
IMPLEMENTATION OF CONTINUOUS POMDP ALGORITHMS ON

AUTONOMOUS ROBOTS

by

Derya Sezen

BS, in Computer Engineering, Galatasaray University, 2003

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in System and Control Engineering
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ABSTRACT

IMPLEMENTATION OF CONTINUOUS POMDP

ALGORITHMS ON AUTONOMOUS ROBOTS

Uncertainty is a fundamental problem for autonomous agents in a partially ob-

servable real world, where the sensors are not able to give the complete state of the

environment. Although the outcomes of actions are not predictable, the agents must

behave rationally. Furthermore, continuous nature of the environment makes the prob-

lem more difficult to model.

Markov Decision Process (MDP) is a way to model this kind of problems. Par-

tially observable Markov decision process (POMDP) is an extension of MDP which

can be used in environments which are not fully observable. In order to model the real

world, the continuous states must be converted to discrete states.

The aim of this work is to model the real world environment and implement

ARKAQ learning algorithm which is suitable for Partially observable Markov decision

problems (POMDPs).

The experiments are realized with Sony AIBO four-legged robotic pets under

Webots simulation environment. Two problems are studied: “Ball Approaching” and

“Scoring Goal”. The predefined targets are achieved by the robots and the results in

goal scoring show that ARKAQ is clearly much more successful compared to random

actions. The optimality of the results are discussed and the parameters that affect the

optimality are explained.
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ÖZET

OTONOM ROBOTLAR ÜZERİNDE SÜREKLİ KGMKS

ALGORİTMALARININ UYGULANMASI

Belirsizlik, otonom robotlar için, duyargaların gerçek dünya gibi tüm ortam du-

rumunu tam olarak yansıtamadığı hallerde başedilmesi gereken temel problemlerden

biridir. Gerçekleştirilen eylemlerin sonuçlarının ne olacağı önceden bilinmese dahi et-

menlerin mantıklı davranışlar içinde bulunmaları beklenmektedir. Bunun yanında or-

tamın aralıksız dağılımlı zaman yapısı problemi daha da zor hale getirmektedir.

Markov Karar Yöntemleri bu tip ortamların modellenmesi için uygundur. Kısmen

Gözlemlenebilir Markov Karar Süreçleri ise bütünüyle gözlemlenmesi mümkün olmayan

ortamlar için tercih edilmektedir. Bu yöntemlerle ortamın modellenebilmesi için, gerçek

dünyanın aralıksız dağılımlı yapısının aralıklı hale getirilmesi gerekmektedir.

Bu çalışmanın amacı gerçek dünyayı modelleyerek, Kısmen Gözlemlenebilir Markov

Karar Süreçlerine uygun öğrenme algoritmalarının gerçek robotlar üzerinde uygulan-

masıdır.

Deneyler Sony’nin dört bacaklı AIBO köpek robotları üzerinde, Webots simu-

lasyon ortamı kullanılarak gerçekleştirilmiştir. İki farklı problem üzerinde algoritmalar

uygulanmıştır: “Topa Yaklaşma” ve “Gol Atma”. Robotların önceden verilen hedeflere

ulaşmayı başardıkları ve gol skorlarında rastgele verilen kararlara nazaran daha başarılı

oldukları gözlemlenmiştir. Sonuca ulaşırken gerçekleştirilen eylemlerin optimum olup

olmadığı tartışılmış ve bunu etkileyen parametreler açıklanmıştır.
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1. INTRODUCTION

Uncertainty is the main problem for an agent which interacts with the real-world.

Unlike the early days in AI, planning under uncertainty and giving accurate decisions

has become to play a crucial role, whenever the sensors are inaccurate, effectors are lim-

ited, the state is partially observable, the environment is dynamic and noisy. Without

having some solutions for these dynamics, the agent cannot survive in a real-world.

A human being can be considered as an autonomous agent. Although the real-

world is partially observable and has many uncertainty issues, the human-being can

survive mostly by using its past experiences. As an example, for a small baby, a heater

in the house is a partially-observable issue because, externally, it seems like a regular

object. After touching the heater first time and having a pain, the baby learns this

object and will not touch it again by taking into consideration the past experience.

In order to model the environment, we need an approach which, incorporating

the past experiences, devises a solution for the uncertainty. Markov Decision Processes

(MDP) [1, 2, 3] is a model which has two assumptions related to these dynamics: The

first one is that the environment can be defined probabilistically and the second one,

which is also referred to as first-order Markov assumption, is that the historical data

how the agent has arrived to the current state is not taken into account; in other words,

the future is independent of the past knowledge. MDP model implicitly exploits the

past experience.

The main problem on implementing the Markov model to the real world problems

is that, it assumes the environment to be fully-observable which, however, is not.

So we have to consider the world as Partially Observable Markov Decision Processes

(POMDP) [4, 5] and construct a model based on this approach.

The sensory environment provides an agent the information about the environ-

ment. The agent makes observations by using this information. These observations
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helps the agent to infer the state that it is currently belong to. The continuous envi-

ronment states, must be converted to discrete states in order the agent to decide which

state it belongs to and give a decision upon to that. Adaptive Resonance Theory

(ART) [6] is a convenient method to segment the continuous real-world environment.

The second problem is that, the data provided by the sensory environment can be

incomplete and noisy which will make the ART network to produce undesired results.

We’ll be implementing Kalman Filter [7, 8] on top of the ART network, which will

assure that the data provided to be more accurate.

The agent is expected to give decisions in order to achieve to its goal. These

decisions are basicly the actions that the agent is able to perform. The role of the

policy generator is to give the decisions by considering the goal and the current state.

As a policy generator, we’ll be using Q-Learning [9].

1.1. Aim of the Thesis

The aim of this work is to implement the ARKAQ Learning [10] which was

proposed as a solution to POMDP problems. ARKAQ Learning model relies on an

effective integration between Kalman Filter, ART-2 networks and Q-Learning.

The algorithms are implemented on AIBO [11] robots, coded under C++ on top

of Cerberus [12] codebase.

There are two case problems that are studied: The first one is “Ball Approach-

ing” in which AIBO tries to learn how to approach to the ball, the second is “Goal

Achieving” in which AIBO tries to learn how to score a goal.

1.2. Thesis Outline

In chapter 2, we’ll be describing the background elements of the thesis in details,

which are Reinforcement Learning, Q-Learning, Markov Decision Processes (MDPs),
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Partially Observable Markov Decision Processes (POMDPs), Adaptive Resonance The-

ory (ART) and Kalman Filter.

In chapter 3, we’ll be defining the ARKAQ Learning model which relies on the

elements that are described in chapter 2.

In chapter 4, we’ll define the details of implementation of the algorithms, espe-

cially defining the different types of implementation in state segmentation.

In chapter 5, we’ll be examining the two problems with different dynamics and

we’ll be giving the results that are taken.
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2. BACKGROUND

2.1. Reinforcement Learning

Reinforcement Learning (RL) [13, 14, 15] is an unsupervised machine learning

technique in which an agent tries to find the best actions with a trial-error process by

considering the predefined environmental rewards.

RL tries to maximize the reward received. As the agent is not told which actions

to take, it tries to find a mapping from states to actions to this effect. The actions

taken may affect the next state rewards and all subsequent rewards as well. Trial-error

period and delayed-reward are two fundamental features of reinforcement learning.

The main requisite of RL is a well characterized learning problem. Basically, the

agent should sense the state to an extent, related to the problem, from the environment

in order to achieve to the goal. Sensation, action and goal are the three aspects of RL.

In supervised learning (SL) the correct input and output pairs are given by a

supervisor, which is the factor that differentiates it from unsupervised learning. SL

is not an adequate method for learning from interaction because it is impractical and

sometimes impossible to provide all possible situations and the desired behaviours.

Especially, in an uncharted territory the agent must be able to learn from experience.

The trade-off between exploration and exploitation is a challenging problem in

RL. The agent should try actions it has not selected before, which is called exploration,

in order to make better action selections in the future. Beside that, the agent can

consider its past experiences by performing the actions that it can obtain more reward

which is called exploitation.

RL tries to achieve predefined goals in an uncertain environment. Even if the

agent has an explicit goal, has sensations and decides which action to perform, it has
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to deal with that uncertainty. In some cases RL involves planning and gives real-time

decisions meanwhile.

Figure 2.1. Reinforcement Learning, Agent World

Figure 2.1 describes a typical Reinforcement Learning agent world. The agent

interacts with the environment through its sensors s and actions a. By considering the

indication I, the agent makes an observation o and an appropriate action is choosen

by the policy π. The same sensory inputs also provides information whether a reward

or punishment is received from the environment by R.

2.1.1. Optimal Policy

Before implementing the policy, we must decide the optimality model which de-

fines how the future will be taken into account before giving a decision. There are
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three models for finding the optimal policy in Reinforcement Learning:

1. Finite-Horizon Model: The agent tries to find an optimal policy for the next k

steps. Expected reward for the next k steps is defined by:

E

(

k
∑

t=0

r(t)

)

(2.1)

where r(t) is the scalar reward received in t steps.

This model can be implemented by giving a decision considering k next steps and

in next state considering k-1 steps until 1 step remains or giving decisions always

considering k next steps.

2. Discounted Infinite-Horizon: The agent tries to find the long-term reward. The

future rewards are geometrically discounted according to the discount factor γ.

E

(

∞
∑

t=0

γtr(t)

)

(2.2)

γ prevents the sum to be infinite.

3. Average Reward Model: The agent tries to optimize its long-term reward

limk→∞E

(

1

k

k
∑

t=0

r(t)

)

(2.3)

Figure 2.2 is an example indicating these three optimal policies. In the figure,

the circles are states and arrows are state transitions. Initial state is the one on

the upper left. The labeled arrows produce the indicated rewards and unlabeled

arrows produce zero reward. If the horizon length is 5, for finite-horizon model,

the related rewards will be +6, 0, 0 so the upper first action should be the choice.
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If the horizon is infinite, related rewards will be +16.2, +59, +58.5 so the infinite

horizon model must be preferred.

Figure 2.2. 3 models of Optimal Policy [14]

The finite-horizon model is suitable in the case where the agent’s lifetime is known.

The other two models are dependent on the horizon length but the average reward

model does not need a discount factor which differentiates it from the infinite

horizon model.

2.1.2. Measuring Learning Performance

The quality of learning can be evaluated by some measures:

1. Convergence to optimal behaviour: This measures the reliability of the algorithm

in terms of eventual optimality. An agent that can reach up to 99 percent op-

timality in short time can be preferable to the agent that reaches to optimal

behaviour in long time.

2. Speed of convergence: In order to measure the speed, the definition of the con-

vergency must be well defined. An algorithm that tries to reach the optimality

quickly may encounter penalties during the learning period. Generally, more time

consuming but more guaranteed method is the choice.

3. Regret: Instead of applying the optimal policy initially, the punishments from the

environment can be evaluated during the run. The expected decrease in reward
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is called regret.

2.1.3. Exploration versus Exploitation

In Reinforcement Learning, the agent must explore the environment which is the

major difference from supervised learning. By selecting the least selected actions, it

can explore the environment.

N-armed bandit problem [16] is an example of a simple reinforcement learning

case. There are k gambling machines and the agent is permitted h times to pull an

arm and any arm may be pulled each time. The machine pays off one or zero after

an arm i is pulled which is a probability pi and each machine has its own probability.

This problem shows the trade-off between exploration and exploitation. Exploration

means trying different machines, but its risky and may have uncertain pay offs.

Briefly, exploration speeds up convergence but risks to encounter uncertain re-

wards. On the other hand, exploitation gets better rewards but risks to a late conver-

gency to an optimal policy. There is not a definite answer to this problem, the aim

should be making a balance between two.

2.1.4. Goals and Rewards

In reinforcement learning, the goal can be a state or a special reward signal to the

agent from the environment. The agent aims to maximize long term rewards instead

of maximizing immediate rewards.

For example, in a maze environment where an agent tries to get to a goal location,

the reward is zero for every state different from the goal state and one for the goal state.

Another approach gives -1 reward in every state different from the goal state and gives

one for goal state.

Rewards in reinforcement learning are computed in the environment. If we take
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an animal’s behaviour into account, the goals are computed inside their bodies. In

order to implement this to reinforcement learning, the related body sensors like food,

hunger, pain and pleasure may be considered as enviromental signals. The main idea

placing the goal signals outside the agent is that, the agent should not have any control

over these signals.

2.2. Markov Decision Processes (MDP)

In Reinforcement Learning, the environment must rely on a model which provides

the agent an accurate infrastructure in order to behave rationally. This infrastructure

should contain environmental signals as states and other environmental properties.

The state of the agent can be inferred from any signal it can receive from the environ-

ment. Particularly, the state signal must contain immediate sensations and all possible

signals from the environment, but the state signal cannot include everything about the

environment. For example, if the agent is waiting for a taxi, it cannot know whether a

free taxi is approaching or not. As an another example, if the agent is answering to a

analog-line phone, without a caller-id box, we should not expect it to know the caller.

Eventually, there are hidden environmental signals that cannot be received but the

agent is expected to utilize all possible non-hidden environmental signals. The Markov

state is the signal that retains all the relevant information about the environment and

should contain a summary of past sensations. As an example, the current position of

the pieces on a checkers board is a Markov state because it has a summary of all past

movements but not all the sequences one by one.

Markov Decision Processes (MDP) [1, 2, 3] is a discrete time non-deterministic

process, which is characterized by a set of states and possible actions. The agent

needs to make decisions (actions) in order to make transitions within the states. The

transition function defines the transition probability to the next state. For each state,

the agent receives reward from the environment. Briefly, MDP is defined as a tuple

〈S, A, T, R〉 where,

• S is the set of environment states. State can be defined as a vector that consists of
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the environmental features. This is used to learn about the changing environment.

• A is the set of actions. For every state, a set of possible actions exists in order to

make a transition to another state.

• ℜ is the reward function S x A → R . The measure how the action resulted is

called reward. It is used for comparing the results of different actions.

• T is the state transition function SxA → Π(S) which is a probability distribution

over states. An action may have different effects depending on the state that it is

performed on. For each state, we have to define the results of all possible actions.

Since MDP is a stochastic process, a result of an action may be probabilistic.

That’s why this function is defined as a probability distribution. In case where

the actions are deterministic, T would be SxA → (S)

Figure 2.3. MDP Representation

Figure 2.3 is a graphical representation of a MDP. Since the environment is fully-

observable, the states are given as input signals, therefore the agent states are the

same with the environment states. Rt is immediate reward. After taking action At,

the environment state becomes St+1.

Figure 2.4 illustrates the probabilistic state transition model in MDP. The values

on the arrows represent the probability of the related transition. The sum of the
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Figure 2.4. MDP State Transitions

probability of a transition, for instance performing action A2 on state S2, is equal to

1. The spiral arrows represent rewards or punishments.

In some cases, the resulting state of an action depends on the last n states. This

is called n-th order Markov assumption. In general, n is accepted as 1 which is called

first-order Markov assumption. As a result, the agent chooses an action based only

upon the current state:

P (qn|qn−1, qn−2, ..., q1) = P (qn|qn−1) (2.4)

where q is the observation of the current state.
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Briefly, in MDP the goal is to maximize the cumulative discounted reward:

∞
∑

t=0

γtR(st) (2.5)

where γ is the discount rate and 0 < γ < 1

∏

is defined as policy, which is a mapping from S to A, giving which deci-

sions(actions) to be taken:

∏

1

(x) = argmax
a

R(s, a),
∏

: S → A (2.6)

MDP assumes the environment to be fully observable, which means the resulting

state by performing an action will be definitely known by the agent.

2.2.1. Value Iteration Algorithm

MDP is defined as a tuple 〈S, A, T, R〉 as described in the previous section. The

goal is to figure out the best actions for each state for the given horizon length.

The Value Iteration Algorithm begins with finding the values for horizon length

1. Since we have the immediate rewards, the action with the highest immediate reward

is chosen for the related state. For the horizon length 2, the value of the horizon length

1 is added to value of the next action to be chosen. This process continues until we

reach the desired horizon length.

Value Function (V) is the discounted sum of rewards of the related policy. V

value for horizon length one is:

V1(x) = γmaxR(s, a) (2.7)
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Dynamic Programming (DP) [17] allows us to determine the Value Function for

a given horizon length. The following equation is called as Bellman equation [17]:

V (s) = max
(

R(s, a) + γ
∑

T (s, a, s′)V (s′)
)

(2.8)

By iterating the procedure, we obtain V ∗ which converges to V(s). Given V ∗, the

optimal policy is defined as:

∗
∏

(s) = argmax

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

)

(2.9)

2.2.2. Temporal Difference

Temporal difference (TD) learning [13] is another method for solving the MDP

problems, which is a combination of Monte Carlo method [13] and DP. Value function

is updated by using the following equation:

V (st) = V (st) + α [Rt − V (st)] (2.10)

where Rt is the reward for time horizon t and α is the step-size parameter

Simplest TD method is known as TD(0), which uses one step backup:

V (st) = V (st) + α [rt+1 + γRt − V (st)] (2.11)

where Rt is replaced with rt+1 + γRt, which indicates reward for one step.



14

2.2.3. Q-Learning

Reinforcement learning [18] is a learning technique in which the learner is an

agent in an environment that receives reward or penalty in response to the actions the

agent takes. After realizing a trial period, the best policy is expected to be learned. In

this technique the goal is defined but the actions to the goal are not defined. In other

words, what to do is defined but how to do is not. That differs reinforcement learning

from supervised learning.

Q-Learning [9] is a reinforcement learning model, in which Q value of state and

action pairs are calculated using formula:

Q(st, at) = Q(st, at) + α [rt+1 + γmaxQ(st+1, a) − Q(st, at)] (2.12)

where s is the state, a is the action, r is the reward, α is the learning rate between

0 and 1, γ is the discount rate between 0 and 1 and Q(s,a) is the expected return of

taking action a in state s.

The Q-Learning algorithm is guaranteed to converge to the correct Q-values if

the environment is stationary, in other words do not change over time or position. The

algorithm repeats itself after reaching to the goal state until Q-values converges up to

some extend. This can be decided by calculating the delta changes in Q-values.

2.3. Partially Observable Markov Decision Processes

In the MDP model the current state is a signal from the environment, so it can

be considered as Completely Observable-MDP (CO-MDP). In the case where the state

cannot be obtained with complete reliability by the agent, the environment becomes

partially-observable. Partially Observable Markov Decision Processes (POMDP) [4, 5]

differentiates from MDP by its partially observable approach.

For example, chess is a completely-observable game because all positions of the



15

pieces are completely given by the environment. On the other hand, poker is a partially-

observable game because the opponents cards cannot be directly observed but can be

estimated.

Another example for POMDP is patient management [19]. The patient usually

has several complaints but only a few of them are related to the illness. The doctor,

as the decision-maker, has multiple possible actions: wait and see, demand additional

medical analysis or surgery. Each decision has some risks as the situation of the illness

can get worse. However, beginning a wrong treatment may lead to an unrecoverable

situation. The result of the treatment is non-deterministic, which means we may

encounter unexpected results. The decision-maker must carefully evaluate the cost

and benefits of each action. Patient management is a typical problem with its cost-

benefit trade-offs, non-deterministic results and partially-observable structure.

In POMDP, as the current state is not clear, we add obervations to the MDP

model. The observations give us an idea about the current state and is a probability

function over states.

Furthermore, in POMDP we need to keep track of the historical observations and

actions. This is achieved by maintaining probability distributions over all of the states.

Therefore, after each action this distribution must be updated. Briefly, in MDP our

goal is to find a mapping from states to actions whereas in POMDP our goal is to find

a mapping from probability distributions over states to actions.

POMDP is defined as a tuple 〈S, A, T,ℜ, Ω, O〉 :

• S is the set of environment states.

• A is the set of actions.

• ℜ is the reward function S x A → R

• T is the state transition function SxA → Π(S)

• Ω is a set of observations that agent can infer from environmental signals

• O is the set of probability distributions over states: O x S x A → [0, 1]
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The goal of the agent is to learn the policy Π(S) which is a mapping from observation

history Ht = ((O1, A1, R1), ..., (Ot−1, At−1, Rt−1), (Ot, At, Rt)) to actions At.

Figure 2.5. POMDP Representation

Figure 2.5 is a graphical representation of a POMDP. St is the environmental

state, the agent gets an observation Ot from the environment, Bt is the belief state,

defined in the next section, that the agent can infer, At is the action given by policy

function, Rt is the reward. After taking action At, the environment state becomes St+1.

The agent gets observation Ot+1 and reward Rt. The belief state is updated to Bt+1.

2.3.1. Belief State

Belief State b, which was proposed by Aström [20], is the probability distribution

over states S. The agent tries to infer the belief state by making observations and saves

a finite history of past observations. In general, this may not be sufficient because in

case the agent gets lost or confused, it should generate a stategy to survive like asking

someone or using a map. These actions are not explicitly defined in the POMDP

framework.
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Figure 2.6. Belief State Example

Figure 2.7. Belief State Example

Figure 2.6 is a simple example [10] that shows how belief state values are com-

puted. There are four floors in the building and two possible actions: move down, move

up. If the agent takes the move-up action on the fourth floor or move-down act on the

first floor, it remains on the same floor. Initially, the agent does not know on which

floor it is, so its belief state is [0.25 0.25 0.25 0.25] as described on the left. After the

agent performs a move down act and belief state becomes [0.00 0.33 0.33 0.33] because

the agent knows that it cannot be on the fourth floor.

Figure 2.7 is a more complicated example [4]. It is more complicated because

we add probability to our actions. There are four states and the state with asteriks is

the goal state. There are two possible observations: non goal-state when the agent is

in states 1,2,4 and goal state when the agent is in state 3. The possible actions are

Left and Right. The actions succeed with probability 0.9 and fail with probability 0.1.

Action failing means opposite direction action is performed. If no movement is possible

to the direction, the agent remains in the same location.
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The agent starts with a location other than the goal state. Thus, its belief state

is [ 0.333 0.333 0.000 0.333 ]. Later, if the agent moves to the right, the belief state

becomes [ 0.100 0.450 0.000 0.450 ]. Later if it moves again to right and still does not

reach to the goal, the belief state becomes [ 0.100 0.164 0.000 0.736 ]. Until the agent

reaches to the goal state, there will be the always non-zero beliefs.

As another example, a two state POMDP is presented in Figure 2.8. There are

two states possible, since the sum of all probabilities is 1, if the probability of being in

state s1 is p, then the probability of being in the other state s2 is 1-p. This belief state

shows the probability distribution of being in state s1. So, closer to left side means low

probability of being in state s1 but high probability of being in state s2 and closer to

right side means high probability of being in state s2 but low probability of being in

state s1.

Figure 2.8. Two state POMDP [21]

2.3.2. State Estimator

Belief State b is a probability distribution over states S. b(s) is the probability of

being in s with belief b, which is a probability function and 0 ≤ b(s) ≤ 1 where s ∈ S

and
∑

s∈S b(s) = 1. The state estimator computes the new state by using bt−1, at−1

and ot. The new state bt can be calculated with the following probability equation:

bt(st) = Pr(st|ot−1, at−1, bt−1) (2.13)

by using Bayes Rule [22] :

P (A|B) =
P (B|A)P (A)

P (B)
(2.14)
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the equation of bt(st) becomes:

bt(st) =
Pr(ot−1|st, at−1, bt−1)Pr(st|at−1, bt−1)

Pr(ot−1|at−1, bt−1)

=
Pr(ot−1|st, at−1)

∑

s∈S b(s)Pr(st|at−1, bt−1, st−1)Pr(st−1|at−1, bt−1)

Pr(ot−1|at−1, bt−1)
(2.15)

where Pr(ot−1|at−1, bt−1) is the normalizing factor

2.3.3. Optimal Policy

Policy function is a mapping from observation history to actions. The optimal

policy is defined as follows:

• B : set of belief states

• A : set of actions

• T(b, a, bt) : state transition function

T (b, a, bt) = Pr(bt|at−1, bt−1)

=
∑

o∈Ω

Pr(bt|at−1, bt−1, ot−1)Pr(ot−1|at−1, bt−1)

(2.16)

where

Pr(bt|at−1, bt−1, ot−1) =







1 if SE(b, a, o) = bt

0 otherwise

where SE(b,a,o) is the state estimation function which has new belief state as its output.
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ρ(b,a) is the reward function on belief states:

ρ(b, a) =
∑

s∈S

b(s)R(s, a) (2.17)

Belief state represents probabilities for all states, so ρ represents the true expected

reward.

2.3.4. Value Function

In MDP, the value function can be directly used to find the optimal policy. Value

Function over belief state may be calculated using a value iteration algorithm.

Figure 2.9. Policy Tree for POMDP [4]

The agent in a POMDP environment simply takes an action and makes an ob-

servation, maybe depending on previous observations, and goes on like that. Figure

2.9 represents a t-step policy tree of an agent. Initially, the agent performs the action

on the top and depending to the observations O1, O2...Ok, it performs the next action.

If p is a 1-step policy tree, the value of performing the action a is:

Vp(s) = R(s, a(p)) (2.18)
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where a(p) is the action performed on the top of the policy tree. In the case,

where p is a t-step policy, the value function becomes:

Vp(s) = R(s, a(p)) + γ 〈value of the rest〉

= R(s, a(p)) + γ
∑

st∈S

Pr(st|st−1, at−1(p))
∑

oi∈Ω

Pr(oi|st, at−1(p))Voi(p)(st)

= R(s, a(p)) + γ
∑

st∈S

T (st−1, at−1(p), st)
∑

oi∈Ω

O(st, at−1(p), oi)Voi(p)(st)(2.19)

where oi(p) is the (t-1)-step policy tree related with observation oi. All possible

next states are considered in order to compute the expected value.

The value of executing a policy tree p from a belief state s is:

Vp(s) =
∑

s∈S

b(s)Vp(s) (2.20)

αp = 〈Vp(s1), ..., Vp(sn)〉 (2.21)

Vp(s) = b.αp (2.22)

This is the value of performing a policy tree p for every belief state s. In order to

find the optimal t-step policy, policy trees with different initial belief states must be

executed and the one with the maximum value is the optimal t-step policy:

Vt(s) = maxp∈P b.αp (2.23)

where P is the set of t-step policy trees.

Each policy tree is linear over belief states and the optimal policy is the upper

parts of these policy trees, indicating the maximum values. Thus, optimal policy Vt is
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piece-wise linear and convex (PWLC). Figure 2.10 represents an optimal t-step PWLC

value function. The world has two states, so the belief state vector is two dimensional:

〈b(s1), b(s2)〉. As the belief state is a probability function, the sum is 1, and a single

value can represent a belief state. If the belief state is represented by x, this means the

belief state vector is 〈x, 1 − x〉. The figure consists of three policy trees: p1, p2 and p3.

the value function of p1 is Vp1
is linear as shown in the figure. The bold line represents

the upper part of 3 linear value functions, which is the optimal policy.

Figure 2.10. Optimal t-step Value Function [4]

Figure 2.11 represents the value function of a world with 3 states. Similar to

the reason in the two-state world, the belief state can be determined with two values.

Belief state is represented as a triangle with vertices (0,0), (1,0), (0,1). s1 and s2 are the

dimensions. We can calculate the belief state vector by using the probability property:

s1 + s2 + s3 = 1. So supplementary value for any s1 and s2 in the triangle will be the

value of s3. The value function of a policy tree is a plane in three dimensional world.

In the figure, seven policy tree planes are present. Similar to the two dimensional

representation, the optimal policy is the upper part of the planes, which is a “bowl”

like shape in the figure.

The states that are in the middle of the belief state, which have lower values, are

states with higher uncertainty. In these states agent long-term reward is less. On the
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Figure 2.11. Optimal three dimensional t-step Value Function [4]

other hand, the states that are near to the corners are the ones that agent can have

higher long-term reward.

Figure 2.12. Optimal t-step action mapping [4]

As a result, the optimal value function is the projection of the upper lines on the

belief space. Figure 2.12 represents the projections of three upper lines on the belief

space of the two dimensional example in Figure 2.10. For each internal, the policy tree

is different: p1, p2 and p3. For each region, there exist a policy tree such that Vp(s) is

maximal over the entire region. Furthermore, a(p) on the horizontal axis means the
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action on the root node of policy p.

In Figure 2.13 the black dots show the possible resulting belief states after taking

actions a1 and a2. The bigger gray dot is the starting belief state and z1, z2, z3 are

the observations.

Figure 2.13. Two state POMDP, Belief State update [21]

Similar to the Value Iteration(VI) algorithm in MDP, this algorithm solves MDP

problems for a given horizon length. For the POMDP case, the same algorithm can

be adapted, the difference is that the space is now continuous. VI function can be

represented like in Figure 2.14, where b is the belief space and V(b) is the value

function over belief state.

Figure 2.14. Value Function over Belief Space [21]

As discussed before, finite horizon value function is PWLC which means the value

function is formed of a finite number of linear segments. Figure 2.15 shows a sample

of POMDP Value Function with finite number of linear segments.



25

Figure 2.15. PWLC Value Function [21]

In order to find the value of the belief state, if we represent the value fuction as a

set of vectors, we find the vector that has the highest dot product with the belief state.

2.3.5. POMDP Solution Example

We’ll try to solve a POMDP for a horizon length of three, two states, two actions

and three observations. As previously declared, we start with horizon length one, in

which we need to take a single action.

Figure 2.16. POMDP Value Iteration Example [21]

In Figure 2.16, a1 has a value of 0 in state s2 and 1 in state s1 and a2 has a value

of 0 in state s1 and 1,5 in state s2. If the belief state is [ 0.25 0.75 ], V(a1) = 0.75 * 0

+ 0.25 * 1 = 0.25 and V(a2) = 0.75 * 1.5 + 0.25 * 0 = 1.125. The left region on belief

state represents the belief states where action a1 must be preferred and the region on

the right consists the belief states where action a2 must be preferred.
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The next step is to construct the horizon two value function. The value of horizon

two is the value of immediate reward plus the value of the next action.

2.3.6. Policy tree domination

Each policy tree represents an optimal strategy in the belief space. This does

not mean that every policy tree takes part in the optimal policy. Some policy trees

may be dominated by one or more other policy trees. This type of policy trees does

not contribute to the optimal value function. For example, in Figure 2.17 policy pd is

completely dominated by policy pc. Similarly, policy pc is dominated by pa and pb.

Figure 2.17. Policy tree domination [4]

2.4. Adaptive Resonance Theory

Adaptive Resonance Theory (ART) [23, 24] is a cognitive theory that proposes

how the learning and recognition abilities of brain, related with categorization of ob-

jects and events, realize in sensory and cognitive neocortex. These abilities require a

continuous adaptation to the changing world, thus includes a learning regarding to the

expectations from already learned information to match with new input data.

Throughout our life, we experience the world continuously. The environmental

signals are somehow processed to be meaningful patterns, serving for developing our
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experience. By making use of our experience, we humans are able to develop a sense.

This process is realized in a temporary memory called short term memory (STM). The

brain makes a matching between previously stored experiences, which are present in

long term memory (LTM), and the patterns in STM. The rapid learning capability

of brain, without forgetting past experiences, is sometimes referred to as “stability-

plasticity dilemma” (SPD). ART proposes that the resonant states, which means data

worthy of learning, can provide rapid learning and this can solve SPD. Briefly ART

has the self-stabilization property and prevents getting stuck into local-minima.

ART makes use of “match learning” (ML) within the cognitive and sensory do-

main. ML puts a novel pattern, which is in the sensory domain, into an existing

recognition category if enough match exists between bottom-up data and top-down

expectations; if not, a new recognition category is learned. The novel pattern is in-

cluded in the new learned category. Nevertheless, the learned category may match

more in existing category information, thus may include some existing information as

well. These categories are often referred as “cluster templates” ; in other words “set of

patterns”.

Decision of whether a new cluster template is required for a new pattern or an

existing one can be used is given depending on whether enough number of features in

the pattern matches with any existing template or not. This is decided considering the

vigilance value ρ [25]. If the number of features that match between a pattern and a

template is l and the total number of features is n, the fraction d=l/n gives us a value

how that pattern is close to the template. As 0 ≤ |d| ≤1, more d is closer to one, the

pattern is closer to the template; more d is closer to zero, the pattern do not share so

much common features with the template. If the value of d > ρ, a predefined vigilance

parameter, that pattern can be assigned to the related template. If ρ is small, then

a few features are enough for a match between the new coming patterns and existing

template, which means small number of cluster templates will be enough. On the other

hand, if ρ is large, then more common features are required in order the new coming

pattern matches to an existing template, so higher number of cluster templates will be

required.
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Figure 2.18. ART Neural Network Structure

ART network is basically formed of bottom-up and top-down adaptive filters

containing of two layers: Feature representation (F1) and category representation (F2).

There are two main forms of ART network: ART1 and ART2. The simplest form of

ART network is ART1, which is a two-layer neural network (Fig. 2.18) that takes

binary inputs. ART2 is more complicated, extending network capabilities to support

analog (continuous) input patterns.

2.4.1. ART1 Structure

Figure 2.19 illustrates the structure of an ART1 network. Attentional subsys-

tem contains F1 and F2 layers which encodes patterns of activation in short-term

memory(STM). Bottom-up and top-down traces between F1 and F2 passes through

an adaptive LTM. Gain 1 provides a modulation that provides F1 to distiguish or

matching between bottom-up input and top-down template. Bottom-up and top-down

patterns are matched according to a 2/3 rule which is necessary for self-stabilization

in response to arbitrary input patterns.
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Figure 2.19. ART1 Structure

When a mismatch between bottom-up and top-down pattern happens at F1, the

orienting subsystem generates a reset to F2. The processing at F1 terminates and

offset of gain 2 is triggered which prepares F2 to encode next input by causing decay

of STM at F2.

ART1 can be defined as a system of differential equations that determines STM

and LTM in response to arbitrary input patterns. Beside that, ART1 designates a class

of architectures rather than a single model.

2.4.2. ART2 Structure

ART2 [26] is designed to accept analog input patterns in addition to binary input

patterns. Figure 2.20 illustrates the structure of an ART2 network in which open

arrows are specific pattern inputs and filled arrows are nonspecific gain control inputs.

In that architecture, feature presentation layer F1 has several processing levels and

gain control systems. The bottom-up and top-down patterns are received in different
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Figure 2.20. ART2 Structure

locations. Although F1 is more complex in ART2 compared to ART1, LTM equations

are simpler in ART2 compared to ART1.

SPD of an ART2 system is maintained by learning stable code from arbitrary

input and the way STM takes consider of historical data. The learning process is

carried out by a parallel search in order to select appropriate recognition codes.

ART2 system is able to recognize an input pattern in F1 STM and find out the

appropriate LTM pattern. In case the vigilance is high, F1 STM pattern by a bottom-

up input is almost similar to a top-down F2 LTM established category. In case an

uncommitted F2 pattern is first activated, although its top-down traces are set to zero,

it must be able to encode the input. As F2 LTM has not previously learned a pattern,

first STM bottom-up input should not result to a mismatch.

Invariance property of F1 provides transforming nonlinear input patterns in or-

der to maintain the stability during learning process by augmenting the contrast or
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eliminating the noise. STM invariance property prevents generation of a reset in case

the LTM pattern perfectly matches by deactivating changes in STM at F1 levels. In

order to achieve this property, additional input is defined in LTM top-down signals, so

multiple F1 nodes exists. These additional levels normalizes the STM pattern before it

is matched with top-down LTM at the middle F1 level. Furthermore, normalization of

the activation patterns in F1 level is achieved by the black filled circles in Figure 2.20.

2.4.3. ART2 Equations

2.4.3.1. F1 STM Equations. If Vi is ith node, F1 STM equation is in the form:

ǫ
d

dt
Vi = −AVi + (1 − BVi)J+

i − (C + DVi) J−
i (i = 1 . . .M) (2.24)

where M is the number of the nodes to be normalized, J+
i is total excitatory input,

J−
i is total inhibitory input and ǫ is the ratio between STM relaxation time and LTM

relaxation time 0 < ǫ << 1

If B = 0, C = 0 and ǫ → 0

then

Vi =
J+

i

A + DJ−
i

(2.25)

The following equations of pi, qi, ui, vi, wi, xi, which exists in Figure 2.20, charac-

terize STM activities:



32

pi = ui +
∑

g(yj)zji (2.26)

qi =
pi

e + ||p||
(2.27)

ui =
vi

e + ||v||
(2.28)

vi = f(xi) + bf(qi) (2.29)

wi = Ii + aui (2.30)

xi =
wi

e + ||w||
(2.31)

where wi is the sum of an input vector Ii and internal feedback signal vector aui, xi

represents the normalized wi, xi is transformed to vi by a non-linear signal function,

ui represents the normalized vi, pi is the sum of interal F1 signal ui and all F2 → F1

filtered signal, qi represents the normalized pi, ||V || indicates L2 norm of a vector, yj

is the STM activity at the jth node of F2 and f is nonlinear signal function in form:

f(x) =
2θx2

x2 + θ2
if0 ≤ x ≤ θ (2.32)
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f(x) = x ifx ≥ θ (2.33)

or if we linearize

f(x) = 0 if0 ≤ x ≤ θ (2.34)

f(x) = x ifx ≥ θ (2.35)

2.4.3.2. F2 STM Equations. This level is the same with the one that exists in ART1.

F2 is responsible from contrast enhancement of F1 → F2 input and sending reset in

case a pattern mismatch. F2 makes a choice when it receives maximum total input in

all nodes. Tj is the sum of the F1 → F2 input to the jth F2 node:

TJ = max
{

Tj =
∑

pizij : j = M + 1 . . . N
}

(2.36)

The orienting system send reset to F2 when a pattern mismatch occurs regarding

the vigilance parameter. This reset causes the F2 nodes to block until all input from

F1 to F2 finishes.

When F2 makes a choice, the gated dipole equation becomes:

g(yJ) =







d ifTJ = max {Tj}

0 otherwise
(2.37)
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This reduce equation 2.26 as:

pi =







ui ifF2 is inactive

ui + dzji ifJthF2 node is active
(2.38)

2.4.3.3. ART2 LTM Equations. Top-down F2 to F1 equation is:

top − down(F2 → F1) :
d

dt
zji = g(yj)[pi − zji] (2.39)

Bottom-up F1 to F2 equation is:

bottom − up(F1 → F2) :
d

dt
zij = g(yj)[pi − zij ] (2.40)

When F2 makes a choice, assuming the Jth node is active, the equations become:

d

dt
zji = d [pi − zji] = d (1 − d)

[

ui

1 − d
− zji

]

(2.41)

d

dt
zij = d [pi − zij ] = d (1 − d)

[

ui

1 − d
− zij

]

(2.42)

where 0 < d < 1 if j 6= J, d
dt

zji and d
dt

zij is zero.

2.4.3.4. ART2 Reset Equations (Orienting Subsystem). The similarity between the

pattern at F1 STM and LTM is determined via the vector r = (r1 . . . rM)

Figure 2.21 shows the relation between ||r|| and ||cdzj|| . Pattern mismatch
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Figure 2.21. ART2 Reset Decision Indicator

(reset) occurs when ||r|| is under the vigilance (ρ) threshold. ri is defined as:

ri =
ui + cpi

e + ||u||+ ||cp||
(2.43)

where c < 0, reset occurs when

ρ

e + ||r||
> 1 (2.44)

where 0 < ρ < 1

Top-down LTM Value

When Jth node of F2 is active, equation 2.41 becomes:

||r|| =
[1 + 2||cp||cos(u, p) + ||cp||2]

1/2

1 + ||cp||
(2.45)
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where cos(u,p) is the cosine of the angle between two vectors p = u + dzj

Since ||u|| = 1,

||p|| = cos(u, p) = 1 + ||dzj||cos(u, zj) (2.46)

Finally

||r|| =
[(1 + c)2 + 2(1 + c)||cdzj||cos(u, zj) + ||cdzj||

2]
1/2

1 + [c2 + 2c||cdzj||cos(u, zj) + ||cdzj||2]
1/2

(2.47)

When cos(u, zj) = 1, ||r|| = 1

which means the angle between the vectors is 0 and they exactly match

Jth node of F2 stays active while ρ ≤ ||r||

ART2 ensures not to send a reset while a new category is being learned. When

a new F2 node becomes active, this is done by reducing the ||zj|| values:

zji = 0, i = 1...M and j = M + 1...N (2.48)

2.5. Kalman Filter

Kalman Filter [7, 8], which is developed by Rudolf Kalman, can be defined as a

“Optimal Recursive Data Processing Algorithm” where “Optimal” stands for its ability

to interpret any kind of data that is provided, “Recursive” for its capability to remind

and consider the previously processed data and “Data Processing Algorithm” simply

indicates that it is a filter. It is capable of estimating the state of a system by analyzing

incomplete and noisy data.
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Kalman Filter provides a solution to discrete-data linear filtering problem. It

tries to estimate the state x ∈ ℜ of the linear equation:

xk = Axk−1 + Buk−1 + wk−1 (2.49)

with a measurement z which is:

zk = Hxk + vk (2.50)

where wk represents the processs noise and vk represents the measurement noise. wk

and vk supports the following probability distributions:

p(w) ∼= N(0, Q) (2.51)

p(v) ∼= N(0, R) (2.52)

where Q is the process noise covariance and R is the measurement noise covariance

matrix. A is the state transition model which is a mapping from previous state to the

current one, B carries the control-input u to state x and H is the observation model

which is a mapping from states to measurements.

Figure 2.22. Kalman Filter Model

Figure 2.22 demonstrates Kalman Filter, indicating the related elements: Cir-
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cles are vectors, squares are matrices, stars are gaussian noise with related covariance

matrice at lower right.

2.5.1. Kalman Filter Computational Origins

In order to make an estimation of the current state, previous estimated state and

current observation are needed. Two main variables indicate the state of the filter:

x̂k|k : State estimation at time k and Pk|k : Error covariance matrice

Beside:

x̂k|k−1 : State prediction given the state at time k-1

Estimate errors are:

ek|k−1 ≡ xk − x̂k|k−1

ek|k ≡ xk − x̂k|k

Estimate error covariance matrices are:

Pk|k−1 = E
[

ek|k−1 eT
k|k−1

]

Pk|k = E
[

ek|k eT
k|k

]

State estimation is defined as:

x̂k|k = x̂k|k−1 + K(zk − Hx̂k|k−1) (2.53)

where zk is actual observation, Hx̂k|k−1 is observation prediction and the difference

zk − Hx̂k|k−1 is called observation innovation or residual. If this value is zero, that

means the prediction is successful.
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K is the optimal Kalman gain that minimizes error covariance:

Kk =
Pk|k−1H

T

HPk|k−1HT + R
(2.54)

We can observe from Eq. 2.54 that

limR−>0Kk = H−1

limPk|k−1−>0Kk = 0

Briefly the main two variables in Kalman are defined as:

E[xk] = x̂k|k

E[(xk − x̂k)(xk − x̂k)
T ] = Pk

2.5.2. Kalman Filter Algorithm

Kalman Filter is a form of feedback control system that makes the estimations

and takes noisy observations as feedback. Equations of Kalman is divided into two

groups: Time update equations and measurement update equations. Time update

makes prediction about the next step while measurement update is responsible for

making the current state estimation regarding the prediction and observation. Mea-

surement update works as a corrector while time update works as an predictor:

Time Update Equations:

x̂k|k−1 = Ax̂k−1 + Buk−1 (2.55)

Pk|k−1 = APk−1A
T + Q (2.56)
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Figure 2.23. Kalman Filter Cycle

These equations give the state and covariance predictions from time k-1 to time

k.

Measurement Update Equations:

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1 (2.57)

x̂k = x̂k|k−1 + Kk(zk − Hx̂k|k−1) (2.58)

Pk = (I − KkH)Pk|k−1 (2.59)

The first step of measurement update is Kalman gain Kk in Eq. 2.57. The next step

is making state estimation considering current state observation in Eq. 2.58. The last

step is calculating error convariance via Eq. 2.59. After each time step, the values

calculated from the previous state is used which forms the recursive structure of the

filter.



41

3. ARKAQ Learning

ARKAQ Learning [10] is an unsupervised learning algorithm. It is suitable for

the agents trying to survive in partially observable environments. Nevertheless, the

continuous structure of the world makes it diffucult to rely on a model. Therefore, the

world is segmented by the algorithm in order to apply the MDP model.

Noisy and incomplete perceptions is one of the features that distiguishes POMDP

from MDP. Kalman Filter is a recursive filter which estimates the current state. Be-

sides that, Kalman Filter keeps the past history implicitly, which is important for

POMDP solutions. Furthermore, Kalman Filter is able to make state estimations from

incomplete and noisy inputs.

The algorithm performs a state segmentation in order to convert the non-Markovian

world to Markovian world, thus modeling the environment under POMDP becomes

possible. ART2 [26] network is used for dividing continuous world into discrete states.

ARKAQ algorithm is based on Q-Learning [9]. Q-Learning is able to solve MDP

problems [28] by iterative approximations of Q(s,a) which is an estimation of expected

reward of an action a on state s. The optimal policy of MDP is

∏

(s) = argmaxa∈AQ(s, a) (3.1)

In POMDP, since the state is no more given by the environment, the (state,action)

pair becomes (observation,action).

Q-Learning (s,a) or (o,a) values are expected to converge to optimal policy after an

episode. The uncertainty in the environment directly affects the speed of convergence

of the Q values. There are various exploration-exploitation techniques proposed for the

speed and optimality of Q convergency like Boltzman [14] which is used in ARKAQ.
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Boltzman exploration has a factor T, called temperature, which decreases by

exploration time. T value determines the exploration amount. It can be defined as

the probability of choosing an action different than the one with the highest Q value.

Initially T is high, exploration is high which means a random action is selected. By the

time T decreases, exploitation probability gets higher and the action with the highest

Q value will be selected. The probability of selecting an action according to Boltzman

is:

Prs(a) =
eQ(s,a)/T

∑

b∈A eQ(s,b)/T
(3.2)

where A is the finite set of actions and
∑

a Prs(a) = 1

After an episode, T approaches 0, which means the action with the maximum Q

value will be selected:

ps(a) =







1 if Q(s, a) = argmaxa∈AQ(s, a)

0 ifotherwise
(3.3)

Briefly, ARKAQ algorithm utilizes Kalman Filtering, ART2 Networks and Q-

Learning.

Figure 3.1. ARKAQ Structure

Figure 3.1 illustrates the architecture of ARKAQ consisting of two layers: World

Model Generator consists of Kalman Filter and ART2 Network. This layer provides

Markovian model to Policy Generator which uses Q-Learning to achieve the optimum

policy.



43

Figure 3.2. ARKAQ Structure

Figure 3.2 illustrates ARKAQ in detail. Policy Layer
∏

is activated after the

state segmentation of ART2 is converged. The optimal action is the one with the

highest Q value. For some states, more than one action may have high Q values, which

indicates that more than one optimal action exists.
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4. Implementation

4.1. Kalman Filter

Kalman Filter implementation requires various type of matrix operations like

transpose, inverse, multiplication.

Boost [29] is a collection of peer-reviewed C++ libraries. Blas is the linear al-

gebra library in Boost library tree which is implemented under Fortran programming

language. Lapack is a high-level library that uses Blas at background and LaPackpp

is the C version of Lapack. Boost is used while implementing Kalman Filter.

The main two fundamental parameters, dependant on the environment, of Kalman

Filter are Q and R matrices. In the prediction phase of Kalman, Q is used as the

process noise covariance which consists of state transition error parameter. In the cor-

rection phase, R is used as observation noise covariance consisting measurement error

parameters. These matrices are defined when constructing Kalman filter instances.

4.2. ART2 Network

The vigilance value ρ is the parameter of ART2 that defines the similarity between

two cluster centers. Depending on the dynamics of the problem, changing the vigilance

value may increase or decrease cluster center number.

Beside that, ART2 may have different methods in order to measure the distance

between two cluster centers. Two different methods are implemented: angular distance,

euclidean distance.
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4.2.1. Angular Distance

Angular distance calculates the cosine of the angle between two vectors in order

to calculate the similarity. For example, if the angle between cluster center w1 and a

new node x1 is α, cos(α) > ρ means the angle is small enough for similarity.

Figure 4.1 illustrates the cluster center weight update when a new node is pre-

sented to the network. w1 and w2 are the cluster centers and x1 and x2 are the nodes.

At t = 0, w1 is the cluster center most aligned to x1. When x1 is presented several

times, w1 is updated towards x1 as shown at t = 1.

Figure 4.1. Angular Distance Update

Calculation of angular distance is achieved by dot product of two vectors, which

is an operation that takes two vectors as input and returns the scalar quantity. Dot

product of two vectors a and b with dimension n is:

a.b =
n
∑

i=1

aibi = a1b1 + a2b2 + ... + anbn (4.1)

While implementing the angular distance, since the different type of inputs have

different intervals, inputs are normalised to the interval [-1, 1].

In Euclidean space, dot product of two vectors is:

a.b = |a||b|cosθ (4.2)
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where θ is the angle between two vectors.

Since we have normalized the input vectors, |a| = 1 and |b| = 1, our equation

becomes:

a.b = cosθ (4.3)

which is the value we need in order to compare two vector similarity by taking consider

the vigilance.

4.2.2. Euclidean Distance

When we use the euclidean distance [15], if the closest cluster center distance is

smaller than vigilance, the update rule is performed with online k-means [15]. Oth-

erwise, in case the distance is larger, a new cluster center is created. Online k-means

simply moves the closest cluster center towards to the node. The algorithm primarily

points out the cluster center with the minimum euclidean distance:

argmin||x − mi|| (4.4)

Euclidean distance between two points x and y in Euclidean n-space is defined

as:

x − y =
√

(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2

=

√

√

√

√

n
∑

i=1

(xi − yi)2 (4.5)

Later, update to the cluster center is applied by formula:

mi = mi + η(x − mi) (4.6)
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where η is the update factor

Figure 4.2 illustrates online k-means update. In the figure, the distance from x1

to m1 is close enough regarding to the vigilance value and cluster center m1 is updated.

Nevertheless, x2 does not belong to a cluster center regarding to the vigilance, thus a

new cluster center is created.

Figure 4.2. Euclidean Distance Update

4.3. Q-Learning

The Q-Learning phase includes exploration and exploitation phases. In the ex-

ploration phase, the agent performs random actions in order to explore the world. In

the exploitation phase, the agent takes its actions by considering the existing Q values.

Q matrix convengence in the exploration phase is mostly related with performing

all possible (s,a) pairs several times in order to get the Q matrix filled. On the other

hand, convergence in the exploitation phase can be determined by variation delta of Q

values.

The exploration phase is realized as in Figure 4.3.
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procedure Q-Learning

begin

t = 0;

initialize Q[S][A] matrix;

while Q Matrix is not converged

select random action a;

identify current state s;

while current state remains same do

perform action a

end

receive immediate reward r;

receive new state s’;

evaluate Q[s][a];

end

end.

Figure 4.3. Pseudo-code Q-Learning Exploration

The learning rate (α = 1) can be decreased along with time. After learning

process finishes, in other words Q matrix converges, exploitation phase is realized as

in Figure 4.4.
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procedure Q-Learning

begin

t = 0;

read Q[S][A] matrix;

while Q Matrix is not converged

select select action a within the ones with high Q value;

identify current state s;

while current state remains same do

perform action a

end

receive immediate reward r;

receive new state s’;

evaluate Q[s][a];

end

end.

Figure 4.4. Pseudo-code Q-Learning Exploitation
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5. Experiments

5.1. Experiment Environment

Implementation of the algorithms are realized under C++ using Eclipse [30] IDE

under Linux Operating System on VMWARE with 512 MB. of RAM and 2.16 GHz.

T2600 Intel CPU. AIBO [11] is used in our experiments, which is a four-legged robot

manufactured by Sony. Webots [31] is a software which is capable of simulating mobile

robots, including AIBO, and is used for implementing our algorithms on AIBOs.

5.1.1. Webots

Webots is a robot simulation software which is widely used in academic and

education. It is able to model and simulate various kinds of robots, as well as AIBO.

It includes a complete library of sensors and actuators and able to control all 20 servos

of AIBO. Furthermore, it has a “supervisor” module which can be used when we need

to modify the environment externally.

Simulator screenshot that shows the experimental setup is given in Figure 5.1.

Figure 5.1. Webots simulation environment
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The control panel for AIBO is given in Figure 5.2. We can control the actuators

from this panel. This is necessary when we want to set the orientation of any actuator

manually.

Figure 5.2. AIBO Control Panel

The camera vision of AIBO is given in Figure 5.3. This will be the sensor envi-

ronment in our problems.

Figure 5.3. AIBO camera view



52

5.1.2. Cerberus Codebase

Cerberus codebase is used as a framework while interacting with AIBO. It is

possible to execute Cerberus codebase on Webots with minor effort. It has various

modules like vision, communication, localization and planner which is represented in

Figure 5.4

Figure 5.4. Cerberus Structure [32]

While implementing the algorithms, the localization and the planner modules

are bypassed. So the following two modules are the main elements that our algorithms

interact with:

5.1.2.1. Vision Engine. This module is capable of processing the data from the vision

of the camera and can give us information about the environment. We’ll be using the

informations “distance to the ball”, “orientation to the ball” and “orientation to the

goal bar” in our experiments.

5.1.2.2. Motion Engine. This module has high-level functions for controlling the ac-

tuators. We’ll be mainly using the walk and the turn functions.
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5.1.3. Environmental Uncertainties

The main environmental uncertainties that are encountered during the imple-

mentation are given below.

5.1.3.1. Move forward. Moving straight forward under Webots is not possible. On a

real AIBO, the battery is located in the left side of the body and that’s why the center

of gravity of AIBO is on the left. In order to handle this issue, motion engine has

some methods but this creates undesired results in simulation environment. Figure 5.5

shows the path of the move forward action. We can see that AIBO slightly goes to left

and rotates to right.

Figure 5.5. Uncertainties in simulation environment

5.1.3.2. Inaccurate vision calculations. While the servos of the head are moving, the

vision calculations become continuously inaccurate. For that reason, the observations

are not taken while the head is not static.

5.1.3.3. Grabbing and turning. Grabbing the ball is highly dependant to the jaw servo

and also to the friction of the ball. In simulation environment, these two issues are not

modeled as in the real environment, hence grabbing the ball and turning with the ball

is not possible. In order to handle this problem, supervisor is used to set the location

of the ball before the kick act.
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5.2. Ball Approaching

In this problem, the goal of AIBO is to approach the ball by performing a sequence

of the three possible actions: MOVE FORWARD, MOVE RIGHT, MOVE LEFT.

These actions are realized by performing them during a predefined number of steps.

Initially, AIBO does not know the consequences of its actions, however after performing

an action, depending on the state, it receives a reward or a punishment. Environmental

signals “ball distance” and “ball orientation” are obtained from the vision engine of

Cerberus [12]. So our input vector is 〈distance, orientation〉. The ball distance input

interval is [200, 4100] in millimeters and orientation interval is [-0.5, 0.5] in radians.

Kalman parameter R is defined as R=〈100, 0.05〉 because in far distances, oscilla-

tions up to 100 mm. for distance and 0.05 rad. for orientation are observed. The other

parameter is Q=〈0.001, 0.0001, 0.0001, 0.000001〉, where the elements are distance, ori-

entation, distance dx and orientation dy, respectively.

5.2.1. State Segmentation

The distance and orientation values are normalized before entering the ART

network. Since the ball distance that is obtained from vision engine is in range [200,

4100], the value is normalized by (distance - 2150)/1950. The orientation value is

normalized by orientation*2.

State segmentation is achieved via both angular distance and euclidean distance

with various vigilance values. State segmentation learning phase is achieved by per-

forming random actions on the field. Figure 5.6 illustrates the segmentation algorithm

automaton.

Each pattern from the observation is fed to the ART2 Network. In the case,

where the ball signals cannot be received, unknown state sends a “reset” request to

the supervisor and environment is reset by the supervisor. Additionally, the supervisor

sends the environment reset signal periodically. ART2 Network processes the input
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Figure 5.6. ART2 Segmentation finite automaton

vector to check whether it is close to an existing cluster center upon to the vigilance

value. If it is close enough, the related cluster center is updated, otherwise a new

cluster center is created.

In order for the segmentation to cover all possible points in the field, the super-

visor resets the environment. The ball position is reset under a constraint: it should

be placed inside the field of view of the robot; hence, the robot will not have to search

for the ball. Additionally, the supervisor also resets the environment after an episode.

Figure 5.7 is the screenshot showing an AIBOs field of view. After the reset, the ball

position is randomly set within the sight lines.

Figure 5.7. AIBOs field of view
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Figure 5.8. Random Ball Position

Figure 5.8 illustrates how the random ball position is calculated after each period.

Even though the world has three dimensions, the y position of the ball is always zero

and that is why it is not shown in the figure. Initially, a random value for zb between

[0, zmax] is calculated. Later, the value xb on the x axis is calculated by

zb

zmax
=

xb

xmax
(5.1)

due to the triangle similarity. The value of xb is the border of triangle, so we multiply

it with a random number between zero and one. Finally, the sign of xb is determined

randomly.

Angular distance cluster centers(templates) with vigilance value 0.95 are shown

in Figure 5.9. The point [0, 0] can be considered as the location of the AIBO and

the ball can be on any of the point in the figure. The field is segmented according to

the vectors that are presented in the figure. In angular distance, each vector template

is a cluster center including the surrounding vectors and the origin point [2150, 0]

comes from denormalization. The borders of the clusters are defined regarding to the

vigilance parameter. For example, if the ball orientation is 0.3 and the distance is 2100,

as indicated on the location ’x’ that an arrow points in the figure, it will belong to the

cluster center which is circled around.
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Figure 5.9. ART Network angular distance cluster centers

After the state segmentation phase is finished, the patterns state is calculated by

determining the template which has the maximum dot product value with the cluster

centers pattern vector.

According to the dynamics of the problem, euclidean distance ART network is a

better choice than the angular distance clustering because state transitions in angular

distance takes only the angular value into consider, which is not our goal. Figure 5.10,

Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14 shows euclidean distance cluster

centers with various vigilance parameters. The dots are the cluster centers and the

location of AIBO is on the point [0,0]. The ball can be on any of the point in the field

and it belongs to the nearest cluster center.
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Figure 5.10. ART Network euclidean distance, 137 cluster centers with vigilance 0.15

Figure 5.11. ART Network euclidean distance, 333 cluster centers with vigilance 0.1
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Figure 5.12. ART Network euclidean distance, 519 cluster centers with vigilance 0.075

Figure 5.13. ART Network euclidean distance, 825 cluster centers with vigilance 0.05
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Figure 5.14. ART Network euclidean distance, 1933 cluster centers with vigilance

0.025

5.2.2. Q Learning Phase

The Q-Learning phase begins with the exploration of the world in order to cover

all the (s,a) space. Similar to the state segmentation phase, the environment is peri-

odically reset by the supervisor after a predefined episode. Ball distances smaller than

500 mm. are rewarded by +100 and in that case an extra reward +50(totally +150) is

given if the orientation belongs to interval [-0.05, 0.05]. The exploration phase tries to

execute unvisited (s,a) pairs as much as possible. The exploration automaton is given

in Figure 5.15:



61

Figure 5.15. Exploration Phase Automaton

Resulting Q Matrix of related problem for the ART Network with 333 cluster

centers and vigilance value 0.1 is illustrated in Figure 5.16. Since the location of the

AIBO is the reference point in our problem, it is fixed as shown in the figure and the ball

can be on any of the point. The arrows on the figure indicate the actions FORWARD,

RIGHT or LEFT. Regarding to the location of the ball in the AIBOs field of view, the

indicated action is selected. For example, if we consider the left border, AIBO mostly

tries to move to the left in order to make the orientation of the ball to be closer to the

center.
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Figure 5.16. Resulting actions inferred from Q values
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The following figures contains various screenshots of the trajectories of AIBO

while trying to approach to the ball by performing the maximum Q valued actions in

the Q matrix. The success of the ARKAQ algoritm depends to the vigilance parameter.

The trajectory will be more straight if we increase the number of states, in other words

decrease the vigilance parameter, or increase the number of actions.

Figure 5.17. ARKAQ Ball Approaching Trajectory 1

Figure 5.18. ARKAQ Ball Approaching Trajectory 2
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Figure 5.19. ARKAQ Ball Approaching Trajectory 3

Figure 5.20. ARKAQ Ball Approaching Trajectory 4

Figure 5.21. ARKAQ Ball Approaching Trajectory 5
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Figure 5.22. ARKAQ Ball Approaching Trajectory 6

Figure 5.23. ARKAQ Ball Approaching Trajectory 6 (Upper View)

Figure 5.24. ARKAQ Ball Approaching Trajectory 7



66

Figure 5.25. ARKAQ Ball Approaching Trajectory 8

Figure 5.26. ARKAQ Ball Approaching Trajectory 9

Figure 5.27. ARKAQ Ball Approaching Trajectory 9 (Upper View)
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Figure 5.28. ARKAQ Ball Approaching Trajectory 10

Figure 5.29. ARKAQ Ball Approaching Trajectory 10 (Upper View)

Figure 5.30. ARKAQ Ball Approaching Trajectory 11
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5.3. Score a Goal

In this problem, AIBO tries to learn how to score a goal from a specified location.

The possible actions are TURN-RIGHT, TURN-LEFT and KICK. The orientation to

the goal bar is the environmental input, so our state vector is 〈orientation〉. The actions

TURN-RIGHT or TURN-LEFT simply changes the orientation to the goal bar. After

AIBO decides performing the action KICK, the supervisor sets the location of the

ball to a suitable position for kicking. The supervisor gives a reward or punishment

regarding to the final position of the ball: if its location is within the goal bar AIBO

receives +100 reward, otherwise it receives -100 punishment. The following figures are

the screenshots of the problem environment.

Figure 5.31. AIBO is preparing for a kick

Figure 5.32. AIBO is performing a kick
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Figure 5.33. AIBO missed the goal chance

5.3.1. State Segmentation

The orientation value to the goal bar is normalized in a similar way to normaliza-

tion of the orientation value to the ball in the previous problem. State segmentation

is achieved with Online K-Means using various vigilance values like in the previous

problem. Figure 5.34 demonstrates the segmentation algorithm automaton.

Figure 5.34. ART2 Segmentation finite automaton

State segmentation results are given in the Figure 5.35, Figure 5.36 and Figure

5.37. Since our vector is with one dimension, the results are observed linearly. The

dots indicates the cluster centers which can be considered as the orientation to the goal

bar. The state is the cluster center which has the closest orientation value compared
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with the goal bar.

Figure 5.35. ART Network euclidean distance, 9 cluster centers with vigilance 0.075
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Figure 5.36. ART Network euclidean distance, 13 cluster centers with vigilance 0.06

Figure 5.37. ART Network euclidean distance, 18 cluster centers with vigilance 0.05
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5.3.2. Q Learning Phase

Q Learning exploration and exploitation phases are realized in a similar way to

the previous problem. In the exploration phase, random actions are performed. After

an episode, exploitation tries to perform the actions with maximum Q values. Figure

5.38 demonstrates the Q Learning algorithm automaton.

Figure 5.38. ART2 Segmentation finite automaton

Resulting Q Matrix of related problem for the ART Network with 13 cluster

centers and vigilance value 0.06 is illustrated in Figure 5.39.
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Figure 5.39. Resulting actions inferred from Q values
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The comparison in goal scores between the ARKAQ Policy taken actions and

randomly taken actions can be examined in Figure 5.40. We can observe that at the

beginning the scores are very close, but ARKAQ starts scoring more over time. The

success of scores for ARKAQ seems around 60 per cent and for random actions, it is

around 35 per cent. The reason of the scores for random action is because the goal bar

is reasonably close and even random actions can result with scoring. If we apply the

same experiment in a higher distance to the goal bar, the scores for random actions

will decrease. Furthermore the kick action does not have high accuracy, we also affect

from this in our experiments.

Figure 5.40. Goal scores comparison between ARKAQ and Randomly taken actions

We can observe the success of ARKAQ in Figure 5.41, where the distance to the

goal bar is increased, orientation is not straight and with vigilance 0.05.
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Figure 5.41. Goal scores comparison between ARKAQ and Randomly taken actions

in high distance
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6. Conclusion

In robotics, the main concentration in planning under uncertainty is the problem

of dealing with the inaccurate sensory and actuator environment. This is crucial in

order to generate robust policies towards to the goal.

The POMDP framework well defines the problem and there are some propositions

on value iteration for policy trees. These techniques proposed are impractical since the

time required is not reasonable and also because of the curse of dimensionality in

continuous space. Furthermore, the world model is assumed to be given, which is

impractical in most cases.

ARKAQ model proposes a solution which is reasonable in time manner. More-

over, the algoritm is online and in worst case has complexity O(AS2). This model

relies on the convergency to the robust policy after an episode.

ARKAQ does not assume the world model to be given. It has a world model

generator inside which is capable of segmenting the real-world Markovian states. On

the top this world model, ARKAQ has a policy generator which tries to find out the

actions which maximizes the discounted sum of rewards to the goal.

ARKAQ algorithm can be applied to a wide range of problems, from path plan-

ning to maze domain problems. The success of the algorithm depends on the vigilance

parameter which is predefined in world model generator layer.

During the implementation of ARKAQ, various parameter values are applied,

dependant to their consequences, the ones that are more suitable to our needs are

selected. These parameters are the vigilance for the state segmentation, Q and R

matrices for the Kalman filter and convergence parameters for the Q-Learning matrice.

During the state segmentation, for some regions it is observed that the ART
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network could not be able to produce cluster centers. This is mostly because the

ball cannot be detected on those regions, which can be because of the simulation

environment. Beside that, low vigilance parameter caused high number of cluster

centers to be produced. This resulted to some unvisited segments which can be because

the AIBO performs the actions step by step. The minimum “move forward” action for

AIBO means a footstep. So, high number of the cluster centers does not mean better

results. The optimum number of cluster centers can be around the multiplication of

the number of footsteps in horizontal and in vertical direction. Even though AIBO

performs random actions, environmental random reset is necessary for speeding up the

segmentation and covering all the field.

Kalman Filter was very useful, even in the simulation environment, because in

high distances oscillations up to 100 mm. from distance calculation and 0.05 rad. from

orientation calculation of vision engine are observed.

During the Q-Learning phase, the exploration and exploitation phases are decided

by manually observing the delta changes in Q values and with Boltzman as well.

As a result, the algorithm produced Q-Learning values that were sufficient to

reach the goals. However, the results may be optimised by applying more convenient

values for vigilance, Kalman and Q-Learning convergency, dependant to the dynamics

of the problem.
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