

IMPLEMENTATION OF A SECURE MOBILE PAYMENT SYSTEM

by

Murat Acar

B.S. Electronics & Communication Engineering, Kocaeli University,1999

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

The requirements for the degree of

Master of Science

Graduate Program in System & Control Engineering

Boğaziçi University

2007

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Tamer Şıkoğlu for his invaluable

guidance and help during the preparation of this dissertation. I would like to mention his

patience, giving me inspiration and hope all the time when I needed.

I specially thank to my mother Suzan Acar, my father Ahmet Acar and my sister

Nilüfer Tek, Serkan Tek and my grandmother Nazire Calkı for giving support of any kind

in my life.

iv

ABSTRACT

IMPLEMENTATION OF A SECURE MOBILE PAYMENT SYSTEM

Over the last decade, with the rapid development of internet and mobile technologies

new concepts got into our lives. Several convenience which hasn’t been existed before

became indispensable part of our lives. The widespread of ADSL and wireless Networks

and with WiMAX technology, mobile internet and value added mobile services will usher

a new era. Nowadays, although the convenience and advantages of e-trade is being used by

so many people, the security risk of credit card transactions over internet keeps major

community away from e-trade opportunities. Today’s mobile technology, spread of mobile

devices and easier internet access alternatives, gives opportunity of mobile payment more

secure and convenient.

In this Project, we realized a payment system over mobile platforms without using

credit card and cash. In this mobile payment system in order to maintain security, a group

of algorithms and security blocks are used.

v

ÖZET

GÜVENLİ BİR MOBİL ÖDEME SİSTEMİNİN GERÇEKLEMESİ

Geçtiğimiz on sene içerisinde internet ve mobil teknolojileri hayatımıza birçok yeni

kavramı sokarken, öncesinde alternatifi olmayan birçok kolaylığı da beraberinde getirerek

hayatımızın vazgeçilmez birer parçası olmuştur. ADSL ve kablosuz networklerin

yaygınlaşması ve yakın bir gelecekte WiMAX ile şehir içi mobil internet ve üzerinde

katmadeğerli servisler yine hayatımızda getireceği servislerle bir çığır açacaktır.

Günümüzde e-ticaretin getirdiği bir çok kolaylık ve avantajlar birçok kişi tarafından

benimsenmiş olsa da ödemelerin internet üzerinden kredi kartı ile yapılmasının ciddi

güvenlik sorunlarına sebep olam ihtimali büyük çoğunluk e-ticareti hayatına sokmamayı

tercih ediyor. Mobil ciharların bu kadar yaygınlaşması ve internet erişiminin de gün be gün

daha kolay erişim imkanları, ödemelerinde cep telefonları üzerinden güvenli bir şekilde

yapılmasını mümkün kılmaktadır.

Bu projede, mobil platformlar üzerinden, direk kredi kartı veya para kullanmadan,

ödemelerin yapılmasını sağlayan bir sistem gerçekleştirdik. Mevcut ödeme yöntemlerinden

daha güvenli bir platform olarak mobil ödeme sistemini inşa etmek üzere çeşitli güvenlik

algoritmaları ve yapıları kullanılmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ……………….………....………………………………….. iii

ABSTRACT ……………………………………..…...…………………………….......... iv

ÖZET ………………………………………...………..………………………………….. v

LIST OF FIGURES ……………………...…………………..…………………………... ix

LIST OF TABLES ………………………………………………….………………….... xi

LIST OF SYMBOLS/ABBREVIATIONS ….......………………………..………………xii

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

2.1. Mobile Commerce ... 3

2.2. Mobile Payment... 3

2.2.1. Definition of mobile payment... 3

2.2.2. Definitions of micro-payment and macro-payment.. 3

2.2.3. Mobile global market.. 4

2.2.4. Supporting Technologies For Mobile Payment .. 4

2.2.4.1. SMS ... 4

2.2.4.2. WAP... 5

2.2.4.3. Barcodes and SMS WAP... 5

2.3. Mobile Security.. 5

2.3.1. Confidentiality .. 6

2.3.2. Integrity... 6

2.3.3. Authentication... 6

2.3.4. Non-repudiation .. 7

2.3.5. Authorization and access control .. 7

2.3.6. Availability ... 7

2.4. Security Algorithms... 7

vii

2.4.1. MD5:... 7

2.4.1.1. MD5 Vulnerability... 8

2.4.1.2. MD5 Applications.. 8

2.4.1.3. Algorithm... 9

2.4.2. SHA-1 ... 10

2.4.2.1. Algorithm... 10

2.4.2.2. Cryptanalysis of SHA-1... 11

2.4.2.3. SHA sizes... 12

2.4.2.4. Applications ... 12

2.4.2.5. Example hashes.. 12

2.4.2.6. A description of SHA-1 ... 13

2.4.3. 3 DES (Triple DES).. 15

2.4.3.1. Algorithm... 16

2.4.4. SSL.. 17

2.4.4.1. How it works.. 18

2.4.4.2. Applications ... 20

2.4.5. AES... 21

2.4.5.1. Development.. 21

2.4.5.2. Description of the cipher.. 21

2.4.5.3. The AddRoundKey step .. 22

2.4.5.4. The SubBytes step.. 23

2.4.5.5. The ShiftRows step ... 23

2.4.5.6. The MixColumns step... 24

2.4.5.7. Optimization of the cipher ... 25

2.4.5.8. Security .. 25

2.4.5.9. Side channel attacks... 27

viii

2.5. Development Platform... 27

2.5.1. Features of Mobile Device Emulator.. 29

3. DESIGN AND IMPLEMENTATION OF A SECURE MOBILE PAYMENT
SYSTEM…………………………….. 30

3.1. Security Features.. 30

3.1.1. SHA1 .. 30

3.1.2. 3DES... 31

3.1.3. SSL.. 32

3.1.4. One Time Password .. 32

3.2. Payment Processes... 33

3.2.1. Authentication... 33

3.2.2. Ordering Request .. 36

3.2.3. Order Confirmation... 36

3.2.4. Shop Interface ... 37

3.3. Application Fields:... 37

3.3.1. Banks: ... 38

3.3.2. GSM Operators ... 38

3.3.3. Stock Exchange Agents .. 38

3.4. Database Tables ... 39

4. TESTS... 40

4.1. Hashing Test .. 40

4.2. TriDES Test ... 40

4.3. One-Time Password Test... 41

5. CONCLUSIONS .. 42

5.1. Future Work... 42

6. APPENDIX A: FLOWCHART.. 43

7. REFERENCES ... 44

ix

LIST OF FIGURES

Figure 2.1 One MD5 operation ……………...………………………….............. 9

Figure 2.2 One iteration within the SHA-1 compression function .….…............... 11

Figure 2.3 Pseudocode of SHA-1 Algorithm .…...………………….…............... 15

Figure 2.4 168 bit 3DES with 64 bits block size, 48 DES-equivalent rounds......... 15

Figure 2.5 In the AddRoundKey step .………………….………………............... 22

Figure 2.6 In the SubBytes step ………...………………………………............... 22

Figure 2.7 In the ShiftRows step ……….……..………………………................. 23

Figure 2.8 In the MixColumns step ..………..….………………………………... 24

Figure 2.9 Device Emulator Manager ….….…………………………….............. 27

Figure 2.10 ActiveSync .……………….……………………………….…………. 28

Figure 2.11 Pocket PC Emulator 2003 …...……………………………………….. 29

Figure 3.1 Implementation of SHA-1 on Mobile Payment system ..…..…….….... 30

Figure 3.2 Implementation of 3DES Encryption on Mobile Payment system ….…..31

Figure 3.3 Implementation of 3DES Decryption on Mobile Payment system ….…..32

Figure 3.4 Mobile payment system ………………………………...…….…….... 33

Figure 3.5 One-time password process in authentication ...….…………………... 34

Figure 3.6 Authentication on mobile device …...……………....……………....... 34

Figure 3.7 Authentication on mobile device ...…………...…….………………... 35

Figure 3.8 Hashed password stored in database ..……………….……………….. 35

Figure 3.9 Session is created between bank and mobile terminal …………….. 35

x

Figure 3.10 Ordering from mobile terminal ...……………………..…………….... 36

Figure 3.11 Transaction confirmation ..…..…………….……..…………………... 36

Figure 3.12 Shop mobile payment management process .……….………………... 37

Figure 3.13 Database tables of Mobile Payment System ..….…………….............. 39

Figure 4.1 Password is stored hashed with SHA-1 .……….……………….…..... 40

Figure 4.2 The Un-encrypted Text ...……….……...……….……………...…....... 40

Figure 4.3 The encrypted binary array of txtMagazaKodu .…………...……….. 41

xi

LIST OF TABLES

Table 2 .1 SHA Sizes ……..…………………………………………..……….. 26

xii

LIST OF SYMBOLS/ABBREVIATIONS

Mi Message Input

F Function

Ki Constant

C Crypted Output

S 8-bit lookup table

s A left bit rotation by s places

 Addition

RFID Radio Frequency Identification

PDA Personal Digital Assistant

POS Point of Sale

SMS Short Message Service

GSM Global System for Mobile Communication

WAP Wireless Application Protocol

AES Advanced Encryption Standard

WLANs Wireless Local Area Networks

AP Access Point

LAN Local Area Network

http://en.wikipedia.org/wiki/Image:Lll.png
http://en.wikipedia.org/wiki/Image:Boxplus.png
http://en.wikipedia.org/wiki/Image:Lll.png
http://en.wikipedia.org/wiki/Image:Boxplus.png

xiii

MD5 Message-Digest algorithm five

NIST National Institute of Standards and Technology

SHA Secure Hash Algorithm

NSA National Security Agency

3DES Triple Data Encryption Standard

VPN Virtual Private Network

SSL Secure Sockets Layer

TLS Transport Layer Security

PKI Public Key Infrastructure

RSA An Algorithm for Public-Key Encryption

DSA Digital Signature Algorithm

RC2/4 Rivest Cipher Algorithm

IDEA International Data Encryption Algorithm

MAC Message Authentication Code

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

SMTP Simple Mail Transfer Protocol

NNTP Network News Transfer Protocol

ARM Advanced RISC Machines

OTP One Time Password

http://en.wikipedia.org/wiki/NIST
http://en.wikipedia.org/wiki/VPN
http://en.wikipedia.org/wiki/Public_key_infrastructure
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/RC2
http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/SMTP
http://en.wikipedia.org/wiki/Network_News_Transfer_Protocol

1

1. INTRODUCTION

Exchange of banknotes, coins and checks are used to be the medium of payment but

nowadays being replaced by smartcards, mobile terminals and internet. The slope of this

movement going from the exchange of physical goods towards the exchanging of

information between customer and supplier in a secure way. Payment with (credit) cards

involves exchanging between customer’s and the supplier’s bank accounts by a third party

regional or global card organization.

The e-commerce moved to this payment process further. All trade is done over

internet and customer and supplier does the exchange without any physical contact. The

recent development of high-speed mobile data networks has created a new channel for

commerce, while more sophisticated mobile devices are enabling the virtual exchange of

payment information known as proximity payments.

Change from physical exchange to virtual payment’s advantages come up very vital

benefits for customers whereas payment service providers has to be more aware of any

stage of payment due to keep security level as high as possible and interoperatibility. The

advent of mobile payments has added another layer of complexity through the use of

constrained devices with different capabilities and network limitations.

Despite the differences, the success of mobile payments is contingent on the same

factors that have fuelled the growth of physical world non-cash payments, namely:

security, interoperability, privacy, global acceptance, and ease of use. In the meantime,

high-speed data networks, such as 2.5 and 3G, with more sophisticated data-enabled

wireless devices, have the potential to transform payment. Color screens, greater

bandwidth, and more compelling content are converging to create an environment where

consumers feel more comfortable transacting on the move. In addition, new wireless

protocols, such as Bluetooth, infrared and radio frequency identification (RFID), are

enabling short range wireless device-to-device payments. Although we are at an early stage

in the development of mobile payments, a number of factors are threatening to arrest the

development of this new medium, including the proliferation of competing network

2

standards, as well as incompatible operating systems and devices. Another major factor is

the lack of secure and interoperable standards for mobile payments [1].

In this Thesis, our aim is to design and implement a secure mobile payment system.

In this academic study based on academic research and modeling of consumer, merchant

and bank based system. We will study encryption algorithms, software languages security

levels on mobile applications and other security techniques. We will evaluate the

techniques, applications and implement the better approaches.

3

2. BACKGROUND

2.1. Mobile Commerce

Telecommunications, Internet, and mobile computing are merging their technologies

to form a new business called mobile commerce. According to NetLingo, a dictionary of

Internet terms, mobile commerce is a form of electronic commerce because transactions

are generated from a product or service that exists electronically on the Internet. Known as

the next-generation of e-commerce, m-commerce enables users to access the Internet

without having to find a place to plug in [2].

2.2. Mobile Payment

2.2.1. Definition of mobile payment

Mobile payment can be defined as a payment that is carried out with a handheld

device such as a mobile phone or a PDA (personal digital assistant). Payment involves a

direct or indirect exchange of monetary values between parties. Handheld devices can be

used at real POS (point of sale), in e-commerce and in m-commerce. According to the

mobile payment forum, payment has evolved from the physical exchange of notes and

coins, to writing checks, and to transferring payment card details either in person or at

distance, over the phone or the Internet. This evolution has involved a shift from the

physical transference of tangible tokens of value to an exchange of information between

parties. The emergence of e-commerce has further digitized the payment process, where

payment details are sent over open networks with no physical contact between the buyer

and the seller. The recent development of high-speed mobile data networks has created a

new channel for commerce, where more sophisticated mobile devices are enabling the

virtual exchange of payment information. The advent of mobile payments has added

another layer of complexity through the use of mobile devices with different network

capabilities and limitations. [2]

2.2.2. Definitions of micro-payment and macro-payment

According to the worldwide web consortium, micro-payments are systems “capable

of handling arbitrarily small amounts of money”. Another definition is given by Erin Joyce

4

of atnewyork.com; she defines micro-payment as “an electronic transaction or payment in

the range of about $10 to about one-tenth of a cent, which travels over the Internet or

public network infrastructure”. Accordingly, in light of the last definition, macro-payment

is an electronic transaction or payment superior to $10 [2].

2.2.3. Mobile global market

EMC, a leading researcher and publisher of intelligence about wireless markets,

estimates that there are now more than one billion wireless phone subscribers worldwide.

By 2005, 50 per cent of all calls in the world will be wireless. Today, mobile commerce

looks in many ways much like electronic commerce did in 1995. For example, electronic

commerce sales were evaluated to $ 200 million US in 1995 and mobile commerce sales

reached $ 500 million US in 2003. Yet, in 2002 e-commerce sales had grown to $ 843

billion US and they are estimated to $ 6501 billion US in 2006 [2].

2.2.4. Supporting Technologies For Mobile Payment

 Different supporting technologies for mobile payment are presented as follows:

 Short Message Service (SMS) is a text message service that enables short

messages of generally no more than 140-160 characters in length to be sent and transmitted

from a mobile phone. SMS was introduced in the GSM (Global System for Mobile

Communication) system and later supported by all other digital-based mobile

communications systems. Unlike paging, but similar to e-mail, short messages are stored

and forwarded at SMS centers, which means you can retrieve your messages later if you

are not immediately available to receive them. SMS messages travel to the cell phone over

the system's control channel, which is separate and apart from the voice channel [2].

Several telecommunication carriers have recently begun offering premium rate short

messages, which through higher pricing and revenue sharing allow companies to be paid

for their services by sending a short message. A short code is a five or six digit code

instead of a 10-digit mobile phone number, to which a text message is sent. They are

associated with a particular brand or campaign and are easier to memorize for consumers.

They are useful for mobile commerce applications deployed with SMS because the

consumer sends a key word to a specific short code to start a “mobile shopping” session

[2].

2.2.4.1 SMS.

5

 Wireless Application Protocol (WAP) is the de facto worldwide standard for

providing Internet communications and advanced telephony services on digital mobile

phones, pagers, personal digital assistants and other wireless terminals. The WAP is a

standard developed by the WAP Forum, a group founded by Nokia, Ericsson, Phone.com

(formerly Unwired Planet), and Motorola. WAP defines a communication protocol as well

as an application environment. In essence, it is a standardized technology for cross-

platform distributed computing [2].

 When issuing a payment in mobile commerce

applications, the consumer must receive a transaction confirmation. This confirmation is

necessary to receive the goods and services that were purchased with the mobile phone. A

way for merchants to validate transactions is to scan a barcode received on the consumer’s

mobile phone.

An implementation of this technology is to use a SMS WAP approach. This is a SMS

containing a link to a WAP site. This link can be invisible and the WAP content is directly

downloaded on the consumer’s mobile phone. In this case, a SMS would be sent

containing a link on a unique barcode. This barcode is automatically downloaded on the

consumer’s mobile phone and can be scanned with a normal barcode scanner used by the

merchant. In the cases where the mobile phone and the scanner would be incompatible, the

merchant enters the number below the barcode [2].

2.3. Mobile Security

Security is a complex, multifaceted challenge, which we at Symbol sometimes depict

as six ‘pillars’ in a ‘temple of security’. Each pillar represents a column that supports the

system objective, which is Information Assurance. At the same time, each supporting

column presents a hurdle or closed gate to an attacker, and we aim to strengthen each

deterrent hurdle. We can think of the hurdles as a series of obstacles, each of which an

attacker would have to overcome. We can identify no absolutes in these fields; only doors

that tend to ‘close off avenues’ more or less well and force terrorists to go elsewhere. The

2.2.4.2 WAP.

2.2.4.3 Barcodes and SMS WAP.

6

requirements for the system include: Confidentiality, Integrity, Authentication, Non-

Repudiation, Authorization/Access Control, and Availability [3].

2.3.1. Confidentiality

The first security pillar for the system, or hurdle for an attacker, is the most obvious.

Confidentiality is the pillar that holds personal or restricted information that only a few,

privileged persons may or should know. For many things, such as PIN numbers, we go to

extra effort to conceal information to retain its confidentiality. We are well aware of the

need to conceal information, from childhood with those imaginary ‘Captain Midnight’

decoder rings, to the infamous German Enigma Cipher of WWII, to the Advanced

Encryption Standard (AES), four released this year by the United States National Institute

of Standards and championed by Presidential Science Advisor, Jack Marburger [3].

2.3.2. Integrity

Concealed information, however, could still be corrupted. Hence the second pillar. A

zero or two missing from your bank account number is a real problem. So, we must

guarantee that the data hasn’t been tampered with, amended, altered or damaged in any

way. It must remain consistent and completely intact for any applicable duration, possibly

indefinitely, for the information to remain valid and accurate [3].

2.3.3. Authentication

At this point, we have protected against eavesdroppers and the data are intact, but we

still don’t know who sent it, or, from the sender’s view, who actually received it. That was

a fundamental problem of WEP, five the initial security mechanism designed for modern

WLANs (Wireless Local Area Networks.) There was no mutual authentication between the

client, such as a mobile terminal, and the network Access Point (AP). Today an industry

has emerged around building network security mechanisms for wireless LANs that address

all levels of intensity. This is where our tools have been most relevant and effective [3].

7

2.3.4. Non-repudiation

This pillar involves the participation requirements and protocols in any given

transaction. Because of our reliance on electronic information exchange, we must provide

authentication methods strong enough that the originator cannot deny participation in the

transaction [3].

2.3.5. Authorization and access control

In security systems, varied rights and privilege(s) policies must also be administered,

whether for an individual, a computer, or a piece of baggage authorized to fly aboard the

aircraft. Remember that locking a front door to a house does very little good if a window or

a back door is left open. This pillar suggests that we look deeper than the obvious keys and

locking mechanisms. What is the protocol if a person appears at the door posing as a

relative? Keys and locks are no longer useful if a resident is duped into letting in an

otherwise unauthorized infiltrator. Suppose a burglar uses a house key stolen from your

office desk? Access control must be set to strict criteria, not just superficial obstacles

barring entrance [3].

2.3.6. Availability

However, a system that can be readily crippled is not really secure. A practical

design must provide some degree of service even when confronted with massive denial-of-

service attacks, or accidental failure. This is the sixth and final pillar, or final hurdle for an

attacker. In addition, various cryptographic tools are the indispensable mortar reinforcing

these pillars, from encryption algorithms, to message digests, to digital signatures [3].

2.4. Security Algorithms

2.4.1. MD5:

In cryptography, MD5 (Message-Digest algorithm five) is a widely used

cryptographic hash function with a 128-bit hash value. As an Internet standard (RFC

1321), MD5 has been employed in a wide variety of security applications, and is also

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Internet
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321

8

commonly used to check the integrity of files. An MD5 hash is typically a 32-character

hexadecimal number.

MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function,

MD4. In 1996, a flaw was found with the design of MD5; while it was not a clearly fatal

weakness, cryptographers began to recommend using other algorithms, such as SHA-1.

 Because MD5 makes only one pass over the data, if two

prefixes with the same hash can be constructed, a common suffix can be added to both to

make the collision more reasonable. Because the current collision-finding techniques allow

the preceding hash state to be specified arbitrarily, a collision can be found for any desired

prefix; that is, for any given string of characters X, two colliding files can be determined

which both begin with X. All that is required to generate two colliding files is a template

file, with a 128-byte block of data aligned on a 64-byte boundary that can be changed

freely by the collision-finding algorithm [4].

 MD5 digests have been widely used in the software world to

provide some assurance that a transferred file has arrived intact. For example, file servers

often provide a pre-computed MD5 checksum for the files, so that a user can compare the

checksum of the downloaded file to it. Unix-based operating systems include MD5 sum

utilities in their distribution packages, whereas Windows users use third-party applications

[4].

However, now that it is easy to generate MD5 collisions, it is possible for the person

who creates the file to create a second file with the same checksum, so this technique

cannot protect against some forms of malicious tampering. Also, in some cases the

checksum cannot be trusted (for example, if it was obtained over the same channel as the

2.4.1.1 MD5 Vulnerability.

2.4.1.2 MD5 Applications.

http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Ronald_Rivest
http://en.wikipedia.org/wiki/1991
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/1996
http://en.wikipedia.org/wiki/SHA_hash_functions
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Unix

9

downloaded file), in which case MD5 can only provide error-checking functionality: it will

recognize a corrupt or incomplete download, which becomes more likely when

downloading larger files[4].

MD5 is widely used to store passwords. A number of MD5 reverse lookup databases

exist, which make it easy to decrypt password hashed with plain MD5. To prevent such

attacks a salt can be added to passwords before hashing them. Also, it is a good idea to

apply the hashing function (MD5 in this case) more than once see key strengthening. It

increases the time needed to encode a password and discourages dictionary attacks.

Figure 2.1. One MD5 operation

MD5 consists of 64 of these operations, grouped in four rounds of 16 operations. F is

a nonlinear function; one function is used in each round. Mi denotes a 32-bit block of the

message input, and Ki denotes a 32-bit constant, different for each operation.

2.4.1.3 Algorithm.

http://en.wikipedia.org/wiki/Password#Form_of_stored_passwords
http://en.wikipedia.org/wiki/Salt_%28cryptography%29
http://en.wikipedia.org/wiki/Key_strengthening
http://en.wikipedia.org/wiki/Dictionary_attack
http://en.wikipedia.org/wiki/Image:MD5.png
http://en.wikipedia.org/wiki/Image:MD5.png

10

s denotes a left bit rotation by s places; s varies for each operation. denotes

addition modulo 232[4].

2.4.2. SHA-1

The original specification of the algorithm was published in 1993 as the Secure Hash

Standard, FIPS PUB 180, by US government standards agency NIST (National Institute of

Standards and Technology). This version is now often referred to as "SHA-0". It was

withdrawn by the NSA shortly after publication and was superseded by the revised version,

published in 1995 in FIPS PUB 180-1 and commonly referred to as "SHA-1". SHA-1

differs from SHA-0 only by a single bitwise rotation in the message schedule of its

compression function; this was done, according to the NSA, to correct a flaw in the

original algorithm which reduced its cryptographic security. SHA-1 appears to provide

greater resistance to attacks, supporting the NSA's assertion that the change increased the

security.

SHA-1 (as well as SHA-0) produces a 160-bit digest from a message with a

maximum length of 264 - 1 bits, and is based on principles similar to those used by

Professor Ronald L. Rivest of MIT in the design of the MD4 and MD5 message digest

algorithms [5].

 The SHA (Secure Hash Algorithm) hash functions, namely SHA-1,

SHA-224, SHA-256, SHA-384, and SHA-512, are five related cryptographic hash

functions designed by the National Security Agency (NSA) and collectively published as a

US government standard. SHA-1 is employed in a large variety of popular security

applications and protocols, including TLS and SSL, PGP, SSH, S/MIME, and IPsec. It was

considered to be the successor to MD5, an earlier, widely-used hash function. Both are

reportedly compromised.

The other four variants (SHA-224, SHA-256, SHA-384, and SHA-512) are

sometimes collectively referred to as SHA-2 functions or simply SHA-2. No attacks have

yet been reported on the SHA-2 variants, but since they are similar to SHA-1, researchers

are worried, and are developing candidates for a new, better hashing Standard [5].

2.4.2.1 Algorithm.

http://en.wikipedia.org/wiki/Image:Lll.png
http://en.wikipedia.org/wiki/Image:Boxplus.png
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://en.wikipedia.org/wiki/NIST
http://en.wikipedia.org/wiki/NSA
http://en.wikipedia.org/wiki/Message
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Image:Lll.png
http://en.wikipedia.org/wiki/Image:Boxplus.png

11

Figure 2.2. One iteration within the SHA-1 compression function.

A, B, C, D and E are 32-bit words of the state; F is a nonlinear function that varies;

n denotes a left bit rotation by n places; n varies for each operation. denotes addition

modulo 232. Kt is a constant.

 In the light of the results on SHA-0, some experts

suggested that plans for the use of SHA-1 in new cryptosystems should be reconsidered.

After the CRYPTO 2004 results were published, NIST announced that they planned to

phase out the use of SHA-1 by 2010 in favour of the SHA-2 variants [5].

NIST has published four additional hash functions in the SHA family, each with

longer digests, collectively known as SHA-2. The individual variants are named after their

digest lengths (in bits): "SHA-256", "SHA-384", and "SHA-512". They were first

published in 2001 in the draft FIPS PUB 180-2, at which time review and comment were

accepted. FIPS PUB 180-2, which also includes SHA-1, was released as an official

standard in 2002. In February 2004, a change notice was published for FIPS PUB 180-2,

specifying an additional variant, "SHA-224", defined to match the key length of two-key

Triple DES.

SHA-256 and SHA-512 are novel hash functions computed with 32- and 64-bit

words, respectively. They use different shift amounts and additive constants, but their

structures are otherwise virtually identical, differing only in the number of rounds. SHA-

2.4.2.2 Cryptanalysis of SHA-1.

http://en.wikipedia.org/wiki/Image:SHA-1.png
http://en.wikipedia.org/wiki/Image:Lll.png
http://en.wikipedia.org/wiki/Image:Boxplus.png
http://en.wikipedia.org/wiki/Cryptosystem
http://en.wikipedia.org/wiki/Triple_DES
http://en.wikipedia.org/wiki/Image:SHA-1.png
http://en.wikipedia.org/wiki/Image:Lll.png
http://en.wikipedia.org/wiki/Image:Boxplus.png

12

224 and SHA-384 are simply truncated versions of the first two, computed with different

initial values.

These new hash functions have not received as much scrutiny by the public

cryptographic community as SHA-1 has, and so their cryptographic security is not yet as

well-established. Gilbert and Handschuh (2003) have studied the newer variants and found

no weaknesses [5].

Table 2.1 SHA Sizes

Algorithm
Output size

(bits)

Internal state size

(bits)

Block size

(bits)

Max message size

(bits)

Word size

(bits)
Passes Operations

SHA-0 160 160 512 264 - 1 32 80 +,and,or,xor,rotl

SHA-1 160 160 512 264 - 1 32 80 +,and,or,xor,rotl

SHA-256/224 256/224 256 512 264 - 1 32 64 +,and,or,xor,shr,rotr

SHA512/384 512/384 512 1024 2128 - 1 64 80 +,and,or,xor,shr,rotr

 A prime motivation for the publication of the Secure Hash Algorithm

was the Digital Signature Standard, in which it is incorporated. The SHA hash functions

have been used as the basis for the SHACAL block ciphers.

 The following are some examples of SHA digests. ASCII

encoding is assumed for all messages [5].

SHA1 ("The quick brown fox jumps over the lazy dog")

= 2fd4e1c6 7a2d28fc ed849ee1 bb76e739 1b93eb12

2.4.2.3 SHA sizes.

2.4.2.4 Applications.

2.4.2.5 Example hashes.

http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/SHACAL
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog

13

Even a small change in the message will, with overwhelming probability, result in a

completely different hash due to the avalanche effect. For example, changing d to c:

SHA1 ("The quick brown fox jumps over the lazy cog")

 = de9f2c7f d25e1b3a fad3e85a 0bd17d9b 100db4b3

The hash of the zero-length message is:

SHA1 ("") = da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709

 Pseudo code for the SHA-1 algorithm follows [5]:

Note: All variables are unsigned 32 bits and wrap modulo 232 when calculating

Initialize variables:

h0 := 0x67452301

h1 := 0xEFCDAB89

h2 := 0x98BADCFE

h3 := 0x10325476

h4 := 0xC3D2E1F0

Pre-processing:

append the bit '1' to the message

append k bits '0', where k is the minimum number >= 0 such that the resulting message
length (in bits) is congruent to 448 (mod 512)

append length of message (before pre-processing), in bits, as 64-bit big-endian
integer

Process the message in successive 512-bit chunks:

break message into 512-bit chunks

for each chunk

 break chunk into sixteen 32-bit big-endian words w(i), 0 ≤ i ≤ 15

 Extend the sixteen 32-bit words into eighty 32-bit words:

 for i from 16 to 79

 w(i) := (w(i-3) xor w(i-8) xor w(i-14) xor w(i-16)) leftrotate 1

2.4.2.6 A description of SHA-1.

http://en.wikipedia.org/wiki/Avalanche_effect
http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Modular_arithmetic

14

 Initialize hash value for this chunk:

 a := h0

 b := h1

 c := h2

 d := h3

 e := h4

 Main loop:

 for i from 0 to 79

 if 0 ≤ i ≤ 19 then

 f := (b and c) or ((not b) and d)

 k := 0x5A827999

 else if 20 ≤ i ≤ 39

 f := b xor c xor d

 k := 0x6ED9EBA1

 else if 40 ≤ i ≤ 59

 f := (b and c) or (b and d) or (c and d)

 k := 0x8F1BBCDC

 else if 60 ≤ i ≤ 79

 f := b xor c xor d

 k := 0xCA62C1D6

 temp := (a leftrotate 5) + f + e + k + w(i)

 e := d

 d := c

 c := b leftrotate 30

 b := a

 a := temp

 Add this chunk's hash to result so far:

 h0 := h0 + a

 h1 := h1 + b

15

 h2 := h2 + c

 h3 := h3 + d

 h4 := h4 + e

Produce the final hash value (big-endian):

digest = hash = h0 append h1 append h2 append h3 append h4

Note: Instead of the formulation from the original FIPS PUB 180-1 shown, the following equivalent expressions may be
substituted into the appropriate ranges of the above pseudocode for improved efficiency:

(0 ≤ i ≤ 19): f := d xor (b and (c xor d)) (alternative)

(20 ≤ i ≤ 39): f := b xor c xor d (unchanged)

(40 ≤ i ≤ 59): f := (b and c) or (d and (b or c)) (alternative 1)

(40 ≤ i ≤ 59): f := (b and c) + (d and (b xor c)) (alternative 2, due to Colin
Plumb)

(40 ≤ i ≤ 59): f := (b and c) or (d and (b xor c)) (alternative 3, due to Jeffrey
Riaboy)

(60 ≤ i ≤ 79): f := b xor c xor d (unchanged)

Figure 2.3. Pseudo code of SHA-1 Algorithm

2.4.3. 3DES (Triple DES)

In cryptography, Triple DES is a block cipher formed from the Data Encryption

Standard (DES) cipher by using it three times.

Figure 2.4. 168 bit 3DES with 64 bits block size, 48 DES-equivalent rounds [6]

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Image:3des-overall-view.png
http://en.wikipedia.org/wiki/Image:3des-overall-view.png

16

 When it was found that a 56-bit key of DES is not enough to guard

against brute force attacks, TDES was chosen as a simple way to enlarge the key space

without a need to switch to a new algorithm. The use of three steps is essential to prevent

meet-in-the-middle attacks that are effective against double DES encryption. Note that

DES is not a group; if it were one, the TDES construction would be equivalent to a single

DES operation and no more secure.

The simplest variant of TDES operates as follows: DES(k3;DES(k2;DES(k1;M))),

where M is the message block to be encrypted and k1, k2, and k3 are DES keys. This variant

is commonly known as EEE because all three DES operations are encryptions. In order to

simplify interoperability between DES and TDES the middle step is usually replaced with

decryption (EDE mode): DES(k3;DES − 1(k2;DES(k1;M))) and so a single DES encryption

with key k can be represented as TDES-EDE with k1 = k2 = k3 = k. The choice of

decryption for the middle step does not affect the security of the algorithm [6].

In general TDES with three different keys (3TDES) has a key length of 168 bits:

three 56-bit DES keys (with parity bits 3TDES has the total storage length of 192 bits), but

due to the meet-in-the-middle attack the effective security it provides is only 112 bits. A

variant, called two-key TDES (2TDES), uses k1 = k3, thus reducing the key size to 112 bits

and the storage length to 128 bits. However, this mode is susceptible to certain chosen-

plaintext or known-plaintext attacks and thus it is officially designated to have only 80-bits

of security [6].

TDES is slowly disappearing from use, largely replaced by its natural successor, the

Advanced Encryption Standard (AES). One large-scale exception is within the electronic

2.4.3.1 Algorithm.

http://en.wikipedia.org/wiki/Meet-in-the-middle_attack
http://en.wikipedia.org/wiki/Group_%28mathematics%29
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Key_%28cryptography%29
http://en.wikipedia.org/wiki/Chosen-plaintext_attack
http://en.wikipedia.org/wiki/Chosen-plaintext_attack
http://en.wikipedia.org/wiki/Known-plaintext_attack
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

17

payments industry, which still uses 2TDES extensively and continues to develop and

promulgate standards based upon it (e.g. EMV, available from EMVCo). This guarantees

that TDES will remain an active cryptographic standard well into the future [6].

By design, DES and therefore TDES suffer from slow performance in software; on

modern processors, AES tends to be around six times faster. TDES is better suited to

hardware implementations, and indeed where it is still used it tends to be with a hardware

implementation (e.g., VPN appliances and the Nextel cellular and data network), but even

there AES outperforms it. Finally, AES offers markedly higher security margins: a larger

block size, potentially longer keys, and as of 2006, no known public cryptanalytic attacks

[6].

2.4.4. SSL

Secure Sockets Layer (SSL), are cryptographic protocols which provide secure

communications on the Internet for such things as web browsing, e-mail, Internet faxing,

and other data transfers. There are slight differences between SSL 3.0 and TLS 1.0, but the

protocol remains substantially the same. The term "TLS" as used here applies to both

protocols unless clarified by context [7].

The SSL protocol allows client/server applications to communicate in a way

designed to prevent eavesdropping, tampering, and message forgery. SSL provides

endpoint authentication and communications privacy over the Internet using cryptography.

Typically, only the server is authenticated (i.e., its identity is ensured) while the client

remains unauthenticated; this means that the end user (be that a person, or an application

such as a web browser), can be sure of whom they are "talking" to. The next level of

security - both ends of the "conversation" being sure of whom they are "talking" to - is

http://en.wikipedia.org/wiki/EMV
http://www.emvco.com/
http://en.wikipedia.org/wiki/VPN
http://en.wikipedia.org/wiki/Nextel
http://en.wikipedia.org/wiki/Cryptographic_protocol
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Web_browsing
http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/Internet_fax
http://en.wikipedia.org/wiki/Client/server
http://en.wikipedia.org/wiki/Eavesdropping
http://en.wikipedia.org/wiki/Tampering
http://en.wikipedia.org/wiki/Message_forgery
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Cryptography

18

known as mutual authentication. Mutual authentication requires public key infrastructure

(PKI) deployment to clients [7].

SSL involves three basic phases:

1. Peer negotiation for algorithm support

2. Public key encryption -based key exchange and certificate-based authentication

3. Symmetric cipher -based traffic encryption

During the first phase, the client and server negotiation uses cryptographic

algorithms. Current implementations support the following choices:

• for public-key cryptography: RSA, Diffie-Hellman, DSA or Fortezza;

• for symmetric ciphers: RC2, RC4, IDEA, DES, Triple DES, AES or Camellia;

• for one-way hash functions: MD2, MD4, MD5 or SHA.

 The SSL protocol exchanges records; each record can be optionally

compressed, encrypted and packed with a message authentication code (MAC). Each

record has a content_type field that specifies which upper level protocol is being used [7].

When the connection starts, the record level encapsulates another protocol, the

handshake protocol, which has content_type 22.

The client sends and receives several handshake structures [7]:

• It sends a ClientHello message specifying the list of cipher suites, compression

methods and the highest protocol version it supports. It also sends random bytes

which will be used later.

2.4.4.1 How it works.

http://en.wikipedia.org/wiki/Public_key_infrastructure
http://en.wikipedia.org/wiki/Public_key
http://en.wikipedia.org/wiki/Symmetric_key
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Diffie-Hellman
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Fortezza
http://en.wikipedia.org/wiki/RC2
http://en.wikipedia.org/wiki/RC4_%28cipher%29
http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Triple_DES
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Camellia_%28cipher%29
http://en.wikipedia.org/wiki/MD2
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/SHA_family
http://en.wikipedia.org/wiki/Message_authentication_code

19

• Then it receives a ServerHello, in which the server chooses the connection

parameters from the choices offered by the client earlier.

• When the connection parameters are known, the client and server exchange

certificates (depending on the selected public key cipher). These certificates are

currently X.509, but there is also a draft specifying the use of OpenPGP based

certificates.

• The server can request a certificate from the client, so that the connection can be

mutually authenticated.

• The client and server negotiate a common secret called the "master secret", possibly

using the result of a Diffie-Hellman exchange, or simply encrypting a secret with a

public key that is decrypted with the peer's private key. All other key data is

derived from this "master secret" (and the client- and server-generated random

values), which is passed through a carefully designed "pseudorandom function".

SSL have a variety of security measures [7]:

• Numbering all the records and using the sequence number in the MACs.

• Using a message digest enhanced with a key (so only with the key can you check

the MAC). This is specified in RFC 2104.

• Protection against several known attacks (including man in the middle attacks), like

those involving a downgrade of the protocol to a previous (less secure) version or a

weaker cipher suite.

• The message that ends the handshake ("Finished") sends a hash of all the

exchanged data seen by both parties.

http://en.wikipedia.org/wiki/X.509
http://en.wikipedia.org/wiki/OpenPGP
http://en.wikipedia.org/wiki/Diffie-Hellman
http://en.wikipedia.org/wiki/Pseudorandomness
http://tools.ietf.org/html/rfc2104
http://en.wikipedia.org/wiki/Man_in_the_middle_attack

20

• The pseudorandom function splits the input data in half and processes each one

with a different hashing algorithm (MD5 and SHA), then XORs them together.

This provides protection if one of these algorithms is found to be vulnerable.

 SSL runs on layers beneath application protocols such as HTTP, FTP,

SMTP and NNTP, and above the TCP or UDP transport protocol, which form part of the

TCP/IP protocol suite. While it can add security to any protocol that uses reliable

connections (such as TCP), it is most commonly used with HTTP to form HTTPS. HTTPS

is used to secure World Wide Web pages for applications such as electronic commerce.

SMTP is also an area in which TLS has been growing and is specified in RFC 3207. These

applications use public key certificates to verify the identity of endpoints [7].

An increasing number of client and server products support SSL natively, but many

still lack support. As an alternative, users may wish to use standalone SSL products like

Stunnel. Wrappers such as Stunnel rely on being able to obtain a SSL connection

immediately, by simply connecting to a separate port reserved for the purpose. For

example, by default the TCP port for HTTPS is 443, to distinguish it from HTTP on port

80. However, in 1997 the Internet Engineering Task Force recommended that application

protocols always start unsecured and instead offer a way to upgrade to SSL - which a pure

wrapper like Stunnel cannot cope with [7].

SSL can also be used to tunnel an entire network stack to create a VPN, as is the case

with OpenVPN.

SSL operates in modular fashion. It is extensible by design, with support for forward

and backward compatibility and negotiation between peers [7].

2.4.4.2 Applications.

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/SHA
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/SMTP
http://en.wikipedia.org/wiki/Network_News_Transfer_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Internet_protocol_suite
http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Electronic_commerce
http://tools.ietf.org/html/rfc3207
http://en.wikipedia.org/wiki/Public_key_certificate
http://en.wikipedia.org/wiki/Stunnel
http://en.wikipedia.org/wiki/IETF
http://en.wikipedia.org/wiki/Virtual_Private_Network
http://en.wikipedia.org/wiki/OpenVPN
http://en.wikipedia.org/wiki/Peer-to-peer

21

2.4.5. AES

 Unlike AES’ predecessor DES, Rijndael is a substitution

permutation network, not a Feistel network. AES is fast in both software and hardware, is

relatively easy to implement, and requires little memory. As a new encryption standard, it

is currently being deployed on a large scale [8].

 AES is not precisely Rijndael as Rijndael supports a

larger range of block and key sizes; AES has a fixed block size of 128 bits and a key size

of 128, 192 or 256 bits, whereas Rijndael can be specified with key and block sizes in any

multiple of 32 bits, with a minimum of 128 bits and a maximum of 256 bits [8].

The key is expanded using Rijndael's key schedule.

Most of AES calculations are done in a special finite field.

AES operates on a 4×4 array of bytes, termed the state (versions of Rijndael with a

larger block size have additional columns in the state). For encryption, each round of AES

(except the last round) consists of four stages [8]:

1. AddRoundKey: each byte of the state is combined with the round key; each round

key is derived from the cipher key using a key schedule.

2. SubBytes a non-linear substitution step where each byte is replaced with another

according to a lookup table.

3. ShiftRows: a transposition step where each row of the state is shifted cyclically a

certain number of steps.

4. MixColumns: a mixing operation which operates on the columns of the state,

combining the four bytes in each column using a linear transformation.

2.4.5.1 Development.

2.4.5.2 Description of the cipher.

http://en.wikipedia.org/wiki/Substitution-permutation_network
http://en.wikipedia.org/wiki/Substitution-permutation_network
http://en.wikipedia.org/wiki/Feistel_network
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Block_size_%28cryptography%29
http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Key_schedule
http://en.wikipedia.org/wiki/Rijndael_S-box

22

The final round replaces the MixColumns stage with another instance of

AddRoundKey.

Figure 2.5. In the AddRoundKey step, each byte of the state is combined with a byte

of the round subkey using the XOR operation.

In the AddRoundKey step, the subkey is combined with the state. For each round, a

subkey is derived from the main key using Rijndael's key schedule; each subkey is the

same size as the state. The subkey is added by combining each byte of the state with the

corresponding byte of the subkey using bitwise XOR [8].

2.4.5.3 The AddRoundKey step.

2.4.5.4 The SubBytes step.

http://en.wikipedia.org/wiki/Image:AES-AddRoundKey.svg
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Key_%28cryptography%29
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Image:AES-SubBytes.svg
http://en.wikipedia.org/wiki/Image:AES-AddRoundKey.svg
http://en.wikipedia.org/wiki/Image:AES-SubBytes.svg

23

Figure 2.6. In the SubBytes step, each byte in the state is replaced with its entry in a

fixed 8-bit lookup table, S; bij = S(aij).

In the SubBytes step, each byte in the array is updated using an 8-bit S-box. This

operation provides the non-linearity in the cipher. The S-box used is derived from the

inverse function over GF(28), known to have good non-linearity properties. To avoid

attacks based on simple algebraic properties, the S-box is constructed by combining the

inverse function with an invertible affine transformation. The S-box is also chosen to avoid

any fixed points (and so is a derangement), and also any opposite fixed points [8].

Figure 2.7. In the ShiftRows step, bytes in each row of the state are shifted

cyclically to the left. The number of places each byte is shifted differs for each row.

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in

each row by a certain offset. For AES, the first row is left unchanged. Each byte of the

second row is shifted one to the left. Similarly, the third and fourth rows are shifted by

offsets of two and three respectively. For the block of size 128 bits and 192 bits the shifting

pattern is same. In this way, each column of the output state of the ShiftRows step is

composed of bytes from each column of the input state. (Rijndael variants with a larger

block size have slightly different offsets). In case of 256 bit block first row is unchanged

and the shifting for second, third and fourth row is 1 byte, 2 byte and 4 byte respectively -

2.4.5.5 The ShiftRows step.

http://en.wikipedia.org/wiki/Rijndael_S-box
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Inverse_function
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Derangement
http://en.wikipedia.org/wiki/Image:AES-ShiftRows.svg
http://en.wikipedia.org/wiki/Offset_%28computer%29
http://en.wikipedia.org/wiki/Image:AES-ShiftRows.svg

24

although this change only applies for the Rijndael cipher when used with a 256-bit block,

which is not used for AES [8].

Figure 2.8. In the MixColumns step, each column of the state is multiplied with a

fixed polynomial c(x).

In the MixColumns step, the four bytes of each column of the state are combined

using an invertible linear transformation. The MixColumns function takes four bytes as

input and outputs four bytes, where each input byte affects all four output bytes. Together

with ShiftRows, MixColumns provides diffusion in the cipher. Each column is treated as a

polynomial over GF(28) and is then multiplied modulo x4 + 1 with a fixed polynomial c(x)

= 3x3 + x2 + x + 2. The MixColumns step can also be viewed as a matrix multiply in

Rijndael's finite field [8].

 On systems with 32-bit or larger words, it is possible to

speed up execution of this cipher by converting the SubBytes, ShiftRows and

MixColumns transformations into tables. One then has four 256-entry 32-bit tables, which

utilizes a total of four kilobytes (4096 bytes) of memory--a kilobyte for each table. A round

2.4.5.6 The MixColumns step.

2.4.5.7 Optimization of the cipher.

http://en.wikipedia.org/wiki/Image:AES-MixColumns.svg
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Diffusion_%28cryptography%29
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Image:AES-MixColumns.svg

25

can now be done with 16 table lookups and 12 32-bit exclusive-or operations, followed by

four 32-bit exclusive-or operations in the AddRoundKey step [8].

If the resulting four kilobyte table size is too large for a given target platform, the

table lookup operation can be performed with a single 256-entry 32-bit table by the use of

circular rotates [8].

 As of 2006, the only successful attacks against AES have been side

channel attacks. The National Security Agency (NSA) reviewed all the AES finalists,

including Rijndael, and stated that all of them were secure enough for US Government

non-classified data. In June 2003, the US Government announced that AES may be used

for classified information [8]:

"The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and

256) are sufficient to protect classified information up to the SECRET level. TOP

SECRET information will require use of either the 192 or 256 key lengths. The

implementation of AES in products intended to protect national security systems and/or

information must be reviewed and certified by NSA prior to their acquisition and use." [8]

This marks the first time that the public has had access to a cipher approved by NSA

for TOP SECRET information. Many public products use 128-bit secret keys by default; it

is possible that NSA suspects a fundamental weakness in keys this short, or they may

simply prefer a safety margin for top secret documents (which may require security

decades into the future).

The most common way to attack block ciphers is to try various attacks on versions of

the cipher with a reduced number of rounds. AES has 10 rounds for 128-bit keys, 12

2.4.5.8 Security.

http://en.wikipedia.org/wiki/As_of_2006
http://en.wikipedia.org/wiki/Side_channel_attack
http://en.wikipedia.org/wiki/Side_channel_attack
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/US_Government
http://en.wikipedia.org/wiki/Classified_information
http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf

26

rounds for 192-bit keys, and 14 rounds for 256-bit keys. As of 2006, the best known

attacks are on seven rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for

256-bit keys.

Some cryptographers worry about the security of AES. They feel that the margin

between the number of rounds specified in the cipher and the best known attacks is too

small for comfort. The risk is that some way to improve these attacks might be found and

that, if so, the cipher could be broken. In this meaning, a cryptographic "break" is anything

faster than an exhaustive search, so an attack against 128-bit key AES requiring 'only' 2120

operations would be considered a break even though it would be, now, quite unfeasible. In

practical application, any break of AES which is only this 'good' would be irrelevant. For

the moment, such concerns can be ignored. The largest publicly-known brute force attack

has been against a 64 bit RC5 key by distributed.net (finishing in 2002; Moore's Law

implies that this is roughly equivalent to an attack on a 66-bit key as of December 2005).

Unlike most other block ciphers, AES has a very neat algebraic description.[4] This

has not yet led to any attacks, but some researchers feel that basing a cipher on a new

hardness assumption is risky. This has led Ferguson, Schroeppel, and Whiting to write,

"...we are concerned about the use of Rijndael [AES] in security-critical applications."

In 2002, a theoretical attack, termed the "XSL attack", was announced by Nicolas

Courtois and Josef Pieprzyk, showing a potential weakness in the AES algorithm. Several

cryptography experts have found problems in the underlying mathematics of the proposed

attack, suggesting that the authors may have made a mistake in their estimates. Whether

this line of attack can be made to work against AES remains an open question. For the

http://en.wikipedia.org/wiki/As_of_2006
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/RC5
http://en.wikipedia.org/wiki/Distributed.net
http://en.wikipedia.org/wiki/Moore%27s_Law
http://en.wikipedia.org/wiki/Algebra
http://www.isg.rhul.ac.uk/~sean/
http://en.wikipedia.org/wiki/2002
http://en.wikipedia.org/wiki/XSL_attack
http://en.wikipedia.org/wiki/Nicolas_Courtois
http://en.wikipedia.org/wiki/Nicolas_Courtois
http://en.wikipedia.org/wiki/Josef_Pieprzyk

27

moment, the XSL attack against AES appears speculative; it is unlikely that anyone could

carry out the current attack in practice [8].

 Side channel attacks do not attack the underlying cipher, but

attack implementations of the cipher on systems which inadvertently leak data.

In April 2005, D.J. Bernstein announced a cache timing attack that he used to break a

custom server that used OpenSSL's AES encryption. The custom server was designed to

give out as much timing information as possible, and the attack required over 200 million

chosen plaintexts. Some say the attack is not practical over the internet with a distance of

one or more hops; Bruce Schneier called the research a "nice timing attack." [8]

In October 2005, Adi Shamir and two other researchers presented a paper

demonstrating several cache timing attacks (PDF file) against AES. One attack was able to

obtain an entire AES key after only 800 writes, in 65 milliseconds. This attack requires the

attacker to be able to run programs on the same system that is performing AES encryptions

[8].

2.5. Development Platform

Mobile payment system is developed with C# in Microsoft .NET.

The system is run and tested with:

1. Microsoft Mobile Emulator Manager which is the mobile emulator solution

where mobile payment system is run and tested.

2. Active Synch which is used as a solution for synchronizing data flow in

between mobile device and PC.

2.4.5.9 Side channel attacks.

http://en.wikipedia.org/wiki/Side_channel_attack
http://en.wikipedia.org/wiki/Daniel_J._Bernstein
http://cr.yp.to/papers.html#cachetiming
http://en.wikipedia.org/wiki/OpenSSL
http://en.wikipedia.org/wiki/Bruce_Schneier
http://www.schneier.com/blog/archives/2005/05/aes_timing_atta_1.html
http://en.wikipedia.org/wiki/Adi_Shamir
http://www.wisdom.weizmann.ac.il/~tromer/papers/cache.pdf
http://en.wikipedia.org/wiki/PDF

28

Figure 2.9. Device Emulator Manager

The Microsoft Device Emulator (Figure 2.9) version 1.0 is a desktop application that

emulates the behavior of a Windows CE- or Windows Mobile-based hardware platform.

Using the Device Emulator, you can run, test, and debug a run-time image without the

need for a physical device.

Figure 2.10. ActiveSync

ActiveSync (Figure 2.10) allows you to create a synchronization relationship

between your mobile device and PC using a cable, cradle, Bluetooth, or infrared

connection. ActiveSync can also make it possible for your device to connect to other

resources through your PC.

2.5.1. Features of Mobile Device Emulator

29

Emulator runs code compiled for ARM processors rather than x86 processors. In

most cases, you can run the same binaries on the emulator as you do on the device.

Mobile device emulator supports synchronizing with ActiveSync. You can use the

emulator with a full ActiveSync partnership. With this feature you can debug applications

that are synchronizing, or use real synchronized data from within the emulator.

Supports more development environments, including Visual Studio 2005, Visual

Studio .NET 2003, and embedded Visual C++ 4.0 (Service Pack 4)—all using ActiveSync.

Supports GAPI. You can write and debug games on this emulator. (Figure 2.11)

Figure 2.11. Pocket PC Emulator 2003

30

3.DESIGN AND IMPLEMENTATION OF A SECURE MOBILE

PAYMENT SYSTEM

3.1. Security Features

3.1.1. SHA1

Authentication is done by username and password. User password is hashed with

SHA1 algorithm and hashed outcome is stored in the database in order to secure password

data in database. (Figure 3.1)

In cases, where application and databases located in different servers, hashing of

password with SHA1 prevents account data to be hacked on any intrusion attempt.

In mobile bank application, we hashed password, also accounts username can be

hashed and stored with SHA1.

Figure 3.1. Implementation of SHA-1 on Mobile Payment system.

31

3.1.2. 3DES

All data flow between mobile terminal, merchant and bank is being encrypted with

3DES algorithm in order to maintain a high level security for the data being exchanged

between clients and the server. A 192 bit random number array is selected as 3DES key.

(Figure 3.2)

Figure 3.2. Implementation of 3DES Encryption on Mobile Payment system.

Crypted data is being received from other party is decrypted as shown in Figure 3.3

below:

32

Figure 3.3. Implementation of 3DES Decryption on Mobile Payment system.

3.1.3. SSL

Mobile Payment System is 128 bit SSL certified.

3.1.4. One Time Password

The purpose of a one-time password (OTP) is to make it more difficult to gain

unauthorized access to restricted resources, like a computer account. Traditionally static

passwords can more easily be accessed by an unauthorized intruder given enough attempts

and time. By constantly altering the password, as is done with a one-time password, this

risk can be greatly reduced.

There are basically three types of one-time passwords: the first type uses a

mathematical algorithm to generate a new password based on the previous, a second type

that is based on time-synchronization between the authentication server and the client

providing the password, and a third type that is again using a mathematical algorithm, but

the new password is based on a challenge (e.g. a random number chosen by the

authentication server or transaction details) and a counter instead of being based on the

previous password.

Mobile Payment system generated OTP as taking a memory location from system

memory block and gets time information of the system. Basically random alphanumeric

characters are being selected and randomly queued as a byte array. This array maintains

33

the timing interval for checking the system time. According to the seed integer data

developed, .Net random function generates one time password.

3.2. Payment Processes

All stores serving mobile payment opportunity to their customers has a unique

ShopID given from the mobile payment Bank.

The customer can buy a product/service with their mobile phone or PDA without

paying cash and using their credit card in this mobile payment system (Figure 3.4)

Figure 3.4. Mobile payment system

This mobile payment processes are explained below:

3.2.1. Authentication

User requests mobile payment password with mobile device (GSM, PDA, etc.).

Mobile user enters UserID and sends a request to the server.

Bank sends a one time password to the GSM number of the customer who has the

UserID sent within the password request.

34

One time password assures that authentication will be achieved with the person who

has the mobile number associated with the concerned UserID. (Figure 3.5)

Figure 3.5. One-time password process in authentication

User browses the mobile payment address on mobile terminal.

http://10.0.0.1/mobilbank/ShopOperation.aspx

Figure 3.6. Login screen on PDA

http://10.0.0.1/mobilbank/ShopOperation.aspx

35

Figure 3.7. Authentication on mobile device.

Customer is asked to enter user ID and password. (Figure 3.6) The username and

hashed password data transferred to bank. . (Figure 3.7)

Figure 3.8. Hashed password stored in database.

The user name and hashed password is verified with the database (Figure3.8) data

and a session is created between mobile terminal and bank server. (Figure 3.9)

Figure 3.9.Session is created between bank and mobile terminal.

36

3.2.2. Ordering Request

Customer logs into the mobile payment interface, enters the ShopID and the amount

of money for the payment. The mobile terminal passes this data to the bank. (Figure 3.10)

Figure 3.10. Ordering from mobile terminal.

3.2.3. Order Confirmation

Once the transaction accomplished, bank sends the confirmation message to the

mobile terminal of customer. (Figure 3.11)

Figure 3.11. Transaction confirmation.

37

3.2.4. Shop Interface

The shop gets authenticated to the shop interface of mobile payment system with

ShopID and password. This authentication is done with SHA1 hashing.

All transaction data concerning that shop is shown in real time in the shop terminal.

Customer transaction data is confirmed by shop through the system and afterwards the

purchased good/service is given to customer together with the bill (Figure 12).

$

Bank

Source

Store

User ID
Password

Session

3DES

MD5

Store Terminal

Tr
an

sa
ct

io
n

D
at

a
(R

ea
l T

im
e)

SSL

Figure 3.12. Shop mobile payment management process.

3.3. Application Fields:

The developed mobile payment system can be used in a variety of application fields.

38

3.3.1. Banks:

Banks can serve mobile line subscribers mobile payment opportunity. Account data

of the customers can be matched and synchronized with their mobile phone numbers and

mobile bank UserID. The shops which are in this system can serve customers without

using credit card or cash.

In case a secure mobile payment system is assured by the banks, the customers will

prefer using this payment medium rather than credit cards which have so fragile security

system.

The mobile terminals (GSM phones, PDA’s) are more likely to be electronic wallets

in near future.

3.3.2. GSM Operators

 GSM Operators can serve mobile payment, whether they match credit card info of

the customers with their mobile payment account so that whenever the customer issues a

transaction, the payment is done from his/her credit card. Operator can also issue the

transaction to the mobile bill of the customer.

In Turkey, Turkcell is a good example for mobile payment service. The service is

called “Mobil Ödeme”. The customers can use SMS, WAP and voice message to but a

service/product. Several organizations from different sectors that got into this mobile

payment system are: Airways, fast-food restaurants, online shops, Turkcell billing, marine

transport companies, natural gas providers, press distributor organizations.

3.3.3. Stock Exchange Agents

Stock Exchange operations can be served by stock operation agent companies. The

customers can give buy/sell orders from their mobile terminals.

The data flow in stock exchange is rather rapidly than other sectors data flow.

Therefore, mobile medium for knowledge distributions and transactional order issuing over

mobile medium is a vital solution for stock exchange operations.

39

3.4. Database Tables

We used Ms-SQL 2005 database management system. Figure 3.13 shows database

tables of the developed system.

Figure 3.13 Database tables of Mobile Payment System

40

4.TESTS

4.1. Hashing Test

The password data is being stored in MS-SQL 2005. The SHA-1 hashing algorithm

produces the “8CB2237D0679CA88DB6464EAC60DA96345513964” as hashed word for

“12345”.

The hashed code in database is also the same. (Figure 4.1)

Figure 4.1. Password is stored hashed with SHA-1.

4.2. TriDES Test

Figure 4.2. The Un-encrypted Text

In order to test 3des encryption functionality we tracked encryption and decryption

results. txtMagazaKodu.Text is assigned “Magaza” as unencrypted. The

41

CurrentShop.ShopCode is the encrypted “txtMagazaKodu.Text” with 3DES and crypted

word is shown in Figure 4.3.

Figure 4.3. The encrypted binary array of txtMagazaKodu.

4.3. One-Time Password Test

On customer authentication stage, several one time passwords requested as a stress

test. All one time passwords created uniquely. Received new created one time passwords,

didn’t cause any login problems.

42

5.CONCLUSIONS

In this thesis, a secure mobile payment (MP) system is developed. Mobile payment

system gives customers the opportunity of purchasing good and services from the shops

without using credit card and cash. MP uses some security standards in order to serve

secure transactions and mobile payment services.

The SHA-1 hashing, 3DES cryptography and one-time password over SSL methods

are used in order to achieve secure system.

5.1. Future Work

• Hashing method can be upgraded to SHA-512

• AES can be implemented to ensure more secure cryptography

• Personalized graphical selection indicators can be implemented during the

authentication process.

43

6.APPENDIX A: FLOWCHART

44

7. REFERENCES

1. Mobile Payment Forum White Paper, “Enabling Secure, Interoperable, and User-

friendly Mobile Payments ”, December 2002,http://www.mobilepaymentforum.org/

2. Emilie Valcourt, Jean-Marc Robert and Francis Beaulieu, “Investigating mobile

payment: supporting technologies, methods, and use”, 2005, IEEE

3. Jerome Swartz, “Security systems for a mobile world”, Symbol Technologies, Inc.,

One Symbol Plaza, Holtsville, NY 11742, USA

4. http://en.wikipedia.org/wiki/Md5

5. http://en.wikipedia.org/wiki/SHA-1

6. http://en.wikipedia.org/wiki/3DES

7. http://en.wikipedia.org/wiki/SSL

8. http://en.wikipedia.org/wiki/One_time_password

9. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

http://www.mobilepaymentforum.org/
http://en.wikipedia.org/wiki/Md5
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/3DES
http://en.wikipedia.org/wiki/SSL
http://en.wikipedia.org/wiki/One_time_password
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

	MS Thesis kapak 050207.doc
	Tez.pdf
	Pages from indeks.pdf
	Thesis içerik.pdf

