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ABSTRACT

GREY PREDICTION BASED CONTROL OF A

NON-LINEAR LIQUID LEVEL SYSTEM USING PID

TYPE FUZZY CONTROLLER

This thesis proposes a grey system theory based fuzzy PID controller that has

a prediction capability. Although fuzzy control theory and grey system theory have

completely different mathematical basics, both deal with uncertain information. In

the thesis, a short description of both are given and their performance are compared

on a non-linear liquid level control system. The grey model developed is examined

under several different conditions and it is shown that the proposed grey fuzzy PID

controller has better self-adapting characteristics. The simulation results indicate that

the proposed controller has the ability to control the non-linear system accurately with

a little amount of overshoot and with no steady-state error. It has, in these respects,

better performance than the conventional controllers. The thesis is also intended to

serve as a first reading on grey system theory and grey prediction based controllers.

The fundamental concepts and mathematical basics of grey system theory are therefore

explained in simple terms.
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ÖZET

NON-LİNEER SIVI SEVİYE SİSTEMİNİN GRİ

ÖNGÖRÜSEL TEMELLİ PID TİPİ BULANIK

DENETLEYİCİ İLE DENETİMİ

Bu tez, öngörüsel yeteneğe sahip, gri sistem teorisi tabanlı bulanık PID denet-

leyici önermektedir. Bulanık denetim teorisi ve gri sistem teorisi bütünüyle farklı

matematiksel temellere sahip olmalarına rağmen, her iki teori de kesin olmayan bilgiyle

ilgilenmektedir. Bu tezde, her iki teorinin de kısa açıklamaları verilmiş ve başarımları,

nonlineer bir sıvı seviye kontrol düzeneği üzerinde karşılaştırılmıştır. Geliştirilen gri

model birçok farklı durumda sınanmış ve önerilen gri bulanık PID denetleyicinin daha

iyi kendini uyarlama yeteneğine sahip olduğu gösterilmiştir. Benzetim sonuçları önerilen

denetleyicinin, nonlineer bir sistemi düşük bir aşımla ve kalıcı hal hatası olmaksızın

hassas bir şekilde kontrol edebildiğini göstermiştir. Önerilen denetleyici, söz konusu

yönlerden, geleneksel denetleyicilerden daha iyi başarım elde etmiştir. Bu tezin bir

diğer amacı da gri sistem teorisi ve gri öngörüsel temelli kontrolörler hakkında hakkında

genel bir bilgi birikimi sağlamaktır. Gri sistem teorisinin genel kavramları ve matem-

atiksel temelleri yalın bir şekilde açıklanmıştır.
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1. INTRODUCTION

Conventional control theory uses a mathematical model to define the relationships

between the inputs and the outputs of a system. If an accurate mathematical model

of the system can be derived, a conventional PID controller can generally result in a

satisfactory performance. Conventional control theory is a long studied subject and

as a result, the design of a PID type controller is very well known. Moreover, the

implementation of PID controllers is simple and inexpensive.

In real life, the mathematical model of a physical system cannot be defined ex-

actly; there are always some uncertainties. The real world is nonlinear, uncertain and

always contains incomplete data. Time-varying nature of parameters, noise and/or

disturbances, saturation and time-delay characteristics of an industrial process are the

main uncertainties and therefore make the design of conventional controllers very com-

plex. A control method that has the ability to handle these difficulties would very much

be welcomed. Traditional model-free control approaches, such as neural networks and

fuzzy models threat all training data equally without preference in developing their

models. Alternately, grey predictors make predictions using the most recent data, be-

cause the most recent data carry more information than the data far away from the

present. Grey predictors have the ability to manage the uncertain information and use

the data effectively. As a result, grey predictors give more accurate prediction results

for time series predictions.

Grey system theory, which has a certain prediction capability, provides an al-

ternative approach to various kinds of conventional control methods. In most control

applications, the control signal is a function of the error present in the system at the

present time. In other words, conventional control algorithms are based on the errors

occurred. However, in grey system theory, prediction error is used instead of current

measured error. Similarly, during the development of a grey PID type fuzzy controller,

the prediction error is considered as the error of the system.
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2. INTRODUCTION TO FUZZY LOGIC

While Boolean logic results are restricted to 0 and 1, fuzzy logic results are

between 0 and 1. In other words, fuzzy logic defines some intermediate values between

sharp evaluations like absolute true and absolute false. That means fuzzy sets can

handle some concepts that we commonly meet in daily life, like “very old”, “old”,

“young”, “very young”. Fuzzy logic is more like human thinking because it is based

on degrees of truth and uses linguistic variables.

Although the concept of fuzzy logic and the concept of probability seem similar,

they are quite different. While probability makes guesses about a certain reality, fuzzy

logic does not make probability statements but represents membership in vaguely de-

fined sets. For instance, if 0.5 is defined as a probability value for the oldness of a

person, it can be said that there is a chance that he/she can be old. It is not known

whether he/she is old or young. However in fuzzy logic, if 0.5 is defined as the degree

of membership in the set of young and old people, we have some knowledge about

his/him and he/she is positioned in the middle of young and old people.

2.1. The History of The Fuzzy Logic

The fuzzy theory was first introduced into the scientific literature in 1965 by

Professor Lotfi A. Zadeh at the University of California at Berkeley who proposed a

set theory that operated over the range [0;1]. He published a paper titled “Fuzzy Sets”

in the journal Information and Control [1].

Fuzzy logic was not an acceptable theory for the scientists at that time because it

contained vagueness in the engineering field. However, since 1970s, this approach to set

theory has been widely applied to control systems. The principles of fuzzy logic were

used to control a steam engine by Ebraham Mamdani of University of London in 1974

[2]. It was a milestone for fuzzy logic. The first industrial application was a cement

kiln built in Denmark in 1975. In the 1980s, Fuji Electric applied fuzzy logic theory
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to the control of a water purification process. As a challenging engineering project, in

1987, Sendai Railway system that had automatic train operation control was built with

fuzzy logic principles in Japan. Fuzzy control techniques were used in all the critical

operations in the control of the train, such as accelerating, breaking, and stopping

operations. In 1987, Takeshi Yamakawa used fuzzy control in an inverted pendulum

experiment which is a classical control problem. After these successful applications, not

only the engineers but also the social scientists applied fuzzy logic into different areas.

In todays technology, many companies use fuzzy logic in their engineering projects like

air conditioners, video cameras, televisions, and washing machines. However, it is a

well-known fact that fuzzy logic has always been more popular in Eastern countries

because of the philosophical and religious view of the Eastern culture.

2.2. Basic Concepts of Fuzzy Logic

2.2.1. Membership Functions

Fuzzy logic is claimed to be much closer in spirit to human thinking and natural

language [3]. The way of human thinking is realized with membership functions which

define how every point in the input space is mapped to a membership values space. The

membership values in fuzzy sets are in the range of [0;1]. If an axiom is absolutely true,

the membership value in fuzzy sets is 1. Similarly, if it is absolutely false, membership

value in fuzzy sets is 0. The output of the membership function is called antecedent(µ).

While the input values for a membership function are crisp inputs, they are changed

into fuzzy variables by the membership functions.

Figure 2.1 and figure 2.2 show the difference between classical binary logic and

fuzzy logic. In, figure 2.1, the membership function is sharp-edged that means a small

change of input values might cause a big changes in output values. In figure 2.2, the

membership function is continuous and smooth that is more like human thinking [4].
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Figure 2.1. A possible description of the vague concept “tall” by a crisp set

Figure 2.2. A possible description of the vague concept “tall” by a fuzzy set

2.2.2. If-Then Rules

Fuzzy controllers have always some conditional “if-then” rules. These rules are

written by an expert who know and understand that system very accurately. Although

many rules can be written to describe a system in more detail, in general, a low number

of rules are sufficient for a fuzzy controller to control that system.

2.3. Advantages and Disadvantages of Fuzzy Control

Classical control theory uses a mathematical model to define the relationships

between the inputs and the outputs of a system. The most common type of these

controllers are PID controllers. After they take the output of the system and compare

the desired input, they generate a proper control signal based on the error value. The

most serious disadvantage of these controllers is that PID controllers usually assume

the system to be linear or at least it behaves as a linear system in some range.
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If an accurate mathematical model of a control system is available, a classical

PID controller can make the performance of the system quite acceptable. Scientists

have been working on the classical control theory for a long time. Nowadays, not

only the design of a PID type controller is a very well-known subject but also the

implementation is simple and cheap.

There are some reasonable causes why fuzzy logic has been famous for the last

decades. In real life, an accurate mathematical model of a control process will not

generally be available, even it may not exist. The real world is nonlinear, uncertain

and contains always incomplete data. If the mathematical model is not known by the

designer, there is no way to come up with a good PID controller design. Even in those

cases, when the mathematical model is known relatively accurate, the parameters of

the system are likely to change by some outside factors, like heat or pressure, etc... In

such cases, a good way of controlling the system is to design a controller that does not

need the exact mathematical model of that system. Fortunately, fuzzy controllers have

ability to control a system with just some limited expert knowledge. Another advantage

of fuzzy logic is its flexibility. Besides, fuzzy controllers are low-cost implementations

based on cheap sensors.

Although fuzzy control fills an important gap in controller design methodolo-

gies that require a full mathematical clarity about a system, it has also some serious

drawbacks. First of all, because fuzzy control is a method of nonlinear variable struc-

ture control, deriving their analytical structures is the first step for analytical study.

However, this step is very difficult and sometimes impossible [5].

The second disadvantage is the number of the design parameters. Although a

classical PID controller has only three design parameters, the number of parameters

for a fuzzy controller can be very large. The number and the shape of input and output

fuzzy sets, scaling factors and fuzzy AND and OR operators characteristics must be

determined by the designer. Moreover, there are no clear relationships between these

parameters and the controller’s performance [5].
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3. INTRODUCTION TO FUZZY CONTROL

The main idea relying at the back of fuzzy logic control is very well explained by

Kickert and Mamdani as:

• “The basic idea behind this approach was to incorporate the experience of a human

process operator in the design of controller. From the set of linguistic rules which

describe the operator’s control strategy a control algorithm is constructed where

the words are defined as fuzzy sets. The main advantage of this approach seem to

be the possibility of implementing rule of thumb experience, intuition, heuristics

and the fact that it does not need a model of the process.”

Kickert and Mamdani

A fuzzy controller can be divided into four main sub-groups that are fuzzification,

inference, rule base and defuzzification as shown in the Figure 3.1:

Figure 3.1. Fuzzy controller block diagram
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3.1. The Basics of Fuzzy Logic Control

The inputs of a fuzzy controller are always crisp inputs that are fuzzified in

fuzzification process based on the rules in the rule base. After the fuzzy decisions are

made by the inference, the output of the fuzzy controller is converted into a crisp value.

This is called as defuzzificaon process.

3.1.1. Fuzzification

Fuzzification is the process of converting a crisp input value to a fuzzy value that

is performed by the use of the information in the knowledge base.

Although various types of curves can be seen in the literature, triangular and

trapezoidal membership functions are the most common ones used in fuzzification

process. These types of membership functions can easily be implemented by embedded

controllers.

The membership functions are defined mathematically with some constants. In

order to fine-tune the performance of a fuzzy controller, the constants and the shape

of the membership functions can be adapted.

3.1.2. Rule Base

In this step, the expert knowledge is formulated as a finite number of rules. The

rule base contains the rules that are to be used in making decisions. These rules are

generally based on personal experiences and intuition. However, in some cases, the

rules can be obtained by using neural networks, genetic algorithms or some empirical

approaches [6].

A rule is composed of two main parts: an antecedent block (between the IF and

THEN) and a consequent block(following THEN).
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If (antecedent) then (consequent)

Although the antecedent and the consequent parts have single arguments in

above, a rule can be written with multiple arguments. While single arguments are

used in SISO systems, multiple arguments are used in dealing with MIMO systems.

3.1.3. Inference

Fuzzy decisions are produced in this process using the rules in the rule base.

During this process each rule is evaluated separately and then a decision is made for

each individual rule. The result is a set of fuzzy decisions. Logical operators, such as

“AND”,”OR”, and “NOT” define how the fuzzy variables are combined.

3.1.4. Defuzzification

The final step is defuzzification process where the fuzzy outputs are translated

into a single crisp value, like the fuzzification process, by the degree of membership

values. Defuzzification is an inverse transformation compared with the fuzzification

process, because in this process, the fuzzy outputs are converted into crisp values to

be applied into the system.

There are several heuristic defuzzification methods. For instance, some methods

produce an integral output considering all the elements of the resulting fuzzy set with

the corresponding weights. One of the widely used methods is the Center-of-Area (C-

o-A) method that takes the center of gravity of the fuzzy set. Some other methods can

be mentioned such as Center-of-Maximum (C-o-M) method that uses only the peaks

of the membership functions.



9

4. COMBINING FUZZY AND PID TYPE CONTROL

4.1. Analysis of a Fuzzy Controller

In this section, a zero order Takagi-Sugeno type fuzzy controller with product-sum

inference method is briefly explained [7, 8, 9]. Let us suppose that the fuzzy controller

is a two-input and one-output one. The two inputs to the fuzzy controller are the error

e and the change of the rate of error ė , and the output of the fuzzy controller (that is

the input to the controlled process) is u. The universes of discourses of e, ė and u are

E ⊂ R, Ė ⊂ R and U ⊂ R, respectively. The linguistic values of e and ė are denoted

as Ai and Bj, respectively. These membership functions are referred to as Ai(e) and

Bj(ė). The center of gravity method is applied in the defuzzification process to obtain

the controller output, u. An example fuzzy controller rule is expressed below:

if e is Ai and ė is Bj then u is uij.

where uij ∈ U is a crisp value instead of a fuzzy subset. The uijs are not necessarily

different from each other . The fuzzy controller with such kind of control rules is called

crisp type fuzzy controller [8, 9].

In the following discussion, fuzzy control rule base, assumed to be complete, this

means the number of control rules are equal to IxJ [10].

In this thesis, the triangular membership functions will be employed for each

fuzzy linguistic value of the error e and the change rate of error ė as shown in Figure

4.1.

The cores of fuzzy sets Ai and Bj are denoted as ei and ėj, respectively. The

supporting set of Ai is shown as [ei−1, ei+1] and the set of Bj is [ėj−1, ėj+1].
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Figure 4.1. Membership functions of Ai and Bj

As indicated in Figure 4.2, every point on the e-ė plane represents an output of

the controller, which is a nonlinear function. An analytical solution is not available for

such kind of non-linearity. However, using some linearization methods as applied in

classical and modern control theory, an approximation of u can be obtained for some

small deviations about the nominal values of e and ė.

Figure 4.2. The net on the (e-ė) plane

The non-linear controller is of the general form:

u = f(e, ė, t) (4.1)

When e=ei and ė=ėj, in other words, if the node is (ei,ėj), then the output of

the controller will be,

u = uij (4.2)
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Therefore, the result will become,

u = f(e, ė, t) = uij (4.3)

A linearization can be done around a node uij of the e-ė plane for small excursions

from e, ė and u as,

δe = e− ei (4.4)

δė = ė− ėj (4.5)

δu = u− uij (4.6)

If the values of δe, δė and δu are small enough, Equation 4.1 can be linearized as:

δu =

[
δf

δe

]
n

δe +

[
δf

δė

]
n

δė (4.7)

Every neighborhood of each node (or nominal point) will be divided into four

different quadrants by the two net lines that across at the node.

For simplicity, only the case of one quadrant, i.e. where δe ≥ 0 and δė ≥ 0 shall

be considered:

δu =

[
δf

δe

]
n

δe +

[
δf

δė

]
n

δė =
u(i+1)j − uij

ei+1 − ei

δe +
u(j+1)i − uij

ėj+1 − ėj

δė (4.8)
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u− u(ij) =
u(i+1)j − uij

ei+1 − ei

(e− ei) +
u(j+1)i − uij

ėj+1 − ėj

(ė− ėj) (4.9)

Therefore

u =

[
uij −

u(i+1)j − uij

e(i+1) − ei

ei −
u(j+1)i − uij

ėj+1 − ėj

ėj

]
+

u(i+1)j − uij

e(i+1) − ei

e +
u(j+1)i − uij

ėj+1 − ėj

ė (4.10)

u = A + P e + Dė (4.11)

where

A =

[
uij −

u(i+1)j − uij

e(i+1) − ei

ei −
u(j+1)i − uij

ėj+1 − ėj

ėj

]
= uij − Pei −Dėj

P =
u(i+1)j − uij

e(i+1) − ei

D =
u(j+1)i − uij

ėj+1 − ėj

As can be seen, the product-sum crisp type fuzzy controller behaves approxi-

mately like a PD controller in the neighborhood of the node point of the net of e-ė

plane. The equivalent proportional and derivative control coefficients are P and D

respectively. When the error and the change rate of error moves on the e-ė plane, the

PD parameters switch from one set to another. So, this kind of fuzzy controller can be

regarded as a parameter time-varying PD controller and it can be named as PD type

fuzzy controller(PDFC) [11].

It is a well-known fact in conventional PID control theory that if the controlled

system is type “0”, P or PD type controller will yield a steady-state error for step
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response. Although PI controller improves the steady-state error, it can deteriorate

the transient characteristics, i.e. it slows the response down. Since the mathematical

models of most industrial process systems are of type 0, obviously there would exist a

steady state error if they are controlled by PD type controller [11].

4.2. PID Type Fuzzy Controller Structure

In a PID controlled system, the performance of the system is determined by

its proportional parameter KP , integral parameter KI , and the derivative parameter

KD. The proportional control law can guarantee the fast response of the system, the

integral control law can eliminate the steady state error and the derivative control law

can increase the damping of the system thus reduce the overshoot and oscillating times

of the system response. Thus a PID controller can yield a system with fast rise time

and small overshoot and non steady state error [11].

In order to eliminate the steady-state error of the control system, one can substi-

tute the input ė (the change rate of error) of the fuzzy controller with the integration

of the error. This means a fuzzy controller behaving like a parameter time-varying PI

controller.

In order to design a PID type fuzzy controller (PIDFC), one can design a fuzzy

controller with with three inputs, error, the change rate of error and the integration of

the error. Handling the three variables is however, in practice, quite difficult. Besides,

adding another input to the controller will increase the number of rules exponentially.

This requires more computational effort, which leading to larger execution time.

Because of the drawbacks mentioned above, a PID type fuzzy controller consisting

of only the error and the change rate of error is used in the proposed method. This

system allows a PD and PI type fuzzy controllers to work in parallel [11, 12]. An

equivalent structure is shown in Figure 4.3, where β and α are the weights of PI and

PD type controllers, respectively. Similarly, K and Kd are the scaling factors for e and

ė, respectively.
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As the α/β ratio becomes larger, the effect of the derivative control increases

with respect to integral control [13].

The output of the controller can be expressed as:

uc = αu + β
∫

udt = α(A + PKe + DKdė + β
∫

(A + PKe + DKdė)dt

= αA + βAt + (αKP + βKdD)e + βKP
∫

edt + αKdDė (4.12)

Figure 4.3. PID type fuzzy controller structure

This controller is called as PID type fuzzy controller (PIDFC). Equivalent pro-

portional, integral and derivative components are αKP + βKdD, βKP and αKdD

[11].
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5. MODELING

5.1. Description of Controlled Object

A model for a nonlinear liquid-level system will be obtained in this part of the

thesis [13]. Figure 5.1 shows a simple system, the objective of which is to control the

level of the liquid in a tank by adjusting the input flow rate. Such a simple system is

considered in order to be able to compare the results to be obtained with those in the

literature.

In this system, Qin and Qout are the maximum liquid flow rates in m3/s for input

and outlet, respectively.

The controlled input liquid flow rate qin is given by:

qin = Qin sin (φ(t)) φ(t) ∈ [0, π/2] (5.1)

Figure 5.1. A nonlinear liquid-level system

The output liquid flow rate qout (that equals Qout since no control is applied) is

defined as:

qout = aout

√
2gh(t) (5.2)
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where aout is surface area of the outlet and g is the gravitational constant.

The output variable h, which is the level of the liquid, is calculated as:

h(t) = h(0) +
1

A

∫ t

0
(qin(τ)− qout(τ))dτ (5.3)

where, A is the surface area of the tank.

The numerical values used in this thesis are:

A = 1m2,

aout = 0.01m2,

Qin = 0.12m3/s, and

h(0) = 0.
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6. SIMULATION RESULTS FOR PID TYPE FUZZY

CONTROLLER

6.1. Rule Base and Membership Functions

In a conventional fuzzy inference system, an expert, who is familiar with the

system to be modeled, decides on the number of rules. The fuzzy PID type control

rule base employed in this thesis is shown in Table 6.1. The membership functions

of error, change rate of error and control signal, shown in Figure 6.1., are chosen as

triangular membership functions.

Table 6.1. A general fuzzy PID type rule base

e/ė NL NM NS ZR PS PM PL

PL ZR PS PM PL PL PL PL

PM NS ZR PS PM PL PL PL

PS NM NS ZR PS PM PL PL

ZR NL NM NS ZR PS PM PL

NS NL NL NM NS ZR PS PM

NM NL NL NL NM NS ZR PS

NL NL NL NL NL NM NS ZR

Figure 6.1. The membership functions of e, ė and u.
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6.2. PD Type Fuzzy Controller(PDFC)

Figure 6.2 shows the response of the model to PD type fuzzy controller. In Figure

6.2, α = 30 and β = 0, which are derivative and integral controller constants. It is

obvious that the system has a steady-state error. Sampling time of the simulation

Ts=1 sec. The numerical values are selected as K = 1 and Kd = 0.1 in the simulation.

Figure 6.2. The response of the model for a unit step reference input and the error

for α = 30, β = 0

6.3. PI Type Fuzzy Controller(PIFC)

Figure 6.3 shows the response of the model to PI type fuzzy controller for α = 0

and β = 0.2. It is seen that although the system does not have a steady-state error, it

is too slow and has a big overshoot. Sampling time of the simulation Ts=1 sec. The

numerical values are selected as K = 1 and Kd = 0.1 in the simulation.
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Figure 6.3. The response of the model for a unit step reference input and the error

for α = 0, β = 0.2

6.4. PID Type Fuzzy Controller(PIDFC)

Figure 6.4-6.6 show the response of the model to PID type fuzzy controller with

different coefficients. In Figure 6.4, α = 0.5 and β = 0.2, which are derivative and

integral controller constants, and it is seen that the system is too slow and has a big

overshoot. In Figure 6.5, α = 5 and β = 0.5, speed of the system increases but the

overshoot is still high. In Figure 6.6, α = 8 and β = 0.5, as the speed of the system is

quite good, the overshoot is reasonable. If α is selected bigger, Figure 6.7 is obtained.

In Figure 6.7, α = 30 and β = 0.5, although the speed of the system is quite good

and the overshoot is reasonable, the system has an oscillatory characteristic. Sampling

time of the simulations Ts=1 sec. The numerical values are selected as K = 1 and

Kd = 0.1 in the simulations.
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Figure 6.4. The response of the model for a unit step reference input and the error

for α = 0.5, β = 0.2

Figure 6.5. The response of the model for a unit step reference input and the error

for α = 5, β = 0.5
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Figure 6.6. The response of the model for a unit step reference input and the error

for α = 8, β = 0.5

Figure 6.7. The response of the model for a unit step reference input and the error

for α = 30, β = 0.5
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7. INTRODUCTION TO GREY SYSTEM THEORY

7.1. The Beginning of the Grey System Theory

Grey system theory was first introduced by Professor Deng Ju-long from China in

the international journal “Systems and Control Letters” in 1982 [14]. Professor Roger

W. Brockett of Harvard University, the editor of the journal, commented on Professor

Deng’s first article about grey system theory as follows: “Grey system is an initiative

work and all the results are new”. The theory is distinguished with its ability to deal

with the systems that have partially unknown parameters. Thus, it is easily applicable

to real-time control systems.

During the last two decades, the grey system theory has been developed rapidly

and caught the attention of researchers with successful real-time practical applications.

It has been commonly applied to the analysis, modeling, prediction, decision-making

and control of various systems such as social, economic, financial, scientific and techno-

logical, agricultural, industrial, transportation, mechanical, meteorological, ecological,

hydrological, geological, medical, military, etc., systems. Moreover, some universities

located in Australia, China, Japan, Taiwan, USA, have offered courses or workshops on

grey system theory [15]. Chinese Grey System Association (CGSA) was established in

1996. A conference on grey system theory and applications is held by CGSA every year.

As an academic magazine, “The Journal of Grey System” is an international academic

periodical which was published in England in 1989 for the first time. The Chief-Editor

of the journal was Professor Julong Deng. More than 300 kind of academic periodicals

accept and publish the grey system related articles in the world [17].

A grey prediction controller for an unknown system model was proposed by Cheng

in 1986 [18]. In 1994, Huang proposed the basic structure of grey prediction fuzzy

model to control robotic motion and inverted pendulum which is a classical control

problem [19, 20]. Then, Huang offered a genetic-based fuzzy grey prediction model to

compensate the output of grey system [21].
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In 1998, Wong proposed a switch grey prediction fuzzy controller to find the

appropriate forecasting prediction horizon of the grey predictor [22].

In 2002, Lin offered a designing technique about how to search the optimized inner

parameters of grey model [23]. The inner parameters of grey predictors, which will be

explained in detail in the following chapters, play an important role on improving the

accuracy of grey controllers.

7.2. Fundamental Concepts of Grey System Theory

In control theory, a system can be defined with a color that represents the amount

of clear information about that system. For instance, a system can be called as “black

box” if its internal characteristics or mathematical equations that describe its dynam-

ics are completely unknown. On the other hand if the description of the system is,

completely known, it can be named as white system. Similarly, a system that has both

known and unknown information is defined as a grey system. In real life, every system

can be considered as a grey system because there are always some uncertainties [16].

In real life, due to noise from both inside and outside of the system of our concern

(and the limitations of our cognitive abilities!), the information we can reach about that

system, is always uncertain and limited in scope [17].

There are many situations with incomplete information in industrial control sys-

tems. This is due to the lack of modeling information or the fact that the correct

observation and control variables are or cannot be employed. For instance, the data

collected from a motor control system always contains some grey characteristics due to

the time-varying parameters of the system and measurement difficulties. Similarly, it

is difficult to forecast the electricity consumption of a local area accurately because of

various kinds of social and economic factors. These factors are generally random and

make it difficult to obtain a sensitive model.
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“Incomplete information” or “lack of data” are the most important characteristics

of grey systems. In different circumstances, the meaning of being “grey”, “black” and

“white” can be summarized as in Table 7.1 [15].

Table 7.1. The meaning of black, grey and white

Black Grey White

Information unknown incomplete known

Appearance dark grey bright

Process new replace old with new old

Property chaos complexity order

Methodology negative transition positive

Attitude indulgence tolerance surety

Conclusion no result multiple solution unique solution

7.3. The Differences Among Probability and Statistics, Fuzzy Theory and

Grey Theory

Although probability and statistics, fuzzy theory and grey system theory deal

with uncertain information, different methods and mathematical tools are used to

analyze the data.

While fuzzy mathematics mainly deals with problems associated with cognitive

uncertainty by experience with the help of affiliation functions, probability and sta-

tistics need special distributions and samples of reasonable size to draw inferences.

These very different approaches have a serious difficulty in such situations either with-

out any prior experience or without satisfying any special distributions and with small

sample size [15]. Grey system theory and grey controllers have great advantages in

such kinds of systems, because grey controllers have the ability to handle the uncertain

information and use the data effectively. Grey controllers investigate the behavioral

characteristics of a system using a sequence of definite white numbers. The charac-

teristic data obtained from the system is supposed to contain, if there is, the laws of

development of the system.
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The methods of probability and statistics study the uncertain data from a sto-

chastic point of view. They focus on the statistical laws existing in the history of the

uncertain data and the probability of each data within possible outcomes [17].

The complexity and chaotic characteristics of data generally mislead the con-

troller. In order to eliminate this problem, some sequence operators are used in grey

controllers. It is argued that if the randomness of the data obtained from a grey sys-

tem is somehow smoothed, it is easier to derive the any special characteristics of that

system [16].

The differences among probability and statistics, fuzzy theory and grey theory

are described in Table 7.2 [15]:

Table 7.2. Probability and statistics, fuzzy theory and grey theory

Grey Systems Probability and Fuzzy

Theory Statistics Mathematics

Intention small sample large sample cognitive

uncertainty uncertainty uncertainty

Basis hazy integration cantor set fuzzy integration

Foundation information probability function of

coverage distribution affiliation

Means generation statistics marginal sampling

Characteristic few data points lots of data points experience

Requirement allowing any special function

distribution distribution

Objective laws of laws of historic cognitive

reality statistics expression
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8. GREY SYSTEM MODELING

8.1. Grey Numbers

Grey numbers, grey algebraic and differential equations, grey matrices and their

operations are used to deal with grey systems. The symbol of “⊗” is used to represent

a grey number. Grey number is such a number whose value is not known exactly but

it is taking values in a certain range. Grey numbers might have only upper limits, only

lower limits or both. Grey algebraic and differential equations, also grey matrices, have

grey coefficients.

8.2. Generations of Grey Sequences

The main task of grey system theory is to extract realistic governing laws of

a system using available data. This process is known as the generation of the grey

sequence [15].

It is argued that even though the available data of the system, which are generally

white numbers, is too complex or chaotic, they always contain some governing laws. If

the randomness of the data obtained from a grey system is somehow smoothed, it is

easier to derive the any special characteristics of that system.

For instance, the following sequence that represents the speed values of a motor

might be given:

X(0) = (820, 840, 835, 850, 890)

It is obvious that the sequence does not have a clear regularity.
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If accumulating generation is applied to original sequence, X(1) is obtained which

has a clear growing tendency.

X(1) = (820, 1660, 2495, 3345, 4235)

Figure 8.1. The original data set

Figure 8.2. The accumulated data set
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8.2.1. Accumulating Generating Operation (AGO)

In order to see the special characteristics or laws hidden in the chaotic data,

Accumulating Generating Operation (AGO) is used. Accumulating generation process

is a method of whitening a grey process [15].

Consider a non-negative sequence of data X(0) and D is a sequence operator:

X(0) =
(
x(0)(1), x(0)(2), ........, x(0)(n)

)
(8.1)

and

X(0)D =
(
x(0)(1)d, x(0)(2)d, ........, x(0)(n)d

)
(8.2)

where

x(0)(k)d =
k∑

i=1

x(0)(i), k = 1, 2, 3....., n (8.3)

then D is called a first order accumulating generator of X(0), denoted as 1-AGO. The

rth-order operator Dr of X(0) is obtained by applying D operation r times, denoted as

r-AGO.

X(0)D = X(1) =
(
x(1)(1), x(1)(2), ........, x(1)(n)

)
(8.4)

and

X(0)Dr = X(r) =
(
x(r)(1), x(r)(2), ........, x(r)(n)

)
(8.5)

where

x(r)(k) =
k∑

i=1

x(r−1)(i), k = 1, 2, 3....., n (8.6)
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8.2.2. Inverse Accumulating Generating Operation (IAGO)

Inverse Accumulating Generating Operation (IAGO) is the process of returning

the original data after an accumulating generation process [15].

Consider a non-negative sequence of data X(1) and D̄ is a sequence operator:

X(1) =
(
x(1)(1), x(1)(2), ........, x(1)(n)

)
(8.7)

and

X(1)D̄ = X(0) =
(
x(1)(1)d̄, x(1)(2)d̄, ........, x(1)(n)d̄

)
(8.8)

where

x(1)(k)d̄ = x(1)(k)− x(1)(k − 1), k = 1, 2, 3....., n (8.9)

then D̄ is called a first order inverse accumulating generating operation of X(1), denoted

as 1-IAGO. The rth-order operator D̄r of X(r) is obtained by applying D̄ operation r

times, denoted as r-IAGO.

X(1)D̄ = X(0) =
(
x(0)(1), x(0)(2), ........, x(0)(n)

)
(8.10)

and

X(r)D̄ = X(r−1)D̄r−1 =
(
x(r−1)(1), x(r−1)(2), ........, x(r−1)(n)

)
(8.11)

where

x(r−1)(k) = x(r)(k)− x(r)(k − 1), k = 1, 2, 3....., n (8.12)
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8.3. Grey Differential Equations

Consider the following differential equation:

dx

dt
+ ax = b (8.13)

dx
dt

is called the derivative of the function, x is the background value of dx
dt

, a and

b are the parameters of the differential equation.

The following equation

x(0)(k) + az(1) = b (8.14)

where

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1) (8.15)

is a grey differential equation.

8.4. GM(n,m) Model

Grey models can predict the future outputs of systems with high accuracy without

knowing the mathematical model of the actual system.

In grey systems theory, GM(n,m) denotes a grey model, where n is the order of

the difference equation and m is the number of variables. Although various types of

grey models can be mentioned, the research reports available in the literature focus on

GM(1,1) model in their predictions because of its computational efficiency. Because

the grey controllers are more successful on real-time systems, the execution time of the

control algorithm is always the most important parameter for the researchers after the

accuracy.
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8.5. GM(1,1) Model

GM(1,1) type of grey model is most widely used in the literature, pronounced

as “Grey Model First Order One Variable”. This model is a time series forecasting

model. The differential equations of the GM(1,1) model have time-varying coefficients.

In other words, the model is renewed as the new data become available.

The GM(1,1) model can only be used in positive data sequences [24]. In this

paper, a non-linear liquid level tank is considered. It is obvious that the liquid level

in a tank is always positive, so that GM(1,1) model can be used to forecast the liquid

level.

In order to smooth the randomness, the primitive data obtained from the system

to form the GM(1,1) is subjected to an operator, named Accumulating Generation

Operation (AGO)[24]. The differential equation (i.e. GM(1,1)) thus evolved is solved

to obtain the n-step ahead predicted value of the system. Finally, using the predicted

value, the inverse accumulating operation (IAGO) is applied to find the predicted values

of original data.

Consider a single input and single output system. Assume that the time sequence

X(0) represents the outputs of the system:

X(0) =
(
x(0)(1), x(0)(2), ........, x(0)(n)

)
, n ≥ 4 (8.16)

where X(0) is a non-negative sequence and n is the sample size of the data. When this

sequence is subjected to the Accumulating Generation Operation (AGO), the following

sequence X(1) is obtained. It is obvious that X(1) is monotone increasing.

X(1) =
(
x(1)(1), x(1)(2), ........, x(1)(n)

)
, n ≥ 4 (8.17)
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where

x(1)(k) =
k∑

i=1

x(0)(i), k = 1, 2, 3....., n (8.18)

The generated mean sequence Z(1) of X(1) is defined as:

Z(1) =
(
z(1)(1), z(1)(2), ........, z(1)(n)

)
(8.19)

where z(1)(k) is the mean value of adjacent data, i.e.

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1), k = 2, 3, ....., n (8.20)

The least square estimate sequence of the grey difference equation of GM(1,1) is

defined as follows [24]:

x(0)(k) + az(1)(k) = b (8.21)

The whitening equation is therefore as follows:

dx1(t)

dt
+ ax(1)(t) = b (8.22)

In above, [a, b]T is a sequence of parameters that can be found as follows:

[a, b]T = (BT B)−1BT Y (8.23)

where

Y =
[
x(0)(2), x(0)(3), ......., x(0)(n)

]T
(8.24)
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B =



−z(1)(2) 1

−z(1)(3) 1

. .

. .

. .

−z(1)(n) 1


(8.25)

According to equation (8.22), the solution of x(1)(t) at time k:

x(1)
p (k + 1) =

[
x(0)(1)− b

a

]
e−ak +

b

a
(8.26)

To obtain the predicted value of the primitive data at time (k+1), the IAGO is

used to establish the following grey model.

x(0)
p (k + 1) =

[
x(0)(1)− b

a

]
e−ak(1− ea) (8.27)

and the predicted value of the primitive data at time (k+H):

x(0)
p (k + H) =

[
x(0)(1)− b

a

]
e−a(k+H−1)(1− ea) (8.28)

The parameter (−a) in the GM(1,1) model is called “development coefficient”

which reflects the development states of X(1)
p and X(0)

p . The parameter b is called

“grey action quantity” which reflects changes contained in the data because of being

derived from the background values [15].
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8.6. GM(1,1) Rolling Model

GM(1,1) rolling model is based on the forward data of sequence to build the

GM(1,1). For instance, using x(0)(k), x(0)(k + 1), x(0)(k + 2) and x(0)(k+3), the model

predicts the value of the next point x(0)(k + 4). In the next steps, the first point is

always shifted to the second. It means that x(0)(k + 1), x(0)(k + 2), x(0)(k+3) and

x(0)(k+4) are used to predict the value of x(0)(k+5). This procedure is repeated till

the end of the sequence and this method is called rolling check [26].

GM(1,1) rolling model is used to predict the long continuous data sequences

such as the outputs of a system, price of a specific product, trend analysis for finance

statements or social parameters, etc...

8.7. Error Remedy of GM(1,1) Model

In order to improve the accuracy of GM(1,1), Remnant GM(1,1) model can be

established that uses the error sequence to remedy the original model [15].

Consider X(1) is the 1-AGO sequence of X(0) and the response of the GM(1,1) is:

x(1)
p (k + 1) =

[
x(0)(1)− b

a

]
e−ak +

b

a
(8.29)

Then, equation (8.30) can be called as “restored value through derivatives”.

dx(1)
p (k + 1) = (−a)

[
x(0)(1)− b

a

]
e−ak (8.30)

ε(0) =
(
ε(0)(1), ε(0)(2), ........, ε(0)(n)

)
(8.31)
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where ε(0)(k) is the error sequence of X(1):

ε(0)(k) = x(1)(k)− x(1)
p (k) (8.32)

If there exists k0 satisfying:

1. For any k ≥ k0, ε(0)(k) has the same sign,

2. n− k0 ≥ 4

(∣∣∣ε(0)(k0)
∣∣∣ , ∣∣∣ε(0)(k0 + 1)

∣∣∣ , ........, ∣∣∣ε(0)(n)
∣∣∣) (8.33)

(
ε(0)(k0), ε

(0)(k0 + 1), ........, ε(0)(n)
)

(8.34)

Consider ε(1) is the 1-AGO sequence of ε(0)

The time response sequence is given as:

ε(1)
p (k + 1) =

[
ε(0)(k0)−

bε

aε

]
e−aε(k−k0) +

bε

aε
, k ≥ k0 (8.35)

ε(0)
p (k + 1) = (−aε)

[
ε(0)(k0)−

bε

aε

]
e−aε(k−k0), k ≥ k0 (8.36)

The sign of the error modification value ε(0)
p (k +1) must be the same as the error

ε(0). If ε(0) is used to modify X(1)
p , the time response sequence after the modification is

below. The model below is called the “GM(1,1) model with error remedy” or “Remnant

GM(1,1) Model” :
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x(1)
p (k + 1) =


[
x(0)(1)− b

a

]
e−ak + b

a
, k < k0[

x(0)(1)− b
a

]
e−ak + b

a
± aε

[
ε(0)(k0)− bε

aε

]
e−aε(k−k0), k ≥ k0

(8.37)

If

x(0)
p (k) = x(1)

p (k)− x(1)
p (k − 1) = (1− ea)

[
x(0)(1)− b

a

]
e−a(k−1) (8.38)

then the sequence of data after the error remedy is as below. This model is called “the

error remedy model of inverse accumulating restoration”.

x(0)
p (k + 1) =

 (1− ea)
[
x(0)(1)− b

a

]
e−ak, k < k0

(1− ea)
[
x(0)(1)− b

a

]
e−ak ± aε

[
ε(0)(k0)− bε

aε

]
e−aε(k−k0), k ≥ k0

(8.39)

If

x(0)
p (k + 1) = (−a)

[
x(0)(1)− b

a

]
e−ak (8.40)

then the sequence of data after the error remedy is as below. This model is called “the

error remedy model of derivative restoration”.

x(0)
p (k + 1) =

 (−a)
[
x(0)(1)− b

a

]
e−ak, k < k0

(−a)
[
x(0)(1)− b

a

]
e−ak ± aε

[
ε(0)(k0)− bε

aε

]
e−aε(k−k0), k ≥ k0

(8.41)

The error values of the model can be obtained from the following equation:

ε(0)
p (k + 1) = (1− eaε)

[
ε(0)(k0)−

bε

aε

]
e−aε(k−k0), k ≥ k0 (8.42)
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8.8. The Grey Verhulst Model

The Verhulst model was first introduced by a German biologist Verhulst. The

main purpose of Velhulst model is to limit the whole development for a real system

and it is effective in describing some increasing processes, such as an S curve which has

a saturation region.

The grey Verhulst model can be defined as [27]:

dx(1)

dx
+ ax(1) = b

(
x(1)

)2
(8.43)

Grey difference equation of equation (8.43) is

x(0)(k) + az(1)(k) = b
(
z(1)(k)

)2
(8.44)

x(0)(k) = −az(1)(k) + b
(
z(1)(k)

)2
(8.45)

Similar to the GM(1,1) model

[a, b]T = (BT B)−1BT Y (8.46)

where

Y =
[
x(0)(2), x(0)(3), ......., x(0)(n)

]T
(8.47)
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B =



−z(1)(2)
(
z(1)(2)

)2

−z(1)(3)
(
z(1)(3)

)2

. .

. .

. .

−z(1)(n)
(
z(1)(n)

)2


(8.48)

The solution of x(1)(t) at time k:

x(1)
p (k + 1) =

ax(0)(1)

bx(0)(1) + (a− bx(0)(1)) eak
(8.49)

Applying the I-AGO, the solution of x(0)(t) at time k:

x(0)
p (k) =

ax(0)(1)
(
a− bx(0)(1)

)
(1− ea)ea(k−2)

(bx(0)(1) + (a− bx(0)(1)) ea(k−1)) (bx(0)(1) + (a− bx(0)(1)) ea(k−2))
(8.50)

As can be seen, in equation (8.49), if a < 0, then

lim
k→∞

x(1)
p (k + 1) → a

b

It means that the saturation point in equation (8.49) is a
b

which limits the pre-

diction value. It is also the saturation point of x(0)
p (k) [27].

It also means that when k is sufficiently large, x(1)
p (k +1) and x(1)

p (k) will be very

close. Because of this feature of grey Verhulst model, it is commonly used to describe

and to predict processes with a saturation region.
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9. MODEL ACCURACY EXAMINATION

9.1. Error Analysis Standards

Grey prediction is an action based on discussions of the past and tell about

the future of the system. The original data obtained from the system is studied and

discovered some development laws of the system.

The accuracy and the feasibility of a model need to be checked using various

criteria. Only the models passing all the checks of different criteria can be used as

prediction models [25].

To demonstrate the accuracy of the proposed forecasting models, the actual value

and the forecasted value can be compared.

Equation (9.1), (9.2) and (9.3) are the three accuracy evaluation standards that

are used to examine the accuracy of the models in this thesis.

ε(Error) = x(0)(k)− x(0)
p (k) (9.1)

RPE(Relative Percentage Error) =
|ε(k)|
x(0)(k)

100% (9.2)

ARPE(Average Relative Percentage Error) =
1

n− 1

n∑
k=2

|ε(k)|
x(0)(k)

(9.3)



40

9.2. Test of GM(1,1) Model

Consider the following sequence that represents the speed values (rpm) of a motor

are given:

X(0) =
(
x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5)

)
(9.4)

X(0) = (820, 840, 835, 850, 890) (9.5)

GM(1,1) model can be used to simulate X(0) and seen its simulations accuracy:

Step 1: Apply 1-AGO on X(0)

X(1) =
(
x(1)(1), x(1)(2), x(1)(3), x(1)(4), x(1)(5)

)
(9.6)

X(1) = (820, 1660, 2495, 3345, 4235) (9.7)

Step 2: Find z(1)(k) using consecutive neighbor generation to X(1)

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1) (9.8)

Z(1) =
(
z(1)(1), z(1)(2), z(1)(3), z(1)(4), z(1)(5)

)
(9.9)

Z(1) = (820, 1240, 2077.5, 2920, 3790) (9.10)
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B =



−z(1)(2) 1

−z(1)(3) 1

−z(1)(4) 1

−z(1)(5) 1


=



−1240 1

−2077.5 1

−2920 1

−3790 1


(9.11)

Y =
[
x(0)(2), x(0)(3), x(0)(4), x(0)(5)

]T
= [840, 835, 850, 890]T (9.12)

[a, b]T = (BT B)−1BT Y = [−0.0195, 804.7900]T (9.13)

Step 3: Construct the model

dx(1)

dt
− 0.0195x(1) = 804.79 (9.14)

The time response sequence:

x(1)
p (k + 1) =

[
x(0)(1)− b

a

]
e−ak +

b

a
= 42091e0.0195k − 41271 (9.15)

Step 4: Solve for the simulation value of X(1)

X(1)
p =

(
x(1)

p (1), x(1)
p (2), x(1)

p (3), x(1)
p (4), x(1)

p (5)
)

(9.16)

X(1)
p = (820, 1648.8, 2494, 3355.8, 4234.5) (9.17)



42

Step 5: Restore to find the simulation value of X(0)

x(0)
p (k) = x(1)

p (k)− x(1)
p (k − 1) (9.18)

and

X(0)
p =

(
x(0)

p (1), x(0)
p (2), x(0)

p (3), x(0)
p (4), x(0)

p (5)
)

(9.19)

X(0)
p = (820, 828.8, 845.2, 861.8, 878.7) (9.20)

Step 6: Calculate the error

Table 9.1. The error of the GM(1,1) Model

Actual value Predicted value Error ε(k) RPE

No x(0)(k) x(0)
p (k) x(0)(k)− x(0)

p (k) |ε(k)|
x(0)(k)

100%

2 840 828.8 11.2 1.33 %

3 835 845.2 -10.2 1.22 %

4 850 861.8 -11.8 1.39 %

5 890 878.7 11.3 1.27 %

ARPE =
1

n− 1

n∑
k=2

|ε(k)|
x(0)(k)

ARPE =
1

4

5∑
k=2

|ε(k)|
x(0)(k)

= 1.302%
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9.2.1. The Influence Factor of Error

The general definition of z(1)(k) in GM(1,1) model is:

z(1)(k) = αgx
(1)(k) + (1− αg)x

(1)(k − 1) (9.21)

In the literature of grey system theory, αg is equal to 0.5 in most cases. However,

it is obvious that the selection of the value of αg has a role on the construction of

the GM(1,1) model. In order to see the effect of different αg values on the accuracy

of predictions, three different numerical values of αg that are 0.1, 0.5 and 0.9 will be

tested below:

Consider the same sequence in the previous section:

X(0) = (820, 840, 835, 850, 890) (9.22)

Step 1: Apply 1-AGO on X(0)

X(1) = (820, 1660, 2495, 3345, 4235) (9.23)

Step 2: Find z(1)(k) using consecutive neighbor generation to X(1)

z(1)(k) = αgx
(1)(k) + (1− αg)x

(1)(k − 1) (9.24)
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Step 3: Find the sequence of z(1)(k) and the B,Y matrices:

B =



−(1660αg + 820(1− αg)) 1

−(2495αg + 1660(1− αg)) 1

−(3345αg + 2495(1− αg)) 1

−(4235αg + 3345(1− αg)) 1


(9.25)

Y = [840, 835, 850, 890]T (9.26)

Step 4: Construct different GM(1,1) models for different αg values:

• When αg = 0.5, the values of the parameters a = −0.0195 and b = 804.7900

X(0)
p = (820, 828.8, 845.2, 861.8, 878.7) (9.27)

• When αg = 0.1, the values of the parameters a = −0.0196 and b = 811.2479

X(0)
p = (820, 835.5, 852.1, 868.9, 886.2) (9.28)

• When αg = 0.9, the values of the parameters a = −0.0194 and b = 798.3994

X(0)
p = (820, 822.3, 838.4, 854.9, 871.6) (9.29)
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Step 5: Calculate the error for different αg values:

Table 9.2. The error of the GM(1,1) Model for αg = 0.1

Actual value Predicted value Error ε(k) RPE

No x(0)(k) x(0)
p (k) x(0)(k)− x(0)

p (k) |ε(k)|
x(0)(k)

100%

2 840 835.5 4.5 0.54 %

3 835 852.1 -17.1 2.00 %

4 850 868.9 -18.9 2.18 %

5 890 886.2 3.8 0.43 %

ARPE =
1

n− 1

n∑
k=2

|ε(k)|
x(0)(k)

=
1

4

5∑
k=2

|ε(k)|
x(0)(k)

= 1.288%

Table 9.3. The error of the GM(1,1) Model for αg = 0.9

Actual value Predicted value Error ε(k) RPE

No x(0)(k) x(0)
p (k) x(0)(k)− x(0)

p (k) |ε(k)|
x(0)(k)

100%

2 840 822.3 17.7 2.15 %

3 835 838.4 -3.4 0.41 %

4 850 854.9 -4.9 0.57 %

5 890 871.6 18.4 2.10 %

ARPE =
1

n− 1

n∑
k=2

|ε(k)|
x(0)(k)

=
1

4

5∑
k=2

|ε(k)|
x(0)(k)

= 1.309%

The results, for αg = 0.1 ARPE=1.288, for αg = 0.5 ARPE=1.302 %, for αg = 0.9

ARPE=1.309 %, show that although there is an small effect of different αg values on

the predictions, it does not affect the accuracy of the predictions very seriously.
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9.3. Test of GM(1,1) Model After Error Remedy

Consider the following sequence that represents the speed values (rpm) of a motor:

X(0) = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5), x(0)(6), x(0)(7), x(0)(6),

x(0)(7), x(0)(8), x(0)(9), x(0)(10), x(0)(11), x(0)(12), x(0)(13)) (9.30)

X(0) = (550, 650, 880, 750, 880, 940, 750, 620, 530, 560, 490, 510, 470) (9.31)

Step 1: Apply 1-AGO on X(0)

X(1) = (550, 1200, 2080, 2830, 3710, 4650, 5400, 6020, 6550, 7110, 7600, 8110, 8580)

(9.32)

Step 2: Find z(1)(k) using consecutive neighbor generation to X(1)

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1) (9.33)

Z(1) = (875, 1640, 2455, 3270, 4180, 5025, 5710, 6285, 6830, 7355, 7855, 8345) (9.34)

B =



−z(1)(2) 1

−z(1)(3) 1

. .

. .

. .

−z(1)(13) 1


=



−875 1

−1640 1

. .

. .

. .

−8345 1


(9.35)
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Y = [650, 880, 750, 880, 940, 750, 620, 530, 560, 490, 510, 470]T (9.36)

[a, b]T = (BT B)−1BT Y = [0.0490, 913.6683]T (9.37)

Step 3: Construct the model

dx(1)

dt
+ 0.0490x(1) = 913.6683 (9.38)

The time response sequence:

x(1)
p (k + 1) = −18080e−0.0195k + 18630 (9.39)

Step 4: Calculate the X(1)
p using Equation (9.39):

X(1)
p = (550, 1415.3, 2239.2, 3023.6, 3770.6, 4481.7, 5158.9,

5803.6, 6417.4, 7001.9, 7558.4, 8088.3, 8592.8) (9.40)

Step 5: Restore to find the simulation value of X(0)

X(0)
p = (550, 865.30, 823.89, 784.46, 746.91, 711.17, 677.13,

644.72, 613.86, 584.48, 556.51, 529.88, 504.52) (9.41)
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Step 6: Calculate the error

Table 9.4. The error of the GM(1,1) Model

Actual value Predicted value Error ε(k) RPE

No x(0)(k) x(0)
p (k) x(0)(k)− x(0)

p (k) |ε(k)|
x(0)(k)

100%

2 650 865.30 -215.30 24.88 %

3 880 823.89 56.11 6.81 %

4 750 784.46 -34.46 4.39 %

5 880 746.91 133.09 17.81 %

6 940 711.17 228.83 32.18 %

7 750 677.13 72.87 10.76 %

8 620 644.72 -24.72 3.83 %

9 530 613.86 -83.86 13.66 %

10 560 584.48 -24.48 4.19 %

11 490 556.51 -66.51 11.95 %

12 510 529.88 -19.88 3.75 %

13 470 504.52 -34.52 6.84 %

ARPE =
1

n− 1

n∑
k=2

|ε(k)|
x(0)(k)

=
1

12

13∑
k=2

|ε(k)|
x(0)(k)

= 11.76%

As can be seen, the average relative percentage error is very large. It is necessary

to change the model GM(1,1) and apply a GM(1,1) model with error remedy to obtain

more accuracy on the predictions:

A value for k0 must be selected satisfying:

1. For any k ≥ k0, ε(0)(k) has the same sign,

2. n− k0 ≥ 4
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If k0 = 9 is selected:

ε(0) =
(
ε(0)(9), ε(0)(10), ε(0)(11), ε(0)(12), ε(0)(13)

)
= (−83.86,−24.48,−66.51,−19.88,−34.52) (9.42)

The absolute value of ε(0):

ε(0) = (83.86, 24.48, 66.51, 19.88, 34.52) (9.43)

To obtain the time response sequence of the predicted values of the error ε(1)
p (the

1-AGO sequence of ε(0)
p ), the model GM(1,1) is established:

ε(1)
p (k + 1) = −1009.7e−0.0389(k−9) + 1093.6 (9.44)

ε(0)
p (k + 1) = 39.2545e−0.0389(k−9) (9.45)

x(0)
p (k + 1) = x(1)

p (k + 1)− x(1)
p (k) = (1− ea)

[
x(0)(1)− b

a

]
e−ak (9.46)

x(0)
p (k + 1) = 908.7976e−0.049k (9.47)

x(0)
p (k + 1) =

 908.7976e−0.049k, k < 9

908.7976e−0.049k − 39.2545e−0.0389(k−9), k ≥ 9
(9.48)
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After the model modification, the prediction results can be seen in Table (9.5)

and the accuracy of the models can be compared for k > 9:

Table 9.5. The error of the GM(1,1) Model with error remedy

Actual value Predicted value Error ε(k) RPE

No x(0)(k) x(0)
p (k) x(0)(k)− x(0)

p (k) |ε(k)|
x(0)(k)

100%

10 560 545.23 14.77 2.64 %

11 490 518.75 -28.75 5.87 %

12 510 493.56 16.44 3.22 %

13 470 469.58 0.42 0.09 %

The value of ARPE for the GM(1,1) model with error remedy is:

ARPE =
1

4

13∑
k=10

|ε(k)|
x(0)(k)

= 2.95%

The value of ARPE for GM(1,1) model that can be calculated from Table (9.4)

was:

ARPE =
1

4

13∑
k=10

|ε(k)|
x(0)(k)

= 7.30%

As can be seen, the accuracy of the prediction is better for remnant GM(1,1)

model when compared to GM(1,1) model. Although the predictions of GM(1,1) model

is satisfactory for the monotonic processes of change, remnant GM(1,1) model is needed

when the sequence of data has an oscillatory characteristic.
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9.4. Test of Grey Verhulst Model

Consider the R-L circuit below.

Figure 9.1. The R-L circuit

Source voltage Vs = 12V dc, R = 1Ω and L = 10mH. The data sequence X(0)

represents the current measurement values obtained from the circuit at every 0.005s :

X(0) = (x(0)(1), x(0)(2), x(0)(3), x(0)(4), x(0)(5), x(0)(6), x(0)(7), x(0)(6),

x(0)(7), x(0)(8), x(0)(9), x(0)(10), x(0)(11), x(0)(12), x(0)(13)) (9.49)

X(0) = (0, 4.72163, 7.58545, 9.32244, 10.37598, 11.01498, 11.40255,

11.63763, 11.78021, 11.86669, 11.91914, 11.95096, 11.97025) (9.50)

The last five data of the sequence can be used for the analysis. In this case, the

sequences of the original data can be regarded as X(1). The construction of the model

is below:

Step 1: Build the original sequence

X(1) = (11.78021, 11.86669, 11.91914, 11.95096, 11.97025) (9.51)
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Step 2: Find I-AGO sequence X(0) of X(1) is

X(0) = (11.78021, 0.08648, 0.05245, 0.03181, 0.01929) (9.52)

Step 3: Find Z(1) using consecutive neighbor generation on X(1)

Z(1) = (11.78021, 11.82345, 11.89292, 11.93505, 11.96061) (9.53)

Step 4: Construct B and Y matrices

B =



−z(1)(2)
(
z(1)(2)

)2

−z(1)(3)
(
z(1)(3)

)2

−z(1)(4)
(
z(1)(4)

)2

−z(1)(5)
(
z(1)(5)

)2


=



−11.8235 139.7940

−11.8929 141.4415

−11.9351 142.4455

−11.9606 143.0561


(9.54)

Y = [0.0865, 0.0525, 0.0318, 0.0193]T (9.55)

Step 5: Find the coefficients a and b

[a, b]T = (BT B)−1BT Y = [−0.4989,−0.0416]T (9.56)

Step 6: The solution of x(1)(t) at time k:

x(1)
p (k + 1) =

−0.4989x(0)(1)

−0.0416x(0)(1) + (−0.4989 + 0.0416x(0)(1)) e−0.4989k
(9.57)
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Table 9.6. The error of the grey Verhulst model

Actual value Predicted value Error ε(k) RPE

No x(1)(k) x(1)
p (k) x(1)(k)− x(1)

p (k) |ε(k)|
x(1)(k)

100%

2 11.86669 11.86528 0.00141 0.01185 %

3 11.91914 11.91754 0.00160 0.01344 %

4 11.95096 11.94949 0.00146 0.01222 %

5 11.97025 11.96898 0.00127 0.01061 %

The value of ARPE for grey Verhulst model is:

ARPE =
1

4

5∑
k=2

|ε(k)|
x(1)(k)

= 0.012%

If the circuit is analyzed and obtained the current waveform, it can be seen that

x(1)(6) = 11.98196A at t = 0.065s. The grey Verhulst model predicts the value as

x(1)
p (6) = 11.98085A. So, the error of prediction is:

ε(1)
p (6) = x(1)(6)− x(1)

p (6) = 11.98196− 11.98085 = 0.00111 (9.58)

RPE =
ε(1)
p (6)

x(1)(6
= 0.00926% (9.59)

As it was mentioned in the chapter (8.8), the saturation point of x(0)
p (k + 1) is:

lim
k→∞

x(1)
p (k + 1) → a

b
=
−0.4989

−0.0416
= 11.99279 (9.60)

While the steady-state current of the circuit can be found using some electrical

analysis methods as 12A, the prediction of the model is 11.99279A which means a

highly accurate prediction.
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9.5. Review of the Grey Models

The general form of a grey model is GM(n,m), where n is the order of the differ-

ence equation and m is the number of variables. The computing time period increases

exponentially as n and m increases. However, in most cases, the prediction accuracy

may not increase with large values of n and m. So that, GM(1,1) model is the most

common grey model studied in the literature of grey system theory.

The model accuracy examination results show that GM(1,1) model is able to

make very accurate predictions for long-term forecasting of the monotonous variety

processes.

In the literature, as the ratio σ(k) defined below stays in the interval of σ(k) ∈

(0, 1], a grey model can be built.

σ(k) =
x(k − 1)

x(k)
k ≥ 2 (9.61)

However, the model GM(1,1) is imperfect when the primitive data sequence in-

creases in the shape of S or when it has a saturation region. In these cases, the

forecasting error of GM(1,1) will increase and the accuracy of the predictions will be

unacceptable. In order to solve this problem, remnant GM(1,1) model or grey Verhulst

model can be used. Grey Verhulst model is especially applicable for the systems with

S-shape which has a saturation region. Because the output data sequence of non-linear

liquid level control system used in this thesis does not have these kind of characteristics,

GM(1,1) model gives very accurate prediction results.

GM(1,1) model predicts the future values of a time sequence with less computa-

tion time when compared the other prediction methods, because it always uses small

data set for its predictions. As a result, GM(1,1) model is successful on real time

modeling and real time control of the industrial systems.
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10. SIMULATION RESULTS FOR GREY CONTROLLERS

A number of simulation studies have been carried out on the plant described in

the modeling section. Various kinds of grey controllers based on GM(1,1) model are

used to control the liquid level.

The sampling time of the simulations is set as Ts=1 sec. The numerical values

are selected as K = 1 and Kd = 0.1. At each time that the grey controller produces

an output, 5 most recent sample data are used to construct the GM(1,1) model.

10.1. Grey PID Control

In most control applications, the control signal is a function of the error present in

the system at the given time. In grey system theory, prediction error is used instead of

current measured error [28]. Similarly, during the development of a grey PID controller,

the prediction error is considered as the error of the system. Figure 10.1 shows the

general structure of a grey PID controller.

Figure 10.1. Grey PID controller structure

Figure 10.2-10.4 show the step responses of the model to conventional PID con-

troller and grey PID controller. In figure 10.2, KP = 1.275, KD = 0.175 and KI = 0.25,

which are proportional, derivative and integral controller constants, it is obvious that

although the system has a big overshoot in conventional PID controller, grey PID con-

troller can decrease the overshoot with its prediction ability. In Figure 10.3, KP = 1,
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KD = 0.1 and KI = 0.1, the speed and the overshoot of the conventional PID controller

is not as successful as grey PID controller.

Figure 10.4 compares the unit step response of the model with a grey PID con-

troller with different prediction horizons. As can be seen, a bigger step size of the grey

controller will cause over compensation, resulting in a slow system response. Figure

10.4 also shows that when the prediction horizon is increased dramatically, the system

will have an oscillatory characteristic.

Figure 10.2. Step responses of the model to conventional PID and GreyPID

controllers for KP = 1.275, KD = 0.175 and KI = 0.25

Figure 10.2-10.4 show that when the prediction horizon is selected properly, con-

trol quality of a grey PID controller is always better than a conventional PID controller.
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Figure 10.3. Step responses of the model to conventional PID and GreyPID

controllers for KP = 1, KD = 0.1 and KI = 0.1

Figure 10.4. Step responses of the model to conventional PID and Grey PID

controllers for different prediction horizons for KP = 1, KD = 0.1 and KI = 0.1
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10.2. Grey Fuzzy Control

Figure 10.5 shows the general structure of a grey PIDFC controller. Similar

to grey PID control, during the development of grey PIFC, PDFC and PIDFC, the

prediction error is considered as the error of the system. The numerical values are

selected as K = 1 and Kd = 0.1 in the simulations.

Figure 10.5. Grey PID type fuzzy controller structure

10.2.1. Grey Fuzzy PI Control

In Figure 10.6, although the performance of grey PIFC is better than PIFC, the

system has a big overshoot and a slow response with both of the controllers.

Figure 10.6. Step responses of the model to PIFC and Grey PIFC for α = 0, β = 0.1
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10.2.2. Grey Fuzzy PID Control

Figure 10.7 compares the unit step response of the system with a PIDFC and a

grey controller with different prediction horizons. As can be seen, when the step size of

the grey controller is large, it will cause over compensation, resulting in a slow system

response. Conversely, a smaller step size will make the system respond faster but cause

larger overshoots [29]. The response with H=20 is better than the one obtained with

the fuzzy PID type controller. Further simulations, shown in Figure 10.8 and Figure

10.9 are carried out with this value of H to determine the best parameters of the Grey

Controller. The response shown in Figure 10.9 has a fast rise time and reasonable

overshoot.

Figure 10.7. Step responses of the model to Grey PIDFC with different prediction

horizons for α = 3, β = 0.5
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Figure 10.8. Step responses of the model to PIDFC for α = 6, β = 0.6, H = 20

Figure 10.9. Step responses of the model to PIDFC for α = 2.4, β = 0.2, H = 20
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10.3. Noise Response of the System

Figure 10.10-10.12 show the unit step responses of the system to PID, grey PID,

PIDFC and grey PIDFC with the band-limited white noise at the output measurement.

The noise power, which is the height of the power spectral density of the white noise,

is equal to 0.003. The correlation time of the noise is equal to 1 sec.

The three figures show that although noise response of PID control and fuzzy

PID control is acceptable, the performance of grey controllers is always better than

conventional controllers.

Figure 10.10. Grey PID controller with the band-limited white noise at the output

measurement for KP = 1, KD = 0.1 and KI = 0.1, H = 20
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Figure 10.11. Grey PIDFC with the band-limited white noise at the output

measurement for α = 6, β = 0.6, H = 20

Figure 10.12. Grey PIDFC with the band-limited white noise at the output

measurement for α = 2.4, β = 0.2, H = 20
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11. CONCLUSIONS

In this thesis, it is shown that grey prediction approach is an efficient way of

controlling highly non-linear, uncertain systems. The controller described is a combi-

nation of grey prediction approach with a PID type fuzzy controller. The proposed

grey predictor is based on the online prediction of outputs of a non-linear system using

a first order grey model without the dynamic model of the system. The simulation

results presented indicate that grey prediction model can forecast the future outputs of

a grey system to be used to overcome the drawbacks met with conventional controllers.

Additionally, the system controlled with a grey parameter estimator has a better noise

response capability.

The model accuracy examination results show that GM(1,1) model is able to make

accurate predictions for long-term forecasting of the monotonous type of processes.

However, the model GM(1,1) cannot give the same performance when the primitive

data sequence increases like as in an S curve or it has a saturation region. As a

solution to these kinds of problems, the GM(1,1) model with error remedy or grey

Verhulst model can be used. Because the output data sequence of non-linear liquid

level control system used in this thesis does not have any saturation region, the use of

GM(1,1) model results in good performance.

GM(1,1) model predicts the future values of a time sequence with less computa-

tion time when compared the other prediction methods, because it always uses small

data set for its predictions. As a result, GM(1,1) model is successful on real time

modeling and real time control of the industrial systems.
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