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ABSTRACT

INVESTIGATION OF SELF-ORGANISATION IN THE

BENARD EXPERIMENT BASED ON MICRO-SCALE

SIMULATION

Self-organisation is the phenomenon where in a dynamic system made of au-

tonomous, yet interacting components a global macro-scale regularity observable by

an outside observer spontaneously emerges. Rayleigh-Bénard Convection is one of the

most common examples of this phenomenon.

In this thesis, the Bénard experiment, which involves the self-organisation of

convection cells, has been simulated at micro-scale, i.e. at molecular level, in order

to investigate the dynamics underlying this self-organisation phenomenon at its most

fundamental level. Molecular dynamics simulations of the proposed 2D micro-scale

model have been conducted under different external conditions to observe the dynamic

behaviour range of the system. An image processing algorithm based on curl of the

velocity field has been developed to automatically detect the presence or absence of

convection cells and thus the type of the dynamic regime at hand.

The 2D micro-scale model developed in this thesis sheds light on how the dynamic

regime depends on external conditions and provides an answer to the original question

of this study whether the emergence of macro-scale order can be detected from the

micro-scale perspective of a single particle.
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ÖZET

BENARD DENEYİNDE ÖZ-ÖRGÜTLENMENİN

MİKRO-ÖLÇEKLİ BENZETİMLE İNCELENMESİ

Öz-örgütlenme, birbiriyle etkileşim halindeki otonom komponentlerden oluşan di-

namik bir sistemde dışsal bir gözlemci tarafından gözlemlenebilir makro-ölçekte düzenli

bir yapının kendiliğinden ortaya çıkması olgusudur. Rayleigh-Bénard Konveksiyonu bu

olgunun en bilinen örneklerinden biridir.

Bu tezde, konveksiyon hücrelerinin öz-örgütlenmesine dayanan Bénard deneyi

mikro-ölçekte, yani moleküler seviyede, simüle edilerek bu öz-örgütlenme olgusunun

altında yatan dinamik en temel düzeyde incelenmiştir. Önerilen iki boyutlu mikro-

ölçekli model üzerinde çeşitli dış koşullar altında moleküler dinamik benzetimleri gerçek-

leştirilerek sistemin dinamik davranış yelpazesi araştırılmıştır. Konveksiyon hücrelerinin

var olup olmadığı ve böylece dinamik rejimi saptamak için hız alanının rotasyoneline

dayanan bir görüntü işleme algoritması geliştirilmiştir.

Bu tezde geliştirilen 2 boyutlu mikro-ölçekli model, dinamik rejimin dış koşullardan

nasıl etkilendiğine ışık tutmakta ve bu çalışmanın orijinal sorusuna, yani makro-ölçekte

bir düzenin oluşumunun tek bir parçacığın mikro-ölçekli perspektifinden bakılarak

tespit edilip edilemeyeceğine bir cevap vermektedir.



vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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1. INTRODUCTION

1.1. Self-Organisation and Emergence

Self-organisation is the phenomenon where a dynamic system made of autonomous,

individual agents appears to show evidence of global order and pattern to an outside

observer. As the word “self” suggests, the organisation occurs only due to local inter-

actions between the agents without any external regulatory effect [3].

Haken defines a self-organising system as a system acquiring a spatial, tempo-

ral or functional structure without specific interference from the outside. He further

explains that the term “specific” is used to emphasize that the appearing structure is

not imposed on the system but that the system is acted upon from the outside in a

nonspecific fashion [4].

As defined by Camazine, “Self-organisation is a process in which pattern at the

global level of a system emerges solely from numerous interactions among the lower-

level components of the system. Moreover, the rules specifying interactions among the

system’s components are executed using only local information, without reference to

the global pattern” [5].

All these definitions capture three important aspects of the phenomenon of self-

organisation: First, it is assumed that the system has many interacting components

and advances from a less organised state to a more organised state dynamically over

some time while exchanging energy, matter, and/or information with the environment.

Second, this organisation is manifested via global coordination, and the global be-

haviour of the system is a result of the interactions among the agents. Finally, the

components, whose properties and behaviours are defined prior to the organisation it-

self, have only local information and do not have knowledge of the global state of the

system therefore, self-organisation process involves some local information transfer [6].
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There exist many examples of self-organisation in a wide range of physical, bio-

logical and social systems both in popular and academic literature. Phase transitions,

lasers, flocking of birds, consensus achievement of group of people are among the most

cited examples.

Emergence of order at global scale is a common property among all these exam-

ples. Due to controversial and somewhat questionable nature of the term “order”, the

discussions about what is called “ordered” and “unordered” will be left beyond the

investigation of this thesis. Here, the concept of order for a system will be related to

the existence of coherent structures that can be spotted by an observer existing at a

higher scale than that of agents the system.

Another important example of self-organisation, which constitutes the subject of

investigation in this thesis, is Bénard’s experiment.

1.2. Bénard Experiment

In 1901, Henri Bénard performed an experiment in order to understand how a

fluid behaves under different environmental conditions. In his experiment, he filled a

rectangular prism shaped container with a high aspect (width to height) ratio by a

viscous fluid. Then, he supplied uniform heat from the bottom plate of the container

while insulating the lateral ends but leaving the upper plate open to the atmosphere

i.e he created (quasi-)one dimensional heat flux in the opposite direction of gravity. As

he further increased the heat flux, after a certain threshold, he observed rotating rolls

in the fluid which moved from the lower plate to the upper one and then back.

This experiment suggests that a fluid in a container with a certain geometry and

fluid properties (such as viscosity, density etc.) shows different qualitative behaviours

depending on the degree of heat flux it is submitted to. In the following years of

this experiment, theoretical explanations of this phenomenon has been given by Lord

Rayleigh [7]. Due to contributions of these two scientists, today, the phenomenon is

known as Rayleigh-Bénard Convection (RBC).
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Figure 1.1. Top view of the convection cells, from Bénard’s original experiment [1].

From a dynamical systems point of view, such a system manifests a bifurcating

behaviour which gives birth to persisting stationary coherent structures called Bénard

cells (Figure 1.1) sensitive to changes in heat flux. The formation of Bénard cells is an

emergent phenomenon, appearing automatically, imposed by no other external agent

on the system.

1.3. Methods Used In The Study of Rayleigh-Bénard Convection

So far, RBC have been studied in different resolutions and by different means

depending on the purpose of the study:

• Experimental Approach: Explained above, as in the study of Henri Bénard.

• Macro-scale Model: Macro-scale studies based on continuum assumption are per-

formed using the well-known and well-developed (partial differential) equations

of fluid mechanics and heat transfer. By applying a perturbation to the equations

of natural convection the conditions for the onset of instability can be calculated

analytically.

• Macro-scale Simulations: The partial differential equations that constitute the

macro-scale analytical model can be solved by various numerical methods of com-
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putational fluid dynamics.

• Micro-scale Model and Simulations: At the molecular level, the fluid is defined

as a collection of atoms/molecules moving and interacting with each other. In-

formation regarding the macro-variables (such as density, temperature etc.) can

be obtained by taking spatial and temporal averages on the kinetic and potential

energies of these atoms/molecules. This approach gives the maximum informa-

tion about the micro-scale phenomena, but is the computationally costly method.

This approach is the one adopted in this thesis.

1.4. Thermodynamic Concepts: Equilibrium vs Non-equilibrium

At this point, it is necessary to give some thermodynamic definitions that will be

used throughout the thesis.

From a thermodynamic point of view, pattern forming systems, such as RBC,

are systems that are maintained out of equilibrium [8]. The distinction between an

equilibrium system and a nonequilibrium system is made according to the existence of

transport phenomena within the system.

A system is in equilibrium if there are no gradients of temperature, velocity or

density within the system, so that these variables are, on average, constant both in

space and time. Conversely, a system is in nonequilibrium when the gradients of the

above variables are present and the these variables create thermodynamic fluxes within

the system.

There exists three kinds of systems in terms of the relation with their surround-

ings: isolated systems do not interact with their environments, closed systems can

exchange energy with their environments and open systems can exchange both energy

and matter with their environments.

By definition, Bénard’s system is a nonequilibrium one that exchanges energy

with its environment, thus constitutes an open system. To create such a system, one
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must induce momentum or energy flow into simulation and drive the system out-of-

equilibrium. [9]
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2. PROBLEM STATEMENT AND SCOPE OF THE

THESIS

In his article, Rapaport says: “While considerable progress has been made in

understanding of this (Bénard) experiment by means of stability analysis and model

calculations that address simplified versions of the hydrodynamic equations governing

the system, a full theoretical undestanding of the symmetry breaking and mode selec-

tion mechanisms at work in this comparatively simple dynamical process has yet to be

achieved” [10].

Setting off from such an observation, the main purpose of this work is to investi-

gate and understand the process of self-organisation in the RBC by setting an analogy

via molecular dynamics (MD).

Thus, the task in this study is twofold: (i) to obtain an MD simulation that is able

to qualitatively mimic Bénard’s experiment, (ii) to study the dynamics of the process

that will hopefully reveal the mechanics of symmetry breaking and mode selection.

The organisation of the thesis is as follows: chapter 3 is dedicated to an overview

of the literature that involves the studies of RBC via MD. In chapter 4, the procedural

details of MD simulations and analysis methods are presented. In chapter 5, the

outcomes of these simulations are presented and finally in chapter 6, these results are

interpreted.
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3. MODELS AND SIMULATIONS IN THE LITERATURE

3.1. Macro-scale Models

After Bénard’s experiment, Lord Rayleigh provided the stability analysis for the

phenomenon using hydrodynamic equations, in 1916. These include solutions of incom-

pressible Navier-Stokes and energy equations under appropriate boundary and initial

conditions. For simplifying the solutions, an approximation called Boussinesq approx-

imation is applied, which states that the density is a function of the temperature

only [1]. Full derivation of this analysis can be found at [11]. Rayleigh’s analysis sug-

gests an order parameter noted by his name, Rayleigh number (Ra), the value of which

determines the degree of instability within the system. Ra is defined as:

Ra =
gα∆Td3

νκ
(3.1)

When Ra ≈ 1708, first instability occurs and the mode of heat transport shifts from

conduction to convection, hence convection cells appear. Physically, this regime shift

is explained by competing forces of buoyancy, gravity, thermal and viscous dissipation

within the fluid. At low values of Ra, heat from lower to upper plate is transferred

via conduction and there is no bulk motion within the fluid. In this case, vertical

temperature and density profiles of the fluid are linear. As Ra is increased, density

gradient within the fluid becomes steeper and steeper: hot parcels of fluid become

lighter, which try to move towards the upper plate due to buoyancy forces and in turn,

cold parcels which are denser try to move towards lower plate due to gravity. As Ra

reaches its critical value, these forces overcome thermal and viscous dissipation forces

and the convection sets in [1].

Bénard’s was the first experiment to show this instability, but was not the last. In

the over past 100 years following this preliminary work, many replications and variants

of this experiment are performed.
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3.2. Micro-scale Models

Molecular dynamics simulations started to appear in the scientific literature after

the invention of the necessary prerequisite, namely the digital computer, in the 1950s.

First work involving molecular dynamics of Rayleigh-Bénard convection [12] ap-

peared much later, in 1987, perhaps due to the relatively high computer power required

to run simulations with high number (at least order of 1000) of molecules. This first

work performed by Mareschal et al., involved 5040 hard disks in a box with aspect

ratio 2.83, and a number density of 0.2. Atoms were placed randomly inside the simu-

lation domain and their velocity were chosen from equilibrium distributions at the local

temperature from a linear temperature between plates. Boundaries of the simulation

domain acted as walls: lateral walls reflected the atoms while at the heat walls, tan-

gential component of the velocity was kept and the normal component was resampled

from local temperature. To drive the system out of equilibrium, hot and cold wall

temperatures were adjusted to 10 and 1 respectively and a gravitational acceleration

of 0.09 was applied in the inverse direction of the temperature gradient. As a result,

3 vortices were observed by coarse graining the system within 20x50 cells, but these

vortices were found not to be lasting for very long time.

The next work on MD simulation of RBC was by Rapaport in 1988 [10], which was

still in 2D and was performed using hard disks in a box with aspect ratio 4 but involved

more disks (14160) and a higher number density (0.4). Differently from previous work,

lateral walls of the simulation domain were periodic in order to eliminate side wall

effects. By applying a higher temperature gradient (∆T = 16), four stable rolls were

observed within the coarse grained cells. Main result of this work was the requirement

of high number density for the appearance of stable rolls.

The work of Rapaport in 1992 [13] was still performed using hard disks, but this

time, the number of disks was quadrupled (57600 disks) and also octupled (115600

disks) while keeping the number density as in the previous case (0.4). Performed in a

square box, with hot wall temperature of 16 and rough walls, this simulation permitted
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to two vortices. These two vortices were found to be coherent and their centres were

found to be oscillating.

First documented work involving soft disks dated to 2006 [14], which was still by

Rapaport. This work documented a simulation in 3D with width to length ratio al-

most 1 and aspect ratio of 14. Lateral walls of the simulation domain were periodic and

thermal walls consisted of a layer of fixed atoms. Velocity of the atoms were rescaled to

the velocity close to desired temperature values close to these walls. Regarding initial

conditions, atoms were placed on a regular grid with random velocities corresponding

to the uniform temperature gradient. Again, in order to obtain the macroscopic field

variables, coarse graining was used with averages in time as well. Two types of struc-

tures were observed: first being the hexagonal array of cells and the other, linear array

of rolls.

Last work involving MD simulation of RBC [15] investigated, for the first time,

the transient evolution of the Bénard cells rather than the steady-state cells that appear

at the end of the simulation. The simulation consisted of 5041 particles in 2D, between

which Weeks-Chandler-Andersen potential was used. Number density was kept at

0.4, and hot wall temperature was adjusted to 12.2. Thermal walls were assumed

to be repulsive. Coarse graining analysis included ensemble averages instead of time

averages: 480 identical systems were run with different initial conditions to gather the

data used in the generation of the velocity field.
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4. METHODOLOGY

The main purpose of this thesis is to develop a micro-scale model for the Bénard

experiment that is capable of exhibiting the macro-scale behaviour of self-organisation.

As a modelling principle the model is kept as simple as possible but complex

enough to allow the emergence of Bénard cells. It is not intended to stick to the

physical realm and deduce physical properties of such a system by the methods of

statistical mechanics. Rather than that the aim is to investigate the phenomenon of

self-organisation itself in a qualitative manner.

4.1. Molecular-Dynamics-Based Simulation

Methods so far used in the study of Rayleigh-Bénard convection include analytical

solutions to continuum mechanics equations, numerical simulations of these equations,

experimentation and simulation using molecular dynamics [10, 12, 13, 16, 17]. Among

these methods, only molecular dynamics permits a view into the micro universe of the

tiniest constituents of the substance under study (such as molecular trajectories) and

provides information about the mechanisms underlying the emergence of macro-scale

structures, thus molecular dynamics has been adopted as the modelling approach in

this study.

Very roughly, molecular dynamics is the study of behaviour of substances based

on their atomistic description that starts from an initial state and keeps track of the

forces, velocities and positions as the system evolves over time. Once these variables are

computed, one can obtain the thermodynamic (macroscopic) properties of the system

(such as pressure and temperature, or transport properties as viscosity and thermal

conductivity) by means of statistical mechanics. [18]

With the simplest approach, substances can be thought to be made of identical

particles that can be hypothetically accepted as atoms or molecules. Classical MD
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states that these particles should obey Newton’s second law: then, for a single particle

with index i within this substance, equation of motion is simply given as:

ΣFi = mẍi

where Fi designates the sum of all external forces acting on the ith particle, and ẍi its

acceleration.

Using the position, x =
[
x1 . . . xi xi+1 . . . xN

]T
2N×1

and the velocity, v =[
v1 . . . vi vi+1 . . . vN

]T
2N×1

as state vectors, , the dynamics of the ith particle

can be written as a system of 2 first order vector differential equations:

ẋi = vi

v̇i =
ΣFi

m
∀i = 1, ..., N (4.1)

Then, for a substance composed of N particles, equations of motion consist of

2N coupled differential vector equations, leading to 4N equations in two-dimensional

Cartesian coordinates.

Before solving the equations 4.1 ∀i = 1, ..., N , the following modelling and simu-

lation properties need to be determined:

• Interatomic potential between particles

• Initial conditions of the simulation

• Boundary conditions which define the boundaries of the simulation domain and

determine how the particles interact with the boundaries

• Numerical algorithm to be employed for solving the ordinary differential equations

(ODEs) in equations 4.1.
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4.1.1. Defining the Fundamental Building Blocks

Metaphorically, creating a box filled with particles 1 can be considered as creating

a group of bouncing balls within a container. Certainly, this model is far from reflecting

the actual complex behaviour of the molecules of the fluid in Bénard experiment, but

has the advantage of computational simplicity. [2].

It is known that some noble gases can be modelled fairly accurately as a simple

fluid [19]. One of the simplest and the most preferred of such substances is argon. Argon

is a mono-atomic noble gas having few degrees of freedom: it has only 2 translational

degrees of freedom in two dimensional Cartesian coordinates, making calculations sim-

pler. Also, referring again to previous studies [14] and [15], it has been shown that the

RBC phenomenon manifests itself even with that simple fluid. Thus argon is selected

as the particle employed in the simulations.

4.1.2. Interactions between Particles

There exist two main approaches to modelling how particles interact and exchange

their momenta:

• The first one does not account for any potential between particles and assumes

the velocity to remain constant until a collision occurs. Here, the momentum

exchange is modelled as an elastic collision. This type of particles are referred to

as “hard disks” or “hard balls”.2

• Alternatively, particles may be modelled as interacting with each other via a

specified interatomic potential that is a function of the interatomic distance.

This second type of particles are called “soft disks” or “soft balls” depending on

dimensionality of the simulation.

1From this point on, the fluid atoms/molecules will be referred to as particles.
2The terms “hard balls” (used for 3D simulation) and “hard disks” (used for 2D simulation)

depend on the dimensionality of the simulation.
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In soft disk simulations, any pair of particles can either repel or attract each

other [2]. In that manner, the interatomic potential behaves as a (non-linear) spring

that conserves the total mechanical energy.

In the literature, there exist different empirically derived interatomic potentials

depending on the complexity and type of the particle to be studied. One of the com-

monly implemented potentials, the Lennard-Jones 6-12 (LJ) potential between ith and

jth particles is defined as:

Φij = 4ε[(
σ

|rij|
)12 − (

σ

|rij|
)6] (4.2)

The values of parameters σ and ε are unique to any type of particle selected for

the simulation. σ indicates the interatomic distance where the interaction between

particles is zero and ε designates the minimum value of the interatomic potential. The

values of these parameters for argon is given in 4.1.

Table 4.1. Lennard-Jones arameter values for argon.

Parameter Value in SI

σ 3.4 · 10−10 Meters

ε 1.65 · 10−21 Joules

ε/kb 120 Kelvins

The interatomic force can then be expressed as the gradient of the potential:

Fij = ∇Φij (4.3)

Plotting equations 4.2 and 4.3 versus dimensionless distance (rij/σ), which is

given in Figure 4.1, two main interpretations can be made regarding their form:
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Figure 4.1. Dimensionless Lennard-Jones 6-12 potential and force versus

dimensionless interatomic distance.

• At short distances, there exists a strong repulsion (as rij → 0, Φij →∞).

• At relatively medium and long distances, there exists a weak attraction (as rij →

∞, Φij → 0).

Since force calculations constitute the part of MD simulations that demands

the largest portion of computational power [2], it is a common practice to use some

simplifying assumptions about the potential such that less computational power is spent

at this step and simulations take less time. such as potential is truncating the potential

at a certain distance. For that purpose, the potential is truncated for distances above

rc = 1.122, which belongs to the minimum of the potential. New potential is given in

Figure 4.2.

Noticing again the quick increase of the potential towards low distances, which

may cause stability problems for the simulation, value of ε is chosen as 0.5ε instead of

ε although this choice did not considerably decrease the steepness of the potential.
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Figure 4.2. Dimensionless Lennard-Jones 6-12 potential and force versus

dimensionless interatomic distance, with cutoff at 1.122.

The other external force acting on the particles, force due to gravitational accel-

eration, g, is selected to be 0.15.

4.1.3. Dimensionless Units

In science and engineering, physical variables are defined by their dimension,

to which a list of units may be assigned: a dimension is a measure that defines a

characteristic of a variable and a unit is a way of assigning a number to that dimension.

For example, length is a dimension that is measured in units such as meters or feet.

A physical variable can be scaled with a parameter that has the same dimension to

obtain a dimensionless variable [20].

Dimensionless variables have the following advantages over dimensional variables:

• In MD, one deals with atoms, so the scale and units are typically very small, 10 to

20 orders of magnitude smaller than SI units. Appropriate nondimensionalisation
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of these units allows one to work with numbers close to unity rather than very

small numbers. [2]

• Numerical errors can be reduced.

• The parameters in the equation of motion are absorbed into nondimensional

parameters. Those simplified equations have less parameters [2]

• Dimensionless equations provide scaling and universality: Irrespective of prop-

erties of the simulated solid/fluid type, one can solve the dimensionless equa-

tions of motion and then obtain the values of the desired fluid using its non-

dimensionalizing parameters. [2]

In MD, it is convenient to use 3 scaling parameters: σ, ε and m in order to replace

length, energy and mass dimensions. The rest of the variables can be nondimension-

alised using multiplicative or divisive combinations of these three scaling parameters.

A list, together with variables and their dimensionless counterparts is given in table

4.2.

Table 4.2. Physical variables of the simulation and their dimensionless

counterparts [2].

Physical Variable Non-dimensional Form

Displacement, r r/σ

Energy, E E/ε

Time, t t/(σ/
√
ε/m)

Velocity, v v/(
√
ε/m)

Force, F F/(ε/σ)

Temperature, T T/(ε/kb)

These variables can be computed using LJ potential parameters given in table

4.1 and mass of argon atom, m which is 6.69 · 10−26 kilograms.
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4.1.4. Choice of the Initial Conditions

Although it is expected that the dynamics described by the ODEs in equation 4.1

will settle down to a steady-state dynamic behaviour and hence the initial conditions

will be “forgotten”, it is important to start the simulation from a sufficiently realistic

initial configuration to assure a fast enough convergence to the steady-state dynamics.

A possible practical choice is to place the particles initially on a regular lattice of

a preferred type (such as square or triangle for 2D simulations; cube or hexagon for 3D

simulations) with a lattice spacing that corresponds to the desired number density i.e.

number of particles per area or volume. Initial velocities may be assigned randomly

such that the vector sum of velocities add up to zero to avoid bulk motion, i.e. total

momentum is zero and the variance of the magnitude of the velocity distribution gives

the desired temperature. [2]

In this thesis, the particles have been initially placed on a square lattice with

number density equal to 0.6. This choice provides an initial spacing of ≈1.3 between

the particles, such that initially no interatomic forces are exerted on them.

Initial velocity assignment is made as follows: for each principal direction the

respective velocity component is randomly assigned according to a Gaussian distribu-

tion with mean 0 and variance 1, assuming an equilibrium starting condition. As the

simulation starts and proceeds, this artificially created initial conditions are forgotten

through equilibration.

4.1.5. Modelling the Boundaries

Since the simulation takes place in a finite container, the simulation domain needs

to be constrained by boundaries and it needs to be defined how particles interact with

these boundaries [2].
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Especially for relatively small container sizes, particle-boundary interactions con-

stitute a relatively significant fraction of the total impact on the particles.

One method often used to avoid most of the problems associated with modelling

the particle-boundary interactions is to assume periodic side walls. In such a setting,

a particle leaving the container through one side wall re-enters it through the opposite

one. Hence, in 2D, the simulation domain becomes equivalent to the surface of a

cylinder. Even in this approach, however, one has to come up with an adequate model

for the interactions with the top and bottom boundaries, if Bénard experiment is being

simulated.

Alternatively, one can choose to model particle-boundary interactions for all sides.

In this case, the common options are: (i) modelling the boundaries as an extra layer

of atoms, (ii) introducing an interaction potential between the wall and the fluid par-

ticles (“smooth walls”) or (iii) updating the velocity of an atom instantaneously as it

approaches the boundary (“hard walls”).

In this thesis, a particle-boundary potential is introduced at the boundaries. In

terms of its form, this potential is the same as interatomic potential described in 4.1.2.

For the purpose of obtaining a slightly stronger repulsive force so that the particles

do not leave the simulation domain, values of σwall and εwall are adjusted to 1.1 and

2 respectively. The walls interact with particles only in normal direction, leaving the

tangential velocity component constant.

Container height, d, (the dimension along the gravitational acceleration) is chosen

to be 133.62 in dimensionless length. Width of the container is then computed using the

aspect ratio (AR) of the container. Three different ARs are selected for the simulation:

0.9, 1.4 and 1.8. With the number density value of 0.6 and the given ARs, number of

particles of simulations are calculated as 9579, 14935 and 19158 particles.
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4.1.6. Thermostatting and Heat Exchange

In MD simulations, it may be necessary to keep a certain variable such as temper-

ature or pressure constant within a certain region. Methods of fixing the temperature

at a desired value are called as “thermostatting”.

The four different thermostats typically used in MD (velocity rescaling, Berendsen

thermostat, Andersen thermostat, Nosé - Hoover thermostat) differ from each other in

terms of how the desired temperature is reached i.e. convergence time and the type of

the convergence behaviour.

Velocity rescaling is the simplest thermostat which consists of rescaling all the

velocities within a region by a given factor after each integration step while keeping

the positions fixed. For the ith particle, it is given as:

vi(t+ ∆t) = λvvi(t) (4.4)

and the factor is calculated by:

λv =

√
Tdes(t+ ∆t)

T (t)
(4.5)

where T (t) is the the temperature at time t and Tdes(t+∆t) is the desired temperature

at the next time step. and temperature is calculated using the total kinetic energy by

T =
1

2Nkb

N∑
i=1

m | vi |2 (4.6)

In this thesis, this thermostat is used for creating heat walls.

With the help of thermostatting, the system can be driven out-of-equilibrium.

Using the analogy of Bénard experiment, two driving forces should be applied on



20

the system: gravity (acting in -y directon) and a thermal gradient directing in the

opposite direction to the gravity. Gravitational acceleration is applied on every particle

individually. Thermal gradient is created by tuning the temperature of the different

regions of the container using thermostatting scheme explained above. In Bénard

experiment, temperatures of two regions are controlled: the lower plate of the container,

which is heated up and the upper plate of the container, which is open to atmosphere

and thus is at ambient temperature.

A horizontal zone next to the lower boundary of the simulation domain is chosen

for creating a hot wall, and another zone next to the upper boundary is chosen for

creating a cold wall. The thickness of these regions are chosen to be 5% of the simulation

domain. This value is chosen heuristically, expecting the zone to be thin enough not

to disturb the dynamics, and thick enough to drive the system out-of-equilibrium. The

regions of hot and cold walls, where thermostatting is applied will be collectively called

as “heat layers”.

Figure 4.3. Heat layers of the simulation domain.

These thermostatted regions interact with the rest of the system (where the

dynamics are of interest) via mass and energy exchange through a single side while the

other sides are constrained to interact with the wall. The effect of thermostat is to

scale the speed of the particles inside the thermostat region so that the temperature of

these particles is kept at a desired value. The upper thermostat temperature has been

set to 1, while the lower thermostat temperature is assigned different values from 2 to

11 depending on the temperature gradient applied to the system.
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4.1.7. Numerical Integration and Simulation Duration

In this study, the velocity-Verlet (see appendix A for details) method with a

time step of 0.005 has been used as an integration scheme (as advised by LAMMPS

manual [21]). For very high temperature gradients, a time step of 0.004 is used for the

sake of stability of the simulation.

Under these conditions, the simulation is run for a heuristically determined set-

tling duration of 10000 steps in order to give the system enough time to reach steady-

state and become independent of the somewhat arbitrarily assigned initial conditions.

Then, the system is run for an additional of 5000000 time steps and the dynamics are

investigated using the methods described in the following section.

4.2. Analysis of the Simulation Results

The simulation data can be analysed to identify the dynamic regime of the system

under consideration. In this thesis, two different approaches have been employed for

this purpose: (i) ensemble analysis, where, from positions and velocities of all particles

at a given time after the system has reached steady-state, thermodynamic (macro-

scale) variables of interest are computed, and (ii) history analysis of a single particle,

where, from position, velocity and force history of a randomly selected particle, ther-

modynamic (macro-scale) variables of interest are computed.

4.2.1. Ensemble Analysis

4.2.1.1. Coarse Graining and Computation of the Flow Field. The process of coarse

graining is performed by dividing the simulation domain into cells of desired size using a

regular grid, and calculating the macro-scale variables in each cell from the distribution

of variables within this cell. However, here coarse graining also contains a temporal

dimension, because the macro variables for a grid cell are calculated using data about

particles that visit this cell during a specific time window. The width of this window

is chosen heuristically to sufficiently reduce the noise created by spatial discretisation.
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In this sense, it is possible to call this process spatio-temporal coarse graining (Figure

4.4).

Also, the grid cell size, is a heuristically chosen parameter that is expected to

provide a reasonable trade-off between smoothness of the flow and information conser-

vation.

(a) Simulation domain is divided into

grid cells.

(b) Particles within those cells

are averaged both in space and

time.

Figure 4.4. The process of spatio-temporal coarse graining.

The width of the temporal coarse graining time window, n, has been taken as

200 time steps. For the sake of of reducing the computational burden, averages are

updated every 20th time step.

• Density Field: The density field is the spatial number density distribution ob-

tained by coarse graining [9]. The number density, ρ` of the `th grid cell is the

total number of particles that have visited the `th grid cell during a time window

of n time steps averaged over grid cell size [19]

ρ` = 〈 N`

Vcell
〉n (4.7)
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• Velocity Field: Similar to the density field, the velocity field is obtained by aver-

aging velocity vectors of the particles within the `th grid cell over n time steps.

Representing the number of particles within the `th cell at the ith time step with

Ni, for `th grid cell, the velocity vector can be expressed as:

v` =

∑n
i=1

∑Ni
j=1 vj

i∑n
i=1Ni

(4.8)

• Temperature Field: Within a coarse grained grid cell, the temperature is assumed

to be uniform and it is calculated from the total kinetic energy-temperature

equality, from equation 4.6 by using the velocities of the particles within this grid

cell.

T` =

∑n
i=1

∑Ni
j=1

1
2
m|vj

i|
2∑n

i=1Nikb
(4.9)

The cold and hot layers shown in Figure 4.3 are excluded from the coarse graining

process. The remaining part of the container is divided into 15 horizontal rows and as

many columns as necessary to obtain almost square cells depending on the AR of the

container. With such choice of cell size, the simulations in this thesis have involved

approximately 42 particles per cell at a given time instance.

4.2.1.2. Automatic Detection of the Dynamic Regime. In macro-scale representations

of RBC, instability analysis of equations of motion is the method used for identifying

the dynamic regime. According to the values of the two dimensionless numbers, namely

the Rayleigh and Reynolds numbers, computed mathematically, the dynamic regime

can be predicted. On the other hand simulations of micro-scale models do not lend

themselves to such an analysis, thus the regime should be identified by other means.

According to the well-established analytical thermodynamic model, when the

temperature gradient between the top and the bottom is increased from zero, the first

instability in RBC occurs as a regime shift, i.e. a change of the dominant mode of heat
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transfer from conduction to convection. Emerging convection cells are a manifestation

of this shift. Thus, the regime change can be assessed by detecting the existence of

convection cells.

If the data are presented in an appropriate graphical form, the dynamic regime can

be rather easily identified by a human observer via visual inspection. The simulation

results obtained in this study have shown the convection cells can be most easily

detected by visual inspection of the velocity fields, rather than of temperature or density

fields. But, because of the subjectivity of the human inspector’s decision, as well as

the rapidly declining human performance as the number of detection tasks increases,

it is desirable to develop an algorithm for the automatic detection of convection cells.

The detection algorithm developed in this study tries to imitate the human observer’s

recognition process as far as possible.

In fluid dynamics, swirling motions in a velocity field are referred to as vortex [22].

From now on, the words vortex and convection cell will be used interchangeably.

Determination of vortices is an open question in the fluid dynamics literature and

there is no universal method agreed upon for this task. One of the common methods is

called “Vorticity Magnitude Thresholding” [23], where vorticity (ω) is defined as the

curl of the velocity field:

ω = ∇× v (4.10)

More intuitively, vorticity describes the local infinitesimal rotation of a given

vector field. By putting a suitably chosen threshold on the magnitude of vorticity, the

centre of the vortex can be identified. In 2D, the magnitude of vorticity is given by:

ω =
∂vy
∂x
− ∂vx

∂y
(4.11)
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Due to the arbitrariness of the threshold on the magnitude the vortex centre

found by this method may not always coincide with the maximum of vorticity; so this

requirement is not a necessary condition for the existence of a vortex. (for example

the maximum of vorticity may also appear at the edges of the flow field [22]). The

approach used in this thesis is built on this method and tries to overcome the problem

of thresholding.

It is assumed that the contours of the vorticity field match the streamlines (see

Figure 4.5), tangential to the local velocity vectors. This assumption does not hold for

every velocity field, but the velocity fields generated in our simulations turned out to

satisfy it.

(a) Velocity Field and streamlines. (b) Velocity field and contours of vorticity.

Figure 4.5. Streamline and vorticity contour correspondence for a given velocity field.

Under this assumption, the detection algorithm proceeds as follows:

• Finding the curl of the velocity field: The curl of the velocity field (see Figure

4.6(a)) over the whole domain is calculated, and the vorticity field is generated.

Points of equi-vorticity are connected to obtain the vorticity contours (Figure

4.6(b)).

Due to inherent noise, it is not possible to obtain from the simulation data a

perfectly smooth vorticity field, that gives perfectly elliptic contours. In order
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(a) “Raw” vector field

(b) Unfiltered vorticity field

(colours represent vorticity

magnitude) and equi-vorticity

contours (black lines)

(c) Filtered vorticity field and

equi-vorticity contours

(d) Filtered vorticity field and

modified contours

Figure 4.6. Steps of automatic detection algorithm described on a vector field

obtained from a simulation with AR=0.9.



27

to eliminate or at least reduce the noise, the vorticity field (in Figure 4.6(b))

is smoothed using a three by three 2D Gaussian filter with standard deviation

σfilter = 1.3. The smoothing operation has been performed three times until the

vorticity field started to reveal reasonably elliptic contours (see Figure 4.8(b)).

One danger of such a filtering operation is to over-smooth the field, which can

create artificial curl contours, and thus artificial vortices. Heuristically, the best

results turned out to be generated by smoothing 3 times.

Contours of various sizes can be obtained by this method. The contours with

smaller radii are more prone to errors as they include less data (compared to

outer radii for which the centre are averaged over more data), thus they may

correspond to artefacts. For this reason, contours with smaller radii are discarded

(Figure 4.6(d)).

• Detecting the centres: The centre of each contour is calculated finding its centroid,

i.e. as the mean of all points on the contour, in respective coordinates.

• Eliminating false centres: In order to increase the performance of the automatic

detection algorithm, some assumptions have been made about the position of the

vortices.

Figure 4.7. Allowed region for centres for a container with size 1×1. Numbers on the

axes represent the % distances from the boundaries.

Logically, it is not possible to have a vortex centre inside the heat layers. Thus

centres detected within upper and lower heat layers are discarded as artefacts.
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Second, a vortex centre is also not expected to be too close to the container

boundaries, thus such centres are also discarded. The acceptable region of centres

is shown on Figure 4.7.

• Clustering the centres: Ideally speaking, for a single vortex, the vorticity contours

corresponding to the same convection cell should be concentric around the centre

of the vortex, moreover, their centres should coincide.

In order to roughly estimate the performance of detection algorithm, an ideal

vortex has been generated. This ideal vortex is given in Figure 4.8. This vortex

is created by using velocity equations: vx,ideal = Πsin(Πx)cos(Πy) and vy,ideal =

Πcos(Πx)sin(Πy) where vx,ideal and vx,ideal are the velocity vectors in x and y

directions. The velocity field, plotted for x ε [1,2] and y ε [0,1] is given in Figure

4.8(a). Vorticity contours of this vortex show that the centres are concentrated

on a single point 4.8(c).

(a) Velocity field (b) Vorticity field (c) Vorticity contours and con-

tour centres (marked by ×)

Figure 4.8. Velocity and vorticity fields of an ideal vortex.

Setting off from the case of ideal vortex, it is hoped that for the vortices presented

in this thesis, which are far from being ideal but show some amount of regularity,

that the centres will not strictly coincide, but will sufficiently clustered.

Thus, the contour centres are expected to be tightly packed forming well-defined

clusters at the core of the vortices. Euclidean distance is used as a measure of

such clustering. For two centres with i and j, this distance is defined as:
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rij =
√

(xi − xj)2 + (yi − yj)2

Based on this measure, an Agglomerative Hierarchical Clustering algorithm has

been used. This method merges the neighbouring centres that are closest to each

other (in the Euclidean sense), and keeps on the merging operation until all the

centres in the domain are clumped together, resulting in a distance tree, or a

dendrogram (Figure 4.9).

In order to determine the number of clusters, one has to decide on where to

cut this dendrogram. If the cut off the distance is too small, there will be too

many clusters (leading to detection of pseudo-vortices) or conversely, if the cut off

distance is too large, some of the vortices can be lost. Considering this trade-off

the cut-off distance needs to be chosen heuristically for any data set.

Convection regime will consist of closed concentric curves and the clustering al-

gorithm will classify the cores of convection cells as a single clusters. Thus, the

expected number of clusters is equal to the expected number of convection cells.

From the theoretical analysis, it is also known that the aspect ratio determines the

number of convection cells. Based on these considerations, the following metric

is proposed as an indication of the dynamic regime.

ζ =
Number of Clusters

Aspect Ratio

• Deciding the regime based on clusters: From the previous item, it is known that

if ζ is close to unity, then the regime is convection. Put into mathematical form:

1− δ ≤ ζ ≤ 1 + δ

The value of δ is decided by checking the performance of the algorithm, which is

then decided to be 0.4. To conclude, the regime is convection if 0.6 ≤ ζ ≤ 1.4.
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(a) 2 vortices (represented by red and cyan

branches)

(b) 3 vortices represented by (green, red and blue

branches)

Figure 4.9. Dendrogram representing the clustering of centres, cut from Euclidean

distance of 30 (vertical blue line).

4.2.2. History Analysis of a Single Particle

Convection cells considered in this thesis are self-organised structures that are

generally considered as macro-scale phenomena. Therefore, it is interesting to ask

whether a regime change from conduction to convection can be detected using data

gathered from the whole ensemble of particles or whether the same information can

also be assessed analysing the data related to a single particle.

To answer this question, two different approaches have been employed: (i) the

position and velocity recordings corresponding to a randomly chosen single particle

have been used to construct the velocity field and the automatic convection detection

method has been applied to it, (ii) Fast Fourier Transform (FFT) analysis of the

acceleration (or equivalently applied force) history has been used to spot if there exists

qualitative differences between conduction and convection regimes. Here, it is assumed

that the particle does not “know” its locations within the macro-scale frame, neither

velocities, but can only “feel” the forces acting upon it as it interacts with the other

particles around it.
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4.2.2.1. Computation of the Flow Field and Automatic Detection of Convection Cells.

Velocity and position history of a randomly selected single particle has been used to

construct the velocity field (as described in section 4.2.1.1) and automatic detection

has been applied on this velocity field (as described in 4.2.1.2).

4.2.2.2. Automatic Detection of the Dynamic Regime from Force History. The way to

put this assumption into mathematical frame is to work with the force data of the ran-

domly selected particle. The necessary averaging within a time window is performed

via root-mean-square function of the force vector magnitude in discrete time:

Frms(t) =

nτ=t+(τ/2)∑
nτ=t−(τ/2)

√
F (nτ )2 (4.12)

In order to see the periodicity of the signal, Fast Fourier Transform is applied, which is

a widely used way of transforming a signal in the time domain into frequency domain.

If there is a large scale periodic motion (such as the motion of a convection cell), it

should be distinguished from other types of motion.

It is known that in conduction regime, the motion of particles is random, or so-

called “Brownian motion”. The FFT of this type of motion is named as Brownian

noise. Whereas in convection regime, the expected shape of FFT is different than

Brownian noise, having certain deviations at certain frequencies.
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5. SIMULATION RESULTS AND THEIR ANALYSIS

5.1. Ensemble Analysis

5.1.1. Construction of the Flow Field

In order to determine the dependence of the dynamic regime on the temperature

gradient between top and the bottom of the container (∆T ), simulations have been

conducted under various ∆T s, keeping other parameters such as number density and

aspect ratio of the container constant. Similarly, the dependence of the number of

convection cells on the AR of the container has been investigated by repeating the

same simulations with different ARs.

Figures 5.1(a), 5.2(a) and 5.3(a) represent the velocity fields and Figures 5.1(b),

5.2(b) and 5.3(b) represent the temperature fields obtained from simulations with

AR=0.9, 1.4 and 1.8 respectively, using ensemble analysis method described in sec-

tion 4.2.1.1. In order to show to what extent the observed phenomena depend on the

initial conditions of the simulations, the same outcomes are presented for three differ-

ent randomly selected initial conditions, presented in three different columns. In all

figures, four rows correspond to simulations performed under four different ∆T s, in

decreasing order from top to bottom.

In Figures 5.1(a), 5.2(a) and 5.3(a), from the existence of vortices within the

velocity field towards higher ∆T , it can be clearly observed that the dynamic regime

shifts from conduction to convection as ∆T increases. Although, it is not possible to

determine the exact temperature gradient where the transition from conduction to con-

vection occurs by looking at this data, the transition can be thought to be somewhere

between ∆T=4 and ∆T=5. The existence of somehow hardly distinguishable weak vor-

tices within the velocity field of ∆T=5 and inexistence of such structures within the

velocity field of ∆T=4 supports this observation. The transition temperature gradient

seems to be independent of AR and initial conditions and the same for the different
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(a) Velocity Field

(b) Temperature Field

Figure 5.1. Flow Field for AR=0.9.
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(a) Velocity Field

(b) Temperature Field

Figure 5.2. Flow Field for AR=1.4.
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(a) Velocity Field

(b) Temperature Field

Figure 5.3. Flow Field for AR=1.8.
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systems with identical number densities.

In accordance with empirical results reported in the literature, as AR increases,

number of vortices increases and number of possible dynamic regimes also increases.

The last rows of Figures 5.1(a), 5.2(a) and 5.3(a) illustrate the different types

of dynamic regimes observed at convection. For AR=0.9 (Figure 5.1), all three initial

conditions give rise to single counter clockwise rotating convection cells. For AR=1.4

(Figure 5.2), all three initial conditions give rise to double oppositely rotating convec-

tion cells. In the case of AR=1.8 (Figure 5.3, three different types of structures are

observed for three different initial conditions: a case with 3 vortices (Initial Condition

#1) and two cases with two vortices (Initial Conditions #2 and #3). The case of

two vortices show different characteristics: in former, the motion in the middle of the

two vortices is downwards (Initial Condition #2), however, in the latter the motion in

the middle of the two vortices is upwards (Initial Condition #3). These observations

suggest that the initial conditions affect the number and the sense of rotation of the

convection cells.

The onset of convection creates a characteristic change also in the temperature

fields (Figures 5.1(b), 5.2(b) and 5.3(b)). In the conduction regime, lower ∆T , the

temperature gradient seems to be in vertical direction only (first two rows of Figures

5.1(b), 5.2(b) and 5.3(b)). In convection regime, however, the gradients become diag-

onal (last rows of Figures 5.1(b), 5.2(b) and 5.3(b)). It is even possible to guess the

number and sense of rotation of the convection cells from these fields. For example,

in the last row of Figure 5.1(b), temperature gradient seems to be in the direction

of left upper corner of the container. Looking at the corresponding velocity field at

Figure 5.1(a), it can be seen that this direction indicates a counter clockwise rotating

convection cell.
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5.1.2. Automatic Detection of Convection Cells

As a demonstration of the performance of the automatic detection algorithm, it

has been applied on several velocity fields. For the example demonstrated on Figure

5.4, vector field from the simulation with AR=0.9, initial condition #3 has been used.

As seen in the last step in Figure 5.4(d), two vortex centres are detected within

the field, which is visually wrong. In order to discard the false vortex centres, the

methods described in section 4.2.1.2 are applied. After the elimination, Figure 5.5 is

obtained.

Similarly, for the case of two and three vortices algorithm is applied on vector

fields with AR=1.8 with initial conditions #1 and #3 (Figure 5.3(a)). Automatically

detected vortex centres and their clusters are given in Figures 5.6 and 5.7.

The automatic detection algorithm has produced satisfactory results, predicting

the dynamic regime and also number of clusters correctly. Nevertheless, as the as-

pect ratio increases the performance of the automatic convection detection algorithm

deteriorates.

5.2. History Analysis of a Single Particle

5.2.1. Construction of the Flow Field

Using position and velocity history of a randomly selected particle from diverse

simulations, trajectories of that particle within the container and velocity field using

coarse graining is constructed.

For a particle randomly selected from simulation with AR=0.9 and initial condi-

tion #1, trajectories and velocity fields for ∆T = 10 and ∆T = 4 obtained at the end

of different time steps are given in Figures 5.8 and 5.9.
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(a) Obtaining the equi-vorticity contours

Curl of the velocity field is computed and a new field,

vorticity field is constructed as shown on the left. The

points of equal vorticity are connected and black con-

tours are obtained.

(b) Smoothing the contours

The vorticity field is smoothed using a Gaussian im-

age filter, then the contours are replotted. As seen,

these contours are much smoother and look more like

ellipses/circles.

(c) Finding the contour centroids

Centroids of the contours are calculated and plotted

on the original vector field. These centroids represent

the centres of the rotational flows within the velocity

field.

(d) Finding the centre of the convection cell

In order to find the centre of the convection cell the

contour centroids are clustered.

Figure 5.4. Steps performed in the automatic detection of a single convection cell.
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Figure 5.5. Location of the centre of single convection cell.

(a) (b)

Figure 5.6. (a) Centroids and (b) their clustering for a velocity field with 2 convection

cells.
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(a) Centroids (b) Clusters of centroids.

Figure 5.7. (a) Centroids and (b) their clustering for a velocity field with 3 convection

cells.

In Figure 5.8(a), the particle is observed to move in circles as time proceeds and

constructs the shape of the convection cell. The sense of rotation of the cell matches

well the sense of rotation of the vortex obtained through ensemble analysis (Figure

5.1(a)). The velocity field seen on Figure 5.8(b), is equivalent with that of 5.1(a).

Thus, it can be said that the analysis of the history of a single particle provides an

information equivalent to what can be obtained from ensemble analysis provided that

a long enough history is considered.

However, in the case of conduction (∆T = 4), this claim cannot be made. First of

all, a particle in conduction regime does not sufficiently visit all regions of the container

(Figure 5.9(a)). Also, the velocity field seen in Figure 5.9(b) is not equivalent to the

one seen on Figure 5.1(a). Thus, it can be said that, ensemble analysis and history

analysis of a single particle do not provide the same information in the conduction

regime.

5.2.2. Automatic Detection of Convection Cells

Automatic detection algorithm has been applied to velocity fields constructed

using the velocity history data of randomly selected particles. To demonstrate how the

performance of the algorithm depends on the randomly chosen particle, results have

been presented for one particle in conduction regime and for three different particles
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(a) Trajectory within the container

(b) Velocity Field

Figure 5.8. Velocity and position history of a single particle at convection regime

(∆T = 10).
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(a) Trajectory within the container

(b) Velocity Field

Figure 5.9. Velocity and position history of a single particle at convection regime

(∆T = 4).
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(a) Conduction (b) Convection, ran-

domly selected particle

#1

(c) Convection, ran-

domly selected particle

#2

(d) Convection, ran-

domly selected particle

#3

Figure 5.10. Automatic detection algorithm applied on single particle history, case of

single vortex.
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(a) Conduction (b) Convection, randomly selected parti-

cle #1

(c) Convection, randomly selected parti-

cle #2

(d) Convection, randomly selected parti-

cle #3

Figure 5.11. Automatic detection algorithm applied on single particle history, case of

three vortices.
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selected from the same simulation in the convection regime (Figures 5.10 and 5.11).

The results of the algorithm for the simulation with a single vortex is given in

Figure 5.10. The number of vortices and the regime is rather correctly predicted.

However in the conduction regime, the algorithm has produced faulty results since the

velocity field could not be generated for a subregion of the container.

For the case with three vortices, other problems have occurred. Seen in Figure

5.11, there are cases where the particle does not visit all three convection cells (Figures

5.11(c),5.11(d)). This case, again, poses problems to the detection algorithm, which

requires the full velocity field information within the container. In those cases, fewer

vortices than the actual number are detected. But if the particle chosen happens

to visit all vortices, the algorithm can detect the correct number of vortices (Figure

5.11(b)).

It seems that additional conditons and corrections need to be developed such that

the detection algorithm can be used in simulations with higher ARs.

5.2.3. Can the Macro-Scale Dynamic Regime be Detected from the Particle

Perspective ?

It has been shown that, in conduction and convection regimes, there are qualita-

tive differences at position trajectories and velocity fields of a single particle constructed

from history of positions and velocities (Figures 5.9 and 5.9). However, the question

of a particle having “access” to these variables for identifying its regime is a matter of

debate. For this reason, as described in section 4.2.2.2, it is assumed that the particle

has only access to its force history. This assumption seems reasonable, as forces are the

relative effects of the neighbouring particles upon the particle in consideration, rather

than position and velocity which requires information from a global coordinate system.

Figure 5.12 shows the force history of a randomly selected particle in convection

regime, when ∆T = 10. In the last rows of this figure, root-mean-squared value of force
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history, Frms is plotted versus time steps. Root-mean-square operation is performed

as explained in section 4.2.2.2 with a time window of 2500 time steps. The value of

this window is chosen to be approximately one eighth of the period of rotation of a

single particle. This period, which turned out to be approximately 20000 time steps,

is decided by following a single particle as it proceeded its trajectory in convection

regime (see Figure 5.8(b)).

First two rows of Figure 5.12 are respectively the FFT of Frms plotted versus

frequency, in logarithmic and linear scales. For ease of readability, first 100 frequency

components are given for linear plots.

Figure 5.13 is similarly organised, where columns represent randomly selected

particles at conduction regime under ∆T = 1, ∆T = 4 and ∆T = 5. Log-log plot

of FFT of these graphs seem to fit well to a line with slope -1 (red line). This is the

sign of “Brownian motion”, which represents randomness. The same curve fit is also

applied for linear FFT, which seems to agree well with data again. However, it should

be noted that as ∆T increases, deviations from Brownian line at low frequencies occurs.

Randomness of the force history can also be observed on row 3 of this figure, history

of Frms is plotted. There appears no clear regularity in time history of Frms.

When it comes to force history obtained from a particle in convection, almost

regular oscillations of Frms values are observed, which is a sign of convective rotating

motion. This sign is also clear on FFT plots, which deviate considerably from Brownian

line at low frequencies. The maximum deviation from this line is marked with blue

horizontal lines on first two rows of Figure 5.12. The points that these lines intersect

the frequency axis match well with the number of rotations that the particle performs.

For example, in Figure 5.12(a), Frms graph shows approximately 5 rotations and the

intercept of blue line with frequency axis is also 5.
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(a) (Top) Logarithm of the FFT of rms value

of force (Middle) FFT of rms value of force

(Bottom) Rms value of force acting on particle

at convection regime during 100000 time steps

(b) (Top) Logarithm of the FFT of rms value

of force (Middle) FFT of rms value of force

(Bottom) Rms value of force acting on particle

at convection regime during 200000 time steps

Figure 5.12. Force history and its FFT for a particle in convection regime.
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6. CONCLUSION

The main purpose of this thesis was to understand the process of self-organisation

in Bénard experiment using molecular dynamics. Simulations have revealed that this

macro-scale phenomenon is indeed observable in the micro-scale model.

Simulation results show that the model variables of micro-scale simulation, namely

particle interactions, velocities, number density etc. could be chosen so that qualitative

analogies could be drawn between micro-scale and macro-scale models based on the

dynamic regime. It has been observed that, for a given number density, boundary con-

ditions, initial conditions and AR, it is the temperature gradient that determines the

dynamic regime, and that the transition temperature from conduction to convection is

independent of these parameters. Moreover, for given number density, boundary con-

ditions and temperature gradient, the number of vortices in convection regime depends

solely on the aspect ratio and the initial conditions. As the aspect ratio increased,

the number of vortices increased. Initial conditions also have an effect on number of

vortices, but more importantly, they effect the rotation sense of vortices.

It has been shown that the curl of the velocity field can be used to discriminate

whether the system is in the conduction or convection regime. The automatic detection

algorithm developed in this thesis has been found to perform well for data extracted

from an ensemble for low AR. However, the algorithm was found to be unemployable for

velocity history data obtained from a single particle at conduction. As AR increased,

dynamic behaviour became richer, so this algorithm was found to be shortcoming for

those cases as well.

Furthermore, a theoretically interesting and original question has been posed

whether the emergence of macro-scale organisation is assessable from the micro-scale

perspective of a particle, which is assumed to have no information about its position

and velocity in global coordinates. This question can be particularly meaningful in

multi-agent systems where the agents have some level of cognitive capacity. Frequency
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analysis of the fluctuations in the rms value of the total force acting on a particle has

been found to provide enough clue to distinguish conduction and convection regimes,

provided that the considered force history is long enough, i.e. longer than some rea-

sonable multiple of a convection period. Based on this observation, it was concluded

that if a particle has access to its force data, it would be aware of the regime that it is

in.
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APPENDIX A: NUMERICAL INTEGRATION

ALGORITHM

Equations of motion are solved numerically using integration algorithms that are

based on finite difference methods.

All algorithms used in molecular dynamics are based on truncated Taylor series:

x(t+ ∆t) =
∞∑
n=0

d(n)x

dt(n)

∆tn

n!
= x(t) + ẋ(t)∆t+ ẍ(t)

(∆t)2

2
+H.O.T. (A.1)

where ∆t is the time step and H.O.T. represent the higher order terms.

In the literature, there exist many different numerical algorithms used for molec-

ular dynamics simulation. With regard to molecular dynamics there are two widely

used methods [2] namely the leapfrog-type method and predictor-corrector method.

Velocity-Verlet is a widely used low order (second order) integration method that

is known to have good conservation properties. For these reasons, this algorithm has

been implemented in this thesis. The position and velocity integration of Velocity-

Verlet are given by the following equations:

x(t+ ∆t) = x(t) + ẋ(t)︸︷︷︸
v(t)

∆t+ ẍ(t)︸︷︷︸
F (t)/m

(∆t)2

2

v(t+ ∆t) = v(t) +
1

2
∆t
(
v̇(t)︸︷︷︸
F (t)/m

+ v̇(t+ ∆t)︸ ︷︷ ︸
F (t+∆t)/m

)
(A.2)
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The terms on the right hand side of equations A.2 are either given initially /

known from the previous time step (such as x(t) and ẋ(t)) or computed from the

simulation (ẍ(t), v̇(t), v̇(t+ ∆t)).

Choice of time step, ∆t is a matter of compromise. Large ∆t allows fast computa-

tion of simulation results corresponding to the system’s behaviour for a given real-time

interval. The price for it is, however, large integration errors. Conversely, these errors

can be reduced by choosing small ∆t at cost of long simulation runs.




