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ABSTRACT

3D COW IDENTIFICATION IN CATTLE FARMS

Animal farms have been steadily growing to meet the consumption requirements

of the society in an efficient manner. This fact necessitates new monitoring and tracking

systems to collect useful information about the herds in order to observe their general

health and instantaneous state. However, recognizing and tracking an animal in a farm

is a difficult task due to the target’s similarity and hard to predict dynamics. In this

thesis, a novel cow identification system is proposed. There are prominent features of

this solution which differentiates it from the others in the literature, i.e., it does not

need any markers or external devices placed on the animal; works in even unlighted

environments; identifies even black cows without distinctive coat patterns; is relatively

cheaper, and enables accurate positioning. Proposed solution is based on 3D shape

analysis of the top back part of the animals captured with RGBD cameras placed at

an adequate height, where two dimensional images are constructed with respect to the

local surface features and are subsequently identified by using face recognition methods.

To evaluate the applicability of the proposed system, a real-time prototype software

has been developed and a 3D cattle dataset is acquired which, to our knowledge, is

unique in the literature. This dataset is gathered from moving animals which do not

have distinctive coat patterns and captured in different lighting conditions. Applica-

bility of the proposed solution has been verified by testing with the acquired dataset.

Convincing results are obtained where %88 of 50 cows are identified successfully.
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ÖZET

İNEK ÇİFTLİKLERİNDEKİ HAYVANLARIN 3B KİMLİK

SAPTAMASI

Hayvan çiftlikleri, toplumun artan ihtiyaçlarını etkin bir şekilde karşılayabilmek

için giderek büyümektedir. Bu durum, hayvanlar hakkında faydalı bilgilerin toplana-

bilmesi ve anlık durumları ve sağlıklarının takibi için yeni izleme ve takip sistemlerini

gerekli kılmaktadır. Ancak hayvanların kimliklendirmeleri ve takibi, benzerlikleri ve

davranışlarının tahmininin kolay olmayışı sebebiyle zor bir problemdir. Bu tezde yeni

bir inek tanımlama sistemi önerilmektedir. Önerilen çözümü li-teratürdeki diğer sistem-

lerden ayıran belirgin özellikler bulunmaktadır. Örneğin bu sistem, hayvanların üzerine

koyulan işaretlere veya harici cihazlara ihtiyaç duymamaktadır, karanlık ortamlarda

bile çalışabilmekte, ayırt edici görünüşleri olmayan siyah inekleri bile tanımlayabilmekte,

göreceli olarak ucuz ve hassas yer tespiti sağlamaktadır. Önerilen çözüm, belirli yüksek-

liğe konan RGBD kameralarla çekilen hayvanların üst arka gövdesinin 3B şekil analizine

dayanmaktadır. Yerel yüzey özelliklerine göre iki boyutlu imgeler oluşturulmakta ve bu

imgeler yüz tanımlama algoritmaları kullanılarak kimliklendirilmektedir. Önerilen sis-

temin uygulanabilirliğini değerlendirmek amacıyla gerçek zamanda çalışan bir prototip

yazılım geliştirilmiş ve bildiğimiz kadarıyla literatürde bulunmayan bir 3B sığır veri

öbeği oluşturulmuştur. Bu veri öbeği, hareketli ve belirgin görünüşleri olmayan hay-

vanlardan farklı ışık koşullarında alınmıştır. Yapılan testlerde önerilen çözümün uygu-

lanabilirliği alınan veri öbeği ile doğrulanmış olup, 50 ineğin %88’i doğru bir şekilde

tanımlanabilmiştir.
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1. INTRODUCTION

Animal farms have been steadily growing to meet the consumption requirements

of the society in an efficient manner. According to Turkish Statistical Institute data [4],

the number of cattle, meat production and milk production have increased 33.9%,

131.4%, and 94.8% respectively in Turkey between 2001 and 2014. With new auto-

mated technologies, not only the efficiency of the farms is improving, but also the labor

force needed per animal is diminishing. Due to automation and the growing size of the

animal herds, the interaction between animals and caretakers is decreasing. This fact

necessitates new monitoring and tracking systems to collect useful information about

the herds in order to observe their general health and instantaneous state.

By tracking animals individually, valuable clues can be gathered on the health

and welfare of each animal. However, recognizing and tracking an animal in a farm

is a difficult task due to the target’s similarity and hard to predict dynamics. More-

over, an indoor positioning system has requirements which can not be satisfied by the

technologies used in outdoor positioning systems [5]. Environmental factors such as

walls, ceilings, objects and obstacles cause time delays, high attenuation and signal

scattering. Besides, most of the applications require high precision and accuracy in

small areas [6].

1.1. Indoor Animal Positioning Systems

In [7], cow positioning and tracking systems are compared according to their

accuracy, sampling frequency, number of tracking animals, battery life, environment

resistance, size of tag and price. These systems can be categorized in two groups where

the first group consists of indirect recognition techniques based on markers or external

devices placed on the object/animal; and the second group consists of direct approaches

based on biometric features of the animals. Indirect systems; such as global positioning
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system (GPS) [8], radio frequency identification (RFID) [9], radio tracking [10], blue-

tooth [11], wireless local area network (WLAN) [12, 13], ultrasound [14], depend on

external devices which send signals from the animal to the receivers. The distance of

the signal emitter is estimated by using time of arrival, angle of arrival or received sig-

nal strength; and generally two techniques, triangulation and fingerprinting, are used

to position the source [15].

Installation cost of the required hardware of above systems is relatively high which

is an important limitation against the usability of such systems. Power consumption is

another issue where the cost and weight increase when the capacity of the batteries is

increased; moreover state of the batteries and devices should be controlled periodically

which increases the maintenance cost of the system. Finally, the most important

drawback is the negative psychological effects created by external devices which also

affect the natural interactions and behavior of the animals and decrease the production

[16].

1.2. Optical Positioning Systems

Alternative approaches to indirect object tracking are image based, sometimes

also called optical solutions [17] which are vision based direct recognition and posi-

tioning techniques where visual features of the subjects are used for identification.

Positioning is mostly done by converting relative positions of the objects with respect

to the cameras, to a representation in a global reference [18]. Such solutions are cheaper

and hence relatively more applicable. Moreover, its power consumption is lower than

that of other systems and the location of the detected object is very precise. If the

identity of the object is required, identification is done independently or simultaneously

with tracking [19], where these processes can be carried out in three steps:

• detection of the object

• identification of the object
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• tracking

Recognition and tracking of objects are widely investigated topics in the context

of face/person recognition and pedestrian, vehicle tracking in computer vision; and

relatively robust solutions exist in the literature [20, 21]. On the other hand, animal

detection and identification are relatively less studied in computer vision. The main

difficulty of these topics stems from the natural structure of the problem. More specif-

ically, visual appearances of most of the animals are evolved to be camouflaged with

respect to their environments. On the other hand, for some species, coat patterns and

shape features can serve as unique features for identification of individuals in fair con-

ditions. In [22], a prototype application is evaluated in a colony of African penguins

and in a small scale zebra image collection. In studies on marine animals, naturally

occurring distinctive shape features are used for identification. These approaches are

based on patterns of nicks and notches of the dorsal fins [23] where populations of ma-

rine animals are analyzed by matching photos captured in different seasons. In [24,25],

photos of bowhead whales and dolphins are selected which are in sharp focus, with good

contrast and minimal perspective error; subsequently distinctiveness of the animals are

evaluated.

In a related line of research, there are some studies on applying face recognition

algorithms on animals. In [26], a system which acquires 3D images, is installed in a

feeding station for horses. After background extraction, an ellipse-like head model is

fitted and images are normalized to be used for identification. However the results

of the system is arguable since captured images are not tested with an identification

algorithm. In [27–29], face recognition methods are applied on dogs, great apes and

sheep. For cattle identification, there is a preliminary trial [30] which uses single face

images of twelve Japanese black cattle and in [31] a texture descriptor method is used

to identify face images of thirty cattle. These studies are valuable to demonstrate

the applicability of face recognition algorithms on animals; however capturing and

normalizing face images in a natural and dynamic environment are still important
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problems.

Most of the image processing algorithms, including the ones mentioned above, are

affected by the external factors such as lighting and illumination changes. They need

a precise view of the object for the identification step and most of the approaches are

sensitive to the posture of the animal. For an applicable solution, environmental factors

should be controllable; rather designed solution should be robust to such changes.

1.3. Proposed Optical Solution

The main assumption of this thesis is “in a cattle farm individual cows can be

identified according to their 3D geometric features”. When global geometric features

of the cows (i.e., volume, area, center of mass, height, weight, width etc.) are analyzed,

there is evidence for possible classification among animals, however they are not suffi-

cient for identification of individual animals. On the other hand, most of the cow body

has dynamic natures which make capture and process of such areas difficult. For ex-

ample, general behavior of head and feet of an animal contains movements most of the

time and shape of the lower part of the body changes with different daily factors such

as feeding, pregnancy and physical interaction with other animals. In addition, shape

of the stated parts is hard to fully observe with cameras put on stationary positions in

a cattle farm.

On the other hand, the top of the animal contains smaller movements with respect

to other parts. The shape of these areas does not change daily; besides contains

characteristic shapes due to the skeletal structure (i.e., spine, backbones, tail tip),

which is convenient for identification. To be more specific, it is observed that the back

part of the upper surface contains most of the discriminative shape patterns which do

not change significantly even when the animal is walking. Therefore, the identification

process proposed in this thesis is constructed based on shape analysis of upper back

part of the cow body; which can be captured smoothly with 3D cameras placed at an



5

Figure 1.1. Kinect Sensor.

adequate height.

1.3.1. Cameras

In recent years with the aid of the three dimensional depth cameras, such as

Microsoft’s Kinect, Asus’s XTION, which are commercially available with relatively

cheap prices, different approaches have become applicable in real time computer vision.

In this thesis, Kinect cameras (see Figure 1.1) are used for data acquisition. With these

cameras in addition to the color information of the scene, a depth map is also available

in 30 Hz. Hence the scene can be represented with points which have x,y,z values in

the Cartesian space and the related RGB color.

For the proposed solution, cameras should be placed on suitable places of the

cattle farm, looking downwards to capture the top of the animals while passing through

or staying in the field of the view. Since the optimal range of the sensor is between 1

to 3 meters, and average cow height is around 1.5 meters, appropriate camera height is

between 2.5 - 4.5 meters above the ground level. An example camera configuration and

point cloud of a cow are shown in Figure 1.2 and Figure 1.3, respectively. Height and

number of cameras should be optimized with respect to the structure of the facilities

and coverage area.

1.3.2. Identification Process

As shown in Figure 1.4, the proposed identification process has four main steps:
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Figure 1.2. Sample configuration of the cameras.

Figure 1.3. Sample point cloud of a cow [1].

• In the implementation, detection of the animal is simply done by analyzing the

change of the centroid of points representing the scene in sequential frames. Iden-

tification process starts when the change is greater than a certain distance and

the area of the entrant is more than a certain threshold.

• In the data filtering processes, point cloud of the scene is down-sampled, and

points corresponding to the cow are extracted by using their three dimensional

spatial relations.

• In the pose normalization step, a rough normalization is done by estimating the

direction of the animal by principle component analysis (PCA) and by using the

centroid of the points. Subsequently, the proposed pose normalization algorithm

is applied where points corresponding to the spine of the animal are detected and

a line model is fitted onto them.
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Figure 1.4. The proposed 3D identification scheme.

• In the image creation process, the top back part of the animal is extracted; and 2D

gray-scale images are constructed by using the local geometric surface features of

the related points. Then, face recognition algorithms are applied to these images

to identify the related animal.

To test the process in real life conditions, the proposed solution is implemented

in a cattle farm which has 50 cows. A dataset is acquired with two cameras installed

in two different places of a corridor, where animals pass through to enter the milk-

ing area. Algorithms are implemented as a complete real time application by using

C++ programming language. The first video is captured in a lighted environment and

samples are automatically extracted and used for training the algorithm. The second

video is captured in a dark environment where samples are used for testing the auto-

matic identification process and successful identification results are obtained which are

presented in Chapter 5.
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1.4. Contributions of the Thesis

• A novel cow identification system is proposed which is based on 3D shape analysis

of top back part of the animals. There are prominent features of this solution

which differentiates it from the others in the literature, i.e., it

(i) does not need any markers or external devices placed on the animal

(ii) works in even unlighted environments

(iii) identifies even black cows without distinctive coat patterns

(iv) is relatively cheaper

(v) enables accurate positioning

• A 3D cattle dataset is acquired, which is unique in the literature. This dataset

consists of three dimensional point cloud sequences of 50 different cows, captured

in lighted and unlighted conditions.

• Applicability of the proposed solution is verified by testing with acquired dataset.

In particular,

(i) dataset is gathered from moving animals and contains relatively few number

of samples per animal,

(ii) training and testing videos are captured with different cameras in different

lighting conditions (lighted and dark),

(iii) most of the cows are black and without distinctive coat patterns.

• A novel pose normalization method is proposed which is based on recognition of

the spine.

• For identification, two popular face recognition methods, namely Eigenface and

Fisherface methods, are used. Therefore, presented identification results serve a

base point for future research on this topic.

1.5. Organization of the Thesis

The organization of this thesis is as follows. Chapter 2 provides brief descriptions

of applied methods and algorithms with proper details and related references. Chapter
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3 introduces steps of the proposed solution, such as data filtration, pose normaliza-

tion and image creation, in detail with mathematical and conceptual expressions and

explanatory illustrations. In Chapters 4 and 5, implementation of the solution and

dataset acquisition are explained; and test results and discussions are presented, re-

spectively. Finally in Chapter 6, concluding remarks are stated.
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2. METHODS AND ALGORITHMS

In this chapter, applied methods and algorithms are introduced. First, depth

measurement method of Kinect and point cloud processing algorithms; such as voxel

grid filtering, euclidean clustering, RANSAC, and ICP are explained. Then, face recog-

nition methods are introduced, which are used in the identification process. These

methods and algorithms are implemented mostly by the aid of two important libraries,

namely PCL (Pint Cloud Library) [32] and OpenCv [33], which contain many state of

the art algorithms on point cloud and image processing as open source.

2.1. Depth Measurement of Kinect

The sensor used in this thesis, has an infrared laser emitter, an infrared camera,

and an RGB camera. The laser subunit emits a constant pattern to the scene whose

reflection is captured via the infrared camera. The captured pattern is correlated with

a precaptured reference pattern of a plane; and depth of pixels are estimated with a

process based on triangulations [34] as shown in Figure 2.1. The position of a speckle

in the infrared image is shifted according to the reference plane. With a simple image

correlation process, shifts are measured for all the speckles and a disparity image is

obtained.

In Figure 2.1, Z0 is the known distance of the reference plane; Zk is the distance

of the object plane to the sensor; b is the distance between the infrared camera and the

laser emitter; f is the focal length and d is the measured disparity. From the similarity

of the triangles, 4op1k ∼ 4oCL and 4p1Ck ∼ 4p3Cp2, we have

D

b
=
Z0 − Zk

Z0

(2.1)

d

f
=
D

Zk

. (2.2)
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Figure 2.1. Triangulation process [2].

By combining (2.1) and (2.2), the distance of the object plane, Zk, can be expressed as

Zk =
Z0

1 + Z0

fb
d

(2.3)

where, Z0, f and b are known a priori and d is measured.

The coordinates of the point, Xk and Yk, are obtained by multiplying the imaging

scale and the image coordinates of corresponding pixel as

Xk = −Zk

f
(xk − x0 + δx) (2.4)

Yk = −Zk

f
(yk − y0 + δy) (2.5)

where xk and yk are the image coordinates of the point; x0 and y0 are the coordinates

of the principal point; and δx and δy are the corrections for lens distortion.

In [2], accuracy and resolution of Kinect’s depth data are analyzed. The depth

resolution decreases quadratically and random error of the depth measurements in-
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creases quadratically with the increasing distance from the sensor. At the maximum

range, this error is as high as 4 cm and in general, the sensor should be used within

the range 1 to 3 meters.

2.2. Voxel Grid Filtering

In this algorithm, three dimensional Euclidean space is divided into grids and

points in the same grid are represented by a single point whose coordinates are the

average of the associated points. Let

vijk = { p(x, y, z) ∈ P | ‖x− iδx‖ < (δx/2) ∧

‖y − jδy‖ < (δy/2) ∧

‖z − kδz‖ < (δz/2) }

(2.6)

be a nonempty grid, where δx, δy, and δz are edge sizes of the grid volume. Each

nonempty grid, vijk, is represented with a point, pijk, which is the centroid of grid

points:

vijk ∼ pijk (x, y, z) , x =

∑
m=1,.,n

xm

n
, y =

∑
m=1,.,n

ym

n
, z =

∑
m=1,.,n

zm

n
(2.7)

Finally, down-sampled point cloud consists of centroid points of each grid:

fvoxel(P ) = {pijk ∼ vijk | vijk 6= ∅} (2.8)

2.3. Euclidean Clustering

With Euclidean clustering algorithm, points are separated into groups according

to their relative Euclidean distances. If the distance of any two point is smaller than a

threshold, these two points are put into the same cluster, Ck. Therefore, for any point
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in a cluster, there is at least one neighbor point near than a threshold distance:

Ck = { p ∈ P | ∃pk ∈ Ck ‖p− pk‖ < εc} (2.9)

With this algorithm, big point clouds can be divided into meaningful clusters which

may belong to individual objects.

2.4. RANSAC (RAndom SAmple Concensus) Algorithm

RANSAC algorithm [35] is a general parameter estimation method, which fits a

model to a given dataset by assuming the data have inliers and outliers. The term

“inlier” refers to a sample which suits the underlying model, and “outlier” refers to an

erronious sample. This algorithm is widely used for extracting primitive shapes from

noisy 3D data [36], as well as finding planes [37]. With RANSAC, candidate solutions

are generated by using minimum number of random samples to estimate the underlying

model parameters in an iterative manner. To extract a plane from a point cloud, P ,

the algorithm mainly consists of the steps stated below:

(i) Randomly select minimum number of points to generate the model. Therefore,

three points are adequate to define a plane. Let these not-all colinear points be

pi, pj, pk ∈ P ; i 6= j, j 6= k, i 6= k. (2.10)

(ii) Fit the model to these points:

ax+ by + cz + d = 0 (2.11)

(iii) Evaluate all other points with respect to the candidate model. If the distance

of a point is smaller than a threshold, it is considered as an inlier, otherwise an
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outlier:

pi ∈

Pinlier, if ‖axi + byi + czi + d‖ < δ,

Poutlier, otherwise.

(2.12)

(iv) If the fraction of number of inliers and outliers is higher than a threshold, i.e.,

ninliers

noutliers

> τ, (2.13)

then continue; otherwise return to the first step and reiterate. If maximum iter-

ation number is achieved, terminate without a model.

(v) Re-estimate parameters with inliers and refine the constructed model. Terminate

with the model.

In Figure 2.2, an illustration is shown where a line is fitted to 2D data. Inliers are

represented with blue dots and outliers are represented with red dots. The advantage

of RANSAC algorithm is that a model can be fitted accurately even when there are

relatively many outliers; on the other hand, if the iteration number is limited, the so-

lution may not be optimal and thresholds should be adjusted according to the problem

and the given data.

2.5. ICP (Iterative Closest Point) Algorithm

ICP algorithm [38] is mainly used for registration of surfaces. In this algorithm,

the reference point cloud is kept stationary and the second point cloud is transformed

iteratively to match the reference. At the beginning of the ICP algorithm, it is im-

portant to start with a good initial rotation and translation since the algorithm may

converge to a local minimum. At the end of the algorithm, according to the final value

of the surface to surface distance, two surfaces are said to be congruent if this distance

is smaller than a predefined threshold. Main steps of this algorithm are as follows:
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Figure 2.2. Example dataset and fitted line model. Blue dots are inliers, red dots are

outliers.

(i) Associate points by the nearest neighbor criteria. For each point in the source

point cloud, pi ∈ P2, find the closest point in the reference point cloud, p′i ∈ P1;

where the minimum distance does not exeed a predefined threshold, i.e.,

pi ⇔ p′i, p
′
i = arg min

p∈P1

‖p− pi‖, ‖pi − p′i‖ < δn (2.14)

(ii) Estimate transformation parameters (rotation and translation) which minimize

the following mean square cost function:

E(R, t) =
∑
i

‖(Rpi + t)− p′i‖2 (2.15)

[R, t] = arg min
R,t

E(R, t) (2.16)

To find the best transformation, there are closed form solutions based on singular

value decomposition, quaternions, orthonormal matrices and dual quaternions

[39].

(iii) Transform the source point cloud.

(iv) Calculate the cost function.

(v) Iterate until the difference between two consecutive transformations is smaller
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than a pre-defined threshold.

2.6. Eigenface Method

Eigenface method [40] is a widely used face recognition approach in the litera-

ture [41], which depends on principle component analysis (PCA), and is a data re-

duction technique where data points are projected onto a set of vectors. The most

representative vectors are the eigenvectors of the covariance matrix with the highest

eigenvalues, and projected data points preserve most of the information about the

original data.

In eigenface method, each image, Mi, in the training set is converted to a vector,

τi, by concatenating rows of pixels in it:

Mi ∼ τi (2.17)

Subsequently, eigenfaces are computed and original images are represented with weighted

sum of these vectors, sometimes also called eigenpictures. Here, the term “eigenfaces”

refers to the set of n eigenvectors of the sample covariance matrix with highest eigen-

values. For a training set with N images, the sample covariance matrix is

C =
∑
i

(τi − µ)(τi − µ)T , (2.18)

where µ =
∑
i

τi/N is the mean image. If vi is a nonzero vector and λi is a number such

that

Cvi = λivi, (2.19)

vi said to be an eigenvector of C with eigenvalue λi. Let the ith image of the training
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set differ from the mean image by a vector

τ ′i = τi − µ, (2.20)

and A be the set of these vectors:

A =
[
τ ′1 . . . τ ′N

]
(2.21)

The covariance matrix, C, can then be represented as

C = AAT , (2.22)

where AAT is a d× d matrix, and d is the length of an image vector which is relatively

a big number, d > N . Computing the eigenvectors of C is often computationally

infeasible. However, the rank of the covariance matrix is limited with the number

of samples and there can be at most N − 1 eigenvectors with nonzero eigenvalues.

Therefore, let ui be an eigenvector of ATA which is a N ×N matrix, i.e.,

ATAui = λiui. (2.23)

Multiplying each side by A, we obtain

AAT (Aui) = λi(Aui). (2.24)

Therefore, eigenvectors of AAT corresponding to its non-zero eigenvalues can be com-

puted simply by first finding eigenvectors of ATA and then multiplying it by A, i.e.,

vi = Aui. (2.25)

This latter approach is computationally less expensive. After computing the eigenvec-
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tors, they are normalized and every face image in the training set, Mi, is represented

by means of weighted sum of these eigenfaces and the mean image

Mi = µ+ VWi, (2.26)

where V is a matrix whose columns are the eigenfaces and Wi is a set of weights:

Wi =
[
wi1 . . . win

]T
(2.27)

The weight coefficient of the jth eigenface, wij, can be found by projecting the difference

image onto it:

wij = vTj (τi − µ) (2.28)

In the identification process, the weight vector of the new image is constructed

with the above approach and compared with the ones in the training set. For every

image in the training set, distance of the new image, Mi, is found by

d(Mi,Mj) = ‖Wi −Wj‖, (2.29)

and the new image is recognized with the ID of the training image with the smallest

distance.

With this data reduction approach, relatively big number of images are repre-

sented with weight vectors in the face space spanned by the eigenfaces. Therefore, the

memory requirement is diminished, and the speed of the system is increased signifi-

cantly which enable recognition in real time. On the other hand, it is very sensitive to

illumination changes, scale and translation; which makes preprocessing of images, such

as pose normalization, crucial for successful identification.
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2.7. Fisherface Method

In the eigenface method, we look for the projection which maximizes the total

scatter across all images. This approach retains variations due to illumination changes

and facial expressions, and discrimination may be prevented. On the other hand, Fish-

erface method is a derivative of Fisher’s linear discriminant [42] and chooses projection

directions which maximizes the ratio of between-class scatter to that of within-class

scatter; therefore, it discounts regions with large variations [43].

Suppose that we have

N = n1 + · · ·+ nC (2.30)

samples captured from C classes and τij corresponds to the jth image of the ith class.

The within-class scatter, Sw, and between-class scatter, Sb, matrices are calculated as

Sw =
C∑
i=1

nj∑
j=1

(τij − µi) (τij − µi)
T (2.31)

Sb =
C∑
i=1

ni (µi − µ) (µi − µ)T , (2.32)

where

µ =
1

N

C∑
i=1

ni∑
j=1

τij (2.33)

is the total mean, and

µi =
1

ni

ni∑
j=1

τij (2.34)

is the mean of ith class. If Sw is not singular, an optimal projection, Wopt, is chosen
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which maximizes the ratio of determinants as:

Wopt =
[
w1 . . . wm

]
= arg max

W

|W TSbW |
|W TSwW |

(2.35)

In the above expression,
[
w1 . . . wm

]
is the set of generalized eigenvectors of S−1w Sb

S−1w Sbwi = λiwi (2.36)

where the upper bound on m is C − 1. In [43], the image set is projected to a lower

(N−C) dimensional space to overcome the problem of singular Sw, where the resulting

within-class scatter matrix is nonsingular. This reduction is done by applying princi-

pal component analysis (PCA), subsequently standard Fisher’s linear discriminant is

applied and samples are projected to C − 1 dimensional space

Wopt = WfldWpca, (2.37)

where

Wpca = arg max
W

∣∣W TStW
∣∣ , (2.38)

Wfld = arg max
W

∣∣W TW T
pcaSbWWpca

∣∣∣∣W TW T
pcaSwWWpca

∣∣ . (2.39)

Identification is achieved with the same approach in the previous section by com-

paring the weight vectors of the training images and the test image. More information

on the implementation of both eigenface and fisherface methods can be found in [44].
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2.8. Summary of the Chapter

In this chapter, the underlying theory of depth measurement of the Kinect sen-

sor is presented. Subsequently, point cloud processing algorithms such as voxel grid

filtering, Euclidean clustering, RANSAC and ICP are explained; which are applied for

different purposes throughout this thesis:

• Voxel grid filtering: down-sampling the raw data (in Section 3.2.1).

• Euclidean clustering: extraction of points corresponding to the animal to be

identified (in Section 3.2.4).

• RANSAC: ground plane and spine line detection (in Sections 3.3.3 and 3.2.2).

• ICP: alignment of captured frames from different viewpoints (in Section 4.1.2).

Finally, two face recognition algorithms, Eigenface and Fisherface, are presented which

are used in Section 3.5 for identification of animals.
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3. 3D CATTLE IDENTIFICATION

In this chapter, steps of the proposed 3D cattle identification solution are dis-

cussed in detail, where an overview can be found in Section 1.3. In the first section,

acquisition of the raw data and detection of the animal; and in the second section,

the filtering process of these raw data are explained. Subsequently, the proposed pose

normalization method is presented in Section 3.3 and captured samples are brought

into canonical form for the comparison step. In the last section, three types of images

are introduced which are constructed with respect to the local features of the normal-

ized 3D data corresponding to the detected animal. Finally, identification process is

explained, where face recognition methods are applied on the constructed images.

3.1. Data Acquisition and Animal Detection

The sensor gives a point cloud as an output, 30 times in a second. This point cloud

consists of 480 × 640 points with related x, y, z Cartesian coordinates and RGB color

information (see Section 2.1). The sensor frame is originated on the infrared camera

with the X,Y ,Z axes pointing front, right and bottom of the camera, respectively.

Detection of the animal is simply done by analyzing the change of the centroid of

point cloud representing the scene in sequential frames. Filtering process starts when

the change is greater than a certain distance. If the area of the entrant is greater than

a certain threshold, it is considered as an animal and the identification process starts.

3.2. Data Filtering

After the acquisition, the raw data should be processed to extract meaningful

parts related to the animal to be identified. As to be discussed in following subsections,

firstly the point cloud is down-sampled and the view of the camera is corrected with
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Figure 3.1. Steps of data filtering process.

respect to the ground. Subsequently, points related to the ground are filtered out and

the point cloud corresponding to the animal is extracted.

3.2.1. Down-sampling with Voxel Grid Filter

Redundantly dense point clouds require excessive processing time in the algo-

rithms. Moreover, some parts of the animal, which are visible at more than one cam-

era, will have greater point densities than the ones visible at just one camera. To

equalize the density and down-sample the data, voxel grid filtering is applied. In this

down-sampling algorithm, 3D Euclidean space is divided into grids and points which

are in the same grid are represented with their centroid points (see Section 2.2). By

selecting a proper grid size, a smoother surface is acquired without loosing the local

discriminative features.

3.2.2. Ground Plane Correction

In Figure 3.2, a scene captured from the top of a cow is shown. On the left side

of the figure, the scene is represented according to the camera frame, C, and on the

right side it is represented according to the reference frame, R. The reference frame is
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Figure 3.2. Raw point cloud,CP , captured from the top of a cow. Left - view from

the camera frame, Right - view from the reference frame.

located on the ground plane and is aligned with the center of mass of the animal. The

Z axis points upwards whereas the X axis points in the same direction with the animal

(see Figure 3.3). As shown on the right side of Figure 3.2, the view of the animal is

erroneous, since the transformation of the camera frame according to the reference

frame is not known and the related point cloud is not transformed accordingly. Let

CP = [Cp1,
Cp2, ...,

Cpn] (3.1)

represent a point cloud of n points with respect to the camera frame, C, where each

point pi =
[
xi yi zi

]T
is three dimensional, and is to be represented with respect to

the reference frame, R, as

RP = [Rp1,
Rp2, ...,

Rpn]. (3.2)
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Figure 3.3. Reference frame is located on the ground and is aligned with the center of

the animal.

To this end, all points should be rotated with an appropriate C to R rotation matrix,

R
CR, and translated with a vector as follows:

RP = R
CR

CP + t (3.3)

According to Euler’s rotation theorem [45], any rotation can be decomposed as a prod-

uct of three sequential elemental rotations. Therefore, rotation from camera frame to

reference frame, R
CR, can be computed as

R
CR = R3 R2 R1. (3.4)

R1, R2 and R3 are rotations around Z, Y ′ and Z ′ axes, where Y ′ and Z ′ are rotated Y

and Z axes, respectively.

R1 and R2 are determined by using the geometrical relations between the detected
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and expected planes representing the ground. In Figure 3.3, the reference and camera

frames are shown, respectively. The expected ground plane overlaps the XY plane

of the reference frame with a normal vector parallel to the Z axis. Note that the

orientation of the detected plane differs due to the rotation of the camera.

The ground in the scene is found by fitting a plane model to the proper subsection

of the point cloud, by using the RANSAC (RAndom Sample Consensus) algorithm [35]

(see Section 2.4). Let the detected ground plane be described by

ax+ by + cz + d = 0 (3.5)

where a,b,c,d are determined such that distance of any point, pg, representing the

ground is smaller than a certain threshold:

dplane(pi) = axi + byi + czi + d (3.6)

|dplane(pg)| < ε (3.7)

In Figure 3.4, the normal vector ~v =
[
a b c

]T
of the detected ground is shown.

Our aim is to make this vector overlap with the Z axis by applying proper rotations.

The first rotation is −θ degrees around the Z axis, where θ is the angle between the

X axis and the projection of ~v onto the XY plane. This angle can be computed as

θ = arctan

(
b

a

)
(3.8)

resulting in the rotation matrix

R1 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (3.9)
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Figure 3.4. Normal vector (~v) of the detected ground plane and related angles for the

rotations (θ, β).

The second rotation is−β degrees around the Y axis, where β is the angle between

~v and the Z axis

β = arctan

(√
a2 + b2

c

)
. (3.10)

The corresponding rotation matrix is obtained as

R2 =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 . (3.11)

After applying these rotations, the detected ground plane becomes parallel to the

XY plane. To locate the origin on the ground, points should be moved d units along
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the Z axis since the distance of the origin to the ground plane is given by

dplane(p(0, 0, 0)) = a0 + b0 + c0 + d = d. (3.12)

Let us define a 4× 4 transformation matrix, R′

C T , representing above rotations and the

translation:

R′

C T =


0

R2R1 0

d

0 1

 (3.13)

By applying this transformation to the initial point cloud, the new form of the point

cloud is acquired where the ground of the scene is overlapped with the XY plane. For

a single point in the initial point cloud, this transformation is applied as follows:

Cpi ∈ CP (3.14)

Cpi =
[
Cxi

Cyi
Czi

]T
(3.15)

R′
xi

R′
yi

R′
zi

1

 =


0

R2R1 0

d

0 1




Cxi

Cyi

Czi

1

 (3.16)

R′
P

1

 = R′

C T

CP

1

 (3.17)

Figure 3.5 depicts the point cloud in Figure 3.2 that is transformed via (3.17).

After the correction, the ground is overlapped with the virtual expected ground. In

the application, cameras are in stationary positions; therefore it is not necessary to

calculate the transformation matrix in (3.17) for all captured samples, as it can be
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Figure 3.5. Point cloud after the ground plane is corrected (R
′
P ).

used for all frames after it is calculated once initially.

To construct the final point cloud, RP , the third rotation in (3.4) should be ap-

plied which corrects the rotation of the animal; and points should be translated to make

the center of the animal aligned with the origin. Since the direction and the position

of the animal are not stationary over time, this transformation should be calculated

for every captured sample to bring the points of the animal to the canonical form. The

procedure for this transformation is explained under rough pose normalization heading

in Section 3.3.1.

3.2.3. Ground Plane Extraction

As shown in Figure 3.6, the points belonging to the ground are extracted with a

pass through filter which extracts points having distance less than 5 cm to the ground

plane.
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Figure 3.6. Left - Before extracting the ground, Right - After extracting the ground.

3.2.4. Euclidean Clustering

After ground plane extraction, we theoretically expect to have points belonging

to the animal of interest. However, some other objects may be seen (e.g., part of an

another animal, worker, container, etc.) or some erroneous points may exist in the

scene. Therefore, points corresponding to the animal should be extracted. For this

purpose, point cloud is clustered by using the Euclidean clustering algorithm, which

clusters points according to their Euclidean distances (see Section 2.3). The biggest

cluster in the scene is chosen and other clusters are filtered out and the point cloud,

AP , belonging to the animal is acquired as shown in Figure 3.7.

3.3. Pose Normalization

For the comparison step, samples of different animals should be brought into a

canonical form. For that purpose, firstly a rough pose normalization is realized by

aligning center of mass of each animal with the Z axis and rotating the point cloud

accordingly to make the direction of the animal coincide with the X axis. Subsequently,
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Figure 3.7. Left - Before clustering, Right - The biggest cluster, AP .

a finer pose normalization is achieved by recognizing the spine of the animal and

aligning it with the X axis.

3.3.1. Rough Pose Normalization

Let the point cloud of the animal, AP , consist of k points:

AP = {Ap1, Ap2, ..., Apk} (3.18)

Api =
[
xi yi zi

]T
(3.19)

and the center of mass is represented by a point s =
[
sx sy sz

]
. Coordinates of the

center of mass are found by averaging the coordinates:

sx =

∑
i=1,.,k

xi

k
, sy =

∑
i=1,.,k

yi

k
, sz =

∑
i=1,.,k

zi

k
(3.20)
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Figure 3.8. Principle direction of a point cloud of a horse [3].

To make the center of mass aligned with the Z axis, each point is translated with

vector, t′, as:

t′ =


−sx
−sy

0

 (3.21)


x′i

y′i

z′i

 =


xi

yi

zi

+ t′ (3.22)

By using the principle component analysis (PCA), the heading of the animal is

determined which is the first principle direction, d1, that maximizes the variance of the

projection of the points onto it (see Figure 3.8),

d1 =
[
xd yd zd

]T
= arg max

d
(dT ΣP d) (3.23)

where ΣP is the covariance matrix of the points. The angle between the principle
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Figure 3.9. Left - Before correction of center of mass and direction, Right - Center of

mass is aligned with the origin, and the direction is parallel with the X axis.

direction (d1) and the X axis is:

γ = arctan

(
yd
xd

)
(3.24)

By rotating the point cloud −γ degrees around the Z axis, the direction of the animal

becomes aligned with the X axis. The related matrix of this rotation is:

R3 =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (3.25)

This translation and rotation can be represented with a 4 × 4 transformation matrix

as:

R
AT =

R3 R3t
′

0 1

 (3.26)
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As shown in Figure 3.9, the canonical form of the sample is acquired as follows:

RP = R
AT

AP (3.27)

3.3.2. Extracting the Region of Interest

After rough pose normalization, the top back part of the animal is extracted by

thresholding points according to their x and z values. Let

fslice (P, x) = {pi ∈ P | ‖xi − ε‖ ≤ x} (3.28)

be the slice of the point cloud, P ; and

fwidth (P, x) = max
pi,pj∈fslice(P,x)

‖yi − yj‖ (3.29)

be the width of this slice. pt represents the uppermost point of RP which has the

maximum z value, i.e.,

pt = arg max
pi∈RP

(zi) , (3.30)

and pb represents the rearmost point where the width of the point cloud is equal or

higher than a certain threshold, εw:

pb = arg min
pi∈RP

(xi) , fwidth (P, xi) ≤ εw (3.31)

Points are extracted as:

SP = { pi ∈ RP | xb ≤ xi ≤ xb + l ∧ zi ≥ zt − h } (3.32)
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Figure 3.10. Left - Point cloud of the animal (RP ), Right - Region of interest (SP ).

where l and h are the length and height thresholds, respectively; and SP is the point

cloud corresponding to the top back part of the animal. In Figure 3.10 an example

filtering is depicted.

3.3.3. Pose Normalization by Spine Recognition

Bringing samples into canonical form is a crucial step for successful identification.

As discussed in Section 3.3.1, point clouds are roughly transformed according to their

center of mass and principle direction. In this section, direction and position of the

point cloud are refined by recognizing the spine, which gives us better estimation of

the direction and center of the sample.

The steps of the proposed spine recognition and correction procedure, which

is illustrated in Figure 3.12, are depicted in Figure 3.11. In the first step, surface

normals are calculated at each point by considering neighboring points in a radius of

rspine calculation. Let NPi be the set of points nearer than rspine calculation to the point pi:

NPi = {p ∈ SP | ‖p− pi‖ < rspine calculation} (3.33)
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Figure 3.11. Steps of the proposed spine recognition and correction procedure.

Let NPi have k points and C be the covariance matrix:

C =
1

k

k∑
j=1

(pij − p̄i)(pij − p̄i)T (3.34)

C. ~vm = λm. ~vm, m ∈ {0, 1, 2} (3.35)

where p̄i is the mean of the points, λm is the m-th eigenvalue and ~vm is the m-th eigen-

vector of the covariance matrix. The normal vector is simply equal to the eigenvector

which has the smallest eigenvalue.

In Figure 3.12b a gray-scale normal image is shown, where pixel values are de-

termined according to the z value of the corresponding normal vector of each point

(nz × 255). As shown, spine, backbone and tail tip areas of the animal have lighter

colors where direction of the normal vector of these points are almost parallel to the

Z axis. Therefore, by extracting these points, keypoints are detected to recognize the
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(a) Point cloud (b) Normal image (c) Slices

(d) Detected keypoints on the

point cloud

(e) Detected keypoints (f) Simplified keypoints

(g) Detected spine line (h) Corrected spine line

Figure 3.12. Illustration of spine detection and correction procedure
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spine of the animal.

In Figure 3.12c, vertical hypothetical planes, which are orthogonal to X axis, are

drawn with equal distances, d. Points, which are nearer than a certain threshold, εd,

to these planes and whose normal vectors have z values greater than a threshold, εn,

are selected as candidate keypoints, KP , representing the spine:

dplanes(pi) = min
k∈Z

(‖xi − k × d‖) (3.36)

KP = {p ∈ SP | dplanes(p) ≤ εd ∧ nz ≥ εn} (3.37)

In Figure 3.12d and 3.12e, sample keypoints are shown. After these steps, key-

points are simplified by clustering based on their relative Euclidean distances and each

cluster is represented by a point whose coordinates are the centroid of corresponding

cluster. Let Cm be m-th cluster, where any point in this cluster has at least one neigh-

boring point in the same cluster with smaller or equal distance of a certain threshold,

εc:

Cm = {p ∈ KP | ∃pm ∈ Cm ‖p− pm‖ ≤ εc} (3.38)

Each cluster, Cm, is simply represented by a point, cm, whose coordinates are average

of the coordinates of points corresponding to that cluster.

cm =
[
x̄m ȳm z̄m

]T
(3.39)

In Figure 3.12(f) simplified keypoints are shown which are the centroids of clustered

keypoints. As shown in Figure 3.12(g), a line model is fitted to the simplified key-

points with RANSAC algorithm (see Section 2.4). Let the center point of the line be

pl(xl, yl, zl) and the direction of the line ~dl(xd, yd, zd). All points are translated and

rotated accordingly to make the detected spine line parallel with the X axis and cen-
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ter point of the line is aligned with the origin. To align the center point, points are

translated with a vector u and rotated −θ′ around the Z axis to correct the direction:

u =
[
−xl −yl 0

]T
(3.40)

θ′ = arctan

(
yd
xd

)
(3.41)

Let p(x, y, z) be a point in SP . After applying the below transformation, the corrected

point p′(x′, y′, z′) ∈ S′
P is acquired:


x′

y′

z′

 =


cos θ′ sin θ′ 0

− sin θ′ cos θ′ 0

0 0 1



x− xl
y − yl
z

 (3.42)

In Figure 3.12(h), the corrected spine line is shown.

3.4. Image Creation

To create images for the identification process, three dimensional point cloud of

an animal is transformed into a two dimensional image. Then, each pixel value of the

gray-scale image is determined with respect to the local features of the related three

dimensional point. Let pi(xi, yi, zi) be a point in S′
P and m(xm, ym) be the pixel related

to this point, which is located at the ym-th row and xm-th column of the image M :

pi(xi, yi, zi) ∈ S′
P (3.43)

m(xm, ym) ∈M (3.44)

As shown in Figure 3.13, f(·) is a function which maps each point in the point cloud

to a pixel in the image space:

f(pi(xi, yi, zi)) = m(xm, ym) (3.45)
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Figure 3.13. Mapping from 3D Euclidean space to 2D image space.

In 3D Euclidean space, distances are represented with real numbers, however in the

image space pixel values are represented by integers. Let the function gint(·) convert

real number d to integer i as:

gint(d) = min
i∈Z

(i), d ≤ i (3.46)

The width and height of the area to be mapped are represented with area width and

area height, respectively. To map three dimensional data, Euclidean distances are

scaled by dividing with a scaling parameter (image scale). Therefore, the height and

the width of the created image are given by

image width = gint

(
area width

image scale

)
(3.47)

image height = gint

(
area height

image scale

)
(3.48)

and the point pi(xi, yi, zi) is mapped to the pixel m at ym-th row and xm-th column

by scaling and shifting accordingly to align the data with the center of the image:

xm = gint

(
xi

image scale
+
image width

2

)
(3.49)

ym = −gint
(

yi
image scale

+
image height

2

)
(3.50)
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For a pixel in the image, there may be more than one point mapped to this pixel. Let

mP represent points mapped to the pixel m:

mP = {p ∈ S′
P | f(p) = m} (3.51)

Since the camera is located on the top of the animal looking downwards, the uppermost

point is selected as the corresponding point (pm) to the pixel m as:

pm = {p(x, y, z) ∈ mP | arg max
p

(z)} (3.52)

and the point pm is associated with the pixel m, i.e.,

pm ∈ S′
P ∼ m ∈M (3.53)

3.4.1. Depth Image

Depth images are constructed by considering the heights of the points related to

each pixel. In Figure 3.14, sample depth images captured from five different cows are

shown. Let m be a pixel in image M related to point pm in S′
P . The value of this pixel,

δm, is determined according to the normalized z value of the related point with respect

to the minimum and maximum heights, max h, min h; if there is no point related to

this pixel, it is white colored:

δm =

gint
(
255× max h−z

max h−min h

)
if pm(x, y, z) ∼ m

255 if ∅ ∼ m

(3.54)
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Figure 3.14. Sample depth images captured from different cows.

Figure 3.15. Sample normal-y images captured from different cows.

3.4.2. Normal-y Image

Before constructing the normal image, normal vectors of each point in S′
P are

calculated by considering neighboring points nearer than normal radius with the same

approach in Section 3.3.3. In Figure 3.15, sample normal-y images of five different cows

are shown. For normal-y image, pixel values are colored according to y value of the

normal vectors of the related points:

δm =

gint (255× (1− ny)) if ~nm(nx, ny, nz) ∼ m

255 if ∅ ∼ m

(3.55)
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Figure 3.16. Sample normal-z images captured from different cows.

3.4.3. Normal-z Image

Similar to normal-y images, pixels of normal-z images are colored according to

the z value of normal vector of each corresponding point.

δm =

gint (255× (1− nz)) if ~nm(nx, ny, nz) ∼ m

255 if ∅ ∼ m

(3.56)

Sample normal-z images captured from five different cows are shown in Figure 3.16.

3.5. Identification with Images

In the identification process, recognition methods, namely Eigenface and Fisher-

face methods (see Sections 2.6 and 2.7), are applied to the constructed images. These

two methods reduce the data by projecting images onto a lower dimensional space and

register training images without loosing discriminative features. Eigenface method

seeks a projection which preserves the most of the variance of the total data, and

Fisherface projects samples where within-class scatter is minimized and between-class

scatter is maximized. With these approaches, the identification process becomes ap-

plicable in real time and the memory requirement is also diminished.
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In the implementation, the identifier is trained with a pre-labeled dataset

Straining = {S1, S2, . . . , Sk}, (3.57)

where this dataset consists of image sets

Si = {τi1, τi2, . . . , τij}, (3.58)

captured from k individuals. After determination of the projection directions, each

image, τij, is represented with a weight vector, wij, and is registered in the memory:

τij ∼ wij (3.59)

Wi = {wi1, wi2, . . . , wij} (3.60)

Straining ∼ Wtraining = {W1,W2, . . . ,Wk} (3.61)

Let, τ , be a test image to be identified. First, this image is converted to a weight

vector, w, with the same projection in the training procedure; subsequently, the ID of

this sample is determined by the nearest neighbor criteria. Let

d(τ, Si) = min‖w − wij‖ (3.62)

be the distance of an image to a subset of the training set corresponding to the ith

individual. The test image is matched with the mth individual

τ ∼ Sm, (3.63)

whose image set is nearer than the others:

m = arg min
i

d (τ, Si) . (3.64)
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If we have a set of test images

St = {τ1, τ2, . . . , τk}, (3.65)

captured from the same animal, this set is matched with the mth individual

St ∼ Sm, (3.66)

where the minimum distance is found between kth image of the test set and a training

image corresponding to the mth individual:

[m, k] = arg min
i,j

d (τj, Si) (3.67)

3.6. Summary of the Chapter

In this chapter, the proposed 3D cattle identification solution is detailed where

animals are identified while they are passing through the field of view of RGBD cameras

placed on stationary positions in a cattle farm. In Section 3.2, the acquired 3D points

are filtered to extract points of the top back part of the animal; and in Section 3.3.1 the

pose of the animal is roughly normalized by principle component analysis and brought

into a canonical form. Subsequently, a finer pose normalization method is proposed

in Section 3.3.3, which depends on recognition of the spine of the animal. In the last

part of this chapter, different types of images such as depth, normal-y and normal-z;

are constructed; and animals are identified by using face recognition methods, namely

Eigenface and Fisherface.

The implementation and the experimental evaluation of the proposed solution in

this chapter is to be discussed in Chapters 4 and 5.
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4. IMPLEMENTATION AND DATASET ACQUISITION

To test the proposed solution in real life conditions, algorithms are implemented

by using the C++ programming language and a dataset is acquired by installing cam-

eras in a cattle farm which has 50 cows. In the first part of this chapter, developed

tools and the complete identification application are explained; and in the second part,

the 3D cattle dataset is introduced which consists of two videos captured with different

cameras and environmental conditions.

4.1. Implementation

4.1.1. Debug Application

To debug and visually analyze the identification process, an application is devel-

oped in Qt framework, and algorithms are implemented by using the C++ program-

ming language, where a sample snapshot of the user interface is shown in Figure 4.1.

In the part labellec with “1”, there is an interactive window where the ground plane,

point cloud and model elements such as direction and center of mass are shown. With

buttons below the interactive window, three dimensional data can be saved or loaded

with different formats and the snapshot of the view can be captured. In part “2”, there

are buttons and parameter fields to apply implemented methods on the loaded model.

In part “3”, there is a text output field, where information and results are printed in

text format.

4.1.2. Calibration Tool

The camera calibration tool calculates the transformation between two cameras,

and is developed to use more than one camera in the project. In this tool, there are two

interactive windows where each of them shows the same scene captured from different
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Figure 4.1. Snapshot of the user interface of the debug application.

angles. By manually selecting keypoint pairs on these samples, a rough transformation

is calculated. In Figure 4.2, a sample scene is shown from different perspectives with

the related keypoints. In this example, the transformation matrix is found as:


0.923782 −0.11887 0.364002 −0.74489

0.107823 0.992881 0.0506023 0.0167988

−0.367426 −0.00749759 0.930023 −0.0377713

0 0 0 1

 (4.1)

After the first alignment, points which are further than three meters and that

belong to the ground are extracted; and the transformation is fine tuned by applying

the ICP (Iterative Closest Point) algorithm (see Section 2.5). In Figure 4.3 merged

point clouds after the first transformation and final point cloud after applying ICP

algorithm are shown. In this example the refined transformation matrix is calculated
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Figure 4.2. Manually selected keypoints. Left - scene from the first camera. Right -

scene from the second camera.

as:


0.934363 −0.107881 0.339655 −0.684459

0.105755 0.994102 0.02481 0.0700632

−0.340329 0.0127288 0.940233 −0.0600696

0 0 0 1

 (4.2)

4.1.3. Dataset Grabber Tool

The dataset grabber tool is developed to capture datasets and to save them for

off-line testing. It can work simultaneously with more than one camera; it captures

the scene periodically and saves point clouds as “pcd” files. Every captured frame

is noted in a text file with related capture information (id of the frame, camera ids,

timestamps). A sample dataset file is shown below:

----------------------------------------------

DATASET FILE
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Figure 4.3. Left - Transformed and merged point clouds with manually selected

keypoints. Right - Same scene fine tuned with ICP algorithm.

Fri Nov 15 2013 14:06:13

format:

"frame id"

"camera id" "pcd name" "timestamp"

"camera id" "pcd name" "timestamp"

0

#2 0_2.pcd 40.8793

#1 0_1.pcd 40.8921

1

#2 1_2.pcd 41.9748

#1 1_1.pcd 41.9843

...

----------------------------------------------
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4.1.4. Real-time Identification Application

This application is developed as a prototype in order to test the identification

process in real time with real data. It has “train” and “identification” modes; and

can be used by directly connecting to a camera or a dataset file. When a new frame

is captured, the application processes the raw data and detects whether there is a

cow in the scene or not. After noticing the animal, it processes the point cloud and

brings it into the canonical form, then predicts the id of the animal. In Figure 4.4, two

snapshots of this application are shown. On the left side of the user interface, there

is an interactive window which shows the three dimensional data and the state of the

process. On the right side, there are two tabs where parameters of the processes are

set. The parameters used in image creation process are as follows:

• voxel size: voxel grid size in meters used in down-sampling of the original data,

• image scale: scale factor used for transforming points from 3D Euclidian space

to 2D pixel space,

• normal radius: neighboring radius in meters used in normal estimation process,

• back cut width: width threshold in meters to cut the back part of the animal,

• image width: width of the area in meters to be transformed to image space,

• image height: height of the area in meters to be transformed to image space,

• spine calculation radius: neighboring radius in meters used in normal estimation

in spine recognition.

The parameters used in the identification process are:

• identification type: The identification method is selected among Eigenface and

Fisherface algorithms.

• image type: The image type is selected among depth, normal-y and normal-z

images.
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With this application once an identifier is trained, it can be saved to be used later;

or a pre-trained identifier can be loaded. It can be also used in batch mode, where

the parameters are changed systematically to determine the optimal values for better

recognition.
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(a) Interactive window and parameters tab

(b) Interactive window and identification tab

Figure 4.4. Snapshots of the user interface of the real-time identification application.
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(a) Camera #1, h1 = 3.13 m, with lighting (b) Camera #2, h2 = 3.18 m, no lighting

Figure 4.5. 3D point clouds captured from two cameras placed at different points of

the corridor.

4.2. Dataset Acquisition

To test the developed system, a dataset is acquired at a cattle farm which has 50

cows. In this farm, there are semi-open environments with shelters where cows rest and

get nourished. The dataset is acquired with two Kinect cameras which are installed at

a 1 meter width corridor, where cows pass in groups twice a day to achieve the milking

room:

• Camera 1 : The first camera is placed near the entrance of the corridor at 3.13

m height where the environment is lighted with a lamp.

• Camera 2 : The second camera is placed at near the end of the corridor at 3.18

m height where there is no lighting in the environment.

In Figure 4.5 two snapshots captured from the sensors are shown respectively. Three di-

mensional top views of each animal are captured by these cameras with 250 millisecond
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Table 4.1. Number of samples of each cow in two datasets.

cow id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dataset 1 7 6 5 9 2 1 3 6 5 3 3 1 3 2 3

Dataset 2 4 3 8 27 22 2 4 5 5 4 4 1 3 2 2

cow id 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Dataset 1 5 21 2 6 2 16 2 5 5 3 2 16 22 5 3

Dataset 2 5 4 2 2 3 4 3 5 4 7 2 1 2 1 2

cow id 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Dataset 1 4 24 8 3 5 10 4 8 5 5 4 4 6 10 2

Dataset 2 2 2 2 2 2 2 3 2 2 2 2 2 4 5 2

cow id 45 46 47 48 49 Total

Dataset 1 2 7 2 5 4 296

Dataset 2 2 4 3 6 3 197

intervals; and two videos are acquired.

These two videos are processed and healthy frames are extracted where the top

back part of the related animal is in the field of the view. Two datasets are acquired

where the number of samples for each animal is shown in Table 4.1.

• Dataset 1 : The first dataset consists of 296 samples. 11 cows have equal or less

than 2 samples, and 19 cows have equal or less than 3 samples.

• Dataset 2 : The second dataset consists of 197 samples; where 24 cows have equal

or less than 2 samples and 29 cows have equal or less than 3 samples.

Low number of samples affects identification results negatively. Therefore, the

first dataset can be deemed as healthier where the total number of samples and the
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number of samples for individuals are higher than those of the second dataset. On the

other hand, the visual appearances of the cows are not visible in the second dataset

since the second video is captured with no light source. Moreover, the fact that videos

are captured while animals are passing under the cameras, and animals are not in

stationary positions, should be considered in the evaluation of the test results.

4.3. Summary of the Chapter

In the first part of this chapter, developed applications are explained; where these

applications are:

• Debug Application : Methods and algorithms are implemented and tested with

this application before developing a prototype application.

• Calibration Tool : Estimates the relative transformations of multiple cameras to

merge point clouds captured from different sensors.

• Dataset Grabber Tool : Captures datasets and saves them for off-line testing. It

can work simultaneously with more than one camera and saves point clouds as

“pcd” files.

• Real-time Identification Application : This application is a prototype, to test the

identification process in real time with real data. It has “train” and “identifica-

tion” modes; and can be used by directly connecting to a camera or a dataset

file.

In the second part, the 3D cattle dataset is presented and analyzed, which is acquired

with two cameras installed in two different places of a corridor, where animals pass

through. Sample depth, normal-y and normal-z images from this dataset are shown in

Appendices A, B and C, respectively.
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5. EXPERIMENTAL EVALUATION

In this chapter, experimental identification results are presented and analyzed.

Two types of identification methods, Eigenface and Fisherface; and three types of image

types, depth, normal-y and normal-z images are evaluated in the tests.

As discussed in the previous chapter, the 3D cattle dataset consists of two 3D

image sets captured from two cameras. These datasets are fed to the real-time identi-

fication application with respect to the related time-stamps and identification results

are obtained. The first set has relatively higher number of samples, which is used

for training of the identifier; and the second set is used for testing the success of the

identification process.

In the identification, the trained identifier outputs the predicted id, m, given in

(3.64) for the jth test image of the ith cow, i.e.,

m = fid (τij) . (5.1)

Identification of this sample is said to be successful if the predicted id is equal to the

actual id of the test image:

g (τij) =

1, if fid (τij) = i,

0, otherwise.

(5.2)

If we have a set of images, Si, captured from the same animal, identifier outputs the

predicted id in (3.67) as follows:

m = fid (Si) (5.3)



57

This animal is said to be identified successfully if the predicted id is equal to the actual

id of the animal:

g (Si) =

1, if fid (Si) = i,

0, otherwise.

(5.4)

There are two success criteria for the identification process: sample success rate

(SSR) and class success rate (CSR). Suppose that we have a test set with N samples,

captured from k animals. Sample success rate is the ratio of number of successfully

identified samples and the total number of samples computed by

SSR =

∑
i

∑
j

g (τij)

N
, (5.5)

and the class success rate is the ratio of number of successfully identified animals and

the total number of animals given by

CSR =

∑
i

g (Si)

k
. (5.6)

As depicted in Figure 5.1, the identifier has the following parameters

A - voxel size,

B - image scale,

C - normal radius,

D - back cut width,

E - area width,

F - area height,

G - spine calculation radius;
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Figure 5.1. Identification process.

to which proper values should be assigned for successful identification (see Section

4.1.4).

5.1. Eigenface Method

In the tests with the Eigenface method, the following parameters are determined

to be optimal for identification:

• voxel size: 0.005 m

• image scale: 0.005

• normal radius: 0.05 m

• back cut width: 0.3 m

• area width: 0.9 m

• area height: 0.52 m

• spine calculation radius: 0.07 m

The resulting identification rates are as shown in Table 5.1. The highest identification

rates are obtained with normal-y images where 146 of 197 samples (74%), and 44 of

50 cows (88%) are identified successfully; and the lowest rates are obtained with depth

images.
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Table 5.1. Identification results of Eigenface method.

EIGENFACE METHOD Sample Success Rate Class Success Rate

Depth Image 84/197 (42%) 24/50 (48%)

Normal-y Image 146/197 (74%) 44/50 (88%)

Normal-z Image 113/197 (57%) 31/50 (62%)

5.2. Fisherface Method

For the Fisherface method, results in Table 5.2 are obtained with the following

parameters:

• voxel size: 0.006 m

• image scale: 0.005

• normal radius: 0.05 m

• back cut width: 0.2 m

• area width: 0.9 m

• area height: 0.5 m

• spine calculation radius: 0.08 m

In general, identification rates of the Fisherface method are similar to the ones in the

Eigenface method. The lowest rates are obtained with depth images and the highest

identification rates are observed with normal-y images, where 159 of 197 samples (77%),

and 43 of 50 cows (86%) are identified successfully.

In the tests, the highest sample success rate, 77%, is achieved with the Fisherface

method and the highest class success rate, 88%, is achieved with the Eigenface method

by using normal-y images. Therefore, we can conclude that normal-y image is the

most appropriate image type for this solution. Although the highest class success rate
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is achieved with the Eigenface method, average SSR and CSR of the Fisherface method

are 16.0% and 7.1% higher than those of the Eigenface method, respectively. Therefore,

Fisherface method could be more applicable in a real world application with normal-y

images.

Table 5.2. Identification results of Fisherface method.

FISHERFACE METHOD Sample Success Rate Class Success Rate

Depth Image 116/197 (56%) 31/50 (62%)

Normal-y Image 159/197 (77%) 43/50 (86%)

Normal-z Image 123/197 (59%) 32/50 (64%)

5.3. Effect of Spine Recognition

A pose normalization method has been proposed in Section 3.3.3. After a rough

pose normalization, a finer normalization is achieved by recognizing the spine of the

animal. In this section, the same tests are carried out by applying the Eigenface and

Fisherface methods on the samples whose poses are are roughly normalized and not

fine tuned with spine recognition. The identification results are summarized in Tables

5.3 and 5.4.

In these tests, it is observed that average SSR and CSR have decreased by 12.0%

and 10.7%, respectively. Therefore, we can conclude that the normalization process

based on spine recognition has a significant positive effect on the identification process.
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Table 5.3. Identification results of Eigenface method without spine correction.

EIGENFACE METHOD Sample Success Rate Class Success Rate

Depth Image 74/197 (37%) 19/50 (38%)

Normal-y Image 127/197 (64%) 37/50 (74%)

Normal-z Image 107/197 (54%) 33/50 (66%)

Table 5.4. Identification results of Fisherface method without spine correction.

FISHERFACE METHOD Sample Success Rate Class Success Rate

Depth Image 94/197 (45%) 25/50 (50%)

Normal-y Image 131/197 (63%) 39/50 (78%)

Normal-z Image 114/197 (55%) 30/50 (60%)

5.4. Effect of Number of Samples

Finally, the same tests are conducted by switching the training and test sets,

where the results are summarized in Tables 5.5 and 5.6. Previously, the dataset which

has 50.3% higher number of samples was chosen for the training and the other dataset

was used for testing. In this section, the training and test sets are switched; therefore

the identifier is trained with fewer number of samples. We have found that average

sample success and average class success rates have decreased by 16.0% and 8.2%,

respectively. This suggests that the number of training samples is an important aspect

which should be considered to get higher identification rates.
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Table 5.5. Identification results of Eigenface method with switched datasets.

EIGENFACE METHOD Sample Success Rate Class Success Rate

Depth Image 99/296 (33%) 23/50 (46%)

Normal-y Image 170/296 (57%) 37/50 (74%)

Normal-z Image 154/296 (52%) 31/50 (62%)

Table 5.6. Identification results of Fisherface method with switched datasets.

FISHERFACE METHOD Sample Success Rate Class Success Rate

Depth Image 146/296 (48%) 26/50 (52%)

Normal-y Image 190/296 (62%) 38/50 (76%)

Normal-z Image 177/296 (58%) 33/50 (66%)

5.5. Summary of the Chapter

In this chapter, the test results with the proposed 3D cattle identification system

by using the acquired datasets has been presented. First of all, proper values have been

assigned to the parameters of the real-time identification application; and experiments

have been conducted with different types of images and identification methods. In

summary, the following conclusions are drawn:

• The highest success rates are achieved by using normal-y images,

• The highest class success rate, 88%, is achieved with the Eigenface method,

• The highest sample success rate, 77%, is achieved with the Fisherface method,

• In average, the Fisherface method results in higher identification rates,

• The proposed pose normalization method has a significant positive effect,

• The number of training samples is an important factor for better identification.
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6. CONCLUDING REMARKS

In this thesis, a cow identification system based on 3D shape analysis of top back

part of the animals has been proposed. There are prominent features of this solution

which differentiates it from others in the literature, i.e., it

• does not need any markers or external devices placed on the animal,

• works in even unlighted environments,

• identifies even black cows without distinctive coat patterns,

• is relatively cheaper,

• enables accurate positioning.

Another contribution of this thesis is a novel pose normalization method which is based

on recognition of the spine of the animal.

To evaluate the efficiency of the proposed system, it is implemented as a real-time

prototype application and a 3D cattle dataset is acquired which, to our knowledge,

is unique in the literature. This dataset consists of three dimensional point cloud

sequences of 50 different cows, captured in lighted and unlighted conditions. More

specifically,

• the dataset is gathered from moving animals and it contains relatively few number

of samples per animal,

• training and testing videos are captured with different cameras in different light-

ing conditions (lighted and dark),

• most of the cows are black and without distinctive coat patterns.

Applicability of the proposed solution has been verified by testing with the ac-

quired dataset. Convincing results are obtained where %88 of 50 cows are identified

successfully. For identification, two famous face recognition methods, namely Eigen-
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face and Fisherface methods, have been used. Therefore, the presented identification

results also serve as a base point for future research on this topic.
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APPENDIX A: SAMPLE DEPTH IMAGES
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APPENDIX B: SAMPLE NORMAL-Y IMAGES
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APPENDIX C: SAMPLE NORMAL-Z IMAGES
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7. Huhtala, A., K. Suhonen, P. Mäkelä, M. Hakojärvi and J. Ahokas, “Evaluation

of Instrumentation for Cow Positioning and Tracking Indoors”, Biosystems Engi-

neering , Vol. 96, No. 3, pp. 399–405, 2007.

8. Schlecht, E., C. Hülsebusch, F. Mahler and K. Becker, “The Use of Differentially

Corrected Global Positioning System to Monitor Activities of Cattle at Pasture”,

Applied Animal Behaviour Science, Vol. 85, No. 3, pp. 185–202, 2004.



69

9. Bouet, M. and A. L. Dos Santos, “RFID Tags: Positioning Principles and Lo-

calization Techniques”, Wireless Days, 2008. WD’08. 1st IFIP , pp. 1–5, IEEE,

2008.

10. Briner, T., J.-P. Airoldi, F. Dellsperger, S. Eggimann and W. Nentwig, “A New

System for Automatic Radiotracking of Small Mammals”, Journal of Mammalogy ,

Vol. 84, No. 2, pp. 571–578, 2003.

11. Pei, L., R. Chen, J. Liu, H. Kuusniemi, T. Tenhunen and Y. Chen, “Using Inquiry-

based Bluetooth RSSI Probability Distributions for Indoor Positioning”, Journal

of Global Positioning Systems , Vol. 9, No. 2, pp. 122–130, 2010.

12. Mazuelas, S., A. Bahillo, R. M. Lorenzo, P. Fernandez, F. A. Lago, E. Garcia,

J. Blas and E. J. Abril, “Robust Indoor Positioning Provided by Real-time RSSI

Values in Unmodified WLAN Networks”, Selected Topics in Signal Processing,

IEEE Journal of , Vol. 3, No. 5, pp. 821–831, 2009.

13. Li, B., J. Salter, A. G. Dempster and C. Rizos, “Indoor Positioning Techniques

Based on Wireless LAN”, LAN, First IEEE International Conference on Wireless

Broadband and Ultra Wideband Communications , 2006.

14. Smith, A., H. Balakrishnan, M. Goraczko and N. Priyantha, “Tracking Moving

Devices with the Cricket Location System”, Proceedings of the 2nd International

Conference on Mobile Systems, Applications, and Services , pp. 190–202, ACM,

2004.

15. Gu, Y., A. Lo and I. Niemegeers, “A Survey of Indoor Positioning Systems for Wire-

less Personal Networks”, Communications Surveys & Tutorials, IEEE , Vol. 11,

No. 1, pp. 13–32, 2009.

16. Von Keyserlingk, M., J. Rushen, A. M. de Passillé and D. M. Weary, “Invited
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