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ABSTRACT

ROBOT PARTS’ REARRANGEMENT - SENSOR

UNCERTAINTY REDUCTION USING PARTICLE

FILTERS

This thesis adresses the parts’ moving problem under noisy sensory information.

In this scenario, a 2D workspace contains an actuated robot and a set of unactuated

parts. The discrepancy between the robot’s and/or the parts’ real and measured posi-

tions may lead to jerky movements or even collisions in the parts’ moving problem we

are concerned with. In contrast to previous work, sensory data is no longer assumed

to be perfect. Hence the robot needs to approximate state information, taking its

highly nonlinear nature into account. It accomplishes this using particle filters, which

implement a recursive Bayesian filter in nonlinear and/or nongaussian environments.

For the model of parts which turns out to be linear, the approach reduces to Kalman

filtering. First the robot’s dynamic model and the measurement model are modified to

incorporate the inaccuracies in the sensory data; and then the particle filter is utilized

to get improved positional estimates. Enhancements in the robot’s movements and

reduction in the number of collisions have been verified through extensive computer

simulations. An evaluation of its theoretical performance is presented based on the

Cramer-Rao lower bound. Finally, a series of experiments with EDAR provide insight

into real-time performance.
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ÖZET

ROBOT PARÇA TAŞIMA PROBLEMİNDE ALGILAYICI

BELİRSİZLİG̃İNİN PARÇACIK SÜZGEÇLER İLE

AZALTIMI

Bu tezde, gürültülü algısal veri durumunda parça taşıma problemi ele alınmıştır.

Bu senaryoda, iki boyutlu çalışma ortamında hareket edebilen bir robot ve hareket

yeteneg̃i olmayan parçalar vardır. Robot ve parçaların gerçek ile ölçülen konum-

ları arasındaki fark sarsıntılı harekete veya çarpışmalara yol açabilmektedir. Önceki

çalışmadan farklı olarak, algısal verinin artık tam dog̃ru olmadıg̃ı kabul edilmektedir.

Dolayısıyla robotun durum bilgisine yüksek dog̃rusal olmayan yapısını dikkate alarak

yaklaşıklaması gerekmektedir. Bu parçacık süzgeçler kullanılmasıyla başarılmıştır.

Parçacık süzgeçler dog̃rusal olmayan ve/veya Gauss olmayan ortamlarda Bayes süzgecini

yinelemeli olarak gerçekler. Parçaların modeli dog̃rusal oldug̃undan, yaklaşım Kalman

süzegece çevrilir. İlk olarak, robotun dinamik ve ölçüm modeli belirsizlikle birleştirilir.

Sonra, parçacık süzgeç kullanılarak konumsal kestirimde iyileştirme yapılır. Robotun

hareketindeki iyileşmeler ve çarpışma sayısındaki azalma kapsamlı bilgisayar benze-

timleri ile dog̃rulanmıştır. Başarımın kuramsal deg̃erlendirmesi Cramer-Rao alt sınırı

kullanılarak yapılmıştır. EDAR ile yapılan deneyler sistemin gerçek zaman başarımına

ışık tutmuştur.
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1. INTRODUCTION

This thesis is concerned with a geometrically simplified version of warehouse-

man’s problem [1] under sensor uncertainty. The problem setup is as follows: The

workspace contains a disk-shaped robot which has two degrees of freedom motion and

a manipulator with grasping and holding capabilities. The workspace also contains a

set of disk-like parts which are unactuated and thus cannot move by themselves. The

robot’s task is to move all the parts to their prespecified destination locations while

having no collisions along the way. As there is no guarantee that the parts will be

left undisturbed, the robot is required to employ a reactive strategy. A feedback-based

event-driven approach based on artificial potential functions has been presented in [2],

assuming that the robot (i) has perfect (online) knowledge of the locations of the parts

and own position, and (ii) has perfect (online) knowledge of its joint positions. Since

sensory measurements are fed back from the optical encoders and camera-based vision

system which are both prone to sensor inaccuracies, these assumptions may not hold in

real-time implementations. The discrepancy between the robots’ actual and measured

positions may cause uneven movements and even possibly collision. Since the robot

does not have accurate positional information about itself and the parts, even in cases

where there is no collision, the parts’ positioning accuracy may deteriorate due to sens-

ing inaccuracies. Hence, the robot cannot perform its task purely based on raw sensory

data, but now needs to estimate positional information from noisy measurements.

1.1. Problem Statement

The workspace contains a robot and a set of disk shaped parts with varying radii.

The robot’s task is to move all the parts from their initial arbitrary configuration to the

specified goal configuration with no collisions without any a priori plan in a completely

event-driven manner. All the positions including that of the robot and the parts are

a priori unknown and are sensed instantaneously from a camera-based vision system.

However, due to measurement inaccuracy, the sensed data is noisy. The robot should

react to the sensed arrangement of parts based on this inaccurate data. As it cannot
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rely entirely on the measurements, the problem is how to alleviate the sensor noise

for an improved estimate of the positions of the robot and of all the parts in order to

ensure successful task completion.

1.2. Related Literature

The related work includes two distinct areas: Reactive Parts’ Rearrangement

problems from robotics and Particle Filters from signal processing and uncertainty

reduction.

1.2.1. Reactive Parts’ Rearrangement

One approach to achieving reactivity has been based on artificial potential func-

tions [3, 4]. However, their usage has been limited since most constructions suffer from

undesired local minima and thus are not ensured of convergence to the desired goal

positions. A sequel of work reported has then been able to demonstrate that it is possi-

ble to overcome this shortcoming through carefully constructed functions. Navigation

functions have been shown to have global convergence properties and a construction

with this property for the case of robot navigation among static obstacles has been

presented in[5]. The approach has then been generalized to linear parts’ moving or re-

arrangement problems where it has been shown that by sequentially switching among

a family of feedback controllers, we can generate a plan that is ensured of convergence

or termination [6]. An actual implementation in 2D, as presented in [2] has demon-

strated the robustness of the approach in case of dynamically changing environments.

However, in all previously reported work, sensory information has been perfect.

1.2.2. Sensor Inaccuracy

Robustness against sensor noise is an important issue in most robotic applications.

In this case, the robot should not rely completely on the measurements coming from

its sensors. Cox and Wilfong state that “Using sensory information to locate the robot

in its environment is the most fundamental problem to providing a mobile robot with
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autonomous capabilities” [7]. The robot needs to deal with the uncertainty in the

information provided by the measurements. One of the key developments in robotics

is the adoption of probabilistic techniques. Probabilistic robotics integrates imperfect

models and imperfect sensors through probabilistic laws, such as Bayes’ rule. Particle

filter (PF) has been proposed as a probabilistic approach for estimating the state of the

dynamic system – for the case of highly nonlinear problems in [8, 9]. The PF depending

on probabilistic principles is among the most promising candidates to providing a

comprehensive and real-time solution to reliable position estimation. Several variants of

the PF such as sampling importance resampling (SIR), auxiliary sampling importance

resampling (ASIR), and Rao-Blackwellized PF have then been introduced within a

generic framework of the sequential importance sampling (SIS) algorithms [10]. Their

application in robotic problems has been studied by many researchers where Bayesian

filtering with particle-based density representations are used to localize a mobile robot.

Their advantage stems from the fact that they solve numerically the associated optimal

filtering problem, which in general does not admit a closed-form solution [11].

Dellaert et al. have introduced the Monte Carlo Localization method [12]. By

using Monte Carlo (MC) type methods, they combine the advantages of grid-based

Markov localization with the efficiency and accuracy of Kalman filter based techniques

and use the approach in applications involving laser and the sonar measurements. It

should be noted that PFs are used for positioning based on cellular phone measure-

ments, for integrated navigation in aircraft, and for target tracking in aircraft and

cars in [13]. A probabilistic algorithm for simultaneously estimating the position of a

mobile robot and the positions of nearby people in a previously mapped environment

is developed in [14]. This approach, called the conditional PF, tracks a large distri-

bution of people locations conditioned upon a smaller distribution of robot poses over

time. Real-time PFs which make use of all sensor information even when the filter

update rate is below the update rate of the sensors have been reported [15]. Some of

this work have also investigated the theoretical bounds of performance. In particular,

Cramer-Rao lower bound is used for evaluation of performance of PF in [16, 10, 17].

The bound can be used to provide information on the fundamental performance level

that can be reached for the estimation.
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1.3. Contribution of the Thesis

The contributions of this thesis can be summarized as follows:

• The more realistic case of sensor inaccuracy in parts’ rearrangement tasks is con-

sidered and the previously proposed feedback-based strategy based on artificial

potential functions is integrated with particle filters in an iterative manner as to

enable continuous update of the state estimates,

• Cramer-Rao lower bound of the resulting system is computed and compared with

the actual performance obtained via an extensive simulation study.

• A series of experiments with EDAR is conducted to evaluate its performance in

a real-time application.

1.4. Approach

Our approach is based on integration of PFs with feedback-based event driven

approach.

• First, the robot’s dynamic model is modified to incorporate noisy sensor mea-

surements.

• Next, PFs are constructed in order to get an improved positional estimate for the

robot and the parts.

• The robot’s position is updated using the probability density function (pdf) thus

constructed.

• As the parts are unactuated, PFs simplify out to be Kalman filters which are

then used to improve the estimate of the parts’ positions.

1.5. Outline of the Thesis

The thesis is organized in the following chapters. The first chapter presents

an introduction to the thesis including problem statement, related literature and a

summary of the proposed approach. The feedback-based event-driven approach to
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the parts’ rearrangement problem is presented in Chapter 2. Chapter 3 presents the

overview of PF, its application to the rearrangement problem, and the computation

of the Cramer-Rao lower bound. In Chapter 4, an extensive set of simulations with

3 and 6 parts rearrangement tasks are presented along with quantitative measures of

performance including estimation error with respect to the Cramer-Rao lower bound.

Chapter 5 presents results with EDAR - a parts’ mover robot operating purely in a

feedback-based manner.
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2. FEEDBACK-BASED EVENT-DRIVEN PARTS

MOVING

The parts’ moving problem is defined by a robot that can move freely, grip a part

and carry it from a location to another location and a set of disk shaped parts that

are arbitrarily located and need to be moved from their arbitrary initial placements to

their goal positions. Each is mathematically represented following the formalism of [2]:

The robot is parametrized by its radius ρr ∈ Z+ and is located at r ∈ ℜ2. Its gripper

makes an angle θ ∈ SO(1) with the x axis. The augmented robot state ra ∈ ℜ2×SO(1)

is defined as ra = [r θ]T . The set of parts is denoted by P = {1, · · · , p}, p ∈ Z+. Each

part i ∈ P is again parametrized by its radius ρi ∈ ℜ. Current and goal locations

are defined by bi ∈ ℜ2 and gi ∈ ℜ2 respectively. The state of all the parts is a vector

b ∈ ℜ2p defined as b =
∑

i∈P bi ⊗ ei, where ei ∈ ℜp are the unit vectors in ℜp. The goal

vector of all the parts is g ∈ ℜ2p defined as g =
∑

i∈P gi ⊗ ei.

In feedback-based event-driven approach, the robot control is modelled as an

hybrid system that operates purely on state feedback. In this perspective, the robot

implicitly decomposes its overall task into a continuous sequence of subtasks of moving

each part respectively via a switching mechanism as depicted in Figure 2.1 [18]. It

should be noted that there is no a priori explicit task decomposition as is typically the

case in planning based approaches. Accordingly, the robot has the following rules:

• One subtask gets to be executed at a time.

• Subtasks are competing and the robot selects the subtask based on an urgency

measure as defined by next-part function.

• For each part, a subtask consists of sequence of two stages: i) Mate-part: The

robot moves to mate with part, ii) Move-part: In case of successful mating, the

robot moves the part to its goal position.

This switching mechanism is invoked repetitiously in a reactive manner until all the

parts are moved to their goal positions by the robot.
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Figure 2.1. Parts’ moving game

The robot chooses one among the competing subtasks using an index valued

next-part function m(b) : ℜ2p → P [2]:

m(b) = arg maxi∈P

∥

∥

(

I2 ⊗ eT
i

)

Dbφ(b)
∥

∥ (2.1)

This function picks out the component of b, whose direction of descent on φ(b) is

the steepest. The function φ(b) : ℜ2p → ℜ is defined as φ(b) =
(

γk1(b)/β(b)
)

where

k1 ∈ Z+. The term γ(b) : ℜ2p → ℜ is defined as γ(b) = ‖b− g‖2 while the denominator

β(b) : ℜ2p → ℜ denotes the obstacle function of the pairwise part positions defined as

β(b) =
∏

i∈P

∏j>i

j∈P ‖bi − bj‖
2 − (ρi − ρj)

2.

2.1. Robot Part Mating

The mating control laws are defined by a collection of smooth scalar valued maps

ϕi(r, b) : ℜp ×ℜ2p → ℜ, ∀i ∈ P . Each ϕi is defined as [2]:

ϕi(r, b) =
γk2

i (r, b)

β(r, b)
(2.2)

where γi(r, b) : ℜ2 × ℜ2p → ℜ is the squared Euclidian distance between the robot

and part i defined as γi(r, b) = ‖r − bi‖
2, ∀i ∈ P . The obstacle function β(r, b) :

ℜ2 × ℜ2p → ℜ is defined as β(r, b) =
∏

j∈P ‖r − bj‖
2 − (ρr − ρj)

2. The constant
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k2 ∈ Z+ is a positive integer chosen appropriately. The robot’s motion toward part i

is governed by the dynamical system:

ṙ = −Drϕi(r, b) (2.3)

where Drϕi is the gradient of ϕi with respect to r.

2.2. Robot Part Moving

Once the robot mates with part i, the robot-part coupled structure moves as a

single body in the extended space ℜ2 × SO(1). The position vector bi of part i is

dependent on the augmented state vector ra as follows: bi = r + d





cosθ

sinθ



 where d

denotes the mating distance between the robot and the mated part. Control laws are

defined by again considering a collection of smooth maps of ψi(ra, bi) : ℜ2 × SO(1) ×

ℜ2p−2 → ℜ, ∀i ∈ P as follows [2]:

ψi(ra, bi) =
γk3

i (ra, bi)

βi(ra, bi)
(2.4)

where bi = {b1, · · · , bi−1, bi+1, · · · , bp}. The parameter k3 ∈ Z+ is chosen to be a

positive integer. The function γi(ra, bi) : ℜ2×SO(1)×ℜ2(p−1) → ℜ is the total squared

Euclidean distance between the current configuration and the goal configuration:

γi(ra, bi) =

∥

∥

∥

∥

∥

∥

r + d





cosθ

sinθ



 − gi

∥

∥

∥

∥

∥

∥

2

+

j 6=i
∑

j∈P

‖bj − gj‖
2 (2.5)

The function βi(ra, bi) : ℜ2 × SO(1) ×ℜ2(p−1) → ℜ, ∀i ∈ P , encodes the obstacles as:

βi(ra, bi) =

j 6=i
∏

j∈P

[

‖r − bj‖
2 − (ρr − ρj)

2] ×





∥

∥

∥

∥

∥

∥

r + d





cosθ

sinθ



 − bj

∥

∥

∥

∥

∥

∥

2

− (ρi − ρj)
2





(2.6)
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The motion of robot carrying part i is defined by:

ṙa = −Dra
ψi(ra(t), b̄i(t)) (2.7)

where Dra
ψi is the gradient of ψi with respect to ra.
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3. UNCERTAINTY REDUCTION BY PARTICLE AND

KALMAN FILTERS

3.1. Robot Dynamics Under Noise

The robot dynamics as given in Chapter 2 are based on perfect sensory data. In

case of noisy measurements, they cease to be valid and need to be modified in order

to incorporate noise. First as the incoming sensory data is subjected to sampling,

the continuous state function r becomes a discrete function rk where the subscript

k ∈ {0, 1, · · ·} denotes discrete time index, which is r(t) evaluated at time t = k∆t.

Next, the presence of measurement and process noise turns the system into a stochastic

process. As the system is subject to a process noise ηk, the system transition function f

needs to be modified accordingly. Finally, as the state vector is subject to measurement

noise νk, it is no longer possible to observe the state vector directly. Rather, one has

the vector of observations zk as defined by the measurement function h.

rk+1 = f(rk, ηk) (3.1)

zk = h(rk, νk)

The process noise ηk and measurement noise νk are assumed to be white and inde-

pendent. Let us note that with PFs, the noise distributions need not to be known.

All that is required is an assumption about the model of the underlying statistics –

albeit with unknown parameters. In our case, they are both assumed to be Gaus-

sian as η ∼ N (η; 0,Ση) and ν ∼ N (ν; 0,Σν), respectively where the covariances Ση

and Σν are assumed to be known. This seems a valid model for the visual feedback

used by our robot. Furthermore, with this assumption and our nonlinear state space

model, optimal importance function as proposed in [8] can be used – which improves

the performance of the PF.
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3.1.1. Robot Motion State and Observation Model

Under noisy measurements, the state dynamics for the mate-part now incorporate

dynamical noise as:

ṙ(t) = −Drϕi(r(t), b(t)) + η(t) (3.2)

In the move-part stage, similarly the system dynamics should now incorporate noise as

well:

ṙ(t) = −Drψi(ra(t), b̄i(t)) + η(t) (3.3)

Due to measurement noise, the robot state r(t) is no longer available. Rather, we have

its measurement z(t).

z(t) = r(t) + ν(t) (3.4)

3.1.2. Part State and Observation Model

The state equations governing the parts’ motion are linear because parts are

stationary unless the robot carries them. The system model is as follows:

˙̄bi(t) = η(t) (3.5)

Similarly, we have only observations zb̄i
of b̄i

zb̄i
(t) = b̄i(t) + ν(t) (3.6)
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3.2. Introducing Particle Filters

PFs provide an estimate r̂k of rk. This is accomplished by weighted approximation

of the posterior density function p(rk|zk) from samples zk of z(t) in a recursive manner.

The approximation equations are derived considering a very general, nonlinear and non-

Gaussian system. Consequently, no assumptions such as the linearity and Gaussian

noise as required by the classical Kalman filter need to be made. The capability to

handle nonlinear, non-Gaussian systems allows PFs to achieve improved accuracy over

Kalman filter-based estimation methods. The more nonlinear the model is, or the more

non-Gaussian the noise is, the more potential the PF has, especially in applications

where computational power is rather cheap and the sampling rate is slow [19].

3.2.1. Markov Chain

The system dynamics can be interpreted as an hidden Markov model. Hence, it

is defined by three pdfs:

• p(r0): The initial pdf of the random variable rk

• p(rk|rk−1): The likelihood of rk given rk−1, rk evolve according to a Markov chain

with transition probabilities given by p(rk|rk−1).

• p(zk|rk): The likelihood of zk given rk.

In this framework, the state rk needs to estimated given the history of observations

(measurements) z0:k = z0, ..., zk up to time k. The solution to this problem is given by

the posterior density p(rk|z0:k), or in other words, the likelihood of the current state

given the history of observations. PFs approximate the posterior pdf under nonlinear

and nongaussian system dynamics of the Markov chain based on a finite number of

samples with associated weights [9].
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3.2.2. Recursive State Estimation

The observations become available one at a time, which then motivates a recur-

sive framework to allow online estimation. The posterior probability density can be

recursively updated using the following equations [17]:

p(rk|z0:k) =
p(zk|rk)p(rk|z0:k−1)

p(zk|z0:k−1)
(3.7)

p(rk|z0:k−1) =

∫

p(rk|rk−1)p(rk−1|z0:k−1)drk (3.8)

p(zk|z0:k−1) =

∫

p(zk|rk)p(rk|z0:k−1)drk (3.9)

The conditional pdfs p(rk|rk−1) and p(zk|rk) are known from model (3.1). This scheme

consists of a measurement update according to (3.7) and (3.9) along with time update

according to (3.8) as derived in Appendix A. These equations look deceptively simple.

However, they are really theoretical as the (multidimensional) integrals involved rarely

yield an analytical solution. The linear, Gaussian case is an exception and its solution is

known as the Kalman filter. PFs numerically approximate the posterior pdf p(r0:k|z0:k)

using MC techniques. The approximation of p(rk|z0:k) is obtained by marginalisation.

3.2.3. Monte Carlo Integration

MC integration is based on the assumption that it is possible to draw N >> 1

samples ri, i = 1, ..., N distributed according to π(r). Accordingly, the multidimen-

sional integral

I =

∫

f(r)π(r)dr (3.10)
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can be approximated by the sample mean:

IN =
1

N

N
∑

i=1

f(ri). (3.11)

In the Bayesian estimation context, the function π(r) is the posterior density. Samples

from p(r0:k|z0:k) have to be drawn, but that density is only known up to a proportion-

ality constant. This problem can be circumvented using importance sampling.

3.2.4. Sequential Importance Sampling

Ideally samples are generated directly from π(r) and I can be estimated using

Equation 3.11. Suppose samples can only be generated from a density q(r) which is

close to, but not exactly equal to π(r). Then a correct weighting of the sample set

still makes the MC estimation possible. The pdf q(r) is referred to as the importance

or proposal density. Importance sampling is a modification of perfect sampling. The

samples are drawn from the importance function (3.10) can be rewritten as:

I =

∫

f(r)π(r)dr =

∫

f(r)
π(r)

q(r)
q(r)dr (3.12)

A MC estimate of I is computed by generatingN >> 1 independent samples ri, i =, ..., N

distributed according to q(r) and forming the weighted sum:

IN =
1

N

N
∑

i=1

f(ri)w̃(ri) (3.13)

where w̃(ri) = π(ri)
q(ri)

are the importance weights. The choice of the importance or

proposal density (function) is critical with respect to performance. The optimal im-

portance function that minimizes the variance of the importance weights, conditioned

on r0:k−1 and z0:k has been shown to be [8]:

q(ri
k|r

i
0:k−1, z0:k)opt = p(ri

k|r
i
k−1, zk)
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=
p(zk|rk, r

i
k−1)p(rk|r

i
k−1)

p(zk|ri
k−1)

(3.14)

The SIS algorithm is a MC method that forms the basis for most SMC filters developed

over the past decades. This SMC approach is known variously as bootstrap filtering

[20], the condensation algorithm [21], and particle filtering [22].

If the normalizing factor of the desired density π(r) is unknown, the importance

weights are needed to be normalized. Then IN is as follows:

IN =
1
N

∑N

i=1 f(ri)w̃(ri)
1
N

∑N

j=1 w̃(rj)
=

N
∑

i=1

f(ri)w(ri) (3.15)

where the normalized importance weights are given by w(ri) = w̃(ri)/
∑N

j=1 w̃(rj).

3.3. Algorithm

The algorithm consists of two stages: prediction and updating. In prediction,

the estimated value r̂k is predicted from the previous observations. Following, the

posterior probability p(rk|zk) is updated using the newly acquired measurements. It

is represented using a set consisting of N particles {ri
k | i = 1, · · · , N} with associated

weights wi
k, for each time step k as:

p(rk|zk) ≈
N

∑

i=1

wi
kδ(rk − ri

k) (3.16)

It can be shown that as N → ∞, the approximation approaches the true posterior[9].

The weights are updated within a normalization using the importance sampling as :

wi
k ∝ wi

k−1

p(zk|r
i
k)p(r

i
k|r

i
k−1)

q(ri
k|r

i
0:k−1, z0:k)

(3.17)

where r0:k−1 = [r0, r1, .., rk−1]
T and z0:k = [z0, z1, .., zk]

T . Note that the state equa-

tion characterizes the state transition probability p(rk|rk−1), whereas the measurement
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equation describes the likelihood p(zk|rk).

The substitution of (3.14) into (3.17) yields

wi
k ∝ wi

k−1p(zk|r
i
i−1) (3.18)

It requires sampling from p(rk|r
i
k−1, zk) and the evaluation of p(zk|r

i
k−1), which are both

realizable in our case. Under our assumptions on the state and observation models,

both the optimal importance density and p(zk|rk−1) are Gaussian [8]:

p(ri
k|r

i
k−1, zk) = N (ri

k;mk,Σk) (3.19)

p(zk|r
i
k−1) = N (zk; fk−1,Ση + Σν) (3.20)

where

Σ−1
k = Σ−1

η + Σ−1
ν (3.21)

mk = Σk

(

Σ−1
η fk−1 + Σ−1

ν zk

)

(3.22)

fk =







−
∫

Drϕi(rk, bk) if state = mate− part

−
∫

Dra
ψi(rak

, b̄ik) if state = move− part
(3.23)

where N (r;µ,Σ) is a Gaussian density with argument r, mean µ, and covariance Σ.

The weights at time k can be computed and normalized such that
∑

iw
i
k = 1

before the particles are propagated to time k. One can perform resampling, if necessary,

to obtain an approximate i.i.d. sample from p(rk|zk).

This algorithm forms the basis for the PF which consists of the recursive evolution

of the importance weights and the particles as measurements are received sequentially.

A pseudo-code description of the algorithm is given in Table 3.1.

Without resampling in step-5 of Table 3.1, during the computation of the weights,

most particles may converge to 0 which is a common problem known as the degener-
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Table 3.1. Pseudocode for SIR particle filter

1. Initialization

For i = 1:N

• Draw ri
k ∼ N (ri

k; z0,Σν)

End For

2. Sample from the optimal importance density

For i = 1:N

• Draw ri
k ∼ N (ri

k;mk,Σk)

• Assign the particle a weight, w̃i
k, according to eq. (3.18)

End For

3. Compute normalized importance weights

For i = 1:N

• wi
k = w̃i

k/SUM
[

{w̃i
k}

N

i=1

]

End For

4. Calculate Neff according to eq. (3.24)

5. IF Neff < Nkh

Resample using systematic resampling

{ri
k, w

i
k}

N

i=1 = RESAMPLE
[

{ri
k, w

i
k}

N

i=1

]

6. Estimate r̂k, weighted sum of particles

7. Simulate the system using estimated r̂k

8. Go to step-2
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acy phenomenon [8]. Hence, the filter would not estimate r̂k from noisy observations

properly. The particles are resampled whenever a significant degeneracy is observed,

that is, whenever Neff falls below a certain threshold Nth. The threshold was chosen

as Nth = 2N/3. The effective sample size Neff introduced in [23] is estimated as:

Neff =
1

∑N

i=1 (wi
k)

2 (3.24)

In the resampling stage, N particles are taken with replacemant from {ri
k}

N

i=1, where

the probability to take particle i is wi
k. Systematic resampling [9] is used in step-5 of

Table 3.1. Appendix B shows details of the sampling algorithm.

3.4. Kalman Filter

The Kalman filter is used to provide an estimate b̂k of bk, which is b(t) discretized

at time t = k∆t. Like the PF, there are two stages in the estimation procedure-the

prediction and the update. However, the Kalman filter assumes, at every time step

k, that the posterior density is Gaussian and hence characterized by a mean and a

covariance. It can be proved that if p(bk−1|zk−1) is Gaussian then p(bk|zk) is also

Gaussian provided that certain assumptions hold: The process and the measurement

noise are both Gaussian distributions of known parameters and both the state equation

and the measurement equation are known linear functions of the relevant states and

noise [24]. These assumptions are all satisfied for the parts’ state and observation

models in our case. With the assumption of a prior estimate b̂−k and a prior error

covariance matrix P−, the measurement zb is used to improve the prior estimate as

in step-3 of Table 3.2. The updated estimated b̂k is easily projected ahead via the

transition matrix as in step-5 of Table 3.2. K is called the gain matrix, and P is called

the covariance matrix of the prediction error.

The Kalman filter algorithm, which is derived using (3.7) and (3.9), can be sum-
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Table 3.2. Pseudocode for Kalman filter

1. Prior estimate b̂−k , error covariance matrix P−
k

2. Compute Kalman gain

Kk = P−
k

(

P−
k + Σν

)−1

3. Update estimate with measurement zb

b̂k = b̂−k +Kk

(

zb,k − b̂−k

)

4. Compute error covariance matrix for updated estimate

Pk = (I −Kk)P
−
k

5. Project ahead

b̂−k+1 = b̂k

P−
k+1 = Pk + Ση

6. Go to step-2

marized as follows [9]:

p(bk−1|zb,1:k−1) = N (bk−1; b̂k, Pk−1) (3.25)

p(bk|zb,1:k−1) = N (bk; b̂
−
k , P

−
k ) (3.26)

p(bk|zb,1:k) = N (bk; b̂k+1, Pk) (3.27)

where

b̂−k+1 = b̂k (3.28)

P−
k+1 = Pk + Ση (3.29)

b̂k = b̂−k +Kk

(

zb,k − b̂−k

)

(3.30)

Pk = (I −Kk)P
−
k (3.31)

and where N (r;µ,Σ) is a Gaussian density with argument r, mean µ, and covariance

Σ.
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3.5. Cramer-Rao Lower Bound

The PF and Kalman filter provide an estimate of both the robot’s and parts’

positions, respectively. Next, the theoretical performance of this estimator is assessed

given a model structure. In particular, this analysis is done using the Fisher information

matrix (FIM), which gives a bound on the second order moment. This bound is often

referred to as the Cramer-Rao lower bound (CRLB) [10, 25].

In nonlinear estimation, Root Mean Square (RMS) error may be based on the

region of the state dynamics in which the simulation is carried out. This is for example

the case in the parts’ moving problem, where the simulations in move-part are more

susceptible to noise than in mate-part. Hence, the CRLB yields an opportunity to

evaluate RMS performace of filters under different circumstances [26].

Let r̂ be an unbiased estimator of the state vector r, based on the measurement

z and prior knowledge of initial density p(r0). Then the CRLB for the error covariance

matrix is defined to be the inverse of the Fisher information matrix J [27]:

P
△
= E

{

[r̂ − r] [r̂ − r]T
}

≥ J−1 (3.32)

where J is the 2x2 Fisher information matrix with the elements

Jij = E

[

−
∂2logp(z|r)

∂r[i]∂r[j]

]

i, j = 1, 2 (3.33)

provided that the derivatives and expectations exist. The inequality means that the

difference P − J−1 is a positive semi-definite matrix.

Since the estimates r̂k are obtained iteratively in PF, the posterior CRLB is

defined as:

Pk
△
= E

{

[r̂k − rk] [r̂k − rk]
T
}

≥ J−1
k (3.34)
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Increasing discrete time index k results in the increasing demand for both com-

putational and memory resources. However, the CRLB can be computed recursively.

Tichavsky et al. [28] provide a method of computing the information matrix Jk recur-

sively for Gaussian noise case:

Jk+1 = K22
k − K21

k

(

Jk + K11
k

)−1
K12

k (3.35)

where

K11
k = E

{

F̃
T

k Σ−1
η F̃k

}

K12
k = −E

{

F̃
T

k

}

Σ−1
η =

(

K21
k

)T

K22
k = Σ−1

η + E

{

H̃
T

k Σ−1
ν H̃k

}

Here, f is the system transition function and h is the measurement function. F̃k =

Dr f |rk
and H̃k = Dr h|rk

are Jacobians of f and h evaluated at the true value of rk,

respectively.

The discrete-time version of dynamics is obtained using the Euler approximation

with integration step τ , that is:

rk+1 = f(rk) + ηk (3.36)

where

f(rk) =







rk − τDrϕi(rk, bk) if state = mate− part

rk − τDrψi(rak
, b̄ik) if state = move− part







(3.37)

The analysis of CRLB can be restricted to the zero process noise case, since it is

observed that small amounts of process noise have only negligible effect. In the absence

of process noise, Ση = 0, the corresponding term vanishes and the information matrix
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J simplifies to:

Jk+1 =
(

F̃
−1

k

)T

JkF̃
−1

k + Σ−1
ν (3.38)

where F̃k is the Jacobian of f evaluated at the true state rk; that is,

F̃k = ▽rk
f |rk

(3.39)

In the case where the initial distribution is Gaussian, that is, p(r0) = N (r0; 0,Σν), the

initial information matrix J0 is calculated from the initial density p(r0) [10]:

J0 = Σ−1
ν (3.40)

The CRLB of the components of rk are calculated as the diagonal elements of the

inverse of the information matrix Jk. If J−1
k [i, j] denotes the ijth element of the inverse

information matrix, then the corresponding CRLB can be written as

CRLB(RMSk) =
√

J−1
k [1, 1] + J−1

k [2, 2] (3.41)
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4. SIMULATIONS

A series of simulations have been conducted for three and six parts scenarios

of varying degrees of task complexity and sensor noise. Task complexity is measured

by how tightly packed the parts need to be at their final positions. It is defined by

comp = (100
(

p

2

)

/ log β) where the scalar function β =
∏

(i,j)∈P

[

‖gi − gj‖
2 − (ρi − ρj)

2]

[2]. Depending on its value, the task complexity is varied from easy (E) to intermediate

(I) and to finally hard (H).

Similarly, the measurement noise level is selected as low noise (variance = 0.2),

medium noise (variance = 1.0) and high noise (variance = 5.0) according to signal to

noise ratio (SNR) defined as:

SNR = 10 log(
e

σ2
ν

) (4.1)

e =
1

T

∫ T

0

V 2dt (4.2)

where e is the signal power, T is execution time for simulation, V is velocity of the

robot, and σ2
ν is variance of the measurement noise. The process noise variance is 0.06.

In order to evaluate performance, a series of performance measures similar to

those presented in [2] have been used:

• Normalized part length (npl):

npl =
1

p

∑

i∈P

∫ tf

0

∥

∥

∥
ḃi(t)

∥

∥

∥
dt

‖bi(0) − gi‖
(4.3)

where tf denotes the duration of a task.
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• Normalized robot part length (nrl):

nrl =

∫ tf

0
‖ṙi(t)‖ dt

∑

i∈P ‖r(0) − bi(0)‖ − (ρi + ρr) +
∑

(i,j)∈P ‖gi − gj‖
(4.4)

where r(0) denotes the initial position of the robot.

• Positional inaccuracy (pi):

pi =
1

p

∑

i∈P

1

ρi

‖bi(tf ) − gi‖ (4.5)

• Robot positional estimation error (rpee):

rpee =
1

tf

tf
∑

t=0

‖r(t) − r̂t‖ (4.6)

• Part positional estimation error (ppee):

ppee =
1

tf

tf
∑

t=0

∥

∥

∥
b(t) − b̂t

∥

∥

∥
(4.7)

However, differing from previous definitions, nnrl, nnpl and pi measures are calculated

by normalizing nrl, npl and pi values by nrl, npl and pi in no noise case, respectively.

Hence, their closeness to 1 indicate similarity of performance to ideal conditions.

The simulations are first performed without any state estimation under different

noise levels. Each experiment is repeated with 10 random initial configurations. Next,

same experiments are repeated with 49, 100 and 225 particles. In the figures, each

data point represents the mean of 10 sample run with random initial configuration.

The posterior pdf is supergaussian as associated kurtosis is calculated at each iteration

and found to be in the range of 1.5 to 2. This verifies that conventional Kalman

filtering cannot be utilized in our nonlinear robot system. The classical measure of
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nongaussianity is the kurtosis or the fourth order cumulant and is defined by:

K(r) =
E[(r − µ)4]

σ4
(4.8)

where r is the random variable, µ is mean (first moment) of the distribution and σ4 is

fourth moment of the distribution.

4.1. 3-Part Simulations

The goal configurations for the 3-part simulations are shown in Figure 4.1.

Figure 4.1. Goal configurations for 3-part case with increasing task complexity: a)

Easy, b) Intermediate, c) Hard

4.1.1. Performance Measures for 3 Parts

The performance measures are as shown in Figure 4.2, 4.3 and 4.4. For low noise,

there is only slight improvement in performance by using PF. Performance does not

vary much with added task complexity. Furthermore, increasing the number of parti-

cles does not change the performance – in particular with respect to estimation errors

in the robot’s and parts’ positions as the noise is not high enough to deteriorate the

performance. In medium and high noise, a notable decrease in variance of rpee occurs,

which results in lowered nrl, npl and pi values - particular for the case of 225 parti-

cles. This is expected since there is a considerable improvement in the estimate of the

instantaneous state information with the particle and Kalman filters. The positional

error in the parts’ position is nearly the same in all task difficulty levels and is inde-

pendent from the number of particles because Kalman filtering is applied to estimate
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parts’ position.
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Figure 4.2. Performance measures vs. comp in 3-part and low noise case
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Figure 4.3. Performance measures vs. comp in 3-part and medium noise case
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Figure 4.4. Performance measures vs. comp in 3-part and high noise case

The collision percentages for each task are shown in Table 4.1. As expected, the

collision percentages increase as a function of task complexity and noise level. Further-

more, increased number of particles decrease the number of collisions considerably.

Table 4.1. Collision percentages in 3-part tasks

Low Noise Medium Noise High Noise

Num. of Particle E I H E I H E I H

0 (without PF) 0 10 10 0 30 30 10 40 50

49 0 0 0 0 10 10 0 10 20

100 0 0 0 0 0 10 0 10 20

225 0 0 0 0 0 0 0 0 10
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4.1.2. Cramer-Rao Error Performance for 3 Parts

Cramer-Rao bound is computed for the 3 parts easy, intermediate and hard sce-

narios with 100 particles. In the figures, each data point represents the mean of 20

sample runs. Over the course of the task completion, as the robot switches among the

different mating and moving subtasks, the computed bounds are as shown in Figure

4.5, 4.6 and 4.7. In case of low and medium noises, the bound is almost constant. But,

in high noise, the bound fluctuates considerably. It is observed that with increased

noise levels, the effect of PFs on reducing the error becomes more pronounced. It is

further noted that the bound level in move-part stage is more rough than in mate-part

stage. This is because the system dynamics in move-part stage is more complex than

in mate-part stage.
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Figure 4.5. The performance of PF vs. CRLB in 3-part and low noise
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Figure 4.6. The performance of PF vs. CRLB in 3-part and medium noise
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Figure 4.7. The performance of PF vs. CRLB in 3-part and high noise
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4.2. 6-Part Simulations

The goal configurations for the 6-part simulations are shown in Figure 4.8.

Figure 4.8. Goal configurations of 6-part case with increasing task complexity: a)

Easy, b) Intermediate, c) Hard

4.2.1. Performance Measures for 6 Parts

The performance results are presented in Figure 4.9, 4.10 and 4.11. These graphs

reveal conclusions similar to those of the 3-part case.

The collision percentages for each task are shown in Table 4.2. Again, as expected,

the collision percentages increase as a function of task complexity and noise level. For

low and medium noise cases, there is a notable decrease in the collision percentages,

especially using 100 and 225 particles in the scenario where the task difficulties are

intermediate and hard. In high noise, the effect of PF and Kalman filter can be

observed clearly. Performance measures nrl, npl and rpee in the 6-part case are close

to in the 3-part case. However, the improvement in the collision percentages is better

than in the 3-part case. This is expected since while increasing the number of parts,

possible collisions are increasing without PF.
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Figure 4.9. Performance measures vs. comp in 6-part and low noise case
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Figure 4.10. Performance measures vs. comp in 6-part and medium noise case
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Figure 4.11. Performance measures vs. comp in 6-part and high noise case

Table 4.2. Collision percentages in 6-part tasks

Low Noise Medium Noise High Noise

Num. of Particle E I H E I H E I H

0 (without PF) 0 30 50 0 50 60 10 70 70

49 0 10 30 0 10 30 0 20 40

100 0 10 20 0 10 20 0 20 30

225 0 0 10 0 0 10 0 10 20

4.2.2. Cramer-Rao Error Performance for 6 Parts

Cramer-Rao bound is computed for the 6 parts easy, intermediate and hard sce-

narios with 100 particles. Over the course of the task completion, as the robot switches

among the different mating and moving subtasks, the computed bounds are as shown
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in Figure 4.12, Figure 4.13 and Figure 4.14.

 

Figure 4.12. The performance of PF vs. CRLB in 6-part and low noise

 

Figure 4.13. The performance of PF vs. CRLB in 6-part and medium noise

In case of low and medium noises, the bound is almost constant. But, in high

noise, the bound fluctuates more than that in the 3-part case. However, the perfor-
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mance of the PF is same as the 3-part case. It is observed that with increased noise

levels, the effect of PFs on reducing the error becomes more pronounced.

 

Figure 4.14. The performance of PF vs. CRLB in 6-part and high noise

4.3. Discussion

The PF runs on the desktop computer with AMD Athlon 2000+ 1.67 GHz pro-

cessor and 1.0 GB RAM under Windows XP Professional operating system. The

processing time of the PF in both mate-part and move-part stages is shown in Table

4.3. It is observed that the processing time of the PF in move-part stage is longer than

in mate-part stage since the system dynamics in move-part stage is more complex than

in mate-part stage.

Table 4.3. Processing time of PF (ms)

Num. of Stages

Particle mate-part move-part

49 40 90

100 72 173

225 150 380
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The processing time of PF with 225 particles in move-part stage takes 380 millisec-

onds. This decreases the performance of the PF in real-time. Furthermore, although

the processing time of the PF with 225 particles takes two times more than that of the

PF with 100 particles, the performance does not increase by same ratio. Hence, the

PF with 100 particles was used in experiments.



36

5. EXPERIMENTS

This chapter presents experimental results from an actual parts’ rearrangement

scenario. These experiments are conducted with EDAR - Event Driven Assembler

Robot which is mobile robot with manipulation capabilities as shown in Figure 5.1(left)

[18]. Its components are as shown in Figure 5.1(right). EDAR operates in purely event-

driven manner in doing its parts’ rearrangement tasks. It has two dimensional motion

capacilities with encoder feedback as well as visual feedback of the workspace. Its

workspace is restricted to a 2 m × 2 m area.

 

Figure 5.1. Left: EDAR robot; Right: System components

5.1. EDAR’s Motion Capabilities

EDAR is a mobile robot with 2D linear and rotational motion capabilities, a

three degrees of freedom arm and one degree of freedom gripper. These capabilities are

realized through its electromechanical system consisting of six motors – five of which

are dc servo motors and the last one is a stepper motor-, optical encoders, drivers,

AD and DA boards. All the motion are controlled by servomotors except the stepper

motor that enables 1 DOF grasping and ungrasping motion. Each servo motor has a

two channel optical encoder which is also fed back to the robot. Detailed information

is available from [18].
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Figure 5.2. Vision system

5.2. Sensory Feedback – Visual Processing

EDAR incorporates a vision system which provides positional feedback regarding

itself and those of all the parts. As depicted in Figure 5.2, a camera that is located

above has a bird-eye view of its workspace and provides visual feedback. Through an

orthographic projection, both the robot and the parts are mapped to a 2D workspace

and are seen as disks with varying centers and radii. The vision system has been

updated in order to provide this information in real-time. In its earlier version, an

analog camera along with a DSP based vision processor board was used. This system

was impeding EDAR’s reactivity since its processing time was about 3 seconds. In

order to overcome this problem, first, the analog camera has been replaced by USB

camera that can then be connected directly to a mainboard. Next, the processing

software has been completely rewritten in order to run on the mainboard. This change

now provides an visual update of order 0.2 second.

The visual feedback is obtained based on the following visual processing stages1 :

1. Acquire image: A new color 24 bit 1280 × 1024 image is obtained from the USB

camera. The image is then subsampled to an image of size 320× 256. An sample

1As the focus is to provide reliable visual feedback to the robot with minimal effort, the visual

processing is taken as simple as possible. Admittedly, a more elaborate scheme including the use of

color may provide more powerful cues regarding the identity of the parts, etc.
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image from a 3 part rearrangement task is as shown in Figure 5.3(a).

2. Grey level: The color image is then converted to a gray image. Again, a sample

resulting image is as shown Figure 5.3(b).

3. Threshold: A thresholding process is applied. Again, a sample resulting image is

as shown in Figure 5.3(c).

4. Edge detection: A high-frequency, spatial filter is applied in order to compute the

edges. Again, a sample resulting image is as shown in Figure 5.3(d).

5. Segmentation: A connected component analysis is performed and a labeling al-

gorithm segments the robot as well as all the parts in the workspace.

6. Circle fit: For the robot and each part i, the corresponding circle is formed from

each connected group of pixels using energy minimization. The energy function

defined as
∑N

j=1(‖pj − bi‖ − ρ)2 is minimized with respect to bi. Here pj denotes

the position vector of the pixel j, N denotes the number of the pixels in the

group, bi and ρi denote the vector of the center point and the radius of the fitted

circle respectively. This sum is minimized for each part in order to calculate the

position and the radius information [18]. A similar approach is used to compute

the robot’s position and radius. Again a sample resulting image is as shown in

Figure 5.3(e).

7. Interpolation: An interpolation method is used to convert the position and the

radius data of the robot and the parts to the real workspace data.

8. Send data: The positions and the radii of the robot and the parts in the workspace

are then input to particle filtering. Detailed information is provided in the fol-

lowing section.

5.3. Particle Filter System

The PF code used in the simulation software is used with some modifications

in this module. The PF system communicates with the vision system and EDAR via

TCP and RS232, respectively. The flow of PF system is as shown in Figure 5.4.
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Figure 5.3. Visual processing stages: a) Subsampled color image, b) Gray image, c)

Binary image, d) Edges, e) Fitted circles

5.4. Experimental Results

EDAR is engaged in 3-part rearrangement tasks with goal difficulties identical to

those used in the 3-part simulations. The parts’ radii vary from 6 cm to 11 cm. For each

level of task complexity, the robot is made to run 5 sample tasks with random initial

configurations. 100 particles are used in the PF system because of real-time constraints

such as computational complexity. High noise is assumed in the measurements to cover

the actual distribution.

Figure 5.5 presents the results of mean values of performance measures. It is

observed that with the increasing task complexity the general trend of mean values of

nrl and npl increases more than the other performance measures. The nrl, npl and

pi values in the experiments using PF system are less than ones in the experiments

done in the previous work [2]. The system noise level is between low and medium noise

because the improvements in rpee and ppee are close to the ones in medium noise level.

As to number of collisions, two collisions were occcured in hard task comlexity.
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Figure 5.4. The flow of processing with particle filters



41

25 30 35
0.8

1

1.2

1.4

nrl vs. comp

(a)
25 30 35

1

1.2

1.4

1.6
npl vs. comp

(b)
25 30 35

0.4

0.5

0.6

0.7

0.8

pi vs. comp

(c)

25 30 35
0.8

1

1.2

1.4

1.6

rpee vs. comp

(d)

cm

25 30 35

1

1.2

1.4

1.6

ppee vs. comp

(e)

cm

 

 

Without PF
PF−100 particles

Figure 5.5. Performance measures vs. comp in the 3-part experiments

The experimental improvements in nrl, npl, pi and rpee are less than ones in the

simulations. However, the improvement in the ppee is close to in the simulation. This

is because parts’ positions are not related to robot’s dynamics.

EDAR accomplishes the moving task of three parts with a positional inaccuracy

ranging over 10-15 cm/part without using PF. When using the PF, the pi value is rang-

ing over 4-10 cm/part. This improvement stems from using PF and partly continuous

visual feedback.

Using PF in EDAR provides improvements. The amount of improvements in

the performance measures can be increased by improving the following factors: i) The

inaccuracies in its linear and rotational movements as well the rotations of its arm; and

ii) Inability to be actuated by torques lower than some predefined levels.
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6. CONCLUSIONS

This thesis studies the feedback-based version of the parts’ rearrangement prob-

lem under sensor inaccuracy. In this scenario, a robot inhabits the same workspace as a

set of parts which need to be moved from an arbitrary initial placement to a final goal

configuration. Unlike previous work, we no longer assume perfect sensory knowledge as

will be the case in many applications. The models used for the dynamics and measure-

ment are modified to include noise. As the resulting system has both nonlinear and

linear parts, the states are estimated using particle and Kalman filters. The capability

to handle nonlinear, non-Gaussian systems allows PFs to achieve improved accuracy

over Kalman filter-based estimation methods.

The simulation results indicate that in cases of increased sensor inaccuracy, the

robot’s movements and the positional inaccuracy are both improved. More importantly,

the number of collisions and the percentage of successful task completions are improved

dramatically. In the analysis of the PF under different noise levels using CRLB, it is

observed that with increased noise levels, the effect of the PF on reducing the error

becomes more pronounced. The bound level in move-part stage is more rough than

in mate-part stage. This is because the system dynamics in move-part stage is more

complex than in mate-part stage.

In the 3-part experiments, performance measures are better than the ones in the

experiments of previous work. Especially, the improvement in positional inaccuracy

increases the accuracy of positioning a part in its goal configuration. The amount of

improvements in the performance measures can be increased by improving EDAR’s

mechanical constraints.

For future work, since the computational power of EDAR is low, PF runs on the

different computer which may cause communication delays. The computational power

of EDAR can be increased. Thus, the PF runs on EDAR. Furthermore, after adding

extra sensors such as sonar and laser sensors to EDAR, data fusion is done using PF.
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APPENDIX A: PROOF OF RECURSIVE STATE

ESTIMATION

Using the Markov property of p(rt|rt−1), p(zt|rt) and Bayes’ theorem

p(r|z) =
p(z|r)p(r)

p(z)

p(z) =

∫

p(r, z)dr

It can be shown that

p(rt|z0:t) = p(rt|zt, z0:t−1)

=
p(zt|rt, z0:t−1)p(rt|z0:t−1)

p(zt|z0:t−1)
=
p(zt|rt)p(rt|z0:t−1)

p(zt|z0:t−1)

Also,

p(zt, rt|z0:t−1) = p(zt|rt, z0:t−1)p(rt|z0:t−1) = p(zt|rt)p(rt|z0:t−1)

p(rt+1, rt|z0:t) = p(rt+1|rt, z0:t)p(rt|z0:t) = p(rt+1|rt)p(rt|z0:t)

implying that (integrating w.r.t. rt on both sides)

p(zt|z0:t−1) =

∫

p(zt|rt)p(rt|z0:t−1)drt

p(rt+1, rt|z0:t) =

∫

p(rt+1|rt)p(rt|z0:t)drt

Note that the conditional probability density functions p(rt+1|rt) and p(zt|rt) are known

from system model.
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APPENDIX B: SYSTEMATIC RESAMPLING

Using resampling can reduce the effects of degeneracy whenever a significant

degeberacy is observed , that is, whenever Neff falls below a certain threshold Nth.

Resampling eliminates particles with low importance weights and multiplies paritcles

with high importance weights (in apparent analogy to genetic algorithms). It involves

generating a new set {ri∗
t }

N

i with replacement N times from an approximate discrete

representatin of p(rt|zt).

Systematic resampling [9, 29] is simple to implement, its computational com-

plexity O(N) and it minimizes the MC variation. The particle selection process is

schematically shown in Figure B.1, where acronym CSW stand for the cumulative sum

of weights of random measure {ri
t, w

i
t}, and random variable ui, i = 1, ..., N is uniformly

distributed on the interval [0,1]. ui ∼ U [0, 1] maps into index j; the corresponding

particle rj
t has a good chance of being selected and multiplied because of its high value

of wj
t .

Figure B.1. The process of resampling
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Table B.1. Systematic resampling algorithm

{

rj∗

t , w
j
t

}N

j=1
= RESAMPLE

[

{ri
t, w

i
t}

N

i=1

]

• Initialize the CSW: c1 = w1
t

• FOR i = 2 : N

- Construct CSW: ci = ci−1 + wi
t

• END FOR

• Start at the bottom of the CSW: i = 1

• Draw a starting point: u1 ∼ U [0, N−1]

• FOR j = 1 : N

- Move along the CSW: uj = u1 +N−1(j − 1)

- WHILE uj > ci

* i = i+ 1

- END WHILE

- Assign particle: rj∗

t = ri
t

- Assign weight: wj
t = wi

t

• END FOR

• Calculate total weight: tot = SUM
[

{

wj
t

}N

j=1

]

• FOR j = 1 : N

- Normalize: wj
t = wj

t/tot

• END FOR

The pseudocode of the systematic resampling algorithm is described in Table B.1

[10].
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