
COMPARISON OF PATH PLANNING ALGORITHMS
byFuat GELER�BS. In CSE, Marmara University, 2004

Submitted to the Institute for Graduate Studies inSiene and Engineering in partial ful�llment ofthe requirements for the degree ofMaster of Siene
Graduate Program in System and Control EngineeringBo§aziçi University2007

iiiACKNOWLEDGEMENTS
First, I want to thank my advisor Prof. Levent AKIN for his, and Prof. I³�lBOZMA for her guidane and support in development, ompletion of this thesis.Seondly, I thank all my friends for their understanding. Speial thanks go tomy friends Reyhan AYDO�AN, Murat BALABAN, Gülef³an BOZKURT, Ya§murGÖK, Bar�³ GÖKÇE, Kemal KAPLAN, Çetin MER�ÇL�, Sarp Baran ÖZKAN, NuriTA�DEM�R and Ülker ÖZGEN for their great support and understanding.Finally, it is my pleasure to thank my family, Ay³e GELER� and Ayd�n GELER�for their endless support and belief in me and my work.This thesis was supported by Bo§aziçi University Researh Fund (BAP) andTurkish Republi Prime Ministry State Planning Organization (DPT).

ivCOMPARISON OF PATH PLANNING ALGORITHMS
Path planning problems arise in many di�erent �elds suh as; robotis, assemblyanalysis, virtual prototyping, pharmaeutial drug design, manufaturing, and om-puter animation. Path planning algorithms aim to solve problems that involve om-puting a ontinuous sequene, a path, of on�gurations between an initial and goalon�guration. Planning of a path involves some onstraints, suh as omputing aollision-free path.We ompared various path planning and navigation algorithms. As reative al-gorithm, an improved version of Arti�ial Potential Field (APF) algorithm is used. Inrobot oordination this algorithm is the superior algorithm. It oordinates 250 robotseasily. Whereas deliberative algorithms, suh as Rapidly-exploring Random Tree Con-net (RRT Connet) algorithm, an only oordinate 40 robots with high osts. Theother deliberative algorithms, Rapidly-exploring Random Tree (RRT), ProbabilistiRoadmap (PRM) and Lazy Probabilisti Roadmap (Lazy PRM), ould not oordinatemore than 20 robots within feasible resoure and time limits in our tests. In robot oor-dination reative algorithms are more suessful, but, when the environment ontainsloal minima, using a deliberative algorithm is inevitable.In path planning for multiple robots, deentralized approahes, or partially group-ing of the robots show better performanes. As the number of the ontrolled robotsin the environment inreases, using deentralized approahes beomes a requirement,beause the amount of the required time and the resoures inreases exponentially inentralized approahes, but linearly in deentralized approahes. Partially groupingof the robots gives the best performane results, beause the resoure requirementsinrease nearly linear, and nearby robots are ontrolled in entralized manner.

vGÜZERGAH PLANLAMA ALGOR�TMALARININKAR�ILA�TIRILMASI
Güzergah planlama problemleri bir çok alanda kar³�m�za ç�kmaktad�r. Örne§in,robotik, montaj analizi, sanal prototip üretimi, ilaç tasar�m�, üretim, ve bilgisayaranimasyonlar� bu alanlardan baz�lar�d�r. Güzergah planlama algoritmalar�, ba³lang�kon�gürasyondan amaç kon�gürasyona süreklili§i olan bir s�ra hesaplas�n� sa§lamak-tad�r. Bir güzergah�n planlamas� çe³itli s�n�rlamalar� içermektedir, örne§in bulunan yolsayesinde robot hiç bir engele çarpmamal�d�r.Tepkisel algoritma olarak kullan�lan APF algorithmas�n�n geli³tirilmi³ modelirobot koordinasyonunda en ba³ar�l� algoritmad�r. Bu algoritma 250 robotun koor-dinasyonunu kolayl�kla sa§larken, RRT Connet algoritmas�, sadee 40 robota kadarbüyük masra�arla e³güdüm yapabilmektedir. Di§er dü³ünen algorithmalar RRT, PRMve Lazy PRM algoritmas� ise sadee 20 robota kadar koordinasyon yapabilmekte-dir. Robot koordinasyonunda tepkisel algorithmalar daha basar�l� olurken, e§er ortambölgesel minimumlar içeriyorsa düsünen algoritmalar�n kullan�lmas� kaç�n�lmazd�r.Özellikle dinamik ortamlarda miskin algoritmalar�n kullan�lmas� kullan�lan kay-nak ve geçen zaman� azaltmaktad�r. Çoklu robotlar için güzergah planlarken merkeziolmayan yakla³�mlar veya k�smi gruplamalar yapmak daha büyük ba³ar�mlar göster-mektedir. Merkezi yakla³�mlarda ihtiyaç duyulan zaman ve kaynak üssel artarken,merkezi olmayan yakla³�mlarda do§rusal artt�§� için, ortamdaki idare edilen robot say�s�artt�§� zaman merkezi olmayan yakla³�mlar� kullanmak bir gereksinim haline gelmek-tedir. Robotlar� k�smi kümelemek, ihtiyaç duyulan kaynaklar yakla³�k do§rusal artt�§�ve yak�n robotlar merkezi anlamda idare edildi§i için en iyi sonuçlar� vermektedirler.

viTABLE OF CONTENTS
ACKNOWLEDGEMENTS . iiiLIST OF FIGURES . viiLIST OF TABLES . viiiLIST OF SYMBOLS/ABBREVIATIONS . ix1. INTRODUCTION . 11.1. Problem Statement . 11.2. Contribution of the Thesis . 11.3. Thesis Outline . 22. GENERAL BACKGROUND . 42.1. Open-Loop � Geometri Representation Algorithms 62.1.1. Simple Algorithms . 72.1.2. Roadmaps (Skeletonization) . 92.1.2.1. Meadow Maps . 92.1.2.2. Visibility Graphs . 92.1.2.3. Generalized Voronoi Graphs 102.1.3. Cell Deompositions . 112.1.3.1. Trapezoidal Cell Deomposition 112.1.3.2. Regular Grids . 112.1.3.3. Approximate Cell Deomposition (Quadtrees) 132.2. Closed-Loop � Reative Approahes . 132.2.1. Potential Field . 132.2.1.1. The Loal Minima Problem 152.3. Multiple Robot Coordination . 162.3.1. Centralized Planning . 162.3.2. Deoupled Planning . 173. ALGORITHMS . 203.1. Sampling Based Algorithms . 203.1.1. Probabilisti Roadmaps . 213.1.2. Sampling Strategies . 25

vii3.1.2.1. Uniform Random Sampling 253.1.2.2. Sampling Near the Obstales 253.1.2.3. Sampling Inside Narrow Passages 263.1.2.4. Visibility-Based Sampling 273.1.2.5. Quasirandom Sampling 273.1.2.6. Grid-Based Sampling 273.1.2.7. Bene�ts of Di�erent Sampling Methods 283.1.3. Connetion Strategies . 283.1.3.1. Seleting Closest Neighbors 293.1.3.2. Creating Coarse Roadmaps 293.1.3.3. Conneting Conneted Components 303.1.4. Collision Cheking Methods . 303.1.5. Expansive-Spaes Trees . 323.1.5.1. Constrution of Trees 323.1.5.2. Merging of Trees . 343.1.6. Rapidly Exploring Random Tree 343.1.6.1. Constrution of Trees 353.1.6.2. Merging of Trees . 373.1.7. Lazy Algorithms . 383.2. Post Proessing . 393.3. Multiple Robot Coordination . 413.3.1. Centralized Approah . 423.3.2. Deentralized Approah . 433.3.2.1. Simple Reative Esape 443.3.2.2. Intelligent Esape . 443.4. Arti�ial Potential Funtion (RBOT) 443.5. Lazy PRM RRT Connet . 464. SIMULATIONS . 494.1. Simulator Design . 494.2. Measures . 504.2.1. Suess Rate . 504.2.2. Average Elapsed Time . 50

viii4.2.3. Normalized Robot Path Length 504.2.4. Spae Complexity . 514.3. Senarios . 514.4. No Obstales . 524.4.1. Five Robots . 534.4.1.1. Targets Distributed Widely 544.4.1.2. Targets Distributed Near 554.4.1.3. Targets Distributed Tightly 564.4.2. 10 Robots . 584.4.2.1. Targets Distributed Widely 594.4.2.2. Targets Distributed Near 604.4.2.3. Targets Distributed Tightly 614.4.3. Disussion . 644.4.4. More than 10 Robots . 654.4.4.1. Suess Rates . 674.4.4.2. Mean Elapsed Time Amounts 684.4.4.3. Disussion . 694.5. Stati Obstale (Maze Problems) . 714.5.1. One Robot . 724.5.2. Two Robots . 754.5.3. Three Robots . 774.5.4. Disussion . 784.6. Dynami Environments . 794.6.1. Disussion . 815. CONCLUSIONS . 84APPENDIX A: INTEGRATION . 86APPENDIX B: SIMULATOR . 89B.1. Simple Robot Simulator . 89B.1.1. Work Spae . 89B.1.1.1. World Content . 89B.1.1.2. Stati Objet . 90B.1.1.3. Dynami Objet . 90

ixB.1.2. Simulator . 90B.1.2.1. Ordinary Di�erential Equation 91B.1.2.2. Integrator . 91B.1.3. Shell . 92B.1.3.1. Info Gates . 92B.1.3.2. Control Gates . 93B.1.4. Visualization and User Inputs 93B.1.5. Saving and Loading . 95B.2. Robot Simulator Editor . 95B.2.1. Dynami Objets . 96B.2.2. Stati Objets . 97B.3. Planning Base . 97B.3.1. Modelling the World . 98B.3.2. Collision Cheker . 100B.3.3. The Exeuter . 102B.4. Path Planning Base . 104B.4.1. Loal Planner . 104B.4.1.1. Generi Loal Planner 107B.5. Planning Base Editor . 107B.6. Robot Controllers . 108B.7. Little Prine Path Planning Simulator 110REFERENCES . 112

xLIST OF FIGURES
Figure 2.1. Taxonomy of obstale types . 4Figure 2.2. Work spae and on�guration spae for a irular robot 7Figure 2.3. Bug algorithms use two basi behaviors: move on straight line andfollow a boundary . 7Figure 2.4. Wavefront algorithm is another simple path planning algorithm . . 8Figure 2.5. Taxonomy of roadmap algorithms 9Figure 2.6. Centers of edges onneting edges omposes the Meadow Maps . . 10Figure 2.7. Visibility graph is omposed of onnetion of eah important point 10Figure 2.8. Voronoi diagram, equidistane to eah obstale 11Figure 2.9. Taxonomy of ell deomposition algorithms 11Figure 2.10. Union of trapezoidal ells onstruts the Cfree 12Figure 2.11. Regular grids are like representing n2 pixel with one pixel 12Figure 2.12. Subdivide ells as muh as needed 12Figure 2.13. Robot �nds its path with potential funtion [13℄ 14Figure 2.14. Navigation of the robot with potential funtion [13℄ 16

xiFigure 2.15. Gradient desent algorithm . 17Figure 2.16. Single robot stuk on loal minima 18Figure 3.1. Sample run of PRM algorithm for single robot ase 21Figure 3.2. Algorithm for the onstrution of the roadmaps 23Figure 3.3. Algorithm for solving a query . 24Figure 3.4. Two sampling strategies for long narrow passage problem a. Uni-form sampling method, b. Sampling on Medial Axis of the FreeSpae method [28℄ . 28Figure 3.5. Two sampling strategies in maze a. Uniform sampling method, b.Sampling on Medial Axis of the Free Spae method [28℄ 29Figure 3.6. Convex hull reated around an objets loation at two di�erenttimes. Pitures is from [29℄ . 31Figure 3.7. Sphere subdivision algorithm for ollision heking. Piture is from[29℄ . 31Figure 3.8. The algorithm for building an EST tree 33Figure 3.9. Extend EST Algorithm . 33Figure 3.10. Growing of an RRT tree . 35Figure 3.11. The algorithm for building an RRT tree 36Figure 3.12. The algorithm extends an RRT tree 36

xiiFigure 3.13. Trying to onnet two RRT trees in RRT Connet algorithm . . . 37Figure 3.14. RRT Connet algorithm's merging part 38Figure 3.15. High-level desription of Lazy PRM 39Figure 3.16. Postproessing is applied to shorten the found path 40Figure 3.17. Simple path shortening algorithm 41Figure 3.18. A big on�guration is ahieved by appending robot on�gurations 42Figure 3.19. Tuning the veloities in entralized approah 43Figure 3.20. Algorithm for �nding the next ontrol inputs 46Figure 3.21. RRT Connet algorithm leads the robots toward the enter of thefree spae . 47Figure 3.22. RboT algorithm uses the free spae e�etively 48Figure 4.1. Five robots distributed widely . 54Figure 4.2. Five robots oordinated with Rbot algorithm 56Figure 4.3. Five robots oordinated with RRTConnet algorithm 58Figure 4.4. Suess rates for �ve robots tight ase 59Figure 4.5. Ten robots distributed sparsely . 60

xiiiFigure 4.6. RRT Connet algorithm is used to oordinate 10 robots in no ob-stale universe . 61Figure 4.7. Rbot algorithm is used to oordinate 10 robots in no obstale universe 62Figure 4.8. Lazy PRM RRT Connet algorithm is used to oordinate 10 robotsin no obstale universe . 64Figure 4.9. Suess rates for 10 robots tight ase 65Figure 4.10. 50 robots in a irular world . 66Figure 4.11. Change of the suess rates of the RboT algorithm in many robotsase . 67Figure 4.12. Change of the suess rates of the RRT Connet algorithm in manyrobots ase . 68Figure 4.13. Change of the mean elapsed time amount for the RboT algorithmin many robots ase . 69Figure 4.14. Change of the mean elapsed time amount for the RRT onnetalgorithm in many robots ase . 70Figure 4.15. Count of steps taken by APF and RRT-Connet algorithm for dif-ferent robot ounts . 71Figure 4.16. NRL results of APF and RRT-Connet algorithm for di�erent robotounts . 72Figure 4.17. Maze with four rooms and a bloked orridor 73

xivFigure 4.18. Lazy PRM �lls the spae adequately with only 100 samples 74Figure 4.19. Amount of time used for path planning by Lazy PRM, RRT Con-net and Lazy PRM RRT Connet algorithms in the maze 75Figure 4.20. Suess rates for path planning by Lazy PRM, RRT Connet andLazy PRM RRT Connet algorithms in the maze 76Figure 4.21. Normalized Robot Path Length (NRL) values for path planning byLazy PRM, RRT Connet and Lazy PRM RRT Connet algorithmsin the maze . 79Figure 4.22. Change of elapsed time amounts for RRT Connet in various dy-nami environments . 80Figure 4.23. Change of elapsed time amounts for Lazy PRM in various dynamienvironments . 81Figure 4.24. Change of elapsed time amounts for Lazy PRM RRT Connet invarious dynami environments . 81Figure A.1. Euler's integration method has only �rst order auray [31℄ . . . 86Figure A.2. Midpoint, seond order Runge-Kutta integration method gives se-ond order auray [31℄ . 87Figure A.3. Fourth order Runge-Kutta method is the most used integrationformula with third order auray [31℄ 87Figure B.1. The simulation environment . 89Figure B.2. Class diagram of Shell module . 92

xvFigure B.3. Steps of a simpli�ed simulation exeution 93Figure B.4. The Simulation Editor helps generating di�erent simulation senarios 95Figure B.5. Via The Simulation Editor we an add, remove, edit dynami objets 96Figure B.6. Via the Simulation Editor we an add, remove, and edit statiobjets . 97Figure B.7. Class diagram of modelling of the world 99Figure B.8. Diagram of example usage of ollision tree in ollision hek 101Figure B.9. Class diagram of the Exeuter . 102Figure B.10. Class diagram for the interfaes of the path planner and the loalplanner . 105Figure B.11. A big on�guration is ahieved by appending robot on�gurations 107Figure B.12. Four ontrollers added to the simulation with the planner editor . 108Figure B.13. A ontroller is shown in detail in the planner editor 109

xviLIST OF TABLES
Table 2.1. Environment Classi�ation . 4Table 4.1. Statistis for Five Robots Coarse Case 55Table 4.2. Statistis for Five Robots Normal Case 57Table 4.3. Statistis for Five Robots Tight Case 57Table 4.4. Statistis for 10 Robots Coarse Case 59Table 4.5. Statistis for 10 Robots Normal Case 63Table 4.6. Statistis for 10 Robots Tight Case 63Table 4.7. NRL and memory usages for one robot in the maze 74Table 4.8. NRL and memory usages for two robots in the maze 76Table 4.9. Statistis for three robots in the maze 77Table 4.10. More statistis for three robots in the maze 77Table B.1. Speial mouse gestures and keyboard strokes 94

xviiLIST OF SYMBOLS/ABBREVIATIONS
3D Three dimensionalC Con�guration
cinit Initial on�guration of a robot
cgoal Goal on�guration of a robot
Cfree Collision free on�guration spae
Cobstacle Con�guration spae in ollision
Cspace Con�guration spaed(.) Distane funtiond* Distane thresholdE EdgesT Path treeU Potential funtion
Uatt Attrative potential funtion
Urep Repulsive potential funtion
∆U Change in the potential funtionV Vertexes
α(i) Step size at i'th iteration
ǫ EpsilonAPF Arti�ial Potential FuntionDOF Degree of FreedomEST Expansive-Spaes TreesGVG Generalized Voronoi GraphsNRL Normalized robot path lengthPRM Probabilisti RoadmapRBOT Used interhangeably with APFRRT Rapidly-Exploring Random Tree

11. INTRODUCTION
In the development of autonomous robots, devising a way to give robots theapability of making their own plans in various situations is a omplex problem. Motionplanning is a sub-problem and it refers to the omputation of moving from one plaeto another in the presene of obstales, either stati or dynami.1.1. Problem StatementPath planning plays an essential role in most of the roboti appliations. Anadvaned path planning module an provide robots more mobility and autonomy.However, if the environment, to run the robots on, ontains multiple robots, mov-ing obstales, stati obstales, and also onstraints on the motion of the robots, thedi�ulty inreases toward NP ompleteness.The knowledge about the behaviour of the algorithms in various environmentsmay play an essential role in the design of suessful mobile robot appliations. Thereare variety of path planning and multiple robot oordination algorithms. However,whih algorithm is the best for a problem depends on the harateristis of the problem.An algorithm may be the most appropriate for an environment ontaining only statiobstales, yet another algorithm may be better if the environment ontains dynamiobstales. Change of the e�ieny of the algorithm to the inrease of the numberof the oordinated robots shows the saleability of the algorithm. The knowledgeof saleability, time omplexity, spae omplexity, and e�etiveness of the algorithmsmay lead us to develop a robust path planning module, that an takle with variousproblems. 1.2. Contribution of the ThesisAording to the task to aomplish, properties of the environment, and therobots, various path planning algorithms are designed. In this thesis, we aomplish

2the following issues:
• Comparison of path planning algorithms, like PRM [1℄, Lazy PRM [2℄, RRT [3℄,RRT Connet [4℄, and APF [5℄ for single, multiple robot ases, in environmentsontaining no obstale, only stati obstales, and stati and dynami obstalesases,
• Improvement of RRT Connet and Lazy PRM algorithm by mixing those algo-rithms,
• Improvement of APF algorithm, so it handles oordination of more than 250robots, and takes robot properties into oordination.1.3. Thesis OutlineIn the seond hapter, a detailed desription of the path planning algorithms isprovided. First, most basi algorithms are given to desribe the problem, and basionepts. Then omputational approahes, and reative algorithms are desribed. Atthe end of the introdution hapter, entralized and deoupled planning for multi-robotoordination is desribed.Then, sampling based algorithms, sampling and onnetion strategies are de-sribed. Multiple query algorithms, like PRM and Lazy PRM, single query algorithmslike RRT and RRT Connet. Later, we disussed post proessing in path planning,and how multi-robot oordination is ahieved.At the third hapter we inspeted, and desribed our improvements on the algo-rithms. Lazy PRM RRT Connet algorithm is desribed in this hapter. Improvementson the APF algorithm, and more detail about how multi-robot oordination is ahievedis given in this hapter.At the last hapter, we plaed the applied tests and the performane results ofthe algorithms in these tests. We ompared algorithms in no obstale environmentswith di�erent number of robots with far, and near target on�guration to the other

3robots' target on�gurations. Later we plaed the tests in environments with statiand dynami obstales. We also tested entralized and deentralized approahes inenvironments with di�erent number of dynami obstales.

42. GENERAL BACKGROUND
The degree of the di�ulty of motion planning hanges depending on the en-vironmental fators. If the environment ontains dynami obstales, obstales withinformation less than required, namely partially known environment, then its degreeof di�ulty inreases.

Figure 2.1. Taxonomy of obstale typesThe types of the obstales are shown in the Figure 2.1. The di�erent possiblesenarios are shown in the following Table 2.1.Table 2.1. Environment Classi�ationStati Obstales Dynami ObstalesCompletely Known Case I Case IIPartially Known Case III Case IV
Case I is the simplest senario where all obstales are �xed and well knownbefore a path planning algorithm is used. In this ase, the problem is the basi motionplanning problem, and it is usually solved in the following two steps:

5
• De�ne a graph representing the geometri struture of the environment.
• Perform a graph searh to �nd a onneted omponent between the node on-taining the start point and the node ontaining the destination point.The geometri struture of the graph di�ers depending on whih approah is usedto solve the problem. The three most ommon approahes are
• the roadmap approah [1℄,
• the ell deomposition approah [6℄, and
• the potential �eld approah [7℄.These approahes are powerful but they an not work in high dimensional spaeswell. To solve this problem sampling based methods are proposed. These algorithmsgenerate a graph representing the free spae of the environment by generating randomsamples, instead of generating a graph representing the geometri struture of theenvironment, whih is di�ult, and time onsuming. The part of querying for a pathis the same for both the sampling based algorithms and roadmap algorithms.If the environment ontains multiple robots, moving obstales, stati obstales,and also onstraints on the motion of the robots, the di�ulty inreases toward NPompleteness.We may ategorize the omplexity of path planning as:1. In 3D work spae �nding exat solution is NP-HARD. [8℄2. Path planning is PSPACE-HARD. [9℄3. The omplexity inreases exponentially with:

• Number of DOF [10℄
• Number of agents.

62.1. Open-Loop � Geometri Representation AlgorithmsA path is a sequene of robot on�gurations from a starting on�guration to anend on�guration. It must be ontinuous, and in a spei� order. Usually a ollision-free path with minimum ost is preferred, and as the ost we may use distane, time,battery onsumption et. Path planning is therefore an optimization and searh prob-lem. For path planning, algorithms usually do not use the work spae, but insteaduses the on�guration spae. Work spae is the n-dimensional spae in whih therobot moves. The robot, obstales, and other objets are the losed subsets of thework spae. The on�guration represents the state of the robot with respet to itsenvironment, and usually it is represented by a data struture that is given as a vetor,or a matrix of position and orientation parameters.Con�guration spae, also alled CSpace, is the set of all possible on�gurationsof a robot, [1℄. The path planner searhes the appropriate solutions in this spae. Inthe on�guration spae there may be in�nite number of on�gurations. The dimensionof the on�guration spae may be di�erent than the work spae it represents. Thedimension of a on�guration spae is the minimum number of parameters needed toompletely speify the on�guration of the objet. For the dimension in the work spaewe use degree of freedom (DOF), whih means set of independent position variables,neessary to speify an objet's position in the work spae, with respet to a frame ofreferene.As seen in Figure 2.2, in the on�guration spae eah point orresponds to aon�guration rather than a real point in spae. In this �gure we see a irular robot, soits on�guration spae is 2D. If the heading of the robot mattered then a on�gurationwould onsist of a position and an orientation, so the on�guration spae would be 3D.The on�guration spae ontains on�gurations that lead the robot to be in ol-lision, and on�gurations in whih the robot is not in ollision. The free spae, Cfree

7

Figure 2.2. Work spae and on�guration spae for a irular robot
Figure 2.3. Bug algorithms use two basi behaviors: move on straight line and followa boundaryis the set of on�gurations, at whih the robot is not in ollision, and obstale spae,
Cobstacle is the set of on�gurations, at whih robot is in ollision. The sum of Cfreeand Cobstacle gives the total Cspace, Equation 2.1. For a path to be ollision free, allof the paths should be in Cfree.

Cspace = Cfree + Cobstacle (2.1)
2.1.1. Simple AlgorithmsInspeting the simple algorithms may help us to understand interesting and di�-ult issues of path planning. These simple algorithms are straightforward to implementand analysis shows that when possible their suess is guaranteed [1℄.The Bug1 [1℄, Bug2 [1℄, Tangent Bug [1℄, and Wavefront Method [1℄ are someof the simple algorithms. The Bug algorithms assume the robot as a point operating

8

Figure 2.4. Wavefront algorithm is another simple path planning algorithmin the plane with a ontat sensor. The robots detet obstales with this zero rangesensor. When the robot has a �nite range sensor, like an infrared sensor, the algorithmused is alled Tangent Bug algorithm. These algorithms use two basi behaviors: moveon a straight line and follow a boundary, as seen in Figure 2.3. The bug algorithms arenot omplete, they are loal, suboptimal, and dynami.In the Wavefront Algorithm, we divide the environment into a set of ells. Then,starting with the initial ell, where the robot is loated, we assign numbers. Obstalesare numbered as one, as a speial number to get the robot away from them. Writtennumbers are started from two at the initial ell, and inremented toward the goal atthe adjaent ells. We may use eight−point or four−point onnetivity, as left, right,up, and down. When all the squares have a number assigned, we go from the ell thatontains the goal on�guration toward the initial ell as moving toward the adjaentell with a lower number.These algorithms are ideal for basi robots with limited apabilities. They re-quire little proessing power, and memory. However, for more di�ult problems, andfor multi-robot path planning problems, improved algorithms, desribed on the nextsetions of this doument, are required.

9

Figure 2.5. Taxonomy of roadmap algorithms2.1.2. Roadmaps (Skeletonization)Roadmap algorithms and ell deomposition algorithms are Cspae representationalgorithms. They transforms the work spae to Cspace representations.Meadow maps,visibility graphs, generalized voronoi graphs (GVG) and probabilisti roadmaps are thewell known roadmap algorithms [1℄. Taxonomy of roadmap algorithms an be seen inthe Figure 2.5.2.1.2.1. Meadow Maps. In meadow maps, �rst optionally we grow the obstales as bigas the robot. We �nd the orners of the objets in the work spae. Then we onnetthese orners with edges, as shown in Fig 2.6. For a path planning query, the enterpoint of these edges will be used as milestone points. The start point of the query willbe onneted to the nearest enter point, and the end point will also be onneted toits nearest enter point. Then a graph algorithm will be used to �nd the sequene ofenter points between these two enter points.Meadow maps are not able to generate unique polygons. It is not quite possible toreate this type of map with sensor data, and it is di�ult for the robot to di�erentiate,and reognize the right orners, edges, and go to the middle.2.1.2.2. Visibility Graphs. Another simple proedure of transforming the world spaeto Cspace is Visibility Graphs [11℄. In this method, every pair of important points,

10

Figure 2.6. Centers of edges onneting edges omposes the Meadow Maps
Figure 2.7. Visibility graph is omposed of onnetion of eah important pointvertexes of obstales, initial and �nal points et. are onneted, as shown in Figure 2.7.These onneted edges should not be in ollision with any objet. The graph omposedof this edges and nodes is the Cspace representation of the work spae. Path searheswill be done on this graph.2.1.2.3. Generalized Voronoi Graphs. The points in the work spae, having the samedistane to the surrounding obstales make up the lines of the voronoi graph [12℄. Theintersetions of these lines are the nodes of the relational graph. So the work spae istransformed into Cspace, as shown in Figure 2.8.Finding the points equidistane to the nearby obstales is a quite di�ult task,and has a quite high omputational ost. Moreover, Voronoi Graph is sensitive tosensor noise, and for path planning, the robot should be able to sense the boundariesof the obstales, and workspae.

11

Figure 2.8. Voronoi diagram, equidistane to eah obstale

Figure 2.9. Taxonomy of ell deomposition algorithms2.1.3. Cell DeompositionsTrapezoidal ell deomposition, regular grids and quadtrees are the major typesof ell deomposition algorithms. Taxonomy of ell deomposition algorithms an beseen in the Figure 2.9.2.1.3.1. Trapezoidal Cell Deomposition. The world is onverted to a set of union oftrapezoid shaped ells. A line is started from the left toward the right, when it touhesa new objet, or touhing an objet ends, from these points line is divided, and thisdivisions are marked as the edges of the trapezoid shapes, as shown in Figure 2.10.
Cfree is the union of these trapezoids.2.1.3.2. Regular Grids. We an see a regular grid as the same environment with en-larged pixels [1℄. Eah element is an enlarged pixel, as shown in Figure 2.11. Arelational graph is generated from these nodes, by onneting eah node with its neigh-

12

Figure 2.10. Union of trapezoidal ells onstruts the Cfree

Figure 2.11. Regular grids are like representing n2 pixel with one pixelboring nodes.Beause the world does not always line up on grids, applying grid algorithms doesnot always work well. Moreover, if a ell ontains both the free spae and the ollisionspae, this ell is seen as in ollision spae, and this is the digitalization bias the gridalgorithms bring. This algorithm is omplete, if a path exists it will �nd it.

Figure 2.12. Subdivide ells as muh as needed

132.1.3.3. Approximate Cell Deomposition (Quadtrees). In exat ell deomposition,some ells may ontain both ollision spae and ollision free spae, and these ellsare ounted as in ollision spae. This method solves the problem by dividing thegrid reursively until the ell lies entirely in free spae or in Cobstacle region, or anarbitrary limit resolution is reahed. Beause a ell is divided into four smaller ells ofthe same shape eah time it gets deomposed, the method is also alled a �quadtree"deomposition, shown in Figure 2.12. Like in the regular grids method, the free pathan be easily found by following the adjaent, deomposed ells through free spae [1℄.2.2. Closed-Loop � Reative ApproahesThe di�ulty of expliitly representing the on�guration spae fored sientiststo searh new ways for path planning. Inrementally searhing the free spae whilesearhing a path is emerged as an alternative to the algorithms that use on�gurationspae representation. Bug algorithm is a simple example for inremental searh algo-rithms. However, the bug algorithm works only on 2D. So, other navigation plannersare developed to work for a riher lass of robots and produe a greater variety of pathsthan Bug algorithm.2.2.1. Potential FieldPotential funtions are used in the inremental searh path planners. A potentialfuntion is a di�erentiable real-valued funtion. It an be seen as an energy formula,and its gradient is the fore to apply to the robot to navigate. The gradient is usedto de�ne a vetor �eld whih is direted toward the goal, and enables robot to esapefrom the obstales as shown in Figure 2.13.We may see the whole proess as the ations of positively and negatively hargedpartiles' movements. Say, the robots are the partiles with positive harge, and thegoal is harged negatively. So, the ontrolled robot will be attrated by the goal,and will keep itself away from other robots, too. When suh a gradient vetor spae isgenerated, the robots will move from a "high-value" state to a "low-value" state, whih

14

Figure 2.13. Robot �nds its path with potential funtion [13℄will enable them to follow a path "downhill". Suh a path is alled gradient desentpath.Unfortunately, all of the potential funtional approahes su�er from the existeneof loal minima whih does not orrespond to the goal. This means, the potentialfuntion may lead the robot to a point, whih is not the goal. Therefore, many potentialfuntions do not lead to omplete path planners.
U(q) = Uatt(q) + Urep(q)

∇U(q) = ∇Uatt(q) +∇Urep(q) (2.2)The simplest approah for potential funtion is using the attrative and repulsive po-tentials. Sum of the attrative potential and repulsive potential gives the power of thepotential on the robot, shown in Equation (2.2). Uatt is the attration funtion, and
Urep is the repulsition funtion. The sum of derivative of these funtions onstitute thepotential fore.

∇Uatt(q) = ζ(q − cgoal) (2.3)

15When the robot gets nearer to the goal, the attration fore of the goal gets smallerand smaller, shown in Equation 2.3. So the robot will be under the ontrol of onlyrepulsive fores, whih plaes a gap between the robot and its goal when the equilibriumis reahed. To do not let suh a situation, the attrative fore formula is hanged afterthe distane between robot and the target reahes a threshold d∗

goal. So the Uatt(q) isupdated as
∇Uatt(q) =

ζ(q − cgoal), d(c, cgoal) ≤ d∗

goal,
d∗

goal
−ζ(q−cgoal)

d(c,cgoal)
, d(c, cgoal) > d∗

goal,
(2.4)A repulsive potential keeps the robot away from an obstale. As the robots get nearerto the obstales, the power of the repulsive energy should be higher and higher 2.4.Eah obstale will apply a repulsive fore on the robot, if the robot is near enough tothe obstales. The threshold of nearness is represented by C∗

i , and the gradient formulafor repulsive fore of eah obstale over the robot is
∇Urepi

(q) =

1
2
η(1

di(q)
− 1

C∗

i

)2, if di(q) ≤ C∗

i

0 if di(q) > C∗

i

(2.5)When all of the repulsive fores are summed up, a total repulsive fore will be ahieved.The navigation funtion will be the sum of this repulsive fores with the attrative fore.The resultant gradient desent algorithms' e�et an be seen in Figure 2.14. .In Figure 2.15, the salar α(i) determines the step size at the i'th iteration. Thevalue of α(i) should be small enough to avoid ollisions with any obstale, and it shouldbe big enough to not require exessive omputation time. When the gradient funtiongets less than an ǫ value the algorithm will terminate.2.2.1.1. The Loal Minima Problem. Using potential funtions in robot navigationgives a powerful mehanism, that suessfully works on partially known environments,with moving obstales. However, as the general problem of gradient desent algorithms,potential funtions su�er from loal minima problem.

16

Figure 2.14. Navigation of the robot with potential funtion [13℄As seen in Figure 2.16, the robot is attrated by its goal, and repelled by theobstale, and reahes a loal minima at the enter of the obstale surrounding it.2.3. Multiple Robot CoordinationMultiple robot oordination problem deals with path planning for more than onerobot. A ollision free path for multiple robots means at every step there is no ollisionbetween a robot and an obstale or between a robot and another robot. The solutionof this problem should not only �nd paths for the individual robots, but must alsooordinate robots when following these paths so that no robot will be in ollision. Theoordination of the robots makes the problem signi�antly harder than the ase of asingle robot path planning. Multiple robot path planning algorithms an be dividedinto two groups as entralized and deoupled planning [14, 1, 15℄.2.3.1. Centralized PlanningIn entralized multiple robot path planning, the robots are thought as a singlebody, and the robot on�gurations are added up to generate a single high dimensional

17Algorithm 2.1 Gradient DesentInput:A means to ompute the gradient ∇U(q) at a point qOutput:A sequene of points q(0), q(1), . . . , q(i)1: c(0)← cstart2: i← 03: while ∇U(q(i)) 6= 0 do4: c(i + 1)← q(i) + α(i)∇U(q(i))5: i← i + 16: end while Figure 2.15. Gradient desent algorithmon�guration. The dimensionality of this new on�guration is equal to the total numberof degrees of freedom of all the robots. Coordination in entralized planning is easy.Beause, the generated high dimensional on�guration keeps the on�guration of eahrobot, and knowing on�guration of eah robot at any time leads that ensuring norobot is in ollision with some obstale or some other robots. The dimensionalityof the on�guration spae inreases as more robots are added to the ontrol, and itinreases the di�ulty of entralized planning. Planners, working e�iently in highdimensions are more suitable for entralized planning. Centralized planning ensures aomplete algorithm.2.3.2. Deoupled PlanningIn deoupled planning, a path for eah robot is alulated as if the robot isthe only robot in the environment. After the ollision-free paths are omputed foreah robot individually, by taking only stati obstales into aount, these paths areoordinated. Coordination of the paths are done by tuning the veloities of the robotsalong their path so there will be no ollision among them. Finding the paths initially,and tuning the veloities may be omplete but deoupled planning is inomplete. It

18

Figure 2.16. Single robot stuk on loal minimamay be impossible to oordinate the paths generated during the �rst stage, so thatno ollision ours. Alternative approahes may be prioritized planning, planning thepaths of robots in an order, and behaving the robot as moving obstale when its pathhas been alulated [16, 17, 14, 1℄.Veloity tuning is one of the deoupled planning tehniques. It oordinates inde-pendently generated paths, by searhing a redued on�guration spae. After a pathfor eah robot is found, eah point in these paths an be indexed, and eah valuean represent di�erent points in the path. Namely one path an be represented witha single dimension. So eah robot will bring one more dimension to searh to thenon-olliding full path planning. The redued on�guration spae an be representedas P = [0, L1]x[0, L2]x[0, L3].., alled coordination space. A path joining the point
(0, 0, ..) to the point (L1, L2, ..) in the ollision-free subset of P de�nes a valid oor-dination of robots along their respetive paths, from start on�guration to the �nalon�guration. By setting the relative veloities of the robots along their respetivepaths, the oordination of the robots is ahieved. The robots may go forward andbakward in their path, whih gives other robots the spae for maneuvering. However,if the initial paths are hosen unlukly, there may not be any possibility for oordinat-ing the paths, suh as they may lie in two distint onneted omponent of the freespae.

19If there are p > 2 robots in the environment, the coordination space will be
p − dimensional. The ith axis of this spae enodes the urvilinear length along thepath of the ith robot. This method is named velocity tuning global coordination,beause initially found respetive paths are wanted to be oordinated together. Analternative to this method is oordination of the paths pairwise, as its name indiates;
pairwise coordination. In this method, two robots are hosen initially and they areoordinated. This oordinated path is indexed again, so we again have one dimensionfor two robots. This new dimension and the redued on�guration of another robotis then oordinated. In this step we oordinated three robots and eah point in P3determines a plaement of these three robots. Eah robot an be oordinated with theinitially oordinated paths.The method, velocity tuning global coordination is inherently inomplete, but
pairwise coordination is more inomplete. Coordination of �rst i robots, Pi, may lead
Pi+1 to have no ollision-free path.

203. ALGORITHMS
3.1. Sampling Based AlgorithmsThe algorithms that rely on expliit representation of the Cfree beomes imprati-al as the dimension of the on�guration spae grows. The sampling-based algorithmsare apable of solving problems that annot be solved with geometri, or roadmapbased methods in reasonable time [1℄. Sampling-based methods use various strate-gies for generating samples, and onneting them, to �nd solutions to path-planningproblems [14, 18℄.The e�ieny of sampling-based methods omes from the fat that instead ofmodeling the free spae, heking if a single robot on�guration is in Cfree or not ismuh heaper. The power of sampling based methods is shown using ProbabilistiRoadMap (RPM) [1℄ planner as an example. It �rst makes a oarse sampling to obtainthe nodes of the roadmap and �ne sampling to obtain the edges. After the roadmapis generated, path queries are answered by �nding the path between initial and goalon�gurations, as seen in Fig.3.1. Initially random sampling is used with PRM and thatshown the probabilisti ompleteness of the sampling-based algorithms. However, othersampling and node-onnetion strategies have been shown to bring more advantages insome problems.Sampling-based algorithms are mainly divided into two groups as single-queryand multiple-query sampling based algorithms. PRM is a multiple-query algorithm.Multiple-query algorithms �rst generate a roadmap of the environment, and answerseah query by using this roadmap, like a graph. However, single-query sampling-based algorithms do not generate this roadmap. Single-query algorithms are optimizedto answer the query as fast as possible, for this, the samples generated depend onthe urrently onstruted tree and the goal on�guration. However, multiple-queryalgorithms make sampling to �ll the spae adequately, and make every part of thespae aessible. So when the same environment will be used for multiple-queries,

21

Figure 3.1. Sample run of PRM algorithm for single robot aseexploring the spae initially, then making a graph searh is better. However, for justa few queries, making searhes optimum for these queries is better. Expansive-SpaeTree planner (EST) [19℄, and Rapidly-exploring Random Tree Planner (RRT) [20℄ aresingle-query sampling-based path planning algorithms. In some ases, if the problemat the hand is very di�ult, single-query planners need to onstrut very large trees to�nd a path. So instead of using the idea of only multiple-query or single-query, somealgorithms use ombination of these ideas. The Sampling-Based Roadmap of Trees(SRT) [21℄ planner onstruts PRM-style roadmap of single-query-planner trees.An important harateristis of sampling-based algorithms is that, they showsome form of ompleteness. If the sampling is random, they show probabilisti om-pleteness, if the sampling is quasirandom, or sampling on a grid then they show reso-lution ompleteness [1℄.3.1.1. Probabilisti RoadmapsProbabilisti roadmaps (PRM) and related methods are e�etive tools to solvepath-planning problems with many degrees of freedom [2, 22℄The PRM planner has two phases, the learning phase, and the query phase. Inthe learning phase, a roadmap in Cfree is built to apture the onnetivity of Cfree

22that is to answer the path-planning queries e�iently. In the query phase, user-de�nedquery on�gurations are added to the roadmap, and a graph searh is made. Nodesof the roadmap orresponds to on�gurations in Cfree, and the edge to the free pathsomputed by a loal planner.In PRM the roadmap is represented by a undireted graph G = (V, E). Nodes inV are on�gurations that are elements of Cfree, and edges in E are the edges (c1, c2)that are ollision-free path between c1 and c2.As shown in Figure 3.2, the algorithm starts with an empty graph G = (V, E). Thegraph is �lled with random on�gurations from the on�guration spae, if it is ollision-free. After n ollision-free sample on�guration are added, for eah on�guration c ǫ

V , a set N q of k losest neighbors to the on�guration c is seleted aording to somemetri dist from V . To onnet c with c′ ǫ N q a loal planner is used, and it heksto ahieve a path between c and c′. If a path is found between them it is added to theroadmap.In roadmap onstrution we need some omponents for generating random on-�gurations, �nding losest neighbors, alulation of distane funtion, and to generateloal paths.In the query phase shown in Figure 3.3, �rst, user-on�gurations cinit and cgoalare onneted to the generated roadmap. To onnet these on�gurations again knearest on�gurations are found for eah and a loal planner is used to make a pathbetween the found on�gurations and the user-on�gurations. If the roadmap is asingle onneted omponent a graph searh algorithm, like Dijkstra's algorithm [23℄ orA∗ algorithm [24℄, will be employed for the map, and if a path is found between cinitand cgoal, then it is the result. However, if no path is found then the algorithm is failed.If the roadmap onsist of more than one onneted omponent, this means either theCfree is not onneted, or the roadmap has not managed to apture the onnetivityof it, then for eah omponent of the roadmap user-on�gurations will be tried to beonneted, and path searh will be performed.

23
Algorithm 3.1 Roadmap Constrution AlgorithmInput:n : number of nodes to put in the roadmapk : number of losest neighbors to examine for eah on�gurationOutput:A roadmap G = (V, E)1: V ← ∅2: E ← ∅3: while length(V) < n do4: repeat5: c← a random on�guration ∈ C6: until c is ollision free7: V ← V ∪ q8: end while9: for all c ∈ V do10: Nc ← the k losest neighbors of c ∈ V aording to dist11: for all c′ ∈ Nc do12: if (c, c′) ∋ E and δ(c, c′) 6= NIL then13: E ← E ∪ (c, c′)14: end if15: end for16: end for Figure 3.2. Algorithm for the onstrution of the roadmaps

24Algorithm 3.2 Solve Query AlgorithmInput : qinit : the initial on�guration; qgoal : the goal on�guration;k : the number of losest neighbors to examine for eah on�gurationG = (V, E) : the roadmap onstruted in the �rst phaseOutput : A path from qinit to qgoal or failure1: Ncinit
← the k losest neighbors of cinit from V aording to dist2: Ncgoal
← the k losest neighbors of cgoal from V aording to dist3: V ← cinit ∪ cgoal ∪ V4: c′ ← the losest neighbor of cinit ∈ Ncinit5: repeat6: if δ(cinit, c′) 6= NIL then7: E ← (cinit, c′) ∪ E8: else9: c′ ← the next losest neighbor of cinit ∈ Ncinit10: end if11: until a onnetion was suesful or Ncinit

≡ ∅12: c′ ← the losest neighbor of cgoal ∈ Ncgoal13: repeat14: if δ(cgoal, c′) 6= NIL then15: E ← (cgoal, c′) ∪ E16: else17: c′ ← the next losest neighbor of cgoal ∈ Ncgoal18: end if19: until a onnetion was suesful or Ncgoal
≡ ∅20: P ← the shortest path (cinit, cgoal, G)21: if P 6= ∅ then22: return P23: else24: return failure25: end if Figure 3.3. Algorithm for solving a query

253.1.2. Sampling StrategiesVarious node-sampling strategies have been developed over the years for PRM.Sampling from a uniform distribution is the simplest of them, and works well for manyproblems. However, the hoie of the node-sampling strategy an play a signi�antrole in the performane of PRM. The node-sampling strategies should not favor spe-i� orientations beause of the representation of the environment used, and samplingdistribution should be symmetry invariant.The main idea for node-sampling is that; after a sample on�guration is drawn, itis heked for ollision. If it is ollision-free, then it is added to the roadmap, otherwisedisarded. The quality of ollision heking, and speed of ollision heking algorithmhighly e�ets the suess and speed of the planning algorithm. We will mention someollision heking algorithms in the next sub-setions.3.1.2.1. Uniform Random Sampling. Uniform random sampling of Cfree is the sim-plest method. It uses uniform probability distribution over eah translational degreeof freedom for the allowed values of the degree. Uniform random sampling has the ad-vantage that, arefully rafted maliious environment models annot make the plannerfail. However, in di�ult planning problems running time of PRM might vary arossdi�erent runs when uniform random sampling is used.Uniform random sampling strategy shows bad performane for some problems,espeially for narrow passage problems. For queries that require going through a pas-sage to be solved, the sampling strategy should generate samples for quite a small set.To address suh problems di�erent sampling strategies have been designed with thenarrow passage problem in mind [25℄.3.1.2.2. Sampling Near the Obstales. Obstale-based samplingmethods generate sam-ples near the obstales, beause they assume narrow passages to be between someobstales.

26Obstale based PRM, OBPRM, is the �rst and very suessful representative ofobstale-based sampling methods, [22℄. The algorithm an be summarized as:
• Generate many on�gurations at random from a uniform distribution.
• For eah on�guration in ollision generate a random diretion and �nd a freeon�guration in this diretion.
• Make a simple binary searh between these on�gurations, and �nd the losestollision free on�guration to the surfae of the obstale.
• Add this on�guration to the roadmap and neglet previous two.Yet another method is Gaussian sampler [26℄, that tries to solve the problem bysampling from a Gaussian distribution that is biased near the obstales. The Gaussiandistribution method an be summarized as:
• Generate a on�guration using a uniform distribution.
• Aording to a distane step using normal distribution generate another on�gu-ration.
• Neglet both of the on�gurations, if both of them are in ollision, or ollisionfree.
• The ollision-free on�guration is added to the roadmap, if the other on�gurationis in ollision spae.In another algorithm [27℄, �rst, sampling is done by letting samples to penetrateto the obstales to some amount, whih we say dilated Cfree. Then these samples arepushed toward the free spae by performing loal resampling operations.3.1.2.3. Sampling Inside Narrow Passages. Bridge test sampling method is one of themethods using the logi of sampling inside the narrow passages [25℄. This method anbe summarized as:
• Sample two on�gurations randomly from a uniform distribution in Cspace

27
• If both of the on�gurations are ollision free, then add both
• If only one of them is ollision free, disard both
• If both in ollision, then the on�guration half way between these on�gurationswill be heked for being ollision free, if it is ollision free it will be added to theroadmap and others will be negleted otherwise all will be negletedInside narrow passages the bridge will be shorter, however in open spae theonstrution of short bridges is di�ult, so via favoring the onstrution of short bridgesthe bridge planner samples points inside narrow passages.Another method uses the idea of using Generalized Voronoi Diagrams (GVDs)[1℄. Using the Generalized Voronoi Diagrams is ostly, but it is possible to �nd sampleson the GVD without omputing them expliitly. The algorithm moves eah sampleon�guration until it is equidistant from two points on the boundary of Cfree. GVDalgorithm aptures well narrow passages, and some graphis hardware supports ap-proximate alulation of GVD, whih makes the method popular.3.1.2.4. Visibility-Based Sampling. Add the randomly generated on�guration to theroadmap only if it annot be onneted to any previously added on�gurations, or itan be onneted to more than one already generated on�gurations [11℄.3.1.2.5. Quasirandom Sampling. Quasirandom sampling methods are deterministialternatives to random sampling. Running time of the algorithms are the same forall the runs due to the deterministi nature of quasirandom sequenes. The resultingplanner is resolution omplete [1℄.3.1.2.6. Grid-Based Sampling. Initially rather oarse resolution of the grid is used,and in query phase cinit and cgoal tried to be onneted to nearby grid points. Theresolution of the grid that is used to build the roadmap an be progressively inreased,by either adding points one at a time or by adding an entire hyperplane of samples.This sampling method is also resolution omplete [1℄.

28

Figure 3.4. Two sampling strategies for long narrow passage problem a. Uniformsampling method, b. Sampling on Medial Axis of the Free Spae method [28℄3.1.2.7. Bene�ts of Di�erent Sampling Methods. Uniform random sampling works wellfor many problems, however when the issue is onsisteny in the running time, usingquasirandom sampling brings some advantages. When the problem involves narrowpassages, algorithms designed for this kind of problems will give better results.If we ompare Figure 3.4.a and Figure 3.4.b, we an see that Figure 3.4.b has lesson�guration in the roadmap and has onneted the environment better.The same is true for Figure 3.5.a, and Figure 3.5.b. So as shown by the MAPRMalgorithm [28℄, sampling strategy is an important fator for the suess of planningalgorithms. Seleted sampling method may inrease the performane of the algorithm,and make the algorithm more robust and faster.3.1.3. Connetion StrategiesSeletion of pairs of on�gurations that will be tried for onnetions by a loalplanner is the next step for onstruting the roadmap. The objetive of the onnetionstrategy is seleting the on�gurations that are to sueed in making a onnetion.Short onnetions have good hane of being ollision free, so the algorithms should

29

Figure 3.5. Two sampling strategies in maze a. Uniform sampling method, b.Sampling on Medial Axis of the Free Spae method [28℄try to make suh onnetions. Beause k-nearest neighbor algorithm leads nearbysamples to be heked for onnetion, it leads to shorter onnetions. The seletedalgorithm for seleting the neighbors and the implemented loal planner an a�et theperformane of the system drastially.3.1.3.1. Seleting Closest Neighbors. In this method, when a new sample is generated,k nearest already generated sample on�gurations are searhed in the roadmap. Thenthe new sample is tried to be onneted to eah one of them. Beause the sample istried to be onneted with the samples those near to it, the length of the onnetionis rather short. Beause ollision heking is the most time onsuming part of theplanning, by generating short onnetions this big onsumption is redued.3.1.3.2. Creating Coarse Roadmaps. The omputation of edges that are part of thesame onneted omponent will not improve the onnetivity of the roadmap. Sopreventing from making onnetions in the same omponent will result speed up inthe roadmap onstrution. The simplest implementation of this idea is onneting aon�guration with the nearest node in eah omponent that lies lose enough.This method ahieves good onnetivity with less number of samples, but in the

30query phase, the found paths may be rather long. This may be �xed by applyingpostproessing tehniques like smoothing. However, allowing some redundant edges inthe roadmap an signi�antly improve the quality of the initially found path withoutsigni�ant overhead, so we an ahieve shorter paths.3.1.3.3. Conneting Conneted Components. In some ases, beause of the di�ultyof the problem, or inadequate sampling, the resultant roadmap may be omposed ofseveral onneted omponents. The quality of the roadmap an be improved by themethods that try to onnet these omponents. So by plaing more nodes in di�ultregions of Cfree more e�etive algorithms an be ahieved for onneting di�erentomponents of the roadmap.3.1.4. Collision Cheking MethodsCollision heking is the basi operation of all sampling based algorithms. Insteadof modeling the free spae, sampling based algorithms uses a ollision heking algo-rithm to see if a random on�guration is ollision free, or not. Collision free samples andedges between them omposes the roadmap to be used for path planning queries. Notonly the random on�gurations should be ollision free, but also the edges onnetingthem should be ollision free.In simulating a roboti environment, to make the environment more realisti,the ollision heking algorithm should provide high auray. In eah simulation stepthe dynami objets will hange their positions, and heking only the start and endposition of the dynami objets for ollision may result unidenti�ed ollisions to ourin the mean time. So ollision heking should be extended to inlude the time passedbetween start and arrival. One of the methods is reating a onvex hull around a robot'sloation at these two on�gurations, as shown in Figure 3.6. This method guarantiesto ath the ollision if it ours, but it will de�netely make the ollision heking slow.Instead of reating suh an objet, via subdividing the given time interval in half andtesting for ollision at the midpoint, and repeating this alulation reursively for eah

31

Figure 3.6. Convex hull reated around an objets loation at two di�erent times.Pitures is from [29℄

Figure 3.7. Sphere subdivision algorithm for ollision heking. Piture is from [29℄resulting half will provide a faster and good enough ollision heking. This algorithmis easier to implement, and runs faster but is less aurate.The other problem in ollision heking is heking whether an objet intersetswith any other objet in the environment. If the environment ontains many objetsheking eah objet with eah other for ollision will be at order of O(N2). Instead ofheking eah objet with eah other we an divide the objets into two sets, stationaryobjets, and moving objets. So we will not hek objets for ollision those an neverollide. Other advaned methods may also be used like building an otree of the sene[30℄. One of the simple but e�ient methods is approximating eah objet or part

32of objets with a sphere. So when making ollision heks only these spheres will beheked for ollision, whih will make the proess omputationally heaper. We shouldonly hek whether the square of the distane between two spheres is more than thesum of the squares of the radii of the spheres. If we represent a big objet with onlya bounding sphere, the approximation will be quite rough. So, via subdividing thisbig sphere into smaller spheres, we an get a more detailed approximation, Figure 3.7.When making ollision heks, �rst the big enapsulating spheres will be heked forollision, if they are not olliding, then we will not need to hek the subdivisions. Ifthe bigger enapsulating sphere ollides, then we will hek eah smaller sphere witheah other for ollision. We may subdivide the spheres until we are satis�ed with theapproximation.There are quite more advaned algorithms for ollision heking but for our pur-pose using sphere subdivision algorithm seem enough.3.1.5. Expansive-Spaes TreesEST is an e�ient single-query planner that �nds a path between cinit and cgoalrapidly. Kinodynami problems involve both �nding a path and the ontrol inputsfor the robots to take the path. Namely, we an see kinodynami planning as motionplanning. For kinodynami planning a single tree is typially build and EST is bettersuited for suh problems. EST algorithm is a probabilistially omplete algorithm.3.1.5.1. Constrution of Trees. Let T be one of the trees Tinit or Tgoal. The algorithm�rst selets a on�guration c from T , and then generates a random on�guration crandnear c with a uniform distribution. The on�guration c is seleted randomly with prob-ability πT (q). Then the loal planner ∆ attempts to make a onnetion between c and
crand. If the attempt sueeds, the on�guration is added to the set of on�gurations,the verties of T , and (c, crand) are added to the edges of T . This proess ontinuesuntil a spei�ed number of on�gurations are added to the T . The proess is desribedin Figure 3.8 and Figure 3.9.

33Algorithm 3.3 Build EST AlgorithmInput:
c0 : the root on�guration of the tree
n : number of attempt to expand the treeOutput:A tree T = (V, E) that is rooted at c0 and has less than n on�gurations1: V ← c02: E ← ∅3: for i = 0 to n do4: c← a randomly hoosen on�guration from T with probability πT (q)5: extend EST (T, q)6: end for7: return T Figure 3.8. The algorithm for building an EST treeAlgorithm 3.4 Extend EST AlgorithmInput:
T = (V, E) : an EST
c : a on�guration from whih to grow the treeOutput:A new on�guration cnew in the neighborhood of c, or NIL in ase of failure1: cnew ← a random on�guration ∈ Cfree near the c2: if ∆(c, cnew) then3: V ← V ∪ {cnew}4: E ← E ∪ {(c, cnew)}5: return cnew6: end if7: return NIL Figure 3.9. Extend EST Algorithm

34In the PRM algorithm, the generated random on�guration is added to theroadmap diretly if it is in Cfree. However, the EST algorithm adds the on�gura-tion to the tree if it an be onneted to the existing on�gurations in the tree. Sothere happens a path from the root of the tree to eah on�guration in T .The e�etiveness of the EST algorithm highly depends on the πT (q). The algo-rithm to be used for πT (q) should not oversample any region of Cfree. To satter thesampled on�gurations various solution methods are proposed. One of the methods isattahing a weight value wT (q) to eah on�guration c that onstitutes the ount ofthe number of on�gurations within some prede�ned neighborhood of c. Then, hoose
c as inversely proportional to wT (q). So, the on�gurations with sparse neighborhoodsare more likely to be piked. Another method is dividing the C into grids and biasingthe random on�guration seletion toward to ells with fewer on�gurations in it. So�rst a ell is hosen then a on�guration within this ell is hoosen randomly.3.1.5.2. Merging of Trees. While expanding the trees rooted at the cinit and cgoal, thealgorithm also tries to onnet these trees, so that a path is onstruted. First anew on�guration in Tinit or Tgoal is generated, then this on�guration is tried to beonneted with k losest on�guration in the other tree. If a onnetion is generatedthen the merging is suessful. If no onnetion is suessful then the trees are swappedand the proess ontinues.When a suessful onnetion is found for c1 ∈ Tinit and c2 ∈ Tgoal by using theloal planner ∆, the path between cinit and cgoal an be obtained by onatenating thepath from cinit to c1 in Tinit to the path from c2 to cgoal in Tgoal.3.1.6. Rapidly Exploring Random TreeAs like EST, the RRT algorithm is initially developed for kinodynami motionplanning problems, and a single tree is built by this algorithm. The algorithm e�ientlyovers the spae between cinit and cgoal, and it is shown to be probabilistially omplete,

35shown in Figure 3.10.

Figure 3.10. Growing of an RRT tree3.1.6.1. Constrution of Trees. Let T be one of the trees Tinit or Tgoal. At eah itera-tion a random on�guration, crand, is seleted uniformly in Cfree. Then T is searhedto �nd the nearest on�guration, cnear, to crand. A new on�guration is generated onthe line from cnear to crand with moving a distane step_size from cnear. If this newlygenerated on�guration, cnew is ollision free, and it an be onneted to cnear. Next,the on�guration is added to the verties of T and the edge (cnear, cnew) is added tothe edges of T . Pseudeode of algorithm is given in Figure 3.11 and Figure 3.12.The step_size parameter an also be hosen dynamially, based on the distanebetween cnear and crand. If the two on�gurations are far from olliding, hoosing a large
step_size value, and small otherwise, is sensible. Another alternative is a greedier onethat tries to move cnew toward crand as muh as possible, as shown in Figure 3.13.If we keep the step_size small, then the tree will be fed with many on�gurations.It will make the searh for the nearest on�guration in the tree to be more expensive,and the memory onsumption to be inreased. In suh a ase instead of adding allintermediate samples, adding only the last sample of the Extend RRT iteration maybe better. Another optimization may be generating the crand samples near to the cgoalon�guration with some small probability. This will bias the sampling toward the goaland inrease the e�ieny of the algorithm.

36Algorithm 3.5 Build RRT AlgorithmInput:
c0 : the root on�guration of the tree
n : number of attempt to expand the treeOutput:A tree T = (V, E) that is rooted at c0 and has less than n on�gurations1: V ← c02: E ← ∅3: for i = 0 to n do4: crand ← a randomly hoosen on�guration from C5: extend RRT (T, crand)6: end for7: return T Figure 3.11. The algorithm for building an RRT treeAlgorithm 3.6 Extend RRT AlgorithmInput:
T = (V, E) : an RRT
c : a on�guration toward whih to grow the treeOutput:A new on�guration cnew toward c, or NIL in ase of failure1: cnear ← losest neighbor of c ∈ T2: cnew ← progress cnear by step_size along the straight line between cnear and crand3: if cnew ∈ Cfree then4: V ← V ∪ {cnew}5: E ← E ∪ {(cnear, cnew)}6: return cnew7: end if8: return NIL Figure 3.12. The algorithm extends an RRT tree

37Algorithm 3.7 Connet RRT AlgorithmInput:
T = (V, E) : an RRT
c : a on�guration toward whih to grow the treeOutput:
connected is returned if c is onneted to T ; failure otherwise1: repeat2: cnew ← extend RRT (T, q)3: until cnew = q or cnew = NIL4: if cnew = q then5: return connected6: else7: return failure8: end ifFigure 3.13. Trying to onnet two RRT trees in RRT Connet algorithm3.1.6.2. Merging of Trees. In the merging step two trees rooted at cinit and cgoal aretried to be onneted. In the literature this algorithm is named as RRT Connetalgorithm [20℄ . The main idea of the algorithm is growing Tinit and Tgoal towardeah other. At eah iteration, initially a random on�guration is generated. One ofthe trees tries to extend its losest node toward this random on�guration, crand. Sonew on�gurations are added to the tree, cnew. In the seond step, the other tree isextended toward to cnew. If it is suessful, then the planner terminates, and the treesare onneted. Otherwise, the trees are swapped and the proess ontinues for a ertainnumber of times.For merging of the trees either the one step toward to crand or greedily addingnew on�gurations until reahing crand versions of the algorithm an be used. Theymay be used in ombination too by hanging extendRRT method in Figure 3.14 with
connectRRT . One two RRT trees are onneted the path an be found by onnetingthe paths from the root of the trees to the onneted nodes.

38Algorithm 3.8 Merge RRT AlgorithmInput :
T1 : �rst RRT
T2 : seond RRT
n : number of trialsOutput :
merged if the two RRTs are onneted to eah other, otherwise failure1: for i = 1 to n do2: crand ← a random on�guration ∈ Cfree3: cnew,1 ← extend RRT (T1, crand)4: if cnew,1 6= NIL then5: cnew,2← extend RRT (T2, cnew,1)6: if cnew,1 = cnew,2 then7: return merged8: end if9: SWAP(T1, T2)10: end if11: end for12: return failureFigure 3.14. RRT Connet algorithm's merging part3.1.7. Lazy AlgorithmsIt is observed that generally most of the edges in the roadmaps, or trees arenot in the �nal found path. So making ollision heks for these edges were not reallyneessary. A method is proposed that delays the ollision heking until a path between
cinit and cgoal is found, and it heks only the edges in the path, exatly one.Therefore the number of ollision-heks performed during planning is minimized.Beause already heked edges are not again heked for ollision, and only the edgesin the found path is heked, both the number of ollision-heks are minimized, and

39

Figure 3.15. High-level desription of Lazy PRMalso the knowledge of previous queries is arried to next queries, whih speeds upsubsequent queries. 3.2. Post ProessingSampling based path planning algorithms fous on searhing a path, but generallythey do not propose the found path to be the optimum. Their main aim is �nding apath with minimum time and memory spae usage.After a path is found, there are some algorithms to improve the quality of thepath aording to some riteria. We name this step postproessing step, that improvethe shortness and smoothness of the path onneting cinit to cgoal.To improve the shortness of the path, we hek whether nonadjaent on�gu-rations c1 and c2 in the path an be onneted by the loal planner. If they an beonneted, then all the nodes between c1 and c2 will be skipped, and a shorter pathwill remain. The points c1 and c2 may be hosen greedy, or randomly. Algorithm of thegreedy approah an be seen in Figure 3.17. Figure 3.16 shows the paths before and

40

Figure 3.16. Postproessing is applied to shorten the found pathafter the path shortening algorithm is applied. The arrows indiates the on�gurationsthose are skipped, and a shorter path is ahieved.The on�gurations c1 and c2 might be in a relatively unluttered part of Cfree,but not onneted. Reason for this might be the dist funtion applied, whih maylead the k losest neighbor query not to return them as neighbors. Generally, whensparse roadmap onnetion strategies are applied suh ases appears. So by applyingthe path shortening algorithm we �x the problem and onnet the on�gurations inthe unluttered part of Cfree.Some robots may require the found path to have smooth urvature. So, instead ofshortening the path the aim may be generating suh paths. To generate more smoothpaths we an interpolate the urves, suh as; splines an be used. Until urves thatsatisfy both the smoothness properties and the ollision avoidane riteria ollisionheking should be performed.Postproessing step may generate paths those are shorter and smoother. However,

41Algorithm 3.9 Shorten Found PathInput:
path : the found path
n : number of trialsOutput:Apply the operations onto the given input, path1: for i = 0 to n do2: c0 ← random configuration on the path3: c1 ← another random configuration on the path4: if loal planner an onnet c0 and c1 then5: path← path− on�gurations between c0 and c16: end if7: end for Figure 3.17. Simple path shortening algorithmthis may bring a signi�ant overhead on the time to respond to the query. Insteadof postproessing, wanted optimality riteria an be tried to be ahieved during theroadmap onstrution phase.3.3. Multiple Robot CoordinationPath planning is searhing for a path that will lead a robot from its initial on�g-uration to a desired on�guration. However, if there are more than one robots to searhfor a path, then the problem involves oordination of the robots. We should both �ndpath for eah robot, and oordinate these paths suh that no robot will ollide.For multiple robots the path searh may be done all together, entralized, or theplanning may be done separately, deentralized. Details of these approahes alreadygiven in the previous hapters of this thesis. Next, we will disuss how we implementedthem.

42

Figure 3.18. A big on�guration is ahieved by appending robot on�gurations3.3.1. Centralized ApproahIn the entralized approah, we append the on�guration of eah robot, andahieved a big on�guration representing the on�gurations of all of the robots. Sovia using this big on�guration, we do not need any other representative to show theon�guration of eah robot. When we make the searh at the universe of this bigon�guration, the found path will be the path for eah robot. So while searhing apath, we both �nd a path for eah robot, and we also oordinate the robots so that noollision ours.While heking the edges in the path for ollision, we divided the edges into partsby dividing them and the parts from their enter reursively. Namely, we assumed thateah robot will arrive at the enter of the edge at the same time, and will reah theend of the edge together. So this approah provides us a methodology for �nding theveloities of the robots. An edge in the big on�guration spae is a set of edges, anedge for eah robot. This edge in the big on�guration spae may result short or longedges for eah robot. However, the amount of time eah robot will use to take theseedges should be the same to make the robots move in oordination. So at eah timewe an alulate the position of the robot easily.Figure 3.19 shows two robots, and the next edges of their paths. The robotswill reah the end of these edges at the same time. So the robot with the longer edgewill take the path with its maximum veloity. However, the robot having shorter edgeshould lower its veloity so that they will be in oordination. They will be at the enter

43

Figure 3.19. Tuning the veloities in entralized approahof their edges at the same time, and they will also reah to the enter of the �rst half,and the last half at the same time too.Coordination of the robots should be thought while �nding the paths in theentralized approah. The other options may also be tuning the veloities after �ndingthe paths. In our ase, the ollision heker algorithm we used heks the robots asthey will be oordinated in the Figure 3.19. This approah simpli�ed the problem andpath planning algorithms designed for single robots ould also be used by extendingollision heker only a little.3.3.2. Deentralized ApproahIn this approah the ontrollers �nd the path of eah robot initially, and let therobots to take the found paths. When they oinide with another robot in their waysthey try to esape from these robots, �rst reatively, then intelligently.In entralized approahes beause the robots are oordinated from the start, ifone robot violates this oordination while esaping from the robot luttering its path,then whole the path planning should be done again. However, in the deentralizedapproah, eah robot has the responsibility of itself. So if a path is disturbed, theother robots may ontinue to follow their own paths.

443.3.2.1. Simple Reative Esape. This is a truly basi esaping type. If the robotsees a robot luttering its path, it tries to get away from the robot, that will leadpossible ollisions. The diretion of the esape will be toward the reverse of the vetoronneting those two robots.If the reative esape is suessful, the robot ontinues to its path. However, ifthe number of trials reahes a limit, while esaping from the moving obstale, then therobots should searh for an intelligent way to esape from the robot.3.3.2.2. Intelligent Esape. If the robot is not able to esape from the moving obsta-le, or from other robots we may understand that there is a loal minima problem.Therefore, the intelligent esape algorithm generates a random on�guration and leadsthe robot to �rst go to this random on�guration, than replan path to the real goal.Simple reative esape makes the robots to esape from eah other with simple,small steps, and intelligent esape makes this esape to be a big step.3.4. Arti�ial Potential Funtion (RBOT)In [5℄ and [7℄, an algorithm whih uses potential funtion to navigate irularrobots is given. This algorithm requires irular representation of the robots, andthe environment. The algorithm an work in a entralized, deentralized, or partiallyentralized fashion. In [5℄, a navigation funtion is proven to be analyti, admissible,polar, and morse. If a navigation funtion is proven to be admissible, that means thisfuntion attains its maximum on the boundary. If it is polar, its unique minimummust be at the goal on�guration. Being morse means all ritial points to be non-degenerate.APF algorithm is proven to be an exat navigation funtion. It is apable of o-ordinating multiple robots. Next we will desribe the algorithm simply. The algorithmis quite powerful, however it ontains some multipliation fators those lead the algo-

45rithm to produe under�ows or over�ows for multiple robot ases with more than 15robots. We solved this problem by not altering the navigation funtion, but onvertingsome portion to log sums.Aording to the destination on�guration, urrent on�gurations of other robots,and the radius of the environment, two fores for eah robot is alulated. Eah robotalulates these two fores and takes their next step aording to those values. Oneof them is the attrative fore, whih leads the robot to its goal, and the other is therepel fore, whih saves the robot from olliding with other objets, and the robots inthe environment.These two fores will arry the robots to their destinations. They will hangethe position of the robot. So an integration formula is devised aording to propertiesof the robots, that will sum the fore, and alulate next positions. More informationabout integration an be found in Appendix A. The step size of the integration for-mula deides about the a�et of the fore at eah step. Adaptive integration formulasalulates the fores more than one before taking any step, and alulates the errorrates. These error rates are used to aord the step size values, Figure 3.20.In Figure 3.20, alulation of next ontrol inputs for a robot is shown. First,a runge kutta algorithm is applied to alulate ontrol inputs. This all is used toalulate the salings. Then, again runge kutta algorithm is used to get the nexton�guration of the robot. This on�guration is the alulated on�guration, the robotsupposed to be. So the veloity is alulated as taken path divided by time. Salingfators are dereased when robots get near to eah other or to their targets.We made some improvements on this algorithm. First of all, the algorithm has apart that multiplies the distanes of robots to eah other. This part results over�owsor under�ows. Instead of using multipliation, we hanged it to sum of logarithms.Furthermore, the algorithm was laking veloity parameter. We added a veloity pa-rameter to both alulation of integration potential and to the runge kutta algorithm.Again, entralized, and partially entralized versions of the algorithm is implemented.

46Algorithm 3.10 Integrating PotentialGlobal:
xScale : used in adapting integration step size
yScale : used in adapting integration step sizeInput:
robot : The robot to alulate next ontrol inputs
neighbors : The neighbors of the robotOutput:Next ontrol inputs for the robot1: savedConfig ← current configuration of the robot2: ApplyRungeKutta(robot, neighbors)3: xScale← ‖robot_config − target_config‖2 + |k1x ∗ h| ∗maxV el + tiny4: yScale← ‖robot_config − target_config‖2 + |k1y ∗ h| ∗maxV el + tiny5: newConfig ← adaptRungeKutta(robot, neighbors)6: diff ← newConfig − savedConfig7: velocity ← diff/simulation_step_time8: if ‖velocity‖ < maxV el then9: velocity ← maxV el10: end if11: result← velocityFigure 3.20. Algorithm for �nding the next ontrol inputsThe results of these hanges an be found in the results setion of the thesis. Thealgorithm was working properly for approximately 15, 20 robots previously. Now, thealgorithm handles 250 robots, without ausing any over�ow or under�ow, easily.3.5. Lazy PRM RRT ConnetWe lassi�ed sampling based path planning algorithms as multiple query, andsingle query algorithms. Multiple query sampling based path planning algorihtms gen-erally generates a model of the environment in the preproessing step. The generated

47

Figure 3.21. RRT Connet algorithm leads the robots toward the enter of the freespaemodel in probabilisti roadmap algorithms is a map of the ollision free spae. Thismap is generated by generating random samples and onneting them. This prepro-essing step handles most of the proess, and at the query phase only a graph searh isperformed. These algorithms are better suited for multiple query senarios. The aimof these algorithms is modelling the ollision free on�guration spae as well as possiblewith minimum number of representatives as possible.Multiple query path planning algorithms are modelled to answer various pathsearh queries. However, if the query is known beforehand, the searh algorithm maymake the searh aording to the request. Therefore, single query sampling based pathplanning algorithms make biased searhes, and they try to searh the free on�gurationspae as little as possible. As an be seen, two of the di�erent approahes, one is tryingto over the free spae as muh as possible, and the other wants to limit this searh. Inmultiple robot path planning problems, biased searhes make the robots to get too nearto eah other. As seen in Figure 3.21, the RRTConnet algorithm �rst gets the robotstoward the enter and then the robots are travelled toward their goals. Whereas, the

48

Figure 3.22. RboT algorithm uses the free spae e�etivelymultiple query path planning algorithms would make the robots to use the big freespae, and will lead them to easier paths. As seen in Figure 3.22, the RboT algorithmleads the robots to use the free spae as muh as possible. So, if we ombine theRRTConnet algorithm with LazyPRM algorithm we may ahieve an algorithm thatwill both make a biased searh, and will also try to use the free spae as muh aspossible.Lazy PRM RRT Connet algorithm �rst generates a simple roadmap of thefree on�guration spae. This graph will be the main roadmap in the path plan-ning searhes. After a path is found on this main roadmap, the mission of the RRTConnet algorithm will be onneting the robots to the start and end of this path.

494. SIMULATIONS
4.1. Simulator DesignThere are many roboti simulators available. However, non of them is speial-ized for path planning problems, and have their limits. These limits prevent detailedinspetion and suessful omparison of path planning and navigation algorithms.Engineers want to have a highly on�gurable platform, that will enable themto generate test senarios they think. Adding new robots, hanging the types of theobstales, adding robots to di�erent ontrollers, taking statistis of di�erent ontrollersfor the same environment is some of their wishes.There are many path planning and oordination algorithms, those have beendesigned for di�erent problems. For example some algorithms are designed to generatethe map of the environment and �nd a path on this map. Their aim is representing thefree on�guration spae better, and their omparison must be on this basis. They donot propose anything about multiple robot oordination. However, some algorithmsdiretly fous on this problem, and also work reatively.Beause of these reasons, a simulator, speialized for path planning, is designed,that gives some great �exibilities to the users, and enables di�erent algorithms to beompared in fair.In Appendix B, the simulator will be desribed in detail. Topis will be aboutwhat kind of work spaes an be generated by the simulator, how algorithms ommu-niate with the simulation part, the boiler-plate supplied for the planning algorithms,and supplied path planning algorithms. Moreover, beause we implemented this sim-ulator we an extend it aording to our needs by adding new robot, obstale, andontroller types.

504.2. MeasuresThe algorithms will be ompared by various measures. One algorithm may givethe best result for a measure, however its result for another measure may be una-eptable. So the performane of the algorithm is a mixture of its performae on everymeasure. We have various measures like suess rate, average elapsed time, normalizedrobot path length, and number of nodes if appliable.4.2.1. Suess RateWe run the simulations for eah algorithm in eah senario 100 times. Suessrate shows the perentage of suessful endings to all runs. Eah algorithm may pro-pose other rules for suessful ompletion. In general, if the robots reah to theirgoal without olliding to eah other, or any other obstale in the environment in anaeptable time amount, the run is said to be suessful.4.2.2. Average Elapsed TimeThis measure is used to ompare the time omplexity of eah algorithm. Averageelapsed time value may hange aording to the number of robots in the environmentin eah algorithm. This hange may be exponential or linear. Linear inreases arebetter than exponential inreases.4.2.3. Normalized Robot Path LengthFinding the shortest path is another riteria for the performane of the algorithms.Some algorithms result to shortest path, but they require too muh time to ompute.Moreover they lead robots to get too near to eah other. Big NRL values may beaeptable, if it is required for the algorithm to lead robots to use the free spae better.

514.2.4. Spae ComplexitySampling based algorithms' suess rate inreases with the number of used nodes.However addition of new nodes means inrease in the used memory, and the searh timefor a valid path in the graph. So the algorithm whih uses less number of nodes andovers the spae better is the better algorithm.4.3. SenariosAfter implementing various types of reative and deliberative path planning al-gorithms, we designed some test senarios that will assess all properties of these algo-rithms. For example, APF method works on the environments with no obstales, soto ompare APF with other path planning algorithms we prepared simulation environ-ments those involve no obstales. In these tests apability of the algorithms in path�nding, their sability for multiple robots, and their suess in the environments thoseontain moving obstales are inspeted.To test di�erent kind of path planning, and robot navigation algorithms, the testsare designed to let eah algorithm to show their power. Algorithms like PRM, LazyPRM, Lazy PRM RRT Connet are designed for multiple query problems. These algo-rithms initially generates a roadmap, then for eah query searhes this roadmap to �nda path. Generating the initial roadmap is an expensive proess, but searhing a pathin the roadmap is heap in these algorithms. Espeially PRM algorithm makes most ofits proessing in the initial roadmap generation, so to solve a path planning query onlya graph searh is performed. However, Lazy PRM algorithm both searhes the graph,and ontinues heking the found path for ollision. So Lazy PRM distributes the jobbetween the initialization and the query steps. Lazy PRM RRT Connet algorithm isan extension to Lazy PRM. In this algorithm, the proess is also distributed betweenthe initialization and the query steps.The other algorithms, like RRT, and RRT Connet, are designed to be used forsingle queries. Their aim is to respond a single query as fast as possible. Instead of

52inspeting the on�guration spae, and trying to �ll the spae adequately, their aimis �nding a path by using as minimum nodes as possible. So single query algorithmshave nearly no preproessing, but they make the searh job fully in the query step.Reative algorithms resemble to single query algorithms. They do not generateany initial roadmap but make their searhes in a reative manner in the query step.As seen, we have di�erent approahes and to make a fair omparison we haveto take all these into onsideration. A testing platform is designed to enable users fortesting the algorithms with various options. An algorithm may be initialized from thestrath for eah query, or it may make the preproessing one and use this alreadygenerated information for the next queries. To make a fair omparison between themultiple query approahes and the single query approahes we seleted the seondoption. So we gave hane to these approahes to ompete in the equal onditions.For eah test the algorithms build their initial roadmaps, if they need, at the�rst step, and they use the same roadmap for the subsequent alls. Already, somealgorithms like Lazy PRM and Lazy PRM RRT Connet works ummulatively. Ateah query they try to optimize the roadmaps they have already generated.Next, we will test the algorihtms for di�erent ases. Initially algorithms will betested in an environment with no dynami or stati obstables. Then we will omparesampling based algorithms in a maze. As the last test senario algorithms will be testedin an environment that ontains moving obstales. The algorithms used in the last testsenario are improved to ompete in suh dynami environments. They make simpleesapes and replannings to esape from dynami objets and robots in the environment.4.4. No ObstalesAPF algorithm is a powerful, reative algorithm whih uses potential funtion tonavigate the robots. Beause it is implemented for the environments with no obstales,test senarios involve no obstales. In these tests the robots will try to reah some near

53target on�gurations whih are distributed irularly, without olliding eah other.Beause the environment does not ontain any stati obstale, the problem an be seenas a robot oordination problem. One algorithm oordinates the robots in reativebasis, and the others oordinate in deliberative manner.In these tests we have an environment with no stati or dynami obstales. Theaim is oordination of the robots without touhing to eah other toward their goalon�gurations. The volume of the environment is kept unhanged and number ofrobots is inreased, and the distane between the targets of the robots is dereased toahieve various test on�gurations for this senario. Eah test is run for 100 times, andtheir results are supplied in the next subsetions.The path planning algorithms used in these tests are entralized sampling basedpath planning algorithms. So the dimension of the algorithm is inreased by the di-mension of the robot's on�guration spae for eah newly added robot.4.4.1. Five RobotsIn this test senario, we have �ve robots, and eah will have three dimensionsas x, y oordinates and the orientation of the robot. Therefore, the path planningalgorithms will searh for the path in the on�guration spae with �fteen dimensions.As the targets, and the initial on�gurations of the robots get nearer, the problemgets more di�ult. Near targets need the algorithm to make deeper searhes. Let usthink it in two dimensions, if the targets are far, then we an divide the environmentinto big retangles and an still have the targets in two di�erent retangles. However,if the targets are near, the size of the retangles should be small enough to have thetargets in di�erent retangles. The problem, that we are trying to solve here, is quitethe same. If the targets are near, the path planning algorithms should make higheramount of sampling to di�erentiate the targets, and to do not ause any ollision.

54

Figure 4.1. Five robots distributed widely4.4.1.1. Targets Distributed Widely. As seen in Figure 4.1, the robot targets are dis-tributed quite sparsely. Aording to the statistis, RRT Connet algorithm is foundto be the best algorithm for this ase.
Displacement = Total Initial Distance− Total F inal Distance

NRL = Total T ravelled Path/Displacement (4.1)Table 4.1 shows it as the fastest algorithm, that uses memory less than the others.Moveover, if we look at Table 4.1, for the normalized robot path length (NRL) values,whose de�nition is shown in Equation (4.1), RRT Connet algorithm gives resultsnearly equal to the length of a diret onnetion to the targets.Lazy PRM RRT Connet algorithm also shows good results. Its elapsed timevariane is quite low, and it seems as the seond algorithm around all. However, if weompare Lazy PRM RRT Connet with Lazy PRM and PRM, whih are the multiplequery algorithms, Lazy PRM RRT Connet algorithm shows improvements.

55Table 4.1. Statistis for Five Robots Coarse CaseAlgorithm Su. Rate Elapsed Time NRL Node CountLazy PRM 100 375.23/∓307.25 1.65/∓0.57 300LP.RRTCon. 100 320.31/∓144.34 1.28/∓0.45 132.95/∓0.22PRM 100 1116.74/∓7465.12 1.48/∓0.43 1000Rbot 100 323.43/∓70.11 1.59/∓0.18 0RRT 100 7180.37/∓276.31 1.18/∓0.22 1001RRT Connet 100 216.72/∓81.14 1.06/∓0.11 21.06/∓9.54Figure 4.2 shows the taken path when the Rbot algorithm, and Figure 4.3 showsthe taken path when the RRT Connet algorithm is used.Rbot algorithm uses no sample nodes or edges, so we assume it as using nearlyno memory. For the robots with limited memory, it should be the main option. In fatRRT Connet also used little memory for this ase. Rbot shows 100 perent suess,but its average NRL is a little higher than RRT Connet's results. This is beauseof the repulsive potential funtion whih it uses to esape from olliding. To esapefrom olliding it takes a little longer paths. Moreover, when we look at the behaviourof the robots we see that the robots ould not reahed to the maximum speed at anytime. When the robots get nearer to their targets, their speed even gets too vanishing.However, in RRT Connet like algorithms, beause the path is found initially, eahrobot tries to follow the path as fast as possible, so uses maximum veloity. This is oneother reason for the elapsed time of the Rbot algorithm is higher than some others.4.4.1.2. Targets Distributed Near. As the targets get nearer, and the ount of robotsinreases, we wait Rbot algorithm to start to be the best hoie. For �ve robots andnear targets, still sampling based algorithms give better results than the Rbot algorithmas shown in Table 4.2.Again to save the robots from ollision, Rbot algorithm prevented robots to reah

56

Figure 4.2. Five robots oordinated with Rbot algorithmtheir maximum veloity. If we hoose a small value for the maximum veloity Rbotalgorithm may be the best hoie in this test too.4.4.1.3. Targets Distributed Tightly. If we look at Table 4.1, Table 4.2 and Table 4.3,we see that Rbot algorithm gives quite near results. The elapsed time, suess rate,and variane of elapsed time seem quite near to eah other. So for the �ve robots asewe see that Rbot algorithm is not a�eted by the tightness of the targets very muh.Again RRT Connet algorithm gives the best results. Table 4.2 shows that whenthe targets get nearer RRT algorithm fails in �nding a ollision free path. Figure 4.4shows RRT algorithm as the worst one. Of ourse the suess rate of RRT algorithman inrease as the number of samples are inreased, beause these algorithms aregenerally probabilistially omplete.RRT Connet algorithm did not highly a�eted by the adverse a�et of getting

57
Table 4.2. Statistis for Five Robots Normal CaseAlgorithm Su. Rate Elapsed Time NRL Node CountLazy PRM 100 359.82/∓342.88 1.68/∓0.67 300LP.RRTCon. 100 263.16/∓94.65 1.43/∓0.65 121.01/∓0.1PRM 100 1147.44/∓6865.06 1.77/∓0.77 1000Rbot 100 311.21/∓94.83 1.79/∓0.26 0RRT 100 7089.9/∓172.71 1.16/∓0.19 1000.98/∓0.14RRT Connet 100 210.65/∓105.9 1.07/∓0.09 20.78/∓11.07

Table 4.3. Statistis for Five Robots Tight CaseAlgorithm Su. Rate Elapsed Time NRL Node CountLazy PRM 100 1240.2/∓2409.78 1.65 675.86/∓182.51LP.RRTCon. 100 344.95/∓148.66 1.28 126.1/∓0.3PRM 100 1306.56/∓7026.11 1.48 1000Rbot 100 354.69/∓71.4 1.77/∓0.18 0RRT 38 7214.26/∓478.27 1.18 1001RRT Connet 100 255.77/∓118.12 1.06 27.41/∓14.5

58

Figure 4.3. Five robots oordinated with RRTConnet algorithmtargets nearer for the �ve robots ase. We will further inspet the behaviour of thealgorithm for more robots.4.4.2. 10 RobotsFor some algorithms, these tests will be like stress testing. The algorithms willtry to searh a universe with three times ten, thirty dimensions. If we alulate thespae, (1000x1000x6.28)10 is the size of the volume to be searhed.We do not want to reah every part of this volume, but only test the algorithmsto see their suess rates when three thousand samples are used for the planning. Spae�lling algorithms like PRM and Lazy PRM is expeted to give bad results, beausethe spae is quite big to be �lled su�iently. We expet aim based algorithms, likesingle query algorithms to show better results. Moreover, beause the dimension of theon�guration is inreased to quite high values, and we are using entralized algorithms,we wait Rbot algorithm to ome the best one, whih is working like deentralized

59

Figure 4.4. Suess rates for �ve robots tight asealgorithms.4.4.2.1. Targets Distributed Widely. As seen in Figure 4.5, the targets of the robotsare quite far from eah other. Espeially for the ases that the robots or the targets arenear to eah other, onneting them to the generated roadmap is di�ult. However,in this world the requirement is �lling the spae adequately. The targets may seemfar from eah other, but they represent really some quite small volume if we thinkthe volume to be searhed. The algorithms should reah this quite small volume, andshould be able to oordinate the robots so well that in this volume robots will notollide too. Table 4.4. Statistis for 10 Robots Coarse CaseAlgorithm Su. Rate Elapsed Time NRL Node CountLazy PRM 0 15852.05/∓19574.96 N/A 2983.02/∓49.64LP.RRTCon. 22 27718.14/∓41800.26 4.02/∓1.83 3097.32/∓466.88PRM 13 2170.15/∓589.24 3.99/∓1.34 3000Rbot 100 1487.04/∓256.19 1.8/∓0.16 0RRT 38 90941.74/∓2946.81 1.69/∓0.29 2987.89/∓11.62RRT Connet 98 5653.99/∓5196.19 1.3/∓0.21 216.18/∓217.3

60

Figure 4.5. Ten robots distributed sparselyRRT Connet algorithm and Rbot algorithm shows quite similar results for theoarse ase, as seen in Table 4.4. When we look at Figure 4.6, we see that the RRTConnet algorithm ollets the robots to the enter and distributes them from there.However, Rbot algorithm uses the spae, and does not make the robots to stuk in theenter as seen in Figure 4.7. This is the reason of implementing an algorithm namedLazy PRM RRT Connet. This algorithm �rst generate an initial roadmap by LazyPRM algorithm, and uses this roadmap for global path �nding. After global path isfound, it searhes for the loal path by RRT Connet algorithm. Namely, the bade�et of RRT Connet, olleting robots to the enter, beause of making aim basedsearhes, is eliminated with the help of an algorithm whih is not aim based, but aimsto �ll the spae adequately. The result of Lazy PRM RRT Connet algorithm an beseen in Figure 4.8 for omparison.4.4.2.2. Targets Distributed Near. When the targets of the robots get nearer, thespae to be reahed is beame smaller. So, the algorithm should �ll the full on�gura-

61

Figure 4.6. RRT Connet algorithm is used to oordinate 10 robots in no obstaleuniversetion spae more tightly. However, when this tiny spae is reahed, the seond searhwill be easier. This is why Lazy PRM RRT Connet algorithm gives better results thanthe oarse ase. The results are given in Table 4.5. We will inspet the apabilitiesof Lazy PRM RRT Connet next, in another tests, and more information about theinrease in the suess of this algorithm will be given next.4.4.2.3. Targets Distributed Tightly. When the targets are plaed more tightly, thespae to reah beomes too little as ompared to the total volume of the on�gurationspae. So, single query algorithms like RRT algorithm fails, like PRM and Lazy PRMalgorithm fail.RRT Connet algorithm still gives good results, and this shows its powerful na-ture. As a surprize Lazy PRM RRT Connet algorithm gives the best results. Com-bining a multiple query algorithm, Lazy PRM, with RRT Connet algorithm made

62

Figure 4.7. Rbot algorithm is used to oordinate 10 robots in no obstale universethe algorithms more powerful. Beause Lazy PRM algorithm generates the initialroadmap, the RRT Connet algorithm to be used next is fored to make their searhesin a more widely manner. This gave the algorithm the hane of beating RRT Connetalgorithm in the amount of suess, as seen in Figure 4.9.In all the ases, Rbot algorithm gave similar results for the elapsed time amount.Lazy PRM RRT Connet algorithm is the best algorithm aording to Table 4.6.RRT Connet algorithm is defeated for the �rst time at the tests until this point.RRT Connet algorithm makes sampling to �nd the path in the shortest time amount,so the samples are generated as biased toward the goal. When multiple robots areused, to make the oordination of the robots easier, distributing the robots a littlemore to the environment may give more plae to maneuver. So, Lazy PRM RRTConnet algorithm both gives robots the hange to use the environment widely, andalso go to the deeper levels by using RRT Connet algorithm. Lazy PRM RRT Connetalgorithm loalizes and solves the problem, with RRT Connet algorithm. When the

63
Table 4.5. Statistis for 10 Robots Normal CaseAlgorithm Su. Rate Elapsed Time NRL Node CountLazy PRM 10 359.82/∓342.88 1.68/∓0.67 2952.5/∓27.44LP.RRTCon. 89 263.16/∓94.65 1.43/∓0.65 1484.65/∓231.36PRM 0 7202.94/∓61712.92 1.77/∓0.77 3000Rbot 100 1837.3/∓443.33 2.02/∓0.21 0RRT 15 89271.53/∓2249.18 1.16/∓0.19 2989/∓8.27RRT Connet 98 6151.89/∓5145.74 1.07/∓0.09 246.16/∓211.67

Table 4.6. Statistis for 10 Robots Tight CaseAlgorithm Su. Rate Elapsed Time NRL Node CountLazy PRM 0 15701.06/∓23815.55 N/A 2978.11/∓45.7LP.RRTCon. 98 31881.39/∓39886.97 1.28 126.1/∓0.3PRM 0 7508.64/∓63898.5 N/A 3000Rbot 100 1967.47/∓357.29 2.13/∓0.23 0RRT 0 89410.26/∓2331.36 N/A 2988.97/∓9.25RRT Connet 86 9445.63/∓5742.86 1.06 27.41/∓14.5

64

Figure 4.8. Lazy PRM RRT Connet algorithm is used to oordinate 10 robots in noobstale universetargets are nearer, beause we use RRT Connet with quite low number of nodes, theLazy PRM RRT Connet gives better results. However when the robots are distributedto the environment the algorithms turns to Lazy PRM and the help of RRT Connetis diminished.4.4.3. DisussionAPF algorithm uses potential funtion to navigate the robots through their desti-nations. At eah step it realulates the ontrol inputs, veloities. Therefore there is noplan beforehand. If the environment ontains no loal minima, beause of this reativenature, the algorithm's suess is shown to be high. In fat, it iteratively searhes theworld, biased toward the goals. However, sampling based algorithms makes this searhbeforehand. They not only alulate the next input but the whole path.When the dimension of the on�guration spae gets high aim oriented searhing

65

Figure 4.9. Suess rates for 10 robots tight asegives better results, beause the spae is too big to be �lled adequately. However, asLazy PRM RRT Connet algorithm shows that generating an initial roadmap, andusing aim oriented algorithms in the loal searhes gives better results in espeiallyhigher dimensions. The roadmap generated by the Lazy PRM part of the algorithmmay be thought as the main road ways, and the ones generated by the RRT Connetpart an be seen as the sub-roads. Generally main roads do not need to have bighanges. Instead of using a pre-generated main road, making the searh for the mainroads too in eah query is only loss of time. It also dereases the possibility of suess.Therefore, Lazy PRM RRT ConnetAlgorithm is shown to be better for the highdimensional ases.Lazy PRM RRT Connet algorithm is inspeted in more detail next. Further-more, hanging the parameters of RRT Connet algorithm in this algorithm is tested.4.4.4. More than 10 RobotsWe inreased the number of robots and ompared the best two algorithms men-tioned above. The RRT Connet algorithm and RboT algorithm is tested for 20, 30,
40 and 50 robots. For the RRT Connet algorithm the ount of samples is kept limitedto 100000.

66

Figure 4.10. 50 robots in a irular worldIn these tests the RRT Connet algorithm is run in entralized manner. Namelythe on�gurations of the robots are summed up to ahieve one big on�guration, thatrepresents the on�guration of all of the robots. When N robots are used in the tests,the volume of the searh spae an be alulated by the Equation (4.2) as;
volume = (length(x) ∗ length(y) ∗ length(θ))N (4.2)Equation (4.2) shows that the growth of the volume of the searh spae is expontentialwith respet to the number of robots. For the ase of the size of the x axis is equalto 1000 unit and y axis is equal to 1000 unit and the amount range length of theangle is 6.28 unit, then the volume of the searh spae for single robot is equal to

6.280.000 unit3. So, for 20 robots the sampling will be made on a spae with a volumeof 10140. Multiple query sampling based algorithms aim to �ll the spae adequately, sothat for di�erent queries the robots will �nd their paths, without touhing eah other.So, in suh a big spae their job is quite di�ult.As the number of robots is inreased the amount of samples required inreasestoo. We wait RRT Connet algorithm to show good results for the simulations having

67

Figure 4.11. Change of the suess rates of the RboT algorithm in many robots asea few robots, and it may start to degrade for 20 and 30 robots ases. For 40 and
50 robots ases the environment will be �lled by the robots quite densely as seen inFigure 4.10, and we wait the RRT Connet algorithm not to be very suessful forthese ases.4.4.4.1. Suess Rates. RboT algorithm is a quite powerful algorithm in robot o-ordination. It suessfully oordinates 250 robots and this is not near to its upperlimit.In our improved version the algorithm generates loal groupings and the numberof robots in these loal groups is already small as ompared to the ount of the robotsin the environment. So the total ount of robots will only a�et the response time ofthe algorithm, but will not make the algorithm to fail.Figure 4.11 shows that, the rate of suess is not a�eted by the ount of robotsin the environment.RRT Connet algorithm is a sampling based algorithm. Beause these kind ofalgorithms are probabilistially omplete their suess is a�eted by the number ofsamples used in �nding the path. Figure 4.12 shows that the algorithm suessfullyoordinated 20 and 30 robots, but started to show failures in oordinating 40 robots.As the number of robots inreased to 50 and 60 RRT Connet algorithm shows no

68

Figure 4.12. Change of the suess rates of the RRT Connet algorithm in manyrobots asesuess at all. Inreasing the number of samples used and dereasing the step sizeshould make the algorithm be suessful for more robots however the amount of timeelapsed will be too muh for a reasonable appliation.When the environment does not ontain any loal minima, the problem is onlythe oordination of the robots, and potential funtion using reative algorithms arebetter in these kind of problems.4.4.4.2. Mean Elapsed Time Amounts. When the number of robots to oordinate isinreased the elapsed time is waited to inrease exponentially. The power of the expo-nential funtion may vary for eah algorithm. Some algorithms an be double expo-nential too.When we look at Figure 4.13, we see that RboT algorithm gives quite stableresults. The mean elapsed time is seen inreasing quite linearly till the 50 robots partof the graph. When the robots are oordinated, some robots generate loal minimasfor some others and this may lead to osillations. When we inspeted the results, theaverage of the results lead to this graph, however this is beause of this osillations. Infat generally the RboT algorithm oordinated the robots in nearly 9000 milliseonds.Instead of diretly taking the average, weighted average would be a better hoie inalulating the means.

69

Figure 4.13. Change of the mean elapsed time amount for the RboT algorithm inmany robots aseRRT Connet algorithm gave no suessful results for 50 robots. We inreasedthe limit of sample ount to 200000, but the result observed remains the same. So weput an upper time value to the graph to make the graph more understandable.In Figure 4.14, the exponential inrease of the mean elapsed time an be observed.RRT Connet algorithm an be identi�ed as the best algorithm about the mean elapsedtime in �nding path between sampling based algorithm, but it also shows this exponen-tial time inrease. Therefore, we may onlude that, sampling based algorithms needsome adjustments, and additions to suessfully ope with oordination of the robots.For RboT algorithm oordination of 40 robots takes only 2.4 seonds however for RRTConnet algorithm it took 1500 seonds.4.4.4.3. Disussion. RRT Connet algorithm is a single query algorithm that biasesits sampling toward the goal on�gurations, whih makes it the quikest path planningalgorithm so far. However, as it is the ase for all other path planning algorithmsfor the entralized ase the RRT Connet algorithm makes the sampling in a bigger

70

Figure 4.14. Change of the mean elapsed time amount for the RRT onnetalgorithm in many robots aseon�guration spae. The sampled on�guration is tried to be onneted to the treediretly with a straight line. When the ount of robots inrease too muh, onnetinga big on�guration with yet another newly sampled one gets more and more di�ult.In these tests the algorithms in fat tested for not only �nding path, but alsooordinating the robots. RboT algorithm uses potential funtions to oordinate therobots, and beause the environment ontains no loal minima, it suessfully oordi-nates the robots. Improved version of the RboT algorithm easily manages oordinationof 250 robots.As seen in Figure 4.15, the number of steps taken to arrive to target on�gura-tions are bigger for APF algorithm, than RRT-Connet algorithm. This is beause ofthat RboT algorithm leads the robots to take too little steps, however RRT Connetalgorithm wants the steps to be some big, whih leads ollisions too muh. The stepsize of the RRT-Connet algorithm may also be dereased onsiderably. However, asthis time, the number of nodes in the tree will also be very high too. Moreover, the

71

Figure 4.15. Count of steps taken by APF and RRT-Connet algorithm for di�erentrobot ountsnormalized robot path length (NRL) for APF (RboT) algorithm is bigger than thevalues for RRT-Connet algorithm as seen in Figure 4.16.In fat when we look at Figure 4.10, it is already di�ult to �nd a big on�gu-ration that is ollision free. So onneting a ollision free on�guration for the ase isquite more omplex. 4.5. Stati Obstale (Maze Problems)In this test we will ompare the algorithms Lazy PRM RRT Connet, RRT Con-net, and Lazy PRM for the robots in a maze. As shown in Figure 4.17, we have amaze with four rooms and a bloked orridor.The test is done for various robot ounts. Environment only ontains statiobstales, but no dynami obstale in these tests. Eah test is taken for 100 times.

72

Figure 4.16. NRL results of APF and RRT-Connet algorithm for di�erent robotounts4.5.1. One RobotIn this test, the algorithms are tested for their speed in responding queries, andthe length of the found path. Beause we have only one robot to oordinate, the searhwill be in a on�guration spae with only three dimensions. Namely, spae �llingalgorithms an easily �ll the spae adequately for low numbers of random samples asseen in Figure 4.18.We wait all of the algorithms to �nd the path, and oordinate the robot su-essfully for eah ase. However the amount of used memory, namely the number ofsamples and edges, and the response time may make the algorithm distinguished. Thistest is important for espeially deentralized path planning. In deentralized planning,all the robots will plan path for itself only. Namely, it is a single robot path planningase. Therefore, the algorithm found as the best in here is highly possible to ome tobe the best for the deentralized ases for multiple robots too.

73

Figure 4.17. Maze with four rooms and a bloked orridorAs seen in Figure 4.19, the elapsed time result of Lazy PRM RRT Connetalgorithm is nearly equal to Lazy PRM. Namely, extending the algorithm does not addtoo muh inrease to the alulations. Morever, this is valid for variane values too.Beause, for the one robot ase, Lazy PRM an �ll the spae adequately withlow numbers of samples, Lazy PRM algorithm is the best algorithm for the singlerobot ase for the average time used for eah planning. In fat, Lazy PRM algorithmontinues making ollision heks while answering eah query. However, if we have ahane to make preproessing, we an make all the preproessing beforehand too. So,if we make the ollision heks at the initialization part, the algorithm may be quikerin the query step. The algorithm, whih makes the ollision heking of edges at theinitialization step is the PRM algorithm.We propose the PRM algorithm to be used in spaes with low dimensions. Ifpreomputation time is important, single query algorithms may be advised, like RRTConnet. If the targets are near to eah other generally, Lazy PRM RRT Connet

74

Figure 4.18. Lazy PRM �lls the spae adequately with only 100 samplesalgorithm will add not muh extra omputation to Lazy PRM algorithm.Table 4.7. NRL and memory usages for one robot in the mazeAlgorithm NRL Node Count Edge CountRRT Connet 1.57/∓0.98 13.59/∓24.66 11.59/∓24.66LazyPrm 1.33/∓0.54 688/∓68.23 4182.02/∓478.71LP.RRTCon. 1.56/∓0.72 302.53/∓19.86 1640.27/∓113.54Normalized robot path length, NRL, is the ratio of the taken path by the robot tothe eulidian distane to the target. If the NRL value is high, it means the robot tooka longer path. As the samples in the on�guration spae high, graph searh algorithman �nd the shorter paths. In Table 4.7 we see that Lazy PRM algorithm has 1.33as the NRL value. This value is the minimum of NRL values. This is highly beauseof the ount of nodes the Lazy PRM uses is high. RRT Connet algorithm only uses

75

Figure 4.19. Amount of time used for path planning by Lazy PRM, RRT Connetand Lazy PRM RRT Connet algorithms in the maze
13.59 nodes in average. So RRT Connet algorithm uses minimum amount of memory.Lazy PRM RRT Connet algorithm uses less memory than Lazy PRM algorithm andits average NRL value is less than RRT Connet. Namely Lazy PRM RRT Connetgets the good properties of both of the algorithms.4.5.2. Two RobotsIn this test we used two robots, whih inreases the dimension of the on�gurationspae to 6. This inreases the di�ulty of the path planning. We wait RRT Connetalgorithm to handle this easily. However, for the spae �lling algorithm, Lazy PRM,this will mean doubling the spae to �ll. Lazy PRM RRT Connet algorithm will try toease the adverse e�et of dimension inrease, and we expet it to derease the amountof samples to an aeptable amount.As seen in Figure 4.20, the algorithms gives nearly the same suess rates fortwo robots. However, Lazy PRM RRT Connet algorithm gives the best average time

76

Figure 4.20. Suess rates for path planning by Lazy PRM, RRT Connet and LazyPRM RRT Connet algorithms in the mazeusage. RRT Connet algorithm's average time usage is a little higher but variane oftime usage is minimum for this algorithm.Table 4.8. NRL and memory usages for two robots in the mazeAlgorithm NRL/Variane Node Count Edge CountRRT Connet 2.19/∓1.08 22.91/∓18.14 20.91/∓18.14LazyPrm 2.95/∓2.07 1836.84/∓1545.73 11485.54/∓11897.76LP.RRTCon. 3.9/∓3.21 691.06/∓74.71 3092.26/∓319.11Table 4.8 shows that for the RRT Connet algorithm the average NRL valueinreases from 1.57 to 2.19. For Lazy PRM algorithm the average NRL value inreasesfrom 1.33 to 2.95, and for Lazy PRM RRT Connet it inreases from 1.56 to 3.9. Theinrease in the NRL value is minimum for RRT Connet algorithm. This is due to thenature of the RRT Connet algorithm, it is aim based. The paths that are results of theLazy PRM algorithm have higher inrease in NRL value. This means that Lazy PRM

77algorithm makes the robots use the open area of the on�guration spae more. Aimbased searhes makes the robots to gather on the enter and be distributed from there,but Lazy PRM algorithm uses the on�guration spae better. So ombining these twoalgorithms may lead to better paths, whih neither makes the robots to gather, norinreases the sample ount too muh.4.5.3. Three RobotsIn this test there are three robots to oordinate, whih inreases the dimensionof the on�guration spae to 9 dimensions. As seen in Table 4.9 the suess rate ofthe Lazy PRM algorithm really dropped by a high amount to 48 perent. For highdimensional problems spae �lling algorithms need too many sampling to ope with.This problem is solved by Lazy PRM RRT Connet. It gives 99 perent suess anduses less ount of samples in average.Table 4.9. Statistis for three robots in the mazeAlgorithm Su. Rate Elapsed Time VarianeRRT Connet 100 3600.41 3951.25LazyPrm 48 34219.48 145656.11LP.RRTCon. 99 26497 147712.77Table 4.10. More statistis for three robots in the mazeAlgorithm NRL/Variane Node Count Edge CountRRT Connet 2.42/∓1.17 65.93/∓82.51 63.93/∓82.51LazyPrm 3.47/∓1.85 10061.88/∓4.95 66017.21/∓2975.12LP.RRTCon. 8.33/∓5.06 4503.48/∓900.55 17076.88/∓4137.88RRT Connet algorithm gives the best paths with minimum amount of nodeand edge usage. Lazy PRM RRT Connet algorithm gives the longest paths, however

78dereases the amount of used samples, and edges in Lazy PRM, as shown in Table 4.10.4.5.4. DisussionLazy PRM RRT Connet algorithm is a ombination of Lazy PRM algorithmwith RRT Connet algorithm. The property of this algorithm is that, it ombines amultiple query algorithm with a single query algorithm. Multiple query algorithmsmake their most of the alulations in the preproessing time. Their preproessingtime is quite high, but when suessfully optimized the query times are quite low.Single query algorithms make no preproessing or quite low preproessing, but makesmost of the job in the query step. So when ompared to query step of multiple queryalgorithms, single query algorithms are waited to give bigger elapsed time amounts perquery.Multiple query algorithms generally generate a roadmap of the environment anduse this roadmap in the query step. If the roadmap is not enough for the environmentthan most of the queries will be unanswered. Combining a single query algorithm witha multiple query algorithm solves this problem. The roadmap may not be dense enoughfor the ase, however the RRT Connet algorithm in here fouses to the start and endpoints and leads the robots till onneting them to the global roadmap. This is likethe approah of quadtrees, divide the area requiring more proessing more than theareas those are lear.Lazy PRM RRT Connet algorithm is an improved version of the Lazy PRMalgorithm that shows better results in both the amount of used memory and time. Asseen in Figure 4.21 the path taken by robots are bigger than the paths generated byLazy PRM and RRT-Connet. In fat RRT-Connet algorithm leads robots to get toonear to eah other, and this algorithm also solves this problem. Like APF algorithm,it uses the free spae e�etively, and generates safer paths.

79

Figure 4.21. Normalized Robot Path Length (NRL) values for path planning by LazyPRM, RRT Connet and Lazy PRM RRT Connet algorithms in the maze4.6. Dynami EnvironmentsUntil this point path planning algorithms are tested for stationary environments,those have stati obstales, or no obstale at all. Moreover, the algorithms were alwaysentralized. Therefore, when a path is alulated, there will be no fator that willmake the orretness of the path questionable. However, in real life generally robotswill wanted to be used in the environments those may inlude moving obstales. If theenviroment inludes dynami obstales, then the used algorithms must ope with thissituation. Generally a simple esape algorithm will be enough for saving the robots.However, for a more advaned solution the ontroller should also have apability ofreplanning of the path.Next, we will test RRT Connet, Lazy PRM and Lazy PRM RRT Connet al-gorithms in an enviroment that ontains both stati and dynami obstales. We willinrease the ount of random obstales and observe the a�ets. Both entralized anddeentralized versions of these algorithms will be tested.

80

Figure 4.22. Change of elapsed time amounts for RRT Connet in various dynamienvironmentsWe wait when the entralized approahes are applied the amount of time to bemultiple of the amount of time used by the deentralized approahes. Moreover, LazyPRM RRT Connet algorithm is waited to derease the time usage, and inrease thesuess rates of Lazy PRM algorithm.As seen in Figure 4.22 when deentralized approahes are used the amount oftime inrease is negletable. The time varies between 100 and 150 milliseonds forone robot with no obstale to two robots with four obstales ase. However, whenentralized approah is applied then the elapsed time amount shows four to �ve timesmore than the their deentralized ones.Deentralized approahes may fail to �nd paths those an be found by entralizedapproahes, however if the environment ontains dynami obstales the elapsed time adeentralized approah onsumes is muh less than a entralized approah.When we look at Figure 4.23 and Figure 4.24, the ase is the same. The amount ofelapsed time for entralized approahes is multiple of their amount in the deentralizedapproahes.

81

Figure 4.23. Change of elapsed time amounts for Lazy PRM in various dynamienvironments

Figure 4.24. Change of elapsed time amounts for Lazy PRM RRT Connet in variousdynami environments4.6.1. DisussionGradient-desent algorithms are very powerful in oordination of the robots.They oordinate the robots suh that they inrementally reah to their goals with-out olliding to eah other. In an environment with many robots, oordination of therobots with deliberative path planning algorithms would take high amount of time,but with suh algorithms the robots will be oordinated with just a few alulations.Deliberative path planning algorithms oordinate the robots before they startto move. Beause this oordination map is generated beforehand, the robots know

82position of eah other when they move. However, in reative algorithms the positionof the robots are now known prior. So the robots should have some distane to theothers, to save themselves from ollision. In some plaes to save from ollision the pathtaken by the robots might be enlarged and this enlargement may be not needed at all.At the start of this doument we divided the environments to four aording tothe di�ulty of path planning in these environments. In the �rst ase we know theenviromnent fully, and there were no dynami obstales. In this ase the path planningalgorithms an �nd paths that is shorter than the potential funtion approahes. How-ever, in the seond ase there are moving obstales in the environment. In suh a asewe do not need to alter the formula of potential funtion at all. Already eah robotsees others as moving obstales, so no need for suh an update in the formula. Howeverin deliberative path planning algorithms, the ontrollers should hek the enviromentat eah step to see whether there is any reason thay may violate the path to be fol-lowed. If there is an obstale in front of the robot, than robot should make some extraplanning to esape from this moving obstale. So adding dynami obstales to theenvironment brings more di�ulty to deliberative algorithm but not muh di�ulty toreative algorithms.Moreover, if the environment is partially known the problem is getting moredi�ult. To make a full deliberative plan, we should know the environment exatly.Furthermore, some algorithms need also the position of dynami obstales at eahtime step to make a plan. However this is not a ase for potential funtion usingalgorithms. Already they do not make any prior plan. They just go toward their goalinrementally and esape from the obstales as they appear. Also, if the environmentontains dynami obstales, as it is partially known, whih is the ase four, the potentialfuntion approah will be able to oordinate the robots in this environment withoutany addition too.As the problem of eah gradient-desent approah in any �eld of arti�ial intelli-gent, loal minima is a problem for potential funtion using path planning algorithmstoo. Combining loal minima esaping algorithms with potential funtions may give us

83another powerful algorithm that works for the ase four, paritally known environmentswith dynami obstales.

845. CONCLUSIONS
In robot oordination, reative approahes give better results than deliberativeapproahes. Espeially, if the environment is loal minima free, algorithms those usepotential funtion handle path planning of many robots suessfully. However, if theenvironment ontains loal minimum, then it is inevitable to use some esaping meth-ods, or deliberative approahes.If the environment does not hange frequently, and the problem requires solutionof many path planning queries, using a deliberative algorithm from a set of multiplequery path planning algorithms will redue the problem to just a graph searh. Lazymultiple-query algorithms show better performane espeially in frequently hangingenvironments. Combining single query algorithms with lazy multiple-query algorithmsgave well distributed paths when used for multiple-robot problems.The entralized deliberative approahes show exponential inrease in omplexitywith respet to the ount of robots. When the ount of robots inrease, deentralized, orombinatorial approahes should be thought to be used as the path planning algorithm.However, deentralized approahes are not omplete. Using loal groupings may alsoalleviate this problem.Aording to the environment and the aim of the usage, one path planning algo-rithm may show better performane than the others. Therefore, a good ombinationof the path planning algorithms may be the best hoie. If an algorithm is wanted thatis to be simple, but powerful, and working quite good for most of the problems RRT-Connet algorithm is the algorithm. Using various sampling and onnetion strategiesan further upgrade the suess of the algorithms.The algorithms an be tested for kinodynami path planning problems, for var-ious robot properties as the future work. Implementation of the algorithms an beadapted for partially known environments. An hybrid approah, that is both reative

85and deliberative, may solve the loal minima problem, while oordinating the robotse�etively.

86APPENDIX A: INTEGRATION
yn = yn + hf (xn + yn) (A.1)Beause the Euler method, shown in Equation (A.1), is unsymmetrial, that is whenadvaning the solution through an interval h, it only uses the derivative informationat the beginning, its error is only one power of h, Figure A.1. So Euler method is notvery aurate ompared to other algorithms, and it is not stable either.

k1 = hf (xn, yn)

k2 = hf (xn +
1

2
h, yn +

1

2
k1) (A.2)

yn+1 = yn + k2 + O(h3)Runge-Kutta algorithm, shown in Equation (A.2), is symmetrial, and this symmetriza-tion anels out the �rst-order error term, and makes the method seond order, Fig-ure A.2. Adding up the right ombination of �rst order f(x,y) terms the errr terms anbe eliminated order by order. It will give higher order error terms, whih means moreorret, and stable results.

Figure A.1. Euler's integration method has only �rst order auray [31℄

87

Figure A.2. Midpoint, seond order Runge-Kutta integration method gives seondorder auray [31℄

Figure A.3. Fourth order Runge-Kutta method is the most used integration formulawith third order auray [31℄
k1 = hf (xn, yn)

k2 = hf (xn +
h

2
, yn +

k1

2
)

k3 = hf (xn +
h

2
, yn +

k2

2
) (A.3)

k4 = hf (xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5)By far the most often used integration formula is the lassial fourth-order Runge-Kutta formula, shown in Equation (A.3), and it often gives superior results to midpoint,seond-order Runge-Kutta method. So in the simulator, we use fourth-order Runge-Kutta for the alulation of next loations of the robots as the integration formula,Figure A.3.Runge Kutta 4 algorithm is used as the integrator. It is both a simple to im-plement algorithm, and has less parameters to think about. It generates quite orret

88and stable results. Di�erent integration methods may also be used with the simulatorby implementing the IIntegrator interfae.

89APPENDIX B: SIMULATOR
B.1. Simple Robot SimulatorB.1.1. Work Spae

Figure B.1. The simulation environmentThe work spae in the path planning problems is modelled in the Simple RobotSimulator module of the projet. It ontains robots, stationary and dynami obstalesas entities. Eah robot has an initial on�guration, and a target on�guration. Theobstales, and the robots may have various shapes, and also the world may have variousproperties.The projet has the apability of saving and loading all of the various on�gura-tions generated.B.1.1.1. World Content. We keep the ontent of the work spae in WorldContentlass. This lass keeps a list of stati objets, and dynami objets.

90B.1.1.2. Stati Objet. A stati objet is modelled as an objet that may have variousshapes, olors, and on�gurations. As supported shapes, various retangular shapes,and sphere shape is added to the design. The supported shapes may be extended too,by implementing ommon shape interfae IObjectShape and adding it to the list ofsupported shapes.B.1.1.3. Dynami Objet. Dynami objets have all of the properties that stati ob-jets have. Moreover, they have a ontrol input property, and a target on�guration isassigned to eah of them.B.1.2. SimulatorThe simulator adds time fator to the work spae information. As time passesdynami objets hange their on�gurations. The hange of the on�guration is doneby integration of ordinary di�erential equations, ODE, of the dynami objets. So,the simulator keeps an objet named �WorldContent�, whih keeps all the stati anddynami objets. It also has maps, to aess the urrent information of the simulatedobjets, from the name or id to the simulated objets.Simulator uses an ordinary di�erential equation implementation with an integra-tor to alulate the new on�guration values for the dynami objets. In our implemen-tation this ordinary di�erential equation is designed for veloity values. So the ontrolinputs for the dynami objets will be veloity values of them. As the simulation steps,the integrator will be issued with the di�erential equation and the ontrol inputs togenerate the next on�gurations of the dynami objets.Aording to the type of the robot, the ordinary di�erential equation of the robotshould be adapted. For an omni-diretional robot, the position of the robot will bediret integration of the veloity it has. However, if the robot has other dynamialproperties, they should be also added into onsideration when designing its gradient,de�ning its ontrol inputs, and generating a ontroller for them.

91B.1.2.1. Ordinary Di�erential Equation.
y′ = F (y, x)

y = (y, . . . , yn) (B.1)In our simulator implementation, we use a simple di�erential equation de�nition; giventhe on�guration and the time, give value of the derivative to be used, shown in Equa-tion (B.1). So, this derivative value shows the amount of the hange in the on�gu-ration. Beause we use veloity values as the ontrol input, the ordinary di�erentialequation will give this value as the derivative value when asked by the integrator, andthis will be the amount of hange in the position of the robots.Di�erent di�erential equations may be added to the system by implementing
IDifferentialEquation interfae, so the robots with di�erent ontrol inputs, thoseshow di�erent motions, and properties, may be ahieved. Presently the robots aremodelled as moving omni-diretional objets, and having a rotation angle. So theontrol inputs are the diretional veloity values, and rotational veloity value.B.1.2.2. Integrator. The simulator keeps a step size parameter. At eah step, asthe time value is inremented by step size muh, the integrators alulate the nexton�gurations by integrating the di�erential equations by step size amount. Fourthorder Runge Kutta implementation is used as the integrator, as de�ned in the Numer-ial Reipes book [31℄. A detailed information about the integrators are given in theAppendix A.So we ahieved a simple self running simulation environment. This environmentwill be used by other modules of the projet. To aess the simulated objets' ur-rent on�gurations we added mappings to the simulator. At eah step, the timer isinreased, the next ations are taken, and by using the mappings other modules anaess these new on�guration values from the names of the objets.

92

Figure B.2. Class diagram of Shell moduleB.1.3. ShellIn order to make the simulator easier to be used by the planning algorithms ashell is designed on top of this simulator design.The shell ontains listen, and ontrol gates. Via listeners the shell listens to thehanges at the on�gurations of wanted objets and via ontrol gates it ontrols thesehanges. See Figure B.3 for a simple representation of the logi and see Figure B.2 forthe lass diagram of the Shell. This shell implementation abstrats the simulator fromthe planning part. Therefore, di�erent simulators an be used by these planners too.Shell is a bridge design pattern implementation, and di�erent shells an be implementedfor di�erent simulators to have a bridge between the plans and the simulators.B.1.3.1. Info Gates. Info gates update the listened on�guration information of theobjets at the start of eah simulation step. The simulator hanges the on�gurationof the objets gradually. However, beause the plan should be done at disrete time

93Algorithm B.1 Simpli�ed Simulation Exeution1: take initial simulation step2: while simulation ontinues do3: Shell::InfoGate updates on�guration of the objets in the world model4: Algorithms exeute, drivers updated5: Shell::ControlGate updates ontrol inputs6: simulation takes next step7: end while Figure B.3. Steps of a simpli�ed simulation exeutionsteps, the on�guration values must be supplied to the plans in disrete times. So thepurpose of the info gate is updating the on�guration information, whih will be usedby the algorithms, at the start of eah step.Presently there are three di�erent info gates implemented, but they may be in-reased too. Those are InfoGate, TargetGate and PropertyListenGate. The InfoGatelistens to the urrent on�guration values of the wanted objets. The TargetGate lis-tens to the hanges at the targets of the dynami objets. The PropertListenGate isempty for now. However, it may listen to the hange of the properties like batterypower, weight of the robot, et.B.1.3.2. Control Gates. For eah dynami objet in the simulation we generate adriver, and add this driver to the ControlGate. At eah simulation step, the ontrolgate updates the ontrol input �eld of the dynami objets with the values in thesedrivers. The algorithm updates the ontrol input values in the drivers, and the ontrolgate applies these ontrol inputs to the simulation at the end of the simulation step.B.1.4. Visualization and User InputsThe simulation is re�eted to the omputer sreen in a multi-layer drawing fash-ion. First the bakground, then the trak layer, the simulation layer, and the foreground

94layer draws to the sreen. More layers an be added in between or to the top or bottomof this drawing stak. To show the alulated path tree, and ollision tree of the objetsa layer is added in the next stages of the projet.The bakground layer leans the sreen, and draws the world with its shapeand bounds. The robots and the obstales should be bounded by this area. Whenthe robots move they leave footsteps in the trak layer. In the simulation layer, wedraw the obstales and the robots. The foreground layer is for information displayingpurposes, like showing the urrent time, and the oordinate of the point mouse ursoris showing.To make the visualization more powerful a amera objet is added to the design.This amera objet has a position and a range, and it only shows the objets in itsrange. The objets shown by the amera are re�eted to the sreen. So a point in thereal work spae has a referene in the amera, and it also has a referene at the sreen.A irular objet may be seen like an objet with ellipse shape in the sreen, beauseof these mappings.We also trak the mouse gestures and keyboard strokes. The user is apable ofmoving, rotating objets in the simulation, and hanging the position and range of theamera with some speial mouse gestures and key strokes given in Table B.1.Table B.1. Speial mouse gestures and keyboard strokesGesture AtionSHIFT + Left Mouse Button Selet an objet to moveSHIFT + Right Mouse Button Selet an objet to rotateMouse Button Clik Deselet an objet, or show it enlighted.CTRL + Drag with Left Mouse Button Move the ameraCTRL + Drag with Right Mouse Button Zoom in and out the ameraCTRL + ALT + Mouse Button Clik Reset the amera to its saved settings

95

Figure B.4. The Simulation Editor helps generating di�erent simulation senariosWhen the bounds of the world is hanged, defaults of the amera is set to thisnew values too. Simulator Editor an also be utilized for all these hanges, and to seethe exat values.B.1.5. Saving and LoadingFor �le operations we used Apahe Foundation's Betwixt Java Library [32℄. Sothe properties of the objets, the robots in the work spae, the work spae's properties,properties of the simulation sreen, and the simulator properties all an be saved andloaded by this library. All the information is kept in XML �les, and the user an alsohange the values with other XML editors, and run the simulation with these newvalues too. B.2. Robot Simulator EditorThe Simulation Editor, shown in Figure B.4, is designed to edit eah propertyof the work spae, the simulation, the simulation sreen, and to save and load thesesettings. User an edit the bounds of the work spae, the loation and the range ofthe amera, the size of the sreen for showing the simulation within this editor. Some

96simulation properties like the time of the simulation, the amount of time elapsed ineah step, and whether showing or not showing the ootsteps of the dynami objetsan be edited too. Furthermore, the ontent of the simulation will be generated withthis editor by adding new stati and dynami objets to the work spae, and by editingtheir properties with appropriate property panels.B.2.1. Dynami Objets

Figure B.5. Via The Simulation Editor we an add, remove, edit dynami objetsWhen a dynami objet is seleted from the Simulation Editor, the propertiesof the seleted dynami objet is shown at the enter editing part. The name of thedynami objet, type of its shape, the sale of this shape an be edited with the help ofthis propery panel. The user an also hange the urrent on�guration and the targeton�guration of a dynami objet. User an also add di�erent olors to the robots tomake them easily distinguishable.When we seleted the Dynamic Objects branh of the editor tree, when �ADD�button is pressed, a new dynami objet will be added with a random name, to theenter of the work spae. After making appropriate settings, pressing �SET� buttonat the panel in the enter of the Simulator Editor, will update the properties of thenewly added dynami objet, as shown in Figure B.5. A dynami objet an be either

97a ontrolled robot, or a dynami obstale, aording to the ontroller assigned to it.As many dynami objets as desired an be added to the simulation.B.2.2. Stati ObjetsStati objets refer to the stationary obstales. Similar to the dynami objets,when a stati objet seleted, the property panel for the seleted stati objet will beshown at the enter of Simulator Editor, as in Figure B.6. A stati objet has theproperties of the urrent on�guration, as x, y oordinate positions, and the angle. Ithas also a shape type, a sale, a olor, and most importantly a name value.

Figure B.6. Via the Simulation Editor we an add, remove, and edit stati objetsB.3. Planning BaseWe will use the simulation environment to generate and simulate the senarios totest our algorithms. This module is implemented to provide the upper layers a generalmedium, that will provide them a poiler-plate that supports the �Sense, Plan, At�senario. This boiler-plate will have basi implementations to suessfully proeed thesimulation and run the algorithms.In this boiler-plate, we will have an abstrat world model and sample world

98modelings depending on this abstrat model. Furthermore, we will have a generiollision heking module. The most important part of this module is the �Exeuter�part. In this part, we implemented basi exeution shema. Coordination of the robotontrollers and the simulation will be in the responsibility of the exeuter.There is nothing speial for path planning in this module. Other modules anbe built on top of this module to have the simulator to be used in di�erent planningpurposes. Path planning base is also built on top of this module, and it ontains pathplanning spei� lasses.This module ontains ommon entities for modeling the work spae, a ollisionheker implementation and a generi ontroller model for the ontrol algorithms. Thismodule is not designed spei�ally for path planning algorithms, in fat a highly generimodel that ould be used for di�erent approahes is tried to be implemented.B.3.1. Modelling the WorldOther than the world at the simulator module, we will have a model of thisworld in the planning part. In fat, eah ontroller will have a model of the simulationenvironment. A model may ontain ontroller spei� information about the workspae. In this module we designed a general world model, that an be extended on thepurpose.At the start of this doument, we divided the path planning problems into fourategories aording to their di�ulties. The ase one and two are the ases, wherethe environment is fully observable. The other ases assume the environment to bepartially known. To support both of these senarios we made the generation of theworld model adaptable. Aording to eah ontroller we will have various world models,and the ontent of the world model will be editable. Therefore, if an algorithm, whihshould have partial information about the world, and whih should model the world asit proeeds, will have a hane, and also algorithms whih required the environment tobe known fully beforehand will have also a hane to be implemented.

99

Figure B.7. Class diagram of modelling of the worldIn our implementation we assume that the model of the world is provided to therobot ontrol algorithms. So before starting the ontroller we generate a world modelfrom the simulation and pass this model to the ontroller. In fat, this is not obligatory,that is, if the algorithm has apability of self inpeting the environment, it an inspetand model its own world too. However, we give the algorithms the opportunity toaess the world beforehand.In this most generi world model implementation we modelled the world as abounded area, with spheri or retangular bounds, that ontains the ontrolled robots,the dynami and the stati obstales. As seen in the lass diagram of this most generiworld lass, in Figure B.7, we have apability of adding, renaming, removing everyobjet, and also have hane to di�erentiate between the types of the world with theWorldType property.

100We have two di�erent world model implementations, as those having irularbounds and retangular bounds. RboTWorld has a spheri bound, and CollisionWorldhas a retangular bound. Both implementations have the same ontent. The ontentontains the robots, and the obstales. As like their de�nition in the simulation, therobots and the obstales have on�guration, shape properties and a saling property.The robots have also a target on�guration property. This shape and on�gurationproperties will be used by the ollision heker algorithm.Eah objet in this world model is an entity, a member of Entity lass. We havea ModelObjet lass, whih holds this entity, and information about the on�gurationand saling of the entity. So, from the entity property we get information about theproperties of the objet, and on�guration related information is separate from them.An obstale, and a robot is also a model objet. A robot has a driver and a targeton�guration as an addition. The ontroller of the robot will use this driver to givenext ontrol inputs to the robot. Eah entity will have a shape, and aording to theshape and saling of the model objets we will perform ollision heks.In fat the world in the planning part is a re�etion of the work spae of thesimulation part. However, aording to the used algorithms an abstration is applied,shown in Figure B.7. The properties of the objets in the world model will be updatedby the exeution at the start of eah simulation step, whereas the objet properties inthe simulation will show a ontinuous hange.B.3.2. Collision ChekerThere are various ollision heking algorithms mentioned earlier in this report.We seleted to represent objets as trees of irular ollidables. So eah objet in theworld model has also a ollision tree assigned to it, as shown in Figure B.8. The rootof this ollision tree enapsulates the objet. When heking for ollision, at the �rstthe root of the trees will be heked for ollision. If the roots are not olliding then noneed to hek the branhes of the trees. However, if the parents are olliding, then wego into the branhes. If the hek ontinues till the leaves, and some of the leaves are

101

Figure B.8. Diagram of example usage of ollision tree in ollision hekoliding then we say ollision ours. However, if no leaf is olliding then there is noollision.A plan may let the robots to ollide, and this may not be a problem for it. Forexample, a plan may see a robot as a arrier for the others, and ollision of theserobots may mean entrane of the robot to the arrier. There may be di�erent senariostoo. However, the ollision heking should be handled aording to the purpose of theexeution, and this deision should be given by the exeuter. So we plaed ollisionheking module not in the simulator, but in the planning base module.As mentioned, the planning base provides a ollision heking mehanism thatdivides the objets to the ollidable irulars. Eah entity in the world model will havea ollision tree assigned to it. The ollidable irulars will take the enter of the objetas the referene point. So, robot may have di�erent on�guration and saling values,but the underlying struture, the ollision tree, never hanges. It only makes sometrigonometri alulations and a tree based ollision searh.The ollision heker module implemented in this module is as simple as it anbe. It heks whether there is a ollision between two objets with given on�gurationand saling values, or not. It does not need any information about why these twoobjets are ompared et.

102B.3.3. The ExeuterThe exeuter module is designed to oordinate the exeution of the ontrollers,and the simulator. It knows nothing about the proess of the ontroller, or the responsesof the simulator to these ations. However, it keeps a list of ontroller and makes themrun on the given simulation.

Figure B.9. Class diagram of the ExeuterThere may be more than one ontroller exeuted on the urrent simulation. Theexeuter may also be improved too. For now it waits eah ontroller to generate theirresponses for the next step. However, the ontrollers may also be run in di�erentthreads and exeuter may try to give only some amount of time to eah ontroller tooperate.Controllers may ontain a TCP/IP implementation, and distribute their exeu-tion to di�erent omputers. All the required information will be passed to the otheromputer, and the other omputer will make the alulations. After the alulationsare ompleted, the ontrol inputs for the robots will be provided bak. For the sake ofsimpliity, the exeuter is designed to wait eah ontroller. So this kind of approaheswill be easier to implement. However, already in the statistis we an examine the timeelapsed for eah ontroller to operate, and see the lateny the ontroller adds to thesimulation.

103The exeuter also deides about the ollision heks. If an algorithm is statistiallyimportant we add this algorithm's world to the worlds, that will be heked for ollision.Only the ontrolled robots in the world will be heked with themselves for ollisionand the other objets in the world. However other objets will not be heked betweeneah other. So we know the ontrollers are only responsible to make their ontrolledrobots do not make any ollision. The algorithms, whih we do not want to ollet anystatistial information about, but needed to make some moving obstales, will have theworlds too but these worlds will not be heked for ollision.We want the simulator to be used not only for statistial purposes, but also toinform the users graphially about the underlying proess. Therefore, the exeuter hassome boolean values about showing the found path, the optimized path, the ollisiontrees of the objets, and the generated roadmap graphs. Drawing these artifats givesa good intuition to the user about the progress of the algorithm.

104B.4. Path Planning BaseIn this module ommon strutures for the path planning algorithms are imple-mented. Most of the path planning algorithms, those model the on�guration spae,uses a graph, and this module ontains various graph implementations and graph searhalgorithms. For tree based path planning algorithms the module ontains a path treeimplementatation too.Sampling based path planning algorithms use a loal planner in their exeution.World spei� information, ollision heking, generation of random samples are usu-ally done by this loal planner. The loal planner is also used to onnet di�erenton�gurations with a loal path. In thid module, an interfae for path planners, andan interfae for the loal planners, moreover a generi loal planner implementation isprovided.Furthermore, the way of taking statistis is implemented in this module too.IStatistis lass ontains methods to be alled at some levels of exeution, that willlead suessfully olleting statistial information about the algorithms exeution.B.4.1. Loal PlannerLoal planner will be used to abstrat the world from the path planner. A pathplanner will use a loal planner, and searh for a path aording to the responses ofthe loal planner to its questions.As seen in the lass diagram in the Figure B.10, the loal planner is designed assuh, the planner will have no information about the on�guration spae it exeutes.All of the on�guration spae related operations will be done by the loal planner.Therefore, we ahieved highly abstrat sampling based path planner implementations.These implementations an work on di�erent environments, with di�erent dimensions,with di�erent ount of ontrolled robots, and dynami obstales.

105

Figure B.10. Class diagram for the interfaes of the path planner and the loalplannerThe loal planner tries to respond to every need of the planning algorithms. Somealgorithms may need the ollision heker algorithm to take only the stati obstalesinto onsideration, when they are making their initial plans. They may later needthe ollision heker to inform them about possible next ollisions with the dynamiobstales too. So, the loal planner supports di�erent options, like heking the robotswith only the stati obstales for ollision, heking the ollision between themselves,or ollision with dynami obstales et.In fat, we should not think the term ollision as two robots are touhing toeah other, or a robot is touhing with an obstale. By saying ollision heking we infat mean heking the robots for their onstraints. In di�erent senarios, the ollisionheking implementation may be di�erent. For example in our implementations weused veloity as the ontrol input, and assumed every robot is omnidiretional within�nite aeleration apability. When the ontrol inputs are the veloity values, theon�guration values are bounded to only position of the robots, and their orientation.However, if the aeleration values of the robots were limited, then the urrent veloityof a robot would be a reason for the ollision of the robot in the next simulation steps.If robot is near to an obstale, and has high speed, the robot may not be able to savefrom olliding with the obstale. However, in in�nite aeleration ase, there would beno suh problem. So, by doing ollision heks we not only mean heking the robotsand the obstales for ollision, but also heking the apabilities of the robots.

106It might be more lear if we desribe the on�guration spae and ollision hekingwith examples. For example, if we have a robot in 2D spae whih has position,orientation, veloity, battery, and weight information the on�guration spae will bereally interesting. For suh a senario we will have 3 dimensions for the loation, 3dimensions for veloities in the x, y axis, and the rotational veloity, and one dimensionfor the battery and one dimension for the urrent weight of the robot. In total we willhave 8 dimensions in the on�guration spae per robot. As the ontrol input we willhave fore values. It will let the ordinary di�erential equation of the robot and theintegrator of the simulator to generate new veloity and loation values. The simulatorwill also alulate the next battery power amount, aording to ordinary di�erentialequation for the battery onsumption.In this senario, aording to the veloity of the robot, robot may take a passagewithout any ollision, or the initial veloity may lead the robot to ollide. So theollision heking algorithm should be modi�ed to inlude the a�et of the initial speedwhen planning the full path.Moreover, the robot has a battery, and the power in the battery may a�et thelimit of the torque the robot an have. If we have some hills in the work spae to limb,the amount of the power on battery will deide about making a onnetion between thenodes in the roadmap or give a ollision like result for passing the hill. If the batteryis low, robot may not be able to limb the hill, however it may suessfully pass thehill if the batter power, so the torque is enough.By implementing di�erent ollision heking algorithms, we an use the samplingbased path planning algorithms in various path and motion planning problems. Whenwe think about the kinodynami properties of the robots, path planning will be namedas kinodynami path planning. In this kind of plannings the ollision heker shouldtake the kinodynamial onstraints and properties of the robots into onsideration.

107B.4.1.1. Generi Loal Planner. Generi loal planner implementation is designed tosupport both deentralized and entralized path planning algorithms. In the entralizedalgorithms a bigger on�guration is generated by summing the on�gurations of eahindividual ontrolled robot.
Figure B.11. A big on�guration is ahieved by appending robot on�gurationsAs seen in Figure B.11, from the on�gurations of eah robot, we ahieve a bigsingle on�guration spae. The path planning algorithms will make their searheswithin this spae, without hanging anything on their implementations, beause ofthis generi loal planner implementation.Generi loal planner implementation will make the operations on this big on-�guration, and will aord the ollision heking method, so that eah robot will havethe on�gurations in this big on�guration, and ollision heks will be done in thework spae for eah robot.By implementing suh a loal planner, a mean for path planning algorithms towork both for single robot, and multiple robots in entralized manner is provided.B.5. Planning Base EditorPlanning base editor is designed to generate the planning part for the simulations.A plan may be implemented by only one ontroller or a set of ontrollers an ooperateon the same environment for a plan.First, we add a ontroller, then adapt it for the environment. We selet thealgorithm to be used in this ontroller, and aord the parameters of the algorithm.

108Then, the ontroller is ready to be run. We apply our settings, perhaps save them toload later. When the simulation is started, the ontroller will be visited for eah timestep. Aording to the seleted algorithm the ontroller will provide next oordinationinputs for the robots for the next simulation step.B.6. Robot Controllers

Figure B.12. Four ontrollers added to the simulation with the planner editorRobots may be ontrolled by only one ontroller, and a entralized approah anbe ahieved by doing so. Moreover, we an distribute the robots to more than oneontroller, and an also make the algorithms run in deentralized manner.In Figure B.12, the planner editor shows four ontrollers are added to the sim-ulation. The tree view at the left enables user to see the list of ontrollers, and theirproperties. We an add robots, dynami obstales, and stati obstales to the worldmodel of the ontrollers with this editor. When a ontroller is seleted, the type of theontroller algorithm, name of the ontroller, and whether the ontroller is statistiallyimportant or not an be adapted within the panel shown on the enter of the plannereditor.

109The user an also add, rename, remove the entities in the world model of aontroller. The type of the world will be hanged aording to the seleted algorithmfor the ontroller. User an also hange the properties of the world aording to theneeds. The objets in the world model, an be saled up to prevent the robots to ollidewith the obstales in the ase of a noise applied to the �eld.In Figure B.13 we see the listed ontrollers on the left pane. Controller named
controller1 is opened on the tree. Its algorithm is RandomWalk. The enter paneshows the properties of the algorithm. Its name and the seleted algorithm is shown.We see that the algorithm is hanged to LazyPRM , but did not applied yet. Beausewhen the algorithm hange is applied, the tree at the left pane should be updated withthis new algorithm information too. At the tree, in the algorithm branh we see a worldproperty. This is a branh of the algorithm, beause world type will hange with thealgorithm type. Some algorithms use RboTWorld, whereas others use CollisionWorld.User an selet the world item, and properties of the world will be shown at the enterpane.

Figure B.13. A ontroller is shown in detail in the planner editorWe have Dynamic Obstacles, Robots, and Obstacles branhes at the tree too foreah ontroller. All the robots, not ontroller by the ontroller should be added into

110
Dynamic Obstacles. Stati obstales and ontrolled robots will also be added. Theproperties of the objets will be aorded aording to the objets in the workspae.There is a saling property assigned for eah objet. Objets may be saled up or downaording to the needs of the algorithm.Controllers will use InfoGate to listen the on�gurations of the objets, howeverthe type of the objets should be provided by the planner editor to the ontrollers. Forsome algorithms, those generate the world model as themselves, the world model is notneeded to be provided in the planner editor.B.7. Little Prine Path Planning SimulatorBeause of the limitations of the simulators in the bazaar, we implemented ourown simulator implementation that is speialized for path planning purposes. At theenter it has a simple simulation logi, a shell, an editor for the simulation environment.On top of them a planning base is implemented, and it extended to a base for pathplanning algorithms. All the path planning algorithms, and aording ontrollers areimplemented and added to the whole system. The algorithms are made available tobe used by the robot ontrollers. We made all of these settings to be easily saved andloaded.So we ahieved a highly on�gurable, robust, speialized for path planning algo-rithms, simulator environment, named Little Prine Path Planning Simulator.Test senarios are generated in this simulator and onsole exeuter part of theprojet is used to run these tests in quik mode. In the onsole exeuter part of theprojet, we load the test senarios and run them with di�erent options, like regeneratingthe initial and target on�gurations of the robots, how many times to run the testsand more. The statistis of these runs are written to �les by the statistis module, andalso their averages and standard deviation values are alulated for eah ase of theresults. For the suessful ompletions we alulated eah di�erent results' mean anddeviation values, also for other ompletion results we alulated them. So user may

111see the amount of time past if the algorithm fails, and deides about its failure.The simulator is designed to be used in quik algorithm development. It helpsalgorithm designers in testing their algorithms with di�erent senarios easily.

112REFERENCES
1. Choset, H., K. M. Lynh, S. Huthinson, G. Kantor, W. Burgard, L. E. Kavraki andS. Thrun, Priniples of Robot Motion, Theory, Algorithms and Implementations,The MIT Press, June 2005.2. Bohlin, R. and L. Kavraki, �Path Planning Using Lazy PRM�, Proeedings IEEEInternational Conferene on Robotis and Automation, 2000.3. Ku�ner, J. J. and S. M. LaValle, �An E�ient Approah to Path Planning Us-ing Balaned Bidiretional RRT Searh", Teh. Rep., CMU-RI-TR-05-34, RobotisInstitute, Carnegie Mellon University, Pittsburgh, PA, Aug. 2005.4. Ku�ner, J. J. and S. M. LaValle, �RRT-Connet: An E�ient Approah to Single-Query Path Planning�, Proeedings IEEE International Conferene on Robotis andAutomaton, pp. 995-1001, 2000.5. Karagöz, C. S., H. I. Bozma and D. E. Koditshek, �A Feedbak-Based Event-DrivenParts Moving Robot�, IEEE Transations on Robotis, 2004.6. Lavalle, S. M., Planning Algorithms, Cambridge University Press, Cambridge, U.K.,2006.7. Karagöz, C. S., H. I. Bozma and D. E. Koditshek, �Coordinated Navigation ofMultiple Independent Disk-Shaped Robots", to appear in IEEE Transations onRobotsis, 2006.8. Goodwin, R. and R. Simmons, �Rational Handling of Multiple Goals for MobileRobots�, Proeedings of the First International Conferene (AIPS-92), College Park,MD, June 1992.9. Reif, J. H., �Data Flow Analysis of Communiation Proesses�, The annual Sym-

113posium on Priniples of Programming Languages, pp. 257�268, 1979.10. Canny, J., �Some Algebrai and Geometri Problems in PSpae�, Proeedinds 20.ACM Sto, pp. 460�467, 1988.11. Siméon, T., J.-P. Laumond and C. Nissoux, Visibility Based Probabilisti Roadmapsfor Motion Planning, Advaned Robotis, Vol. 14, No. 6, 2000.12. Aurenhammer, F., �Voronoi diagrams � A Survey of a Fundamental GeometriStruture�, ACM Computing Surveys, Vol. 23, pp. 345�405, 1991.13. Leng-Feng, Deentralized Motion Planning Within a Arti�ial Potential Framework(APF) for Cooperative Payload Transport by Multi-robot Colletives, M.S. Thesis,The State University of New York at Bu�alo, 2005.14. Sánhez, G. and J.-C. Latombe, �On delaying ollision heking in PRM plan-ning: Appliation to multi-robot oordination�. International Journal of RobotisResearh, Vol. 21, No. 1, pp. 5�26, 2002.15. Latombe, J.-C., �Robot Motion Planning� Kluwer, Boston, MA, 1991.16. Berg, J. and M. Overmars, �Prioritized Motion Planning for Multiple Robots�,Proeedings IEEE/RSJ International Conferene on Intelligent Robots and Systems,pp. 2217�2222, 2005.17. Peng, J. and S. Akella, �Coordinating Multiple Robots with Kinodynami Con-straints Along Spei�ed Paths�, Algorithmi Foundations of Robotis V (WAFR2002), Springer-Verlag, Berlin, pp. 221�237, 2002.18. Lindemann, S. R. and S. M. LaValle, �Current Issues in Sampling-Based MotionPlanning�, Proeedings International Symposium on Robotis Researh, Springer-Verlag, Berlin, 2004.19. Hsu, D., J.-C. Latombe and R. Motwani, �Path Planning in Expansive Con�gu-

114ration Spaes�, International Journal Computational Geometry and Appliations,Vol. 4, pp. 495�512, 1999.20. LaValle, S. M., Rapidly-Exploring Random Trees: A New Tool for Path Planning,Computer Siene Dept., Iowa State University, Ot. 1998.21. Plaku, E. and L. E. Kavraki, �Distributed sampling-based roadmap of treesfor large-sale motion planning�, Proeedings IEEE International Conferene onRobotis and Automation, 2005.22. Amato, N. M., O. B. Bayazit, L. K. Dale, C. Jones and D. Vallejo, �OBPRM: AnObstale-Based PRM for 3D Workspaes�, Proeedings Workshop on AlgorithmiFoundations of Robotis, pp. 155-168, 1998.23. Dijkstra, E. W., A note on two problems in onnexion with graphs, NumerisheMathematik, Vol. 1, 269�271, 1959.24. Dehter, R. and J. Pearl, �Generalized best-�rst searh strategies and the optimal-ity af A*�, Journal of the ACM, Vol. 32, No. 3, pp 505�536, 1985.25. Hsu, D., T. Jiang, J. Reif and Z. Sun, �The Bridge Test for Sampling NarrowPassages with Probabilisti Roadmap Planners�, Proeedings IEEE InternationalConferene on Robotis and Automation, 2003.26. Boor, V., M. H. Overmars and A. F. van der Stappen, �The Gaussian SamplingStrategy for Probabilisti Roadmap Planners�, Proeedings IEEE International Con-ferene on Robotis and Automation, pp. 1018�1023, 1999.27. Hsu, D., L. E. Kavraki, J-C. Latombe, R. Motwani and S. Sorkin, �On Finding Nar-row Passages with Probabilisti Roadmap Planners�, Proeedings of the Workshopon Algorithmi Foundations of Robotis (WAFR'98), pp. 155�168, 1998.28. Wilmarth, S. A., N. M. Amato and P. F. Stiller, �MAPRM: A ProbabilistiRoadmap Planner with Sampling on the Medial Axis of the Free Spae�, Proeedings

115IEEE International Conferene on Robotis and Automation, pp. 1024�1031, 1999.29. Bobi, N., Advaned Collision Detetion Tehniques, Gamasutra :http://www.gamasutra.om/features/20000330/bobi_01.htm, Mar. 2007.30. Samet, H. and R. E. Webber, �Hierarhial Data Strutures and Algorithms forComputer Graphis. Part I.�, IEEE Comput. Graph. Appl., IEEE Computer SoietyPress, Los Alamitos, CA, USA, Vol. 8, No. 3, pp. 48�68, 1988.31. Flannery, B. P., S. A. Teukolsky and W. T. Vetterling, Numerial Reipes�, 2ndedn., Cambridge University Press, Cambridge, 1992.32. Apahe Foundation's Betwixt Developers Team, Betwixt Library,http://jakarta.apahe.org/ommons/betwixt/, 2007.

