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ABSTRACT

APPLICATION OF VARIABLE STRUCTURE SYSTEMS THEORY
FOR TRAINING OF INTELLIGENT SYSTEMS

Soft computing architectures with their extensive flexibility and strong mapping
capabilities have been widely used for control of nonlinear systems. In this regard, error
backpropogation and its derivatives have been the most popular and frequently employed
schemes for parameter adjustment of these architectures. However, these schemes bring
some serious problems together, like instability of closed loop system and sensitivity to
uncertainties, which must be carefully addressed by a system designer. In order to alleviate
these problems, recently, Efe has proposed a control strategy in which parameters of
intelligent controllers are updated by a continuous-time robust parameters adjustment
mechanism in order to robustify and stabilize the closed loop system dynamics. The results
obtained for a two link SCARA robot in this study show that the proposed method is

successful in achieving the control objectives.

In this thesis, the methodology proposed by Efe is investigated for first order
nonlinear systems. Based on the results, it has been observed that the time evolution of
input-output curves of different structures show similar characteristics. Moreover, a
modification is proposed for update mechanism of all architectures in order to prevent
unbounded parameter evolution problem which occurs in the original algorithm. Lastly,
based on the results for different systems, it has been concluded that the Adaptive Linear
Element is the most suitable architecture for the control systems investigated because of its

simplicity.



OZET

DEGISKEN YAPILI SISTEMLER KURAMININ AKILLI
SISTEMLERIN EGITiMINE UYGULANMASI

Islemsel zeka iceren sistemler sahip olduklar esneklik ve dogrusal omayan
fonksiyonlar1 gergekleyebilme ozellikleri ile dogrusal olmayan sistemlerin kontrolliinde
genis bir uygulama alam bulmustur. Bu baglamda hata geri yayma yontemi ve onun
tiirevleri en gok kullanilan egitim algoritmalari olmustur. Fakat bu yontemler kapali ¢evrim
sistemin Kkararsizligi ve parametrelerin sinirls tutulamamasi gibi problemlerden dolay1
pratik ugulamalarda sistem tasarimcis: tarafindan dikkate alinmasi gereken bazi sorunlara
yol agmaktadirlar. Bu sorunlarim iistesinden gelebilmek i¢in Efe denetleyici parametrelerini
zamanda siirekli giirbiiz bir mekanizma ile gincelleyen bir yéntem &nermigtir. [ki
serbestlik dereceli SCARA tipi robot modeli iizerindeki calismalar onerilen yéntemin

basarilt sonuglar verdigini gostermistir.

Bu tezde, Efe tarafindan 6nerilen metod birinci dereceden dogrusal olmayan
sistemler i¢in incelenmistir. Elde edilen sonuglar iizerinde yapilan incelemelere dayanarak
degisik akilli yapilarin girig-gikis egrilerinin zaman icindeki davranisinin benzer oldugu
goriilmistiir. Ayrica asil algoritmada olusan smirsiz parametre genislemesi problemini
onlemek igin parametre glincelleme mekanizmasinda bir degisiklik Onerilmistir. Son
olarak, elde edilen benzetim sonuglarina dayanarak uygulamalar icin en iyi sistemin

“Adaptive Linear Element” oldugu sonucuna varilmustir,
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1. INTRODUCTION

Although, classical methods have been successfully applied to variety of engineering
disciplines so far, they are not adequate to satisfy high performance requirements of
today’s complex systems. This stems from the fact that they utilize precise model based
paradigms, which highly rely on the mathematical relations regarding the internal structure
of the system in hand. In contrast to that, a novel approach to computation, soft computing,
offers a set of methodologies, which can be exploited together to incorporate different
types of knowledge about a system. These methodologies are especially characterized by

information granulation, perception and adaptability to changes in the environment.

The basic constituents of soft computing are artificial neural networks (ANN), fuzzy
logic (FL) and genetic algorithms (GA) [1]. NNs are comprised of several nodes, which are
massively connected by set of synaptic weights that store the information from the past
experiences of the network. Similar to those of biological neural networks, artificial neural
networks have ability to learn from interactions with environment, generalize the
information and adapt to changes in data. The second component of soft computing is FL.
FL allows the designers to express the verbal knowledge in mathematical form by means
of membership functions. This is especially useful for mid-level applications, which
provide an interface between high-level supervisory systems and low-level components,
relying on basic mathematical methods. GA is the last constituent of the soft computing.
GA mimics the evaluation of living organisms to find optimal solutions in a parallel
fashion. This approach eliminates some limitations of classical optimization methods like

converging to local minimas and need for a heuristic knowledge.

One of the most important characteristics of intelligent systems is their ability to
learn from examples. This procedure includes storing information gained by training in an
appropriate form. In soft computing architectures, the information is stored in form of
adjustable parameters of nonlinear input-output mappings. Thus, learning in these systems
can be boiled down to a parameter optimization problem in which a parameters set that
best fits to given samples are to be found. There exist different training algorithms in the

literature for this purpose. But most of them suffer from parameter convergence problem,



that is, reaching to optimal parameter sct may take too long or even it may not be possible
to attain the optimal set. These limitations cause serious problems in control applications as

will be discussed in below.

When a practical application is of primary concern, a control system must possess
some degree of robustness, that is, it must be insensitive to uncertainties, which are
inevitable in real applications. Variable structure systems theory (VSS) offers a solution to
robustness problem by means of employing discontinuous control actions in different
regions of the state space of the system. Especially, if these discontinuities are introduced
deliberately system trajectories can be forced towards an asymptotically stable manifold in
the state space of the system and they may keep staying on the manifold after a finite
reaching time even in the presence of uncertainties [2]. Inspired from the motion of the
trajectories on the manifold, this type of systems is referred to sliding mode control (SMC)
systems in the related literature. The novel properties of SMC systems may provide a
useful framework for training of intelligent structures because they allow finite
convergence periods in first order systems and it is possible to utilize simplified models

provided that the necessary control gain is available.

Soft computing architectures with their extensive flexibility stipulated by large
number adjustable parameters are very adequate for control applications which possess
time varying characteristics and uncertainties. In the relevant literature, there exist several
approaches, which utilize soft computing architectures for different purposes such as direct
inverse controllers [3], adaptive controllers [4] and system identification models [5].
Although, satisfactory results have been attained in these studies, in general, they are based
on empirical results, that is, there is no stability guarantee and in some cases even it is
possible to find a set of conditions which drives the system into unstable regimes [6].
Moreover, these approaches require a discrete-time model of the system in hand. Thus, in
applications to continuous-time systems, it is necessary to employ discretization methods
which leads to inexact representations due to unavoidable approximations. These
undesirable properties of the available methods can be accounted to fact that they rely on
gradient based learning strategies, which have parametric convergence problems as
discussed before. To somehow eliminate these difficulties Ramirez, et al. [7] proposed a

method, which incorporates SMC strategies into training of intelligent architectures. In this



work, they suggested a parameters update mechanism for adaptive linear element
(ADALINE) networks which ensures the occurrence of the zero learning-error level at the
output of the network in finite time and applied this strategy to inverse dynamic
identification of a Kapitsa pendulum. Yu et al. [8] further developed results in [7] by
introducing adaptive bound dynamics. A different approach, which also exploits SMC
strategy, is introduced by Parma et al. [9] for training of feed forward neural networks

(FNN) with nonlinear activation functions at the output layer neurons.

Recently, the idea of incorporating continuous time robust learning mechanisms for
control of nonlinear systems has been proposed by Efe [10]. In his work, the learning
algorithm in [7] is used to train different flexible structures having linear activation
functions at their output layers. As the error measure, which is necessary to train and
evaluate performance of the intelligent controller, sliding line at the output of the plant is
utilized. In this thesis, the control methodology given in [10] is investigated for systems
modeled by first order and time varying nonlinear ordinary differential equations.
Although, the plants, which are chosen as test beds, are not first order ones, they are
divided into first order sub-systems by matching an appropriate key state with each input
variable. Then each sub system is controlled separately by assuming the couplings between

them as disturbances.

This thesis is organized as follows. In the second section, the basic concepts of fuzzy
logic and artificial neural networks are introduced within the context of the intelligent
architectures utilized throughout the work. A general SMC design technique for a class of
nonlinear systems is discussed in the third section. The fourth section explains the
philosophy of the SMC based learning algorithm given in [7] and how it can be
incorporated into control of first order nonlinear dynamical systems. A method to prevent
parameter drift problem, which occurs in above mentioned control scheme, is also
introduced in this section. In the fifth section, test plants are introduced and performance of
different architectures are investigated based on the simulation results. The last section is

the conclusions section where the results are discussed.



2. SOFT COMPUTING

Technological revolutions of the last century have brought upon us new problems
that we have not met or considered before. In this regard, as coverage and complexity of
new applications increase, the classical methods get far away from providing a suitable
framework. Precise nature of classical mathematics is not adequate for real world problems
not only because it may not deal with ambiguity but also solutions it provides may turn out
to be too complicated for practical realization. Moreover, large-scale systems with a large
number of components require higher-level techniques involving some degree of
intelligence. One may think that classical artificial intelligence (AI), which uses predicate
calculus and manipulates on symbols to reason and draw conclusions, may offer a
convenient high-level approach, but, Al based schemes have serious limitations in dealing
with some applications like computer vision, speech recognition, handwriting recognition,
image understanding, multimedia database search, motion planning, common-sense

reasoning, management of uncertainty and other fields which relate to machine intelligence

[11].

In the face of difficulties mentioned above researchers are turned away from
conventional techniques with the hope to find more suitable methods. Soft computing
methodologies, first introduced in the early second half of the 20™ century, are an outcome
of the efforts in this direction. What makes soft computing so appealing, opposite to hard
computing, is its ability to exploit tolerance to uncertainty, imprecision and partial truth to
achieve tractability, low cost solutions and robustness [11]. These properties of the soft
computing can be accounted to the fact that it is made up by different constituents which
are complementary rather than being competitive. This makes it a synergic methodology
which allows the designers to exploit all available knowledge regarding to problem in
hand. The main constituents of soft computing are artificial neural networks (ANN), fuzzy
logic (FL) and genetic algorithms (GA). Artificial neural networks are biologically inspired
intelligent structures which can adapt to changes in the environment and learn from the
available data samples. They are used in a variety of areas including machine vision,
pattern recognition, automatic control systems and speech processing. Soft computing

borrows its ability to deal with imprecision and uncertainty from fuzzy logic. Fuzzy logic



is an approach which provides a systematic calculus to deal with incomplete and imprecise
information linguistically. At this juncture, it may be appropriate to emphasize the
difference between fuzzy logic and conventional AI. Conventional Al can express the
information in symbolic form while excluding numeric approaches. This makes it
unsuitable for low-level intelligent applications like speech processing which highly relies
on mathematical calculations. On the other hand, while it provides knowledge
representation in the linguistic domain, fuzzy logic also performs numerical computations
by means of linguistic labels stipulated by membership functions. With this property, fuzzy
logic provides an interface between mathematical knowledge and symbolic representation.
The third tool of soft computing is genetic algorithms. Genetic algorithm has origins from
the evolution of living systems. It tries to mimic the evaluation in the nature by utilizing
basic rules of molecular biology. By this property, while genetic algorithm searches in
different directions not to stuck at local minimas, it may not able to reach global optimal
solutions. However, when the search space of the problem is too large for exhaustive
search algorithms and it is hard to obtain a heuristic knowledge about the system in hand, it
is necessary to employ more appropriate techniques which can produce results in
reasonable time scales. At that point, genetic algorithm with its systematic random search
methods, offers solutions in acceptable time intervals although resulting solutions may be

sub-optimal ones.

Today, with the availability of high-speed computers, it is possible to realize soft
computing components which require extensive computations to find rules and regularity
in data. Each component has different application areas related with its capabilities.
Capabilities of different soft computing structures along with those of control theory and
artificial intelligent is given in Table 2.1 [12]. As can be seen from the table, although,
none of these schemes is exhaustive, if they can be used together, they may cover a wide
range of spectrum. In the light of this fact, recently, there have been many attempts to
unify intelligent structures in favor of constructing more powerful methodologies. One of
the consequences in this direction is neuro-fuzzy systems. As its name implies, a neuro-
fuzzy system is a unification of both fuzzy logic and neural network approaches. It can
utilize adaptive network representation to use well established optimization techniques of
neural networks while it can incorporate the expert knowledge to reduce training time of an

intelligent structure. Successful applications of neuro-fuzzy systems have proven the



complementary nature of the constituents of soft computing and encouraged researchers
for further unification of soft computing framework. In this regard, we are beginning to see
fuzzy-genetic, neuro-genetic and neuro-fuzzy-genetic systems. It seems that, in the future,
soft computing will have a great impact on the ways in which intelligent systems are
designed and build [11].

Table 2.1. Comparison of capabilities of different methodologies

Mathematical | Learning Operator Knowledge
Real Time Non-linearity | Optimization
Model Data Knowledge Representation
Control Good or . Needs other Good or .
. Unsuitable Unsuitable Unsuitable Unsuitable
Theory suitable methods suitable
Neural . Good or Good or Good or .
Unsuitable ) Unsuitable Unsuitable Fair
Network suitable suitable suitable
. Good or Good or Needs other Good or .
Fuzzy Logic Fair Unsuitable Unsuitable
suitable suitable methods suitable
Artificial Needs other Good or Needs other .
Unsuitable ) Unsuitable | Good or suitable Unsuitable
Intelligence methods suitable methods
Genetic . Good or Needs other Good or Good or
Unsuitable Unsuitable Unsuitable . .
Algorithms suitable methods suitable suitable

In the rest of this section, neural networks and fuzzy logic will be introduced and

four different soft computing architectures will be investigated.

2.1. Artificial Neural Networks

Although, being very effective, intelligence in natural form is also so complicated
that we are still far away from implementing efficient systems which can mimic most
simple tasks that a human can perform in its daily life. What lies behind the capabilities of
a human is its nervous system. Although, a neuron, the building block of nervous system,
is in the order of six magnitude slower than the silicon circuits used in computers, its
massively parallel structure makes the nervous system much more efficient than the so

called intelligent machines that we can build today.



One of the first attempts to explain the complex internal representation of nervous
system was the pioneering work of McCulloch and Pits [13] in which they proposed a
mathematical model for a neuron. Since then, there has been a great interest in area of
artificial neural networks. Especially with the development of error back propagation
algorithm for training of feedforward networks, most of the capabilities of ANNs are
understood better. Among these capabilities, learning constitutes the most important one. A
NN can utilize input samples with their corresponding outputs to store characteristics of
data in form of weights connecting network layers, which are composed of several
neurons. While this form of internal representation allows it to adapt the changes in data by
means of updating synaptic weights, its redundant structure also makes ANNs fault
tolerant. Moreover, after a learning phase, a ANN can generalize the information given in
the form of data samples by generating reasonable outputs to inputs other than those
included in the training set. This property is especially very useful for functional

interpolation and statistical pattern recognition applications.

The Figure 2.1 depicts the basic model for a neuron. Here the inputs of a neuron,
including the bias input which can be chosen as 1, are multiplied with synaptic weights and
then passed through a summing junction to calculate the soma potential of the neuron. At
the last step, an activation function is utilized to attain the neuron output. This procedure
can be summarized by the following equations for a neuron with n external inputs and a

bias input.

v= Z W, X; (2.1)
y=0() (2.2)

where w; s are the weights corresponding to inputs x; s. Here the bias input and its weight

are represented as xg and wy respectively.

In the following subsections two types of ANNs, which will be used throughout the

thesis, are investigated.
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Figure 2.1. Model of a neuron

2.1.1. Adaptive Linear Element

Adaptive Linear Element (ADALINE) with its simple structure is one of the most
popular soft computing architectures. It has many application areas ranging from adaptive
noise cancellation to adaptive inverse control because it can be realized easily both in

hardware and software. This structure is shown in Figure 2.2.

Figure 2.2. ADALINE network

As depicted in the figure, this structure has n+1 inputs and one output. The first input
signal is used for bias and chosen as +1. The others are external input signals. Each input is

multiplied with the weight associated with it. Then all of the weighted input signals are



summed to attain overall output of the architecture. In mathematical terms an ADALINE

can be represented as follows.

y=wx | (2.3)

where
w=[w, w, wy .. w1’ (2.4)
x=[1x x, ..x, 1 (2.5)

In these equations, x represents the augmented input vector, which is composed of
external inputs and the bias input. The weight vector w is composed of the weights

associated with input vector x.

2.1.2. Gaussian Radial Basis Function Neural Networks

Radial Basis Function Neural Networks (RBFNN) have originated from exact
interpolation theory which requires exact mapping of every data point in a training set to
the corresponding target output. That is why learning in RBFNNs can be boiled down to a
curve fitting problem which deals with finding a curve in multidimensional space that
provides a best fit to a given data set. A RBFNN has a three-layered simple structure which
eases its mathematical analysis. Input layer provides a connection between the network and
its environment. The second layer, hidden layer, performs a nonlinear mapping between
the input space and the high dimensional hidden space. The last layer, output layer,
produces an output depending on the signal levels at the outputs of the hidden layer
neurons. In general, activation function of the output layer is chosen as a linear function for
the sake of simplicity. Structure of a RBFNN with # inputs and single output is shown in
Figure 2.3.

In this structure, there are » hidden neurons providing a nonlinear mapping between

the input space and the hidden space. Potential of each hidden neuron is determined by the
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distance between the input vector and the prototype vector of the neuron. Output of a
neuron is obtained by passing the potential of the neuron through a nonlinear activation
function. The activation function may take different forms such as Gaussian, thin-plate
spline, cubic and linear functions [14]. However, Gaussian is the most widely used
activation function not only because it allows localization of the input space but also it has
useful analytical properties. RBFNN having Gaussian activation function is referred to
Gaussian Radial Basis Function Neural Network (GRBFNN) in the related literature.

Mathematical representation of a GRBFNN can be given as follows.

y=w o(x) (2.6)
where
w=lw, w, . w ] @7
e=[0,®) ¢,(®) ..0,®]" (2.8)
x=[x x .x,] (2.9)

0,(x)= Hem{ —“")} (2.10)

In the equations given above each element of @(x) represents output of a hidden
layer neuron. p ;s give the center of the each Gaussian function and o ;s gives a measure

of the with of Gaussian functions. Input and weight vectors are represented as x and w

respectively.
2.2. Fuzzy Logic

Fuzzy logic, the theory of imprecision, is radically different than the classical tools of

mathematics which rely on precision and exact knowledge. That is why the concept of
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fuzzy logic encountered sharp criticisms from the academic community when first
introduced by Zadeh in 1965. However, later on, with its successful applications,
capabilities of fuzzy logic are understood better. Especially, from a control point of view,
fuzzy inference systems offer an efficient methodology to a system designer. They can
incorporate expert knowledge to implement Systems which can mimic decisions of a
human operator. Moreover, this kind of knowledge may also be utilized to reduce
convergence time in adaptive applications. In this work, two different fuzzy inference
systems will be utilized. Thus, in the following subsections these inference systems are

investigated after a short introduction about the basic concepts of fuzzy logic.

Figure 2.3. Radial basis function network

2.2.1. Fuzzy Sets

Let U be a universe of discourse which includes all objects related to problem in
hand. A crisp set, 4, on U is defined by the members it has and can be represented by
assigning 1 or 0 values to each object in U to determine weather the object is a member of
A or not respectively. Here, the assignment rule is called the characteristic function of 4. A
set of temperatures grater than 26 degrees can be given as an example to a crisp set and

expressed as

H ={x|x>26} (2.11)
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in closed form. The characteristic function of His given in Figure 2.4. As can be seen

from the figure, there is a sharp transition in membership grade at 26 degrees.

Although, crisp sets constitute a useful tool for many application areas, they are not
appropriate to deal with qualitative information. For example, if one applies the (2.11) to
express hot weather, it can be said 26.0001 degrees is hot while 26 degrees is not. It is

obvious that this results conflicts with the way we express the hot weather in our daily life.

o
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Figure 2.4. Characteristic function of crisp set H

Fuzzy sets theory offers systematic methodologies to alleviate the problem
mentioned above. A fuzzy set can be defined by expending characteristic function concept
of crisp sets by assigning values to objects from [0,1] interval instead of only 0 and 1. The
assigned value determines the degree of membership of an object with 1 is the highest

degree while 0 is the lowest. For a fuzzy set A, this scheme can be formulated as
A={(x,n, )| xeU} (2.12)

where p,(x) is the membership function which determines to what degree the element x

belongs to A . In the light of this definition, now it is possible to obtain a more meaningful

explanation of the above mentioned hot weather concept with the help of the membership
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function given in Figure 2.5. As can be seen from this figure, the membership degree of set
H increases gradually as temperature increases.

2.2.2. Basic Operations on Fuzzy Sets

In this subsection, three basic operations of classical set theory, complement, union

and intersection, will be extended to fuzzy sets by the help of membership function

representation introduced in the previous subsection.

0 10 20 30 40
X

Figure 2.5. Membership function of fuzzy set H

In classical set theory, complement of a set is defined as a set which contains all
eclements in U that does not belong to 4. Although, this definition is meaningful for crisp
sets, it cannot be directly applied to fuzzy sets. In this regard, the following definition can

be used to define fuzzy complement.

A={(x1-p,(x)|xeU} (2.13)

As can be seen from (2.13) this definition still holds for crisp sets because if x is an

element of 4, membership grade of x to set A will be 0 while it will be 1 if x is not a
member. Application of (2.13) to a fuzzy set 4 is demonstrated in Figure 2.6 in graphical

form. In fact, (2.13) is not the unique definition of fuzzy complement. In general form,
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fuzzy complement is defined as a continuous function N :[0,1] —[0,1] which meets the

following axiomatic requirements:

N(0)=1 and N(1) = 0(boundary)

: e (2.14)
N(a)>2 N(b) if a <b (monotonicity)

Another optional constraint that may be imposed on a fuzzy complement is

involution which can be expressed as

N(N(a))=a (2.15)

This property guarantees that double complement of a fuzzy set is still itself. There
exist several proposed complements satisfying both (2.14) and (2.15) in the literature.
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Figure 2.6. (a) Membership function of fuzzy set 4; (b) complement of 4

Union or disjunction is another operation defined for crisp sets. If 4 and B represents
two fuzzy sets with corresponding membership functions p, andp, respectively, an

intuitive counterpart of union for fuzzy sets can be defined as

C = {(x, max(p , (), 1, (%)) | x €U)} (2.16)
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The graphical representation of this operation is shown in Figure 2.7. Although
(2.16) is appropriate to describe union, it is not the unique definition. In the literature,

There exists several disjunction operators which obey the following set of rules.

SL) =1S(0,a)=S(a,0)=a
S(a,b) <S(c,d)ifa<candb<d

S(a,b)=S8(b,a) @17
S(a,5(b,c)) = S(S(a,b),c)
where S is disjunction function (S :[0,1]x[0,1] = [0,1]).
1} 1
(;‘; A B C
5 0.8 0.8
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Figure 2.7. (a) Membership functions of sets 4 and B; (b) result of union operation

Intersection, also known as conjunction, is the last basic operator of fuzzy sets and

can be defined as

C = {(x, min(u , (x), 15 (%)) | x €U)} (2.18)

This operation is shown in Figure 2.8.

Another alternative to the definition of conjunction is product operator which will be

used in the thesis and can be given as
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C = {(x 1, () xp, (¥) |x €U} (2.19)

It is also possible to define conjunction operators other than the ones given in (2.18)

and (2.19) as long as they satisfy set of conditions in (2.20).

7(0,0)=0,T(a,) =T(LLa)=a
T(a,b)<T(c,d)ifa<candb<d

T(a,b) =T(b,a) (2.20)
T(a,T(b,c)) =T(I(a,b),c)
where T is disjunction function (7 :[0,1]x[0,1] — [0,1]).
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Figure 2.8. (a) Membership functions of sets 4 and B; (b) result of intersection operation

2.2.3. Linguistic Variables

As discussed in subsection 2.2.1 fuzzy sets provide a useful framework to make
qualitative judgments about a quantity by means of mathematical computations. By this
property, fuzzy logic allows us to make a smooth transactions from symbolic domain to
mathematical domain. For instance, while a human makes judgments about weather by
adjectives like hot, cold, warm, computers use numbers like 45° to characterize it. In fact,
here both human and computer give a representative value of a variable, but with this form,

there is not a clear correspondence between two domains. Fuzzy sets can be utilized to
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provide an interface between human thoughts and mathematical domain. We can assign a
fuzzy set to each linguistic value and then use membership functions to represent each set
in mathematical from. By this way, it is possible for computers to make manipulations
based on linguistic values of the quantity. Here the quantity taking fuzzy sets as values is

called linguistic variable. Zadeh gives a more formal definition of the linguistic variable

concept:

A linguistic variable is characterized by a quintuple (x, 7(x), X, G, M) in which x is
the name of the variable; 7(x) is the term set of x— that is, the set of its linguistic values or
linguistic terms; X is universe of discourse; G is a syntactic rule which generates the terms
in 7(x); and M is a semantic rule which associates with each linguistic value 4 its meaning

M(A), where M(A) denotes a fuzzy set in X [1].
2.2.4. Fuzzy Inference Systems

Today, fuzzy inference systems have been successfully applied in many disciplines
ranging from pattern recognition to automatic control systems. There are several factors
behind the success of fuzzy inference systems. Especially, when control applications are
taken into account two of them are dominating. First, a fuzzy inference system can realize
nonlinear mappings which obey to a rough description in linguistic form. Second, a fuzzy
inference system can exploit the expert knowledge given in form of fuzzy if-then rules to

realize controllers and reduce training time in fuzzy adaptive applications.

The main constituent of fuzzy inference systems is fuzzy if-then rules. Fuzzy if-then

rules have the form of
ifx; is A; and/or x; is A, and/or ... x, is A, theny is C

Here, the part “x; is 4; and/or x; is 42 and/or ... x, is A,” is called premise and “y is
C” is called consequence. A premise in general is a compound statement which is made up
by conjunction, disjunction connectors and statements in form of “x; is 4. In this
representation 4;” s are the values of linguistic variables each of which is defined in the

universe of its corresponding input.
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At that point, it will be helpful to explain the main philosophy of fuzzy if-then rules.
A fuzzy if-then rule, in fact, is a fuzzy relation which inherits mathematical information
related with its linguistic representation. Thus, compositional rule of inference can be
readily applied to fuzzy rules to make deductions which are similar to ones produced by a
human expert. The following procedure, where minimum operator is used for conjunction,
is a consequence of compositional rule of inference when applied to fuzzy if-then rules. In
this procedure, as a first step, input values, fuzzy or crisp, and linguistic values in the
premise part of the rule corresponding to each input are passed through and operation to
determine the matching degree of the input. Then, matching degrees of all inputs are
combined using connectors in the premise to produce the firing strength of the rule. At the
last step, the output of the rule is evaluated by taking the minimum of the firing strength,
which is a fuzzy singleton, and consequence of the rule. This procedure is shown in Figure

2.9 graphically, where minimum operation is used as conjunction.

min

1 1 1
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Figure 2.9. Fuzzy reasoning procedure

After introducing fuzzy if-then rules, now it is possible give a description of fuzzy
inference systems. A fuzzy inference system consists of several rules which are formed by
utilizing the rough knowledge about the problem to aftain a representative structure. Each
rule in the system produces an output that is more active than the other rules in a partition
of the input space which is determined by the premise part of the rule. The outputs of all

rules are, then, combined by an appropriate aggregation mechanism to attain the overall
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output of the system which is a fuzzy set in general. Although, results in form of fuzzy sets
may be adequate for many applications, they are not useful in automatic control problems.
Thus, a last stage, which is called defuzzification stage, is necessary to attain a crisp result
which inherits the most important characteristics of the reasoning procedure. Centroid of
area, bisector of area, mean of maximum and the largest of maximum are the most basic
methods in this regard. While the overall picture of a fuzzy inference system is given in
Figure 2.10, a schematic representation of the inference procedure is depicted in Figure

2.11. Here maximum of rule consequences is chosen as aggregation method.

In the rest of this section, two fuzzy inference systems, which are utilized in this

work, will be investigated in detail.

Rule 1

1=

Rulei |—MW Aggregation Defuzzification —p ¥

Rule n

Figure 2.10. Block diagram for a fuzzy inference system

2.2.5. Standard Fuzzy System

Several fuzzy inference systems, which are inspired by the reasoning mechanism
explained in subsection 2.2.4, exist in the literature. The difference between them lies in
the conjunction and disjunction operators, aggregation methods and the defuzzification
strategies they use [1]. SFS, which is one of these variants, has the same structure with the
inference system described in the previous subsection except that it restricts the rule
consequences to singletons in favor of reducing computational complexity and producing

more suitable mappings. Rules of this structure can be expressed as

if x; is A;; and X7 is A and ... x,, is A, then fi=w;



20

min
o 1 1 11 e
508 08 12 0.8 P
@ 0.6 0.6 0.6
é 0.4 0.4 0.4
202 0.2 J 0.2 j k
0 0 0
0 50 100 0 50 100 0 50 100
x1 X2 y
(@)
min
o 1 1 11 e
o A A . C
o8 ° 0.8 22 0.8 L2
Q.
= 0.6 0.6 0.6
7
é 0.4 0.4 0.4
=02 0.2 0.2
0 0 0
0 50 100 0 50 100 0 50 100
x1 x2 y
(b)
o 1
©
©
&5 0.8
=06
7
204
&
= 0.2
0
0 50 100
y
(c)

Figure 2.11. Fuzzy inference procedure; (a) rulel; (b) rule 2; (c) aggregated output
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where w; is a crisp number. Data flow of this structure is shown in Figure 2.12. In the
premise part of this structure multiplication is used as conjunction operator. For
aggregation and defuzzification stages, weighted average of the rule consequences is used.

The set of equations, which describes a SFS with bell shaped membership functions, is

given below.

u,(x) =H—‘—l—ﬁ

J=1 - X;— Uy (2.21)

Oy

un (X) — ui (ﬁ)
Z'uf ) (2.22)
y=wu"(x) (2.23)

where

w=[w, Wy, ..., W] (2.24)
u" (%) = [t (x),u5 ()] (D] (2.25)

2.2.6. Adaptive Neuro-Fuzzy Inference System

So far, we have seen that both fuzzy inference systems and neural networks are
appropriate tools for realizing input-output mappings, but they differ in the way they deal
with the information. ANNs can produce input-output mappings through a training
procedure which tries to minimize an error measure between the samples and network
output. In other words, ANNs are capable of realizing input-output mappings which best
fits to the available data samples given in numerical form. One drawback of ANNSs is that
their internal representaticn of data in form of weights connecting large number of neurons
has no intuitive meaning except some structures like GRBFNNs. On contrary, while fuzzy
inference systems are capable of realizing mappings based on rough observations about the

system given in linguistic form, they suffer from the lack of an optimization procedure for
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fine tuning. One natural way to eliminate drawbacks of both systems is to combine them
under one structure. One of the architectures proposed in this direction is Adaptive Neuro-

fuzzy Inference System (ANFIS). Rule base of an ANFIS structure with first order Sugeno

model may be given as
if x; s A;; and x; and 4;; ... then f;=w;px; + wixz + ... Wi, + Win+1)

Here the consequence of each rule is a linear function of inputs. This property makes
ANFIS very suitable for realization of functional mappings. The adaptive network
representation of ANFIS structure is shown in Figure 2.13. As depicted by the figure
product operator is used in premise part of the rules, while aggregation and defuzzification
stages are realized by calculating weighted average of rule consequences. This structure

with bell shaped membership functions can be expressed as follows in mathematical terms.

= 1
@=ll—7

’ IJJH T (2.26)

Gy

u,(x)

u (x)=—"—"—
[ =w/ H (2.28)
y=f"@u" ) (2.29)
where

X = [xvxz’“'sxn]T (2.30)
w, = [Wil’WiZ""7Win7Wi(n+1)]T (2.31)

f@) =A@, L&) £, (2.32)
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' (x) = [ (0),u3 (x),...00] ()] (2.33)

Rule #1

Rule #r

Figure 2.12. Standard Fuzzy System

Rule #1

Rule #r

Figure 2.13. Adaptive Neuro-fuzzy Inference System
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3. VARIABLE STRUCTURE SYSTEMS THEORY AND SLIDING
MODE CONTROL

Variable structure systems theory, which is first introduced in 1950s, utilizes a
discontinuous control law that switches between different control actions depending on the
state of the system. Although, when applied separately, these control actions may be
insufficient to provide satisfactory performance, if they are combined with an appropriate
switching law, desired control objectives may be imposed to closed loop system. This kind
of strategy offers a wide range of possibilities to control system designers. Especially, if
the switching law is chosen properly, trajectories of the system may be forced towards a
manifold in the state space of the system so that they reach to the manifold in a finite time
interval. This situation is shown in Figure 3.1. The period until the trajectories hit to the
sliding manifold is referred to reaching time in the related literature. Once the system is
trapped to the manifold, a sliding motion starts, during which trajectories are governed by
the equations of the manifold, which can be defined by the designer to impose desired
control objectives to the system. Control systems utilizing this kind of strategy are called
sliding mode control systems (SMC). SMC systems possess many attractive properties.
First, they are insensitive to unstructured uncertainties because motion in sliding regime is
governed by the characteristics of the sliding manifold which is independent of the system
model. Moreover, because the dimension of sliding manifold is lower than that of state
space of the system, the order of the differential equations governing the motion of the

system is reduced while it is in the sliding regime [2].

Sliding line

Figure 3.1. Trajectories of a SMC system
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3.1. SMC System Design

This section is devoted to SMC design for a class of multi-input, multi,-output

systems described by the following equations.

x™ = fi(x)+ D bu; i=1..,n (3.1)
j=1

For the sake of analytical tractability (3.1) can be rewritten as

x=f(x)+Bu (3.2)

where
X = [ Ky oo X e Xy K X ] (3.3)
U=, Uy, sl ] (3.4)

If the tracking error vector between the actual state of the system and desired state is

expressed as
e=X—X4 (3.5)
one can define a (nx1) dimensional sliding surface vector of form

s,(e)=Ge (3.6)

in the error space of the system. With an appropriate choice of the gain matrix, G, sliding
surface equations may take the following form which ensures the asymptotic stability of

the system while it is in sliding regime.

d . \me
= (=) e 3.7
s; = (= M) e G.7)
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If the following function is chosen as Lyapunov candidate

1
Egﬁ(g)gp(g) (3.8)
negative definiteness of the time derivative of (3.8) ensures the occurrence of sliding mode

in error space of the system. This kind of condition can be obtained by solving following

equations.

5,(e)5 ,(e) =5 (e)K sgn(e) (3.9)

The resulting control law can be expressed by the following equations as sum of two

components namely, equivalent control (i), corrective control (u.).

U=u,, +u, (3.10)

where
u,, =—(GB)'[Gf(x) - Gi] (3.11)
u, =—(GB)™ Ksgn(s,) (3.12)

Although, it provides a useful framework, the procedure described above suffers
from some disadvantages. First of all, corrective term requires a discontinuous switching
function to establish the sliding motion. This kind of strategy leads to chattering in which a
very high frequency control signal is applied to the system. Chattering is undesirable in
practice because high frequency input signals may result in unforeseen instabilities by
exciting unmodeled high frequency dynamics of the system. Furthermore, the corrective
term may produce an unnecessarily high control signal to account for uncertainties.
Calculation of the equivalent term constitutes another difficulty because it requires a
complete knowledge of the plant model. There are several methods proposed in the
literature to alleviate theses difficulties. Among them the most important one is the
boundary layer approach. In this method, discontinuous control is replaced by a linear

control law in the vicinity of the sliding surface to eliminate high frequency switching
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behavior [15]. Another modification to eliminate chattering, which will be utilized in this
work, is the use of a smooth function to approximate sign term in the corrective control.

Sigmoid, linear and arctangent functions are the most frequently used ones in this regard
[16].
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4. A CONTINUOUS-TIME ADAPTATION SCHEME FOR
INTELLIGENT CONTROLERS

In this section, a parameter adaptation scheme for intelligent control systems is
investigated. In this regard, first a SMC based learning algorithm is introduced for training
of flexible structures. Then, it is discussed that how intelligent architectures utilizing

continuous-time robust learning mechanisms can be incorporated into control of nonlinear

dynamical systems.

4.1. Stabilizing Learning Dynamics by Means of SMC System Theory

In addition to reasoning capabilities, an intelligent system must also be able to learn
from past experiences by storing the knowledge acquired from interactions with its
environment. As long as it is consistent within the system, internal representation of
knowledge may take different forms depending on the paradigm which is utilized. In case
of soft computing methodologies, data is represented as adjustable parameters of
appropriate input-output mappings. Thus, learning in soft computing methodologies can be
boiled down to the problem of finding optimal parameter set which best represents the
available data. Unfortunately, finding optimal parameter set is not an easy task in general.
Least mean square error minimization algorithms may result in nonlinear equations which
cannot be solved analytically. Therefore, it may be necessary to employ slow iterative

optimization methods for training of intelligent structures.

The method of error back propagation, which is first proposed for multi-layer
networks, is one of the most widely used training algorithms for intelligent structures. In
each step of the algorithm, the error information at the output of the network is propagated
backwards through the structure to obtain gradient information related with each adjustable
parameter. Then, the negative gradient direction is used to determine the new value of the
parameter vector. Another method, Levenberg-Marquardt method, utilizes additional
information by incorporating Hessian matrix of the error cost function into learning
process. While this strategy leads to faster convergence in terms of number of iteration

steps, it increases the computational complexity of the algorithm. Both error
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backpropogation and Levenberg-Marquardt methods are extensively used for training of
different soft computing architectures. But these techniques suffer from some
disadvantages. First, because they are discrete-time methods, some difficulties may arise in
applications to continuous time systems. Moreover, they cannot guarantee the stability of

the learning dynamics. The presence of noise and uncertainties in real applications may

decrease stability further.

In the iterative learning methods, the parameter vector of the flexible structure at a
time instant depends on its past values. Thus, learning process of a flexible structure can be
modeled as a dynamic system in which adjustable parameter vector represents the state of
the system. In the light of this fact, it may be possible to incorporate the tools of control
system theory into training of intelligence architectures. Especially, SMC approach may
provide a useful framework to alleviate instability problems mentioned above. The
rfollowing parameter training method utilizes this idea to robustify learning dynamics in

ADALINE networks.

Consider the flexible structure depicted in Figure 2.2. The learning error-level at the

output of the structure is defined as

5. =YV, @.1)

where y, is the desired output sequence. If the parameter vector (w), input vector (x), the

time derivative of the input vector (X ) and the time derivative of the desired output (y,)

satisfies the following inequalities

W <N, 4.2)
x| <A, (4.3)
I <, (4.4)

<N, (4.5)
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the parameter update mechanism, described as

W=——3—Ksgu(s,) (4.6)

enforces the flexible structure to sliding surface (s.=0) so that it reaches to zero learning

error-level in finite time which is estimated as

5. (0) @7
"TK-(N,N,+N,) '
To ensure the occurrence of sliding regime K must satisfy the following criterion.
K>NN,+N, (4.8)

For mathematical proof the reader is referred to [7].

The adaptation mechanism described above provides an efficient tool for learning in
ADALINE networks. This fact is demonstrated by the following example in which
ADALINE structure with three inputs is utilized. It is required to track the trajectory

described as

v, () = 0.4s1n(10¢) cos(20¢) (4.9)

while the system is subject to the following constant input signal.

x =[x, x x,]=[1215] (4.10)

To smooth out chattering while system is in the sliding regime, sgn term in (4.6) is

replaced with the following approximating function.

4.11)

S
00 = 100,005
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Results of computer simulations are depicted in Figure 4.1 for K=20 and, the
schematic representation of the intelligence structure together with update mechanism is
shown in Figure 4.2. As can be seen from the simulation results, the output signal

converges to desired trajectory very fast. Furthermore, the parameters of the structure

remain bounded.
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Figure 4.1. Simulation results for training of ADALINE network
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Figure 4.2. Schematic representation of SMC based parameter adjustment mechanism for

an ADALINE network

In fact, this scheme can be extended to any intelligent architecture having linear

parameters with respect to its output. In below, the adaptation mechanism is formulated for

the other architectures discussed in Section 2.

GRBNN:
o= ——2 Ksgn(s,)
¢
SFES:
un
w=——=——Ksgn(s,)
T @)
ANFIS:
T n
= Ksens,)
N (x x+D") u
where

W, = [Wy Wiy oo Wy Wi ]

1

(4.12)

(4.13)

(4.14)

(4.15)
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4.2. Application of SMC Based Learning Algorithms to Control of Nonlinear Systems

As discussed before, soft computing architectures can learn the rules and regularities
in a system by means of training methods. Especially, when the control of partially known
systems is of primary concern, this learning ability may provide a useful tool to obtain
satisfactory performance in the presence of uncertainties. Figure 4.3 depicts one of the
most frequently employed intelligent control schemes for control of partially known
systems. This scheme includes a forward identification model, which is a soft computing
architecture and utilizes several past system inputs and outputs provided by tapped delay
lines represented by bold arrows in the figure, to attain a measure of error at the output of
the controller. This error measure is, then, utilized by the training mechanism to adapt the
parameters of the intelligent controller in order to improve the performance of the closed
loop dynamics of the system. Despite of being very useful, this control mechanism has
some drawbacks. First, requirement of a forward identification model increases the
computational burden of the control algorithm and restricts its applications only to
discrete-time systems. Furthermore, there is not a well developed theory for stability of this

control structure.

4 7
TRAINING | IDENT TION
MECHANISM > MOWEL
¥
VR

INTE ENT
- > CON%;LER PLANT X
Xd +

¥

Figure 4.3. Conventional intelligent control scheme

To somehow alleviate the problems associated with the conventional intelligent
control schemes, Efe [10] has proposed an alternative approach which incorporates

continuous-time SMC based learning algorithms into training of intelligent controllers.
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This approach eliminates the need for a forward identification model, thus, reduces the
computational complexity of the parameter update mechanism. Moreover, the design
procedure given in [10] is based on the assumption that the system in hand can be
described by a single-input model in canonical form. However, in practice not all plants
can be modeled in canonical form and they mayd have multiple inputs. This difficulty can
be alleviated by dividing the plant model into first order subsystems having couplings in

between, and then each sub system can be controlled by a separate controller.

The overall block diagram of the control loop for a first order system is shown in
Figure 4.4. As depicted in the figure, the discrepancy (e) between the desired (x;) and
actual (x) states is defined as the sliding surface at the output of the plant (s,). The
functional relation between s, and the learning error-level of the intelligent controller (s.) is

chosen as s, =¥(s,) =s,. The reason behind this choice is that it is the simplest relation

which satisfies the conditions given in [10]. In this scheme, training mechanism utilizes s.
to update parameters of the controller in order to attain optimum performance. It is
possible to use different flexible structures as intelligent controller depending on the
system requirements. In this thesis, four different architectures are utilized, thus, the rest of

this section is devoted to analysis of the control scheme for these structures.

| TRAINING
y(s,) S, | MECHANISM

s,-¢ | INTE{LIGENT .
it . CON[L/#?JLER x = f(x)+b(x)v ;
4

Figure 4.4. Continuous-time adaptation scheme for intelligent controllers

Analysis of ADALINE controller is helpful to understand the basic behavior of the
parameter update mechanism since it possesses the fundamental characteristics which is

common to all controllers. As discussed in 2.1.1 an ADALINE network provides a linear
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multi-input single-output mapping, which is described by (2.3)-(2.5), between the input
signals, including bias, and output signal. If one utilizes this flexible structure in the

control loop shown in Figure 4.4. input-output relation of the structure can be written as

v=we+w, (4.16)

As can be seen from (4.16) this mapping includes a proportional control term and a bias

term.

The equations of the parameter update mechanism for this structure, which can be

easily derived from (4.6), can be expressed as

. e e
by =—% Ksan(e) =Lk @.17)
1+e 1+e

Wy =—

—— Ksgn(e) (4.18)
A brief analysis of these parameter adaptation equations reveals the behavior of the control
mechanism. As (4.17) suggests the weight associated with the proportional control term
will decrease as long as the error is not equal to zero. Although, this strategy may be
adequate to increase stability because the system is first order, it is unpractical since small
deviations from the zero error-level, which are unavoidable in real applications due to the
noise and uncertainties, will lead to the weight to evolve unboundedly. The other term
given in (4.18) tries to eliminate the steady state error by employing discontinuous
switching to update the bias term. In other words, the bias term is adjusted so that the
controller can produce the nominal input value corresponding to desired state in order to
attain zero error at the output of the plant in steady state. The overall behavior of the
control mechanism is summarized in Figure 4.5 in graphical form. As shown in the figure,
the slope of the line decreases as long as the error is not equal to zero. The intersection of

the line with e=0 axis gives the bias term.

As in the ADALINE case, it is also possible to give a quantitative analysis about

behavior of the update mechanism for GRBFNN and SFS controllers. Because the analysis
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for both structures follows the same reasoning, only GRBFNN will be investigated here.

For GRBFNN the equations describing input-output behavior of the controller and time

evolution of its weights can be given as

v=w" ¢e) ' (4.19)
0(0) = [0,(€), 0, (€),.-.. 0, ()] (4.20)
W, = —R;, (e)K sgn(e) (4.21)
Ry (e) = —2 (e)
:(e) @) 0l (4.22)
A%
A

N

Figure 4.5. Input-output relation of ADALINE controller

From (4.21), one can easily see that time derivative of the weight associated with it
neuron (w;) is proportional with the term Rg; which determines the rate of change in the
weight. This term includes the activation function of the i™ neuron (¢;), which is a
Gaussian function, as multiplicative factor, and thus, it converges to zero rapidly as the
distance between the controlier input (e) and center of the activation function increases.
Based on this reasoning, it can be said that input-output relation of the controller will be

updated only in a neighborhood of the e because update rate for the neurons, whose center
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of activation function is not close to e, will be almost zero. This strategy is shown in Figure
4.6 in graphical form for both e<0 and e>0. As can be seen form the figure, while error is
less than zero part of the curve in some neighborhood of input will move upwards. On the
other hand, if error is grater than zero the curve will go downwards around the input. In
fact, this behavior is similar with ADALINE case in the local sense, that is, only some

partition of the curve will be updated instead of whole curve.

(a) (b)
Figure 4.6. Time evolution of input-output curve of GRBFNN controller; (a) e<0; (b) e>0
The last architecture investigated in this thesis is Adaptive Neuro-fuzzy Inference

system, which has good approximation capabilities due to extensive degree of freedom it

possesses. Input-output relation of this structure can be given as

v=f" (e (e) (4.23)
f(e) = [we+ W, Wy + Wy, W€+ w, | (4.24)
W' (e) = [ul (@), 4} (@)l (e)] (4.25)

and the equations governing time evolution of parameters are expressed as

€ e
Wy = _RAi(e)-e-z__!__lKSgn(e) =-R, (e)";\‘_!_-IK (4.26)
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1
e’ +

W = =R 4 (€)—— Ksgn(e) (4.27)

u (e
R, (e) = m (4.28)
Apparently from (4.26) and (4.27), parameter update equations for each linear
function corresponding to different rules are same as ADALINE structure except that they
are multiplied with term Ry;. This term effects update rate of the parameters, and similar to
case of GRBFNN it decreases as distance between the input () and center of membership
function corresponding to i rule increases. Thus, again it can be said that the input-output
curve of the controller will be updated locally depending on the sign of the error, and it
will move upwards if error is negative and downwards if error is positive. This reasoning

further confirms the similarity between different control architectures.

Although, the control strategy introduced in this section provides a good mechanism
for control of nonlinear systems described by first order dynamical equations in canonical
form, it suffers from problem of unbounded evolution of adjustable parameters. For
ADALINE structure, deviations from zero error-level substantially decreases the network
weight associated with error input (w;), thus, increases the sensitivity of the controller with
respect to its input (e). To get rid of this parameter drift problem, in the applications
investigated in section 5, the update term given in (4.17) is turned off if the absolute value
of error is less than a certain value, which can be determined by the system designer. This
strategy ensures availability of necessary proportional control gain by increasing w; until

steady state and prevents the parameter to increase unboundedly.

As in the ADALINE case, unbounded evolution controller parameters constitute
difficulties in other structures. Based on the observations for GRBFNN, it can be said that
if small deviations from zero error-level occurs at the output of the plant, the weight
associated with the neuron, whose center of activation function is to the left of origin,
increases substantially. Similarly, if the center of activation function of a neuron is to the
right of the origin, its weight will decrease as long as the error is close but not equal to
zero. The natural result of this behavior is that the slope of the curve describing input-

output behavior of the controller will decrease in a local neighborhood of the origin. It is
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needless to say that this behavior is quite similar with that of ADALINE controller in the
local sense.

It is possible to give an intuitive explanation of above mentioned observations for
GRBFNN based controller by investigating the update equation (4.21). Consider that the

error at the output plant fulfils the following conditions

!e(t)’ <g, forVvt>¢, (4.29)
t

lim fle(]dr = +o0 (4.30)
0

where ¢ is a constant which is close enough to zero. Here, the first assumption requires the
system to be stable, and the second one states that the error cannot converge to zero
because of noise and uncertainties. Under these circumstances, it is easy to show that the
long term behavior of the weights w; and wy.;, which are the weights associated with
neurons whose center of activation functions are the closest ones to the e=0 line from left

and right respectively, can be given as

limw;, (7) = +e0 | (4.31)
limw,,(t) = —o0 (4.32)

In the following, the above given statement will be proven by contradiction.

To ease the proof of the statement mentioned above, graphical interpretation of the
rate terms for both neurons (Rg;, Rgi+;) 1s given in Figure 4.7 on the same graph. As can be
seen from the figure, it is possible to use below given linear approximation of both terms at

e=0 due to the constraint imposed by (4.29).

R, (e)=me+n, (4.33)

R (e)=m e+n,, (4.34)



40

where

m; <0, m,, >0andn,n, >0 (4.35)

RGi RGi+I

Figure 4.7. Graphical representation of two update rates corresponding ™ and (z’+1)th

neurons.

Let’s we assume that the limit of weight w;.; is bounded from below, that is,
hmw+1 H>M>—0 (4.36)

Under this assumption the following relations can be induced.
limw,,, (1) = lim~ jzaG,+l(e)1r<sgn(e)err w,,,(0)
t
= lim~ [(m,..e +n,.,) K sgn(e)d+ w,,, (0) 4.37)
{0
0

= —hmmmK ﬂe[ drt— hmn HK sgn(e)dt +w,,,(0) > M > -0

By rearranging the last equation, following result can be obtained.
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¢ t
=K lim [sgn(e) > m, K tim [llds -, (0)+ 11
0

(4.38)

t
}gg 5[ sgn(e) < —

i+1

1 t
1% [’”mK }gg (;ﬂe\ dv—-w,  (0)+M j =—00

¢
}im jsgn(e) =—00
0

In what follows, the long run behavior of the weight w; is obtained by the help of the last

equation given in (4.38) which is valid under assumption (4.36).

t
lim w, (1) =lim - [Rei(e) K sgn(e) du+ w, (0)
0

{—©

t
= lim— f (m,e+n,) K sgn(e) dx + w, (0)
0

(4.39)
H !
= —}immiK _ﬂe‘ dt - }imniK J'sgn(e)dr +w,(0) =+
0 0
Recall from (4.19) that the output of the controller can be written as
v(e)=wo(e)+...+ W, (e)+ W, 9, (e)+..+ w0, (e) (4.40)

If it is taken into account that w;.; is greater than M, and the weights other than w; and w;;
will not be updated because their update rate Rg; will be almost zero, we can calculate the

following limit.
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limv(e) = Hm{u,() + ...+ W, () + W10, (¢) + .. + .0, (€)}

- }H{.} wpi(e) + }i_)rg{wl(pl (@+..+w_0,,(e)+ W@ (€) +..+ w0, (e)} (4.41)

> limwp,(e) + M' = +eo

where M is the lower bound of the limit for the second term given in (4.41). It is obvious
that this result contradicts with the stability assumption expressed in (4.29) because the
control input will increase indefinitely and so the output of the plant. This reasoning shows
that if the closed loop system is stable and deviations from zero error level is inevitable,
the weight wi.; converges to -0, The proof of the statement given in (4.32) can also be

shown following the same reasoning and will not be given here.

The main reason behind the unbounded parameter evolution problem of the
GRBFNN controller is that because slope of the tangent of the term Rg; is not equal to zero
at e=0, the effect of positive (negative) deviations from zero error-level on derivative of the
weight will be more dominant than that of negative (positive) deviations. On natural way
to follow in order to alleviate this undesirable behavior is to set activation functions (¢) of
fired neurons to +1 if the error at the output of the plant is less than a certain value. This
modification makes the slope of rate term functions zero, and thus, prevents parameters to
evolve indefinitely. The proposed method is successfully employed in all simulations given

in section 5.

Explanations for ADALINE and GRBFNN controllers also hold true for other
architectures. By comparing (4.12) and (4.13), it is possible to see the similarity between
update equations of SFS and GRBFNN structures. Although, mathematical expressions of
rate terms differ for both architectures, qualitative properties of curves describing them are
quite similar. Therefore, without further investigation, it can be said that the qualitative
behavior of SFS controller is the same as that of GRBFNN, and thus, technique described
above can be readily applied to keep parameters of SFS bounded. To understand that the
parameter update mechanism of ANFIS controller inherits behavior of both ADALINE and
GRBFNN architectures, equations (4.26)-(4.28) must be analyzed. From these equations, it

is easy to see that time derivative of the weights corresponding to first order terms
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associated with each rule is less than zero as long as error is not equal zero. Thus, similar
to ADALINE network, the weight of first order terms for each fired rule will substantially
decrease with the small deviations from zero error-level. To get rid of this problem, same
technique is utilized for ANFIS controller, that is, update terms of these parameters are
turned off when the absolute value of error -is less then a predetermined value. The
similarity with GRBFNN, also SFS, lies in the second set of parameters, associated with
zero order terms. Although, rate terms of these parameters differs from that of SFS with
factorl/(1+e?), the characteristics of both update terms will be similar because the signs of
their slopes at e=0 are same for both architectures. Given this, fact one can easily apply the

method utilized in SFS to prevent unbounded evolution of this parameter set.
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5. APPLICATIONS

The aim of this section is to evaluate performance of four control architectures,
ADALINE, GRBFNN, SFS and ANFIS, utilizing the adaptation mechanism introduced in
the previous section. For this purpose, three different nonlinear systems, a biochemical
tank reactor, a cement mill circuit and a chaotic system, are chosen as test beds. The
former ones are examples of large-scale industrial processes, which involve highly
nonlinear characteristics and uncertainties, and the later one is the dynamic model of a
phenomenon which occurs in a variety of systems changing from electronic circuits to

chemical reactions. Based on the simulation results for each system, performances of all

architectures are compared.

5.1. Bioreactor Process

The control of a bioreactor system is a challenging task because of complex
characteristics of cell growth kinetics. This complexity stems from several factors. First,
because of the scale of the tanks, in which biological reactions take place, and high
viscosity and non-Newtonian nature of the medium in some situations, conditions within
the container can differ from point to point. Moreover, since process involves several
factors like pH of the medium, temperature, mechanical interactions and concentrations of
several substances, clearly it is not reasonable to construct models characterizing all
aspects of the biochemical reactions. Practically, one of the variables, which is the variable
to be controlled, is assumed to be the key state of the system. But, generally, this kind of
assumption results in models with structured and unstructured uncertainties. Thus, in the
applications, where the objectives require precision and robustness, the use of classical

control methods is not sufficient.

There are three common configurations for bioreactors: batch, fed-batch and
continuous. When compared with the batch operation, in which growth dynamics may vary
with time and environmental conditions might show nonlinear characteristics, continuous-
stirred tank reactors (CSTR) with their ideal conditions allow straightforward mathematical

analysis. Schematic representation of a CSTR is depicted in Figure 5.1. As the figure
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suggests, there are two states variables, namely substrate concentration and cell
concentration denoted by s and ¢ respectively. While the substrate, which is necessary for
growth of microorganisms, is added into the system by means of liquid influent, the reactor
content, which includes the products, is removed from the reactor at rate equal to the
inflow rate to keep the volume of the liquid in the system at a constant level, and this rate

is called dilution rate denoted by D through which the system is controlled.

There exist several models characterizing the dynamics of CSTR. In general, the
difference between them lies in the growth model they utilize. The following nonlinear

differential equations describe a CSTR with Haldene growth model [17].

¢ =u(s,c)c— Dc, c(0)=c, >0 (5.1

= _M-l_(SF

-s)D, s(0)=s5,>0 (5.2)
u(s, ) :_“0‘9_2
Kit+s+— (5:3)

I

In above, u represents the growth model of the system, S denotes the influent substrate
concentration, Y denotes the yield coefficient and 4y, Ks and K; are the parameters of the

growth model.

5.1.1. Control of the Bioreactor Process

The strategy introduced in section 4 is utilized to control the bioreactor system
described by (5.1)-(5.2). For this purpose, substrate concentration is chosen as the state to
be controlled. The target output is set to s=0.2 [g/l], and initial states of the plant are
chosen as c¢~=10 [g/l], s=10 [g/l]. Simulations are performed in MATLAB 5.3
environment and step size is chosen as 0.001 hours. During the simulations, it is assumed
that the parameters of the growth model possesses time varying behavior described by the
following equations while the yield coefficient and influent substrate concentration are

kept at constant levels given by Y=0.5 [g cells/g substrate], S/=200 [g/1].
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Ko = 0.35+0.15cos(2mt/10) [1/ 4]

(5.4)
K5 =0.105+0.095sin(2nt /15 + 31/ 2)[g /1] (5.5)
K, =5+4.975cos(2nt/25)[g /1] (5.6)

In order to not to be in conflict with practical reality, the output measurement is subjected
to Gaussian noise with zero mean and variance equal to 1.64e-6. To smooth out chattering,

the sgn function is replaced by the following approximating function

s
sgn(s, ) = 3 (5.7)

c

where 6=0.005. Furthermore, the uncertainty bound in the parameter update algorithm is
chosen as K=3 and the relevant mechanism which prevents unbounded parameter evolution
for each controller is activated when absolute value of error is less then 0.1 for all of the
structures studied in the following subsections. Lastly, output of the controller is passed

through a saturation function because dilution rate cannot take negative values.

Inflow Rate Cell ,
Concentration

T

Cutflow Rate
D

Substrate

Concentration
5

Figure 5.1. Schematic representation of the bioreactor system
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5.1.2. Application with ADALINE Based Controller

In this subsection, the performance of ADALINE based controller is investigated.
The simulation results are shown in the following figures. As Figure 5.2 depicts, the
substrate rate converges to its desired value very rapidly. This is especially important
because undesirable by-product formation may occur while the substrate concentration is
above a limiting value. The cell concentration reaches its steady state value after 40 hours
and the applied control input is acceptably smooth as can be seen from Figure 5.3. The
time evolutions of controller parameters are shown in Figure 5.4. As the figure suggest,

after a transient period parameters of the controller enters a steady state regime.

10

e (@)

0 10 20 30 40 50 1.2 1.4 1.6 1.8 2
t (hour) t (hour)

Figure 5.2. Substrate concentration error of the bioreactor system for ADALINE based

controller
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Figure 5.3. Cell concentration and dilution rate of the bioreactor system for ADALINE

based controller
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Figure 5.4. Time evolution of parameters for ADALINE based controller of the bioreactor

system

5.1.3. Application with GRBNN Based Controller

Simulation results for GRBFNN based controller are shown below. The results given
in Figure 5.5 stipulate that the transient phase for substrate concentration lasts acceptably
short period of time. Based on the first graph given in Figure 5.6, it can be said that the
settling time for cell concentration is about 40 hours, which is much longer than that of
substrate concentration. Moreover, as shown in the same figure we cannot see chattering
on applied control signal because of sign function smoothing in the vicinity of the decision
boundary characterized by e=0. As Figure 5.7 suggests, activation functions of hidden
layer neurons spans [-2,10] interval within which error signal remains. Furthermore, the

parameters of GRBFNN controller, which are shown in Figure 5.8, remain bounded.

10
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Figure 5.5. Substrate concentration error of the bioreactor system for GRBFNN based

controller
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Figure 5.6. Cell concentration and dilution rate of the bioreactor system for GRNFNN

Membership Grade

based controller

e (9/l)

Figure 5.7. Membership functions for GRBFNN based controller of the bioreactor system
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Figure 5.8. Time evolution of parameters for GRBFNN based controller of the bioreactor

system

5.1.4. Application with SFS Based Controller

Another structure utilized in this work is Standard Fuzzy System, which is described
by (2.21)-(2.25). Similar to the other controller structures, the settling time obtained with
SFS based controller is about 1.3 hours for substrate concentration and is longer than 40
hours for cell concentration as can be seen from Figure 5.9 and Figure 5.10 respectively.
Furthermore, by investigating Figure 5.10, it can be said that the produced control signal is
practically applicable. The membership functions given in Figure 5.11 are utilized to
partition the input (error) space on the SFS based controller. Time varying behavior of
parameters for this structure is shown in Figure 5.12. As in the case of GBRFNN

controller, the parameters of the SFS controller evolve bounded and no parameter drift

occurs,
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Figure 5.9. Substrate concentration error of the bioreactor system for SFS based controller
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Figure 5.10. Cell concentration and dilution rate of the bioreactor system for SFS based

controller

Membership Grade
o
~

e (a/l)

Figure 5.11. Membership functions for SFS based controller of the bioreactor system
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Figure 5.12. Time evolution of parameters for SFS based controller of the bioreactor

system

5.1.5. Application with ANFIS Based Controller

One of the structures integrating the numeric and verbal power of intelligence is
known as ANFIS and philosophically it is a suitable combination of neural and fuzzy
representations of knowledge [1]. In this subsection, the performance of the ANFIS
structure is elaborated. As can be seen from Figure 5.13 and Figure 5.14, in terms of the
settling time metric, the response observed with ANFIS based controller is similar with the
other controllers, that is, the settling time for substrate concentration is about 1.3 hours,
which is an acceptable value for the process dynamics studied, and settling time for cell
concentration is about 4C hours. Furthermore, the applied control signal is smooth as
depicted in Figure 5.14. Because bell shaped membership functions are chosen to
characterize the linguistic values, the partitioning of error space shown in Figure 5.15 is
same as that of SFS controller. Lastly, the bounded evolution of controller parameters

shown in Figure 5.16 confirms that the method proposed in section 4 is effective to prevent

the parameter drift problem.
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Figure 5.13. Substrate concentration error of the bioreactor system for ANFIS based

controller
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Figure 5.14. Cell concentration and dilution rate of the bioreactor system for ANFIS based

controller
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Figure 5.15. Membership functions for ANFIS based controller of the bioreactor system
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Figure 5.16. Time evolution of parameters for ANFIS controller of the bioreactor system
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5.1.6. A Discussion on the Results

In the previous subsections, the parameter adaptation mechanism introduced in
section 4 is utilized for control for bioreactor system described by (5.1)-(5.3). For this
purpose the substrate concentration is chosen as the free variable and controlled through
dilution rate. Based on simulation results, it can be said that the proposed adaptation
mechanism is effective for control problem of the bioreactor system and there is not a
significant difference between performances of different controllers. When the latter is
taken into account it can be said that the ADALINE architecture will be the most suitable
controller because it performs as good as the other controllers while the computational
complexity for this structure is the lowest among the all architectures. For all of the
structures studied, the error at the output of the plant converges to zero error-level very
rapidly, and thus, undesirable byproduct formation, which occurs when the substrate
concentration is above a limiting value, is prohibited. Moreover, while the system is in
steady state, the error at the output of the plant remains almost zero in spite of time
variation of plant parameters and presence of Gaussian noise on measurement of substrate
concentration. This result states that the proposed control structure is robust against the
uncertainties. Another advantage of the proposed method is that the measurement of cell
concentration, which is not practical to realize, is not required. Therefore, the proposed
control system does not necessitate estimation of the immeasurable state by use of an
additional observer, which obviously increases cost and complexity of the system. Lastly,
results for all controllers prove that the method proposed in section 4, which is used to
prevent parameter drift problem, woks as expected. That is to say, the parameters of all

controllers remains bounded.
5.2. Cement Mill Process

Production of portland cement is a highly complicated process, and composed of
several stages [18]. Each stage of this process is shown in Figure 5.17. As can be seen from
the figure, first, raw materials, the most commonly used ingredient is limestone coupled
with much smaller quantities of clay and sand, are fed into the crusher, where they are
broken into small pieces. Then, the stone from the crusher is blended with the other

materials, including sand, mill scale or bauxite to achieve the right mix of calcium, silica,
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aluminum and iron. The resulting material is ground to a fine powder in the raw mill. After
a homogenization stage, the raw feed coming from the raw mill goes into the kiln, where it
is heated up to 1450° C to produce the clinker which is later cooled and ground into a fine

cement powder in the cement mill. In this work, the aim is to control the cement mill

circuit which grinds clinker into fine cement powder.
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Figure 5.17. Production of portland cement

The schematic representation of a cement mill circuit is shown in Figure 5.19. As
depicted in the figure, the raw material, clinker, is fed into the mill, where it is ground into
fine powder with the rotational movements. Then, the resulting material is passed through
the classifier and separated into two classes, product and tailing. While the product leaves
the system, the rejected material, tailings, is fed back into the mill for further grinding. An
experimentally verified dynamic nonlinear model for this process is proposed by Magni, et

al. [19]. The differential equations describing the model are given as

Ty, ==y, +(1-a(z,v,d)e(z,d) (5.8)
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Z=—¢(z,d)+u+y, (5.9)

Tr.)')r ==Y, +(X(Z,V,d)(p(Z,d) (510)
oz, 7d 2_&

(z,v,d) X tom (5.11)

0(z,d) = max{0;(~dK ,2* + K ,,2)} (5.12)

where yyis the product flow rate (Tons/h), z is the load in the mill (Tons), y, is the tailings
flow rate (Tons/h), u is the feed flow rate (Tons/h), v is the classifier speed (r/min), and d

represents the hardness of the material inside the mill with respect to its nominal value.

Tailings

Product

<V ﬂ

Feeding

Figure 5.18. Cement mill circuit

5.2.1. Control of Cement Mill Process

This section is devoted to control problem of the cement mill circuit. As can be seen
from the dynamical equations describing the process, this system has highly nonlinear
characteristics with strong couplings between its states. Therefore, it constitutes a good
candidate to evaluate performance of the control mechanism introduced in section 4. In

what follows, it is discussed that how this control approach can be applied to the cement

mill process.
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At first glance, it will be helpful to decide on configuration of the control system. If
one investigates (5.8)-(5.12), it can be seen that the system involves three state variables
and two control inputs. Thus, two of the states must be chosen as free variables and
controlled through system inputs while the remaining state must be the depended variable
of the others. In this study, mill load and product flow rate are designated as free variables.
Based on this choice, in order to achieve the control objective, u-z and v-yr input-state
pairs, each pair can be considered as a first order system, are controlled using separate

controllers by regarding the couplings between the states as disturbances.

Unfortunately, the control mechanism introduced in section 4 cannot be adopted
directly to control the first order subsystems defined above. There are some problems
associated with application of the original control structure. First of all, although, feed flow
rate, rate of the raw material fed into the mill, cannot take negative values, there is not such
a constraint in the original algorithm. This inconsistency may lead to problems in
applications, and hence, must be handled appropriately. In order to alleviate this difficulty,
output of the associated controller is passed through a saturation function which produces
zero for negative values of the control signal. By doing this, one can assure that a valid

feed flow command signal is applied to actuators.

Another difficulty arises in the second subsystem having v-ys pair as input and output
respectively. This system could not be stabilized by constructing the original control loop
shown in Figure 4.4. The reason behind this instability problem can be understood by
investigating the behavior of the product flow rate with respect to classifier speed input as
follows. The material leaving the mill, rate of which is denoted by ¢, is separated into two
parts, tailings with ratio @ and end product with ratio 1-a, by the classifier. Therefore, the
second term in the right hand side of equation (5.8) gives the rate of the material classified
as end product. If one investigates (5.11), it can be seen that because « is monotonically
increasing function of v for v0, the term in (5.8) decreases with increasing values of v.
This result contradicts with assumption given in [10], which states that if the actual state is

below the desired state, it is required to increase the input or vice versa.

In the light of the facts given above, a mapping is utilized between controller output

and classifier speed command signal in order to make the overall system, including the
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mapping, satisfy the conditions given in [10]. This mapping is shown in Figure 5.19 and
can be formulated as follows.

0, X>n (5.13)

where m=-1 and n=600. To be able to show effect of the mapping, graphs of (1-a)o term
for different constant values of ¢ are given in Figure 5.20 and 5.21 as a function of
classifier speed and controller output respectively. As can be clearly seen from these
figures, although, (1-a)¢ is a decreasing function of v, it is an increasing function of
controller output. Therefore, the conditions given in [10] are satisfied, and hence, the
system can be stabilized. At that point, one may ask the reason behind the choice of the
parameters (m, n) of the mapping given in 5.13. In fact, the values given above are not
unique. As long as m and # are known constants, and sign of m is negative, it is possible to
attain similar system response for different m and n values by adjusting parameters of the
controller appropriately. For example, for higher values of m, the sensitivity of v with
respect to controller output will decrease. On the other hand, if one increases the
uncertainty bound term (K,), controller will be more sensitive to error signal, that is, for
negative (positive) values of error, output of the controller will increase (decrease) faster.
Therefore, by an appropriate choice of K,, one can keep sensitivity of the classifier speed
command signal with respect to error approximately same for different values of m. In
other words, the choice of m will not change dynamics of closed loop system considerably
as long as uncertainty bound term set to a proper value. Furthermore, because changes in
the value of n is simply corresponds to a shift in classifier speed, one can easily keep

overall behavior of v same by adjusting initial parameters of the controller appropriately.

In the following subsections, simulation results for different intelligent architectures
are investigated. Simulations are performed in MATLAB 5.3 environment and step size is
chosen as 0.001 hours. For all architectures, initial states of the plant are set to zero and
target set points for mill load and product flow rate are chosen as 55 tons and 100
tons/hour respectively. Moreover, to emphasize the robustness of the control system, the
hardness parameter d is changed from 1 to 1.25 at =10 hours and both state measurements

are corrupted with Gaussian noise having zero mean and variance equal to 1.64e-6. To
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climinate chattering problem, sign functions utilized in the parameter adaptation

algorithms of both controllers are replaced with the same approximation function given in
subsection 5.1.1. Furthermore, in the adaptation algorithms, uncertainty bound parameter
for the first subsystem (K,) is chosen as 300, and that of second sub system (X,) is set to
750. Moreover, each controller changes its operating mode as describe in section 4 when

the absolute value of error is less than 0.2 in order to eliminate unbounded parameter

evolution problem.
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Figure 5.19. Graph of mapping utilized at the output of the controller
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Figure 5.20. (1-c )¢ term as a function of classifier speed
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Figure 5.21. (1-a ) term as a function of controller output

5.2.2. Application with ADALINE Based Controller

Performance of ADALINE based controller is investigated in this subsection. As can
be seen from Figure 5.22, both errors of mill load and product flow rate converges to zero
very rapidly. Furthermore, the remaining state of the system, tailing flows rate, decreases
sharply form 470 tons/hour to 385 tons/hour at /=10 hours due to the change in the
hardness parameter as shown in Figure 5.23. Inputs of the system, through which free
states are controlled, are shown in Figure 5.24. As depicted in the figure, the feed flow rate
increases up to 185 tons/hour very rapidly in transient phase, and it is very active in steady
state due to disturbances. Moreover, both feed flow rate and classifier speed command
signals change very fast at /=10 hours in order to compensate uncertainty in the hardness
parameter. Although, time scale of the system is very large, the rapid transitions in inputs
may not be followed closely by the actuators. Therefore, some difficulties may arise in the
applications based on ADALINE architecture. Lastly, the time evolutions of controller
parameters are shown in Figure 5.25 and Figure 5.26. As these figures suggests,

parameters of both controllers evolves bounded.
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Figure 5.22. Mill load and product flow rate errors of the cement mill process for

ADALINE based controller

600

E=N
o
o

y. (tons/hour)

r

N
[}
o

0 10 20
t (hour)

Figure 5.23. Time evolution of tailings flow rate of the cement mill process for ADALINE

based controller

62



63

00— 200, - :
180 — 150 1/ ]
5 | ‘ 5
2 L =
% 100 - §100/
g N
3 B0 S— 70
0 N 0 L i
0 10 20 0 10 20
t (hour) t (hour)

Figure 5.24. Time evolutions of feed flow rate and classifier speed of the cement mill

process for ADALINE based controller
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Figure 5.26. Time evolution of parameters for the second ADALINE controller of the

cement mill process

5.2.3. Application with GRBFNN Based Controller

The simulation results of GRBFNN based controller are discussed in this subsection.
The time evolutions of state errors given in Figure 5.27 show that the proposed method is
successful in stabilizing the closed loop system. The errors of mill load and product flow
rate converge to their steady state values in approximately 2.2 hours and 1 hour
respectively. Moreover, state errors are not affected from the absurd change in the material
hardness considerably, which proves robustness of the proposed method. To be able to
compensate this parameter change, controllers produce fast input signals at =10 hours as
shown in Figure 5.29. Especially, the behavior of classifier speed at this time instant causes
the tailings flow rate, time evolution of which is given in Figure 5.28, to decrease
dramatically. Gaussian activation functions of controllers are shown in Figure 5.30. The
ranges of activation functions are chosen so that both controllers work properly in the
operating range of the system. Lastly, the time evolutions of parameters for first and
second controllers are illustrated in Figure 5.31 and Figure 5.32 respectively. As these
figures suggest, each parameter converges to a steady state value. In other words, method

proposed in section 4 is successful in preventing parameter drift problem.
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Figure 5.30. Neuron activation functions of GRBFNN architecture for the cement mill

process
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5.2.4. Application with SFS Based Controller

The aim of this subsection is to evaluate performance of SFS based controller. The
state errors and time evolution of tailings flow rate for this intelligent architecture are given
in Figure 5.33 and Figure 5.34 respectively. If one compares these results with that of the
previously investigated structures, it can be seen that there is no significant difference
between them in terms of both transient and steady state behavior. Moreover, as depicted
in Figure 5.35, although, there is not a remarkable improvement in classifier speed input,
the peak value of the feed flow rate is less than that of previously investigated
architectures, and its steady state behavior is smooth in spite of presence of measurement
noise. The partitioning of error space of both controllers is shown in Figure 5.36. Here, bell
shaped membership functions are utilized in order to granulate the error values. Moreover,
the centers of membership functions are chosen so that they cover the whole range of error
signals. The time evolutions of system controller parameters are given in Figure 5.37 and

Figure 5.38. As these figures suggest, all of the parameters remains bounded within the

given time interval.
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Figure 5.33. Mill load and product flow rate errors of the cement mill process for SFS

based controller
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Figure 5.35. Time evolutions of feed flow rate and classifier speed of the cement mill

process for SFS based controller
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Figure 5.37. Time evolutions of parameters for the first SFS based controller of the cement

mill process
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5.2.5. Applicatien with ANFIS Based Controller

ANFIS based controller is the last intelligent architecture utilized for control of the
cement mill circuit. As can be seen from Figure 5.39, state errors for this controller become
acceptably smail after a sort transient phase and stays in the vicinity of zero-error level
thereafter in spite of the parametric uncertainty, existence of measurement noise and
couplings between system states, Although, change in the hardness parameter has not a
considerable effect on mill load and product flow rate, tailings flow rate decreases
approximately 85 tons/hour at /=10 hours as shown in Figure 5.40. The behaviors of feed
flow rate and classifier speed inputs, which are demonstrated in Figure 5.41, shows that the
peak value of feed flow rate is smaller than the maximum flow rate of ADALINE based
controller. Moreover, the controller of the first subsystem applies a very large magnitude
command signal in order to keep states of the system at their desired values when the
hardness parameter changes. The membership functions of all rules along with the linear
parameters of rule consequences are given in Figure 5.42, Figure 5.43 and Figure 5.44. As

the later figures suggests no parameter drift occurs due to the modification in the parameter

adaptation mechanism.
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Figure 5.39. Mill load and product flow rate errors of the cement mill process for ANFIS

based controller
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5.2.6. A Discussion on the Results

Soft computing methodologies with their learning and adaptation abilities constitute
a good candidate for contro] of large scale industrial processes, which are characterized by
nonlinearities, modeling uncertainties and time varying parameter. Therefore, intelligent
control of a cement mill circyit is investigated in this section. Four different intelligent
architectures are utilized for this purpose, and a recently developed training algorithm,
which incorporates SMC theory to robustify learning dynamics, is used to train each
intelligent structure. Simulation results show that the proposed method is successful for
control problem of the cement mil] circuit, that is, the system states converge to their
desired values in a short period of time and they preserve their values in spite of parametric
uncertainties and measurement noise. The latter result shows that this new training
algorithm robustifies closed loop dynamics of the system. Moreover, by investigating state
errors of four architectures, one can see that there is not a significant difference between
the time evolutions of states for different flexible structures. On the other hand, if one
compares the implementation effort of al] architectures, it can be seen that the time
required for realization of the algorithm and to determine the optimal set may differ from
one architecture to another. While it is casy to implement and find optimal parameters for
ADALINE structure, the complexity of other structures increases as the number of
parameters increases. Another issue addressed in this thesis is that the parameters of each
intelligent architecture evolve unboundedly if the original learning algorithm is utilized to
train the controller. A modification on the original algorithm is proposed in section 4 in
order to get rid of this problem. The simulation results given here show that the proposed

strategy works as expected, that is, controller parameters remains bounded.
5.3. Lorenz System

The last example investigated in this thesis is the Lorenz system which is discovered by
Edward Lorenz while conducting a research on weather patterns. This remarkable system
is described by the nonlinear dynamical equations given in (5.14)-(5.16) and shows an
interesting behavior for certain values of its parameters, o, r and b. For example, if one
chooses the parameters set as (o; 7, b)=(10, 28, 8/3), which is the most widely investigated

parameters set and original used by Lorenz, it can be seen that the state trajectories of the
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system neither converge to an equilibrium nor goes to infinity. They simply follow a
butterfly like trajectory in a limited volume in the state space. This phenomenon is known

as chaos and has been an active area of research for several years.

*=o(y-x) (5.14)
y=ri-y-xz (5.15)
2=xy_bZ (516)

Chaotic behavior is undesirable in real systems because it has property of sensitivity
to initial conditions. In other words, small deviations in initial states lead to completely
different solution as time evolves. Moreover, chaotic systems have no stable equilibrium
points or periodic orbits. Therefore, control of such systems is a not an easy problem [20].
In the following subsection the control algorithm proposed in section 4 is applied to the

Lorenz system as an example of chaos control.
5.3.1. Control of the Lorenz System

Control problem of the Lorenz system is addressed in this subsection. As can be seen from
equations (5.14)-(5.16), this system has three state variables and a parameter related with
each state equation given above. Therefore, if one utilizes all of the parameters as control
inputs there will be three first order subsystems to control. A natural choice for input-
output pairs of each subsystem can be given as o-x, 7-y and b-z. Here, the control inputs are
applied as parameter perturbations, not necessary to be small, and nominal values of the

parameters are chosen as (o, 7, b,)=(10, 28, 8/3).

If one carefully investigates the system state equations, it can be seen that a problem
similar with the one discussed for cement mill circuit process exists for this system, that is,
the control term may become a decreasing function of system inputs. To make this point

clear, the dynamic equations given above are rewritten in the following form.
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56:0,,(y—x)+Ac(y—x)

(5.17)
yZVnX-y—XZ+Arx (5 18)
Z:xy—an_AbZ (5 19)

where Ao, Ar and Ab are the parametric perturbations. It is easy to see from these
equations that if the coefficient of a perturbation input, which is a function of states, is
negative, then the term related with this input will be a decreasing function of it. To get rid

of this problem, applied perturbation inputs are chosen as follows.

AG =sign(y - x)p, (5.20)
Ar = sign(x)p2 (521)
Ab = —sign(z)p3 (522)

where p;’s are outputs of the controllers associated with each subsystem. By substituting
these equations into (5.17)-(5.19), one can easily show that the each control term is an

increasing function of controller outputs.

In what follows, performance of the proposed control method is elaborated based on
the simulation results. MATLAB 5.3 environment is used for simulations and the step size
is chosen as 0.0005 hours. It is required to follow the trajectory, some restrictions are taken
into account in this choice of the trajectory, expressed below while the initial states of the

system are set as (xo, Vo, 20)=(-20, -20, 0).

. 2T
x(l)=1081n(§t)+13 (5.23)

. 2m
y(@) = IOsm(Et) +20 (5.24)
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2n
z(t) =10cos(==¢
) OS(I,Z )+20 (5.25)

The constraint that is imposed on the reference input is that control terms should not vanish

while system states on the trajectory. In other words, the coefficients of perturbations in
(5.17)~(5.19) should not be zero in order to not loose the control. As in the previously

investigated systems, to fest the robustness of the proposed mechanism, state

measurements are subjected to Gaussian noise with zero mean and variance 1.64e-6.
Moreover, instead of the discontinuous switching function utilized in the original
adaptation algorithm, its smooth approximation given in (5.7) is used to eliminate the
occurrence of high frequency input signals while the system in sliding regime. The
uncertainty bounds for controllers corresponding subsystems having o-x, -y and b-z pairs
as input-outputs are determined as K~200, K,=700 and K,=700 respectively. Furthermore,

each controller changes its operating mode to prevent unbounded evolution of parameters

when the absolute value of error is less than 0.2.
5.3.2. Application with ADALINE Based Controller

Simulation results for ADALINE based controller are investigated in this subsection.
Three-dimensional appearances of the reference trajectory and the actual trajectory of the
system are shown in Figure 5.45 while time evolution of state errors are given in Figure
5.46. As these figures suggest, states of the system converges to the desired trajectory in a
short period of time and follow it thereafter in spite of presence of measurement noise.
This result shows that the ADALINE based controller successful in tracking control of the
Lorenz system and robust against uncertainties. The transient phase of the control inputs
produced by ADALINE architecture are given in Figure 5.47. As can be seen from the
figure, control signals can take large values initially when compared with their long run
behavior given in Figure 5.48. These long run graphs will not be given in the following
subsections again because they are almost same for each control architecture. Lastly, time
evolution of controller parameters are given in Figure 4.49, Figure 4.50 and Figure 4.51.
As shown in these figures, parameters corresponding to bias terms make bounded

oscillations while remaining ones converges to a limiting value. This observation shows
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that the proposed method prevents the parameter drift problem which is inevitable in the
original training algorithm,

40

Figure 5.45. State and reference trajectories of the Lorenz system for ADALINE based

controller
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Figure 5.46. State tracking errors of the Lorenz system for ADALINE based controller
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Figure 5.47. Transient phasc of the control signals produced by ADALINE based

controller to control the Lorenz system
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Figure 5.48. Control signal produced by ADALINE based controller in the long run
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5.3.3. Application with GRBFNN Based Controller

The second architecture utilized for tracking control of the Lorenz system is
Gaussian Radial Bases Function Neural Network. The state trajectory for this controller is
shown in Figure 5.52. Ag depicted in the figure, starting from (xo, yo, 20)=(-20, -20, 0),
states of the system converges to the desired circular trajectory under the control law given
in (4.19)-(4.22). By analyzing the time evolutions of state errors given in Figure 5.53, one
can say that it takes approximately 018, 0.017 and 0.012 hours respectively for x, y, z
components to converge to the reference trajectory. These values shorter than the required
times for ADALINE based controller. On the other hand, if computational complexity is of
primary concern, one should prefer ADALINE structure. Each GRBFNN utilized in this
subsection can be described in terms of its activations functions and weights. While the
former is shown in Figure 5.55, time evolutions of the weights are given in Figure 5.56-

Figure 5.58. As these figures suggest, weights of the network remain bounded.

Figure 5.52. State and reference trajectories of the Lorenz system for GRBFNN controller



Figure 5.53. Stare errors of the Lorenz system for GRBFNN based controller
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Figure 5.54. Transient phase of the control signals produced by GRBFNN based controller

to control the Lorenz system
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5.3.4. Application with SFS Based Controller

Performance of SFS based controller is evaluated in this subsection. While the state
trajectory of the system is shown in Figure 5.59, cach component of the state vector is
given in the Figure 5.60 as 3 function time. From these figure one can see that, although it
is easy to realize that the state trajectories for SFS based controller differs from GRBFNN

based controller in transient phase, the settling times of state components are

approximately same for both architectures. Moreover, one can say that the peak values for
control signals shown in Figure 5.61 are small when compared with ADALINE based
controller. The rule bases of SFS architectures utilizes the bell shaped membership
functions given in Figure 5.62 in order to partition error spaces. Moreover, the rule
consequences vary with time as shown in Figure 5.63, Figure 5.64 and 5.65 under the

adaptation law given in (4.13). As depicted in these figures parametric variances do not

lead to any drift.

Figure 5.59. State and reference trajectories of the Lorenz system for SFS based controller



Figure 5.60. Stare errors of the Lorenz system for SFS based controller
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3.3.5. Application with ANFIS Based Controller

The behavior of the Lorenz system for ANFIS based controller can be described by
simulation results given below. Sates of the system follow the trajectory shown in Figure
5.66 under the control of ANFIS structure, parameters of which are updated by the
adaptation algorithm introduced in section 4. Moreover, if one draws the components of
this trajectory as a function of time, the graphs shown in 5.66 can be obtained. A
comparison of these results with the ones given for SFS based controller reveals the
similarity between the performances of both architectures, This similarity can be accounted
to the fact that the control signals produced by SFS, Figure 5.61, and ANFIS, Figure 5.68,
controllers are almost same. Each ANFIS structure utilized in this subsection uses one of
the corresponding membership function sets given in Figure 5.69 in order to calculate
firing strength of each rule, Then, these firing strengths are used in conjunction with the
adjustable parameters, which are updated with the adaptation rule given in (4.14) and time
evolutions of which are given in Figure 5.70-Figure 5.72, of the structure to obtain its
overall output. As can be seen from the figures, each parameter remains bounded as time

evolves.

Figure 5.66. State and reference trajectories of the Lorenz system for ANFIS based

controller
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Figure 5.67. Stare errors of the Lorenz system for ANFIS based controller
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Figure 5.68. Transient phase of the control signals produced by ANFIS based controller to

control the Lorenz system



92

Membership Grade

Membership Grade
(@)
o
=
=
jf?fw\

Figure 5.69. Membership functions of ANFIS architectures for the Lorenz system

5.3.6. A Discussion on the Results

The aim of this subsection is to adopt the proposed control strategy to the Lorenz
system. In order to achieve this objective, the Lorenz system is divided into three
subsystems, and each subsystem controller by a separate controller. The simulation results
show that the closed loop dynamics is stable for all architectures, that is, the system states
can follow the reference trajectory. Moreover, if one takes into account the fact that there
are strong couplings between the states, which act as disturbances for each subsystem, and
the state measurements are subject to noise, it can be said that all control architectures are
similar in the sense that each of them shows a robust characteristic under the corresponding
parameter adaptation law given in section 4. On the other hand, there are also some
differences between these intelligent architectures, which can be exploited to choose the
most suitable controller for the given problem. If one analyzes the applied control signal
for different architectures, it can be seen that control effort required by ADALINE based
controller is considerably high when compared with the others. Moreover, in terms of
settling time metric GRBFNN based controller performs a little bit better than the other

architectures. Consequently, if all these facts are taken into account, it can be said that the
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most suitable architectyre for the control of the Lorenz system is GRBFNN. However, one
should also keep in mind that the performances of SFS and ANFIS structures are very
close that of GRBFNN based controller, and hence, they constitute a good alternative. The
last point to mention in thig subsection is unbounded parameter evolution problem. As
discussed before the original parameter update rules derived in section 4 leads to persistent
increments in the absolute values of adjustable parameters. Because this situation causes to
problems in appiications, a remedy is proposed in this study to keep the parameters of each
architecture bounded. As in the case of the previously discussed systems, the simulation

results for the Lorenz system shows that the proposed method woks properly.
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6. CONCLUSIONS

The area of intelligent control has emerged in the early second half of the 20™
century to fulfill the requirements of low cost solutions to complex engineering systems,
ability to deal with uncertainties and providing an interface between the human expertise
and numerical computation methods. In this regard, several methodologies have been
proposed and found to be successful in a variety of automatic control applications,
including robotics and industrial process systems. The difference between these
methodologies lies in the intelligent architectures utilized in the control loop and training

algorithm used to update adjustable parameters of the flexible structures,

In this thesis, a recently developed parameter adaptation algorithm is utilized to train
four different intelligent control architectures, namely Adaptive Linear Element, Gaussian
Radial Bases Function Neural Network, Standard Fuzzy System and Adaptive Neuro-fuzzy
Inference System. For this purpose, the update rule given in [10], which is originally
formulated for second order systems, is modified in order to make it applicable to first
order nonlinear systems in canonical form. Moreover, throughout the thesis, it has been
shown that there is a strong relation between behaviors of different architectures under the
proposed adaptation rule, that is, input-output curves of all architectures exhibit a similar
characteristic as time evolves. One of the inevitable, and undesirable, outcome of this
similarity is that parameters of all architectures evolves unboundedly if the update rule
derived in section 4 is utilized directly. In order to alleviate this difficulty, adaptation
algorithm of each architecture is modified while the system states in the vicinity of the
desired states. The simulation results for different system prove that the modified update

rule woks as expected.

Throughout the thesis, simulation results for four different architectures are
investigated in order to evaluate their performances. However, it has been observed that in
terms of applied control inputs and time evolution of system states, there is not a
considerable difference between performances of those architectures. Therefore, one may
not make a decision between different architectures based on these metrics. On the other

hand, computational complexity and effort required for each architecture to determine the
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optimal parameter set differs from one to another. As can be seen from Table 6.1 the

complexity and required effort increases as the number of adjustable parameters increase.

Based on the above given observations, it can be concluded that even if the time
scale of the system in hand is large, one should prefer simple structures like ADALINE

network in order to reduce the time required for initial parameter adjustment and

implementation of control algorithm.

Table 6.1. Complexity ranking of different architectures

Amount of time requiredto | Amount of time required
implement the algorithm to adjust parameters
ADALINE 1 1
GRBFNN 2 2
SFS 2 2
ANFIS 3 3

* In this table 1 stands for the minimum time while 3 for the maximum
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