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ABSTRACT

DESIGN AND OPTIMIZATION OF A FUZZY-NEURAL

HYBRID CONTROLLER STRUCTURE FOR A

RUBBERTUATOR ROBOT USING

GENETIC ALGORITHMS

This study presents a combination of soft computing techniques, namely back

propagation neural network, fuzzy and genetic algorithms that are used to control the

Bridgestone Hybrid Robot Arm (BHRA).

The workspace of the BHRA’s end effector is divided into small segments and the

trajectory independent parameters of all these segments are learned by training small

size (only three nodes) neural networks for each segment. The structure of these neural

networks is based on the physical model, which is derived from the Language-Euler

mechanics of the robot arm. To maintain continuity on the small neural networks, we

use a basic fuzzy algorithm whose fuzzy membership function parameters are optimized

by genetic algorithm (GA). The proposed technique’s performance was compared with

only-neural network controller and shown to be more accurate in trajectory control for

rubbertuator robots.

The main goal of this study is to maintain a better off-line control on the rubber-

tuators by using only small size (3 nodes and one hidden layer) neural networks and a

simple fuzzy algorithm with minimal linguistic variables and minimal number of rules.

On the other hand, finding a better off-line control ensures that small learning rates

will be sufficient for future on-line training control, and choosing small learning rates

will decrease the prospect of divergence and the risk of instability in control.
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ÖZET

KAUÇUK EYLEYİCİLERDEN OLUS.AN BİR ROBOT

KOLU İÇİN,MELEZ BULANIK MANTIK-YAPAY SİNİR

AG̃LARI İLE DENETİM YAPISININ TANIMLANMASI VE

GENETIK ALGORİTMALARLA ENİYİLENMESİ

Bu çalıs.ma, Bridgestone firmasının ürettig̃i, motor ve kauçuk eyleyicilerden

olus.an bir robot kolunun denetimini için, geri yayılım yapay sinir ag̃ları,bulanık mantık

ve genetik algoritmaları gibi esnek yöntemlerin, kullanımını kapsamaktadır.

Robot kolunun, uç is.levcisinin çalıs.ma alanı küçük parçalara ayrılıp, her bir

parçanın, yörüngeden bag̃ımsız parametreleri, küçük yapay sinir ag̃ları kullanılarak

ög̃renilmis.tir. Bu küçük yapay sinir ag̃larının yapısı, robot kolunun Langrage - Euler

mekanig̃ine dayanmaktadır. Bu yapay sinir ag̃ları arasında süreklilig̃i sag̃layabilmek

için, üyelik fonksiyonu deg̃is.kenleri, genetik algoritmalarla eniyilenmis. basit bir bu-

lanık mantık yöntemi kullanılmıs.tır. Yörünge izlemede, önerilen yöntemin performansı,

sadece yapay sinir ag̃larından olus.an denetleyicinin performansından daha iyi oldug̃u

gösterilmis.tir.

Bu çalıs.manın asıl amacı, küçük yapay sinir ag̃ları( 3 düg̃üm ve bir gizli katman-

dan olus.an) ve minimum sayıda dilbilimsel deg̃is.kenler ve kuralları olan bulanık mantık

ile, kauçuk eyleyiciler üzerinde, iyi bir çevrimdıs.ı denetim sistemi gelis.tirmektir.Dig̃er

taraftan,daha iyi bir çevrimdıs.ı denetiminin bulunması, gelecekte kullanılacak çevrimiçi

denetiminde, daha küçük ög̃renme katsayısı kullanılabilmesini sag̃layacaktır ve bu da,

ıraksama ve kararsızlık ihtimalini azaltacaktır.
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1. INTRODUCTION

Robot manipulators have become very important in the field of flexible automa-

tion. Electric actuators are widely used in robot manipulators and automation systems,

due to their advantages of precise control, portability, and cleanliness. However, they

also have some disadvantages like large size-to-torque ratio, proneness to environmental

hazards such as fire, dirt, and moisture and so on. As a result, the robotics community

has been investigating a wide range of actuators for alternatives, especially for the

tasks involving human-machine interactions [1].

Rubbertuators (Rubber-Actuator or Pneumatic Muscles), provide an important

safe human-robot-cooperation technology that can be used in manipulation, automa-

tion and robotic tasks. Lightweight, high power-weight ratio, compliant and spark free

nature properties make the rubbertuators advantageous over rigid-classical manipula-

tors especially in explosive and human-robot interaction environments.

A pneumatic drive system using rubbertuators has features of low friction, high

compliance and large power height ratio. However, it has been difficult to get the

satisfactory tracking performance for the reference trajectory because of the high com-

pressibility of air, poor damping ability, the strong nonlinearity of rubbertuator and

the time lag of valve operation [2].

Accordingly, the application of a new control strategy is expected to overcome

some of the difficulties mentioned above. In the last decade, techniques based on fuzzy

systems, neural networks, genetic algorithms, and various methods of probabilistic

reasoning could offer solutions to highly nonlinear systems [3]. So, in the previous

study of a pneumatically driven rubbertuator robot arm, a Bridgestone Hybrid Robot

Arm (BHRA) shown in Figure 1.1, with one translate-joint and four rotary joints is the

plant to be controlled. The physical model of the robot dynamics is combined with a

multi-layer backpropagation neural network system. The approach taken proved to be

more advantageous in solving a real life problem, and the resulting trajectory control
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performance was superior when compared to a well-tuned PID controller output that

has been utilized in commercial versions of the same robot system [3]. Nevertheless,

the linear PID algorithm might be insufficient to deal with processes with complex

dynamics, such as those with large dead time and highly nonlinear characteristics [4].

Figure 1.1. Bridgestone Hybrid Robot Arm (BHRA)

1.1. Objective

The main objective of this research is to develop a better off-line fuzzy-neural

hybrid controller for BHRA by using only small size (3 nodes and one hidden layer)

neural networks and a simple fuzzy algorithm with minimal linguistic variables and

minimal number of rules.
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1.2. Methodology

Neural networks are essentially low-level computational structures and algorithms

that offer good performance in dealing with sensory data, while fuzzy logic techniques

often deal with issues such as reasoning on a higher level than neural networks. How-

ever, since fuzzy systems do not have much learning capability, it is difficult to tune the

fuzzy rules and membership functions from the training data set.On the other hand,

as the internal layers of neural networks are always opaque to the user, the mapping

rules in the network are not visible and are difficult to understand; furthermore, the

convergence of learning is usually very slow and is not guaranteed. Thus, a promising

approach for reaping the benefits of both fuzzy systems and neural networks is to merge

or fuse them into an integrated system [5]. In this thesis, the learning capability of the

neural networks is used to learn the trajectory independent parameters and the fuzzy

system is used to manage these neural networks in order to improve the trajectory

tracking performance of BHRA.

In a fuzzy-neural hybrid system, both fuzzy logic techniques and neural networks

are utilized separately to establish two decoupled subsystems which perform their own

tasks in serving different functions in the combined system. The architecture of fuzzy-

neural hybrid systems is usually application-oriented. Making use of their individual

strengths, fuzzy logic and neural network subsystems complement each other efficiently

and effectively to achieve a common goal [5].

In the fuzzy-neural hybrid control structure of BHRA, the physical model of the

robot dynamics is combined with a multi-layer backpropagation neural network system.

In order to decrease the nonlinear terms, the workspace of the end effector is divided

into 4 degree segments, and for each segment, a neural network is trained using the

physical model of the system. Another fact, that has to be taken into account, is the

hysteretic properties of the rubbertuators. In order to overcome the hysteresis problem

of the rubbertutors, two neural networks are used for forward and backward direction

of the motion. The discrete consecutive neural networks are combined by using a fuzzy

algorithm to get a better and smooth control system for BHRA. The weights of the
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rules are determined using genetic algorithm.

1.3. Approach to the Problem and Organization of the Thesis

First, in Chapter 2, the system architecture of the robot arm will be introduced.

In Chapter 3, the direct and inverse kinematic analysis will be explained for a three-

link planar manipulator. In Chapter 4, the fuzzy-neural hybrid control structure of

BHRA will be explained. In Chapter 5, the trajectory tracking performance results

of the fuzzy-neural hybrid control system and the only-neural control system will be

presented. In Chapter 6, details of OpenGL-C++ based animation software will be ex-

plained. In Chapter 7, a summary of the study, its results, conclusions and suggestions

for further work on the subject will be given.
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2. SYSTEM ARCHITECTURE

Originally, the BHRA was designed for painting applications on a horizontal sur-

face by moving the arm back and forth. Several painting trajectories were downloaded

into the memory of the ex-control system, which used to be a transputer. Transputer

is the name of a series of processors produced by INMOS. Transputer has a RISC

architecture designed to support parallel processing at the lowest processing level [6].

The old system architecture of the BHRA is show in Figure 2.1.

Figure 2.1. The old system architecture of BHRA

In the modernization of BHRA, first, the control system has been changed, be-

cause the existing system could not supply a real-time control on BHRA. On the other

hand, the SVOs( servo valves ) have been changed to overcome the hysteresis problem

of the rubbertuators.The new system architecture of the BHRA is show in Figure 2.2.
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Figure 2.2. The new system architecture of BHRA

2.1. The System Components

The hardware structure of the system is composed of power supply, motors, servo

valves, pressure transmitters, limit switches and encoders.

2.1.1. The Power Supply

The old system was designed for 3 phase- 200V AC power supply, which is 3

phase standard in Japan. In order to use it in Turkey, Delta-Delta type 380V AC-3

phase to 200V AC-3 phase transformer is used. The wiring digram of the power supply

of the system is shown in Figure 2.3.
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Figure 2.3. The wiring diagram of the power supply

2.1.2. The Motors and The Switches

There are three motors and six limit switches. Motor 1, shown in Figure 1.1, is a

three phase-100V AC motor. The speed references of the motors are given by the motor

control card as voltage references, shown in Figure 2.4, 2.5, 2.6. The end switches of

the Motor1 give simple contact outputs and these outputs activate 24V relays, in order

to send ”limit switch high” or ”limit switch low” signal to the motor control card.

The limit switches of the Motor2 and Motor3 give current outputs and these

outputs are converted to contact output by a curent-contact converter, shown in Fig-

ure 2.5, 2.6, in order to send limit switch high or limit switch low signal to the motor

control card.
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Figure 2.4. The wiring diagram of Motor1

Figure 2.5. The wiring diagram of Motor2
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Figure 2.6. The wiring diagram of Motor3

2.1.3. The Servo Valves and The Pressure Transmitters

Servo valve is the unit to control the pressure of the air in the rubbertuators by

electrical voltage input.The voltage input should be in the range of 0V and 10V. The

output, the controlled pressure, is linearly proportional to the electrical voltage input.

The wiring diagram of the servo valves is shown in Figure 2.7.

The pressure transmitter is the unit to measure the air pressure in the rubbertua-

tors. The voltage output of the transmitters is between 0V and 5V.The wiring diagram

of the pressure transmitters is shown in Figure 2.8. To filter the voltage output of the

transmitters, a simple RC filter is used for each channel.

2.1.4. The Emergency System

In order to maintain the safety, the system cuts off the power of the motors in

such cases:
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Figure 2.7. The wiring diagram of the servo valves

Figure 2.8. The wiring diagram of the pressure transmitters
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• If the red-emergency alarm button is pressed,

• If the current consumption of the Motor1 is very high,

• If the over heat sensor of the Motor2 is on,

• If the over heat sensor of the Motor3 is on,

The wiring diagram of the emergency system is shown in Figure 2.9.

Figure 2.9. The wiring diagram of the emergency system
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3. ROBOT KINEMATICS

A manipulator can be schematically represented from a mechanical viewpoint as

a kinematic chain of rigid bodies (links) connected by means of revolute or prismatic

joints. One end of the chain is constrained to a base, while an end effector is mounted

to the other end. The resulting motion of the structure is obtained by composition

of the elementary motions of each link with respect to the previous one. Therefore,

in order to manipulate an object in space, it is necessary to describe the end-effector

position and orientation [7].

Three electric motors and four rubbertuators drive the five-degree of freedom

robot BHRA shown in Figure 1.1. The first joint, θ1, is a translate joint moving the

robot arm along the x-axis. The next two joints, θ2 and θ3 are the rotary joints.

The two rubbertuator joints with angles of rotations θ4 and θ5 are differential pairs

responsible for the approach and the orientation angles.

This chapter is dedicated to the derivation of the direct kinematics. The Denavit-

Hartenberg convention [8], which will allow the end-effector position and orientation

to be expressed as a function of the joint variables of the mechanical structure with

respect to a reference frame, shown in Figure 3.1, and to construct the direct kine-

matics function by composition of the individual coordinate transforms expressed by

Equation 3.1 into one homogenous transformation matrix as in Equation 3.2.

Ai−1
i (qi) =




Cosθi −SinθiCosαi SinθiSinαi aiCosθi

Sinθi CosθiCosαi −CosθiSinαi aiSinθi

0 Sinαi Cosαi di

0 0 0 1




(3.1)

where ai is the normal distance from zi to zi−1 measured along xi, αi is the angle

between zi and zi+1 measured about xi, di is the distance from xi−1 to xi measured

along zi−1, θi is the angle between xi−1 to xi measured about zi−1, qi is the joint
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variable.

Figure 3.1. The Denavit-Hartenberg link relationship [8]

T 0
n(q) = A0

1(q1)A
1
2(q2) . . . An−1

n (qn) (3.2)

The chapter ends with the derivation of solutions to the inverse kinematics problem,

which consists of the determination of the joint variables corresponding to a given

end-effector configuration.

3.1. Direct Kinematics

The BHRA corresponds to a three-link planar arm with an additional translate

joint, θ1 along the x-axis and the orientation joint, θ5 about the end-effector, shown

in Figure 1.1. In this respect,finding the direct and inverse kinematics of the translate

joint and the orientation joint are very simple. On the other hand, finding the direct

and inverse kinematics of revolute joints, θ2, θ3 and θ4 are not as simple as the others.

In order to find direct kinematics of a three-link planar arm, the coordinate frames

and Denavit-Hartenberg parameters [8] are attached to the arm, shown in Figure 3.2

and in Table 3.1. The lenghts of the links are l1, l2, l3. The corresponding homogeneous
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link transformations are obtained by inserting the Denavit-Hartenberg parameters from

Table 3.1 into Equation 3.1 and shown in Equations 3.3, 3.4, 3.5.

Figure 3.2. The coordinate frame attachment to three-link planar manipulator

Table 3.1. The Denavit-Hartenberg Parameters

Link i αi di νi

1 0 l1 θ2

2 0 l2 θ3

3 0 l3 θ4

A0
1 =




C2 −S2 0 l1C2

S2 C2 0 l1S2

0 0 1 0

0 0 0 1




(3.3)
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A1
2 =




C3 −S3 0 l2C3

S3 C3 0 l2S3

0 0 1 0

0 0 0 1




(3.4)

A2
3 =




C4 −S4 0 l3C4

S4 C4 0 l3S4

0 0 1 0

0 0 0 1




(3.5)

where Ci=Cosθi, Si=Sinθi. Using the homogenous transformation matrix equation as

in 3.2:

T 0
3 = A0

1A
1
2A

1
3 (3.6)

T 0
3 =




C234 −S234 0 l1C2 + l2C23 + l3C234

S234 C234 0 l1S2 + l2S23 + l3S234

0 0 1 0

0 0 0 1




(3.7)

where Cijk=Cos(θi + θj + θk), Sijk=Sin(θi + θj + θk). So the end-effector position will

be:

Px = l1C2 + l2C23 + l3C234 (3.8)

Py = l1S2 + l2S23 + l3S234 (3.9)

Pz = 0 (3.10)
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3.2. Inverse Kinematics

The direct kinematics equation, in the form of Equation 3.2 establishes the func-

tional relationship between the joint variables and the end-effector position. The inverse

kinematics problem consists of the determination of the joint variables corresponding

to a given end-effector position and orientation. The solution to this problem is of

fundamental importance in order to transform the motion specifications, assigned to

the end-effector in the operational space, into the corresponding joint space motions

that allow execution of the desired motion [7].

It is desired to find the joint variables θ2, θ3, θ4 corresponding to a given end-

effector position and orientation. Using algebraic solution technique and having spec-

ified the orientation, the relation will be:

φ = θ2 + θ3 + θ4 (3.11)

which is one of the equations of the system to solve. From Equation 3.7 the following

equations can be obtained:

PWx = Px − l3Cφ = l1C1 + l2C12 (3.12)

PWy = Py − l3Sφ = l1S1 + l2S12 (3.13)

which describe the position of point W . Squaring and summing the two Equations 3.12

and 3.13:

P 2
Wx + P 2

Wy = l21 + l22 + 2l1l2C2 (3.14)
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from Equation 3.14,

C3 =
P 2

Wx + P 2
Wy − l21 − l22
2l1l2

(3.15)

The solution of Equation 3.15, C3 can be between -1 and 1 but from the mechanical

constraints of the robot arm, it can

S3 =
√

1− C2
3 (3.16)

θ3 = Atan2(S3, C3) (3.17)

Having determined θ3, the angle θ2 can be found by substituting θ3 into Equation 3.14.

S2 =
(l1 + l2C3)PWy − l2S3PWx

P 2
Wx + P 2

Wy

(3.18)

C2 =
(l1 + l2C3)PWx + l2S3PWy

P 2
Wx + P 2

Wy

(3.19)

So θ2 is

θ2 = Atan2(S2, C2) (3.20)

Finally, the angle θ4 will be:

θ4 = φ− θ2 − θ3 (3.21)
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4. FUZZY-NEURAL HYBRID CONTROL STRUCTURE

The BHRA control loop comprises two trained neural network, PONNET ( Posi-

tion Control Neural Network ) and ANNET ( Actuator Control Neural Network ), and

one FPONNET ( Fuzzy Position Control Neural Network ) for each rubbertuators and

MONNET ( Motor Control Neural Network ) for each motor, shown in Figure 4.1.

Figure 4.1. BHRA Open Loop Control Structure

The desired trajectory is given to the system and using inverse kinematics and

dynamics, the desired angular position, velocity and acceleration are found. The PON-

NET takes the results of the inverse kinematics block and produces two pressure values

such as the desired degree’s PONNET result, the previous degree segment’s PONNET

result using the desired degree or the next degree segment’s PONNET result using the

desired degree. The FPONNET uses these two pressure values to compute the desired
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pressure by combining the two pressure values. The ANNET is used to compensate

the delay by using a second order delay function. The output of the ANNET is the

desired control voltage reference for the rubbertuators’ servo valves. The MONNET

is a very simple neural network system to control the motors, which takes the desired

trajectory and produces the velocity references as voltage outputs.

4.1. The Artificial Neural Networks

Artificial Neural Networks (ANNs) mimic biological information processing mech-

anisms. They are typically designed to perform a nonlinear mapping from a set of in-

puts to a set of outputs. ANNs are developed to try to achieve biological system type

performance using a dense interconnection of simple processing elements analogous to

biological neurons. ANNs are information driven rather than data driven. They are

non-programmed adaptive information processing systems that can autonomously de-

velop operational capabilities in response to an information environment. ANNs learn

from experience and generalize from previous examples. They modify their behavior

in response to the environment, and are ideal in cases where the required mapping

algorithm is not known and tolerance to faulty input information is required [9].

ANNs contain electronic processing elements (PEs) connected in a particular fash-

ion. The behavior of the trained ANN depends on the weights, which are also referred

to as strengths of the connections between the PEs. ANNs offer certain advantages over

conventional electronic processing techniques. These advantages are the generalization

capability, parallelism, distributed memory, redundancy, and learning [9].

4.2. The Backpropagation Neural Network

The backpropagation neural network is a collection of nodes organized into in-

terconnected layers. The layered structure of the backpropagation network allows it

to escape the linear separability limitation making it a much more powerful tool. The

backpropagation neural network is not limited to a single binary output; it can have any

number of outputs whose values fall within a continuous range. The backpropagation
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neural network is ideal for problems involving classification, projection, interpretation,

and generalization [10].

The backpropagation neural network contains at least three layers, input, output

and middle layers. The example in 4.2 shows sample backpropagation neural network

with p middle layer, n input layer nodes and m output layer nodes.

Figure 4.2. Neural network structure with one hidden layer[11]

Backpropagation neural network training involves three stages: the feedforward

of the input training pattern, the calculation and backpropagation of the associated

error, and the adjustment of the weights. Application of the network involves only the

computations of the feedforward phase after training with new weights. The training

process is slow, however the trained network can produce its output very rapidly [12].

A sample training algorithm of the backpropagation is:

Step 0. Initialize weights.

Step1. While stopping condition is false, do Steps 2-9.

Step 2. For each training pair, do Steps 3-8.
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Feedforward:

Step 3. Each input unit (Xi, i=1,. . . ,n) receives input signal xi and broadcasts this

signal to all units in the layer above (the hidden units).

Step 4. Each hidden unit (Zj, j=1,. . . ,p ) sums its weighted input signals,

z inj = v0j +
n∑

i=1

xivij (4.1)

applies its activation function to compute its output signal,

zj = f(z inj) (4.2)

and sends this signal to all units in the layer above (output units).

Step 5. Each output unit (Yk, k=1,. . . ,m ) sums its weighted input signals,

y ink = w0k +

p∑

k=1

zjwjk (4.3)

And applies its activation function to compute its output signal,

yk = f(y ink) (4.4)

Backpropagation of error:

Step 6. Each output unit (Yk, k=1,. . . ,m ) receives a target pattern corresponding to

the input training pattern, computes its error information term,

δk = (tk − yk)f
′(y ink) (4.5)
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Calculates its weight correction term (used to update wjk later),

∆wjk = σδkzj (4.6)

where σ is the learning rate. Calculates its bias correction term (used to update w0k

later),

∆w0k = σδkzj (4.7)

and sends δk to units in the layer below.

Step 7. Each hidden unit (Zj, j=1,. . . ,p ) sums its delta inputs (from units in the layer

above),

σ inj =
m∑

k=1

σkwjk (4.8)

Multiplies by the derivative of its activation function to calculate its error information

term,

δj = δ injf
′(z inj) (4.9)

Calculates weight correction term (used to update vij later),

∆vij = σδjxi (4.10)

and calculates its bias correction term (used to update v0j later),

∆v0j = σδj (4.11)
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Update Weight and Biases:

Step 8. Each output unit (Yk, k=1,. . . ,m ) update its bias and weights (j=1,. . . ,p ):

wjk(new) = wjk(old) + ∆wjk (4.12)

Each hidden unit (Zj, j=1,. . . ,p ) updates its bias and weights (i=1,. . . ,n ):

vij(new) = vij(old) + vij (4.13)

Step 9. Test stopping condition [11], [12].

4.3. The ANNET

The trajectory error, however, is not simply due to the unadjusted dynamics

parameters, but also a result of delayed actuator response, mostly because of the air

compressibility and rubber elasticity. A second neural network called ANNET is inte-

grated with PONNET for the compensation of the delay characteristics [3].

As described in [3], we describe the rubbertuator-SVO characteristic as a simple

exponential delay function as:

Pm = AIc(1− e(−t/T )) (4.14)

where is a scaling constant, Pm the rubbertuator pressure, Ic the SVO control current

and T the time constant of the rubbertuator-SVO system. It can be shown that Pm

becomes equal to the target pressure, Pd with no delay, if the control input to the SVO

is:

Ic(t) =
T

A

dPd(t)

dt
+

Pd(t)

A
(4.15)

Based on Equation 4.15, the input nodes of ANNET neural network are simply two:
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one for the desired pressure signal and one for the rate of change of the desired pres-

sure signal. A bias term is also included for the completeness of the neural network.

Therefore, the simple form of the neural network will be [3]:

neto = w1
dPd(t)

dt
+ w2Pd(t) + w3 (4.16)

where w1,w2 and w3 are the weights of ANNET and the error is defined as E where

Pm is the measured pressure of the rubbertuator.

E =
1

2

∑
(Pd − Pm)2 (4.17)

Thus, ANNET is aimed to learn the transfer function of the rubbertuator-SVO pair

that is modeled with a first order delay [3]. The mean square error of the system with

a very good trained (epoch size of 40000 and 3 neurons) neural network is 0.0506.

In order to improve the ANNET performance described in [3], a simple second

order delay function is used such as:

Pm = AIc(1− e(−t/T ) − te(−t/T )) (4.18)

The delay function will be:

Ic(t) =
T 2

A

d2Pd(t)

dt2
+

T

A

dPd(t)

dt
+

Pd(t)

A
(4.19)

The simple form of the neural network will be:

neto = w1
d2Pd(t)

dt2
+ w2

dPd(t)

dt
+ w3Pd(t) + w4 (4.20)

Thus, ANNET is aimed to learn the transfer function of the rubbertuator-SVO pair

that is modeled with a second order delay. The mean square error of the system with a

very good trained (epoch size of 40000 and 3 neurons) neural network is 0.0136 which

provides a better result than the first order delay system.
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4.4. The PONNET

To construct the position control neural network (PONNET) based on the phys-

ical model as proposed, we need to analyze the Language-Euler formulation of the

BHRA. However, none of the dynamics parameters involved in a Lagrange-Euler ex-

pression will be computed or solved for. These expressions will be used to choose

the correct input vectors and to define the correct neural network architecture of the

PONNET layer that will supply a detailed approach instead of a ”black box” approach.

The Lagrange dynamic formulation provides a means of deriving the equations

of the motion from a scalar function called the ”Lagrangian”, which is defined as the

difference between the kinetic and potential energy of a mechanical system.Lagrangian

difference is formulated as:

ÃL = K − P (4.21)

where K and P are respectively the total kinetic energy and the total potential energy

of the system [13].

The Lagrange’s equations of motion are obtained from Equation 4.22

d

dt

∂L

∂q̇
− ∂L

∂q
= τi (4.22)

where q is an n-vector of generalized coordinates qi, τ is an n-vector of generalized

forces τi.

q = [q1 . . . qi], τ = [τ1 . . . τi]
T (4.23)

The torques acting on the end-effector are calculated by using Equation 4.23 and the

equations found in [13]. Only the gravity-related terms are different from the equations

in [13], because of the different structures of the two robots; the base of the BHRA is

at the top, shown in Figure 3.2 while the robot’s base is at the bottom in [13]. So the
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result is:

τ3 = m3

(
1

3
L2

3 +
1

2
L3L2C4 +

1

2
L1L3C34

)
θ̈2 + m3

(
1

3
L2

3 +
1

2
L2L3C4

)
θ̈3

+
1

3
m3L

2
3θ̈4 +

(
1

2
m3L2L3S4 +

1

2
m3L1L3S34

)
θ̇2
2 + (m3L2L3S4)θ̇2θ̇3

+

(
1

2
m3L2L3S4

)
θ̇2
3 +

1

2
m3gL3S123 (4.24)

τ4 = Iθ̈5 (4.25)

where, Cx = Cosθx, Sx = Sinθx , Cxyz = Cos(θx +θy +θz) and Sxyz = Sin(θx +θy +θz),

m3 is the point mass of the end effector, and L1, L2, L3 are the length of the links, g

for the gravity, θ4 and θ5 the approach and orientation angles of the end-effector with

respect to the fixed robot coordinate frame. The above equations are different from [3]

because the links’ movement is horizontal in [3] where, in our system the trajectories

are at the vertical direction against gravity.

The frustrating task of finding the dynamics parameters, such as the effective

point masses and effective link lengths involved in equation above is left to PONNET

neural network through training on sample trajectories. Luckily, these parameters

are trajectory independent and once related with the neural network weights prop-

erly PONNET is likely to be able to generalize from a representative set of training

trajectories [3].

In order to relate these torques with the rubbertuator torques acted on the end-

effector, the rubbertuator pressure for the two joints can be summarized the same as

in [3].

Pi = Poi ±
[

τi

2r(βi − αiεi)
− γi

(βi − αiεi)

]
(4.26)

where β,γ and α are rubbertuator specific constants that we also do not wish to com-

pute. Here, i is the rubbertuator index, Po the equilibrium pressure, ε is the elongation
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and ” ± ” is positive for an agonist and negative for an antagonist rubbertuator. For

the time being if we assume the joint is fixed in position making ε a constant, we can

separate the trajectory variables. It is a paradox to assume ε a constant for a robot

that is designed for motion, but the paradox is resolved by dividing the motion space of

each rubbertuator into several small segments as depicted in Figure 4.4 and assuming

ε constant only for that small segment, only. With this assumption, combining Equa-

tions 4.24, 4.25, 4.26 a weighted sum of the non-linear functions of trajectory variables

can express any of the four rubbertuator pressure as:

Neto = w1θ̈2 + w2C4θ̈2 + w3C34θ̈2 + w4θ̈3 + w5C4θ̈3 + w6θ̈4 + w7S4θ̇2
2

w8S34θ̇2
2
+ w9S4θ̇2θ̇3 + w10S4θ̇3

2
+ w11S234 + w12θ̈5 (4.27)

Here, the parameters, w are functions of pulley radius, r,initial pressure Po joint position

ε, the rubbertuator parameters (β, γ and α), the robot parameters (m3, L1, L2, L3 and

gravity, g). Furthermore, the rubbertuator pressure is always positive and bounded

thus enabling us to use the sigmoid function for error propagation. Therefore we

can assign a single layer backpropagation neural network for each rubbertuator using

Equation 4.27, which we call PONNET [3].

Figure 4.3. The reach angle in the workspace of the end-effector

As mentioned above and in [3], taking small segments decreases the nonlinearity

of the ε effect on the system. So for every 4◦, a neural network is used for each
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Figure 4.4. Division of the workspace of the end-effector into small segments [7]

rubbertuator. Considering the maximum and minimum reach limits of the workspace

as −72◦ and 72◦ , for each rubbertuator 36 small neural networks are trained (Totally

4x36=144 PONNET). As mentioned [1], [2], [3] and [4], the hysteretic characteristics of

rubbertuators causes different torques when moving forward or backwards. In order to

struggle this problem, we use two different neural network for the same angle segment,

so this means that, we used 144x2 = 288 PONNETs for the control of this system.

However, only one is active at a given time depending on the desired joint position (θd)

and moving direction shown in Figure 4.4.
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4.5. The Estimated Error Function of PONNET

The actual pressure values of the train data for the PONNET are now taken as

the desired pressure, Pd. The error will be:

Ẽ = Pd − PsPONNET (4.28)

where PsPONNET is the simulated pressure output of the PONNET. Instead of finding

the estimated error function for each 4◦ segments, all the segments are reduced to

one 0◦ − 4◦ segments, which will show the general error characteristics of the error

distribution, shown in Figure 4.5.

θg = θd − integer part of (θd/4) (4.29)

where θd is the desired angle and θg is the generalized angle.

Ê = f(Ẽ(θg)) (4.30)

The estimated error function is constructed by fitting a second order polynomial curve

to the error distribution, show in Figure 4.5.

There are two main results:

• In the construction of small neural networks, we assume the joint is fixed in

position making ε a constant, in order to decrease the nonlinear terms, but this

assumption will give good results in the middle of the segments but at the end

segments, the nonlinear terms affect the results more than in the middle, so this

causes bigger errors at the ends and smaller errors at the middle.

• The discontinuities between the consecutive neural networks increase the errors

at the end and at the begin of the small segments.
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Figure 4.5. The Generalized Estimated Error Function

4.6. The Fuzzy-Neural Hybrid System Approach for Robot Arm

Controlling

Fuzzy logic approach, that is firstly developed in 1965 by Zadeh [14], is an efficient

way to map input spaces to output spaces, especially when the physical relationship

between these spaces is too complex to be described by mathematical models [15].

The main idea of the proposed fuzzy algorithm in this study is to combine consecutive

neural network pressure outputs and model the elongation nonlinearity to give a final

pressure value for controlling the robot arm. There are basically two linguistic variables:

estimated error, Ê, (unit in pressure) and convex combination parameter, α. The

antecedent variable, estimated error, is obtained from the error distribution of artificial

neural network system outputs. Convex combination parameter, α, is the consequent

linguistic variable of the fuzzy algorithm. Both the error and combination parameter

have five normal type triangular membership functions that are namely very low, low,

medium and high, very high. The membership functions are basically specified with

two parameters, medium of symmetric triangular, xi, and the width of its sides, µi,
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Figure 4.6. The fuzzy method linguistic variables a)error b)convex combination

parameter

where i=1. . . 5, shown in Figure 4.6.

The final pressure is calculated as a convex combination of two consecutive neural

network pressure outputs as follows:

Pf = αPN1 + (1− α)PN2 (4.31)

where Pf is the final pressure, PN1 and PN2 are consecutive neural network pressure

outputs.

All the possible five rules are used in the rule base. The rules are adjusted such

that minimum error is manipulated in a way that the pressure output of the PONNET

is used with maximum contribution to the final pressure output, i.e. alpha becomes 1

and when the error is maximum, the contribution of the consecutive neural network

outputs are forced to be equal, this means alpha becomes 0.5.
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Since there is only one variable in the system there is no need to use a t-norm

in the inference. The fuzzy membership function value of the antecedent is directly

becomes the fuzzy number of the consequent variable. Center of gravity is used as

defuzzification method in the fuzzy algorithm.

4.7. The GA Optimization

On the previous section, the fuzzy membership function variables are chosen by

experience. In order to find a more appropriate membership function variables, a basic

GA optimization is used because it can be applied to solve a variety of optimization

problems that are not well suited for standard optimization algorithms, including prob-

lems in which the objective function is discontinuous, nondifferentiable, stochastic, or

highly nonlinear [16].

The objective or the performance criteria is to minimize the root mean squared

error of the desired pressures and the pressure output of the fuzzy-neural hybrid system.

The train data for PONNET is also used for GA optimization. As mentioned before

the main goal is to find an off-line control structure, so a set of train data is used during

the construction of the control system.

The inputs to the GA are the medium and the width of the membership functions

shown in figure 4.6 and given in 4.32, thus for each of five membership functions, there

are two variables (the width of the membership functions) and consequently the number

of variables for GA is 10.

minimize Root Mean Square Error

Optimization parameters = {x1, x2, x3, x4, x5, µ1, µ2, µ3, µ4, µ5} (4.32)

The genetic algorithm optimization toolbox uses the root mean square error as the

fitness function, which is written by us that simulates the output of the fuzzy-neural

hybrid system and then, calculates the root mean square error between the output

and the actual pressure values taken from the train data by using uses optimization
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parameters x1, x2, x3, x4, x5, µ1, µ2, µ3, µ4, µ5. The population size is 20, the crossover

fraction is 0.8, the migration fraction is 0.2. These values are the default values used in

GA toolbox in matlab and changing these values will not affect the result very much.
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5. EXPERIMENTAL RESULTS

The goal of trajectory planning is to generate the reference inputs to the motion

control system, which ensures that the manipulator executes the planned trajectory.

The user typically specifies a number of parameters to describe the desired trajectory.

Planning consists of generating a time sequence of values obtained by polynomial func-

tion interpolating the desired trajectory [7]. In the study, the trajectories, which are

desired from robot to follow, are the sine wave, ramp and step paths. The user specified

parameters for the sine wave path are the frequencies and the amplitudes of the sine

wave path. The desired trajectories of the end-effector are accomplished by controlling

each of the involved joints trajectories simultaneously.

The control objective is to keep the end-effector always perpendicular to the X-Y

plane of the operational space, shown in Figure 1.1. It is assumed that the end-effector

paints the desired trajectories on the X-Y plane, and it holds a pen, which has to be

always perpendicular to the surface. There is a very important remark at that point;

as the BHRA follows a trajectory in the operational space, the joint 4, in the joint

space, follows the same trajectory in the opposite direction in order to keep the third

link (end-effector) always perpendicular to the surface, shown in the figures of this

chapter. For example, as the first and the second link moves up, the third link has to

move down in order to guarantee the Equation 3.21

The trajectory tracking performance results of the two methods, the only-neural

network control method cited in [3] and the fuzzy-neural hybrid control method, in the

operational space and in the joint space, are shown in this chapter.

The green lines corresponds to the to the desired trajectory, the red lines stand

for the only-neural network controller output and the blue lines stand for the fuzzy-

neural hybrid controller output.The results of the outputs are shown in Table 7.1 and

discussed in Chapter 7.
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Figure 5.1. The sine wave trajectory with frequency = 0.1 s−1 and amplitude =

100mm. in the operational space

Figure 5.2. The sine wave trajectory with frequency = 0.1 s−1 of joint 4, in the joint

space
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Figure 5.3. The sine wave trajectory with frequency = 0.1 s−1 of joint 5, in the joint

space

Figure 5.4. The tracking error of the sine wave trajectory with frequency = 0.1 s−1 of

joint 4, in the joint space



37

Figure 5.5. The sine wave trajectory with frequency = 0.3 s−1 and amplitude =

100mm. in the operational space

Figure 5.6. The sine wave trajectory with frequency = 0.3 s−1 of joint 4, in the joint

space
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Figure 5.7. The sine wave trajectory with frequency = 0.3 s−1 of joint 5, in the joint

space

Figure 5.8. The tracking error of the sine wave trajectory with frequency = 0.3 s−1 of

joint 4, in the joint space
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Figure 5.9. The sine wave trajectory with frequency = 5 s−1 and amplitude =

100mm. in the operational space

Figure 5.10. The sine wave trajectory with frequency = 0.5 s−1 of joint 4, in the joint

space
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Figure 5.11. The sine wave trajectory with frequency = 0.5 s−1 of joint 5, in the joint

space

Figure 5.12. The tracking error of the sine wave trajectory with frequency = 0.5 s−1

of joint 4, in the joint space
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Figure 5.13. The sine wave trajectory with frequency = 0.8 s−1 and amplitude =

120mm. in the operational space

Figure 5.14. The sine wave trajectory with frequency = 0.8 s−1 of joint 4, in the joint

space
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Figure 5.15. The sine wave trajectory with frequency = 0.8 s−1 of joint 5, in the joint

space

Figure 5.16. The tracking error of the sine wave trajectory with frequency = 0.8 s−1

of joint 4, in the joint space
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Figure 5.17. The ramp wave trajectory in the operational space

Figure 5.18. The ramp wave trajectory of joint 4, in the joint space
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Figure 5.19. The ramp wave trajectory of joint 5, in the joint space

Figure 5.20. The tracking error of the ramp wave trajectory of joint 4, in the joint

space
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Figure 5.21. The step wave trajectory in the operational space

Figure 5.22. The step wave trajectory of joint 4, in the joint space
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Figure 5.23. The step wave trajectory of joint 5, in the joint space

Figure 5.24. The tracking error of the step wave trajectory of joint 4, in the joint

space
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6. ANIMATION SOFTWARE AND USER’S MANUAL

In the pervious chapters, a detailed structure, kinematics and control methods

have been developed for the BHRA. In this section, we will be presenting the visual

animation software that has been created using the obtained model and user’s manual.

Animation has been created using OPENGL-software and the Visul C++ programming

software. The graphical user interface of the animation is shown in Figure 6.1

Figure 6.1. The graphical user interface of the animation software

6.1. User’s Manual

In order to start the animation software, RobotConsole.exe file has to executed.

A Opengl-Glui window will appear in the screen. At the same time the control cards

will be initialized.

From the ”Manual Movement Panel” and the ”Manual Pressure Panel”, the volt-
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age references can be given directly to the motors and the rubbertuators. To start the

command, ”Manual Command Button” has to be pressed.

In order to make the BHRA track a trajectory, first a trajectory has to be gener-

ated from the ”Trajectory Panel” by entering desired frequency and amplitude values.

A sine wave, a step wave and a ramp wave can be selected from the panel. Later,

the ”Generate Trajectory Button” has to pressed. Later from the methods panel, the

controller method can be set by just clicking on the checkbox near the methods. At

the end, pressing the ”Start Action Button” will start the motion of the BHRA.
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7. CONCLUSIONS

7.1. Conclusions and Discussions

The end effector angle outputs of the fuzzy-neural hybrid control system, sum-

marized in Figure 7.1 and the only neural control system, defined in [3], are compared

in different sinusoidal, step and ramp trajectories. The root mean square of the errors

(RMSE), using Equation 7.1, of the end-effector’s desired trajectory angle, θ4 and the

two systems output angles, are calculated for both systems and shown on table 7.1.

RMSE =

√∑n
i=1 e2

i

n
(7.1)

Figure 7.1. The fuzzy-neural hybrid control system

In conclusion, we improve the system defined in [3] by using a second order delay

function and constructing a fuzzy-neural hybrid control system. The results on table

7.1, clearly demonstrates that the new controller system supplies a better performance

in trajectory tracking of the end effector for continuous trajectories and higher speeds.
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Table 7.1. The RMSE Performance Analysis of Both Systems on Various Trajectories

Trajectory Only-Neural Network Fuzzy-Neural Hybrid Change(%)

Sine, f=0.1s−1 2.2836 1.7699 22.50%

Sine, f=0.3s−1 2.4624 1.9286 21.68%

Sine, f=0.5s−1 2.9403 2.2518 23.42%

Sine, f=0.8s−1 5.7398 4.0077 30.18%

Ramp 1.9413 1.7791 8.36%

Step 2.3789 2.4221 -1.81%

The RMSEs of both systems are nearly the same for the step outputs, because

the fuzzy system is constructed only for the discontinuities between consecutive small

neural networks, not for the high discontinuities in the desired trajectories. It is a

desirable result which shows that the fuzzy only maintains continuity and does not

change the characteristics of the desired trajectory.

7.2. Future Improvements

The PONNETs have been trained by using continuous train data trajectories

that span all the workspace and the reaching limits of the end-effector, because of

that, both only-neural and fuzzy-neural hybrid control system can not achieve the

step satisfactorily. In the future, using an online control system or adopting online

training ability to the neural networks, can overcome these problems.As cited in [12]

and mentioned before, finding a better off-line control ensures that small learning rates

will be sufficient for future on-line training control, so using small learning rates can

easily overcome the step response performance problem.

Using two fuzzy control system instead of one will improve the performance. In

this study, one fuzzy system is used to overcome the discontinuity and the backward-

forward direction change error (at the peaks of the trajectories, system changes its

motion direction, from forward to backward or from backward to forward), using two

different fuzzy systems for these two separate problems will increase the performance.
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