (1 to 5 sized) to detect the best features. This method took too much

time and computational power. However, it is needed to understand the nature of the

features used for classification. Table 5.6 shows the best combinations of features per

size and their accuracies.

As seen in table 5.6, Mel frequency cepstral coe�cient is the most selective feature

followed by f25/f90 Ratio and AR parameters. AR parameters are the third discrimi-

native feature, among others; nevertheless, it is not seen in the best feature sets of more

than one number. Although confusing at first glance, since MFCC and AR parameters

are highly correlated; this result is to be expected.
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Table 5.6. Best sets of features with di↵erent sizes and their accuracies with

descending order

Features Ranking Best set of features Accuracy F1

1 Best MFCC 88.71% 0.78

1 Second f25/f90 Ratio 82.35% 0.59

1 Third AR Params. 82.13% 0.60

2 Best MFCC, FPBD 91.47% 0.83

2 Second MFCC, Mean C. Irr. 91.01% 0.82

2 Third MFCC, Renyi 2 90.31% 0.82

3 Best MFCC, FPBD, Renyi 1 91.80% 0.84

3 Second MFCC, FPBD, Renyi 2 91.75% 0.85

3 Third MFCC, FPBD, Mean C. Irr. 91.62% 0.84

4 Best MFCC, FPBD, Renyi 3, TI 92.18% 0.85

4 Second MFCC, FPBD, Renyi 3, Mean C. Irr 92.14% 0.85

4 Third MFCC, FPBD, Renyi 2, f25/f90 92.10% 0.85

5 Best MFCC, FPBD, Renyi 2, Mean C. Irr, TI 92.61% 0.86

5 Second MFCC, FPBD, TI, Mean C. Irr, f25/f90 92.41% 0.86

5 Third MFCC, FPBD, Renyi 1, Mean C. Irr, f25/f90 92.38% 0.86
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The feature set with MFCC and FPBD increases the accuracy from 88.71 % to

91.47% percent. FFT peak baseline di↵erence in dB feature is the best fellow of MFCC

to detect wheezes. Then Renyi entropy with order 3 and Tonality Index must be added

to the feature set to increase the accuracy.

5.5. Correlations Plot

Correlation measures how much two variables depend on each other linearly.

It gives both direction and intensity of the linear relationship. In this thesis, the

correlation plot of the features is useful to understand which features are dependent on

each other. For example, Figure 5.3 shows that Renyi entropies have high correlation

values when they are compared with each other. The meaning of these high correlation

values and scatter plots is that one of the Renyi entropy values is su�cient to classify

wheezes superimposed on normal respiratory sounds.

To decide the optimum feature set, the correlation values and scatter plots of

nine features are shown in Figure 5.3. Because MFCC and AR features have more

than one variable, Principal Component Analysis (PCA) is applied to those features,

and the first column of score matrix of each one are used for calculation of correlation

and presentation of plots.

As we observe the correlation plot in Figure 5.3, we can conclude that f25/f90

is highly correlated with f25/f75 Ratio, mean crossing irregularity is highly correlated

with f50/f90 Ratio, tonality index is highly correlated with the MFCC values with PCA

applied and Renyi values are highly correlated with each other.
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Figure 5.3. Correlation Matrix of Features
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5.6. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an unsupervised dimensionality reduc-

tion method that is based on the variance of the dataset. This method is used for

feature extraction by maximizing the variance with minimum loss of information. The

projection of sample x on the direction of w is

z = w
Tx (5.3)

In PCA, principal component w must be orthogonal to each other and variance of score

matrix z must be maximized. Given that

E[wTx] = w
T
E[x] = w

T
µ (5.4)

V ar(wTx) = E[(wTx� w
T
µ)2] = E[(wTx� w

T
µ)(wTx� w

T
µ)] (5.5)

= E[(wT (x� µ)(x� µ)Tw] = w
T
E[(x� µ)(x� µ)T ]w (5.6)

= w
T⌃w (5.7)

where Cov(x) = ⌃ and ⌃ is the covariance matrix of sample matrix. The optimization

problem becomes:

maximize
w

w
T⌃w (5.8a)

subject to w
T
w = I (5.8b)

We can solve this problem as a Lagrange problem so that:

max
w

w
T⌃w � ↵(wT

w � 1) (5.9)
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After the taking derivative of Equation 5.5 and setting it as zero, we have:

2⌃w � 2↵w = 0 (5.10)

⌃w = ↵w (5.11)

When w is chosen as eigenvector of ⌃ and corresponding eigenvalue ↵, (5.11) will be

true. Moreover, maximum value of ↵ must be chosen to maximize the variance because:

w
T⌃w = ↵w

T
w = ↵ (5.12)

After the PCA is applied to dataset with nine features, the dimension of feature

space is reduced from 33 to 1. The wheeze and non-wheeze samples in a one-dimensional

feature set are fitted to a normal distribution, and Figure 5.4 shows the distribution

plots of these samples. The corresponding eigenvalue of the first eigenvector is 22.8

and the proportion of variance explained is 62.8%. Then maximum likelihood classifier

in Section 4.4 is applied to samples and Table 5.7 shows the results.

Table 5.7. Performance of Bayesian Classifier on one dimensional feature set after

PCA

Metrics Results

Accuracy 83.14%

Sensitivity 93.08%

Specificity 57.37%

F1 Ratio 0.89

Training time 0.43 seconds 5-fold cross validation
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Figure 5.4. The plot of distributions of wheeze and non-wheeze samples in one

dimensional feature set after PCA
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This time, the PCA is applied again to reduce the dimension of feature space from

33 to 2. The plot of wheeze and non-wheeze samples in a two-dimensional feature set is

shown in Figure 5.5. The corresponding eigenvalues of the first and second eigenvectors

are 22.8 and 4.2 respectively, and the proportion of variance explained is 81.9%. Then

support vector machine with RBF Kernel in Section 4.2 is applied to samples and Table

5.8 shows the results.

Figure 5.5. The plot of first two-column of the Score Matrix
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Table 5.8. Performance of SVM with RBF Classifier on two dimensional feature set

after PCA

Metrics Results

Accuracy 82.36%

Sensitivity 72.79%

Specificity 85.22%

F1 Ratio 0.65

Training time 5.4 seconds 5-fold cross validation

Last, the PCA is applied again to reduce the dimension of feature space from

33 to 3. The plot of wheeze and non-wheeze samples in a three-dimensional feature

set is shown in Figure 5.6. The corresponding eigenvalues of the first second and third

eigenvectors are 22.8, 4.2 and 1.5 respectively, and the proportion of variance explained

is 91.83 %. Then support vector machine with RBF Kernel in Section 4.2 is applied

to samples and Table 5.9 shows the results.

Table 5.9. Performance of SVM with RBF Classifier on three dimensional feature set

after PCA

Metrics Results

Accuracy 85.55%

Sensitivity 79.06%

Specificity 87.54%

F1 Ratio 0.72

Training time 6.7 seconds 5-fold cross validation
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Figure 5.6. The plot of first three-column of the Score Matrix
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5.7. Linear Discriminant Analysis (LDA)

In comparison to the PCA, linear discriminant analysis is another method to

reduce the dimensionality of classification problems. For the two-class, wheeze, and

normal, LDA seeks to find a direction vector. When the feature sets are projected onto

w, the samples of two classes are as well-separated as possible.

z = w
Tx (5.13)

where x is the feature set and w is direction vector. Note that, in this case, x 2 R
33

and z 2 R
1. So, LDA will reduce dimensionality 33 to 1. Note that, µn and µw are the

means of normal and wheeze samples, respectively. Then scatter of normal and wheeze

samples are:

s
2
w = (wTxw � w

T
µw)

T (wTxw � w
T
µw) (5.14)

s
2
n = (wTxn � w

T
µn)

T (wTxn � w
T
µn) (5.15)

The optimization problem for LDA beacomes:

max
w

(wT
µw � w

T
µn)2

s2w + s2n

(5.16)

Then numerator of maximization equation is:

(wT
µw � w

T
µn)

2 = w
T (µw � µn)(µw � µn)

T
w

= w
T
SBw

(5.17)
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where SBC = (µw�µn)(µw�µn)T is the between-class scatter matrix. Also denominator

is:

(s2w + s
2
n) = w

T (xw � µw)(xw � µw)
T
w + w

T (xn � µn)(xn � µn)
T
w

= w
T
Sww + w

T
Snw

= w
T (Sw + Sn)w

(5.18)

where SWC = (Sw+Sn) is the within-class scatter matrix. To maximize Equation 5.14,

the derivative of optimization equation with respect to w is taken and set to zero.

w
T (µw � µn)

wTSWCw
(2(µw � µn)�

w
T (µw � µn)

wTSWCw
)SWCw = 0 (5.19)

where wT (µw�µn)
wTSWCw is a constant. Then, w can be obtained with

w = c S
�1
WC(µw � µn) (5.20)

where SWC = (Sw + Sn) = (xw � µw)(xw � µn)T + (xn � µn)(xn � µn)T . Because of

the importance of direction, c can be taken as 1.

After LDA is applied to 14 features dataset, the dimension of feature space is

reduced from 33 to 1. The wheeze and non-wheeze samples in a one-dimensional

feature set are fitted to a normal distribution, and Figure 5.7 shows the distribution

plots of these samples. Then maximum likelihood classifier in Section 4.4 is applied to

samples and Table 5.10 shows the results.
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Figure 5.7. The plot of distributions of wheeze and non-wheeze samples in one

dimensional feature set after LDA

Table 5.10. Performance of Bayesian Classifier on one dimensional feature set after

LDA

Metrics Results

Accuracy 87.87%

Sensitivity 93.91%

Specificity 74.22%

F1 Ratio 0.92

Training time 5.4 seconds 5-fold cross validation
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5.8. Computational Time Consumption of Each Feature

The time consumption of the calculation of each feature is shown in the table

5.11. To make time consumption analysis, an Apple MacBook Pro (2018) is used with

2.3 GHz Quad-Core Intel Core i5 processor and 8 GB 2133 MHz RAM.

Every feature calculation is made with a 15 seconds respiratory sound. This

respiratory sound is windowed with 25%, 374 windows, overlap before making the

feature calculation.

Table 5.11. Computational time consumption of each feature

Feature Time Feature Time

1. Mean Crossing Irregularity 20 ms 8. f25/f90 Ratio 728 ms

2. Renyi Entropy with alpha 1 34 ms 9. f50/f75 Ratio 799 ms

3. Renyi Entropy with alpha 2 36 ms 10. f50/f90 Ratio 813 ms

4. Kurtosis 41 ms 11. f25/f75 Ratio 1216 ms

5. Renyi Entropy with alpha 3 43 ms 12. MFCC 2112 ms

6. AR Parameters 100 ms 13. FFT Peak Baseline Di↵. in DB 2309 ms

7. Tonality Index 108 ms 14. Audio Spectral Envelope 3525 ms
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5.9. Result: Best Feature Set

In this chapter, various feature selection algorithms are applied our data set to

select best features. We compare their computational time and discriminatory abilities.

We concluded that:

(i) Mel Frequency Cepstral Coe�cients (MFCC)

(ii) FFT peak baseline di↵erence in dB (FPBD)

(iii) Renyi Entropy with alpha 2 (Renyi 2)

(iv) Mean Crossing Irregularity (MCI)

compose the best feature set with final accuracy of 92,18 and 0,86 F1 ratio. (SVM

with RBF Kernel, 20 - fold cross validation, Kernel scale: 2.50 and C parameter 1 )
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6. DETECTION

In the previous chapter, the best features for classifying wheeze and normal

sounds are decided with various feature selection techniques. Consequently, in this

chapter, the ultimate aim of the thesis, detection algorithm, is presented. With the 92

percent accuracy rate, the SVM with RBF Kernel model is employed to predict the

wheezes among normal respiratory sounds with the feature set contains MFCC, FPBD,

Renyi 2 and MCI.

6.1. Windowing and Feature Calculation

First, fifteen seconds of respiratory sound is divided into 374 windows that contain

512 samples with a 25 percent overlap. Then, each feature is calculated for every

window. The training vector has 374 rows, number of windows, and four columns,

number of features. Figure 6.1 shows a 15 seconds respiratory sound with wheeze

labels in green rectangular.
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Figure 6.1. Respiratory sound with wheezes (green) labeled by expert
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6.2. Prediction

After windowing and feature calculation, the trained SVM model predicts the

labels of windows as wheeze and non-wheeze. Figure 6.2 shows the 15 seconds long

respiratory sound and the windows, which are labeled as wheeze with the red-colored

rectangles.

Figure 6.2. Respiratory sound with test windows (green) and predicted wheeze

windows (red)

6.3. Wheeze decision

The determination of the start and end points of wheeze superimposed on respi-

ratory sounds is one of the most significant parts of this thesis.

As seen in Figure 6.2, many windows predicted as wheeze are formed as groups.

Clusters of wheezes show the probable interval of predicted wheezes. However, some-
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times false negative windows (wheeze window but labeled as normal) remain between

these clusters. To correct these windows, an algorithm is developed. The algorithm

relabels these as wheeze if they are between two true positive (wheeze window labeled

correctly as wheeze) windows. The number of false negative windows between true

positive windows can be a maximum of two. The number of 2 is selected empirically.

Also, the algorithm makes one bigger window from clusters if the windows in-

side clusters are strictly bounded to each other. After this operation, the algorithm

calculates the duration of bigger sized windows and removes them if their duration is

smaller than 100 ms. The value of 100 ms is the minimum time duration of a wheeze

can remain according to Computerized Respiratory Sound Analysis (CORSA). Figure

6.3 shows wheezes labeled by expert (green) and wheezes labeled by algorithm (yellow)

superimposed on the 15 seconds long respiratory sound.

Figure 6.3. Respiratory sound with test windows (green) and windows predicted as

wheeze (yellow)
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6.4. Result

The final aim of the thesis is accomplished by presenting the detection algorithm.

The algorithm is fast and straightforward. Its accuracy mostly depends on the classi-

fier’s results. However, there is no known metric to measure the exact accuracy of the

detection algorithm. In this thesis, we present a new metric named YCI value. YCI

value is calculated with the following equation.

Y CI =

s
(Adetection \ Atest)2

AdetectionAtest
(6.1)

where Adetection is the interval indices of detected wheeze, and Atest is the interval

indices of test wheeze labeled by expert. The YCI value ranges typically from 0 to 1.

1 is the optimum value, which means that all the wheezes are detected correctly. 0

is the worst value, which means that none of the wheezes are detected correctly. The

YCI value of the respiratory sounds in Figure 6.3 is the 0.90.
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Table 6.1. YCI values of all recordings

Recordings YCI Recordings YCI Recordings YCI

Rec 1 0.90 Rec 13 0.63 Rec 25 0.79

Rec 2 0.87 Rec 14 0.88 Rec 26 0.81

Rec 3 0.84 Rec 15 0.89 Rec 27 0.76

Rec 4 0.88 Rec 16 0.73 Rec 28 0.78

Rec 5 0.85 Rec 17 0.89 Rec 29 0.84

Rec 6 0.87 Rec 18 0.78 Rec 30 0.83

Rec 7 0.87 Rec 19 0.91 Rec 31 0.87

Rec 8 0.82 Rec 20 0.93 Rec 32 0.86

Rec 9 0.77 Rec 21 0.79 Rec 33 0.90

Rec 10 0.91 Rec 22 0.85 Rec 34 0.88

Rec 11 0.73 Rec 23 0.90 Average 0,84⌥0,04

Rec 12 0.89 Rec 24 0.78
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7. CONCLUSIONS

Analyzing respiratory sounds and detecting anomalies in them with intelligent

algorithms has opened a new era for auscultation that has 250 years of history. Fur-

thermore, wheezes as abnormal sounds are one of the hot topics currently being re-

searched by many researchers. In this thesis, we presented a new intelligent algorithm

to detect wheezes that are superimposed on vesicular sounds.

The machine learning algorithm we found quite successful in detecting wheeze is

the Gaussian SVM classifier that was trained with nine sound features used in other

researches. Gaussian SVM among five classifiers gave the best results with the param-

eters determined in this study. It reached a 92.66% accuracy rate. The methodology

followed, details of classifiers and the other result metrics achieved are presented and

documented in Chapter 4.

The number of sound features used in this study is nine, and they were chosen

among the most known and researched features so far. The features are documented

and their frequency histograms according to classes are presented in Chapter 3. Also,

the algorithms of complicated features are noted in this chapter.

In this work, one of the features is first named and detailed for the classification

of wheezes for the first time. It was named as ’FFT peak baseline di↵erence in dB’

and shortened it as FPBD. Moreover, this feature has been concluded as the member

of the final feature set that distinguishes wheezes best among all nine features with

various selection algorithms. The features which form the best discriminatory feature

set are Mell Frequency Cepstral Coe�cient (MFCC), FFT peak baseline di↵erence in

dB (FPBD), Renyi Entropy with alpha 2 (Renyi 2), and Mean Crossing Irregularity

(MCI).

These four features are the most discriminatory features with Gaussian SVM ac-
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cording to both F1 ratio and accuracy. This result is corrected by forward sequential

feature selection, backward sequential feature selection, and brute-force feature selec-

tion techniques. In backward sequential feature selection, kurtosis takes the place of

tonality index according to F1 ratios but this can be understandable because correlation

between kurtosis and tonality index is high.

In this study, PCA and LDA are applied to the feature set for observing the

e↵ects of dimensionality reduction. After the dimensionality reduction, di↵erent types

of classifiers are used to classify wheezes. But, PCA has no major advantage. On the

other hand, after LDA is applied, the Bayesian classifier gives the highest F1 ratio of

0.92. This result is surprisingly interesting.

Also, for the detection algorithm developed in the thesis, a new metric was in-

troduced and defined. it was named as YCI Value. It ranges from 0 to 1, and it is

the metric of the measure of how much wheezes are correctly detected by a detection

algorithm. The details of the detection algorithm and YCI value are noted in chapter

6. Average of YCI values for all the recordings in the dataset is 0.84.
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