
COMPARISON OF PATH PLANNING ALGORITHMS
byFuat GELER�BS. In CSE, Marmara University, 2004

Submitted to the Institute for Graduate Studies inS
ien
e and Engineering in partial ful�llment ofthe requirements for the degree ofMaster of S
ien
e
Graduate Program in System and Control EngineeringBo§aziçi University2007

iiiACKNOWLEDGEMENTS
First, I want to thank my advisor Prof. Levent AKIN for his, and Prof. I³�lBOZMA for her guidan
e and support in development,
ompletion of this thesis.Se
ondly, I thank all my friends for their understanding. Spe
ial thanks go tomy friends Reyhan AYDO�AN, Murat BALABAN, Gülef³an BOZKURT, Ya§murGÖK, Bar�³ GÖKÇE, Kemal KAPLAN, Çetin MER�ÇL�, Sarp Baran ÖZKAN, NuriTA�DEM�R and Ülker ÖZGEN for their great support and understanding.Finally, it is my pleasure to thank my family, Ay³e GELER� and Ayd�n GELER�for their endless support and belief in me and my work.This thesis was supported by Bo§aziçi University Resear
h Fund (BAP) andTurkish Republi
 Prime Ministry State Planning Organization (DPT).

ivCOMPARISON OF PATH PLANNING ALGORITHMS
Path planning problems arise in many di�erent �elds su
h as; roboti
s, assemblyanalysis, virtual prototyping, pharma
euti
al drug design, manufa
turing, and
om-puter animation. Path planning algorithms aim to solve problems that involve
om-puting a
ontinuous sequen
e, a path, of
on�gurations between an initial and goal
on�guration. Planning of a path involves some
onstraints, su
h as
omputing a
ollision-free path.We
ompared various path planning and navigation algorithms. As rea
tive al-gorithm, an improved version of Arti�
ial Potential Field (APF) algorithm is used. Inrobot
oordination this algorithm is the superior algorithm. It
oordinates 250 robotseasily. Whereas deliberative algorithms, su
h as Rapidly-exploring Random Tree Con-ne
t (RRT Conne
t) algorithm,
an only
oordinate 40 robots with high
osts. Theother deliberative algorithms, Rapidly-exploring Random Tree (RRT), Probabilisti
Roadmap (PRM) and Lazy Probabilisti
 Roadmap (Lazy PRM),
ould not
oordinatemore than 20 robots within feasible resour
e and time limits in our tests. In robot
oor-dination rea
tive algorithms are more su

essful, but, when the environment
ontainslo
al minima, using a deliberative algorithm is inevitable.In path planning for multiple robots, de
entralized approa
hes, or partially group-ing of the robots show better performan
es. As the number of the
ontrolled robotsin the environment in
reases, using de
entralized approa
hes be
omes a requirement,be
ause the amount of the required time and the resour
es in
reases exponentially in
entralized approa
hes, but linearly in de
entralized approa
hes. Partially groupingof the robots gives the best performan
e results, be
ause the resour
e requirementsin
rease nearly linear, and nearby robots are
ontrolled in
entralized manner.

vGÜZERGAH PLANLAMA ALGOR�TMALARININKAR�ILA�TIRILMASI
Güzergah planlama problemleri bir çok alanda kar³�m�za ç�kmaktad�r. Örne§in,robotik, montaj analizi, sanal prototip üretimi, ilaç tasar�m�, üretim, ve bilgisayaranimasyonlar� bu alanlardan baz�lar�d�r. Güzergah planlama algoritmalar�, ba³lang�
kon�gürasyondan amaç kon�gürasyona süreklili§i olan bir s�ra hesaplas�n� sa§lamak-tad�r. Bir güzergah�n planlamas� çe³itli s�n�rlamalar� içermektedir, örne§in bulunan yolsayesinde robot hiç bir engele çarpmamal�d�r.Tepkisel algoritma olarak kullan�lan APF algorithmas�n�n geli³tirilmi³ modelirobot koordinasyonunda en ba³ar�l� algoritmad�r. Bu algoritma 250 robotun koor-dinasyonunu kolayl�kla sa§larken, RRT Conne
t algoritmas�, sade
e 40 robota kadarbüyük masra�arla e³güdüm yapabilmektedir. Di§er dü³ünen algorithmalar RRT, PRMve Lazy PRM algoritmas� ise sade
e 20 robota kadar koordinasyon yapabilmekte-dir. Robot koordinasyonunda tepkisel algorithmalar daha basar�l� olurken, e§er ortambölgesel minimumlar içeriyorsa düsünen algoritmalar�n kullan�lmas� kaç�n�lmazd�r.Özellikle dinamik ortamlarda miskin algoritmalar�n kullan�lmas� kullan�lan kay-nak ve geçen zaman� azaltmaktad�r. Çoklu robotlar için güzergah planlarken merkeziolmayan yakla³�mlar veya k�smi gruplamalar yapmak daha büyük ba³ar�mlar göster-mektedir. Merkezi yakla³�mlarda ihtiyaç duyulan zaman ve kaynak üssel artarken,merkezi olmayan yakla³�mlarda do§rusal artt�§� için, ortamdaki idare edilen robot say�s�artt�§� zaman merkezi olmayan yakla³�mlar� kullanmak bir gereksinim haline gelmek-tedir. Robotlar� k�smi kümelemek, ihtiyaç duyulan kaynaklar yakla³�k do§rusal artt�§�ve yak�n robotlar merkezi anlamda idare edildi§i için en iyi sonuçlar� vermektedirler.

viTABLE OF CONTENTS
ACKNOWLEDGEMENTS . iiiLIST OF FIGURES . viiLIST OF TABLES . viiiLIST OF SYMBOLS/ABBREVIATIONS . ix1. INTRODUCTION . 11.1. Problem Statement . 11.2. Contribution of the Thesis . 11.3. Thesis Outline . 22. GENERAL BACKGROUND . 42.1. Open-Loop � Geometri
 Representation Algorithms 62.1.1. Simple Algorithms . 72.1.2. Roadmaps (Skeletonization) . 92.1.2.1. Meadow Maps . 92.1.2.2. Visibility Graphs . 92.1.2.3. Generalized Voronoi Graphs 102.1.3. Cell De
ompositions . 112.1.3.1. Trapezoidal Cell De
omposition 112.1.3.2. Regular Grids . 112.1.3.3. Approximate Cell De
omposition (Quadtrees) 132.2. Closed-Loop � Rea
tive Approa
hes . 132.2.1. Potential Field . 132.2.1.1. The Lo
al Minima Problem 152.3. Multiple Robot Coordination . 162.3.1. Centralized Planning . 162.3.2. De
oupled Planning . 173. ALGORITHMS . 203.1. Sampling Based Algorithms . 203.1.1. Probabilisti
 Roadmaps . 213.1.2. Sampling Strategies . 25

vii3.1.2.1. Uniform Random Sampling 253.1.2.2. Sampling Near the Obsta
les 253.1.2.3. Sampling Inside Narrow Passages 263.1.2.4. Visibility-Based Sampling 273.1.2.5. Quasirandom Sampling 273.1.2.6. Grid-Based Sampling 273.1.2.7. Bene�ts of Di�erent Sampling Methods 283.1.3. Conne
tion Strategies . 283.1.3.1. Sele
ting Closest Neighbors 293.1.3.2. Creating Coarse Roadmaps 293.1.3.3. Conne
ting Conne
ted Components 303.1.4. Collision Che
king Methods . 303.1.5. Expansive-Spa
es Trees . 323.1.5.1. Constru
tion of Trees 323.1.5.2. Merging of Trees . 343.1.6. Rapidly Exploring Random Tree 343.1.6.1. Constru
tion of Trees 353.1.6.2. Merging of Trees . 373.1.7. Lazy Algorithms . 383.2. Post Pro
essing . 393.3. Multiple Robot Coordination . 413.3.1. Centralized Approa
h . 423.3.2. De
entralized Approa
h . 433.3.2.1. Simple Rea
tive Es
ape 443.3.2.2. Intelligent Es
ape . 443.4. Arti�
ial Potential Fun
tion (RBOT) 443.5. Lazy PRM RRT Conne
t . 464. SIMULATIONS . 494.1. Simulator Design . 494.2. Measures . 504.2.1. Su

ess Rate . 504.2.2. Average Elapsed Time . 50

viii4.2.3. Normalized Robot Path Length 504.2.4. Spa
e Complexity . 514.3. S
enarios . 514.4. No Obsta
les . 524.4.1. Five Robots . 534.4.1.1. Targets Distributed Widely 544.4.1.2. Targets Distributed Near 554.4.1.3. Targets Distributed Tightly 564.4.2. 10 Robots . 584.4.2.1. Targets Distributed Widely 594.4.2.2. Targets Distributed Near 604.4.2.3. Targets Distributed Tightly 614.4.3. Dis
ussion . 644.4.4. More than 10 Robots . 654.4.4.1. Su

ess Rates . 674.4.4.2. Mean Elapsed Time Amounts 684.4.4.3. Dis
ussion . 694.5. Stati
 Obsta
le (Maze Problems) . 714.5.1. One Robot . 724.5.2. Two Robots . 754.5.3. Three Robots . 774.5.4. Dis
ussion . 784.6. Dynami
 Environments . 794.6.1. Dis
ussion . 815. CONCLUSIONS . 84APPENDIX A: INTEGRATION . 86APPENDIX B: SIMULATOR . 89B.1. Simple Robot Simulator . 89B.1.1. Work Spa
e . 89B.1.1.1. World Content . 89B.1.1.2. Stati
 Obje
t . 90B.1.1.3. Dynami
 Obje
t . 90

ixB.1.2. Simulator . 90B.1.2.1. Ordinary Di�erential Equation 91B.1.2.2. Integrator . 91B.1.3. Shell . 92B.1.3.1. Info Gates . 92B.1.3.2. Control Gates . 93B.1.4. Visualization and User Inputs 93B.1.5. Saving and Loading . 95B.2. Robot Simulator Editor . 95B.2.1. Dynami
 Obje
ts . 96B.2.2. Stati
 Obje
ts . 97B.3. Planning Base . 97B.3.1. Modelling the World . 98B.3.2. Collision Che
ker . 100B.3.3. The Exe
uter . 102B.4. Path Planning Base . 104B.4.1. Lo
al Planner . 104B.4.1.1. Generi
 Lo
al Planner 107B.5. Planning Base Editor . 107B.6. Robot Controllers . 108B.7. Little Prin
e Path Planning Simulator 110REFERENCES . 112

xLIST OF FIGURES
Figure 2.1. Taxonomy of obsta
le types . 4Figure 2.2. Work spa
e and
on�guration spa
e for a
ir
ular robot 7Figure 2.3. Bug algorithms use two basi
 behaviors: move on straight line andfollow a boundary . 7Figure 2.4. Wavefront algorithm is another simple path planning algorithm . . 8Figure 2.5. Taxonomy of roadmap algorithms 9Figure 2.6. Centers of edges
onne
ting edges
omposes the Meadow Maps . . 10Figure 2.7. Visibility graph is
omposed of
onne
tion of ea
h important point 10Figure 2.8. Voronoi diagram, equidistan
e to ea
h obsta
le 11Figure 2.9. Taxonomy of
ell de
omposition algorithms 11Figure 2.10. Union of trapezoidal
ells
onstru
ts the Cfree 12Figure 2.11. Regular grids are like representing n2 pixel with one pixel 12Figure 2.12. Subdivide
ells as mu
h as needed 12Figure 2.13. Robot �nds its path with potential fun
tion [13℄ 14Figure 2.14. Navigation of the robot with potential fun
tion [13℄ 16

xiFigure 2.15. Gradient des
ent algorithm . 17Figure 2.16. Single robot stu
k on lo
al minima 18Figure 3.1. Sample run of PRM algorithm for single robot
ase 21Figure 3.2. Algorithm for the
onstru
tion of the roadmaps 23Figure 3.3. Algorithm for solving a query . 24Figure 3.4. Two sampling strategies for long narrow passage problem a. Uni-form sampling method, b. Sampling on Medial Axis of the FreeSpa
e method [28℄ . 28Figure 3.5. Two sampling strategies in maze a. Uniform sampling method, b.Sampling on Medial Axis of the Free Spa
e method [28℄ 29Figure 3.6. Convex hull
reated around an obje
ts lo
ation at two di�erenttimes. Pi
tures is from [29℄ . 31Figure 3.7. Sphere subdivision algorithm for
ollision
he
king. Pi
ture is from[29℄ . 31Figure 3.8. The algorithm for building an EST tree 33Figure 3.9. Extend EST Algorithm . 33Figure 3.10. Growing of an RRT tree . 35Figure 3.11. The algorithm for building an RRT tree 36Figure 3.12. The algorithm extends an RRT tree 36

xiiFigure 3.13. Trying to
onne
t two RRT trees in RRT Conne
t algorithm . . . 37Figure 3.14. RRT Conne
t algorithm's merging part 38Figure 3.15. High-level des
ription of Lazy PRM 39Figure 3.16. Postpro
essing is applied to shorten the found path 40Figure 3.17. Simple path shortening algorithm 41Figure 3.18. A big
on�guration is a
hieved by appending robot
on�gurations 42Figure 3.19. Tuning the velo
ities in
entralized approa
h 43Figure 3.20. Algorithm for �nding the next
ontrol inputs 46Figure 3.21. RRT Conne
t algorithm leads the robots toward the
enter of thefree spa
e . 47Figure 3.22. RboT algorithm uses the free spa
e e�e
tively 48Figure 4.1. Five robots distributed widely . 54Figure 4.2. Five robots
oordinated with Rbot algorithm 56Figure 4.3. Five robots
oordinated with RRTConne
t algorithm 58Figure 4.4. Su

ess rates for �ve robots tight
ase 59Figure 4.5. Ten robots distributed sparsely . 60

xiiiFigure 4.6. RRT Conne
t algorithm is used to
oordinate 10 robots in no ob-sta
le universe . 61Figure 4.7. Rbot algorithm is used to
oordinate 10 robots in no obsta
le universe 62Figure 4.8. Lazy PRM RRT Conne
t algorithm is used to
oordinate 10 robotsin no obsta
le universe . 64Figure 4.9. Su

ess rates for 10 robots tight
ase 65Figure 4.10. 50 robots in a
ir
ular world . 66Figure 4.11. Change of the su

ess rates of the RboT algorithm in many robots
ase . 67Figure 4.12. Change of the su

ess rates of the RRT Conne
t algorithm in manyrobots
ase . 68Figure 4.13. Change of the mean elapsed time amount for the RboT algorithmin many robots
ase . 69Figure 4.14. Change of the mean elapsed time amount for the RRT
onne
talgorithm in many robots
ase . 70Figure 4.15. Count of steps taken by APF and RRT-Conne
t algorithm for dif-ferent robot
ounts . 71Figure 4.16. NRL results of APF and RRT-Conne
t algorithm for di�erent robot
ounts . 72Figure 4.17. Maze with four rooms and a blo
ked
orridor 73

xivFigure 4.18. Lazy PRM �lls the spa
e adequately with only 100 samples 74Figure 4.19. Amount of time used for path planning by Lazy PRM, RRT Con-ne
t and Lazy PRM RRT Conne
t algorithms in the maze 75Figure 4.20. Su

ess rates for path planning by Lazy PRM, RRT Conne
t andLazy PRM RRT Conne
t algorithms in the maze 76Figure 4.21. Normalized Robot Path Length (NRL) values for path planning byLazy PRM, RRT Conne
t and Lazy PRM RRT Conne
t algorithmsin the maze . 79Figure 4.22. Change of elapsed time amounts for RRT Conne
t in various dy-nami
 environments . 80Figure 4.23. Change of elapsed time amounts for Lazy PRM in various dynami
environments . 81Figure 4.24. Change of elapsed time amounts for Lazy PRM RRT Conne
t invarious dynami
 environments . 81Figure A.1. Euler's integration method has only �rst order a

ura
y [31℄ . . . 86Figure A.2. Midpoint, se
ond order Runge-Kutta integration method gives se
-ond order a

ura
y [31℄ . 87Figure A.3. Fourth order Runge-Kutta method is the most used integrationformula with third order a

ura
y [31℄ 87Figure B.1. The simulation environment . 89Figure B.2. Class diagram of Shell module . 92

xvFigure B.3. Steps of a simpli�ed simulation exe
ution 93Figure B.4. The Simulation Editor helps generating di�erent simulation s
enarios 95Figure B.5. Via The Simulation Editor we
an add, remove, edit dynami
 obje
ts 96Figure B.6. Via the Simulation Editor we
an add, remove, and edit stati
obje
ts . 97Figure B.7. Class diagram of modelling of the world 99Figure B.8. Diagram of example usage of
ollision tree in
ollision
he
k 101Figure B.9. Class diagram of the Exe
uter . 102Figure B.10. Class diagram for the interfa
es of the path planner and the lo
alplanner . 105Figure B.11. A big
on�guration is a
hieved by appending robot
on�gurations 107Figure B.12. Four
ontrollers added to the simulation with the planner editor . 108Figure B.13. A
ontroller is shown in detail in the planner editor 109

xviLIST OF TABLES
Table 2.1. Environment Classi�
ation . 4Table 4.1. Statisti
s for Five Robots Coarse Case 55Table 4.2. Statisti
s for Five Robots Normal Case 57Table 4.3. Statisti
s for Five Robots Tight Case 57Table 4.4. Statisti
s for 10 Robots Coarse Case 59Table 4.5. Statisti
s for 10 Robots Normal Case 63Table 4.6. Statisti
s for 10 Robots Tight Case 63Table 4.7. NRL and memory usages for one robot in the maze 74Table 4.8. NRL and memory usages for two robots in the maze 76Table 4.9. Statisti
s for three robots in the maze 77Table 4.10. More statisti
s for three robots in the maze 77Table B.1. Spe
ial mouse gestures and keyboard strokes 94

xviiLIST OF SYMBOLS/ABBREVIATIONS
3D Three dimensionalC Con�guration
cinit Initial
on�guration of a robot
cgoal Goal
on�guration of a robot
Cfree Collision free
on�guration spa
e
Cobstacle Con�guration spa
e in
ollision
Cspace Con�guration spa
ed(.) Distan
e fun
tiond* Distan
e thresholdE EdgesT Path treeU Potential fun
tion
Uatt Attra
tive potential fun
tion
Urep Repulsive potential fun
tion
∆U Change in the potential fun
tionV Vertexes
α(i) Step size at i'th iteration
ǫ EpsilonAPF Arti�
ial Potential Fun
tionDOF Degree of FreedomEST Expansive-Spa
es TreesGVG Generalized Voronoi GraphsNRL Normalized robot path lengthPRM Probabilisti
 RoadmapRBOT Used inter
hangeably with APFRRT Rapidly-Exploring Random Tree

11. INTRODUCTION
In the development of autonomous robots, devising a way to give robots the
apability of making their own plans in various situations is a
omplex problem. Motionplanning is a sub-problem and it refers to the
omputation of moving from one pla
eto another in the presen
e of obsta
les, either stati
 or dynami
.1.1. Problem StatementPath planning plays an essential role in most of the roboti
 appli
ations. Anadvan
ed path planning module
an provide robots more mobility and autonomy.However, if the environment, to run the robots on,
ontains multiple robots, mov-ing obsta
les, stati
 obsta
les, and also
onstraints on the motion of the robots, thedi�
ulty in
reases toward NP
ompleteness.The knowledge about the behaviour of the algorithms in various environmentsmay play an essential role in the design of su

essful mobile robot appli
ations. Thereare variety of path planning and multiple robot
oordination algorithms. However,whi
h algorithm is the best for a problem depends on the
hara
teristi
s of the problem.An algorithm may be the most appropriate for an environment
ontaining only stati
obsta
les, yet another algorithm may be better if the environment
ontains dynami
obsta
les. Change of the e�
ien
y of the algorithm to the in
rease of the numberof the
oordinated robots shows the s
aleability of the algorithm. The knowledgeof s
aleability, time
omplexity, spa
e
omplexity, and e�e
tiveness of the algorithmsmay lead us to develop a robust path planning module, that
an ta
kle with variousproblems. 1.2. Contribution of the ThesisA

ording to the task to a

omplish, properties of the environment, and therobots, various path planning algorithms are designed. In this thesis, we a

omplish

2the following issues:
• Comparison of path planning algorithms, like PRM [1℄, Lazy PRM [2℄, RRT [3℄,RRT Conne
t [4℄, and APF [5℄ for single, multiple robot
ases, in environments
ontaining no obsta
le, only stati
 obsta
les, and stati
 and dynami
 obsta
les
ases,
• Improvement of RRT Conne
t and Lazy PRM algorithm by mixing those algo-rithms,
• Improvement of APF algorithm, so it handles
oordination of more than 250robots, and takes robot properties into
oordination.1.3. Thesis OutlineIn the se
ond
hapter, a detailed des
ription of the path planning algorithms isprovided. First, most basi
 algorithms are given to des
ribe the problem, and basi

on
epts. Then
omputational approa
hes, and rea
tive algorithms are des
ribed. Atthe end of the introdu
tion
hapter,
entralized and de
oupled planning for multi-robot
oordination is des
ribed.Then, sampling based algorithms, sampling and
onne
tion strategies are de-s
ribed. Multiple query algorithms, like PRM and Lazy PRM, single query algorithmslike RRT and RRT Conne
t. Later, we dis
ussed post pro
essing in path planning,and how multi-robot
oordination is a
hieved.At the third
hapter we inspe
ted, and des
ribed our improvements on the algo-rithms. Lazy PRM RRT Conne
t algorithm is des
ribed in this
hapter. Improvementson the APF algorithm, and more detail about how multi-robot
oordination is a
hievedis given in this
hapter.At the last
hapter, we pla
ed the applied tests and the performan
e results ofthe algorithms in these tests. We
ompared algorithms in no obsta
le environmentswith di�erent number of robots with far, and near target
on�guration to the other

3robots' target
on�gurations. Later we pla
ed the tests in environments with stati
and dynami
 obsta
les. We also tested
entralized and de
entralized approa
hes inenvironments with di�erent number of dynami
 obsta
les.

42. GENERAL BACKGROUND
The degree of the di�
ulty of motion planning
hanges depending on the en-vironmental fa
tors. If the environment
ontains dynami
 obsta
les, obsta
les withinformation less than required, namely partially known environment, then its degreeof di�
ulty in
reases.

Figure 2.1. Taxonomy of obsta
le typesThe types of the obsta
les are shown in the Figure 2.1. The di�erent possibles
enarios are shown in the following Table 2.1.Table 2.1. Environment Classi�
ationStati
 Obsta
les Dynami
 Obsta
lesCompletely Known Case I Case IIPartially Known Case III Case IV
Case I is the simplest s
enario where all obsta
les are �xed and well knownbefore a path planning algorithm is used. In this
ase, the problem is the basi
 motionplanning problem, and it is usually solved in the following two steps:

5
• De�ne a graph representing the geometri
 stru
ture of the environment.
• Perform a graph sear
h to �nd a
onne
ted
omponent between the node
on-taining the start point and the node
ontaining the destination point.The geometri
 stru
ture of the graph di�ers depending on whi
h approa
h is usedto solve the problem. The three most
ommon approa
hes are
• the roadmap approa
h [1℄,
• the
ell de
omposition approa
h [6℄, and
• the potential �eld approa
h [7℄.These approa
hes are powerful but they
an not work in high dimensional spa
eswell. To solve this problem sampling based methods are proposed. These algorithmsgenerate a graph representing the free spa
e of the environment by generating randomsamples, instead of generating a graph representing the geometri
 stru
ture of theenvironment, whi
h is di�
ult, and time
onsuming. The part of querying for a pathis the same for both the sampling based algorithms and roadmap algorithms.If the environment
ontains multiple robots, moving obsta
les, stati
 obsta
les,and also
onstraints on the motion of the robots, the di�
ulty in
reases toward NP
ompleteness.We may
ategorize the
omplexity of path planning as:1. In 3D work spa
e �nding exa
t solution is NP-HARD. [8℄2. Path planning is PSPACE-HARD. [9℄3. The
omplexity in
reases exponentially with:

• Number of DOF [10℄
• Number of agents.

62.1. Open-Loop � Geometri
 Representation AlgorithmsA path is a sequen
e of robot
on�gurations from a starting
on�guration to anend
on�guration. It must be
ontinuous, and in a spe
i�
 order. Usually a
ollision-free path with minimum
ost is preferred, and as the
ost we may use distan
e, time,battery
onsumption et
. Path planning is therefore an optimization and sear
h prob-lem. For path planning, algorithms usually do not use the work spa
e, but insteaduses the
on�guration spa
e. Work spa
e is the n-dimensional spa
e in whi
h therobot moves. The robot, obsta
les, and other obje
ts are the
losed subsets of thework spa
e. The
on�guration represents the state of the robot with respe
t to itsenvironment, and usually it is represented by a data stru
ture that is given as a ve
tor,or a matrix of position and orientation parameters.Con�guration spa
e, also
alled CSpace, is the set of all possible
on�gurationsof a robot, [1℄. The path planner sear
hes the appropriate solutions in this spa
e. Inthe
on�guration spa
e there may be in�nite number of
on�gurations. The dimensionof the
on�guration spa
e may be di�erent than the work spa
e it represents. Thedimension of a
on�guration spa
e is the minimum number of parameters needed to
ompletely spe
ify the
on�guration of the obje
t. For the dimension in the work spa
ewe use degree of freedom (DOF), whi
h means set of independent position variables,ne
essary to spe
ify an obje
t's position in the work spa
e, with respe
t to a frame ofreferen
e.As seen in Figure 2.2, in the
on�guration spa
e ea
h point
orresponds to a
on�guration rather than a real point in spa
e. In this �gure we see a
ir
ular robot, soits
on�guration spa
e is 2D. If the heading of the robot mattered then a
on�gurationwould
onsist of a position and an orientation, so the
on�guration spa
e would be 3D.The
on�guration spa
e
ontains
on�gurations that lead the robot to be in
ol-lision, and
on�gurations in whi
h the robot is not in
ollision. The free spa
e, Cfree

7

Figure 2.2. Work spa
e and
on�guration spa
e for a
ir
ular robot
Figure 2.3. Bug algorithms use two basi
 behaviors: move on straight line and followa boundaryis the set of
on�gurations, at whi
h the robot is not in
ollision, and obsta
le spa
e,
Cobstacle is the set of
on�gurations, at whi
h robot is in
ollision. The sum of Cfreeand Cobstacle gives the total Cspace, Equation 2.1. For a path to be
ollision free, allof the paths should be in Cfree.

Cspace = Cfree + Cobstacle (2.1)
2.1.1. Simple AlgorithmsInspe
ting the simple algorithms may help us to understand interesting and di�-
ult issues of path planning. These simple algorithms are straightforward to implementand analysis shows that when possible their su

ess is guaranteed [1℄.The Bug1 [1℄, Bug2 [1℄, Tangent Bug [1℄, and Wavefront Method [1℄ are someof the simple algorithms. The Bug algorithms assume the robot as a point operating

8

Figure 2.4. Wavefront algorithm is another simple path planning algorithmin the plane with a
onta
t sensor. The robots dete
t obsta
les with this zero rangesensor. When the robot has a �nite range sensor, like an infrared sensor, the algorithmused is
alled Tangent Bug algorithm. These algorithms use two basi
 behaviors: moveon a straight line and follow a boundary, as seen in Figure 2.3. The bug algorithms arenot
omplete, they are lo
al, suboptimal, and dynami
.In the Wavefront Algorithm, we divide the environment into a set of
ells. Then,starting with the initial
ell, where the robot is lo
ated, we assign numbers. Obsta
lesare numbered as one, as a spe
ial number to get the robot away from them. Writtennumbers are started from two at the initial
ell, and in
remented toward the goal atthe adja
ent
ells. We may use eight−point or four−point
onne
tivity, as left, right,up, and down. When all the squares have a number assigned, we go from the
ell that
ontains the goal
on�guration toward the initial
ell as moving toward the adja
ent
ell with a lower number.These algorithms are ideal for basi
 robots with limited
apabilities. They re-quire little pro
essing power, and memory. However, for more di�
ult problems, andfor multi-robot path planning problems, improved algorithms, des
ribed on the nextse
tions of this do
ument, are required.

9

Figure 2.5. Taxonomy of roadmap algorithms2.1.2. Roadmaps (Skeletonization)Roadmap algorithms and
ell de
omposition algorithms are Cspa
e representationalgorithms. They transforms the work spa
e to Cspace representations.Meadow maps,visibility graphs, generalized voronoi graphs (GVG) and probabilisti
 roadmaps are thewell known roadmap algorithms [1℄. Taxonomy of roadmap algorithms
an be seen inthe Figure 2.5.2.1.2.1. Meadow Maps. In meadow maps, �rst optionally we grow the obsta
les as bigas the robot. We �nd the
orners of the obje
ts in the work spa
e. Then we
onne
tthese
orners with edges, as shown in Fig 2.6. For a path planning query, the
enterpoint of these edges will be used as milestone points. The start point of the query willbe
onne
ted to the nearest
enter point, and the end point will also be
onne
ted toits nearest
enter point. Then a graph algorithm will be used to �nd the sequen
e of
enter points between these two
enter points.Meadow maps are not able to generate unique polygons. It is not quite possible to
reate this type of map with sensor data, and it is di�
ult for the robot to di�erentiate,and re
ognize the right
orners, edges, and go to the middle.2.1.2.2. Visibility Graphs. Another simple pro
edure of transforming the world spa
eto Cspace is Visibility Graphs [11℄. In this method, every pair of important points,

10

Figure 2.6. Centers of edges
onne
ting edges
omposes the Meadow Maps
Figure 2.7. Visibility graph is
omposed of
onne
tion of ea
h important pointvertexes of obsta
les, initial and �nal points et
. are
onne
ted, as shown in Figure 2.7.These
onne
ted edges should not be in
ollision with any obje
t. The graph
omposedof this edges and nodes is the Cspace representation of the work spa
e. Path sear
heswill be done on this graph.2.1.2.3. Generalized Voronoi Graphs. The points in the work spa
e, having the samedistan
e to the surrounding obsta
les make up the lines of the voronoi graph [12℄. Theinterse
tions of these lines are the nodes of the relational graph. So the work spa
e istransformed into Cspace, as shown in Figure 2.8.Finding the points equidistan
e to the nearby obsta
les is a quite di�
ult task,and has a quite high
omputational
ost. Moreover, Voronoi Graph is sensitive tosensor noise, and for path planning, the robot should be able to sense the boundariesof the obsta
les, and workspa
e.

11

Figure 2.8. Voronoi diagram, equidistan
e to ea
h obsta
le

Figure 2.9. Taxonomy of
ell de
omposition algorithms2.1.3. Cell De
ompositionsTrapezoidal
ell de
omposition, regular grids and quadtrees are the major typesof
ell de
omposition algorithms. Taxonomy of
ell de
omposition algorithms
an beseen in the Figure 2.9.2.1.3.1. Trapezoidal Cell De
omposition. The world is
onverted to a set of union oftrapezoid shaped
ells. A line is started from the left toward the right, when it tou
hesa new obje
t, or tou
hing an obje
t ends, from these points line is divided, and thisdivisions are marked as the edges of the trapezoid shapes, as shown in Figure 2.10.
Cfree is the union of these trapezoids.2.1.3.2. Regular Grids. We
an see a regular grid as the same environment with en-larged pixels [1℄. Ea
h element is an enlarged pixel, as shown in Figure 2.11. Arelational graph is generated from these nodes, by
onne
ting ea
h node with its neigh-

12

Figure 2.10. Union of trapezoidal
ells
onstru
ts the Cfree

Figure 2.11. Regular grids are like representing n2 pixel with one pixelboring nodes.Be
ause the world does not always line up on grids, applying grid algorithms doesnot always work well. Moreover, if a
ell
ontains both the free spa
e and the
ollisionspa
e, this
ell is seen as in
ollision spa
e, and this is the digitalization bias the gridalgorithms bring. This algorithm is
omplete, if a path exists it will �nd it.

Figure 2.12. Subdivide
ells as mu
h as needed

132.1.3.3. Approximate Cell De
omposition (Quadtrees). In exa
t
ell de
omposition,some
ells may
ontain both
ollision spa
e and
ollision free spa
e, and these
ellsare
ounted as in
ollision spa
e. This method solves the problem by dividing thegrid re
ursively until the
ell lies entirely in free spa
e or in Cobstacle region, or anarbitrary limit resolution is rea
hed. Be
ause a
ell is divided into four smaller
ells ofthe same shape ea
h time it gets de
omposed, the method is also
alled a �quadtree"de
omposition, shown in Figure 2.12. Like in the regular grids method, the free path
an be easily found by following the adja
ent, de
omposed
ells through free spa
e [1℄.2.2. Closed-Loop � Rea
tive Approa
hesThe di�
ulty of expli
itly representing the
on�guration spa
e for
ed s
ientiststo sear
h new ways for path planning. In
rementally sear
hing the free spa
e whilesear
hing a path is emerged as an alternative to the algorithms that use
on�gurationspa
e representation. Bug algorithm is a simple example for in
remental sear
h algo-rithms. However, the bug algorithm works only on 2D. So, other navigation plannersare developed to work for a ri
her
lass of robots and produ
e a greater variety of pathsthan Bug algorithm.2.2.1. Potential FieldPotential fun
tions are used in the in
remental sear
h path planners. A potentialfun
tion is a di�erentiable real-valued fun
tion. It
an be seen as an energy formula,and its gradient is the for
e to apply to the robot to navigate. The gradient is usedto de�ne a ve
tor �eld whi
h is dire
ted toward the goal, and enables robot to es
apefrom the obsta
les as shown in Figure 2.13.We may see the whole pro
ess as the a
tions of positively and negatively
hargedparti
les' movements. Say, the robots are the parti
les with positive
harge, and thegoal is
harged negatively. So, the
ontrolled robot will be attra
ted by the goal,and will keep itself away from other robots, too. When su
h a gradient ve
tor spa
e isgenerated, the robots will move from a "high-value" state to a "low-value" state, whi
h

14

Figure 2.13. Robot �nds its path with potential fun
tion [13℄will enable them to follow a path "downhill". Su
h a path is
alled gradient des
entpath.Unfortunately, all of the potential fun
tional approa
hes su�er from the existen
eof lo
al minima whi
h does not
orrespond to the goal. This means, the potentialfun
tion may lead the robot to a point, whi
h is not the goal. Therefore, many potentialfun
tions do not lead to
omplete path planners.
U(q) = Uatt(q) + Urep(q)

∇U(q) = ∇Uatt(q) +∇Urep(q) (2.2)The simplest approa
h for potential fun
tion is using the attra
tive and repulsive po-tentials. Sum of the attra
tive potential and repulsive potential gives the power of thepotential on the robot, shown in Equation (2.2). Uatt is the attra
tion fun
tion, and
Urep is the repulsition fun
tion. The sum of derivative of these fun
tions
onstitute thepotential for
e.

∇Uatt(q) = ζ(q − cgoal) (2.3)

15When the robot gets nearer to the goal, the attra
tion for
e of the goal gets smallerand smaller, shown in Equation 2.3. So the robot will be under the
ontrol of onlyrepulsive for
es, whi
h pla
es a gap between the robot and its goal when the equilibriumis rea
hed. To do not let su
h a situation, the attra
tive for
e formula is
hanged afterthe distan
e between robot and the target rea
hes a threshold d∗

goal. So the Uatt(q) isupdated as
∇Uatt(q) =







ζ(q − cgoal), d(c, cgoal) ≤ d∗

goal,
d∗

goal
−ζ(q−cgoal)

d(c,cgoal)
, d(c, cgoal) > d∗

goal,
(2.4)A repulsive potential keeps the robot away from an obsta
le. As the robots get nearerto the obsta
les, the power of the repulsive energy should be higher and higher 2.4.Ea
h obsta
le will apply a repulsive for
e on the robot, if the robot is near enough tothe obsta
les. The threshold of nearness is represented by C∗

i , and the gradient formulafor repulsive for
e of ea
h obsta
le over the robot is
∇Urepi

(q) =







1
2
η(1

di(q)
− 1

C∗

i

)2, if di(q) ≤ C∗

i

0 if di(q) > C∗

i

(2.5)When all of the repulsive for
es are summed up, a total repulsive for
e will be a
hieved.The navigation fun
tion will be the sum of this repulsive for
es with the attra
tive for
e.The resultant gradient des
ent algorithms' e�e
t
an be seen in Figure 2.14. .In Figure 2.15, the s
alar α(i) determines the step size at the i'th iteration. Thevalue of α(i) should be small enough to avoid
ollisions with any obsta
le, and it shouldbe big enough to not require ex
essive
omputation time. When the gradient fun
tiongets less than an ǫ value the algorithm will terminate.2.2.1.1. The Lo
al Minima Problem. Using potential fun
tions in robot navigationgives a powerful me
hanism, that su

essfully works on partially known environments,with moving obsta
les. However, as the general problem of gradient des
ent algorithms,potential fun
tions su�er from lo
al minima problem.

16

Figure 2.14. Navigation of the robot with potential fun
tion [13℄As seen in Figure 2.16, the robot is attra
ted by its goal, and repelled by theobsta
le, and rea
hes a lo
al minima at the
enter of the obsta
le surrounding it.2.3. Multiple Robot CoordinationMultiple robot
oordination problem deals with path planning for more than onerobot. A
ollision free path for multiple robots means at every step there is no
ollisionbetween a robot and an obsta
le or between a robot and another robot. The solutionof this problem should not only �nd paths for the individual robots, but must also
oordinate robots when following these paths so that no robot will be in
ollision. The
oordination of the robots makes the problem signi�
antly harder than the
ase of asingle robot path planning. Multiple robot path planning algorithms
an be dividedinto two groups as
entralized and de
oupled planning [14, 1, 15℄.2.3.1. Centralized PlanningIn
entralized multiple robot path planning, the robots are thought as a singlebody, and the robot
on�gurations are added up to generate a single high dimensional

17Algorithm 2.1 Gradient Des
entInput:A means to
ompute the gradient ∇U(q) at a point qOutput:A sequen
e of points q(0), q(1), . . . , q(i)1: c(0)← cstart2: i← 03: while ∇U(q(i)) 6= 0 do4: c(i + 1)← q(i) + α(i)∇U(q(i))5: i← i + 16: end while Figure 2.15. Gradient des
ent algorithm
on�guration. The dimensionality of this new
on�guration is equal to the total numberof degrees of freedom of all the robots. Coordination in
entralized planning is easy.Be
ause, the generated high dimensional
on�guration keeps the
on�guration of ea
hrobot, and knowing
on�guration of ea
h robot at any time leads that ensuring norobot is in
ollision with some obsta
le or some other robots. The dimensionalityof the
on�guration spa
e in
reases as more robots are added to the
ontrol, and itin
reases the di�
ulty of
entralized planning. Planners, working e�
iently in highdimensions are more suitable for
entralized planning. Centralized planning ensures a
omplete algorithm.2.3.2. De
oupled PlanningIn de
oupled planning, a path for ea
h robot is
al
ulated as if the robot isthe only robot in the environment. After the
ollision-free paths are
omputed forea
h robot individually, by taking only stati
 obsta
les into a

ount, these paths are
oordinated. Coordination of the paths are done by tuning the velo
ities of the robotsalong their path so there will be no
ollision among them. Finding the paths initially,and tuning the velo
ities may be
omplete but de
oupled planning is in
omplete. It

18

Figure 2.16. Single robot stu
k on lo
al minimamay be impossible to
oordinate the paths generated during the �rst stage, so thatno
ollision o

urs. Alternative approa
hes may be prioritized planning, planning thepaths of robots in an order, and behaving the robot as moving obsta
le when its pathhas been
al
ulated [16, 17, 14, 1℄.Velo
ity tuning is one of the de
oupled planning te
hniques. It
oordinates inde-pendently generated paths, by sear
hing a redu
ed
on�guration spa
e. After a pathfor ea
h robot is found, ea
h point in these paths
an be indexed, and ea
h value
an represent di�erent points in the path. Namely one path
an be represented witha single dimension. So ea
h robot will bring one more dimension to sear
h to thenon-
olliding full path planning. The redu
ed
on�guration spa
e
an be representedas P = [0, L1]x[0, L2]x[0, L3]..,
alled coordination space. A path joining the point
(0, 0, ..) to the point (L1, L2, ..) in the
ollision-free subset of P de�nes a valid
oor-dination of robots along their respe
tive paths, from start
on�guration to the �nal
on�guration. By setting the relative velo
ities of the robots along their respe
tivepaths, the
oordination of the robots is a
hieved. The robots may go forward andba
kward in their path, whi
h gives other robots the spa
e for maneuvering. However,if the initial paths are
hosen unlu
kly, there may not be any possibility for
oordinat-ing the paths, su
h as they may lie in two distin
t
onne
ted
omponent of the freespa
e.

19If there are p > 2 robots in the environment, the coordination space will be
p − dimensional. The ith axis of this spa
e en
odes the
urvilinear length along thepath of the ith robot. This method is named velocity tuning global coordination,be
ause initially found respe
tive paths are wanted to be
oordinated together. Analternative to this method is
oordination of the paths pairwise, as its name indi
ates;
pairwise coordination. In this method, two robots are
hosen initially and they are
oordinated. This
oordinated path is indexed again, so we again have one dimensionfor two robots. This new dimension and the redu
ed
on�guration of another robotis then
oordinated. In this step we
oordinated three robots and ea
h point in P3determines a pla
ement of these three robots. Ea
h robot
an be
oordinated with theinitially
oordinated paths.The method, velocity tuning global coordination is inherently in
omplete, but
pairwise coordination is more in
omplete. Coordination of �rst i robots, Pi, may lead
Pi+1 to have no
ollision-free path.

203. ALGORITHMS
3.1. Sampling Based AlgorithmsThe algorithms that rely on expli
it representation of the Cfree be
omes impra
ti-
al as the dimension of the
on�guration spa
e grows. The sampling-based algorithmsare
apable of solving problems that
annot be solved with geometri
, or roadmapbased methods in reasonable time [1℄. Sampling-based methods use various strate-gies for generating samples, and
onne
ting them, to �nd solutions to path-planningproblems [14, 18℄.The e�
ien
y of sampling-based methods
omes from the fa
t that instead ofmodeling the free spa
e,
he
king if a single robot
on�guration is in Cfree or not ismu
h
heaper. The power of sampling based methods is shown using Probabilisti
RoadMap (RPM) [1℄ planner as an example. It �rst makes a
oarse sampling to obtainthe nodes of the roadmap and �ne sampling to obtain the edges. After the roadmapis generated, path queries are answered by �nding the path between initial and goal
on�gurations, as seen in Fig.3.1. Initially random sampling is used with PRM and thatshown the probabilisti

ompleteness of the sampling-based algorithms. However, othersampling and node-
onne
tion strategies have been shown to bring more advantages insome problems.Sampling-based algorithms are mainly divided into two groups as single-queryand multiple-query sampling based algorithms. PRM is a multiple-query algorithm.Multiple-query algorithms �rst generate a roadmap of the environment, and answersea
h query by using this roadmap, like a graph. However, single-query sampling-based algorithms do not generate this roadmap. Single-query algorithms are optimizedto answer the query as fast as possible, for this, the samples generated depend onthe
urrently
onstru
ted tree and the goal
on�guration. However, multiple-queryalgorithms make sampling to �ll the spa
e adequately, and make every part of thespa
e a

essible. So when the same environment will be used for multiple-queries,

21

Figure 3.1. Sample run of PRM algorithm for single robot
aseexploring the spa
e initially, then making a graph sear
h is better. However, for justa few queries, making sear
hes optimum for these queries is better. Expansive-Spa
eTree planner (EST) [19℄, and Rapidly-exploring Random Tree Planner (RRT) [20℄ aresingle-query sampling-based path planning algorithms. In some
ases, if the problemat the hand is very di�
ult, single-query planners need to
onstru
t very large trees to�nd a path. So instead of using the idea of only multiple-query or single-query, somealgorithms use
ombination of these ideas. The Sampling-Based Roadmap of Trees(SRT) [21℄ planner
onstru
ts PRM-style roadmap of single-query-planner trees.An important
hara
teristi
s of sampling-based algorithms is that, they showsome form of
ompleteness. If the sampling is random, they show probabilisti

om-pleteness, if the sampling is quasirandom, or sampling on a grid then they show reso-lution
ompleteness [1℄.3.1.1. Probabilisti
 RoadmapsProbabilisti
 roadmaps (PRM) and related methods are e�e
tive tools to solvepath-planning problems with many degrees of freedom [2, 22℄The PRM planner has two phases, the learning phase, and the query phase. Inthe learning phase, a roadmap in Cfree is built to
apture the
onne
tivity of Cfree

22that is to answer the path-planning queries e�
iently. In the query phase, user-de�nedquery
on�gurations are added to the roadmap, and a graph sear
h is made. Nodesof the roadmap
orresponds to
on�gurations in Cfree, and the edge to the free paths
omputed by a lo
al planner.In PRM the roadmap is represented by a undire
ted graph G = (V, E). Nodes inV are
on�gurations that are elements of Cfree, and edges in E are the edges (c1, c2)that are
ollision-free path between c1 and c2.As shown in Figure 3.2, the algorithm starts with an empty graph G = (V, E). Thegraph is �lled with random
on�gurations from the
on�guration spa
e, if it is
ollision-free. After n
ollision-free sample
on�guration are added, for ea
h
on�guration c ǫ

V , a set N q of k
losest neighbors to the
on�guration c is sele
ted a

ording to somemetri
 dist from V . To
onne
t c with c′ ǫ N q a lo
al planner is used, and it
he
ksto a
hieve a path between c and c′. If a path is found between them it is added to theroadmap.In roadmap
onstru
tion we need some
omponents for generating random
on-�gurations, �nding
losest neighbors,
al
ulation of distan
e fun
tion, and to generatelo
al paths.In the query phase shown in Figure 3.3, �rst, user-
on�gurations cinit and cgoalare
onne
ted to the generated roadmap. To
onne
t these
on�gurations again knearest
on�gurations are found for ea
h and a lo
al planner is used to make a pathbetween the found
on�gurations and the user-
on�gurations. If the roadmap is asingle
onne
ted
omponent a graph sear
h algorithm, like Dijkstra's algorithm [23℄ orA∗ algorithm [24℄, will be employed for the map, and if a path is found between cinitand cgoal, then it is the result. However, if no path is found then the algorithm is failed.If the roadmap
onsist of more than one
onne
ted
omponent, this means either theCfree is not
onne
ted, or the roadmap has not managed to
apture the
onne
tivityof it, then for ea
h
omponent of the roadmap user-
on�gurations will be tried to be
onne
ted, and path sear
h will be performed.

23
Algorithm 3.1 Roadmap Constru
tion AlgorithmInput:n : number of nodes to put in the roadmapk : number of
losest neighbors to examine for ea
h
on�gurationOutput:A roadmap G = (V, E)1: V ← ∅2: E ← ∅3: while length(V) < n do4: repeat5: c← a random
on�guration ∈ C6: until c is
ollision free7: V ← V ∪ q8: end while9: for all c ∈ V do10: Nc ← the k
losest neighbors of c ∈ V a

ording to dist11: for all c′ ∈ Nc do12: if (c, c′) ∋ E and δ(c, c′) 6= NIL then13: E ← E ∪ (c, c′)14: end if15: end for16: end for Figure 3.2. Algorithm for the
onstru
tion of the roadmaps

24Algorithm 3.2 Solve Query AlgorithmInput : qinit : the initial
on�guration; qgoal : the goal
on�guration;k : the number of
losest neighbors to examine for ea
h
on�gurationG = (V, E) : the roadmap
onstru
ted in the �rst phaseOutput : A path from qinit to qgoal or failure1: Ncinit
← the k
losest neighbors of cinit from V a

ording to dist2: Ncgoal
← the k
losest neighbors of cgoal from V a

ording to dist3: V ← cinit ∪ cgoal ∪ V4: c′ ← the
losest neighbor of cinit ∈ Ncinit5: repeat6: if δ(cinit, c′) 6= NIL then7: E ← (cinit, c′) ∪ E8: else9: c′ ← the next
losest neighbor of cinit ∈ Ncinit10: end if11: until a
onne
tion was su

esful or Ncinit

≡ ∅12: c′ ← the
losest neighbor of cgoal ∈ Ncgoal13: repeat14: if δ(cgoal, c′) 6= NIL then15: E ← (cgoal, c′) ∪ E16: else17: c′ ← the next
losest neighbor of cgoal ∈ Ncgoal18: end if19: until a
onne
tion was su

esful or Ncgoal
≡ ∅20: P ← the shortest path (cinit, cgoal, G)21: if P 6= ∅ then22: return P23: else24: return failure25: end if Figure 3.3. Algorithm for solving a query

253.1.2. Sampling StrategiesVarious node-sampling strategies have been developed over the years for PRM.Sampling from a uniform distribution is the simplest of them, and works well for manyproblems. However, the
hoi
e of the node-sampling strategy
an play a signi�
antrole in the performan
e of PRM. The node-sampling strategies should not favor spe-
i�
 orientations be
ause of the representation of the environment used, and samplingdistribution should be symmetry invariant.The main idea for node-sampling is that; after a sample
on�guration is drawn, itis
he
ked for
ollision. If it is
ollision-free, then it is added to the roadmap, otherwisedis
arded. The quality of
ollision
he
king, and speed of
ollision
he
king algorithmhighly e�e
ts the su

ess and speed of the planning algorithm. We will mention some
ollision
he
king algorithms in the next sub-se
tions.3.1.2.1. Uniform Random Sampling. Uniform random sampling of Cfree is the sim-plest method. It uses uniform probability distribution over ea
h translational degreeof freedom for the allowed values of the degree. Uniform random sampling has the ad-vantage that,
arefully
rafted mali
ious environment models
annot make the plannerfail. However, in di�
ult planning problems running time of PRM might vary a

rossdi�erent runs when uniform random sampling is used.Uniform random sampling strategy shows bad performan
e for some problems,espe
ially for narrow passage problems. For queries that require going through a pas-sage to be solved, the sampling strategy should generate samples for quite a small set.To address su
h problems di�erent sampling strategies have been designed with thenarrow passage problem in mind [25℄.3.1.2.2. Sampling Near the Obsta
les. Obsta
le-based samplingmethods generate sam-ples near the obsta
les, be
ause they assume narrow passages to be between someobsta
les.

26Obsta
le based PRM, OBPRM, is the �rst and very su

essful representative ofobsta
le-based sampling methods, [22℄. The algorithm
an be summarized as:
• Generate many
on�gurations at random from a uniform distribution.
• For ea
h
on�guration in
ollision generate a random dire
tion and �nd a free
on�guration in this dire
tion.
• Make a simple binary sear
h between these
on�gurations, and �nd the
losest
ollision free
on�guration to the surfa
e of the obsta
le.
• Add this
on�guration to the roadmap and negle
t previous two.Yet another method is Gaussian sampler [26℄, that tries to solve the problem bysampling from a Gaussian distribution that is biased near the obsta
les. The Gaussiandistribution method
an be summarized as:
• Generate a
on�guration using a uniform distribution.
• A

ording to a distan
e step using normal distribution generate another
on�gu-ration.
• Negle
t both of the
on�gurations, if both of them are in
ollision, or
ollisionfree.
• The
ollision-free
on�guration is added to the roadmap, if the other
on�gurationis in
ollision spa
e.In another algorithm [27℄, �rst, sampling is done by letting samples to penetrateto the obsta
les to some amount, whi
h we say dilated Cfree. Then these samples arepushed toward the free spa
e by performing lo
al resampling operations.3.1.2.3. Sampling Inside Narrow Passages. Bridge test sampling method is one of themethods using the logi
 of sampling inside the narrow passages [25℄. This method
anbe summarized as:
• Sample two
on�gurations randomly from a uniform distribution in Cspace

27
• If both of the
on�gurations are
ollision free, then add both
• If only one of them is
ollision free, dis
ard both
• If both in
ollision, then the
on�guration half way between these
on�gurationswill be
he
ked for being
ollision free, if it is
ollision free it will be added to theroadmap and others will be negle
ted otherwise all will be negle
tedInside narrow passages the bridge will be shorter, however in open spa
e the
onstru
tion of short bridges is di�
ult, so via favoring the
onstru
tion of short bridgesthe bridge planner samples points inside narrow passages.Another method uses the idea of using Generalized Voronoi Diagrams (GVDs)[1℄. Using the Generalized Voronoi Diagrams is
ostly, but it is possible to �nd sampleson the GVD without
omputing them expli
itly. The algorithm moves ea
h sample
on�guration until it is equidistant from two points on the boundary of Cfree. GVDalgorithm
aptures well narrow passages, and some graphi
s hardware supports ap-proximate
al
ulation of GVD, whi
h makes the method popular.3.1.2.4. Visibility-Based Sampling. Add the randomly generated
on�guration to theroadmap only if it
annot be
onne
ted to any previously added
on�gurations, or it
an be
onne
ted to more than one already generated
on�gurations [11℄.3.1.2.5. Quasirandom Sampling. Quasirandom sampling methods are deterministi
alternatives to random sampling. Running time of the algorithms are the same forall the runs due to the deterministi
 nature of quasirandom sequen
es. The resultingplanner is resolution
omplete [1℄.3.1.2.6. Grid-Based Sampling. Initially rather
oarse resolution of the grid is used,and in query phase cinit and cgoal tried to be
onne
ted to nearby grid points. Theresolution of the grid that is used to build the roadmap
an be progressively in
reased,by either adding points one at a time or by adding an entire hyperplane of samples.This sampling method is also resolution
omplete [1℄.

28

Figure 3.4. Two sampling strategies for long narrow passage problem a. Uniformsampling method, b. Sampling on Medial Axis of the Free Spa
e method [28℄3.1.2.7. Bene�ts of Di�erent Sampling Methods. Uniform random sampling works wellfor many problems, however when the issue is
onsisten
y in the running time, usingquasirandom sampling brings some advantages. When the problem involves narrowpassages, algorithms designed for this kind of problems will give better results.If we
ompare Figure 3.4.a and Figure 3.4.b, we
an see that Figure 3.4.b has less
on�guration in the roadmap and has
onne
ted the environment better.The same is true for Figure 3.5.a, and Figure 3.5.b. So as shown by the MAPRMalgorithm [28℄, sampling strategy is an important fa
tor for the su

ess of planningalgorithms. Sele
ted sampling method may in
rease the performan
e of the algorithm,and make the algorithm more robust and faster.3.1.3. Conne
tion StrategiesSele
tion of pairs of
on�gurations that will be tried for
onne
tions by a lo
alplanner is the next step for
onstru
ting the roadmap. The obje
tive of the
onne
tionstrategy is sele
ting the
on�gurations that are to su

eed in making a
onne
tion.Short
onne
tions have good
han
e of being
ollision free, so the algorithms should

29

Figure 3.5. Two sampling strategies in maze a. Uniform sampling method, b.Sampling on Medial Axis of the Free Spa
e method [28℄try to make su
h
onne
tions. Be
ause k-nearest neighbor algorithm leads nearbysamples to be
he
ked for
onne
tion, it leads to shorter
onne
tions. The sele
tedalgorithm for sele
ting the neighbors and the implemented lo
al planner
an a�e
t theperforman
e of the system drasti
ally.3.1.3.1. Sele
ting Closest Neighbors. In this method, when a new sample is generated,k nearest already generated sample
on�gurations are sear
hed in the roadmap. Thenthe new sample is tried to be
onne
ted to ea
h one of them. Be
ause the sample istried to be
onne
ted with the samples those near to it, the length of the
onne
tionis rather short. Be
ause
ollision
he
king is the most time
onsuming part of theplanning, by generating short
onne
tions this big
onsumption is redu
ed.3.1.3.2. Creating Coarse Roadmaps. The
omputation of edges that are part of thesame
onne
ted
omponent will not improve the
onne
tivity of the roadmap. Sopreventing from making
onne
tions in the same
omponent will result speed up inthe roadmap
onstru
tion. The simplest implementation of this idea is
onne
ting a
on�guration with the nearest node in ea
h
omponent that lies
lose enough.This method a
hieves good
onne
tivity with less number of samples, but in the

30query phase, the found paths may be rather long. This may be �xed by applyingpostpro
essing te
hniques like smoothing. However, allowing some redundant edges inthe roadmap
an signi�
antly improve the quality of the initially found path withoutsigni�
ant overhead, so we
an a
hieve shorter paths.3.1.3.3. Conne
ting Conne
ted Components. In some
ases, be
ause of the di�
ultyof the problem, or inadequate sampling, the resultant roadmap may be
omposed ofseveral
onne
ted
omponents. The quality of the roadmap
an be improved by themethods that try to
onne
t these
omponents. So by pla
ing more nodes in di�
ultregions of Cfree more e�e
tive algorithms
an be a
hieved for
onne
ting di�erent
omponents of the roadmap.3.1.4. Collision Che
king MethodsCollision
he
king is the basi
 operation of all sampling based algorithms. Insteadof modeling the free spa
e, sampling based algorithms uses a
ollision
he
king algo-rithm to see if a random
on�guration is
ollision free, or not. Collision free samples andedges between them
omposes the roadmap to be used for path planning queries. Notonly the random
on�gurations should be
ollision free, but also the edges
onne
tingthem should be
ollision free.In simulating a roboti
 environment, to make the environment more realisti
,the
ollision
he
king algorithm should provide high a

ura
y. In ea
h simulation stepthe dynami
 obje
ts will
hange their positions, and
he
king only the start and endposition of the dynami
 obje
ts for
ollision may result unidenti�ed
ollisions to o

urin the mean time. So
ollision
he
king should be extended to in
lude the time passedbetween start and arrival. One of the methods is
reating a
onvex hull around a robot'slo
ation at these two
on�gurations, as shown in Figure 3.6. This method guarantiesto
at
h the
ollision if it o

urs, but it will de�netely make the
ollision
he
king slow.Instead of
reating su
h an obje
t, via subdividing the given time interval in half andtesting for
ollision at the midpoint, and repeating this
al
ulation re
ursively for ea
h

31

Figure 3.6. Convex hull
reated around an obje
ts lo
ation at two di�erent times.Pi
tures is from [29℄

Figure 3.7. Sphere subdivision algorithm for
ollision
he
king. Pi
ture is from [29℄resulting half will provide a faster and good enough
ollision
he
king. This algorithmis easier to implement, and runs faster but is less a

urate.The other problem in
ollision
he
king is
he
king whether an obje
t interse
tswith any other obje
t in the environment. If the environment
ontains many obje
ts
he
king ea
h obje
t with ea
h other for
ollision will be at order of O(N2). Instead of
he
king ea
h obje
t with ea
h other we
an divide the obje
ts into two sets, stationaryobje
ts, and moving obje
ts. So we will not
he
k obje
ts for
ollision those
an never
ollide. Other advan
ed methods may also be used like building an o
tree of the s
ene[30℄. One of the simple but e�
ient methods is approximating ea
h obje
t or part

32of obje
ts with a sphere. So when making
ollision
he
ks only these spheres will be
he
ked for
ollision, whi
h will make the pro
ess
omputationally
heaper. We shouldonly
he
k whether the square of the distan
e between two spheres is more than thesum of the squares of the radii of the spheres. If we represent a big obje
t with onlya bounding sphere, the approximation will be quite rough. So, via subdividing thisbig sphere into smaller spheres, we
an get a more detailed approximation, Figure 3.7.When making
ollision
he
ks, �rst the big en
apsulating spheres will be
he
ked for
ollision, if they are not
olliding, then we will not need to
he
k the subdivisions. Ifthe bigger en
apsulating sphere
ollides, then we will
he
k ea
h smaller sphere withea
h other for
ollision. We may subdivide the spheres until we are satis�ed with theapproximation.There are quite more advan
ed algorithms for
ollision
he
king but for our pur-pose using sphere subdivision algorithm seem enough.3.1.5. Expansive-Spa
es TreesEST is an e�
ient single-query planner that �nds a path between cinit and cgoalrapidly. Kinodynami
 problems involve both �nding a path and the
ontrol inputsfor the robots to take the path. Namely, we
an see kinodynami
 planning as motionplanning. For kinodynami
 planning a single tree is typi
ally build and EST is bettersuited for su
h problems. EST algorithm is a probabilisti
ally
omplete algorithm.3.1.5.1. Constru
tion of Trees. Let T be one of the trees Tinit or Tgoal. The algorithm�rst sele
ts a
on�guration c from T , and then generates a random
on�guration crandnear c with a uniform distribution. The
on�guration c is sele
ted randomly with prob-ability πT (q). Then the lo
al planner ∆ attempts to make a
onne
tion between c and
crand. If the attempt su

eeds, the
on�guration is added to the set of
on�gurations,the verti
es of T , and (c, crand) are added to the edges of T . This pro
ess
ontinuesuntil a spe
i�ed number of
on�gurations are added to the T . The pro
ess is des
ribedin Figure 3.8 and Figure 3.9.

33Algorithm 3.3 Build EST AlgorithmInput:
c0 : the root
on�guration of the tree
n : number of attempt to expand the treeOutput:A tree T = (V, E) that is rooted at c0 and has less than n
on�gurations1: V ← c02: E ← ∅3: for i = 0 to n do4: c← a randomly
hoosen
on�guration from T with probability πT (q)5: extend EST (T, q)6: end for7: return T Figure 3.8. The algorithm for building an EST treeAlgorithm 3.4 Extend EST AlgorithmInput:
T = (V, E) : an EST
c : a
on�guration from whi
h to grow the treeOutput:A new
on�guration cnew in the neighborhood of c, or NIL in
ase of failure1: cnew ← a random
on�guration ∈ Cfree near the c2: if ∆(c, cnew) then3: V ← V ∪ {cnew}4: E ← E ∪ {(c, cnew)}5: return cnew6: end if7: return NIL Figure 3.9. Extend EST Algorithm

34In the PRM algorithm, the generated random
on�guration is added to theroadmap dire
tly if it is in Cfree. However, the EST algorithm adds the
on�gura-tion to the tree if it
an be
onne
ted to the existing
on�gurations in the tree. Sothere happens a path from the root of the tree to ea
h
on�guration in T .The e�e
tiveness of the EST algorithm highly depends on the πT (q). The algo-rithm to be used for πT (q) should not oversample any region of Cfree. To s
atter thesampled
on�gurations various solution methods are proposed. One of the methods isatta
hing a weight value wT (q) to ea
h
on�guration c that
onstitutes the
ount ofthe number of
on�gurations within some prede�ned neighborhood of c. Then,
hoose
c as inversely proportional to wT (q). So, the
on�gurations with sparse neighborhoodsare more likely to be pi
ked. Another method is dividing the C into grids and biasingthe random
on�guration sele
tion toward to
ells with fewer
on�gurations in it. So�rst a
ell is
hosen then a
on�guration within this
ell is
hoosen randomly.3.1.5.2. Merging of Trees. While expanding the trees rooted at the cinit and cgoal, thealgorithm also tries to
onne
t these trees, so that a path is
onstru
ted. First anew
on�guration in Tinit or Tgoal is generated, then this
on�guration is tried to be
onne
ted with k
losest
on�guration in the other tree. If a
onne
tion is generatedthen the merging is su

essful. If no
onne
tion is su

essful then the trees are swappedand the pro
ess
ontinues.When a su

essful
onne
tion is found for c1 ∈ Tinit and c2 ∈ Tgoal by using thelo
al planner ∆, the path between cinit and cgoal
an be obtained by
on
atenating thepath from cinit to c1 in Tinit to the path from c2 to cgoal in Tgoal.3.1.6. Rapidly Exploring Random TreeAs like EST, the RRT algorithm is initially developed for kinodynami
 motionplanning problems, and a single tree is built by this algorithm. The algorithm e�
iently
overs the spa
e between cinit and cgoal, and it is shown to be probabilisti
ally
omplete,

35shown in Figure 3.10.

Figure 3.10. Growing of an RRT tree3.1.6.1. Constru
tion of Trees. Let T be one of the trees Tinit or Tgoal. At ea
h itera-tion a random
on�guration, crand, is sele
ted uniformly in Cfree. Then T is sear
hedto �nd the nearest
on�guration, cnear, to crand. A new
on�guration is generated onthe line from cnear to crand with moving a distan
e step_size from cnear. If this newlygenerated
on�guration, cnew is
ollision free, and it
an be
onne
ted to cnear. Next,the
on�guration is added to the verti
es of T and the edge (cnear, cnew) is added tothe edges of T . Pseude
ode of algorithm is given in Figure 3.11 and Figure 3.12.The step_size parameter
an also be
hosen dynami
ally, based on the distan
ebetween cnear and crand. If the two
on�gurations are far from
olliding,
hoosing a large
step_size value, and small otherwise, is sensible. Another alternative is a greedier onethat tries to move cnew toward crand as mu
h as possible, as shown in Figure 3.13.If we keep the step_size small, then the tree will be fed with many
on�gurations.It will make the sear
h for the nearest
on�guration in the tree to be more expensive,and the memory
onsumption to be in
reased. In su
h a
ase instead of adding allintermediate samples, adding only the last sample of the Extend RRT iteration maybe better. Another optimization may be generating the crand samples near to the cgoal
on�guration with some small probability. This will bias the sampling toward the goaland in
rease the e�
ien
y of the algorithm.

36Algorithm 3.5 Build RRT AlgorithmInput:
c0 : the root
on�guration of the tree
n : number of attempt to expand the treeOutput:A tree T = (V, E) that is rooted at c0 and has less than n
on�gurations1: V ← c02: E ← ∅3: for i = 0 to n do4: crand ← a randomly
hoosen
on�guration from C5: extend RRT (T, crand)6: end for7: return T Figure 3.11. The algorithm for building an RRT treeAlgorithm 3.6 Extend RRT AlgorithmInput:
T = (V, E) : an RRT
c : a
on�guration toward whi
h to grow the treeOutput:A new
on�guration cnew toward c, or NIL in
ase of failure1: cnear ←
losest neighbor of c ∈ T2: cnew ← progress cnear by step_size along the straight line between cnear and crand3: if cnew ∈ Cfree then4: V ← V ∪ {cnew}5: E ← E ∪ {(cnear, cnew)}6: return cnew7: end if8: return NIL Figure 3.12. The algorithm extends an RRT tree

37Algorithm 3.7 Conne
t RRT AlgorithmInput:
T = (V, E) : an RRT
c : a
on�guration toward whi
h to grow the treeOutput:
connected is returned if c is
onne
ted to T ; failure otherwise1: repeat2: cnew ← extend RRT (T, q)3: until cnew = q or cnew = NIL4: if cnew = q then5: return connected6: else7: return failure8: end ifFigure 3.13. Trying to
onne
t two RRT trees in RRT Conne
t algorithm3.1.6.2. Merging of Trees. In the merging step two trees rooted at cinit and cgoal aretried to be
onne
ted. In the literature this algorithm is named as RRT Conne
talgorithm [20℄ . The main idea of the algorithm is growing Tinit and Tgoal towardea
h other. At ea
h iteration, initially a random
on�guration is generated. One ofthe trees tries to extend its
losest node toward this random
on�guration, crand. Sonew
on�gurations are added to the tree, cnew. In the se
ond step, the other tree isextended toward to cnew. If it is su

essful, then the planner terminates, and the treesare
onne
ted. Otherwise, the trees are swapped and the pro
ess
ontinues for a
ertainnumber of times.For merging of the trees either the one step toward to crand or greedily addingnew
on�gurations until rea
hing crand versions of the algorithm
an be used. Theymay be used in
ombination too by
hanging extendRRT method in Figure 3.14 with
connectRRT . On
e two RRT trees are
onne
ted the path
an be found by
onne
tingthe paths from the root of the trees to the
onne
ted nodes.

38Algorithm 3.8 Merge RRT AlgorithmInput :
T1 : �rst RRT
T2 : se
ond RRT
n : number of trialsOutput :
merged if the two RRTs are
onne
ted to ea
h other, otherwise failure1: for i = 1 to n do2: crand ← a random
on�guration ∈ Cfree3: cnew,1 ← extend RRT (T1, crand)4: if cnew,1 6= NIL then5: cnew,2← extend RRT (T2, cnew,1)6: if cnew,1 = cnew,2 then7: return merged8: end if9: SWAP(T1, T2)10: end if11: end for12: return failureFigure 3.14. RRT Conne
t algorithm's merging part3.1.7. Lazy AlgorithmsIt is observed that generally most of the edges in the roadmaps, or trees arenot in the �nal found path. So making
ollision
he
ks for these edges were not reallyne
essary. A method is proposed that delays the
ollision
he
king until a path between
cinit and cgoal is found, and it
he
ks only the edges in the path, exa
tly on
e.Therefore the number of
ollision-
he
ks performed during planning is minimized.Be
ause already
he
ked edges are not again
he
ked for
ollision, and only the edgesin the found path is
he
ked, both the number of
ollision-
he
ks are minimized, and

39

Figure 3.15. High-level des
ription of Lazy PRMalso the knowledge of previous queries is
arried to next queries, whi
h speeds upsubsequent queries. 3.2. Post Pro
essingSampling based path planning algorithms fo
us on sear
hing a path, but generallythey do not propose the found path to be the optimum. Their main aim is �nding apath with minimum time and memory spa
e usage.After a path is found, there are some algorithms to improve the quality of thepath a

ording to some
riteria. We name this step postpro
essing step, that improvethe shortness and smoothness of the path
onne
ting cinit to cgoal.To improve the shortness of the path, we
he
k whether nonadja
ent
on�gu-rations c1 and c2 in the path
an be
onne
ted by the lo
al planner. If they
an be
onne
ted, then all the nodes between c1 and c2 will be skipped, and a shorter pathwill remain. The points c1 and c2 may be
hosen greedy, or randomly. Algorithm of thegreedy approa
h
an be seen in Figure 3.17. Figure 3.16 shows the paths before and

40

Figure 3.16. Postpro
essing is applied to shorten the found pathafter the path shortening algorithm is applied. The arrows indi
ates the
on�gurationsthose are skipped, and a shorter path is a
hieved.The
on�gurations c1 and c2 might be in a relatively un
luttered part of Cfree,but not
onne
ted. Reason for this might be the dist fun
tion applied, whi
h maylead the k
losest neighbor query not to return them as neighbors. Generally, whensparse roadmap
onne
tion strategies are applied su
h
ases appears. So by applyingthe path shortening algorithm we �x the problem and
onne
t the
on�gurations inthe un
luttered part of Cfree.Some robots may require the found path to have smooth
urvature. So, instead ofshortening the path the aim may be generating su
h paths. To generate more smoothpaths we
an interpolate the
urves, su
h as; splines
an be used. Until
urves thatsatisfy both the smoothness properties and the
ollision avoidan
e
riteria
ollision
he
king should be performed.Postpro
essing step may generate paths those are shorter and smoother. However,

41Algorithm 3.9 Shorten Found PathInput:
path : the found path
n : number of trialsOutput:Apply the operations onto the given input, path1: for i = 0 to n do2: c0 ← random configuration on the path3: c1 ← another random configuration on the path4: if lo
al planner
an
onne
t c0 and c1 then5: path← path−
on�gurations between c0 and c16: end if7: end for Figure 3.17. Simple path shortening algorithmthis may bring a signi�
ant overhead on the time to respond to the query. Insteadof postpro
essing, wanted optimality
riteria
an be tried to be a
hieved during theroadmap
onstru
tion phase.3.3. Multiple Robot CoordinationPath planning is sear
hing for a path that will lead a robot from its initial
on�g-uration to a desired
on�guration. However, if there are more than one robots to sear
hfor a path, then the problem involves
oordination of the robots. We should both �ndpath for ea
h robot, and
oordinate these paths su
h that no robot will
ollide.For multiple robots the path sear
h may be done all together,
entralized, or theplanning may be done separately, de
entralized. Details of these approa
hes alreadygiven in the previous
hapters of this thesis. Next, we will dis
uss how we implementedthem.

42

Figure 3.18. A big
on�guration is a
hieved by appending robot
on�gurations3.3.1. Centralized Approa
hIn the
entralized approa
h, we append the
on�guration of ea
h robot, anda
hieved a big
on�guration representing the
on�gurations of all of the robots. Sovia using this big
on�guration, we do not need any other representative to show the
on�guration of ea
h robot. When we make the sear
h at the universe of this big
on�guration, the found path will be the path for ea
h robot. So while sear
hing apath, we both �nd a path for ea
h robot, and we also
oordinate the robots so that no
ollision o

urs.While
he
king the edges in the path for
ollision, we divided the edges into partsby dividing them and the parts from their
enter re
ursively. Namely, we assumed thatea
h robot will arrive at the
enter of the edge at the same time, and will rea
h theend of the edge together. So this approa
h provides us a methodology for �nding thevelo
ities of the robots. An edge in the big
on�guration spa
e is a set of edges, anedge for ea
h robot. This edge in the big
on�guration spa
e may result short or longedges for ea
h robot. However, the amount of time ea
h robot will use to take theseedges should be the same to make the robots move in
oordination. So at ea
h timewe
an
al
ulate the position of the robot easily.Figure 3.19 shows two robots, and the next edges of their paths. The robotswill rea
h the end of these edges at the same time. So the robot with the longer edgewill take the path with its maximum velo
ity. However, the robot having shorter edgeshould lower its velo
ity so that they will be in
oordination. They will be at the
enter

43

Figure 3.19. Tuning the velo
ities in
entralized approa
hof their edges at the same time, and they will also rea
h to the
enter of the �rst half,and the last half at the same time too.Coordination of the robots should be thought while �nding the paths in the
entralized approa
h. The other options may also be tuning the velo
ities after �ndingthe paths. In our
ase, the
ollision
he
ker algorithm we used
he
ks the robots asthey will be
oordinated in the Figure 3.19. This approa
h simpli�ed the problem andpath planning algorithms designed for single robots
ould also be used by extending
ollision
he
ker only a little.3.3.2. De
entralized Approa
hIn this approa
h the
ontrollers �nd the path of ea
h robot initially, and let therobots to take the found paths. When they
oin
ide with another robot in their waysthey try to es
ape from these robots, �rst rea
tively, then intelligently.In
entralized approa
hes be
ause the robots are
oordinated from the start, ifone robot violates this
oordination while es
aping from the robot
luttering its path,then whole the path planning should be done again. However, in the de
entralizedapproa
h, ea
h robot has the responsibility of itself. So if a path is disturbed, theother robots may
ontinue to follow their own paths.

443.3.2.1. Simple Rea
tive Es
ape. This is a truly basi
 es
aping type. If the robotsees a robot
luttering its path, it tries to get away from the robot, that will leadpossible
ollisions. The dire
tion of the es
ape will be toward the reverse of the ve
tor
onne
ting those two robots.If the rea
tive es
ape is su

essful, the robot
ontinues to its path. However, ifthe number of trials rea
hes a limit, while es
aping from the moving obsta
le, then therobots should sear
h for an intelligent way to es
ape from the robot.3.3.2.2. Intelligent Es
ape. If the robot is not able to es
ape from the moving obsta-
le, or from other robots we may understand that there is a lo
al minima problem.Therefore, the intelligent es
ape algorithm generates a random
on�guration and leadsthe robot to �rst go to this random
on�guration, than replan path to the real goal.Simple rea
tive es
ape makes the robots to es
ape from ea
h other with simple,small steps, and intelligent es
ape makes this es
ape to be a big step.3.4. Arti�
ial Potential Fun
tion (RBOT)In [5℄ and [7℄, an algorithm whi
h uses potential fun
tion to navigate
ir
ularrobots is given. This algorithm requires
ir
ular representation of the robots, andthe environment. The algorithm
an work in a
entralized, de
entralized, or partially
entralized fashion. In [5℄, a navigation fun
tion is proven to be analyti
, admissible,polar, and morse. If a navigation fun
tion is proven to be admissible, that means thisfun
tion attains its maximum on the boundary. If it is polar, its unique minimummust be at the goal
on�guration. Being morse means all
riti
al points to be non-degenerate.APF algorithm is proven to be an exa
t navigation fun
tion. It is
apable of
o-ordinating multiple robots. Next we will des
ribe the algorithm simply. The algorithmis quite powerful, however it
ontains some multipli
ation fa
tors those lead the algo-

45rithm to produ
e under�ows or over�ows for multiple robot
ases with more than 15robots. We solved this problem by not altering the navigation fun
tion, but
onvertingsome portion to log sums.A

ording to the destination
on�guration,
urrent
on�gurations of other robots,and the radius of the environment, two for
es for ea
h robot is
al
ulated. Ea
h robot
al
ulates these two for
es and takes their next step a

ording to those values. Oneof them is the attra
tive for
e, whi
h leads the robot to its goal, and the other is therepel for
e, whi
h saves the robot from
olliding with other obje
ts, and the robots inthe environment.These two for
es will
arry the robots to their destinations. They will
hangethe position of the robot. So an integration formula is devised a

ording to propertiesof the robots, that will sum the for
e, and
al
ulate next positions. More informationabout integration
an be found in Appendix A. The step size of the integration for-mula de
ides about the a�e
t of the for
e at ea
h step. Adaptive integration formulas
al
ulates the for
es more than on
e before taking any step, and
al
ulates the errorrates. These error rates are used to a

ord the step size values, Figure 3.20.In Figure 3.20,
al
ulation of next
ontrol inputs for a robot is shown. First,a runge kutta algorithm is applied to
al
ulate
ontrol inputs. This
all is used to
al
ulate the s
alings. Then, again runge kutta algorithm is used to get the next
on�guration of the robot. This
on�guration is the
al
ulated
on�guration, the robotsupposed to be. So the velo
ity is
al
ulated as taken path divided by time. S
alingfa
tors are de
reased when robots get near to ea
h other or to their targets.We made some improvements on this algorithm. First of all, the algorithm has apart that multiplies the distan
es of robots to ea
h other. This part results over�owsor under�ows. Instead of using multipli
ation, we
hanged it to sum of logarithms.Furthermore, the algorithm was la
king velo
ity parameter. We added a velo
ity pa-rameter to both
al
ulation of integration potential and to the runge kutta algorithm.Again,
entralized, and partially
entralized versions of the algorithm is implemented.

46Algorithm 3.10 Integrating PotentialGlobal:
xScale : used in adapting integration step size
yScale : used in adapting integration step sizeInput:
robot : The robot to
al
ulate next
ontrol inputs
neighbors : The neighbors of the robotOutput:Next
ontrol inputs for the robot1: savedConfig ← current configuration of the robot2: ApplyRungeKutta(robot, neighbors)3: xScale← ‖robot_config − target_config‖2 + |k1x ∗ h| ∗maxV el + tiny4: yScale← ‖robot_config − target_config‖2 + |k1y ∗ h| ∗maxV el + tiny5: newConfig ← adaptRungeKutta(robot, neighbors)6: diff ← newConfig − savedConfig7: velocity ← diff/simulation_step_time8: if ‖velocity‖ < maxV el then9: velocity ← maxV el10: end if11: result← velocityFigure 3.20. Algorithm for �nding the next
ontrol inputsThe results of these
hanges
an be found in the results se
tion of the thesis. Thealgorithm was working properly for approximately 15, 20 robots previously. Now, thealgorithm handles 250 robots, without
ausing any over�ow or under�ow, easily.3.5. Lazy PRM RRT Conne
tWe
lassi�ed sampling based path planning algorithms as multiple query, andsingle query algorithms. Multiple query sampling based path planning algorihtms gen-erally generates a model of the environment in the prepro
essing step. The generated

47

Figure 3.21. RRT Conne
t algorithm leads the robots toward the
enter of the freespa
emodel in probabilisti
 roadmap algorithms is a map of the
ollision free spa
e. Thismap is generated by generating random samples and
onne
ting them. This prepro-
essing step handles most of the pro
ess, and at the query phase only a graph sear
h isperformed. These algorithms are better suited for multiple query s
enarios. The aimof these algorithms is modelling the
ollision free
on�guration spa
e as well as possiblewith minimum number of representatives as possible.Multiple query path planning algorithms are modelled to answer various pathsear
h queries. However, if the query is known beforehand, the sear
h algorithm maymake the sear
h a

ording to the request. Therefore, single query sampling based pathplanning algorithms make biased sear
hes, and they try to sear
h the free
on�gurationspa
e as little as possible. As
an be seen, two of the di�erent approa
hes, one is tryingto
over the free spa
e as mu
h as possible, and the other wants to limit this sear
h. Inmultiple robot path planning problems, biased sear
hes make the robots to get too nearto ea
h other. As seen in Figure 3.21, the RRTConne
t algorithm �rst gets the robotstoward the
enter and then the robots are travelled toward their goals. Whereas, the

48

Figure 3.22. RboT algorithm uses the free spa
e e�e
tivelymultiple query path planning algorithms would make the robots to use the big freespa
e, and will lead them to easier paths. As seen in Figure 3.22, the RboT algorithmleads the robots to use the free spa
e as mu
h as possible. So, if we
ombine theRRTConne
t algorithm with LazyPRM algorithm we may a
hieve an algorithm thatwill both make a biased sear
h, and will also try to use the free spa
e as mu
h aspossible.Lazy PRM RRT Conne
t algorithm �rst generates a simple roadmap of thefree
on�guration spa
e. This graph will be the main roadmap in the path plan-ning sear
hes. After a path is found on this main roadmap, the mission of the RRTConne
t algorithm will be
onne
ting the robots to the start and end of this path.

494. SIMULATIONS
4.1. Simulator DesignThere are many roboti
 simulators available. However, non of them is spe
ial-ized for path planning problems, and have their limits. These limits prevent detailedinspe
tion and su

essful
omparison of path planning and navigation algorithms.Engineers want to have a highly
on�gurable platform, that will enable themto generate test s
enarios they think. Adding new robots,
hanging the types of theobsta
les, adding robots to di�erent
ontrollers, taking statisti
s of di�erent
ontrollersfor the same environment is some of their wishes.There are many path planning and
oordination algorithms, those have beendesigned for di�erent problems. For example some algorithms are designed to generatethe map of the environment and �nd a path on this map. Their aim is representing thefree
on�guration spa
e better, and their
omparison must be on this basis. They donot propose anything about multiple robot
oordination. However, some algorithmsdire
tly fo
us on this problem, and also work rea
tively.Be
ause of these reasons, a simulator, spe
ialized for path planning, is designed,that gives some great �exibilities to the users, and enables di�erent algorithms to be
ompared in fair.In Appendix B, the simulator will be des
ribed in detail. Topi
s will be aboutwhat kind of work spa
es
an be generated by the simulator, how algorithms
ommu-ni
ate with the simulation part, the boiler-plate supplied for the planning algorithms,and supplied path planning algorithms. Moreover, be
ause we implemented this sim-ulator we
an extend it a

ording to our needs by adding new robot, obsta
le, and
ontroller types.

504.2. MeasuresThe algorithms will be
ompared by various measures. One algorithm may givethe best result for a measure, however its result for another measure may be una
-
eptable. So the performan
e of the algorithm is a mixture of its performa
e on everymeasure. We have various measures like su

ess rate, average elapsed time, normalizedrobot path length, and number of nodes if appli
able.4.2.1. Su

ess RateWe run the simulations for ea
h algorithm in ea
h s
enario 100 times. Su

essrate shows the per
entage of su

essful endings to all runs. Ea
h algorithm may pro-pose other rules for su

essful
ompletion. In general, if the robots rea
h to theirgoal without
olliding to ea
h other, or any other obsta
le in the environment in ana

eptable time amount, the run is said to be su

essful.4.2.2. Average Elapsed TimeThis measure is used to
ompare the time
omplexity of ea
h algorithm. Averageelapsed time value may
hange a

ording to the number of robots in the environmentin ea
h algorithm. This
hange may be exponential or linear. Linear in
reases arebetter than exponential in
reases.4.2.3. Normalized Robot Path LengthFinding the shortest path is another
riteria for the performan
e of the algorithms.Some algorithms result to shortest path, but they require too mu
h time to
ompute.Moreover they lead robots to get too near to ea
h other. Big NRL values may bea

eptable, if it is required for the algorithm to lead robots to use the free spa
e better.

514.2.4. Spa
e ComplexitySampling based algorithms' su

ess rate in
reases with the number of used nodes.However addition of new nodes means in
rease in the used memory, and the sear
h timefor a valid path in the graph. So the algorithm whi
h uses less number of nodes and
overs the spa
e better is the better algorithm.4.3. S
enariosAfter implementing various types of rea
tive and deliberative path planning al-gorithms, we designed some test s
enarios that will assess all properties of these algo-rithms. For example, APF method works on the environments with no obsta
les, soto
ompare APF with other path planning algorithms we prepared simulation environ-ments those involve no obsta
les. In these tests
apability of the algorithms in path�nding, their s
ability for multiple robots, and their su

ess in the environments those
ontain moving obsta
les are inspe
ted.To test di�erent kind of path planning, and robot navigation algorithms, the testsare designed to let ea
h algorithm to show their power. Algorithms like PRM, LazyPRM, Lazy PRM RRT Conne
t are designed for multiple query problems. These algo-rithms initially generates a roadmap, then for ea
h query sear
hes this roadmap to �nda path. Generating the initial roadmap is an expensive pro
ess, but sear
hing a pathin the roadmap is
heap in these algorithms. Espe
ially PRM algorithm makes most ofits pro
essing in the initial roadmap generation, so to solve a path planning query onlya graph sear
h is performed. However, Lazy PRM algorithm both sear
hes the graph,and
ontinues
he
king the found path for
ollision. So Lazy PRM distributes the jobbetween the initialization and the query steps. Lazy PRM RRT Conne
t algorithm isan extension to Lazy PRM. In this algorithm, the pro
ess is also distributed betweenthe initialization and the query steps.The other algorithms, like RRT, and RRT Conne
t, are designed to be used forsingle queries. Their aim is to respond a single query as fast as possible. Instead of

52inspe
ting the
on�guration spa
e, and trying to �ll the spa
e adequately, their aimis �nding a path by using as minimum nodes as possible. So single query algorithmshave nearly no prepro
essing, but they make the sear
h job fully in the query step.Rea
tive algorithms resemble to single query algorithms. They do not generateany initial roadmap but make their sear
hes in a rea
tive manner in the query step.As seen, we have di�erent approa
hes and to make a fair
omparison we haveto take all these into
onsideration. A testing platform is designed to enable users fortesting the algorithms with various options. An algorithm may be initialized from thestrat
h for ea
h query, or it may make the prepro
essing on
e and use this alreadygenerated information for the next queries. To make a fair
omparison between themultiple query approa
hes and the single query approa
hes we sele
ted the se
ondoption. So we gave
han
e to these approa
hes to
ompete in the equal
onditions.For ea
h test the algorithms build their initial roadmaps, if they need, at the�rst step, and they use the same roadmap for the subsequent
alls. Already, somealgorithms like Lazy PRM and Lazy PRM RRT Conne
t works
ummulatively. Atea
h query they try to optimize the roadmaps they have already generated.Next, we will test the algorihtms for di�erent
ases. Initially algorithms will betested in an environment with no dynami
 or stati
 obstables. Then we will
omparesampling based algorithms in a maze. As the last test s
enario algorithms will be testedin an environment that
ontains moving obsta
les. The algorithms used in the last tests
enario are improved to
ompete in su
h dynami
 environments. They make simplees
apes and replannings to es
ape from dynami
 obje
ts and robots in the environment.4.4. No Obsta
lesAPF algorithm is a powerful, rea
tive algorithm whi
h uses potential fun
tion tonavigate the robots. Be
ause it is implemented for the environments with no obsta
les,test s
enarios involve no obsta
les. In these tests the robots will try to rea
h some near

53target
on�gurations whi
h are distributed
ir
ularly, without
olliding ea
h other.Be
ause the environment does not
ontain any stati
 obsta
le, the problem
an be seenas a robot
oordination problem. One algorithm
oordinates the robots in rea
tivebasis, and the others
oordinate in deliberative manner.In these tests we have an environment with no stati
 or dynami
 obsta
les. Theaim is
oordination of the robots without tou
hing to ea
h other toward their goal
on�gurations. The volume of the environment is kept un
hanged and number ofrobots is in
reased, and the distan
e between the targets of the robots is de
reased toa
hieve various test
on�gurations for this s
enario. Ea
h test is run for 100 times, andtheir results are supplied in the next subse
tions.The path planning algorithms used in these tests are
entralized sampling basedpath planning algorithms. So the dimension of the algorithm is in
reased by the di-mension of the robot's
on�guration spa
e for ea
h newly added robot.4.4.1. Five RobotsIn this test s
enario, we have �ve robots, and ea
h will have three dimensionsas x, y
oordinates and the orientation of the robot. Therefore, the path planningalgorithms will sear
h for the path in the
on�guration spa
e with �fteen dimensions.As the targets, and the initial
on�gurations of the robots get nearer, the problemgets more di�
ult. Near targets need the algorithm to make deeper sear
hes. Let usthink it in two dimensions, if the targets are far, then we
an divide the environmentinto big re
tangles and
an still have the targets in two di�erent re
tangles. However,if the targets are near, the size of the re
tangles should be small enough to have thetargets in di�erent re
tangles. The problem, that we are trying to solve here, is quitethe same. If the targets are near, the path planning algorithms should make higheramount of sampling to di�erentiate the targets, and to do not
ause any
ollision.

54

Figure 4.1. Five robots distributed widely4.4.1.1. Targets Distributed Widely. As seen in Figure 4.1, the robot targets are dis-tributed quite sparsely. A

ording to the statisti
s, RRT Conne
t algorithm is foundto be the best algorithm for this
ase.
Displacement = Total Initial Distance− Total F inal Distance

NRL = Total T ravelled Path/Displacement (4.1)Table 4.1 shows it as the fastest algorithm, that uses memory less than the others.Moveover, if we look at Table 4.1, for the normalized robot path length (NRL) values,whose de�nition is shown in Equation (4.1), RRT Conne
t algorithm gives resultsnearly equal to the length of a dire
t
onne
tion to the targets.Lazy PRM RRT Conne
t algorithm also shows good results. Its elapsed timevarian
e is quite low, and it seems as the se
ond algorithm around all. However, if we
ompare Lazy PRM RRT Conne
t with Lazy PRM and PRM, whi
h are the multiplequery algorithms, Lazy PRM RRT Conne
t algorithm shows improvements.

55Table 4.1. Statisti
s for Five Robots Coarse CaseAlgorithm Su
. Rate Elapsed Time NRL Node CountLazy PRM 100 375.23/∓307.25 1.65/∓0.57 300LP.RRTCon. 100 320.31/∓144.34 1.28/∓0.45 132.95/∓0.22PRM 100 1116.74/∓7465.12 1.48/∓0.43 1000Rbot 100 323.43/∓70.11 1.59/∓0.18 0RRT 100 7180.37/∓276.31 1.18/∓0.22 1001RRT Conne
t 100 216.72/∓81.14 1.06/∓0.11 21.06/∓9.54Figure 4.2 shows the taken path when the Rbot algorithm, and Figure 4.3 showsthe taken path when the RRT Conne
t algorithm is used.Rbot algorithm uses no sample nodes or edges, so we assume it as using nearlyno memory. For the robots with limited memory, it should be the main option. In fa
tRRT Conne
t also used little memory for this
ase. Rbot shows 100 per
ent su

ess,but its average NRL is a little higher than RRT Conne
t's results. This is be
auseof the repulsive potential fun
tion whi
h it uses to es
ape from
olliding. To es
apefrom
olliding it takes a little longer paths. Moreover, when we look at the behaviourof the robots we see that the robots
ould not rea
hed to the maximum speed at anytime. When the robots get nearer to their targets, their speed even gets too vanishing.However, in RRT Conne
t like algorithms, be
ause the path is found initially, ea
hrobot tries to follow the path as fast as possible, so uses maximum velo
ity. This is oneother reason for the elapsed time of the Rbot algorithm is higher than some others.4.4.1.2. Targets Distributed Near. As the targets get nearer, and the
ount of robotsin
reases, we wait Rbot algorithm to start to be the best
hoi
e. For �ve robots andnear targets, still sampling based algorithms give better results than the Rbot algorithmas shown in Table 4.2.Again to save the robots from
ollision, Rbot algorithm prevented robots to rea
h

56

Figure 4.2. Five robots
oordinated with Rbot algorithmtheir maximum velo
ity. If we
hoose a small value for the maximum velo
ity Rbotalgorithm may be the best
hoi
e in this test too.4.4.1.3. Targets Distributed Tightly. If we look at Table 4.1, Table 4.2 and Table 4.3,we see that Rbot algorithm gives quite near results. The elapsed time, su

ess rate,and varian
e of elapsed time seem quite near to ea
h other. So for the �ve robots
asewe see that Rbot algorithm is not a�e
ted by the tightness of the targets very mu
h.Again RRT Conne
t algorithm gives the best results. Table 4.2 shows that whenthe targets get nearer RRT algorithm fails in �nding a
ollision free path. Figure 4.4shows RRT algorithm as the worst one. Of
ourse the su

ess rate of RRT algorithm
an in
rease as the number of samples are in
reased, be
ause these algorithms aregenerally probabilisti
ally
omplete.RRT Conne
t algorithm did not highly a�e
ted by the adverse a�e
t of getting

57
Table 4.2. Statisti
s for Five Robots Normal CaseAlgorithm Su
. Rate Elapsed Time NRL Node CountLazy PRM 100 359.82/∓342.88 1.68/∓0.67 300LP.RRTCon. 100 263.16/∓94.65 1.43/∓0.65 121.01/∓0.1PRM 100 1147.44/∓6865.06 1.77/∓0.77 1000Rbot 100 311.21/∓94.83 1.79/∓0.26 0RRT 100 7089.9/∓172.71 1.16/∓0.19 1000.98/∓0.14RRT Conne
t 100 210.65/∓105.9 1.07/∓0.09 20.78/∓11.07

Table 4.3. Statisti
s for Five Robots Tight CaseAlgorithm Su
. Rate Elapsed Time NRL Node CountLazy PRM 100 1240.2/∓2409.78 1.65 675.86/∓182.51LP.RRTCon. 100 344.95/∓148.66 1.28 126.1/∓0.3PRM 100 1306.56/∓7026.11 1.48 1000Rbot 100 354.69/∓71.4 1.77/∓0.18 0RRT 38 7214.26/∓478.27 1.18 1001RRT Conne
t 100 255.77/∓118.12 1.06 27.41/∓14.5

58

Figure 4.3. Five robots
oordinated with RRTConne
t algorithmtargets nearer for the �ve robots
ase. We will further inspe
t the behaviour of thealgorithm for more robots.4.4.2. 10 RobotsFor some algorithms, these tests will be like stress testing. The algorithms willtry to sear
h a universe with three times ten, thirty dimensions. If we
al
ulate thespa
e, (1000x1000x6.28)10 is the size of the volume to be sear
hed.We do not want to rea
h every part of this volume, but only test the algorithmsto see their su

ess rates when three thousand samples are used for the planning. Spa
e�lling algorithms like PRM and Lazy PRM is expe
ted to give bad results, be
ausethe spa
e is quite big to be �lled su�
iently. We expe
t aim based algorithms, likesingle query algorithms to show better results. Moreover, be
ause the dimension of the
on�guration is in
reased to quite high values, and we are using
entralized algorithms,we wait Rbot algorithm to
ome the best one, whi
h is working like de
entralized

59

Figure 4.4. Su

ess rates for �ve robots tight
asealgorithms.4.4.2.1. Targets Distributed Widely. As seen in Figure 4.5, the targets of the robotsare quite far from ea
h other. Espe
ially for the
ases that the robots or the targets arenear to ea
h other,
onne
ting them to the generated roadmap is di�
ult. However,in this world the requirement is �lling the spa
e adequately. The targets may seemfar from ea
h other, but they represent really some quite small volume if we thinkthe volume to be sear
hed. The algorithms should rea
h this quite small volume, andshould be able to
oordinate the robots so well that in this volume robots will not
ollide too. Table 4.4. Statisti
s for 10 Robots Coarse CaseAlgorithm Su
. Rate Elapsed Time NRL Node CountLazy PRM 0 15852.05/∓19574.96 N/A 2983.02/∓49.64LP.RRTCon. 22 27718.14/∓41800.26 4.02/∓1.83 3097.32/∓466.88PRM 13 2170.15/∓589.24 3.99/∓1.34 3000Rbot 100 1487.04/∓256.19 1.8/∓0.16 0RRT 38 90941.74/∓2946.81 1.69/∓0.29 2987.89/∓11.62RRT Conne
t 98 5653.99/∓5196.19 1.3/∓0.21 216.18/∓217.3

60

Figure 4.5. Ten robots distributed sparselyRRT Conne
t algorithm and Rbot algorithm shows quite similar results for the
oarse
ase, as seen in Table 4.4. When we look at Figure 4.6, we see that the RRTConne
t algorithm
olle
ts the robots to the
enter and distributes them from there.However, Rbot algorithm uses the spa
e, and does not make the robots to stu
k in the
enter as seen in Figure 4.7. This is the reason of implementing an algorithm namedLazy PRM RRT Conne
t. This algorithm �rst generate an initial roadmap by LazyPRM algorithm, and uses this roadmap for global path �nding. After global path isfound, it sear
hes for the lo
al path by RRT Conne
t algorithm. Namely, the bade�e
t of RRT Conne
t,
olle
ting robots to the
enter, be
ause of making aim basedsear
hes, is eliminated with the help of an algorithm whi
h is not aim based, but aimsto �ll the spa
e adequately. The result of Lazy PRM RRT Conne
t algorithm
an beseen in Figure 4.8 for
omparison.4.4.2.2. Targets Distributed Near. When the targets of the robots get nearer, thespa
e to be rea
hed is be
ame smaller. So, the algorithm should �ll the full
on�gura-

61

Figure 4.6. RRT Conne
t algorithm is used to
oordinate 10 robots in no obsta
leuniversetion spa
e more tightly. However, when this tiny spa
e is rea
hed, the se
ond sear
hwill be easier. This is why Lazy PRM RRT Conne
t algorithm gives better results thanthe
oarse
ase. The results are given in Table 4.5. We will inspe
t the
apabilitiesof Lazy PRM RRT Conne
t next, in another tests, and more information about thein
rease in the su

ess of this algorithm will be given next.4.4.2.3. Targets Distributed Tightly. When the targets are pla
ed more tightly, thespa
e to rea
h be
omes too little as
ompared to the total volume of the
on�gurationspa
e. So, single query algorithms like RRT algorithm fails, like PRM and Lazy PRMalgorithm fail.RRT Conne
t algorithm still gives good results, and this shows its powerful na-ture. As a surprize Lazy PRM RRT Conne
t algorithm gives the best results. Com-bining a multiple query algorithm, Lazy PRM, with RRT Conne
t algorithm made

62

Figure 4.7. Rbot algorithm is used to
oordinate 10 robots in no obsta
le universethe algorithms more powerful. Be
ause Lazy PRM algorithm generates the initialroadmap, the RRT Conne
t algorithm to be used next is for
ed to make their sear
hesin a more widely manner. This gave the algorithm the
han
e of beating RRT Conne
talgorithm in the amount of su

ess, as seen in Figure 4.9.In all the
ases, Rbot algorithm gave similar results for the elapsed time amount.Lazy PRM RRT Conne
t algorithm is the best algorithm a

ording to Table 4.6.RRT Conne
t algorithm is defeated for the �rst time at the tests until this point.RRT Conne
t algorithm makes sampling to �nd the path in the shortest time amount,so the samples are generated as biased toward the goal. When multiple robots areused, to make the
oordination of the robots easier, distributing the robots a littlemore to the environment may give more pla
e to maneuver. So, Lazy PRM RRTConne
t algorithm both gives robots the
hange to use the environment widely, andalso go to the deeper levels by using RRT Conne
t algorithm. Lazy PRM RRT Conne
talgorithm lo
alizes and solves the problem, with RRT Conne
t algorithm. When the

63
Table 4.5. Statisti
s for 10 Robots Normal CaseAlgorithm Su
. Rate Elapsed Time NRL Node CountLazy PRM 10 359.82/∓342.88 1.68/∓0.67 2952.5/∓27.44LP.RRTCon. 89 263.16/∓94.65 1.43/∓0.65 1484.65/∓231.36PRM 0 7202.94/∓61712.92 1.77/∓0.77 3000Rbot 100 1837.3/∓443.33 2.02/∓0.21 0RRT 15 89271.53/∓2249.18 1.16/∓0.19 2989/∓8.27RRT Conne
t 98 6151.89/∓5145.74 1.07/∓0.09 246.16/∓211.67

Table 4.6. Statisti
s for 10 Robots Tight CaseAlgorithm Su
. Rate Elapsed Time NRL Node CountLazy PRM 0 15701.06/∓23815.55 N/A 2978.11/∓45.7LP.RRTCon. 98 31881.39/∓39886.97 1.28 126.1/∓0.3PRM 0 7508.64/∓63898.5 N/A 3000Rbot 100 1967.47/∓357.29 2.13/∓0.23 0RRT 0 89410.26/∓2331.36 N/A 2988.97/∓9.25RRT Conne
t 86 9445.63/∓5742.86 1.06 27.41/∓14.5

64

Figure 4.8. Lazy PRM RRT Conne
t algorithm is used to
oordinate 10 robots in noobsta
le universetargets are nearer, be
ause we use RRT Conne
t with quite low number of nodes, theLazy PRM RRT Conne
t gives better results. However when the robots are distributedto the environment the algorithms turns to Lazy PRM and the help of RRT Conne
tis diminished.4.4.3. Dis
ussionAPF algorithm uses potential fun
tion to navigate the robots through their desti-nations. At ea
h step it re
al
ulates the
ontrol inputs, velo
ities. Therefore there is noplan beforehand. If the environment
ontains no lo
al minima, be
ause of this rea
tivenature, the algorithm's su

ess is shown to be high. In fa
t, it iteratively sear
hes theworld, biased toward the goals. However, sampling based algorithms makes this sear
hbeforehand. They not only
al
ulate the next input but the whole path.When the dimension of the
on�guration spa
e gets high aim oriented sear
hing

65

Figure 4.9. Su

ess rates for 10 robots tight
asegives better results, be
ause the spa
e is too big to be �lled adequately. However, asLazy PRM RRT Conne
t algorithm shows that generating an initial roadmap, andusing aim oriented algorithms in the lo
al sear
hes gives better results in espe
iallyhigher dimensions. The roadmap generated by the Lazy PRM part of the algorithmmay be thought as the main road ways, and the ones generated by the RRT Conne
tpart
an be seen as the sub-roads. Generally main roads do not need to have big
hanges. Instead of using a pre-generated main road, making the sear
h for the mainroads too in ea
h query is only loss of time. It also de
reases the possibility of su

ess.Therefore, Lazy PRM RRT Conne
tAlgorithm is shown to be better for the highdimensional
ases.Lazy PRM RRT Conne
t algorithm is inspe
ted in more detail next. Further-more,
hanging the parameters of RRT Conne
t algorithm in this algorithm is tested.4.4.4. More than 10 RobotsWe in
reased the number of robots and
ompared the best two algorithms men-tioned above. The RRT Conne
t algorithm and RboT algorithm is tested for 20, 30,
40 and 50 robots. For the RRT Conne
t algorithm the
ount of samples is kept limitedto 100000.

66

Figure 4.10. 50 robots in a
ir
ular worldIn these tests the RRT Conne
t algorithm is run in
entralized manner. Namelythe
on�gurations of the robots are summed up to a
hieve one big
on�guration, thatrepresents the
on�guration of all of the robots. When N robots are used in the tests,the volume of the sear
h spa
e
an be
al
ulated by the Equation (4.2) as;
volume = (length(x) ∗ length(y) ∗ length(θ))N (4.2)Equation (4.2) shows that the growth of the volume of the sear
h spa
e is expontentialwith respe
t to the number of robots. For the
ase of the size of the x axis is equalto 1000 unit and y axis is equal to 1000 unit and the amount range length of theangle is 6.28 unit, then the volume of the sear
h spa
e for single robot is equal to

6.280.000 unit3. So, for 20 robots the sampling will be made on a spa
e with a volumeof 10140. Multiple query sampling based algorithms aim to �ll the spa
e adequately, sothat for di�erent queries the robots will �nd their paths, without tou
hing ea
h other.So, in su
h a big spa
e their job is quite di�
ult.As the number of robots is in
reased the amount of samples required in
reasestoo. We wait RRT Conne
t algorithm to show good results for the simulations having

67

Figure 4.11. Change of the su

ess rates of the RboT algorithm in many robots
asea few robots, and it may start to degrade for 20 and 30 robots
ases. For 40 and
50 robots
ases the environment will be �lled by the robots quite densely as seen inFigure 4.10, and we wait the RRT Conne
t algorithm not to be very su

essful forthese
ases.4.4.4.1. Su

ess Rates. RboT algorithm is a quite powerful algorithm in robot
o-ordination. It su

essfully
oordinates 250 robots and this is not near to its upperlimit.In our improved version the algorithm generates lo
al groupings and the numberof robots in these lo
al groups is already small as
ompared to the
ount of the robotsin the environment. So the total
ount of robots will only a�e
t the response time ofthe algorithm, but will not make the algorithm to fail.Figure 4.11 shows that, the rate of su

ess is not a�e
ted by the
ount of robotsin the environment.RRT Conne
t algorithm is a sampling based algorithm. Be
ause these kind ofalgorithms are probabilisti
ally
omplete their su

ess is a�e
ted by the number ofsamples used in �nding the path. Figure 4.12 shows that the algorithm su

essfully
oordinated 20 and 30 robots, but started to show failures in
oordinating 40 robots.As the number of robots in
reased to 50 and 60 RRT Conne
t algorithm shows no

68

Figure 4.12. Change of the su

ess rates of the RRT Conne
t algorithm in manyrobots
asesu

ess at all. In
reasing the number of samples used and de
reasing the step sizeshould make the algorithm be su

essful for more robots however the amount of timeelapsed will be too mu
h for a reasonable appli
ation.When the environment does not
ontain any lo
al minima, the problem is onlythe
oordination of the robots, and potential fun
tion using rea
tive algorithms arebetter in these kind of problems.4.4.4.2. Mean Elapsed Time Amounts. When the number of robots to
oordinate isin
reased the elapsed time is waited to in
rease exponentially. The power of the expo-nential fun
tion may vary for ea
h algorithm. Some algorithms
an be double expo-nential too.When we look at Figure 4.13, we see that RboT algorithm gives quite stableresults. The mean elapsed time is seen in
reasing quite linearly till the 50 robots partof the graph. When the robots are
oordinated, some robots generate lo
al minimasfor some others and this may lead to os
illations. When we inspe
ted the results, theaverage of the results lead to this graph, however this is be
ause of this os
illations. Infa
t generally the RboT algorithm
oordinated the robots in nearly 9000 millise
onds.Instead of dire
tly taking the average, weighted average would be a better
hoi
e in
al
ulating the means.

69

Figure 4.13. Change of the mean elapsed time amount for the RboT algorithm inmany robots
aseRRT Conne
t algorithm gave no su

essful results for 50 robots. We in
reasedthe limit of sample
ount to 200000, but the result observed remains the same. So weput an upper time value to the graph to make the graph more understandable.In Figure 4.14, the exponential in
rease of the mean elapsed time
an be observed.RRT Conne
t algorithm
an be identi�ed as the best algorithm about the mean elapsedtime in �nding path between sampling based algorithm, but it also shows this exponen-tial time in
rease. Therefore, we may
on
lude that, sampling based algorithms needsome adjustments, and additions to su

essfully
ope with
oordination of the robots.For RboT algorithm
oordination of 40 robots takes only 2.4 se
onds however for RRTConne
t algorithm it took 1500 se
onds.4.4.4.3. Dis
ussion. RRT Conne
t algorithm is a single query algorithm that biasesits sampling toward the goal
on�gurations, whi
h makes it the qui
kest path planningalgorithm so far. However, as it is the
ase for all other path planning algorithmsfor the
entralized
ase the RRT Conne
t algorithm makes the sampling in a bigger

70

Figure 4.14. Change of the mean elapsed time amount for the RRT
onne
talgorithm in many robots
ase
on�guration spa
e. The sampled
on�guration is tried to be
onne
ted to the treedire
tly with a straight line. When the
ount of robots in
rease too mu
h,
onne
tinga big
on�guration with yet another newly sampled one gets more and more di�
ult.In these tests the algorithms in fa
t tested for not only �nding path, but also
oordinating the robots. RboT algorithm uses potential fun
tions to
oordinate therobots, and be
ause the environment
ontains no lo
al minima, it su

essfully
oordi-nates the robots. Improved version of the RboT algorithm easily manages
oordinationof 250 robots.As seen in Figure 4.15, the number of steps taken to arrive to target
on�gura-tions are bigger for APF algorithm, than RRT-Conne
t algorithm. This is be
ause ofthat RboT algorithm leads the robots to take too little steps, however RRT Conne
talgorithm wants the steps to be some big, whi
h leads
ollisions too mu
h. The stepsize of the RRT-Conne
t algorithm may also be de
reased
onsiderably. However, asthis time, the number of nodes in the tree will also be very high too. Moreover, the

71

Figure 4.15. Count of steps taken by APF and RRT-Conne
t algorithm for di�erentrobot
ountsnormalized robot path length (NRL) for APF (RboT) algorithm is bigger than thevalues for RRT-Conne
t algorithm as seen in Figure 4.16.In fa
t when we look at Figure 4.10, it is already di�
ult to �nd a big
on�gu-ration that is
ollision free. So
onne
ting a
ollision free
on�guration for the
ase isquite more
omplex. 4.5. Stati
 Obsta
le (Maze Problems)In this test we will
ompare the algorithms Lazy PRM RRT Conne
t, RRT Con-ne
t, and Lazy PRM for the robots in a maze. As shown in Figure 4.17, we have amaze with four rooms and a blo
ked
orridor.The test is done for various robot
ounts. Environment only
ontains stati
obsta
les, but no dynami
 obsta
le in these tests. Ea
h test is taken for 100 times.

72

Figure 4.16. NRL results of APF and RRT-Conne
t algorithm for di�erent robot
ounts4.5.1. One RobotIn this test, the algorithms are tested for their speed in responding queries, andthe length of the found path. Be
ause we have only one robot to
oordinate, the sear
hwill be in a
on�guration spa
e with only three dimensions. Namely, spa
e �llingalgorithms
an easily �ll the spa
e adequately for low numbers of random samples asseen in Figure 4.18.We wait all of the algorithms to �nd the path, and
oordinate the robot su
-
essfully for ea
h
ase. However the amount of used memory, namely the number ofsamples and edges, and the response time may make the algorithm distinguished. Thistest is important for espe
ially de
entralized path planning. In de
entralized planning,all the robots will plan path for itself only. Namely, it is a single robot path planning
ase. Therefore, the algorithm found as the best in here is highly possible to
ome tobe the best for the de
entralized
ases for multiple robots too.

73

Figure 4.17. Maze with four rooms and a blo
ked
orridorAs seen in Figure 4.19, the elapsed time result of Lazy PRM RRT Conne
talgorithm is nearly equal to Lazy PRM. Namely, extending the algorithm does not addtoo mu
h in
rease to the
al
ulations. Morever, this is valid for varian
e values too.Be
ause, for the one robot
ase, Lazy PRM
an �ll the spa
e adequately withlow numbers of samples, Lazy PRM algorithm is the best algorithm for the singlerobot
ase for the average time used for ea
h planning. In fa
t, Lazy PRM algorithm
ontinues making
ollision
he
ks while answering ea
h query. However, if we have a
han
e to make prepro
essing, we
an make all the prepro
essing beforehand too. So,if we make the
ollision
he
ks at the initialization part, the algorithm may be qui
kerin the query step. The algorithm, whi
h makes the
ollision
he
king of edges at theinitialization step is the PRM algorithm.We propose the PRM algorithm to be used in spa
es with low dimensions. Ifpre
omputation time is important, single query algorithms may be advised, like RRTConne
t. If the targets are near to ea
h other generally, Lazy PRM RRT Conne
t

74

Figure 4.18. Lazy PRM �lls the spa
e adequately with only 100 samplesalgorithm will add not mu
h extra
omputation to Lazy PRM algorithm.Table 4.7. NRL and memory usages for one robot in the mazeAlgorithm NRL Node Count Edge CountRRT Conne
t 1.57/∓0.98 13.59/∓24.66 11.59/∓24.66LazyPrm 1.33/∓0.54 688/∓68.23 4182.02/∓478.71LP.RRTCon. 1.56/∓0.72 302.53/∓19.86 1640.27/∓113.54Normalized robot path length, NRL, is the ratio of the taken path by the robot tothe eu
lidian distan
e to the target. If the NRL value is high, it means the robot tooka longer path. As the samples in the
on�guration spa
e high, graph sear
h algorithm
an �nd the shorter paths. In Table 4.7 we see that Lazy PRM algorithm has 1.33as the NRL value. This value is the minimum of NRL values. This is highly be
auseof the
ount of nodes the Lazy PRM uses is high. RRT Conne
t algorithm only uses

75

Figure 4.19. Amount of time used for path planning by Lazy PRM, RRT Conne
tand Lazy PRM RRT Conne
t algorithms in the maze
13.59 nodes in average. So RRT Conne
t algorithm uses minimum amount of memory.Lazy PRM RRT Conne
t algorithm uses less memory than Lazy PRM algorithm andits average NRL value is less than RRT Conne
t. Namely Lazy PRM RRT Conne
tgets the good properties of both of the algorithms.4.5.2. Two RobotsIn this test we used two robots, whi
h in
reases the dimension of the
on�gurationspa
e to 6. This in
reases the di�
ulty of the path planning. We wait RRT Conne
talgorithm to handle this easily. However, for the spa
e �lling algorithm, Lazy PRM,this will mean doubling the spa
e to �ll. Lazy PRM RRT Conne
t algorithm will try toease the adverse e�e
t of dimension in
rease, and we expe
t it to de
rease the amountof samples to an a

eptable amount.As seen in Figure 4.20, the algorithms gives nearly the same su

ess rates fortwo robots. However, Lazy PRM RRT Conne
t algorithm gives the best average time

76

Figure 4.20. Su

ess rates for path planning by Lazy PRM, RRT Conne
t and LazyPRM RRT Conne
t algorithms in the mazeusage. RRT Conne
t algorithm's average time usage is a little higher but varian
e oftime usage is minimum for this algorithm.Table 4.8. NRL and memory usages for two robots in the mazeAlgorithm NRL/Varian
e Node Count Edge CountRRT Conne
t 2.19/∓1.08 22.91/∓18.14 20.91/∓18.14LazyPrm 2.95/∓2.07 1836.84/∓1545.73 11485.54/∓11897.76LP.RRTCon. 3.9/∓3.21 691.06/∓74.71 3092.26/∓319.11Table 4.8 shows that for the RRT Conne
t algorithm the average NRL valuein
reases from 1.57 to 2.19. For Lazy PRM algorithm the average NRL value in
reasesfrom 1.33 to 2.95, and for Lazy PRM RRT Conne
t it in
reases from 1.56 to 3.9. Thein
rease in the NRL value is minimum for RRT Conne
t algorithm. This is due to thenature of the RRT Conne
t algorithm, it is aim based. The paths that are results of theLazy PRM algorithm have higher in
rease in NRL value. This means that Lazy PRM

77algorithm makes the robots use the open area of the
on�guration spa
e more. Aimbased sear
hes makes the robots to gather on the
enter and be distributed from there,but Lazy PRM algorithm uses the
on�guration spa
e better. So
ombining these twoalgorithms may lead to better paths, whi
h neither makes the robots to gather, norin
reases the sample
ount too mu
h.4.5.3. Three RobotsIn this test there are three robots to
oordinate, whi
h in
reases the dimensionof the
on�guration spa
e to 9 dimensions. As seen in Table 4.9 the su

ess rate ofthe Lazy PRM algorithm really dropped by a high amount to 48 per
ent. For highdimensional problems spa
e �lling algorithms need too many sampling to
ope with.This problem is solved by Lazy PRM RRT Conne
t. It gives 99 per
ent su

ess anduses less
ount of samples in average.Table 4.9. Statisti
s for three robots in the mazeAlgorithm Su
. Rate Elapsed Time Varian
eRRT Conne
t 100 3600.41 3951.25LazyPrm 48 34219.48 145656.11LP.RRTCon. 99 26497 147712.77Table 4.10. More statisti
s for three robots in the mazeAlgorithm NRL/Varian
e Node Count Edge CountRRT Conne
t 2.42/∓1.17 65.93/∓82.51 63.93/∓82.51LazyPrm 3.47/∓1.85 10061.88/∓4.95 66017.21/∓2975.12LP.RRTCon. 8.33/∓5.06 4503.48/∓900.55 17076.88/∓4137.88RRT Conne
t algorithm gives the best paths with minimum amount of nodeand edge usage. Lazy PRM RRT Conne
t algorithm gives the longest paths, however

78de
reases the amount of used samples, and edges in Lazy PRM, as shown in Table 4.10.4.5.4. Dis
ussionLazy PRM RRT Conne
t algorithm is a
ombination of Lazy PRM algorithmwith RRT Conne
t algorithm. The property of this algorithm is that, it
ombines amultiple query algorithm with a single query algorithm. Multiple query algorithmsmake their most of the
al
ulations in the prepro
essing time. Their prepro
essingtime is quite high, but when su

essfully optimized the query times are quite low.Single query algorithms make no prepro
essing or quite low prepro
essing, but makesmost of the job in the query step. So when
ompared to query step of multiple queryalgorithms, single query algorithms are waited to give bigger elapsed time amounts perquery.Multiple query algorithms generally generate a roadmap of the environment anduse this roadmap in the query step. If the roadmap is not enough for the environmentthan most of the queries will be unanswered. Combining a single query algorithm witha multiple query algorithm solves this problem. The roadmap may not be dense enoughfor the
ase, however the RRT Conne
t algorithm in here fo
uses to the start and endpoints and leads the robots till
onne
ting them to the global roadmap. This is likethe approa
h of quadtrees, divide the area requiring more pro
essing more than theareas those are
lear.Lazy PRM RRT Conne
t algorithm is an improved version of the Lazy PRMalgorithm that shows better results in both the amount of used memory and time. Asseen in Figure 4.21 the path taken by robots are bigger than the paths generated byLazy PRM and RRT-Conne
t. In fa
t RRT-Conne
t algorithm leads robots to get toonear to ea
h other, and this algorithm also solves this problem. Like APF algorithm,it uses the free spa
e e�e
tively, and generates safer paths.

79

Figure 4.21. Normalized Robot Path Length (NRL) values for path planning by LazyPRM, RRT Conne
t and Lazy PRM RRT Conne
t algorithms in the maze4.6. Dynami
 EnvironmentsUntil this point path planning algorithms are tested for stationary environments,those have stati
 obsta
les, or no obsta
le at all. Moreover, the algorithms were always
entralized. Therefore, when a path is
al
ulated, there will be no fa
tor that willmake the
orre
tness of the path questionable. However, in real life generally robotswill wanted to be used in the environments those may in
lude moving obsta
les. If theenviroment in
ludes dynami
 obsta
les, then the used algorithms must
ope with thissituation. Generally a simple es
ape algorithm will be enough for saving the robots.However, for a more advan
ed solution the
ontroller should also have
apability ofreplanning of the path.Next, we will test RRT Conne
t, Lazy PRM and Lazy PRM RRT Conne
t al-gorithms in an enviroment that
ontains both stati
 and dynami
 obsta
les. We willin
rease the
ount of random obsta
les and observe the a�e
ts. Both
entralized andde
entralized versions of these algorithms will be tested.

80

Figure 4.22. Change of elapsed time amounts for RRT Conne
t in various dynami
environmentsWe wait when the
entralized approa
hes are applied the amount of time to bemultiple of the amount of time used by the de
entralized approa
hes. Moreover, LazyPRM RRT Conne
t algorithm is waited to de
rease the time usage, and in
rease thesu

ess rates of Lazy PRM algorithm.As seen in Figure 4.22 when de
entralized approa
hes are used the amount oftime in
rease is negle
table. The time varies between 100 and 150 millise
onds forone robot with no obsta
le to two robots with four obsta
les
ase. However, when
entralized approa
h is applied then the elapsed time amount shows four to �ve timesmore than the their de
entralized ones.De
entralized approa
hes may fail to �nd paths those
an be found by
entralizedapproa
hes, however if the environment
ontains dynami
 obsta
les the elapsed time ade
entralized approa
h
onsumes is mu
h less than a
entralized approa
h.When we look at Figure 4.23 and Figure 4.24, the
ase is the same. The amount ofelapsed time for
entralized approa
hes is multiple of their amount in the de
entralizedapproa
hes.

81

Figure 4.23. Change of elapsed time amounts for Lazy PRM in various dynami
environments

Figure 4.24. Change of elapsed time amounts for Lazy PRM RRT Conne
t in variousdynami
 environments4.6.1. Dis
ussionGradient-des
ent algorithms are very powerful in
oordination of the robots.They
oordinate the robots su
h that they in
rementally rea
h to their goals with-out
olliding to ea
h other. In an environment with many robots,
oordination of therobots with deliberative path planning algorithms would take high amount of time,but with su
h algorithms the robots will be
oordinated with just a few
al
ulations.Deliberative path planning algorithms
oordinate the robots before they startto move. Be
ause this
oordination map is generated beforehand, the robots know

82position of ea
h other when they move. However, in rea
tive algorithms the positionof the robots are now known prior. So the robots should have some distan
e to theothers, to save themselves from
ollision. In some pla
es to save from
ollision the pathtaken by the robots might be enlarged and this enlargement may be not needed at all.At the start of this do
ument we divided the environments to four a

ording tothe di�
ulty of path planning in these environments. In the �rst
ase we know theenviromnent fully, and there were no dynami
 obsta
les. In this
ase the path planningalgorithms
an �nd paths that is shorter than the potential fun
tion approa
hes. How-ever, in the se
ond
ase there are moving obsta
les in the environment. In su
h a
asewe do not need to alter the formula of potential fun
tion at all. Already ea
h robotsees others as moving obsta
les, so no need for su
h an update in the formula. Howeverin deliberative path planning algorithms, the
ontrollers should
he
k the enviromentat ea
h step to see whether there is any reason thay may violate the path to be fol-lowed. If there is an obsta
le in front of the robot, than robot should make some extraplanning to es
ape from this moving obsta
le. So adding dynami
 obsta
les to theenvironment brings more di�
ulty to deliberative algorithm but not mu
h di�
ulty torea
tive algorithms.Moreover, if the environment is partially known the problem is getting moredi�
ult. To make a full deliberative plan, we should know the environment exa
tly.Furthermore, some algorithms need also the position of dynami
 obsta
les at ea
htime step to make a plan. However this is not a
ase for potential fun
tion usingalgorithms. Already they do not make any prior plan. They just go toward their goalin
rementally and es
ape from the obsta
les as they appear. Also, if the environment
ontains dynami
 obsta
les, as it is partially known, whi
h is the
ase four, the potentialfun
tion approa
h will be able to
oordinate the robots in this environment withoutany addition too.As the problem of ea
h gradient-des
ent approa
h in any �eld of arti�
ial intelli-gent, lo
al minima is a problem for potential fun
tion using path planning algorithmstoo. Combining lo
al minima es
aping algorithms with potential fun
tions may give us

83another powerful algorithm that works for the
ase four, paritally known environmentswith dynami
 obsta
les.

845. CONCLUSIONS
In robot
oordination, rea
tive approa
hes give better results than deliberativeapproa
hes. Espe
ially, if the environment is lo
al minima free, algorithms those usepotential fun
tion handle path planning of many robots su

essfully. However, if theenvironment
ontains lo
al minimum, then it is inevitable to use some es
aping meth-ods, or deliberative approa
hes.If the environment does not
hange frequently, and the problem requires solutionof many path planning queries, using a deliberative algorithm from a set of multiplequery path planning algorithms will redu
e the problem to just a graph sear
h. Lazymultiple-query algorithms show better performan
e espe
ially in frequently
hangingenvironments. Combining single query algorithms with lazy multiple-query algorithmsgave well distributed paths when used for multiple-robot problems.The
entralized deliberative approa
hes show exponential in
rease in
omplexitywith respe
t to the
ount of robots. When the
ount of robots in
rease, de
entralized, or
ombinatorial approa
hes should be thought to be used as the path planning algorithm.However, de
entralized approa
hes are not
omplete. Using lo
al groupings may alsoalleviate this problem.A

ording to the environment and the aim of the usage, one path planning algo-rithm may show better performan
e than the others. Therefore, a good
ombinationof the path planning algorithms may be the best
hoi
e. If an algorithm is wanted thatis to be simple, but powerful, and working quite good for most of the problems RRT-Conne
t algorithm is the algorithm. Using various sampling and
onne
tion strategies
an further upgrade the su

ess of the algorithms.The algorithms
an be tested for kinodynami
 path planning problems, for var-ious robot properties as the future work. Implementation of the algorithms
an beadapted for partially known environments. An hybrid approa
h, that is both rea
tive

85and deliberative, may solve the lo
al minima problem, while
oordinating the robotse�e
tively.

86APPENDIX A: INTEGRATION
yn = yn + hf (xn + yn) (A.1)Be
ause the Euler method, shown in Equation (A.1), is unsymmetri
al, that is whenadvan
ing the solution through an interval h, it only uses the derivative informationat the beginning, its error is only one power of h, Figure A.1. So Euler method is notvery a

urate
ompared to other algorithms, and it is not stable either.

k1 = hf (xn, yn)

k2 = hf (xn +
1

2
h, yn +

1

2
k1) (A.2)

yn+1 = yn + k2 + O(h3)Runge-Kutta algorithm, shown in Equation (A.2), is symmetri
al, and this symmetriza-tion
an
els out the �rst-order error term, and makes the method se
ond order, Fig-ure A.2. Adding up the right
ombination of �rst order f(x,y) terms the errr terms
anbe eliminated order by order. It will give higher order error terms, whi
h means more
orre
t, and stable results.

Figure A.1. Euler's integration method has only �rst order a

ura
y [31℄

87

Figure A.2. Midpoint, se
ond order Runge-Kutta integration method gives se
ondorder a

ura
y [31℄

Figure A.3. Fourth order Runge-Kutta method is the most used integration formulawith third order a

ura
y [31℄
k1 = hf (xn, yn)

k2 = hf (xn +
h

2
, yn +

k1

2
)

k3 = hf (xn +
h

2
, yn +

k2

2
) (A.3)

k4 = hf (xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5)By far the most often used integration formula is the
lassi
al fourth-order Runge-Kutta formula, shown in Equation (A.3), and it often gives superior results to midpoint,se
ond-order Runge-Kutta method. So in the simulator, we use fourth-order Runge-Kutta for the
al
ulation of next lo
ations of the robots as the integration formula,Figure A.3.Runge Kutta 4 algorithm is used as the integrator. It is both a simple to im-plement algorithm, and has less parameters to think about. It generates quite
orre
t

88and stable results. Di�erent integration methods may also be used with the simulatorby implementing the IIntegrator interfa
e.

89APPENDIX B: SIMULATOR
B.1. Simple Robot SimulatorB.1.1. Work Spa
e

Figure B.1. The simulation environmentThe work spa
e in the path planning problems is modelled in the Simple RobotSimulator module of the proje
t. It
ontains robots, stationary and dynami
 obsta
lesas entities. Ea
h robot has an initial
on�guration, and a target
on�guration. Theobsta
les, and the robots may have various shapes, and also the world may have variousproperties.The proje
t has the
apability of saving and loading all of the various
on�gura-tions generated.B.1.1.1. World Content. We keep the
ontent of the work spa
e in WorldContent
lass. This
lass keeps a list of stati
 obje
ts, and dynami
 obje
ts.

90B.1.1.2. Stati
 Obje
t. A stati
 obje
t is modelled as an obje
t that may have variousshapes,
olors, and
on�gurations. As supported shapes, various re
tangular shapes,and sphere shape is added to the design. The supported shapes may be extended too,by implementing
ommon shape interfa
e IObjectShape and adding it to the list ofsupported shapes.B.1.1.3. Dynami
 Obje
t. Dynami
 obje
ts have all of the properties that stati
 ob-je
ts have. Moreover, they have a
ontrol input property, and a target
on�guration isassigned to ea
h of them.B.1.2. SimulatorThe simulator adds time fa
tor to the work spa
e information. As time passesdynami
 obje
ts
hange their
on�gurations. The
hange of the
on�guration is doneby integration of ordinary di�erential equations, ODE, of the dynami
 obje
ts. So,the simulator keeps an obje
t named �WorldContent�, whi
h keeps all the stati
 anddynami
 obje
ts. It also has maps, to a

ess the
urrent information of the simulatedobje
ts, from the name or id to the simulated obje
ts.Simulator uses an ordinary di�erential equation implementation with an integra-tor to
al
ulate the new
on�guration values for the dynami
 obje
ts. In our implemen-tation this ordinary di�erential equation is designed for velo
ity values. So the
ontrolinputs for the dynami
 obje
ts will be velo
ity values of them. As the simulation steps,the integrator will be issued with the di�erential equation and the
ontrol inputs togenerate the next
on�gurations of the dynami
 obje
ts.A

ording to the type of the robot, the ordinary di�erential equation of the robotshould be adapted. For an omni-dire
tional robot, the position of the robot will bedire
t integration of the velo
ity it has. However, if the robot has other dynami
alproperties, they should be also added into
onsideration when designing its gradient,de�ning its
ontrol inputs, and generating a
ontroller for them.

91B.1.2.1. Ordinary Di�erential Equation.
y′ = F (y, x)

y = (y, . . . , yn) (B.1)In our simulator implementation, we use a simple di�erential equation de�nition; giventhe
on�guration and the time, give value of the derivative to be used, shown in Equa-tion (B.1). So, this derivative value shows the amount of the
hange in the
on�gu-ration. Be
ause we use velo
ity values as the
ontrol input, the ordinary di�erentialequation will give this value as the derivative value when asked by the integrator, andthis will be the amount of
hange in the position of the robots.Di�erent di�erential equations may be added to the system by implementing
IDifferentialEquation interfa
e, so the robots with di�erent
ontrol inputs, thoseshow di�erent motions, and properties, may be a
hieved. Presently the robots aremodelled as moving omni-dire
tional obje
ts, and having a rotation angle. So the
ontrol inputs are the dire
tional velo
ity values, and rotational velo
ity value.B.1.2.2. Integrator. The simulator keeps a step size parameter. At ea
h step, asthe time value is in
remented by step size mu
h, the integrators
al
ulate the next
on�gurations by integrating the di�erential equations by step size amount. Fourthorder Runge Kutta implementation is used as the integrator, as de�ned in the Numer-i
al Re
ipes book [31℄. A detailed information about the integrators are given in theAppendix A.So we a
hieved a simple self running simulation environment. This environmentwill be used by other modules of the proje
t. To a

ess the simulated obje
ts'
ur-rent
on�gurations we added mappings to the simulator. At ea
h step, the timer isin
reased, the next a
tions are taken, and by using the mappings other modules
ana

ess these new
on�guration values from the names of the obje
ts.

92

Figure B.2. Class diagram of Shell moduleB.1.3. ShellIn order to make the simulator easier to be used by the planning algorithms ashell is designed on top of this simulator design.The shell
ontains listen, and
ontrol gates. Via listeners the shell listens to the
hanges at the
on�gurations of wanted obje
ts and via
ontrol gates it
ontrols these
hanges. See Figure B.3 for a simple representation of the logi
 and see Figure B.2 forthe
lass diagram of the Shell. This shell implementation abstra
ts the simulator fromthe planning part. Therefore, di�erent simulators
an be used by these planners too.Shell is a bridge design pattern implementation, and di�erent shells
an be implementedfor di�erent simulators to have a bridge between the plans and the simulators.B.1.3.1. Info Gates. Info gates update the listened
on�guration information of theobje
ts at the start of ea
h simulation step. The simulator
hanges the
on�gurationof the obje
ts gradually. However, be
ause the plan should be done at dis
rete time

93Algorithm B.1 Simpli�ed Simulation Exe
ution1: take initial simulation step2: while simulation
ontinues do3: Shell::InfoGate updates
on�guration of the obje
ts in the world model4: Algorithms exe
ute, drivers updated5: Shell::ControlGate updates
ontrol inputs6: simulation takes next step7: end while Figure B.3. Steps of a simpli�ed simulation exe
utionsteps, the
on�guration values must be supplied to the plans in dis
rete times. So thepurpose of the info gate is updating the
on�guration information, whi
h will be usedby the algorithms, at the start of ea
h step.Presently there are three di�erent info gates implemented, but they may be in-
reased too. Those are InfoGate, TargetGate and PropertyListenGate. The InfoGatelistens to the
urrent
on�guration values of the wanted obje
ts. The TargetGate lis-tens to the
hanges at the targets of the dynami
 obje
ts. The PropertListenGate isempty for now. However, it may listen to the
hange of the properties like batterypower, weight of the robot, et
.B.1.3.2. Control Gates. For ea
h dynami
 obje
t in the simulation we generate adriver, and add this driver to the ControlGate. At ea
h simulation step, the
ontrolgate updates the
ontrol input �eld of the dynami
 obje
ts with the values in thesedrivers. The algorithm updates the
ontrol input values in the drivers, and the
ontrolgate applies these
ontrol inputs to the simulation at the end of the simulation step.B.1.4. Visualization and User InputsThe simulation is re�e
ted to the
omputer s
reen in a multi-layer drawing fash-ion. First the ba
kground, then the tra
k layer, the simulation layer, and the foreground

94layer draws to the s
reen. More layers
an be added in between or to the top or bottomof this drawing sta
k. To show the
al
ulated path tree, and
ollision tree of the obje
tsa layer is added in the next stages of the proje
t.The ba
kground layer
leans the s
reen, and draws the world with its shapeand bounds. The robots and the obsta
les should be bounded by this area. Whenthe robots move they leave footsteps in the tra
k layer. In the simulation layer, wedraw the obsta
les and the robots. The foreground layer is for information displayingpurposes, like showing the
urrent time, and the
oordinate of the point mouse
ursoris showing.To make the visualization more powerful a
amera obje
t is added to the design.This
amera obje
t has a position and a range, and it only shows the obje
ts in itsrange. The obje
ts shown by the
amera are re�e
ted to the s
reen. So a point in thereal work spa
e has a referen
e in the
amera, and it also has a referen
e at the s
reen.A
ir
ular obje
t may be seen like an obje
t with ellipse shape in the s
reen, be
auseof these mappings.We also tra
k the mouse gestures and keyboard strokes. The user is
apable ofmoving, rotating obje
ts in the simulation, and
hanging the position and range of the
amera with some spe
ial mouse gestures and key strokes given in Table B.1.Table B.1. Spe
ial mouse gestures and keyboard strokesGesture A
tionSHIFT + Left Mouse Button Sele
t an obje
t to moveSHIFT + Right Mouse Button Sele
t an obje
t to rotateMouse Button Cli
k Desele
t an obje
t, or show it enlighted.CTRL + Drag with Left Mouse Button Move the
ameraCTRL + Drag with Right Mouse Button Zoom in and out the
ameraCTRL + ALT + Mouse Button Cli
k Reset the
amera to its saved settings

95

Figure B.4. The Simulation Editor helps generating di�erent simulation s
enariosWhen the bounds of the world is
hanged, defaults of the
amera is set to thisnew values too. Simulator Editor
an also be utilized for all these
hanges, and to seethe exa
t values.B.1.5. Saving and LoadingFor �le operations we used Apa
he Foundation's Betwixt Java Library [32℄. Sothe properties of the obje
ts, the robots in the work spa
e, the work spa
e's properties,properties of the simulation s
reen, and the simulator properties all
an be saved andloaded by this library. All the information is kept in XML �les, and the user
an also
hange the values with other XML editors, and run the simulation with these newvalues too. B.2. Robot Simulator EditorThe Simulation Editor, shown in Figure B.4, is designed to edit ea
h propertyof the work spa
e, the simulation, the simulation s
reen, and to save and load thesesettings. User
an edit the bounds of the work spa
e, the lo
ation and the range ofthe
amera, the size of the s
reen for showing the simulation within this editor. Some

96simulation properties like the time of the simulation, the amount of time elapsed inea
h step, and whether showing or not showing the ootsteps of the dynami
 obje
ts
an be edited too. Furthermore, the
ontent of the simulation will be generated withthis editor by adding new stati
 and dynami
 obje
ts to the work spa
e, and by editingtheir properties with appropriate property panels.B.2.1. Dynami
 Obje
ts

Figure B.5. Via The Simulation Editor we
an add, remove, edit dynami
 obje
tsWhen a dynami
 obje
t is sele
ted from the Simulation Editor, the propertiesof the sele
ted dynami
 obje
t is shown at the
enter editing part. The name of thedynami
 obje
t, type of its shape, the s
ale of this shape
an be edited with the help ofthis propery panel. The user
an also
hange the
urrent
on�guration and the target
on�guration of a dynami
 obje
t. User
an also add di�erent
olors to the robots tomake them easily distinguishable.When we sele
ted the Dynamic Objects bran
h of the editor tree, when �ADD�button is pressed, a new dynami
 obje
t will be added with a random name, to the
enter of the work spa
e. After making appropriate settings, pressing �SET� buttonat the panel in the
enter of the Simulator Editor, will update the properties of thenewly added dynami
 obje
t, as shown in Figure B.5. A dynami
 obje
t
an be either

97a
ontrolled robot, or a dynami
 obsta
le, a

ording to the
ontroller assigned to it.As many dynami
 obje
ts as desired
an be added to the simulation.B.2.2. Stati
 Obje
tsStati
 obje
ts refer to the stationary obsta
les. Similar to the dynami
 obje
ts,when a stati
 obje
t sele
ted, the property panel for the sele
ted stati
 obje
t will beshown at the
enter of Simulator Editor, as in Figure B.6. A stati
 obje
t has theproperties of the
urrent
on�guration, as x, y
oordinate positions, and the angle. Ithas also a shape type, a s
ale, a
olor, and most importantly a name value.

Figure B.6. Via the Simulation Editor we
an add, remove, and edit stati
 obje
tsB.3. Planning BaseWe will use the simulation environment to generate and simulate the s
enarios totest our algorithms. This module is implemented to provide the upper layers a generalmedium, that will provide them a poiler-plate that supports the �Sense, Plan, A
t�s
enario. This boiler-plate will have basi
 implementations to su

essfully pro
eed thesimulation and run the algorithms.In this boiler-plate, we will have an abstra
t world model and sample world

98modelings depending on this abstra
t model. Furthermore, we will have a generi

ollision
he
king module. The most important part of this module is the �Exe
uter�part. In this part, we implemented basi
 exe
ution s
hema. Coordination of the robot
ontrollers and the simulation will be in the responsibility of the exe
uter.There is nothing spe
ial for path planning in this module. Other modules
anbe built on top of this module to have the simulator to be used in di�erent planningpurposes. Path planning base is also built on top of this module, and it
ontains pathplanning spe
i�

lasses.This module
ontains
ommon entities for modeling the work spa
e, a
ollision
he
ker implementation and a generi

ontroller model for the
ontrol algorithms. Thismodule is not designed spe
i�
ally for path planning algorithms, in fa
t a highly generi
model that
ould be used for di�erent approa
hes is tried to be implemented.B.3.1. Modelling the WorldOther than the world at the simulator module, we will have a model of thisworld in the planning part. In fa
t, ea
h
ontroller will have a model of the simulationenvironment. A model may
ontain
ontroller spe
i�
 information about the workspa
e. In this module we designed a general world model, that
an be extended on thepurpose.At the start of this do
ument, we divided the path planning problems into four
ategories a

ording to their di�
ulties. The
ase one and two are the
ases, wherethe environment is fully observable. The other
ases assume the environment to bepartially known. To support both of these s
enarios we made the generation of theworld model adaptable. A

ording to ea
h
ontroller we will have various world models,and the
ontent of the world model will be editable. Therefore, if an algorithm, whi
hshould have partial information about the world, and whi
h should model the world asit pro
eeds, will have a
han
e, and also algorithms whi
h required the environment tobe known fully beforehand will have also a
han
e to be implemented.

99

Figure B.7. Class diagram of modelling of the worldIn our implementation we assume that the model of the world is provided to therobot
ontrol algorithms. So before starting the
ontroller we generate a world modelfrom the simulation and pass this model to the
ontroller. In fa
t, this is not obligatory,that is, if the algorithm has
apability of self inpe
ting the environment, it
an inspe
tand model its own world too. However, we give the algorithms the opportunity toa

ess the world beforehand.In this most generi
 world model implementation we modelled the world as abounded area, with spheri
 or re
tangular bounds, that
ontains the
ontrolled robots,the dynami
 and the stati
 obsta
les. As seen in the
lass diagram of this most generi
world
lass, in Figure B.7, we have
apability of adding, renaming, removing everyobje
t, and also have
han
e to di�erentiate between the types of the world with theWorldType property.

100We have two di�erent world model implementations, as those having
ir
ularbounds and re
tangular bounds. RboTWorld has a spheri
 bound, and CollisionWorldhas a re
tangular bound. Both implementations have the same
ontent. The
ontent
ontains the robots, and the obsta
les. As like their de�nition in the simulation, therobots and the obsta
les have
on�guration, shape properties and a s
aling property.The robots have also a target
on�guration property. This shape and
on�gurationproperties will be used by the
ollision
he
ker algorithm.Ea
h obje
t in this world model is an entity, a member of Entity
lass. We havea ModelObje
t
lass, whi
h holds this entity, and information about the
on�gurationand s
aling of the entity. So, from the entity property we get information about theproperties of the obje
t, and
on�guration related information is separate from them.An obsta
le, and a robot is also a model obje
t. A robot has a driver and a target
on�guration as an addition. The
ontroller of the robot will use this driver to givenext
ontrol inputs to the robot. Ea
h entity will have a shape, and a

ording to theshape and s
aling of the model obje
ts we will perform
ollision
he
ks.In fa
t the world in the planning part is a re�e
tion of the work spa
e of thesimulation part. However, a

ording to the used algorithms an abstra
tion is applied,shown in Figure B.7. The properties of the obje
ts in the world model will be updatedby the exe
ution at the start of ea
h simulation step, whereas the obje
t properties inthe simulation will show a
ontinuous
hange.B.3.2. Collision Che
kerThere are various
ollision
he
king algorithms mentioned earlier in this report.We sele
ted to represent obje
ts as trees of
ir
ular
ollidables. So ea
h obje
t in theworld model has also a
ollision tree assigned to it, as shown in Figure B.8. The rootof this
ollision tree en
apsulates the obje
t. When
he
king for
ollision, at the �rstthe root of the trees will be
he
ked for
ollision. If the roots are not
olliding then noneed to
he
k the bran
hes of the trees. However, if the parents are
olliding, then wego into the bran
hes. If the
he
k
ontinues till the leaves, and some of the leaves are

101

Figure B.8. Diagram of example usage of
ollision tree in
ollision
he
k
oliding then we say
ollision o

urs. However, if no leaf is
olliding then there is no
ollision.A plan may let the robots to
ollide, and this may not be a problem for it. Forexample, a plan may see a robot as a
arrier for the others, and
ollision of theserobots may mean entran
e of the robot to the
arrier. There may be di�erent s
enariostoo. However, the
ollision
he
king should be handled a

ording to the purpose of theexe
ution, and this de
ision should be given by the exe
uter. So we pla
ed
ollision
he
king module not in the simulator, but in the planning base module.As mentioned, the planning base provides a
ollision
he
king me
hanism thatdivides the obje
ts to the
ollidable
ir
ulars. Ea
h entity in the world model will havea
ollision tree assigned to it. The
ollidable
ir
ulars will take the
enter of the obje
tas the referen
e point. So, robot may have di�erent
on�guration and s
aling values,but the underlying stru
ture, the
ollision tree, never
hanges. It only makes sometrigonometri

al
ulations and a tree based
ollision sear
h.The
ollision
he
ker module implemented in this module is as simple as it
anbe. It
he
ks whether there is a
ollision between two obje
ts with given
on�gurationand s
aling values, or not. It does not need any information about why these twoobje
ts are
ompared et
.

102B.3.3. The Exe
uterThe exe
uter module is designed to
oordinate the exe
ution of the
ontrollers,and the simulator. It knows nothing about the pro
ess of the
ontroller, or the responsesof the simulator to these a
tions. However, it keeps a list of
ontroller and makes themrun on the given simulation.

Figure B.9. Class diagram of the Exe
uterThere may be more than one
ontroller exe
uted on the
urrent simulation. Theexe
uter may also be improved too. For now it waits ea
h
ontroller to generate theirresponses for the next step. However, the
ontrollers may also be run in di�erentthreads and exe
uter may try to give only some amount of time to ea
h
ontroller tooperate.Controllers may
ontain a TCP/IP implementation, and distribute their exe
u-tion to di�erent
omputers. All the required information will be passed to the other
omputer, and the other
omputer will make the
al
ulations. After the
al
ulationsare
ompleted, the
ontrol inputs for the robots will be provided ba
k. For the sake ofsimpli
ity, the exe
uter is designed to wait ea
h
ontroller. So this kind of approa
heswill be easier to implement. However, already in the statisti
s we
an examine the timeelapsed for ea
h
ontroller to operate, and see the laten
y the
ontroller adds to thesimulation.

103The exe
uter also de
ides about the
ollision
he
ks. If an algorithm is statisti
allyimportant we add this algorithm's world to the worlds, that will be
he
ked for
ollision.Only the
ontrolled robots in the world will be
he
ked with themselves for
ollisionand the other obje
ts in the world. However other obje
ts will not be
he
ked betweenea
h other. So we know the
ontrollers are only responsible to make their
ontrolledrobots do not make any
ollision. The algorithms, whi
h we do not want to
olle
t anystatisti
al information about, but needed to make some moving obsta
les, will have theworlds too but these worlds will not be
he
ked for
ollision.We want the simulator to be used not only for statisti
al purposes, but also toinform the users graphi
ally about the underlying pro
ess. Therefore, the exe
uter hassome boolean values about showing the found path, the optimized path, the
ollisiontrees of the obje
ts, and the generated roadmap graphs. Drawing these artifa
ts givesa good intuition to the user about the progress of the algorithm.

104B.4. Path Planning BaseIn this module
ommon stru
tures for the path planning algorithms are imple-mented. Most of the path planning algorithms, those model the
on�guration spa
e,uses a graph, and this module
ontains various graph implementations and graph sear
halgorithms. For tree based path planning algorithms the module
ontains a path treeimplementatation too.Sampling based path planning algorithms use a lo
al planner in their exe
ution.World spe
i�
 information,
ollision
he
king, generation of random samples are usu-ally done by this lo
al planner. The lo
al planner is also used to
onne
t di�erent
on�gurations with a lo
al path. In thid module, an interfa
e for path planners, andan interfa
e for the lo
al planners, moreover a generi
 lo
al planner implementation isprovided.Furthermore, the way of taking statisti
s is implemented in this module too.IStatisti
s
lass
ontains methods to be
alled at some levels of exe
ution, that willlead su

essfully
olle
ting statisti
al information about the algorithms exe
ution.B.4.1. Lo
al PlannerLo
al planner will be used to abstra
t the world from the path planner. A pathplanner will use a lo
al planner, and sear
h for a path a

ording to the responses ofthe lo
al planner to its questions.As seen in the
lass diagram in the Figure B.10, the lo
al planner is designed assu
h, the planner will have no information about the
on�guration spa
e it exe
utes.All of the
on�guration spa
e related operations will be done by the lo
al planner.Therefore, we a
hieved highly abstra
t sampling based path planner implementations.These implementations
an work on di�erent environments, with di�erent dimensions,with di�erent
ount of
ontrolled robots, and dynami
 obsta
les.

105

Figure B.10. Class diagram for the interfa
es of the path planner and the lo
alplannerThe lo
al planner tries to respond to every need of the planning algorithms. Somealgorithms may need the
ollision
he
ker algorithm to take only the stati
 obsta
lesinto
onsideration, when they are making their initial plans. They may later needthe
ollision
he
ker to inform them about possible next
ollisions with the dynami
obsta
les too. So, the lo
al planner supports di�erent options, like
he
king the robotswith only the stati
 obsta
les for
ollision,
he
king the
ollision between themselves,or
ollision with dynami
 obsta
les et
.In fa
t, we should not think the term
ollision as two robots are tou
hing toea
h other, or a robot is tou
hing with an obsta
le. By saying
ollision
he
king we infa
t mean
he
king the robots for their
onstraints. In di�erent s
enarios, the
ollision
he
king implementation may be di�erent. For example in our implementations weused velo
ity as the
ontrol input, and assumed every robot is omnidire
tional within�nite a

eleration
apability. When the
ontrol inputs are the velo
ity values, the
on�guration values are bounded to only position of the robots, and their orientation.However, if the a

eleration values of the robots were limited, then the
urrent velo
ityof a robot would be a reason for the
ollision of the robot in the next simulation steps.If robot is near to an obsta
le, and has high speed, the robot may not be able to savefrom
olliding with the obsta
le. However, in in�nite a

eleration
ase, there would beno su
h problem. So, by doing
ollision
he
ks we not only mean
he
king the robotsand the obsta
les for
ollision, but also
he
king the
apabilities of the robots.

106It might be more
lear if we des
ribe the
on�guration spa
e and
ollision
he
kingwith examples. For example, if we have a robot in 2D spa
e whi
h has position,orientation, velo
ity, battery, and weight information the
on�guration spa
e will bereally interesting. For su
h a s
enario we will have 3 dimensions for the lo
ation, 3dimensions for velo
ities in the x, y axis, and the rotational velo
ity, and one dimensionfor the battery and one dimension for the
urrent weight of the robot. In total we willhave 8 dimensions in the
on�guration spa
e per robot. As the
ontrol input we willhave for
e values. It will let the ordinary di�erential equation of the robot and theintegrator of the simulator to generate new velo
ity and lo
ation values. The simulatorwill also
al
ulate the next battery power amount, a

ording to ordinary di�erentialequation for the battery
onsumption.In this s
enario, a

ording to the velo
ity of the robot, robot may take a passagewithout any
ollision, or the initial velo
ity may lead the robot to
ollide. So the
ollision
he
king algorithm should be modi�ed to in
lude the a�e
t of the initial speedwhen planning the full path.Moreover, the robot has a battery, and the power in the battery may a�e
t thelimit of the torque the robot
an have. If we have some hills in the work spa
e to
limb,the amount of the power on battery will de
ide about making a
onne
tion between thenodes in the roadmap or give a
ollision like result for passing the hill. If the batteryis low, robot may not be able to
limb the hill, however it may su

essfully pass thehill if the batter power, so the torque is enough.By implementing di�erent
ollision
he
king algorithms, we
an use the samplingbased path planning algorithms in various path and motion planning problems. Whenwe think about the kinodynami
 properties of the robots, path planning will be namedas kinodynami
 path planning. In this kind of plannings the
ollision
he
ker shouldtake the kinodynami
al
onstraints and properties of the robots into
onsideration.

107B.4.1.1. Generi
 Lo
al Planner. Generi
 lo
al planner implementation is designed tosupport both de
entralized and
entralized path planning algorithms. In the
entralizedalgorithms a bigger
on�guration is generated by summing the
on�gurations of ea
hindividual
ontrolled robot.
Figure B.11. A big
on�guration is a
hieved by appending robot
on�gurationsAs seen in Figure B.11, from the
on�gurations of ea
h robot, we a
hieve a bigsingle
on�guration spa
e. The path planning algorithms will make their sear
heswithin this spa
e, without
hanging anything on their implementations, be
ause ofthis generi
 lo
al planner implementation.Generi
 lo
al planner implementation will make the operations on this big
on-�guration, and will a

ord the
ollision
he
king method, so that ea
h robot will havethe
on�gurations in this big
on�guration, and
ollision
he
ks will be done in thework spa
e for ea
h robot.By implementing su
h a lo
al planner, a mean for path planning algorithms towork both for single robot, and multiple robots in
entralized manner is provided.B.5. Planning Base EditorPlanning base editor is designed to generate the planning part for the simulations.A plan may be implemented by only one
ontroller or a set of
ontrollers
an
ooperateon the same environment for a plan.First, we add a
ontroller, then adapt it for the environment. We sele
t thealgorithm to be used in this
ontroller, and a

ord the parameters of the algorithm.

108Then, the
ontroller is ready to be run. We apply our settings, perhaps save them toload later. When the simulation is started, the
ontroller will be visited for ea
h timestep. A

ording to the sele
ted algorithm the
ontroller will provide next
oordinationinputs for the robots for the next simulation step.B.6. Robot Controllers

Figure B.12. Four
ontrollers added to the simulation with the planner editorRobots may be
ontrolled by only one
ontroller, and a
entralized approa
h
anbe a
hieved by doing so. Moreover, we
an distribute the robots to more than one
ontroller, and
an also make the algorithms run in de
entralized manner.In Figure B.12, the planner editor shows four
ontrollers are added to the sim-ulation. The tree view at the left enables user to see the list of
ontrollers, and theirproperties. We
an add robots, dynami
 obsta
les, and stati
 obsta
les to the worldmodel of the
ontrollers with this editor. When a
ontroller is sele
ted, the type of the
ontroller algorithm, name of the
ontroller, and whether the
ontroller is statisti
allyimportant or not
an be adapted within the panel shown on the
enter of the plannereditor.

109The user
an also add, rename, remove the entities in the world model of a
ontroller. The type of the world will be
hanged a

ording to the sele
ted algorithmfor the
ontroller. User
an also
hange the properties of the world a

ording to theneeds. The obje
ts in the world model,
an be s
aled up to prevent the robots to
ollidewith the obsta
les in the
ase of a noise applied to the �eld.In Figure B.13 we see the listed
ontrollers on the left pane. Controller named
controller1 is opened on the tree. Its algorithm is RandomWalk. The
enter paneshows the properties of the algorithm. Its name and the sele
ted algorithm is shown.We see that the algorithm is
hanged to LazyPRM , but did not applied yet. Be
ausewhen the algorithm
hange is applied, the tree at the left pane should be updated withthis new algorithm information too. At the tree, in the algorithm bran
h we see a worldproperty. This is a bran
h of the algorithm, be
ause world type will
hange with thealgorithm type. Some algorithms use RboTWorld, whereas others use CollisionWorld.User
an sele
t the world item, and properties of the world will be shown at the
enterpane.

Figure B.13. A
ontroller is shown in detail in the planner editorWe have Dynamic Obstacles, Robots, and Obstacles bran
hes at the tree too forea
h
ontroller. All the robots, not
ontroller by the
ontroller should be added into

110
Dynamic Obstacles. Stati
 obsta
les and
ontrolled robots will also be added. Theproperties of the obje
ts will be a

orded a

ording to the obje
ts in the workspa
e.There is a s
aling property assigned for ea
h obje
t. Obje
ts may be s
aled up or downa

ording to the needs of the algorithm.Controllers will use InfoGate to listen the
on�gurations of the obje
ts, howeverthe type of the obje
ts should be provided by the planner editor to the
ontrollers. Forsome algorithms, those generate the world model as themselves, the world model is notneeded to be provided in the planner editor.B.7. Little Prin
e Path Planning SimulatorBe
ause of the limitations of the simulators in the bazaar, we implemented ourown simulator implementation that is spe
ialized for path planning purposes. At the
enter it has a simple simulation logi
, a shell, an editor for the simulation environment.On top of them a planning base is implemented, and it extended to a base for pathplanning algorithms. All the path planning algorithms, and a

ording
ontrollers areimplemented and added to the whole system. The algorithms are made available tobe used by the robot
ontrollers. We made all of these settings to be easily saved andloaded.So we a
hieved a highly
on�gurable, robust, spe
ialized for path planning algo-rithms, simulator environment, named Little Prin
e Path Planning Simulator.Test s
enarios are generated in this simulator and
onsole exe
uter part of theproje
t is used to run these tests in qui
k mode. In the
onsole exe
uter part of theproje
t, we load the test s
enarios and run them with di�erent options, like regeneratingthe initial and target
on�gurations of the robots, how many times to run the testsand more. The statisti
s of these runs are written to �les by the statisti
s module, andalso their averages and standard deviation values are
al
ulated for ea
h
ase of theresults. For the su

essful
ompletions we
al
ulated ea
h di�erent results' mean anddeviation values, also for other
ompletion results we
al
ulated them. So user may

111see the amount of time past if the algorithm fails, and de
ides about its failure.The simulator is designed to be used in qui
k algorithm development. It helpsalgorithm designers in testing their algorithms with di�erent s
enarios easily.

112REFERENCES
1. Choset, H., K. M. Lyn
h, S. Hut
hinson, G. Kantor, W. Burgard, L. E. Kavraki andS. Thrun, Prin
iples of Robot Motion, Theory, Algorithms and Implementations,The MIT Press, June 2005.2. Bohlin, R. and L. Kavraki, �Path Planning Using Lazy PRM�, Pro
eedings IEEEInternational Conferen
e on Roboti
s and Automation, 2000.3. Ku�ner, J. J. and S. M. LaValle, �An E�
ient Approa
h to Path Planning Us-ing Balan
ed Bidire
tional RRT Sear
h", Te
h. Rep., CMU-RI-TR-05-34, Roboti
sInstitute, Carnegie Mellon University, Pittsburgh, PA, Aug. 2005.4. Ku�ner, J. J. and S. M. LaValle, �RRT-Conne
t: An E�
ient Approa
h to Single-Query Path Planning�, Pro
eedings IEEE International Conferen
e on Roboti
s andAutomaton, pp. 995-1001, 2000.5. Karagöz, C. S., H. I. Bozma and D. E. Kodits
hek, �A Feedba
k-Based Event-DrivenParts Moving Robot�, IEEE Transa
tions on Roboti
s, 2004.6. Lavalle, S. M., Planning Algorithms, Cambridge University Press, Cambridge, U.K.,2006.7. Karagöz, C. S., H. I. Bozma and D. E. Kodits
hek, �Coordinated Navigation ofMultiple Independent Disk-Shaped Robots", to appear in IEEE Transa
tions onRobotsi
s, 2006.8. Goodwin, R. and R. Simmons, �Rational Handling of Multiple Goals for MobileRobots�, Pro
eedings of the First International Conferen
e (AIPS-92), College Park,MD, June 1992.9. Reif, J. H., �Data Flow Analysis of Communi
ation Pro
esses�, The annual Sym-

113posium on Prin
iples of Programming Languages, pp. 257�268, 1979.10. Canny, J., �Some Algebrai
 and Geometri
 Problems in PSpa
e�, Pro
eedinds 20.ACM Sto
, pp. 460�467, 1988.11. Siméon, T., J.-P. Laumond and C. Nissoux, Visibility Based Probabilisti
 Roadmapsfor Motion Planning, Advan
ed Roboti
s, Vol. 14, No. 6, 2000.12. Aurenhammer, F., �Voronoi diagrams � A Survey of a Fundamental Geometri
Stru
ture�, ACM Computing Surveys, Vol. 23, pp. 345�405, 1991.13. Leng-Feng, De
entralized Motion Planning Within a Arti�
ial Potential Framework(APF) for Cooperative Payload Transport by Multi-robot Colle
tives, M.S. Thesis,The State University of New York at Bu�alo, 2005.14. Sán
hez, G. and J.-C. Latombe, �On delaying
ollision
he
king in PRM plan-ning: Appli
ation to multi-robot
oordination�. International Journal of Roboti
sResear
h, Vol. 21, No. 1, pp. 5�26, 2002.15. Latombe, J.-C., �Robot Motion Planning� Kluwer, Boston, MA, 1991.16. Berg, J. and M. Overmars, �Prioritized Motion Planning for Multiple Robots�,Pro
eedings IEEE/RSJ International Conferen
e on Intelligent Robots and Systems,pp. 2217�2222, 2005.17. Peng, J. and S. Akella, �Coordinating Multiple Robots with Kinodynami
 Con-straints Along Spe
i�ed Paths�, Algorithmi
 Foundations of Roboti
s V (WAFR2002), Springer-Verlag, Berlin, pp. 221�237, 2002.18. Lindemann, S. R. and S. M. LaValle, �Current Issues in Sampling-Based MotionPlanning�, Pro
eedings International Symposium on Roboti
s Resear
h, Springer-Verlag, Berlin, 2004.19. Hsu, D., J.-C. Latombe and R. Motwani, �Path Planning in Expansive Con�gu-

114ration Spa
es�, International Journal Computational Geometry and Appli
ations,Vol. 4, pp. 495�512, 1999.20. LaValle, S. M., Rapidly-Exploring Random Trees: A New Tool for Path Planning,Computer S
ien
e Dept., Iowa State University, O
t. 1998.21. Plaku, E. and L. E. Kavraki, �Distributed sampling-based roadmap of treesfor large-s
ale motion planning�, Pro
eedings IEEE International Conferen
e onRoboti
s and Automation, 2005.22. Amato, N. M., O. B. Bayazit, L. K. Dale, C. Jones and D. Vallejo, �OBPRM: AnObsta
le-Based PRM for 3D Workspa
es�, Pro
eedings Workshop on Algorithmi
Foundations of Roboti
s, pp. 155-168, 1998.23. Dijkstra, E. W., A note on two problems in
onnexion with graphs, Numeris
heMathematik, Vol. 1, 269�271, 1959.24. De
hter, R. and J. Pearl, �Generalized best-�rst sear
h strategies and the optimal-ity af A*�, Journal of the ACM, Vol. 32, No. 3, pp 505�536, 1985.25. Hsu, D., T. Jiang, J. Reif and Z. Sun, �The Bridge Test for Sampling NarrowPassages with Probabilisti
 Roadmap Planners�, Pro
eedings IEEE InternationalConferen
e on Roboti
s and Automation, 2003.26. Boor, V., M. H. Overmars and A. F. van der Stappen, �The Gaussian SamplingStrategy for Probabilisti
 Roadmap Planners�, Pro
eedings IEEE International Con-feren
e on Roboti
s and Automation, pp. 1018�1023, 1999.27. Hsu, D., L. E. Kavraki, J-C. Latombe, R. Motwani and S. Sorkin, �On Finding Nar-row Passages with Probabilisti
 Roadmap Planners�, Pro
eedings of the Workshopon Algorithmi
 Foundations of Roboti
s (WAFR'98), pp. 155�168, 1998.28. Wilmarth, S. A., N. M. Amato and P. F. Stiller, �MAPRM: A Probabilisti
Roadmap Planner with Sampling on the Medial Axis of the Free Spa
e�, Pro
eedings

115IEEE International Conferen
e on Roboti
s and Automation, pp. 1024�1031, 1999.29. Bobi
, N., Advan
ed Collision Dete
tion Te
hniques, Gamasutra :http://www.gamasutra.
om/features/20000330/bobi
_01.htm, Mar. 2007.30. Samet, H. and R. E. Webber, �Hierar
hi
al Data Stru
tures and Algorithms forComputer Graphi
s. Part I.�, IEEE Comput. Graph. Appl., IEEE Computer So
ietyPress, Los Alamitos, CA, USA, Vol. 8, No. 3, pp. 48�68, 1988.31. Flannery, B. P., S. A. Teukolsky and W. T. Vetterling, Numeri
al Re
ipes�, 2ndedn., Cambridge University Press, Cambridge, 1992.32. Apa
he Foundation's Betwixt Developers Team, Betwixt Library,http://jakarta.apa
he.org/
ommons/betwixt/, 2007.

