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ABSTRACT

HUMAN-LIKE COORDINATION OF BODY-ASSISTED
ARM MOVEMENTS FOR OBJECT MANIPULATION

Manipulation is an integral capability for service robots. The goal of this thesis
is to design and develop an approach that enables a mobile robot to mimic human
manipulation abilities. We consider a differential type of mobile robot that is endowed
with an arm and gripper. The robot is assumed to have visual sensing so that it can
determine the relative position of the object of interest. First, it is observed that hu-
mans exhibit various basic modes of interaction with an object of interest, including
extension, flexion, gripping, release and translation. As such, the robot can be pro-
grammed to have similar capabilities through establishing the correspondence between
the robot and a human with respect to the underlying manipulation mechanisms. More
complex behaviors such as putting, pulling, pushing, and shaking are defined using a
sequential composition of basic operations. Second, humans are observed to achieve
these tasks through the coordination of their body and arm movements. For this, a
control approach in which the movements of the robot body and manipulator are cou-
pled temporally and spatially is proposed. As such, if the object of interest is within
the robot’s reach, then only arm movements are made. If this is not the case, the robot
starts moving its body. Depending on the vicinity of the object, this may be accom-
panied by arm motion or not. The control algorithm results in the robot’s body and
arm movements to be done in a coupled manner. The proposed approach is evaluated

through an extensive set of experiments involving various manipulation tasks.



OZET

INSANSI NESNE MANIPULASYONU ICIN VUCUT VE
KOL KOORDINASYONU

Insansi robotlar son yillarindaki kullanim alanlari itibariyle bir nesnenin alinmasi,
bir yere gotiiriilmesi veya kaldirilmasi gibi gorevleri tistlenmektedir. Bu tezde, in-
san ile yapilan obje manipiilasyonu caligmalaridan esinlenerek gezgin bir robotun in-
sansi sekilde giindelik nesneyi manipule etmesi amaglanmaktadir. Ancak, robotun,
manipilasyon oncesi viicut ve kol hareketinin koordinasyolu ve es zamanl calisma du-
rumunun planlanmasi gerekmektedir. Bu c¢ercevede, robot kol ve viicut hareketinin
zamansal ve mekansal olarak birlesmesi i¢in 6zgilin bir yaklagim benimsenmistir. Bu
yaklagimda, robot ve nesne arasinda uzaklik iizerinden, robot nesneye yaklasirken be-
lirli bir uzaklikta kol hareketinin, viicut hareketine eslik etmesi modellenmistir. Bu
kontrol algoritmasi, robot hareketinin ve kol hareketinin ayrigmis planmasini gerek-
siz kilmakta ve biitiinlesik bir kontrol yapisi sunmaktadir. Ayrica, robotun yapa-
bilecegi hareketler ile ilgili olarak alt kademe gorev kontrol mekanizmasi olusturulmusg
ve mekanizmadan ¢ikan aksiyonlar birlestirilerek robota al-birak gibi gorev komutlar
verilmektedir. Yapilan kapsamli deneyler ile 6nerilen yontem gezgin bir robotun degisik

kisimlar1 arasindaki es zamanlh koordinasyon problemine ¢oziim getirmektedir.
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1. INTRODUCTION

Manipulation is a particularly important skill for service robots, applications in-
cluding logistics, personal assistance, agriculture, and even in hospitals. Manipulation
tasks include various modes of interaction with an object of interest, including exten-
sion, flexion, gripping, release and translation. Humans are observed to achieve these
tasks through coordinating the motion of their bodies and their arms based on visual
feedback. They will re-locate their trunks so that the object is reachable. Hence, the
multi-segmental coordination between trunk and arm is established so that the hand
moves to a coherent endpoint position while following a smooth path [1]. This coordi-
nation pattern presents a pivotal and instructive paradigm regarding how robots can
mimic these movements. As such, as manipulation movements of the robot will be-
come more human-like, interaction with robots may become more natural. This thesis
considers the manipulation problem from this perspective and presents an approach

based on mimicking human manipulation features.

1.1. General Approach

In the thesis, first, the correspondence between the robot and a human is estab-
lished with respect to their respective topology of joints. This enables the identification
of basic manipulation operations. As such, behavior associated with complex manip-
ulation tasks are defined through the sequential composition of basic operations. The
basic operations include extension, flexion, gripping, release and translation as defined
by joint movements. Complex manipulation tasks such as take-and-put and take-
and-shake are defined by sequentially composing primitive operations while taking the
constraints of the environment into account. Next, a control approach in which the
movements of the robot body and manipulator are coupled temporally and spatially is
proposed. As such, if the object of interest is within the robot’s reach, then only arm
movements are made. If this is not the case, the robot starts moving its body. This is
based on encoding the basic movements using an artificial potential function (APF).

The gradient of the function defines the control inputs to the robot body, arm, and



gripper as deemed necessary based on the visual feedback from an RGB-D sensor.

1.2. Contributions

The contributions of this thesis can be summarized as follows:

e Behavior associated with complex manipulation tasks are defined by the sequen-
tial composition of basic manipulation modes.

e A new controller in which robot’s body and arm movements occur in a coupled
manner in basic manipulation tasks is presented. This enables the robot to reach

the object-of-interest in a human-like manner.

1.3. Outline

The thesis is organized as follows: In Chapter 3, the robot’ motion mechanism
is analyzed in detail including its comparison with its counterpart in humans. In
Chapter 4, the proposed approach is presented. Extensive simulations and robot ex-
periments are presented in Chapter 5. The thesis concludes with a brief summary and

a discussion of future directions.



2. RELATED LITERATURE

Humans execute natural movements for the manipulation tasks that require the
coordination between trunk and arm. Imitating from humans, the generation of human-
like motions for the robot provides a vital and instructive paradigm to develop a point
of view regarding these movements. This section provides an overview of the state-of-

art studies related to human reaching strategy.

Many studies have been conducted to understand the human features in reaching
[2-6]. The principal paradigms and models regarding the control of the human arm
have been reviewed in [7]. However, it is inadequate to examine the effect of the human
arm in reaching movement since the torso shifts when the object is not in the arm’s
workspace. The human body will approach the object and position itself accordingly.
By taking this into account, several studies addressed the contribution of the trunk to
the arm in manipulation tasks [8], [9]. Some studies proposed that the human trunk
and arm have spatial and temporal coordination during the reaching movements. The
trunk motion begins before the arm movement and continues until the arm motion
ends [10]. Mark et al. acquired an approximate distance at which the trunk involves

into the reaching movement [11].

While the above research discussed the problem of attaining trunk-assisted mo-
tions, a key issue is how the robots could incorporate body sections into the tasks.
Reinhart et al. presented a controller framework based on a recurrent neural net-
work for the generation of reaching movements [12]. In [13], it is used a physically
inspired optimization method to imitate human reaching movements in an environ-
ment of everyday-life. In [14], it is proposed a reinforcement learning approach to
generate human-like reaching movements in constrained environments. Arimoto et al.
implemented the bell-shaped velocity profile for the point-to-point arm movements to
confirm the human-likeness of the robot arm [15]. Other authors tried to character-
ize arm movements based on optimization of torque [16] and jerk [17]. Many robotic

studies above regarding human-like reaching movements do not take account of the



effect of involvement of trunk. Bhattacharjee et al. proposed a control method to ex-
hibit human-motion characteristics in redundant robot arm-trunk systems for reaching
tasks [18]. This model may be insufficient to embed the spatial relation of arm and
robot body motion. Brandao et al. presented a control architecture for the integra-
tion of visually guided walking, and whole-body reaching in a humanoid robot [19].
They only modeled the movements of the arm and robot waist in reaching not the
synchronous movements of trunk displacement and arm. In [20], it is proposed a
framework that combines the complex full-body movements such as reaching a target

while talking.

The present work is designed to coordinate all robot segments for manipulation
tasks. It can be implemented to mobile robots that there is spatial and temporal
relationship between arm and trunk during reaching. The primary contribution is
to propose a mathematical model mimicking the spatial relation of the human body
segments concerning the object location. The second is to present a coordinated control
based on the coupling motion of parts in reaching tasks for manipulation. Besides,
the presented approach is adaptable to any mobile robot. That creates a suitable

environment for developing new algorithms on the robot.



3. ROBOT MODEL

The robot consists of a differential wheel type motion mechanism with a manip-
ulator, as shown in Figure 3.1. The robot arm is mounted on the robot platform. The
manipulator consists of a robotic arm built consisting of one prismatic (P) and two
revolute (RR) joints and one degree of freedom (DOF) end effector. The robot has a
pan-tilt head with an RGB-D camera and is able to determine the position of an object

of interest.

Ly,

Zy

Figure 3.1: The robot is differential wheeled with a PRR arm and a 1 DOF gripper.

— = =
e The robot is assumed to move on a planar horizontal surface. Let X = (O, Xy, Yu, Zw)
_)
be any fixed frame with Z,, vertical.
e (O, is linked to the robot base and O, is the center of the end-effector. The whole

configuration related to robot body ¢” and robot arm ¢ is given by:

q= [qB QA}T (3.1)

e Consider a manipulator shown in Figure 3.1, where the four principal coordinate



frames are shown: world frame O,,, robot frame Oy, robot arm frame O; and end
effector frame O,. Then, the manipulator’s end effector position and orientation

with respect to O,,.

Yw
A

Cz(qB) ——————————————

Figure 3.2: Differential drive mobile robot parameters

3.1. Robot Body Model

The robots’ body is supported by two independently driven wheels with a common
platform-fixed axis and one passive, self-aligning wheel as shown in Figure 3.2. To
maneuver the robot in the plane, the robot requires two inputs: linear velocity v and

a heading angle a.

e The differential robot has two degrees of freedom that correspond the angular
velocity of the left (¢;) and right (¢2) driving wheel. The robot variables are
shown by ¢ in the space. It is represented by ¢; € S', where j = 1,2.

q" = [ql qzr e s’ (3.2)

e The current position of the robot is (¢, c2)T € R2. The orientation of the robot

is a € S'. Thus, the robot’s base point is defined as follows:

1) = [e1(@®) (@) a@®)] (3.3)

e The wheels have radius . Given a point O centered between the two drive wheels,



each wheel has a distance [ from center.
e Assuming a constant rotational velocity for the wheels and the position ¢; and ¢

and orientation « of the robot pose can be estimated using Eq.3.4,

¢ T(Q1 —; QQ)cos(a)
T=|c| = r(QI —; qQ)Sin(a) (3.4)
a %(91 - Q2)

e While modeling the robot, the following assumptions made are as follows:
a) The robot moves with a constant velocity.

b) The wheels of the robot do not slip and the surface for robot motion is flat.

3.2. Arm Model

The robot arm has three degrees of freedom with one prismatic joint, moving on
a horizontal plane, and two revolute joints. The prismatic joint permits a linear motion
along a single axis (i.e., an extension or a retraction), and the revolute joints allow a
relative rotation about a single axis. The Figure 3.4 shows robot configuration with
the coordinates presentation. The input to the system is two-dimensional vector E of
s, e,. Cartesian forces managing on the end-effector, with components expressed in a

robot arm frame O; XY 7.

Figure 3.3: Joints and end-effector in the PRR robot manipulator

e The robot arm has three degrees of freedom and prismatic, revolute and revolute

(PRR) configuration, respectively. ay and ag are link lengths. The joint parame-



Figure 3.4: Three-link PRR manipulator and its coordinate frame

ters of the robot arm ¢ are shown in Equation 3.5. It is represented by qj € S,

where j = 3,4, 5.

¢" = [Q:a qa C]s]T €S (3.5)

Since there are more joint variables than there are DoFs for the end-effector,
the manipulator is said to be redundant. Whereas there are 3 joint variables
for the manipulator, there are 2 DoF's for the gripper. Therefore, the degree of
redundancy for the end-effector is 1.

The manipulator is linked with the robot platform from the center O;.

The center of the end-effector is O,, which moves in a plane. The end-effector
pose can be defined by two position components and one orientation angle.

The forward kinematics of PRR manipulator with reference to O; is given below.

cos(qa+q5) —sin(qa+¢qs) 0 g3+ azcos(qa) + azcos(qs + gs)
0 0 -1 0
7O = (3.6)
sin(qa +¢q5) cos(qa+qs) O azsin(qa) + aszsin(qs + gs)
0 0 0 1 |

Notice that the first three entries of the last column of T°! are the position



vector e(q?) = (ex(q?), ey (¢?), ez(¢*))T components of the origin of end-effector

O, relative to world frame Oyy; that is,

ex = g3 + axco8(qq) + azcos(qs + qs) (37)

ez = assin(qy) + azsin(qs + qs)

are the coordinates of the end-effector in the world frame. The rotational part of
Teo « gives the orientation of the frame O,X,Y,Z, relative to the robot frame.

e The forward kinematics offers insight into operational space - set of all settings
that an end-effector can accomplish, joint space - possible joints can take, and
precision - deviation between assigned position and end-effector current position.

e The end-effector Jacobian of interest is

é = J.g" (3.8)

where

T.q) = 1 —(agsin(qq) + azsin(qs + q5)) —azsin(qs + gs) (3.9)

0 agcos(qs) + azcos(qy + qs) azcos(qs + qs)

e The robot arm has singularity when cos(qs + ¢5) = cos(qs) = 0. It means that
when the second and third links lie both (folded or stretched) along a line or-
thogonal to the prismatic joint axis, the manipulator loses one degree of freedom
in Cartesian space, and changes in joint variables do not result in change in

end-effector pose.

Given ey, ez and «, the joint values g3, g4 and ¢5, necessary to achieve the given
position and orientation of the end-effector need to be calculated. In this chain, a
prismatic joint ps is fixed at the base creating a fixed angle with the robot platform. The

joints connecting ps to py and ps to the platform are revolute. By parallel projection
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on the X and Z axes, the coordinates of point Oy are as follows:

ex = q3 + azcos(qy) + aszcos(qy + qs) (3.10)

€y = CLQSZ"I’L(Q;;) + agsz’n(q4 -+ Q5) (311)

The orientation angle is as below.

Y=q1+¢s (3.12)

When the joint displacement are known, ex and ez generate a unique position for the
gripper. A reverse analysis is performed by substituting orientation angle into Equation

3.11, which gives

Q= Sm—l(w) (3.13)
a2
The corresponding value ¢z can be computed from Equation 3.10,
3 = €; — azcos(y) — azcos(qa) (3.14)

After the determination of two joint variables, the left one is obtained using orientation

angle.

GB=0—q (3.15)

3.3. Human Manipulation

The human arm mechanism is composed of 7 DoF's, 3 DoF's in shoulder joint, 2

DoF's in the elbow joint, and 2 DoF's in the wrist joint, as seen in Figure 3.5. The basic
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movements of human arm can be classified into eight individual motions which are
shoulder vertical flexion/extension, shoulder horizontal flexion/extension, shoulder ad-
duction/abduction, shoulder internal/external rotation, elbow flexion/extension, fore-

arm supination/pronation, wrist flexion/extension, and wrist ulnar/radial deviation.

Figure 3.5: Human arm joints with 7 DoFs [21]

The correspondence between human arm joints and those of our robot is shown
in Table 3.1. As such, it is evident that the manipulation capabilities of our robot is
much simpler as it does not have counterparts to shoulder vertical flexion/extension

and elbow flexion/extension.

In addition, humans have trunk muscles that move the torso freely in all three
planes of movements, as shown in Figure 3.6. The trunk movements are flexion, ex-
tension, lateral flexion, and circumduction. The flexion takes place in forward bending
or sitting lying. The extension expands the trunk that can bend backward. The trunk
twists to the side laterally. The trunk rotates to the right or the left within circum-
duction. Since the robot is a differential robot that has non-holonomic constraints,
the robot body can not move laterally. Due to the mechanical limitations, the robot
body can not execute circumduction and flexion/extension. Our robot can achieve

only rotation around its axis. Additionally, the robot arm has a prismatic joint that
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Table 3.1: Correspondence between human arm and PRR arm joints

Human arm joints Human movement PRR Arm Joint
Q1 Shoulder adduction/abduction —
G2 Shoulder extension/flexion qa
q3 Shoulder internal/external rotation —
qa Elbow extension/flexion qs
s Elbow pronation/supination —
6 Wrist palmar/dorsal flexion —
qr Wrist radial /ulnar rotation -
(a) Flexion/Extension (b) Lateral flexion (c) Rotation (d) Circumduction

Figure 3.6: Human trunk motion modes

will correspond to perform extension and flexion. Furthermore, the robot has a gripper

that acts as a finger.

Table 3.2 summarizes the correspondence between human motion and our robot.
Since the robot can not perform trunk extension, the robot arm can execute extension
/ flexion movements with its prismatic joint. The robot can move with the joints ¢

and go. The shoulder extension / flexion in humans corresponds to the revolute joint

qs4.

Complex manipulation behaviors include taking, pushing, pulling, putting, and
shaking. These can be achieved by the sequential composition of the basic modes of

interaction while taking visual feedback into consideration.
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Table 3.2: Correspondence between human motion and our robot

Human motion Related Robot Part | Robot Joint
Trunk Extension/Flexion Robot Arm qs
Shoulder Extension/Flexion Robot Arm 4
Elbow Extension/Flexion Robot Arm s

The automata for “taking” task is given in Figure 3.7. The task includes ex-
tension /flexion and translation motions in terms of the human movements. In Figure
3.7, the input of the task is object position, which is determined by the vision system.
When the object to be grasped is behind the arm workspace, the robot requires the
body motion. When the robot enters the arm workspace, then the manipulator reaches
the object by the primitive actions such as translation and extension. After reaching,

the manipulator opens the gripper and closes it.

Figure 3.8 represents the automata for “putting” task. The task includes exten-
sion/flexion and translation motions in terms of the human movements. In Figure 3.8,
the input of the task is object position, which is determined by the vision system and
also the position where to put. The automata assumes that the manipulator grasps an
object before starting the putting task. When the object is behind the arm workspace,
the robot requires the body motion. When the robot enters the arm workspace, then
the manipulator reaches the object by the primitive actions such as translation and
extension. After reaching, the manipulator opens the gripper, and putting process

ends.

Figure 3.9 shows the automata for “pulling” task. The task includes exten-
sion/flexion and translation motions in terms of the human movements. In Figure
3.9, the input of the task is object position, which is determined by the vision system
and also the position where to pull. When the object is behind the arm workspace,
the robot requires the body motion. When the robot enters the arm workspace, then

the manipulator reaches the object by the primitive actions such as translation and
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extension. After reaching, the manipulator opens the gripper and grasps the object.
After the prehension, the manipulator pulls the object the predefined goal position,

and pulling task process ends.

Figure 3.10 represents the automata for “pushing” task. The task includes ex-
tension/flexion and translation motions in terms of the human movements. In Figure
3.10, the input of the task is object position, which is determined by the vision system
and also the position where to push. When the object is behind the arm workspace,
the robot requires the body motion. When the robot enters the arm workspace, then
the manipulator reaches the object by the primitive actions such as translation and
extension. After reaching, the manipulator closes the gripper and pushes the object to

the predefined goal position. Thereby, the process of pushing task ends.

Figure 3.11 describes the automata for “shaking” task. The task includes ex-
tension/flexion and translation motions in terms of the human movements. In Figure
3.11, the input of the task is object position, which is determined by the vision system
and also the positions to shake. The automata assumes that the manipulator grasps an
object before starting the shaking task. When the object is behind the arm workspace,
the robot requires the body motion. When the robot enters the arm workspace, then
the manipulator reaches the object by the primitive actions such as translation and ex-
tension. After reaching, the manipulator shakes the object between two points defined

by the user.

3.4. Visual Processing

Fast and highly precise object detection is integral to manipulation. This is our
system accomplished by using the OpenNI drivers [22] and a Kinect camera. Since
these tasks require the object detection, the robot vision system obtains the position
of the object relative to the manipulator. Thus, the visual processing aims to detect
and track the color objects in real-time. This has been done as part of an EE492 Senior

Project [23].
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Object detection is done using RGB data. The approach is based on the color
based detection that includes a range of color for the targeted object. An object which
is in range of the color will be marked. The method relies on morphological operations
and color segmentation. After the determination of the object, the algorithm calculates
the distance between the robot and the object. Here, the depth data corresponding
image area of the detected object is used to determine the mean distance. Together

they are used to estimate the objects relative Cartesian coordinates.

The robot’s visual system is also required to track the. Due to the robot motion,
in some cases, the object may get out of the camera view. In that situation, the
vision system uses the last information related to object position. Besides, the depth is

calculated by the robot position and the last object position acquired from the camera.

Figure 3.12: The detected and marked object with the vision system
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4. BODY AND ARM COORDINATION IN OBJECT
MANIPULATION

The proposed approach aims to generate human-like reaching movements for
manipulation tasks. This requires the coordination of the robot’s body and arm. The
methodology consists of three related parts. We assume that the robot is able to
determine the relative Euclidean coordinates of the object of interest. Additionally,
objects must be graspable for the robot’s two-fingered gripper. Due to configurational
constraints related to robot arm, the approach assumes that no obstacle prevents the

smooth manipulation.

Firstly, the robot uses a color-based object sensing algorithm for object detection
and tracking. The vision system finds the position of the object relative to the manip-
ulator. After that, during the robot motion for approaching, it tracks the object by
marking. When the object is far away, the robot may not obtain the exact position
of the object. In some cases, due to the robot motion, the object may get out of the
camera view. If the vision system determines the position of the object once, the robot
assumes that the object does not change any position and uses the previous object

information.

Secondly, the proposed algorithm requires an input movement and makes it more
natural by considering a spatio-temporal relationship, which imitates the coordination
of the muscularly linked human bodies. The control model based on the distance
between the robot and target enables the robot to perform concurrent movements of
body segments during the reaching for the manipulation. The depth data is used for
constructing the model considering the object and the robot location so that the object
will be reachable with the motion of the robot body. Namely, if the object is beyond
the reach, the robot requires body motion to make it enable to move towards object.
In the distance between robot and target, the robot arm begins to accompany the

robot body. The robot then ends its motion, though the arm continues its movement
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to reach the object.

Finally, we propose a behavior-based control by decomposing the tasks on several
sub-tasks to execute. The behaviors are specified in the form of a target region to be
reached by the robot arm. Assuming that the object is graspable and the robot position
is within the reachable space with the robot arm, the tasks such as take-and-put, take-

and-shake, pull, and knock defined by the user are performed.

4.1. Robot Body-Assisted Reaching Movements

This study deals with the problem of proposing a reaching planning for a mo-
bile robot to manipulate graspable objects through its arm. Though, that planning
requires the coupling of body segments including, robot body and manipulator. By
modeling the control law on the human reaching characteristics, we demonstrated that
the autonomous robot itself could achieve a manipulative task pre-defined before in a

human-like way.

Body-assisted reaching might be the task in which different segments move in
parallel. Depending on the location position of the object, reaching movements often
need to be coordinated with trunk motion. In that coordination, relative to the ob-
ject position, the arm does not attain the object, the trunk may involve the reaching
movements to provide the arm displacement. The trunk motion begins before the arm
movement by around ten milliseconds (ms) and continues after the arm reaches the
object [24]. Additionally, the target distance at which the trunk involves the reaching
movement corresponds to a distance equal to nearly 90 % the length of the arm [11].
These findings point out that there is an inherent coupling between human trunk and

arm during the reaching for manipulation.

Based on the human’s reaching properties, the robot’s body motion is combined
with the robot arm to move. That motion can contribute to the manipulator by
enhancing the boundaries of the workspace and transporting the end-effector. The

robot requires sensation pose of the object relative to an external coordinate system;
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Object sensing /[ €

Depth information
—> Robot body motion
o

Figure 4.1: Flowchart of coordination of body and arm movements

it positions itself so that the object is reachable and then moves the associated joints
leading to the desired movement. The robot’s body motion starts at the beginning
of the reaching and endures until the target is reachable for the manipulator. The
control begins with the object sensing that covers to obtain the object and determine

the position of it.

Let us consider a task that the robot seeks to manipulate an object, which is
not in the reach space of the arm. It means that the robot can not grab the object
without moving its body. The control begins with the object sensing that covers to

obtain the object and determine the position of it. Relative to object position, the
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vision system calculates the depth information between the robot and target. While
the robot body is approaching for the target, in the distance 75, where the robot body
involves reaching, the robot arm begins a synchronous action with the body of the
robot. When the target becomes reachable for the manipulator, the robot adjusts its
orientation relative to the object and terminates its body motion in the distance 7.
After that, the robot arm moves towards the target and performs its task. Figure 4.1
shows the whole process of the coordination of body and arm movements during the

reaching for manipulation.

4.2. Robot Motion

The robot requires body motion when the target is beyond the fully extended
manipulator. When the robot approaches the target, it shall bear human features in
segmental control including, manipulator and robot body. It implies that the robot
motion shall appear natural and smooth as well. However, robot motion is not straight
forward since the mobile robot has the non-holonomic constraints. Besides, it is stated
that a non-holonomic robot can not be stabilized by a state feedback control law [25].
Therefore, based on the previous work by [26], it is planned to use a kinematic position
control law for comfortable motion of the mobile robot so that the robot can move
the desired pose in space. The position of the differential drive mobile robot shown in

Figure 3.2 is ¢; and ¢, and orientation « of the robot can be calculated using Eq. 4.1,

¢1 = veos(a)
¢y = vsin(a) (4.1)

a=w

The robot R can be considered as a unicycle model which is driven by two inde-
pendently parallel wheels such that linear velocity v and angular velocity w can be
controlled separately. Consider a sensor, which is mounted on the robot and an object
O fixed at a distance r away from the robot. Let § € S defined in (—m, 7] be the ori-
entation of O with respect to the line of sight from the sensor to the object. Moreover,

let § defined in € (—m, 7] be the orientation of the robot heading relative to the line of
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Figure 4.2: Polar coordinate system relative to the sensor

sight, as shown in Figure 4.2. By representing the robot kinematic in polar coordinate
system, the distance, r, and robot orientation relative to the object O, and the defining
a as the angle between robot principal axis and the distance. The angular velocity w

and linear velocity v are considered as the control variables.

Consequently, the kinematic controller proposed enables the mobile robot to fol-

low a trajectory described by its velocity profiles as a function of time.

4.3. Control Law for Coupled Motion of Robot Body and Arm

The target reaching movements take on an essential role in mobile robots to gain
general utility. In a primary task such as take-and-place requires reaching movement
planning to drive the manipulator to a given target position. When it is considered
that robots will be assigned to perform tasks such as serving and assisting, robots
should have human-compatible and adaptable movement abilities so that they might
work in a human environment without any need and changing the environment. Thus,

the generation of human-like reaching movements is essential in robotics.

Humans inherently perform the reaching tasks by sensing the pose of an object
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relative to an external coordinate system; they then need to locate their trunks so
that the object is reachable and then move the associated limbs leading to the desired
movement of the arm. This natural process demonstrates that the coordination nec-
essary to execute an everyday task such as picking a glass requires the integration of
a number of body segments, including trunk and arm. Humans have multisegmental
control strategies associated with target reachability. When a spatial target is selected
for manipulation, body segments are evaluated for the contributions they can make to

the task.

The fact that the reaching movements require the collocation of the considerable
number of arm muscles and coupling body segments makes it highly redundant relative
to the task. Though, biological systems generally solve the redundancy issue by apply-
ing the principle of biological inspiration-synergy [4,5]. It has been noted that certain
trajectories are preferable from the infinite amount of alternatives when executing arm
movements [27,28]. These behaviors can only be explained through inherent optimiza-
tion that manages the acquisition of motor skills in humans. In terms of robotics, the
synergy concept imposes particular constraints such as velocity on the control vari-
ables of joints related to the tasks consisting of the primary movements. Hence, our
work is based on the resolved kinematic redundancy and redundant actuation of a
given robot system, applying a biologically inspired synergy approach together with an

optimization procedure.

The proposed control approach has three phases in which the robot moves, ap-
proaches, and reaches. To model that approach, we propose three connected regions
based on the distance where the robot body and arm are coupled for the reaching
movement and the stagnation distance where the robot body terminates its motion.
In the far zone, the robot body plays the primary role in positioning the manipulator
at the target. Since the robot does not participate in reaching movements, the robot’s
body motion is required for approaching the object. In the intermediate zone, the
robot body involves the reaching. In the near zone, within the robot arm length, only
arm movements take part in reaching towards the object for manipulation. Figure 4.3

demonstrates the zones in the approach.
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Kinect camera

Figure 4.3: Robot arm and body coupling vs distance

e Far zone: When the robot is too far away from the target, it can not grab the
object without moving its body. Therefore, the robot should act for it.

e Intermediate zone: While the robot moves for the target, in a pre-determined
distance, where the robot body motion involves reaching, the robot arm begins
the simultaneous and coordinated movement with the body of the robot.

e Near zone: When the target becomes reachable for the robot manipulator, the
robot adjusts its orientation and position relative to the object and terminates

its body motion. After that, the robot arm moves towards the target.

0(q) = Y2(d(c, g) — 7)) +7lle(q) — gl? (4.2)

The approach to coupled motion of the robot body and arm involves constructing
potential artificial fields (APF) which are designed to attract the mobile robot to the
desired goal. The coupled motion can then be guided by considering the gradient
of this potential function. APF represents the energy of the system and generating
appropriate joint velocities on the robot so that the energy of the system is minimized
and reaches its minimum value at the goal position. The information of free space
and goal is encoded in the form of potential function, called a coupled function that
connects the robot body and manipulator motion during approaching and reaching for

the target. e(q) = [ex(q), ey (q), ez(q)]* represents the current position of end-effector.

What we have is a potential function, ¢(q), which takes a parameter ¢ for each

joint of the robot. That parameter represents the current angles of the joints. Given a
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specific configuration of the joints, ¢, the function ¢(q) returns a value that indicates
how far the end-effector of the robot manipulator is from the target object g. The

objective is to find the values for ¢ that minimize the potential function.

Equation 4.2 shows the robot body motion that enables the robot to approach
and go into the coupling motion workspace. The coupling motion workspace can be
defined as workspace in which the robot body and manipulator operate concurrently.
Equation 4.2 points out the coupling motion of the robot arm and body. Whereas
the robot terminates motion in the distance 71, the manipulator proceeds the motion.

d(c, g) is the distance between the robot position [c1, c2]” and the goal position [g,, g,]7.

d(e.g) = /(e — g0 + (2 — g,)? (4.3)

~v1 and 7, variables scale the velocity of the robot and manipulator joints when the

robot is in the coupling motion workspace.

0 d(e,g) > 1

Mm=9 7% 7 < d(c,g) < T (4.4)
1 d(c,g) <m
1 d(C, g) Z T2

T2=9 75 1 <d(c,g) < T (4.5)

0 d(e,g) <m

The first part of the Eq. 4.2 is related to robot locomotion. Until a constant distance,
71, the robot performs body motion to reach the object. After a constant distance,
T9, Tobot manipulator accompanies the robot locomotion. It implies that between dis-
tances 7, and 7y, the robot arm and body motion act together in a coordinated and
simultaneous way. The distances denoted by 7 and 7, are determined by considering
operating measuring range of camera and the feature of body-assisted reaching move-

ment, respectively. To obtain joint velocities during coupled motion based on distance



29

between robot and goal, the gradient of the potential function is used.

To find a minimized solution for the potential function, it is required to take the
gradient of the function ¢(gq) with respect to the robot joints. Since the robot has five
joints, two body joints and three arm joints, we will have the function that takes five

parameters: qi, s, 43, qs and gs. Then, the gradient V(q) is given by

Vo1, 62,43, 945 G5) = [Vg, (0), Vo, (@), Vogs (), Vou, (@), Vipgs (9)] (4.6)

where

o(q + Aq1, @2, 3,94, G5) — (15 42, G35 Qa, G5)

v = 4.7
©q.(q) A (4.7)
o(qr, g2 + A2, g3, Ga, ¢5) — (1592, 3, G4, G5)
Vg (q) = A (4.8)
q2
(g1, 92,93 + Ags, qu, g5) — ©(q1, G2, 43, 44, G5)
Vipg(q) = A (4.9)
g3
Sp(qla 42,43, 44 + ACM, (15) - SO(Qh 42,43, 44, Q5)
Vg (q) = A (4.10)
q4
©0(q1, 92, 93, Qas @5 + Ags) — 0(q1, G2, 43, 44, G5)
Vipy(q) = A (4.11)
g5
and Ag; where ¢ = 1,..,5 are the sufficiently small values. To minimize potential

function, it is required to move in the opposite direction of the gradients.

e ©(q) is a multivariable defined function and differentiable in a neighborhood of

a point ¢g. For small enough , then ¢(g;,) > ¢(gi,,,). The term V(g ) is
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subtracted from ¢ since it is moved against the gradient toward the minimum.

gi, represents angle of i-th joint at k-th sample.

iy = i, — ’{VQP(qik) (4-12)

where k is a non-negative scalar minimizing. That parameter controls how fast
the function paramater moves away from the ascending gradient.
e ¢ is the vector directed toward the goal with magnitude linearly related to distance

from current position to goal.

¢ =—Velg,) (4.13)

e ( converges to zero as ¢ approaches goal.

4.4. Generation of Human-Like Arm Movements

The latest trends in humanoid robotics works to make humanoids really look like
people and even more so. There is, however, a large distinction between a robot’s
appearance and the capacity to behave like a person. With robots being brought more
into culture today, new problems emerge, such as robot anthropomorphism. Several
studies [29-32] proposed that humanoid robots should imitate human social abilities
and be able to deliver consistent behaviors. This is partly due to the reality that
human-like movements promote natural human-robot interaction by making it easier
for the humans to interpret the robot’s motions in terms of objectives. Besides, such
movements need to look like human beings; otherwise, individuals may misunderstand
the significance of behaviors. Human-like arm movements are the ultimate demands
for humanoid robots to do as human beings do. Therefore, the human-inspired con-
trol of the robot manipulator should achieve human - motion characteristics for their

acceptability by humans.

Robot manipulators are excessively nonlinear and composed systems in which
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their control is complex and challenging. As the robot manipulators have adequate
DoF's to perform the tasks by providing final position and orientation for the target,
the workspace will be restricted due to the mechanical constraints (,i.e., singularities
and joint limit avoidance) and control issues (, i.e., stability). Some robot manipulators
can be redundant since they have more joint variables than the end-effector has DoF's.
These redundant manipulators have multiple solutions for the inverse problem. Thus,
it is challenging to plan a comprehensible trajectory that considers both mechanical
and control problems. Though, an effective controller for kinematic redundant robotic
manipulators should, therefore, integrate robot dynamics and be consistent with mul-

tivariate uncertainties connected with dynamics and internal disturbances.

Velocity control the robot manipulator is essential to execute a specific task that
requires the reach-to-grasp movements. Hence, in this work, point-to-point control of
a three-link redundant robot arm is studied. A gradient-based optimization method is
proposed for the human-like movement generation by minimizing the error between the
desired position and initial position of the end-effector. Our strategy seeks to imitate
the spatio-temporal coordination of human joints that allow the arm to move an area of
interest for the task. Let us consider the pulling task. The robot manipulator requires
prehension and drags the object along a distance. Let the object be in the workspace
of the robot arm. Figure 4.4 shows the case in which the object is in the workspace
of the arm. It implies that the robot can reach the object without moving its body.
Then, the robot should perform only arm movements to pull the object and finish the
task. In that scenario, the control law Eq. 4.2 for the coupled movements of the robot

body and arm becomes as below.

o(qa) = |lz(q) — gl (4.14)

This solution described by Eq. 4.14 for the joint rates generates the desired motion at
the end-effector. g represents the position of the object relative to the camera onto the

robot. The robot end-effector must be at the object position in the final configuration.



32

Then, we can rewrite Eq. 4.14 as below

o(qa) = ||Jeqa — gl)? (4.15)

where J, is Jacobian of the end-effector. Then the cost function can be expanded in

the following form

©(qa) = (Jeqa — 9)" (Jeqa — 9) (4.16)

=4I Tqa — 25T g+ g"g

The partial derivative of the cost function with respect to ¢} vanishes for g4 that
minimizes ¢(q4). Solving the partial derivative of the cost function ¢(ga) for the

unknown ¢4 results in
ga=2(J]J) " Il g (4.17)

The mobile robot performs reaching movements for prehension. After termination
of the robot locomotion that manages approaching for the object as proposed in the
coordinated control law, the robot manipulator continues its movement for the ma-
nipulation task. During this process, a path that lies in the manipulator’s working
space must be assumed. To solve the coordinated control problem for the robot ma-
nipulator, it is obtained ¢4 the joint velocities profile that corresponds to the assigned

manipulator velocity profile ¢,.

Kinect camera

, ;-q&

Fobot

Figure 4.4: Robot manipulation task

To control the robot manipulator motion, the joint trajectories and velocity refer-
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ences for the robot arm are required. It implies that position control of robot arm joints
is ensured by joint velocity profiles obtained from the gradient of the APF. To find the
joint positions required to bring the gripper to the object position, the joint rates cal-
culated by the gradient descent method at the velocity level must be integrated. The
mathematical expression for the position of the end-effector ¢, is described as finding

q related to robot body and arm such that

ge = f(qa,q8) (4.18)

When the joint velocity profiles of the manipulator are completely determined by the

control law, the corresponding joint position profile could be attained by time integral

t
qa(t) = qa(to) +/t qga(r)dr (4.19)
0
Since the problem is solved by integrating the manipulator’s joint velocities, initial
conditions for each joints are needed. Physically, the initial conditions of joints show the
initial position and orientation of the manipulator from which the motion toward the
target position begins. Though, real-time implementation of robot manipulator control
makes the Eq. 4.19 more likely that a discrete-time sequence of samples ¢, of joint
velocities at the time instants ¢, will exist. Therefore, a discrete-time approximation
method corresponding to the time integral is acquired. Using Euler’s forward formula,

the time integral becomes

qa, = qa,_, + qa, At (4.20)

where At is the step time. The large step time will result in time delay and also decrease
the position accuracy of the robot manipulator. Thus, it must be chosen sufficiently

small. However, shorter step time will complicate the computation.
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4.5. Human Reaching Characteristic and Robot Control Law Comparison

The lack of dexterous human arm articulation problematizes to generate human-
like motion in robots. Thus, to design a human behavior based controller for robots to
perform arm movements, it is required to consider the human spatiotemporal charac-

teristics such as bell-shaped velocity profile of the hand in reaching.

In daily life, there is an immense potential to help and unload people to carry
out their duties through the provision of service or care. A challenging task in the
development of adaptive and self-sufficient robots is to generate movements that fit
naturally to a daily human environment. Such a system would require to generate
motions based on the current task, the type of object, while considering reaching

pattern of the human for manipulation.

In humans, reaching movements require commanding of various DoF's of motor
components so that a desired trajectory and inter-joint coordination may be decided
from the feasible strategies pointing to the end. The control of the arm movements
is challenging due to the requirement of coordinating multiple muscles. According to
one approach, by mapping the initial point and final point into the muscle activation
through the synthesis of muscle synergies, the central nervous system might simplify
the control of reaching [33]. According to another approach, a muscle synergy con-
tains the coordinated activation of group muscles with precise time-varying profiles [5].
These studies demonstrate that reaching movements require joint coordination to re-

duce complexity.

In the study [34], it is experimented to examine velocity of the hand in an un-
constrained environment. The pose of the object is the different shown as Figure 4.5.
This experiment points out that the hand velocity has a belly-shaped profile regardless
of the target distance. The target distance determines the time of the reaching and
magnitude of the hand velocity. In conclusion, there is a coordination between the

trunk and arm while reaching towards objects placed outside the arm workspace.
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Figure 4.5: Experimental setup for human studies: Six targets in 2 directions and 3

distances were shown [34]

===8cm — 18cm —— 24cm
-45° Targets +45° Targets

250
8 200
o
§ 150
=
=100
L=,
£ 50

o

0.10 0.20 0.30 040 050 0.10 0.20 0.30 0.40 0.50

Time (sec) Time (sec)

Figure 4.6: Mean velocity trajectories for one participant reaching in real-world envi-

ronment [34]

In [35], the authors obtained that the arm and trunk move in parallel in reaching
movements. The trunk and arm movements are generated sequentially. Besides, they
found that the trunk began to contribute to the hand transport only at a later phase of
movement, beginning at around the time when the hand reached peak velocity. Figure
4.7 shows the parallel hand and trunk movements during the reaching in two cases:

when the trunk is free and when the trunk is blocked.
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Figure 4.7: Typical kinematic effects of the trunk in movements to targets located

beyond the reach of the arm [35]

4.6. Behavior-Based Tasks

Behavior-based control executes task decomposition to structure the overall con-
trol scheme as layers of behavior modules, which are defined as a task-performing
controllers. The controllers complete a mechanism that gathers sensory information
related to the unfinished task to compute actuator outputs. It is required to model the
behavior modules firstly to construct a behavior-based system. Later, it proceeds to
design an arbitrator to combine the individual results from different behavior modules

into commands.

The controlling a robot manipulator in a human-like way is a complicated prob-
lem. For imitation, the process of learning new movement patterns and skills by ob-
servation should be present. In our approach, we assume that motion is structured
for control by primitive modules i) action primitives, ii) behavior primitives. Action
primitives refer to information of simple actions that can be captured from humans.
Translation and extension might be illustrative examples. Action primitives can be
combined and sequenced to form complex movements that will constitute behavior
primitives such as dragging. Our robot can perform five basic low-level behaviors such
as to take, put, shake, and pull. It is required to combine these behaviors into an upper

level, including taking-putting, taking-shaking, pulling, and knocking.
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We deal with the different types of primitives to generate full-arm movements and
sequences, and parallel movement primitives to accomplish more complex motion tasks.
According to our approach, each action primitive represents a set of joint trajectory
basis functions; these basis functions are extracted by analysis of human motion capture
data. Since our ultimate goal is to develop efficient methods for generating natural, or
physically meaningful, motions for a wide variety of our robot. We have attempted to
pattern human movements and apply them to robot movement environment so that we
can cope with the complexity of the robotic arm control and learning. Furthermore,
we will obtain a computationally, efficient, modular, and reusable design. The general
features of our approach are i) to select and classify a set of movement primitives, ii)
to extract basic motions considering observed human movements, iii) combine these
motions sequentially to achieve more complicated movements for a task, iv) to perform

collection of the motions to resemblance to the natural human movements.

The action primitives are necessary actions adopting human motions into the
robot. A set of action primitives allows the robot manipulator to perform complex
movements. While action behaviors provide a valuable structuring of control of the
robot arm, an important question remains as to which movements should may the
action primitives. Our robotic manipulator with the end-effector can perform four
primitive behaviors that correspond to the human arm motion. These are extension,

flexion, gripping, and releasing as shown in Table 4.1

Table 4.1: Primitive actions and behaviors in the manipulator

Primitive actions Low-level Behaviors
Flexion Flexion + Gripping
Gripping Gripping + Extension

Extension Extension + Gripping
Releasing Releasing + Extension

We will study the sequence of movements that must be made to create a controlled

movement between action primitives. We need to approach the problem of composing
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the action primitives so that we can construct behavior primitives to achieve more
complex manipulation tasks. For example, extension and gripping may constitute
a motion to hold an object. For the low-level behavior-based design, it is required to
combine the primitive actions. The concept of primitive actions and low-level behaviors
is listed below. For example, extension and gripping may constitute a motion to hold
an object. Thus, the low-level behaviors may construct the movements such as pull,
put, take, and shake. The parameters related to simulation and real-time experiments

are the same with the method. These parameters are shown in Table 4.2.

Table 4.2: The parameters and descriptions

Parameter Description
Y Scale factor for the robot arm movement
Yo Scale factor for the robot body motion
T Distance threshold for robot body motion
Ty Distance threshold for reaching
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5. EXPERIMENTS AND RESULTS

The experimental evaluation is conducted in two stages. First, simulations are
performed to validate the proposed approach and compare the resulting behavior with
that of humans. Real-time experiments conducted on a mobile robot follows this. The

values of parameters used in the experiments and simulation are shown in Table 5.1.

Table 5.1: Parameter values

Parameters | Value | Unit
Y 0.73 -
Yo 0.37 -
s 1.1 meter
Ty 0.5 | meter

5.1. Simulation Results

The extensive simulations are conducted to validate the proposed approach.
Robot’s kinematics is simulated using Runge-Kutta. Velocity profiles for the robot’s
various joints are obtained and then compared in form with those of humans. As
discussed, the velocity profiles of human joints exhibit bell-shaped tangential velocity
profiles as a function of distance to the object-of-interest. The controller is designed

to have a similar pattern. This is verified in the simulations.

A sample scenario is as follows: Let P; and Py be the initial and final positions

of robot arm, respectively:

T 0.32 Ty 0.40
B - = y and Pf = =
2 0 25 0.15

The trajectory of the robot’s end-effector and those of the joints are presented in
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Figure 5.1: Manipulator and joint trajectories during reaching

Figures 5.1a - 5.1b, respectively. While the robot arm performs human-like reaching
movements, the robot and arm joints follow these trajectories. The distance between
the robot arm and the target reduces when the end-effector approaches it. The ve-
locity of the robot’s end-effector and those of the joints versus time are presented in
Figures 5.2a - 5.2b, respectively. Similar to the bell-shaped velocity profile of the human
hand, the speeds increase to a point to the distance; after a peak value, they decrease.
The velocity of the robot’s end-effector and those of the joints versus distance are shown
in Figures 5.3a - 5.3b, respectively. These results show that the proposed control ap-
proach ensures the human reaching features such as quasi-straight line trajectory and

bell-shaped tangential velocity profile of hand.
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Figure 5.2: Manipulator and joint velocities vs time during reaching

5.2. Robot Experiments

In the robot experiments, the robot’s task is to do one of five basic manipulation
tasks (take, put, pull, push, and shake) with an object-of-interest. The experiments
are conducted with a differential wheeled mobile robot with a PRR arm and 1 DOF,
as explained in Chapter 3. Two scenarios are considered by considering the robot’s

initial position and object of interest’s position.
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Figure 5.3: Manipulator and joint velocities vs distance during reaching

5.2.1. Varying Object’s Position

In the first scenario, the robot’s initial position is fixed while the object of in-
terest’s location is varied, as shown in Figure 5.4. The latter is done considering
three different zones: near zone in which only arm motion will suffice as represented
by the red area. Intermediate zone in which both body and arm motion are re-

quired concurrently, as shown by the orange area. Finally, the far zone in which
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Figure 5.4: Varying object’s position

the robot should exhibit only body motion. In each zone, we consider a set of dif-
ferent positions that vary in the respective orientation to the robot’s heading, as
shown in the figure. As the workspace of the robot’s covers only x and y planes,
all objects are placed at a reachable and the same height. In the near zone, three
different positions are considered as: (0.5,0,0.78)%, (—0.5,0,0.78)7 and (0,0.5,0.78)7.
The units are meters. In the intermediate zone, five different positions are consid-
ered: (0,1,0.78)7,(1,1,0.78)T,(1,0,0.78)7, (1, —1,0.78), and (0,—1,0.78)T. Finally,
in the far zone, five positions are considered: (0,2,0.78)T,(1.5,2,0.78)T,(2,0,0.78)7,
(1.5,-2,0.78)T, and (0, —2,0.78). For each object position, experiments are repeated
ten times. In the tests, the success of the task relies on whether the robot achieves
the task or not. Samples of the visual feedback as a function of object distance are
as shown in Figure 5.5. As expected, as the robot approaches the target, it becomes

more apparent in the incoming images.

The results are presented in Table 5.2. The average success rate of the manip-
ulator is computed to be 66.4%. Task completion failures are observed to be due to
problems in the visual feedback - namely, if the object-of-interest cannot be detected,
then the task terminates. Another reason is the limitation in the measuring range
of the camera in the near zone since the camera can not compute depth data under

approximately 50 centimeters. We also compute average task completion times and
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Figure 5.5: Appearances from robot’s initial position with the object-of-interest (blue

point) at positions (1), (2), and (3), respectively.

Table 5.2: Varying object positions: Experimental results

Average task time (sec)
Zones Task | Success Rate (%)
Proposed Approach | Without coordination
Take 76.7 5.2 5.2
Put 73.3 4.8 4.8
Near zone Pull 70 4.7 4.7
Push 76.7 5.4 5.4
Shake 63.3 6.4 6.4
Take 64 12.1 16.4
Put 60 11.4 14.4
Intermediate
Pull 70 10.1 14.2
zone
Push 62 11 14.6
Shake 56 12.5 15.7
Take 64 19.2 23.5
Put 66 16.5 22.7
Far zone Pull 64 17.9 21
Push 68 18.1 22.7
Shake 62 20.1 25.4
Average 66.4 14.4 11.7

compare them with those that are obtained if the tasks are done without body and

arm coordination, as is proposed. As expected, task completion times turn out to be

identical in the near zone. However, in the intermediate and far zones, the advantage

of the proposed approach becomes apparent due to the coordination of body and arm

motion. In the intermediate zone, the gain is around 24% while in the far zone, this is

around 20%. This is also expected since the task is completed with a greater overlap

of body and arm movements. Sample cases of this coordination are shown in Figure

5.6. In the left figure, for an object-of-interest in the intermediate zone, body and

arm motion occur concurrently, but body motion terminates approximately 3.6 sec-

onds later. The right figure is for an object-of-interest in the far zone. In this case, the
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coordination time increases to 4.7 seconds. This suggests that as the robot is further

away from the object, its arm movements are slower.

EEEE Only arm movement region
BN Only body motion region

i Body-assisted motion region

Regions Respons

=~ 3.6 sec Time

=~ 4.T sec

Figure 5.6: Body and arm motion vs time. Left: Object-of-interest in intermediate

zone; Right: Object-of-interest in far zone.
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Figure 5.7: Varying robot’s initial position

5.2.2. Varying Robot’s Initial Position

In the second scenario, the object of interest’s position remains the same while

the robot’s initial position is changed. This scenario intends to test whether the robot

can perform the task when it is placed at different positions. Again we consider three

different zones depending on whether only arm motion (near zone), only body motion
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(far zone), or both (intermediate zone) are required, as shown in Figure 5.7. In the
near zone, robot’s positions are varied as: (0,0.5)7,(0.5,0)7, and (0, —0.5)T meters. In
the intermediate zone, its positions are varied as: (0,1)T,(1,1)T,(1,0)7,(1,—1)T, and
(0,—1)" meters. Finally, in the far zone, its positions are: (0,2)7, (1.5,2),(2,0)7,
and (1.5, —2)7, (0, —2)T meters. Again, all the tasks are repeated ten times for each
different robot position. Appearances, as seen from various robot positions are as
shown in Figure 5.8. Again, as the robot gets closer, the object-of-interest is seen

larger.

Figure 5.8: Appearances as seen from robot positions (1), (2), and (3) respectively

with the object-of-interest (blue point)

Table 5.3: Varying robot’s initial position: Experimental results.

Zones Task | Success Rate (%) Average fask time (sec)

Proposed Approach | Without coordination

Take 73.3 5.2 5.2

Put 73.3 4.8 4.8

Near zone Pull 70 4.7 4.7

Push 73.3 5.4 5.4

Shake 63.3 6.4 6.4

Take 64 11.2 15.1

Put 62 10.9 14.9

Intermediate zone Pull 72 10.3 14.5

Push 60 11.1 14.6

Shake 56 12.1 15.4

Take 62 17.5 22.5

Put 62 174 21.2

Far zone Pull 64 17.3 21.9

Push 64 17.4 22.1

Shake 58 19.1 24.9

Average 65.1 11.6 14.2

The results are presented in Table 5.3. The average task completion rate is com-

puted to be 65.1%. As such, it is close to the previous scenario. Similarly, failures
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occur primarily to object not being detected, robot’s limited grasping capability, and
operating range of the camera in near zone. In some cases, the robot arm performed
reaching movements; but it could not complete the task due to the mentioned issues.
We also compare average task completion times and compare them with those that
are obtained if the tasks are done without body and arm coordination, as is proposed.
Again, task completion times turn out to be identical in the near zone. In the in-
termediate zone, the gain is around 25% while in the far zone, this is around 21%.
Sample cases of this coordination are shown in Figure 5.9. In the left figure, for an
object-of-interest in the intermediate zone, body and arm motion occur concurrently,
but body motion terminates approximately 3.8 seconds later. The right figure is for
an object-of-interest in the far zone. In this case, the coordination time increases to
4.8 seconds. This again validates the observation that with the proposed controller,
as the distance between the robot and the object-of-interest increases, arm motion is

executed more slowly.

EE Only arm movement region
BN Only body motion region

Body-assisted motion region

Regions Redlons

~ 4.8 sec

=~ 3.8 sec Time

Figure 5.9: Body and arm motion vs time. Left: Robot’s initial position in intermediate

zone; Right: Robot’s initial position in far zone.
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6. CONCLUSION

This thesis is focused on object manipulation. We consider a differential type
of mobile robot that is endowed with an arm and gripper. The robot has visual
sensing so that it can determine the relative position of the object of interest. Results
obtained from human manipulation studies inspire our work. First, it is observed that
manipulation tasks include various basic modes of interaction with an object of interest.
These include extension, flexion, gripping, release and translation. As such, complex
manipulation tasks such as putting, pulling, pushing, and shaking are defined using the
sequential composition of primitive operations. It is shown that through establishing a
correspondence between the robot’s and human’s underlying manipulation mechanisms,
the robot can be programmed to achieve these tasks. Second, humans are observed to
achieve these tasks through the coordination of their body and arm movements. For
this, a control approach in which the movements of the robot body and manipulator
are coupled temporally and spatially is proposed. As such, if the object of interest is
within the robot’s reach, then only arm movements are made. If this is not the case,
the robot starts moving its body. Depending on the vicinity of the object, this may
be accompanied by arm motion or not. The control algorithm results in the robot’s
body and arm movements to be done in a coupled manner. The proposed approach
is evaluated through an extensive set of experiments involving various manipulation
tasks. The experiments point out that our integrated controller generates a solution
to reaching a problem for the body-assisted manipulation that satisfies all the desired
constraints, e.g., coordinated motion of the robot body and arm to pull a bottle or to
pick up an object. As we demonstrated in the implementation of a real mobile robot,

the synchronous control of robot motion and arm movements can be reliably executed.

In future work, we will include human-like movements with a highly articulated
robot arm to accomplish more complex tasks. Additionally, we will extend the current
framework to enable the robot to perform these same tasks in environments containing

obstacles.
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APPENDIX A: KINEMATIC AND DYNAMIC ANALYSIS
OF ROBOT ARM

A.1l. Kinematics of PRR Arm

e Denavit-Hartenberg parameters of PRR robot arm shown in Fig. 3.4 are shown

in Table A.1, where p; is the joint variable.

Table A.1: Link parameters for 3-link serial PRR manipulator

Link a; (073 dz 92

1 0 |x/2|p5| 0
2 as 0 0 pz
3 |as| O | O |pE

e The corresponding matrices A; that define homogeneous transformation for each

joint are defined as below.

1 0 0 O
00 —-1 O
01 0 g3
00 0 1
cos(qs) —sin(qs) 0 agcos(qq)
sin cos 0 assin
Ay = (Q4) <Q4) 2 (Q4) (AQ)

0 1 0
0 0 1




25

cos(qs) —sin(gs) 0 ascos(gs)
sin(qs) cos(gs) 0 azsin(gs)
0 1 0
0 0 1

s
I

(A.3)

A.2. Dynamics of PRR Arm
The dynamics of a robot arm involves the relationship between the actuator
torques acting on the joints and the motion. To analyze the dynamics of the
manipulator, it can be used the Lagrangian form, which relies on the kinetic and

potential energy of the related system.

M(gHi* + 0@, gt + Glg*) =1 (A.4)

where ¢# € R® shows the joint variables of robot arm; M(¢g?) € R3*3 is the
symmetric, bounded, positive definite generalized inertia matrix, defined in arm
frame; C(¢*,¢4) € R3*3 denotes the Coriolis and Centrifugal forces matrix ob-
tained from M(q?); G(¢?) € R®*! is the gravitational force, and 7 € R3*! is
the vector of non-conservative generalized forces including external and friction
forces and torques. The term M (¢*)§* + C(¢*, ¢*') represents kinetic energy of
the manipulator, and the potential energy is described in the gravity term G(q*).

Figure A.1: The definition of generalized coordinates and dynamic parameters for the

planar PRR robot (the link lengths as and a3)

We define the reference frame axes and the generalized coordinates ¢ € R? for
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the planar PRR robot arm as in Figure A.1. Letting v., € R? be translational
velocity of the center of the mass for the link i and w; € R? be angular velocity

for each link, the kinetic energy of the robot manipulator,

1. )
*+w Lw) = §qATM (¢Mg*  (A5)

Kghd") = YK=Y slmiloe

=1 =1

where ¢4, ¢4, ¢4 € R3*! denote vector of joint position, joint velocity and accel-
eration, respectively. I; € R3"3 represents inertia tensor of link 7. m; is the mass
of the link. d, is the center of mass of link s.

We define the reference frame axes and the generalized coordinates ¢ € R? for
the planar PRR robot arm as in Fig. A.l1. Letting v,, € R® be translational
velocity of the center of the mass for the link i and w; € R® be angular velocity

for each link, the kinetic energy of the robot manipulator,

_ 1. .
K g =D K=Y slmillve|P + ol Twl = 50" Mgt (A6)

where ¢?, ¢4, §* € R3*! denote vector of joint position, joint velocity and accel-

eration, respectively. I; € R3*3 represents inertia tensor of link 7. m; is the mass
of the link. d,, is the center of mass of link i. p., and p., are positions of links’

centers for revolute joints.

Doy = q3 + dc1 + d02 COS(Q4)
c2 T
dcz 8in<Q4)

g3 + dey + azc08(qs) + descos(qs + qs)
az51n(qs) + deysin(qs + gs)
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e The translational velocities related to ¢4 from Eq. A.7,

gz — de,sin(qa)ga

Vey =
de,c05(q4)qa
“ (A.8)
- Gz — a2511(q4)qGs — dey(Ga + g5)5in(qs + g5)
c3 T
a2c05(qa)qa + dey(Gs + Gs)cos(qa + g5)
The kinetic energy of for the link 1 related to prismatic joint is given by,
.,
K = 5Mads (A.9)
The kinetic energy of for the link 2 related to g4 is given by,
1 . . . \2 N2 1 T -
Ky = §m2((€I3 — de,sin(qs)ga)” + (deycos(qa)ds)?) + 5 I2q4 (A.10)

The kinetic energy of for the link 3 related to ¢ is given by,

1 ) . . . SN
K3 = §m3((93 — az51n(qa)ds — dey(Gs + Gs)sin(qa + q5))?

+ (a9c0s(qa)qa + dey(Gs + Gs)cos(qs + %))2)

1, . ) ) )
+ 5(614 +5) I3(da + ¢5)  (A11)

e The total kinetic energy for the PRR robot arm is as follows:

Since the robot arm is mounted on a robot platform, which has a fixed distance

d; from the ground, the total potential energy for the manipulator is,

V(qA) = mygds + mag(ds + de,sin(qq)) + mag(ds + assin(qs) + deysin(qq + gs))
(A.13)

e In order to obtain equations of the motion, it is defined Lagrangian, L, as the
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difference between the kinetic and potential energy of the system.
L(¢" ") = K(¢",¢") = V(¢?) (A.14)

The equations of motion with arm coordinated ¢4 € R? and Lagrangian L are

given by,

d 0L 0L

—— =17, =3,4,5 A.15
dt 9g] ~ dq" 2 (A.15)
where T; denotes the external force acting on the link i generalized arm frame.
The first part of the Eq. A.15 represents the time derivative of the momen-

tum. Substituting L into Lagrange’s equations satisfy overall dynamics, where

the variables m,; are inertia matrix M,

mi; MMiaz2 Mg g3 C11 Ci12 (13 qds g3 T
Ma1 M2 Ma3 Ga| T |ca1 a2 co3 Ga| T |ga| = T, (A- 16)
mgy Mgz mss| |Gs c31 32 c33| |¢gs g5 Ts

mi1 = My + Mg + Mg

miz = —(mad., + maas)sin(qs) — made,sin(qs + gs)

miz = —made,sin(qs + gs)

ma1 = —(made, +mzaz)sin(qa) — made,sin(qs + gs)

Mg = I + mad?, + I3 + mad?, + maaj + 2amad.,cos(gs) (A.17)

Mo3 = I5 + m3d§3 + agmsd.,cos(qs)
ms1 = —mgdcgsin(q4 + Q5)
Mgy = I3 + mad?, + azmsde,cos(gs)

2
m33 = ]3 —f- mgdcg
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e For the potential energy,

g3=70
ga = gsin(qs)mad,, (A.18)

g5 = g(deysin(qs) + agsin(qq))ms

e The product C(¢#, ¢*)¢* is a 3x1 vector whose elements are quadratic functions

of joint velocities ¢*. The elements ¢;; are obtained in Eq. A.19.

011:()

Cl2 = qu

de,mo — ascos(qy)ms — d.,mzcos(qq + q5)) + q'5( — 2d.,mzcos(qy + q5))

c13 = Ga( — 2de;ms3cos(qs + 615)) + 45( — dey;ms3cos(qs + %))

Co1 = Q4
Co2 = G3
€23 = (3
€31 = 4
C32 = (3

(-
(
(-
(-
(-
(=
(-
(-

C33 = (3

deymacos(qs) — macos(qa) — deycos(qa + g5)) + Gs( — deymscos(qa + gs))
deymacos(qa) — mscos(qa) — de;mscos(qs + gs))

deycos(qs+ g5)) + Ga( — 2dya25in(qa)) + G5 ( — deyazsin(qa))
deymscos(qa + gs)) + G5 ( — deymscos(qs + gs))

deymscos(qa + gs)) + Gs( — aemssin(gs))

deymszcos(qa + g5)) + qa( — asmasin(gs))
(A.19)



60

APPENDIX B: HARDWARE & SOFTWARE

The robot is described with respect to its hardware and software components.

B.1. Robot System

[SL-Turtlebot is a mobile robot that is designed for indoor applications, as shown
in Figure B.1. The robot can move around and observe the environment. The system
also has a 3-DoF's manipulator attached to the robot platform. The arm has a linear
joint and two rotational joints. It also has a gripper. With this robotic arm, the robot
should be guided well enough to hold an object with its gripper. The expanse of the
gripper is approximately 15 centimeters. The robot has an RGB-D sensor camera. It
generates an RGB image and a depth image. Turtlebot is used to supply power to the

camera and motors. It also carries the robot arm.

Figure B.1: Turtlebot with Kinect and manipulator

The sensing capabilities of the robot are as follows:

e Kinect (laser range scanner + camera),

e CIliff sensors,
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e Wheel drop sensors,

e Bump sensors

% “
4

F — Y Internet 4
Jrlifi

Notebook
v
Kinect l

PC with Ubuntu+ROS

—

Robot arm

Arduino

Turtlebot

Figure B.2: The hardware specification of the whole system

The hardware specification of the whole system is shown in Figure B.2. Whereas
the robot base and computing unit have their own integrated batteries, Kinect sensor
requires 12V power sources. After powering on the robot base, the netbook, and
the sensors, the robot is ready for the operation. The robot arm has five motors; two
Dynamixel AX-18A for the end-effector, two Dynamixel RX-64 motors for revolute type
joints, and one for the prismatic joint. The overall system consists of power supplies,
slider card, USB ports, RX-64 and AX-18A motors, mechanical parts. The revolute,
gripper, and slider motors require different voltage supply. The revolute motors work
with 14.7V, gripper motors work with 11.2V, and slider motor works with 12V. If less

voltage is applied, motors do not operate with full power.

B.2. Programming Languages

In this thesis, the core systems are all written in C++, since the mobile robots

generally do not have adequate processing powers. Additionally, it is one of the fastest

programming languages. MATLAB is undoubtedly one of the best fast-prototyping



62

programming languages. For that reason, it is used as a simulation environment. The

kinematic model of the robot and control system are defined and simulated.

B.3. Libraries

OpenCV [36] is the best library in computer and machine vision areas. It covers
all the core algorithms efficiently. We use its C++ API to perform image processing

tasks. It also makes it easier to work on the matrix in C++.

Nearly all of the works are written under ROS [37] due to its publisher-subscriber
system, modularity, compilation tools, community support, hardware support. Besides,
it supports different languages, including C++ and Python. Thus, one can run several

programs written in various languages at the same time.

Qt Creator [38] presents a cross-platform, complete integrated development envi-
ronment (IDE) for application developers to generate applications. It is accessible for
Linux and Windows operating systems. ROS has been very helpful to Qt by providing
a package, catkin_create_qt_pkg, to help building the Qt environment in ROS.

B.4. Software

The software covers the codes of object sensing and manipulator movement. The

codes are under the ISL_ws in the ISL-computer number 7.

B.5. Object Sensing Software

It is required to run all functions to execute object sensing algorithm. The node
of visionl computes the depth information between the robot and the object. The node

of pseudo finds the object in the environment by using the color-based approach.

(1) roscore (to activate ROS)

(i) roslaunch freenect_launch freenect.launch (to activate Kinect)



rqt_image_view (to see the topic)
rosrun beginner_tutorials pseudo

rosrun beginner_tutorials visionl

B.6. Manipulator Software

It is required to run all functions to execute the movement of manipulator.

roscore (to activate ROS)
rosrun dynamixel_driver dynamixel_driver_node (to activate motors)
rosrun dynamixel_arduino dynamixel arduino_node (to run motors)

rosrun dynamixel_all dynamixel_all node (to run robot joints)
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