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ABSTRACT 

A BAYESIAN APPROACH TO TEXTILE DEFECT DETECTION 

PROBLEM AND A COMPARATIVE ANALYSIS 

The purpose of this thesis was to detect the defects on textile fabric images using 

the particle filters. We approached the problem from a Bayesian perspective and 

represented the model in a state space formulation. To describe the state space formulation; 

the texture models such as linear, 2-D linear and Markov Random Field models and the 

noise types like Gaussian, mixture of Gaussian and alpha-stable noise are investigated to 

find the best representation that is appropriate for our textile images. The implementation 

results are compared with Kalman, Extended Kalman and Unscented Kalman filters. 

Finally time and performance analysis of the filters is given. 



  v 
 

ÖZET 

TEKSTĐL HATALARININ TESPĐTĐ PROBLEMĐNE BAYESÇĐ BĐR 

YAKLAŞIM VE KARŞILAŞTIRMALI BĐR ANALĐZ 

Bu tezde, tekstil doku imgelerindeki hataların, parçacık filtresi ile tespit 

edilebilmesi amaçlanmaktadır. Bunun için probleme Bayesçi bir perspektiften yaklaştık ve 

modelimizi durum uzayı formülasyonu ile ifade ettik. Durum uzayı formülasyonunu 

tanımlayabilmek için de; doğrusal, iki boyutlu doğrusal ve Markov rassal alan gibi örüntü 

modellerini; Gauss, Gauss karışımı ve alfa-durağan gibi de gürültü çeşitlerini doku 

imgelerini en iyi şekilde temsil edebilmek için inceledik. Elde ettiğimiz sonuçları; diğer 

Kalman, genişletilmiş Kalman ve kokusuz Kalman filtelerinden elde edilen sonuçlarla 

karşılaştırdık. Son olarak da, filtrelerin zaman ve performans analizini verdik. 
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1. INTRODUCTION 

Automated visual control of products is one of the most crucial subjects in almost 

all industry branches in our modern world. One of those critical branches that can affect all 

human beings’ daily life is textile industry. The production of first quality textile fabric in 

textile industry makes the post processing meaningful since it represents a surface that is 

totally free of major defects. A major defect that is missed in this step will increase the cost 

and decrease the efficiency in the next stages following this process. 

As the production speeds increase, the importance of automated visual inspection 

also increases because manufacturers must be able to identify the defects, locate their 

source, and make the necessary corrections in less time [1]. This leads to more awareness 

of research and development engineering since an efficient performance rate in production 

lines should be shown in a limited time period. So, many production managers give 

support to related engineers to focus on texture analysis. 

Texture analysis plays an important role in the automated visual inspection of 

surfaces. There have been number of works for texture defect detection in the literature. 

Chen and Jain [2] used a defect detection approach in which they first threshold the 

textured image using histogram analysis and then defining several statistics, the defects are 

identified. Aras et al. [3] defined higher order statistical feature sets and using a 

Mahalanobis distance classifier, defects on textural images of textile fabrics are detected. 

Amet et al. [4] combined concepts from wavelet theory and co-occurrence matrices for 

defection of defects. Detection of the defects is performed by decomposing the gray level 

image into sub-bands and classifying the partitioned sub-windows according to their 

extracted co-occurrence features. Similarly, Yang et al. [5] used wavelet transform for 

defect detection but they developed adaptive wavelets adapting to the detection of the 

fabric defects instead of predetermining a wavelet. Kumar and Pang [6] proposed to use 

FIR linear filters with optimized energy separation to find defects on fabric images.  

In this work, we approach the texture defect detection problem from a Bayesian 

perspective using a state space formulation. State space formulation gives us a relation 
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between the states changing over time which are unobservable and a relation between the 

state and the observation that is made on the system. We define these relations in the 

models as state model and observation model and they are very useful to describe the 

system dynamics. 

Our motivation is to form the state space model accurately by finding the 

characteristics of the textile images as well as possible. Constructing the state space model 

is a vital step to approach the problem from a Bayesian perspective. 

Texture defect detection using a Bayesian approach was first proposed by 

Basibuyuk et al. [7] and it was assumed that the state model and the observation model 

were both linear and Gaussian. They applied particle filter in this environment and 

obtained results comparable to Kalman filtering as expected, the results were promising for 

further investigation in nonlinear non-Gaussian environments. 

The main contribution of this dissertation is to expand this approach by applying 

the particle filter to state space models that include nonlinearity, non-Gaussianity or both. 

While analyzing the nonlinearity of the system, we investigate several texture description 

models and check them if they are appropriate for filtering purposes. Similarly various 

noise descriptions are revealed to find the best noise term that fits well to the textile fabric 

images. 

Another contribution of this work is to make it possible to evaluate the differences 

of Kalman filter and particle filter for textile defect detection problem. For this purpose, 

Kalman filter and its extensions are explained to make the subject more clear and 

understandable. Kalman filter is the optimum filter for linear and Gaussian environments 

so we compared its results with the ones obtained from the particle filter to understand that 

if the environment is really linear and Gaussian. Extended Kalman and unscented Kalman 

filter are also discussed to show how the performance of the Kalman filter can be increased 

in nonlinear environments.  

Also it is aimed to make the implementation as fast as possible to run it on a real 

time machine vision system. Time and performance analyses are done and the optimum 

filter is proposed for textile fabric defect detection problem. 
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After the implementations, it is concluded that the dynamics of the textile fabric 

images are suitable to represent them in a linear and Gaussian state space model. For this 

system, Kalman filter gives the optimum results both in achieved performance and 

operation time. 

The organization of the dissertation is as follows: In section 2, we will give a 

theoretical background for state space formulation and Bayesian approach; explain most 

known filter types, texture models and noise types. In section 3, we will demonstrate our 

experimental results and share the approaches we have used. In section 4, we will discuss 

the results obtained from the implementations and try to give possible directions for future 

work. 
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2. THEORETICAL BACKGROUND 

In this chapter, we introduce the theoretical basis of our work. We try to model our 

system in a state space formulation and then give a probabilistic approach to this 

formulation. In this context, Kalman filter and its extensions, particle filters, various noise 

descriptions and texture models are explained. 

2.1. State Space Formulation 

One of the most basic definitions in control theory is the state space formulation. It 

gives us an ability to find the states using a sequence of noisy measurements made on the 

system. Many fields of science require this closed form formulation to estimate the states 

in a dynamic environment. 

If we can find the state vector of the system, it gives us relevant information 

describing the system under investigation. State space formulation gives us two models to 

find the state vector. First model, the state model, gives us a relation between the states 

changing over time which are unobservable and the second model, the observation model, 

gives us the relationship between the state and the observation made on the system. 

We describe the state model as 

 ),( 11 −−= kkkk vxfx  (2.1) 

where kf  is the function of the evolution of the states and 1−kv  is the independently and 

identically distributed (i.i.d) state noise of the system. Similarly the observation model can 

be defined as 

 ),( kkkk nxhy =  (2.2) 

where kh  is the function of the relationship between the state and the observation and kn  

is the i.i.d observation noise of the system. 
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In this formulation, each of the functions kf  and kh  can be linear or nonlinear and 

the noise terms 1−kv  and kn  can be Gaussian or non-Gaussian. In the following section, 

we will try to describe a probabilistic approach to estimate the states given the observations 

that can handle this formulation. 

2.2. Bayesian Approach 

This section is written based on the paper published by Arulampalam et al. [8]. We 

try to find the state kx  at time k given the observations k:1y  by a probabilistic approach. 

To estimate the states, we need to construct the posterior probability density function (pdf) 

)|( :1 kkp yx . The estimation of the state kx  at time k can be formed in two steps:  

• Prediction 

• Update 

2.2.1. Prediction 

We want to predict the state kx  at time k from the previous states and the state 

noise. This stage is identical with the state model given by Eq. (2.1). If we assume that the 

pdf )|( 1:11 −− kkp yx  at time 1−k  is available, then the prior pdf becomes 

 
11:1111:1 )|()|()|( −−−−− ∫= kkkkkkk dppp xyxxxyx  (2.3) 

where )|( 1−kkp xx  is the transition density. 

Since the state evolution of the model is represented with the state model, the 

transition term )|( 1−kkp xx  in prediction stage represents the dynamics defined in Eq. 

(2.1). As given in a detailed justification in [9], we can show that if i
k 1−x  is a sample from 

),( 1:11 −− kkp yx  and i
k 1−v  is a sample from ),( 1−kp v  then ),( 111

i
k

i
kk

i
k −−−= vxfx  is 

distributed as ),( 1:1 −kkp yx . 
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To implement the above equation, we assume that the initial pdf ),( 00 yxp  is 

given. 

2.2.2. Update 

We use the new observed data to update the predicted state that is obtained in the 

prediction stage. Update stage is identical with the observation model given by Eq. (2.2). 

Now at time ,k  a measurement ky  becomes available and we can update the prior via 

Bayes’ rule 

 

)|(

)|()|(
)|(

1:1

1:1
:1

−

−=
kk

kkkk
kk

p

pp
p

yy

yxxy
yx  (2.4) 

Here the conditional pdfs )|( :1 kkp yx , )|( kkp xy  and )|( 1:1 −kkp yx  refer to the 

updated prior (posterior), the likelihood and  the prior, respectively.  

The normalizing term )|( 1:1 −kkp yy  is given by the equation 

 ∫ −− = kkkkkkk dppp xyxxyyy )|()|()|( 1:11:1  (2.5) 

In the update stage, we can find the posterior density by calculating the likelihood 

)|( kkp xy  using the observation model in (2.2) and substituting the prior )|( 1:1 −kkp yx  

calculated in Eq. (2.3) into (2.4). 

This posterior is used in prediction step to calculate the prior and it will again be 

used in update stage to find the posterior in a recursive manner. These recursive 

calculations make it possible to find the optimal Bayesian solution. 

Since the process is iterative, it is generally difficult to find an analytic expression 

for the optimal solution. There are only a limited number of cases where an analytic 

solution exists [8]. In the following part, we will give the filter types that have an analytic 

formulation and in which situations they are successful. When they are insufficient, we 

will extend our approach with other filter types. 
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2.3.  Kalman Filters 

When the functions kf  and kh  are linear and the noise terms 1−kv  and kn  are 

Gaussian, Kalman filter gives us the optimal Bayesian solution. If we write the state space 

formulation given in (2.1) and (2.2) in this framework, then we get the following equations 

 11 −− += kkkk vxFx  (2.6) 

 kkkk nxHy +=
 

(2.7) 

 Here the matrices kF  and kH  define the linear functions and the noise terms, 1−kv  

and kn , are drawn from zero-mean independent Gaussian distributions );( 1 Q0,v −kN , 

);( R0,n kN  with covariances Q  and R , respectively. 

As explained in [8], if we define the ),;( ΣµxN
 
as a Gaussian density of argument 

x  with mean µ  and covariance Σ , then we can give the recursive relationship of the 

Kalman filter as follows: 

 ),;()|( 1|11|111:11 −−−−−−− Σ= kkkkkkkp µxyx N   (2.8) 

 ),;()|( 1|1|1:1 −−− Σ= kkkkkkkp µxyx N
 (2.9) 

 ),;()|( ||:1 kkkkkkkp Σ= µxyx N
 (2.10) 

The above equations are written to show the recursive Bayesian approach and they 

can be explicitly written as 

 1|11| −−− = kkkkk µFµ  (2.11) 

 T
kkkkkkk FFQ 1|111| −−−− Σ+=Σ

 
(2.12) 

 )( 1|1|| −− −+= kkkkkkkkk µHyKµµ
 (2.13) 

 1|1|| −− Σ−Σ=Σ kkkkkkkk HK
 (2.14) 
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where µ  is the mean, Σ  is the covariance matrices, kF  and kH  are known matrices 

defining the linear functions and kK  is the Kalman gain matrix. The gain is found by 

 
k

T
kkkkk RHHS +Σ= −1|  (2.15) 

 1
1|

−
−Σ= k

T
kkkk SHK

 
(2.16) 

where kS  is the covariance of the error term, 1| −− kkkk µHy . 

The solution found by this method is the optimum solution; no algorithm can do 

better in this linear and Gaussian environment [8]. If the system is nonlinear, then Kalman 

filter fails to achieve the optimum so alternative approaches are developed to increase the 

performance. In the following sections, we explain extended Kalman and unscented 

Kalman filters that are developed to improve Kalman filter performance in those 

environments. 

2.3.1. Extended Kalman Filters 

In the previous section, we stated that the Kalman filter gives the optimum solution 

if the system is linear and Gaussian. When the system becomes nonlinear, Kalman filter 

becomes insufficient and we try to approximate the nonlinearity with local linearization of 

the functions. This is achieved by taking the Taylor series expansion of these nonlinear 

functions [10]. Extended Kalman Filter (EKF) is the nonlinear version of the Kalman filter 

which linearizes the nonlinear functions by taking their Taylor series expansion. 

In many applications, first order Taylor series expansion can be sufficient and it 

becomes computationally simpler. We can find it by taking the first terms in the expansion 

of the nonlinear functions kf  and kh  as shown below 

 
1|1

|
)(ˆ

−−==
kkd

d k
k µxx

xf
F  (2.17) 
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1|

|
)(ˆ

−==
kkd

d k
k µxx

xh
H

 
(2.18) 

The recursive Bayesian approach given in Eqs. (2.8), (2.9) and (2.10) is still valid 

here and the mean and covariance update equations are obtained as follows: 

 )( 1|11| −−− = kkkkk µfµ  (2.19) 

 T
kkkkkkk FFQ ˆˆ

1|111| −−−− Σ+=Σ
 

(2.20) 

 ))(( 1|1|| −− −+= kkkkkkkkk µhyKµµ
 (2.21) 

 
1|1||

ˆ
−− Σ−Σ=Σ kkkkkkkk HK

 
(2.22) 

where kK  is again the Kalman gain matrix and in this case it is computed by 

 
k

T
kkkkk RHHS +Σ= −

ˆˆ
1|  (2.23) 

 1
1|

ˆ −
−Σ= k

T
kkkk SHK

 
(2.24) 

 EKF gives better results than the Kalman filter if the system is nonlinear and 

Gaussian. Another approach, unscented Kalman filter is also developed to struggle with the 

system nonlinearity and it is explained in the following stage. When the data contains non-

Gaussian noise, EKF can be insufficient as the Kalman filter to handle the system.  

2.3.2. Unscented Kalman Filters 

 The Unscented Kalman Filter (UKF) is an improved version of the Kalman filter 

for nonlinear systems. It can give better results than EKF since it can approximate the 

nonlinearity more accurately. Especially we can observe its superiority when the models 

are highly nonlinear and the effects of higher order terms of Taylor series expansion 

become significant [11]. 
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 The basic idea behind this transformation is the fact that to approximate a Gaussian 

distribution is easier than to approximate a nonlinear function [12]. As can be seen in Fig. 

2.1, the points are chosen according to a deterministic algorithm and then they are 

transformed to the new points applying a nonlinear function. 

 

Figure 2.1. The principle of unscented transformation  

2.3.2.1.  The Unscented Transformation. To achieve the unscented transformation, we 

select a number of points to approximate a Gaussian distribution. If we assume that the 

mean and the covariance of the data is x  and xP , respectively; then we select these points 

according to a deterministic algorithm in which the mean and the covariance of the 

selected points are also same with the data itself. So the idea is that, we approximate a 

Gaussian distribution which has the same mean and variance with the data itself using 

these selected points. 

 Now we will show how these points (sigma points), s'iX , are selected and their 

weights, s'iW , are calculated. If the dimension of the data is n, then 2n+1 points are 

selected according to the equations below: 

 00 == for i   xX
 
 

(2.25) 
 ,...,nfor in ixi 1))(( =++=    PxX κ
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 n,...,nfor in ixi 21))(( +=+−=    PxX κ
 

and the weights are found with 

 0)(0 =
+

= for i
n

W
i
   κ

κ  

(2.26) 
 nfor i

n
W

i
i 2,...,1)22( =

+
=    κ

κ
 

where κ is a scaling parameter, ixn ))(( Pκ+  is the i’th row or column of the matrix 

square root of xn P)( κ+  and iW  is the weight associated with the i’th point such that 

1=∑
i

iW  [11]. 

 After the calculations are done, these sigma points are transformed to a new set of 

points with a nonlinear function as follows 

 n,..., for i ii 21)( ==  XhY  (2.27) 

where h is the nonlinear function that governs the observation model equation. For these 

transformed points, the new mean and covariance values are found as 

 
iiW∑= Yy  (2.28) 

 T
iiiy W ))(( yYyYP −−=∑  

(2.29) 

The new mean and covariance values are used in the implementation of UKF. It is 

given in Appendix A.1. UKF outperforms the EKF since the calculated values are accurate 

up to second order for any nonlinearity whereas EKF uses a first order Taylor series 

approximation for the nonlinearity. 
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2.4. Particle Filters 

As explained in the previous sections, Kalman filter gives the optimum solution for 

a linear and Gaussian environment. The EKF and UKF increase the efficiency if the 

system contains nonlinearities. When the system is both nonlinear and non-Gaussian, then 

particle filters yield an improvement in performance. 

In particle filter approach, the basic idea is to approximate the posterior density 

with a set of random samples. As the number of samples increases, the distribution is 

represented more accurately and the state estimates can be obtained from these samples 

[8].  

 To understand the process more clearly, it would be useful to explain the Monte 

Carlo methods [10] since particle filtering itself is a Sequential Monte Carlo approach [13]. 

2.4.1. Monte Carlo Methods 

Monte Carlo methods are widely used in physical and mathematical systems and 

they rely on taking random samples to represent the true dynamics. Especially in 

mathematics, sometimes it becomes very hard to take the integral of a function analytically 

and in those circumstances, Monte Carlo integration is used to randomly select some 

samples and evaluate the integral using them. 

Suppose that we want to evaluate the integral 

 ∫= dxxpI )(  (2.30) 

If we can draw samples from a known distribution q(x) that is close to the target 

distribution p(x), then we can find the sample mean as 

 
∑
=

=
N

i

ii
N xwxq

N
I

1

)()(
1

 (2.31) 
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where },...,1;{ Nixi =  are the samples drawn from the known distribution, )( ixw  and 

)( ixq are the weights and the values of the samples, respectively. The distribution q(x) is 

also known as importance or proposal distribution. We normalize the weights so that the 

equation 1)( =∑
i

ixw  should be ensured [10].  

2.4.2. Sequential Importance Sampling 

Sequential importance sampling (SIS) is a reference technique for most sequential 

Monte Carlo methods. In this technique, to approximate the true posterior density, again 

state and observation models will be used as we discussed in section 2.1.  

Now, from a Bayesian perspective suppose that at the k’th iteration we approximate 

the posterior pdf )|( :1:0 kkp yx  with the sample points },...,0;{ :0 Ni
i

k
=x  and their 

associated weights },...,1;{ Niwi
k = . 

Then, similar to Eq. (2.31), the posterior density at time k can be approximated as 

 
∑
=

−≈
N

i

i
kk

i
kkk wp

1
:0:0:1:0 )()|( xxyx δ  (2.32) 

 Here the weights are chosen using the importance sampling which is discussed in 

detail in [8], because some of the particles in the distribution have more effect than the 

others so their importance should be emphasized. If the samples i
k:0x  were drawn from an 

importance density )|( :1:0 kkq yx , then the weights in (2.32) becomes 

 
Nifor

q

p
w

k
i

k

k
i

ki
k ,...,1

)|(

)|(

:1:0

:1:0 =∝     

yx

yx
 (2.33) 
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 As the new observations become available, we can approximate )|( :1:0 kkp yx   

using the samples which approximate the distribution of )|( 1:11:0 −− kkp yx . Then the 

weight update equation can be shown to be 

 
Nifor

q

pp
ww

k
i

k
i
k

i
k

i
k

i
kki

k
i
k ,...,1

),|(

)|()|(

:11:0

1
1 =∝

−

−
−     

yxx

xxxy
 (2.34) 

 The history of observations and states are not needed to be stored if we assume that 

),|(),|( 1:11:0 kkkkkk qq yxxyxx −− = . Then the weight update equation in (2.34) becomes 

 
Nifor

q

pp
ww

k
i
k

i
k

i
k

i
k

i
kki

k
i
k ,...,1

),|(

)|()|(

1

1
1 =∝

−

−
−     

yxx

xxxy
 (2.35) 

and the posterior in (2.32) now can be approximated as  

 
∑
=

−≈
N

i

i
kk

i
kkk wp

1
:1 )()|( xxyx δ  (2.36) 

Thus as each observation becomes available, the importance weights i
kw  and the 

sample points i
kx  are propagated iteratively. SIS algorithm in given in Appendix A.2 as a 

closed form. 

One of the drawbacks in particle filter approach is the degeneracy problem [10]. 

Degeneracy means that after a few iterations, most of the particles will have negligible 

weights except one particle. It decreases the diversity so it is perceived as an undesirable 

property. It can be solved by using a very large number of samples but it is often 

impractical so two other methods are proposed: 

• good choice of importance density  

• use of resampling 
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2.4.2.1.  Good Choice of Importance Density. There have been considerable research done 

to choose the importance density properly [10]. To choose the importance density to be the 

transition prior is often convenient and practical: 

 )|(),|( 11
i
kkk

i
kk pq −− = xxyxx  (2.37) 

Then the weight update equation in (2.35) becomes 

 )|(1
i
kk

i
k

i
k pww xy−∝  (2.38) 

Although transition prior is practical to take as importance density, it has some 

drawbacks. If it is much broader than the likelihood, then only a few particles will be 

assigned a high weight and it would again cause degeneracy problem. 

To choose the particles in the right region where the high likelihood exists, there 

have been some methods proposed. Making the distribution coincident through the prior 

and the likelihood [14] or using local linearization techniques to approximate the optimal 

importance density [11] are two of the methods researched in the literature.  

2.4.2.2.  Resampling. The basic idea of resampling is to eliminate the particles that have 

small weights and to concentrate on particles with large weights. After resampling, a new 

set N
i

i
k 1}{ =x  is generated and their weights are now reset to 

N
w

i
k

1= . Resampling step 

[13] is shown in Fig. 2.2: 

 

Figure 2.2. The process of resampling 
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In resampling technique, we first form the cumulative distribution function (cdf) of 

the weights and then select a number randomly as shown in Fig. 2.2. The index of the 

weight forming the cdf that coincides with the random number determines the new selected 

particle. As the weight of the particle increases, it is more probable to be selected. 

Although the resampling step reduces the effects of the degeneracy problem, it 

introduces other practical problems [8]. First, it limits the opportunity to parallelize since 

all the particles must be combined. Second, the particles that have high weights are 

statistically selected many times and this leads to a loss of diversity among the particles. 

This problem, which is known as sample impoverishment, is severe in the case of small 

process noise.  

There have been some systematic techniques proposed recently to solve this 

problem such as resample-move [15] or regularization [8] which are discussed in given 

resources. 

The resampling algorithm and sampling importance resampling (SIR) algorithm is 

given in Appendix A.3 and A.4. A single cycle of the particle filter with resampling step is 

shown in  Fig. 2.3 [16]: 

 

Figure 2.3. A single cyle of particle filter  
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2.4.3. Auxiliary Particle Filter 

The original auxilliary sampling importance resampling (ASIR) filter consists of 

one more step compared to particle filter, namely, a resampling stage to produce an i.i.d 

sample M
j

jj
k

i 1},{ =x
 
with equal weights. Compared with the SIR filter, the advantage of the 

ASIR filter is that it naturally generates points from the sample at time 1−k , and 

conditioned on the current measurement, they are most likely to be close to the true state. It 

gives better results if the likelihood is situated in the tails of the prior [11] as shown in Fig. 

2.4. 

 

Figure 2.4. If the likelihood happens to lie in one of the tails of the prior distribution, ASIR 

can give better results than the particle filter. 

ASIR can be viewed as resampling at the previous time step, based on some point 

estimates i
kτ  that characterize )|( 1

i
kkp −xx . If the process noise is small so that 

)|( 1
i
kkp −xx  is well characterized by i

kτ , then ASIR is often not so sensitive to outliers as 

SIR, and the weights i
k

w  are more even. However, if the process noise is large, a single 

point does not characterize )|( 1
i
kkp −xx  well, and ASIR resamples based on a poor 

approximation of )|( 1
i
kkp −xx . In such scenarios, the use of ASIR then degrades 

performance [8]. 

The algorithm for the ASIR filter is given in Appendix A.5. 
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2.5. Texture Models 

By a model of texture, we mean a mathematical process which creates or describes 

the textured image. The goal of texture modelling is the description and the classification 

of the texture images. 

We can find several texture models appeared in the literature but for our case, we 

will focus on linear and Markov Random Field (MRF) models. 

2.5.1. One Dimensional Linear Texture Models 

In this model type, the prediction of the future data is made on the previous variable 

sequence like in time series. If the image is converted to row vectors (snake form) as 

shown in Fig. 2.4 [7], then we can formulate the relationship between the pixels as follows:  

 )()()( tvntxatx

n

n +−=∑  (2.39) 

where )(tx  is the gray level at point t, san'  are the one dimensional autoregressive (1-D 

AR) coefficients and the )(tv  is the i.i.d noise variable. 

 

Figure 2.5. Snake form representation of the image 

2.5.2. Markov Random Field Models 

The use of the neighbors offers a geometric framework for the clustering of pixel 

intensities and the Markov property is a natural way to formalize this notion [17]. In this 

model type, the brightness level at a point in the image is highly dependent on the 
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brightness levels of neighboring points. While describing the model, the number of 

neighborhood points that are used to assign the target point is related with the model order. 

For instance, in Fig. 2.5 a first order MRF model is shown and in this model order, the 

center pixel value C is dependent on its four neighbors: u, u’, t, t’. The conditional 

probability does take the form 

 

)exp(1

)exp(
)',,',|(

T

gT
ttuugCp

+
==  (2.40) 

where  

 )'()'( 21 uubttbaT ++++=  (2.41) 

for the binomial case. Here, 1, ba   and 2b are the MRF parameters that control the clustering 

in the texture. For the binomial case, the data can take the values just only zero or one. 

If the gray level range changes between 0 and G-1, then the conditional probability 

takes the form [18]: 

 
ng

g

n
TgCp −+








== )1()|( ψψ  (2.42) 

 where )exp(T=ψ  and n is the maximum gray level. Here g can take the values between 0 

and G-1. 

 u’  

t C t’ 

 u  

Figure 2.6. First order MRF model 
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In MRF model, the technique used to estimate the parameters is Maximum 

Likelihood Estimation (MLE). The usual likelihood, l, is given by 

 ∑=
X of Neighbors

.))|(ln( Xpl  (2.43) 

where .)|(Xp  denote the conditional probability )|( of XNeighbors xXp = . To make the 

calculation simpler, the lattice is partitioned to the codings [19], which mean disjoint sets 

of points. 

Then )(il  refers to the log likelihood of i’th coding and found with 

 ∑=

coding  theof 
pointsSupport 

.))|(ln()( Xpil  
(2.44) 

We try to maximize )(il  to find the parameters a and 
jb  so that  

 
gsr of codin,...,Numbei

a
il 1   0)( ==

∂
∂  (2.45) 

 

numberodneighborhodean,...,Euclij

gsr of codin,...,Numbei
b

il

j

  1                     

1   0)(

=

==
∂

∂

 
(2.46) 

Using Newton’s method, we solve the equation and find the estimated parameter 

values for {
jba  , }. 

2.5.3. Two Dimensional Linear Texture Models 

In this model type, we do not transform the image into a row vector; in contrast we 

try to find a dependency between the image pixel values in a two dimensional (2-D) space. 

The brightness level at point (i, j) is found by the following equation 

 ∑∑ +−−=
m n

nm jivnjmixajix ),(),(),( ,  (2.47) 
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where sa nm ',  are the 2-D AR coefficients and v(i, j) is the i.i.d noise variable. 

In Fig. 2.6, we can see 2-D linear texture model with a 3x3 prediction mask and in 

this prediction mask size, the pixel value at point (i,j) is dependent on the previous eight 

points. There is no restriction on prediction mask size to specify but it would be practical 

to choose it as small as possible for computational simplicity. 

i-2, j-2 i-2, j-1 i-2, j 

i-1, j-2 i-1, j-1 i-1, j 

i, j-2 i, j-1 i, j 

Figure 2.7. The brightness level at point (i, j) is dependent on neighbor pixels 

2.6. Noise Descriptions 

In filtering process, determining the correct noise type is as crucial as choosing the 

correct texture model. Some of the noise descriptions in the literature are investigated and 

checked how suitable they are for the textile fabric images. 

2.6.1. Gaussian Noise 

It is one of the most important noise types that are used in many signal processing 

applications. It is a statistical noise that has a probability density function of the normal 

distribution. The parameters mean and variance determines the distribution and the values 

that the noise can take are chosen from it. 

Gauss distributions have the pdf 
2

2

2

)(

22

1 σ

µ

πσ

−
−

x

e  and they have steeper slopes as 

the variance of the distribution decreases. With different parameters sets several plots can 

be seen in Fig. 2.7 [20].  
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Figure 2.8. Normal distributions with different parameter sets  

2.6.2. Alpha Stable Noise (αS Noise) 

This noise type can show great success if the data is too impulsive where the 

Gaussian noise can be insufficient to model it [21]. The αS distribution family is described 

most conveniently by its characteristic function, )(tϕ , which is the Fourier transform of 

the pdf: 

 
1

2
tan)sgn(1exp)( ≠

























+−= α

απ
βγδϕ

α
      if tjttjt  

(2.48) 
 

1log
2

)sgn(1exp)( =














+−= α

π
βγδϕ

α
      if ttjttjt

 

where ( ]2,0  ∈α  is the characteristic exponent which sets the impulsiveness of the 

distribution, [ ]1,1  −∈β  is the symmetry parameter which sets the skewness, γ > 0 

(dispersion) is the scale parameter and is analogous to the variance and ( )∞∞−∈ ,δ  is the 

location parameter which represents the shift from the origin [21].  

When 0  =β , the distribution is symmetric around µ and it is called a symmetric α-

stable (SαS) distribution. When 0  =δ , the distribution is centralized at the origin and 

when (α = 2), we have a compact density function which is a Gaussian distribution. 
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To give a better understanding of the behaviour of these distributions, we provide 

plots for various parameter values in Figs. 2.8 and 2.9. From the plots, we can observe that 

as the characteristic exponent decreases, the slope becomes steeper and the tails of the 

distribution gets heavier.  

 

Figure 2.9. Effect of the characteristic exponent on the general distribution 

 

Figure 2.10. Effect of the characteristic exponent on the tails 
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2.6.3. Mixture of Gaussian Noise 

In this noise type, the probability distribution is a combination of several Gaussian 

distributions. The new Mixture of Gaussian (MoG) distribution will have the pdf p(x) as 

 
∑
=

=
cn

i

iiiii zcxp

1

2 ),,()( σµN  (2.49) 

where cn  is the number of clusters, ic

 

is the mixture proportion and ),,( 2
iiii z σµN  is the 

contributing distribution to the mixture of argument iz  with mean iµ  and variance 2
iσ . 

Fig. 2.10 shows that just three ),,( 2σµxN  Gaussian distributions can model a complex, 

multi-modal distribution [22]. 

 

Figure 2.11. The construction of MoG distribution with local Gaussians  
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3. IMPLEMENTATIONS AND RESULTS 

In this section, we begin with describing the experimental setup that is used in the 

implementations and the methodology that we have followed. Then, based on the state 

space model, the system description and the parameter estimation methods are explained. 

Finally, we give the filter implementations, their results and a comparative time 

performance analysis.  

3.1. Experimental Setup and Methodology 

The textile fabric images that we have used in all our implementations are provided 

from the TILDA database [23]. In this database, there are several types of textile fabrics 

and for each textile fabric type, there exist a defect-free image folder and eight different 

defective image folders. In the TILDA database, the image folders ending with “EO” 

represent the defect free image folders. Although the defective images are grouped in eight 

different folders; while running the algorithms, we implemented only four of the them 

since the defects were evident only in those folders. Each folder includes 50 images so we 

had 50 defect-free and 200 defective images totally for a given textile type.  

The methodology we have followed for finding the defects has two steps, namely, 

learning stage and defect detection stage. 

In learning stage, mainly two important things are done. One of them is to calculate 

the 1-D or 2-D AR coefficients of a given textile type to determine the state model defined 

in (2.1) and the other thing is to find the true state vector of the textile fabrics that 

represents the texture. To accomplish these tasks, each defect free image of a given textile 

type is divided into nonoverlapping sub-windows and the AR parameters depending on the 

model order are calculated for each sub-window. Then, computing the mean of these 

values, the average AR parameters modeling the given textile type are found.  

After calculating the AR parameters, their values are substituted into the state 

model equation and the hidden states are estimated using the state and observation models 
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for each sub-window of the defect free images. Then the average of these vectors are taken 

in order to average out intensity changes due to noise and camera effects and the true state 

vector is found that represents the texture. Calculation of the AR parameters and the 

estimation of the true state vectors are done offline only once for each textile type.  

In the defect detection stage, the test image is again divided into nonoverlapping 

sub-windows. Then for each sub-window, we substitute the AR parameters obtained in the 

learning stage into the state equation and find the corresponding state vectors. Then, 

comparing these vectors using a distance measure with the true state vector, we label the 

sub-window as defective if the distance between the vectors are above a threshold value. 

The distance measure used between the state vectors is Euclidean distance. For i’th 

sub-window, it is found by ∑
=

=
SL

j 1

2j
test

j
truei )-(d xx  where SL is the length of the state 

vectors. The sub-window is labelled as defective if id  is above a threshold value. This 

threshold value is calculated by )( lum DDDTh −+= λ  where D is the distance vector 

consisting of id ’s; mD , uD  and lD  are the median of D, median of the distances bigger 

than mD  and median of distances smaller than mD , respectively [7]. λ  is some scaling 

parameter and it can be found by trial and error. In our filter implementations, it was taken 

as 2.55. 

The evaluation of the performance of the filters is a little complicated. Since the 

defect locations are not given explicitly, we used the image folders that end with “E0” to 

calculate the false alarm rate. We assume that all the image surfaces are free of the defects 

in that folder and counting the number of windows as labeled defective gives us the false 

alarm rate. On the other hand, to measure the correct detection rate, we investigate the test 

images and if the defect is labelled correctly, then we ignore the false alarms on it and 

assume that image as correctly classified.  

The implementation of the filters were performed with different sub-window sizes. 

As discussed in [7], the usage of 32x32 sub-window blocks were practical and convenient 

so we compared all the filter results in this manner. The resolution of the images we tested 
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was 512x768 and dividing each image into sub-windows, we obtained 384 sub-windows 

for each image. In the defect free image folder, there were 50 images so we had 19200 sub-

windows totally. 

In the following sections, we will discuss the approaches that we used to find the 

defects. 

3.2. System Description 

As discussed in the theoretical background in section 2.1, we used a state space 

approach for modeling the textile fabric images and finding the defects. The state and 

observation models are given by Eqs. (2.1) and (2.2), respectively. 

 The cases based on the state model that are analyzed are listed below: 

• The state model is 1-D linear and the noise is Gaussian 

• The state model is 1-D linear and the noise is non-Gaussian 

• The state model is 2-D linear and the noise is Gaussian  

• The state model is 2-D linear and the noise is non-Gaussian 

Since we assume that the data we investigate are noisy measurements, we admit the 

observation model as linear and we analyze the following cases for the observation model: 

• The observation model is linear and the noise is Gaussian 

• The observation model is linear and the noise is non-Gaussian 

In Table 3.1, we give the possible options that we will discuss in this section. 

For the first case of Table 3.1, we will use the following equations to model the 

state space dynamics as linear and Gaussian. 

 )()2()1()( 21 ttatat vxxx +−+−=  (3.1) 

 )()()( ttt nxy +=

 

(3.2) 
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Here, 1a  and 2a  represent the 1-D AR coefficients and v(t) and n(t) the 

measurement and the observations noise terms, respectively. The noise terms are Gaussian. 

Table 3.1. State and observation model combinations 

 

 

 

 

For Case 4, again the Eqs. (3.1) and (3.2) are valid but now the noise terms are non-

Gaussian. The non-Gaussian noise descriptions we investigated are: 

• αS noise 

• MoG noise 

In the cases five to eight, we use 2-D linear texture models in the state model 

equation. We investigated the MRF model if it can be used as a texture model instead of 1-

D linear model however they are not appropriate for filtering purposes due to their non-

causality. 

 So we tried to make the model similar to the MRF model that is shown in Fig. 3.1 

and we approximated the system with a 2-D linear model as shown in Fig. 3.2. 

In the MRF model, the center pixel is dependent on the surrounding neighbor 

pixels. Since the forward pixels are important, we cannot use it for filtering so we make the 

system casual by shifting the target pixel to the corner as shown in Fig. 3.2. This way our 

model becomes a 2-D casual linear model. 

 

 

State / Observation Model Linear, Gaussian Linear, non-Gaussian 

1-D Linear, Gaussian Case 1 Case 2 

1-D Linear, non-Gaussian Case 3 Case 4 

2-D Linear, Gaussian Case 5 Case 6 

2-D Linear, non-Gaussian Case 7 Case 8 
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w u’ v’ 

t C t’ 

v u w’ 

Figure 3.1. Second order MRF model 

The state model representation of this model that is defined in Fig. 3.2 can be given 

explicitly as follows: 

...)1,1(),1()2,()1,(),( 1,10,12,01,0 +−−+−+−+−= jixajixajixajixajix

 
),()2,2()1,2(),2()2,1(... 2,21,20,22,1 jivjixajixajixajixa +−−+−−+−+−−  

w u’ v’ 

t w’ t’ 

v u C 

Figure 3.2. Two dimensional linear model 

In implementation section, for the linear case we will analyze 1-D linear model and 

for the noncasual case, we will replace it with 2-D casual linear model. 

In the next section, we will explain the estimation procedure for 1-D and 2-D AR 

coefficients that are used in the state model. 
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3.3. Estimation of One Dimensional AR Coefficients  

In the state equation of the linear state model, the parameters 1a  and 2a  represent 

the AR coefficients and v(t) the noise. If the noise term is Gaussian, then we can estimate 

the AR parameters with the least squares (LS) method. However noise can be non-

Gaussian and in that case, LS approach can diverge from the true values. In those cases 

when the system includes outliers, robust ridge regression methods are more successful.  

 The model dynamics is represented with Eq. (3.1). LS estimation will be used for 

Case 1, Case 2 and iteratively reweighted least squares (IRLS) estimation, which is a 

robust ridge regression method, will be used for Case 3 and Case 4. 

3.3.1. Least Squares Estimation 

The most common representation for the linear prediction is 

 
∑
=

−−=
p

n

n ntxatx

1

)()(ˆ  (3.3) 

where )(ˆ tx  is the predicted signal value, x(t − n)’s are the previous observed values, and 

s'na   are the predictor coefficients. 

We would like to minimize the error in the predicted value and the actual value, 

namely, ii xx ˆ−  in the LS sense. This can be formulated by minimizing the sum of the 

square of the magnitude of the error vector [24] 

 
∑
=

−
n

i

ii

1

2
x̂x  (3.4) 

Minimizing (3.4) leads to the equation  

 YXX)Xa TT 1(ˆ −=  (3.5) 
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where Y is a vector of response variables, X is a matrix of predictor variables, namely the 

past values and â is the vector of 1-D AR coefficients. They are defined as follows 

 [ ]Tpaaa L21ˆ =a  (3.6) 
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(3.7) 

 [ ]TTtxptxptx )()2()1( −−−−−= LY

 

(3.8) 

where p is the order of the model [25]. 

 

3.3.2. Iteratively Reweighted Least Squares Estimation 

When there are outliers or collinearity in the observations, the LS approach can be 

unreliable. In those cases, robust ridge estimator is a popular alternative to LS and the new 

goal becomes to minimize 

 
∑
=

−
n

i

ii

1

)ˆ( xxρ  (3.9) 

for some function ρ . We call ρ  as the objective function and in [26], various functions 

are given that would be suitable for this purpose. In the LS case, we can see that the 

minimization becomes equivalent to (3.4). In Fig. 3.3, we display the objective function 

2)( xx =ρ  in comparison to )1log()( 2xx +=ρ  for scalars.  
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Figure 3.3. Plot of the objective functions 

Combining ridge and robust estimator, the solution for the 1-D AR parameters is 

obtained as 

 ΛYXIΛXXa TT 1)(ˆ −+= η  (3.10) 

where η  is the ridge parameter and Λ  is the diagonal elements with 

 

θ

θρ
ζ

/)ˆ(2

)/)ˆ(('

xx

xx

−

−
=i  (3.11) 

Here θ  is a robust scale parameter [26]. 

When noise is Gaussian, the solution given in (3.10) reduces to LS solution since 

the matrix consisting of diagonal elements, Λ , evolves to an identity matrix. 
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3.3.3. Comparison of the Estimation Algorithms 

In this section, we compare the accuracy of the LS and IRLS algorithms both in 

generated synthetic images and the textile fabric images. We take the 1-D linear texture 

model order, p, as two because it lessens the computational burden [7]. 

In Table 3.2, you can see the 1-D AR coefficients estimated by LS and IRLS 

methods. In IRLS method, several objective functions are tried defined in Eq. (3.9) and 

their names are given near the method name in the table. We take the ridge parameter η  as 

zero. 

The estimation procedure is accomplished with first generating the synthetic 

images with known AR parameters and non-Gaussian noise. We preferred the noise term 

as non-Gaussian because it would be easier to see the differences between these two 

algorithms. The AR parameters 24.11 =a  and 48.02 −=a  are used to generate the images. 

As a non-Gaussian noise term, MoG is formed with three clusters with means -9, 7, 2 and 

variances 20, 12 and 4, respectively. 

Table 3.2. Estimated AR coefficients by using LS and IRLS methods. The names in the 

parenthesis near the IRLS method are, different objective function calls. The image is 

generated with 24.11 =a  and 48.02 −=a . MoG noise is used consisting of three clusters 

with means -9, 7, 2  and variances 20, 12 and 4, respectively. 

Methods Estimated 1a  Estimated 2a  

IRLS('andrews') 1.1761 -0.4229 

IRLS('bisquare') 1.1758 -0.4227 

IRLS('cauchy') 1.1658 -0.4164 

IRLS('fair') 1.1583 -0.412 

IRLS('huber') 1.1644 -0.4158 

LS 1.1295 -0.3929 
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In Table 3.3, we give the estimated 1-D AR coefficients obtained from the textile 

fabric images. To get these parameters, the defect free images are used and after 

calculating the values for each image, their average is taken. 

Table 3.3. Estimated AR coefficients from the textile fabric images 

Methods Estimated 1a  Estimated 2a  

IRLS('andrews') 1.2311 -0.4887 

IRLS('bisquare') 1.231 -0.4886 

IRLS('cauchy') 1.2285 -0.4866 

IRLS('fair') 1.2266 -0.4848 

IRLS('huber') 1.2281 -0.4858 

LS 1.0951 -0.0966 

 

3.4.  Estimation of Two Dimensional AR Coefficients  

In this stage, we find the 2-D AR coefficients using LS of 2-D prediction error so it 

would be thought that the noise is Gaussian. We can represent our system with Eq. (2.47) 

and find the residual error as 

 ∑∑=
i j

jieE ),(2  (3.12) 

where, e is the error for each estimated data and it is defined as  

 ∑∑ −−−=
m n

nm njmixajixjie ),(),(),( ,  (3.13) 

To minimize the residual error in (3.12), we solve the equation   

 raR =ˆ  (3.14) 
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where the parameters â, r and R  are defined as follows [27]:  

 [ ]TSSaaa 1,12,01,0ˆ −−= La

 

(3.15) 
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Here, â is the 2-D AR coefficients vector, r is the correlation vector and R is the 

correlation lag matrix. The number of prediciton coefficients p ise determined according to 

the prediction mask size. If the mask size is defined with a SxS quarter plane, then p is 

found as 12 −= Sp .  

 The elements ),( 21 ddφ ’s in the correlation vector r and the correlation matrix R 

are actually one dimensional mapping of the 2-D correlation entries. 

 
∑∑ −−−−=
m n

Sdn
S

d
mxSdn

S

d
mxdd )),mod(,()),mod(,(),( 2

2
1

1
21φ  (3.18)

The solution procedure after this step is similar to the one explained in LS. 

Applying the algorithm to textile fabric images with a 3x3 prediction mask, we get the 

estimated 2-D AR coefficients as follows: 
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So far we have tried to find the AR parameters of the state model for different 

cases. Now we can look at each of these cases that are cited in Table 3.1. 
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3.5. Case Implementations and Results 

In this section, the state and observation model combinations given in Table 3.1 are 

going to be implemented one by one. To compare the performances of our Bayesian 

approach and the filter types, we give the results obtained from another texture analysis 

method done by Sezer et al. [28] in Table 3.4. They used the same TILDA database and 

the quantitive performance evaluation in their work so the comparison would make sense.  

In the quantitive performance evaluation, false alarm rate is given in the format as 

(Number of sub-windows with false alarm : Total sub-windows), shortly (FW : TW), and 

it is represented with the image folder ending with ‘E0’ that is full of defect free images. 

For a given textile type, we calculated 19200 total sub-windows of defect free images but 

Sezer et al. used 17250 sub-windows in their implementatiton so we normalize the false 

alarm rate obtained in their work. Correct classification evaluation is shown in the format 

as (Missed images : Total images), shortly (MI : TI), and it is represented with the 

defective image folders. 

Table 3.4. Quantitive performance evaluation of the work done by Sezer et al. 

 C1R1E0 

FW : TW 

C1R1E1 

MI : TI 

C1R1E2  

MI : TI 

C1R1E3  

MI : TI 

C1R1E4  

MI : TI 

Total Miss  

MI : TI 

Sezer et al. 75 : 19200 0 : 50 0 : 50 2 : 50 1 : 50 3 : 200 

3.5.1. Case 1: State and Observation Models are Linear, Their Noise Terms are 

Gaussian 

If the system can be described in terms of this model representation, then in theory 

we know that Kalman filter gives the optimum solution. We will start with the Kalman 

filter and compare its results with other filter types. 

 

 



  37 
 

3.5.1.1. Kalman Filter Approach. If we assume that our environment is linear and 

Gaussian, then we can write our state space model as  

 )( ~    ,         ttt Q0,v vFxx N)()()1( +=+  (3.19) 

 )( ~     ,         ttt R0,nnHxy N)()()( +=

 

(3.20) 

 Putting the parameter values in the correct places, we get F and H matrices as 

follows:  

 








=

01
21 aa

F   

 [ ]01=H

 

 

 Here 1a  and 2a  are the 1-D AR coefficients that are estimated offline using the 

LS method that is discussed in section 3.2.1. Now, F and H matrices are available and 

using these matrices, we find the states kx  with the equations defined in section 2.3. The 

results obtained from the Kalman filter are given in Table 3.5 and some of the labeled 

images acquired from the implementation are shown in Appendix B.1. 

3.5.1.2. EKF and UKF Approach. Actually EKF and UKF approaches are useful when the 

state space models are nonlinear. Here our models are linear so we implement these filters 

to show that the results obtained would not change much compared to Kalman filter. 

1-D AR coefficients are again obtained offline with the same procedure as used in 

Kalman filter approach. For EKF implementation, we find the F̂  and Ĥ  matrices from the 

first order Taylor series expansion defined in Eqs. (2.17) and (2.18) which gives us  

 [ ]21
ˆ aa=F   

 [ ]1ˆ =H

 

 

 Using these matrices, we estimate the states kx  with the equations defined in 

section 2.3.1. 
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 The implementation of UKF is started with the calculation of sigma points and 

their associated weights and ended with the update of the mean and covariance values for 

each of the observed data. We followed the procedure given in Appendix A.1.   

3.5.1.3. Particle Filter Approach. In particle filter approach, we first initialize the state 

vector and find the predicted states using the state model given in Eq. (3.1). Here, we again 

use the AR parameters estimated using the LS method. As the new observation data 

becomes available, we calculate the weights using Eq. (2.38) because the importance 

density is taken as the transition prior. Since the observation noise is Gaussian, the weights 

are calculated using the Gaussian density function  

 
)

2

)(
exp(

2

1
2

R

xy

R
w

i
kki

k

−
−=

π
  

where ky  is the new observation obtained at time k , i
k

x  is the hidden state and R is the 

variance. Then resampling is done to reduce the effects of the degeneracy problem. The 

procedure we followed in resampling can be found in Appendix A.3. 

In particle filter approach, the number of particles and the sub-window size are the 

two main factors that can affect the filter’s performance. We tried different number of 

particles, N, ranging from 15 to 100 and different sub-window sizes ranging from 8x8 to 

32x32 but we observed that the performance rates were not changing dramatically. So 

refering to the work done by  Basibuyuk et al. [7], we found it suitable to take the number 

of samples N = 15 and the sub-window size as 32x32 after this time. The results obtained 

from the particle filter are given in Table 3.5 and some of the labeled images acquired from 

the implementation are shown in Appendix B.2. 

3.5.1.4. Auxiliary Particle Filter Approach. In this approach, we have one more step 

compared to particle filter. The resampling stage is done at the previous time step so that 

the particles selected can be closer to the true state. The remaining steps are identical with 

particle filter approach. The procedure we have followed can be found in Appendix A.5. 
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The performance evaluation of all filter types discussed in Case 1 is given in Table 

3.5.  

Table 3.5. Quantitive performance evaluations for various filter types in Case 1 

Filters 

C1R1E0 

FW : TW 

C1R1E1 

MI : TI 

C1R1E2  

MI : TI 

C1R1E3  

MI : TI 

C1R1E4  

MI : TI 

Total Miss  

MI : TI 

Kalman 62 : 19200 0 : 50 2 : 50 1 : 50 6 : 50 9 : 200 

EKF  61 : 19200 0 : 50 2 : 50 2 : 50 6 : 50 10 :200 

UKF  62 : 19200 0 : 50 2 : 50 2 : 50 6 : 50 10 : 200 

Particle 63 : 19200 0 : 50 2 : 50 1 : 50 6 : 50 9 : 200 

Auxiliary 46 : 19200 12 : 50 2 : 50 7 : 50 7 : 50 28 : 200 

 We display some of the sample pictures randomly selected from the filter 

implementation results in Fig. 3.4. The images on the left side of the figure displays the 

textile fabrics before the implementation and the ones on the right side shows the labeled 

situations after the implementation.  

3.5.2.   Case 2: State and Observation Models are Linear, State Noise is Gaussian but 

Observation Noise Term is non-Gaussian 

From now on, particle filters will be used because Kalman filters are implemented 

for a linear and Gaussian environment case and they would not give better results for the 

cases that are going to be discussed. 

As one class of non-Gaussian noise, αS family is used. The following equation is 

employed to calculate the weights in the update stage: 
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(a)

(c)

(e)

Figure 3.4. An illustration of 

defective images; (b), (d) and (f) are their labeled situations, respectively.

The parameters that are 

the resources [29] and [30

 

 

(a)      (b)

 

(c)      (d)

 

(e)      (f)

An illustration of defect labeling on test images. Figures (a), (c), (e) are 

defective images; (b), (d) and (f) are their labeled situations, respectively.

The parameters that are utilized in the weight update equation are estimated using

[30] and they are found as 

40 

 

(b) 

 

(d) 

 

(f) 

Figures (a), (c), (e) are 

defective images; (b), (d) and (f) are their labeled situations, respectively. 

equation are estimated using 
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This reveals that the distribution is very close to a Gaussian distribution. In all our 

trials we observed that α was close to 2 and the distributions were not much heavy tailed as 

shown in Fig. 2.9. Thus, the implementation of the particle filter with this observation 

noise is done and the results did not change much. 

3.5.3. Case 3: State and Observation Models are Linear, State Noise is non-Gaussian 

but Observation Noise Term is Gaussian 

 Since the state noise is non-Gaussian, 1-D AR coefficients are estimated using the 

IRLS algorithm. As a non-Gaussian state noise, αS and MoG noise terms are tried 

separately. Now the state model equation takes the form 

           )()2(48.0)1(23.1)( tttt vxxx +−−−=   

When we regard the noise term as αS, we take the samples from the distribution 

that is generated with the parameters (α, β, γ, δ). 

When we regard the noise term as MoG, we take the samples from the distribution 

that is formed with combining the Gaussian clusters as shown in Fig 2.10. In our case, the 

number of clusters is taken as n = 3 and MoG noise term is constructed from the samples 

that are drawn from the Gaussian distributions ).,.(z 9859,1  N − , ),(z 7.6 N 2.7,2  and 

).,(z 53.2,3 4 N , respectively. 

The performance evaluation acquired running those two implementations are given 

in Table 3.6. 
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Table 3.6. Quantitive performance evaluations for particle filter whose observation noise is 
Gaussian 

State noise 

C1R1E0  

FW : TW 

C1R1E1  

MI : TI 

C1R1E2  

MI : TI 

C1R1E3  

MI : TI 

C1R1E4  

MI : TI 

Total Miss  

MI : TI 

MoG 58 : 19200 1 : 50 2 : 50 1 : 50 6 : 50 10 : 200 

αS 58 : 19200 0 : 50 2 : 50 1 : 50 6 : 50 9 :200 

3.5.4.  Case 4: State and Observation Models are Linear, Their Noise Terms are non-

Gaussian 

 Since the state noise is non-Gaussian in this case, we again estimate the 1-D AR 

parameters with IRLS algorithm and use the following state space model: 

           )()2(48.0)1(23.1)( tttt vxxx +−−−=   

         )()()( ttt nxy +=

 

 

In case 2, we implemented the situation in which the observation noise n(t) was 

non-Gaussian and in case 3 the implementation is done when the state noise v(t) was non-

Gaussian. Combining these two dynamics, we make both of the noise terms non-Gaussian. 

For the non-Gaussian observation noise, the implementation results are shown in 

Table 3.7. 

Table 3.7. Quantitive performance evaluations for particle filter whose observation noise is 
non-Gaussian 

State noise 

C1R1E0  

FW : TW 

C1R1E1  

MI : TI 

C1R1E2  

MI : TI 

C1R1E3  

MI : TI 

C1R1E4  

MI : TI 

Total Miss  

MI : TI 

MoG 60 : 19200 1 : 50 3 : 50 1 : 50 6 : 50 11 : 200 

αS 60 : 19200 3 : 50 4 : 50 2 : 50 6 : 50 15 :200 
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3.5.5.  Cases 5-8: State Model is 2-D Linear, Observation Model is Linear 

 In all of these cases from 5 to 8, we are using 2-D linear model defined in Eq. 

(2.47) as the state model. In this model type, the number of AR coefficients to be estimated 

is determined by the prediction mask size. We selected a 3x3 prediction mask and found 

eight 2-D AR parameters as shown in section 3.3. 

The state and observation noise terms are defined in each case like 1-D linear 

model. In Table 3.8, all the results obtained from the filter implementations are given for 2-

D linear state model and we display some of the labeled images acquired from the 

implementation are shown in Appendix B.3. 

Table 3.8. Quantitive performance evaluations for particle filter in which the State Model 

is 2D linear, Observation Model is linear but Noise Terms change from Gaussian to non-

Gaussian. 

Cases 

C1R1E0  

FW : TW 

C1R1E1  

MI : TI 

C1R1E2  

MI : TI 

C1R1E3  

MI : TI 

C1R1E4  

MI : TI 

Total Miss  

MI : TI 

Case 5 87 : 19200 0 : 50 1 : 50 1 : 50 6 : 50 8 :200 

Case 6 88 : 19200 0 : 50 2 : 50 1 : 50 6 : 50 9 :200 

Case 7 73 : 19200 0 : 50 2 : 50 1 : 50 6 : 50 9 :200 

Case 8 75 : 19200 0 : 50 2 : 50 1 : 50 6 : 50 9 :200 

So far from the performance evaluations, we can conclude that the textile fabric 

images are suitable for a linear and Gaussian state space model. The data does not contain 

much outlier so Kalman filter types can give the optimum. Now we will try to add noise to 

our images to make the tails heavier as displayed in Figure 2.9 and then we compare the 

performances of the filters as a response to this change. 
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3.6. Noise Addition to the Images 

 To represent the outlier in the textile fabric image, we supposed that salt and pepper 

noise would be a good candidate for this purpose. Salt and pepper noise generally occurs 

when the camera sensors have a problem and when it causes them to malfunction. If the 

image is represented with 8 bits, then the intensity value for salt and pepper noises are 255 

and 0, respectively. 

In Fig. 3.5, we show the original images and the ones that include salt and pepper 

noise with specific noise densities. The noise density means that the specified proportion of 

the pixels are noisy in the  image. The distribution between salt and pepper is fifty per cent. 

 After the addition of salt and pepper noise to the fabric textile images, it is assumed 

that the images cannot be modeled with Gaussian distribution anymore. Now the images 

contain impulsive noise and it should be represented with a non-Gaussian noise. According 

to this fact, we decided to try our filter types on this data and see the changes in the results. 

 While running the algorithms, we took the noise density as 0.1. First we 

implemented the Kalman filter for Case 1 and ignored other Kalman filter types because 

any change in the system nonlinearity did not occur. Then, we run the particle filter for 

Case 3 and Case 4 with different number of particles. In section 3.5, we concluded that the 

performance evaluations were almost same for N = 15 and N = 100 without adding the 

noise to the images. However, we observed that an improvement in the performance can 

occur if the number of particles is increased in the noisy environment because it is 

expected to approximate the posterior density more accurately when the system is non-

Gaussian. The performance evaluations we obtained are given in Table 3.9 and some of the 

labeled images acquired from the implementation are shown in Appendix B.4. 

 

 



 
 

Figure 3.5. Defect free image and 

situations with noise densities

  

  

 

 

 

(a)       

 

(c)       

 

(e)       

efect free image and the defective image are shown in (a) and (b). Their noisy 

densities 0.1 and 0.3 are shown in (c), (d) and (e),
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(b) 

 

(d) 

 

(f) 

defective image are shown in (a) and (b). Their noisy 

and 0.3 are shown in (c), (d) and (e), (f), respectively. 
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Table 3.9. Quantitive performance evaluations when noise is added to textile fabric images 

Filters 

C1R1E0  

FW : TW 

C1R1E1  

MI : TI 

C1R1E2  

MI : TI 

C1R1E3  

MI : TI 

C1R1E4  

MI : TI 

Total Miss  

MI : TI 

Kalman 3 : 19200 38 : 50 50 : 50 43 : 50 36 : 50 167 : 200 

Particle (Case 3) 66 : 19200 1 : 50 4 : 50 4 : 50 9 : 50 18 : 200 

Particle (Case4) 25 : 19200 14 : 50 12 : 50 18 : 50 17 : 50 61 : 200 

 

3.7. Time-performance Analysis 

The implementation of the algorithms is run on a notebook that has Intel Core2 

2.00GHz CPU and 1.00 GB RAM. The speed of the implementation was affected with the 

sub-window size and the number of samples for particle filter case. We decided to use the 

window size as 32x32 and the number of samples as 15 to achieve the optimum 

performance rate which was constrained by the time of the operation and the performance 

of the filter. In Fig. 3.9, we show the total number of missed images, number of sub-

windows with false alarms and the time of the operation spent for each image. 

 

Figure 3.6. Time-performance analysis of various filter types 
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4. CONCLUSIONS AND DISCUSSIONS 

Various filter type implementations are explained and their performance 

evaluations are given in implementation section. In all of this work, we tried to determine 

the characteristics of the textile fabric images and find the best filter for these images in 

terms of both achieved performance rate and the operation time spent to run the 

algorithms.  

From Table 3.2, we concluded that IRLS algorithm gives more accurate results than 

the LS algorithm if the data contains non-Gaussian noise. Thus, we expected to have 

higher achievement rates when the filters run in a non-Gaussian environment. However, 

we obtained almost same results when the state noise term was changed from Gaussian to 

non-Gaussian as can be seen in Tables 3.5 and 3.6. Before running the filters, we supposed 

that αS noise would be a good candidate to model textile fabric images but its estimated 

parameters showed us that the distribution adapting to these images was very similar to a 

Gaussian distribution. It induced us to assume that the state model noise term is close to a 

Gaussian distribution. On the other hand, making the observation noise term non-Gaussian 

decreased the performance rates as shown in Tables 3.7 and 3.9. It also makes us to think 

that the observation noise term to be Gaussian is highly probable. 

From the results in Table 3.5, we observed that the Auxiliary particle filter does not 

give better results than the particle filter. In theory, it can give better results if the 

likelihood is located in the tails of the prior so from our performance evaluations we can 

conclude that the likelihood and the prior coincides in our system. 

In Tables 3.5 and 3.8, we can see that Kalman filter and their versions of EKF and 

UKF give almost same success rates with the particle filters that are run in both 1-D and 2-

D linear state model. It shows us that the textile fabric images are suitable to represent 

them in a linear and Gaussian system environment. 
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However, from the theoretical definitions and practical implementations we know 

that particle filters outperform Kalman filters if the system is nonlinear and non-Gaussian. 

To make the system similar to a non-Gaussian one, we decided to include outlier data in 

the images and consequently we added salt and pepper noise to them. Since it makes the 

tails heavier in a Gaussian distribution, it is no more convenient to represent the images 

with a Gaussian noise density. The results obtained in this manner in Table 3.9 showed us 

that the particle filter can yield better results than the Kalman filter. What is more, it should 

be noted that the performances of all filter types have dropped due to noise effect.  

Also we can conclude that without adding noise to the images, Kalman filter would 

be the optimal filter type to use in this environment because it can give highly accurate 

results as other filter types but less operation time is needed to run it. 

Finally, we can conclude that the Bayesian approach to textile defect detection 

problem does not give high defect detection rates as the texture analysis method of Sezer et 

al. [28] but it gives less false alarm rates compared to it. 

4.1.  Future Work 

To model the fabric textile images in a state space model, we looked for finding a 

suitable texture model and a noise type that fits well to these images. For this purpose, we 

tried several approaches that exist in the literature. It would be a good improvement if a 

nonlinear texture model can be developed to describe the fabric textile images. However it 

should be noticed that the technique should be causal since filtering deals with the past 

data. 

Also in particle filter implementation, we were using the transition prior as 

proposal density. There can be done more study on the filter to make the proposal density 

better. As the proposal density coincides with the likelihood more and more, the 

performance of the filter increases. 

Finally one of the most important things that should be improved is the speed of the 

algorithms that are implemented. We tried to make them as fast as possible without 

dropping the success rate but there is still need to work on it. 
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APPENDIX A: ALGORITHMS 

A.1. Unscented Kalman Filter Algorithm 

Initialize the state vector x and covariance matrix xP .  

 to Tfor k = 1  

Calculate sigma points kX  and their weights iW  with (2.25) and (2.26). 

Use the state model to find 
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end 

A.2. SIS Particle Filter Algorithm 
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A.3. Resampling Algorithm 
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• Initialize the cumulative sum of weights (CSW)  1
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for i = 2 : N 
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A.4. SIR Particle Filter Algorithm 
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A.5. ASIR Particle Filter Algorithm 
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APPENDIX B: SAMPLE

B.1. Samples 

(a) “C1R1E1\C1R1EACB.TIF”

(c) “C1R1E2\C1R1E2N6.TIF”

(e) “C1R1E3\C1R1EAHX.TIF”

 

APPENDIX B: SAMPLES FROM THE IMPLEMENTATIONS

B.1. Samples from the Kalman Filter Implementation

 
C1R1EACB.TIF”  (b) Labeled defective image in (a).

 
C1R1E2N6.TIF”  (d) Labeled defective 

 
C1R1EAHX.TIF”  (f) Labeled defective image in (e).
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FROM THE IMPLEMENTATIONS 

the Kalman Filter Implementation 

 
Labeled defective image in (a). 

 
(d) Labeled defective image in (c). 

 
(f) Labeled defective image in (e). 



 
 

B.2. Samples f

(a) “C1R1E1\C1R1EACB.TIF”

(c) “C1R1E2\C1R1E2N6.TIF”

(e) “C1R1E3\C1R1EAHX.TIF”

 

. Samples from the Particle Filter Implementation

 
C1R1EACB.TIF”  (b) Labeled defective image in (a).

 
C1R1E2N6.TIF”  (d) Labeled defective 

 
C1R1EAHX.TIF”  (f) Labeled defective image in (e).
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Implementation 

 
(b) Labeled defective image in (a). 

 
(d) Labeled defective image in (c). 

 
(f) Labeled defective image in (e). 

 



 
 

B.3. Samples f

(a) “C1R1E1\C1R1EACB.TIF”

(c) “C1R1E2\C1R1E2N6.TIF”

(e) “C1R1E3\C1R1EAHX.TIF”

 

 

. Samples from the Particle Filter Implementation

 
C1R1EACB.TIF”  (b) Labeled defective image in (a).

 
C1R1E2N6.TIF”  (d) Labeled defective image in (c).

 
C1R1EAHX.TIF”  (f) Labeled defective image in (e).
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Implementation in 2-D 

 
(b) Labeled defective image in (a). 

 
defective image in (c). 

 
(f) Labeled defective image in (e). 



 
 

B.4. Samples from the 

(a) Noisy “C1R1E1

(c) Noisy “C1R1E2

(e) Noisy “C1R1E3

 

rom the Particle Filter Implementation with Noisy Images

 
“C1R1E1\C1R1EACB.TIF” (b) Labeled defective image in (a).

 
C1R1E2\C1R1E2N6.TIF” (d) Labeled defective image in (c).

 
E3\C1R1EAHX.TIF” (f) Labeled defective image in (e).
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with Noisy Images 

 
(b) Labeled defective image in (a). 

 
(d) Labeled defective image in (c). 

 
(f) Labeled defective image in (e). 
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