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ABSTRACT

In this study, Hopfield's binary neural network model is
simulated using a software package simulating a bit serial single
instruction multiple data (SIMD) mesh array processor, called the
Blitzen massively parallel processor (BMPP). First, the parallel
algorithms required for the simulation are designed. Then, the
parallel implementation of the Hopfield network model has been
formulated using these algorithms. The parallel implementation has
been analyzed for the speed and the processor utilization. To do
this, time complexity of the parallel implementation is derived and
compared with the time complexity of a sequential algorithm.
Finally, simulation results are analyzed and compared with the
analytical derivations. The parallel algorithm described in this
- study for the simulation of the Hopfield network model on the
BMPP architecture achieves a maximum speedup in the order of the
square root of the number of processors employed. It is also shown
that, for the same algorithm, the maximum possible speedup can be
achieved only at a finite number of processors, and the processor

utilization decreases as the number of processors is increased.



OZET

Bu c¢aligmada Hopfield'in ikili diizen beyinsel ag modeli
Blitzen yogun paralel islemcisi (BYPI) adinda bit seri tek komut ¢ok
veri esashh iki boyutlu ag diizenindeki dizilim iglemciyi benzeten bir
yazihm paketi kullanilarak benzetilmigtir. 11k olarak benzetim igin
gerekli algoritmalar tasarimlanmigtir. Daha sonra, bu algoritmalar
kullanilarak, Hopfield aginin paralel gergeklestirimi formiile
edilmigtir. Paralel gerceklestirim hizlanma ve iglemci yaramn
acisindan analiz edilmigtir. Bunu yapabilmek igin, paralel
gerceklestirimin zaman karmagikligi tiiretilmis ve bu karmagiklik
sirasal bir islemcinin zaman karmasiklifiyla kargilastinilmigtir. Son
olarakta, benzetim sonucglari analiz edilmis ve analitik tiiretmelerle
kar§113§t1r11m1§t1r. Hopfield beyinsel ag§ modelinin BYPI mimarisi
lizerinde benzetimi icin bu c¢aligmada betimlenen paralel algoritma
kullanilan islemci sayisinin en fazla karekoki diizeyinde bir
hizlanma saglamaktadir. Ayni algoritma ig¢in, en yiiksek
hizlanmanin sadece sonlu sayida islemciyle gerceklestirilebildigi ve

iglemci yararinin iglemci sayist arttik¢ca azaldigida gosterilmigtir.
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I INTRODUCTION

1.1 A Historical Perspective

Today, many scientific applications benefit from the
information processing capabilities of computer technology. As the
number of fields using computer technology increase, these fields'
dependencies and requirements also increase in various levels.
These areas range from structural analysis to socioeconomics or
from medical diagnosis to artificial intelligence. However, their basic
demand remains the same: A feasible way of computing in
reasonable time with increased reliability.

Most computer systems serve this basic demand in the same
fashion as described by John von Neumann in 1940's. A control unit
fetches an instruction and its operands from the memory, decodes
and executes the instruction, then stores the result. To achieve the
highest performance péssible these tasks can be staged into
multiple levels with different hardware realizations, e.g. main
memory, central processing unit, I/O system realized as random
access memory, cache memory, data and control bus,
microprocessor, processing elements (PEs), word and bit level
registers and hard disk.

Nearly all of the computers in use today are sequential. That
is, they only have a single processing unit. Nevertheless, there is not
a clear distinction between sequential and parallel computers
because today's 'sequential' computers incorporate many
parallelism properties like pipelining and memory interleaving.
Actually, the basic mentality behind the parallel processing is the
usage of more than one component which is the basic bottleneck in
sequential processing. From this point of view if computational
demands are I/O bounded, one may use multiple I/O devices or



multiple data buses or a hierarchical memory system, or if demands
are processor bounded one can use multiple processors or floating
point accelerators or other specially designed processors, and such
systems would still be called sequential.

In its broadest meaning parallel processing is the
exploitation of concurrency in the computing process using multiple
devices of the same or having different devices working
simultaneously or in overlapping time spans.

In an ideally sequential system, only a single component can
be active at a time and all the others must wait its completion.
Thus, parallel processing is a time and cost-effective solution to the
parallelizable problems.

Another category is the distributed processing. Though not a
precise distinction, parallel processing refers to the exploitation of
concurrency by devices in a local area (at most in a room) and
distributed processing refers to the information processing within
geographically distributed areas. A good example to the latter is
data communication networks.

There is neither a purely sequential nor a burely parallel
system. The reason for the former is that today's technology allows
us to incorporate parallelism properties into any computer in a
cost-effective manner and the reason for the latter is that any
'single' process is sequential at somewhere through its algorithm. A
sequential (or uniprocessor roughly) system can enjoy parallel
properties by the multiplicity of functional units, parallelism and
pipelining within the CPU, overlapped CPU and I/O operations, and
the use of a hierarchical memory system [1].

For the sequential case even the personal computers of today
may have many processors inside; the main processor can continue
its execution while the mathematical coprocessor crunches the
numbers or the I/O processor manages the storage system or the
communication processor handles the communication; the main
processor may be designed in components working simultaneously



to implement pipelining; the memory can be designed hierarchically
to implement memory caching. A vector processing computer may
have a single processor but still can perform operations on multiple
numbers.

For the parallel case the solution of partial differential
equations requires a computational unit communicate with its
neighbors. Matrix operations demand processors to communicate
with each other to find the final result. Image processing operations
need a processor receive pixel values kept at neighboring
processors; finally database operations need a central control unit
be aware of the results after each record search. So for any single
problem either a central control scheme which will synchronize and
control processors or some communications between the processors
are required to reach the solution. Nevertheless all the above
problems can be divided into parts which are independent of each
other up to a certain extent.

In 1958, Steve Unger proposed the first parallel processing
computer in a paper. In 1967 a parallel working machine which
was used to analyze bubble chamber tracks was implemented in
University College London. Some other cornerstones were Iiliac IV
and Staran built in 1972, the first commercial parallel processor
DAP in 1980, Massively Parallel Processor (MPP) delivered to NASA
in 1983 [2], and the Connection Machine (CM) series (the latest, CM-
2, finished in 1986) of the Thinking Machines Corporation [3].

There are several approaches to the realization of parallel
processing computers. These are pipelining computers, vector
processors, systolic arrays, array processors, and multiprocessors. A
parallel computer may be classified in any of these categories [3].

Processing of images, whether binary, gray code, or color,
where one or more of image pixels are assigned to a single
processor, was the original and ideal application area of parallel
computing This is due to the inherent parallelism in image analysis
techniques like feature extraction and segmentation whose spatial
structures could easily be decomposed and mapped to the processor



array. These computers, characterized by a large number (1K-64K)
of processing elements (PEs), were called massively parallel
computers (MPCs) or array processors. The PEs were controlled and
synchronized by central control unit and were relatively simpler
units with small memories (in orders of hundreds or thousands of
bits), a limited instruction set, and a two dimensional mesh topology
which enables PEs to communicate with their immediate neighbors.

With the advances in VLSI technology in 1980's, new
interconnection topologies like n-D binary cube were developed and
more applications were stimulated like information retrieval,
computer vision, and artificial intelligence to benefit from the MPCs.
Also the scientific computing required the processing of fixed or
floating point numbers. Thus MPCs with more complex PEs (Maspar
MP-1) or with a floating point accelerator assigned to a group of PEs
(CM-2) were developed.

The MPCs of the present generation, both the commercial
systems and the research projects, feature advanced processor and
interconnection structures much more complex than the single bit
mesh connected computers of the early implementations. The
winning direction seems to be the combination , at some level, of
different kinds of processing elements in such a way to have
processing elements suited for any possible operation. Thanks to
such a flexibility, MPCs can be considered the most effective
parallel computer solution in many of the mentioned application

fields [2].

1.2 Scope, Purpose, and Outline of This Thesis

Inspired from the nervous system, neural nets display
behavioural similarities with human beings while learning.
However, artificial simulation of nets suffers from the large



computational burden imposed by the iferating training sessions. A
training session comprises matrix and vector operations with
clements going through nonlinear functions. Especially multilayered
nets require a large number of training sessions because of the
diminishing effect of error correcting terms on connection weights
while backpropagating.

Matrix operations of inner product, matrix-vector product,
and matrix-matrix product have computational complexities in
orders of N, N2, and N3, respectively. The sequential machines
directly reflect the computational complexity of an algorithm to the
time complexity of the algorithm. Though parallel computing leaves
NP problems as they are, it offers, for example, speedups in the
orders of N3/logN in matrix multiplications. With the recent
decrease in hardware prices, MPCs (Massively Parallel Computers)
can be used more effectively as means to decrease the time
complexity of the computational algorithms.

In this study, we will try to simulate an artificial neural
network model, called the Hopfield network model, using a software
simulator that simulates a massively parallel processor, called the
Blitzen massively parallel processor (BMPP).

We will first design the parallel algorithms required for the
simulation. Then, we will formulate the parallel implementation of
the Hopfield network model using these algorithms. The parallel
implementation will also be analyzed for the speed and processor
utilization. To do this, time complexity of the parallel
implementation will be derived and compared with the time
complexity of a sequential algorithm. Then, we will simulate the
Hopfield network model using code written in the Blitzen
simulator's language. Finally, the simulation results will be analyzed

and compared with the analytical derivations.



II BASICS IN PARALLEL PROCESSING

2.1 Parallel Computing Classes

Parallel computing has developed according to the
computational needs of applications. The differences between the
parallel computing classes are largely based on these needs.

The first class of needs are exemplified by the matrix
operations, finite difference, and finite element methods of PDE
solutions used in weather forecasting, oceanography and
astrophysics, image processing, reservoir modelling, and plasma
fusion power studies. The FFT of signal processing, the real-time or
off-line searching, matching, merging, and sorting operations on
data bases used in documentation retrieval, analysis of text and
memory based reasoning (linguistic pattern recognition), air traffic
control also have similar needs. Some other elements of the first
class are the simulation studies in computer vision, object
recognition, neural nets, molecular dynamics, VLSI design, and
computer assisted tomography [1,3,4,5].

In the above problems the data processed or the variables
manipulated can be divided into multiple streams such that each
computational unit handles a stream. Such problems are called data
or variable parallel. They can be decomposed along a spatial
dimension; a different computational unit can be assigned the task
of manipulating the data or variables associated with a small region
in space. A system choice for the data parallel problems among the
existing systems may lead to a uniprocessor with multiple
functional units (a pipelining computer or a vector processor)
running in a single-instruction single-data (SISD) fashion. A better
choice can be a system comprising a large number of simple
processors working together in a single-instruction multiple-data



(SIMD) fashion (systolic arrays or array processors) since the
interactions between the processors are local in most of the above
problems.

Another class deals with the computation, analysis,
simulation and optimization of large scale systems, general system
of equations and mathematical programming. These problems can
be divided into a smaller number of subtasks, and these subtasks
appear to be more complex than the subtasks of a highly data
parallelizable problem. Such problems are also called instruction
parallel, and a system with fewer but more powerful processors
under a more complex control mechanism 1is needed. A
multiprocessor ~ system with semi-autonomous and loosely
connected processors is a good candidate for such systems [4].

A third class is information acquisition, extraction, and
control within geographically distributed systems. This class, named
as distributed processing, can be considered as a special case of
parallel processing with a loose or no synchronization. Contrary to
the other forms of parallel processing, communication and
reliability have the utmost importance in distributed processing.
Two examples are the sensor and the data communication networks

[4].

The above needs lead to the discrimination of parallel
processors in the respects of type and number of processors (simple
vs. complex and coarse grained vs. fine grained), presence or
absence of a central control mechanism (single instruction or
multiple instruction), synchromous vs. asynchronous (local wvs.
distributed processing), and processor interconnection topologies [4].

Only the most popular two of these classification schemes are
considered in this study. The first classification is based on the
multiplicity of instruction and data streams a computer executes [1].
A sequential computer executes a single instruction stream on a
single data stream. A parallel computer can execute single/multiple
instruction stream(s) on single/multiple data streams.



The second classification is loosely based on the combined
structural properties of a system, e.g., number of processors in the
system, tightness of coupling between these processors, how
specialized these processors are, etc. The degree of parallelism in
the sense of autonomy of individual processors is taken as the
degree of complexity. Therefore, a pipelining system is taken as the
simplest parallel system and a multiprocessing system is taken as
the most complex parallel system because the latter also deals with
the problems of the first one, and it also has complex
synchronization problems. In this study, we will focus our attention
to systems with multiple processors which execute the same
instruction simultaneously.

2.1.1 Architecture Based Classification

Any computer must handle data or instructions in a single
stream or in multiple streams. The computing model thus chosen
determines the architecture of a computer.

The classification of computers based on the multiplicity of
streams was first proposed by Michael J. Flynn in 1966. Flynn has
used three basic conceptual components in his system models:
memory units which keep instructions and data, a processing unit
which executes instruction on data, and a control unit which
decodes and sends the instructions to the processing unit. Each
instruction stream is generated by a single control unit. Data
streams flow between processors and memory modules
bidirectionally. Computers can be classified into four groups based
on the four models given below [1].

Sincle Instruction Single Data (SISD) Model: This model has only one
of each of the basic system components. It is the basic model for the
sequential computers. Most SISD systems have pipelining
processors. This model was actually proposed by John von Neumann
in 1940's. Fig. 2.1 (a) illustrates the SISD model
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Fig. 2.1 The computational models [1]. CU: control unit, PU: processor unit, MU:
Memory unit, SM: shared memory, IS: instruction stream, DS: data stream.

Single Instruction Multiple Data (SIMD) Model: This model is the
basic model for array processors. Each processor receives the same
instruction from the control unit and executes this instruction on its
local data. Processors in a SIMD model are the simplest type of
processors in all models. They communicate  either through a

shared memory or. an interconnection network. Fig. 2.1 (b)
illustrates the SIMD model.

Multiple Instruction Single Data (MISD) Model: This model nearly
has no applications and has been considered as fruitless. But for the
sake of completeness it can be mentioned that multiple control units
sends decoded instructions to the processors for them to execute
these on the same data. Note that, processors of such a system
would be more complex than of an SIMD model. Fig. 2.1 (c)
illustrates the MISD model.

Maultiple Instruction Multiple Data (MIMD) Model: In general,
multiprocessor and multicomputer systems are based on this model.
FEach processor in such a system executes the instruction coming
from its control unit on its local data. The processors of such a
system are preferred to have certain features to support process
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recoverability, efficient context switching, large virtual and physical |
address spaces, effective synchronization primitives, an
interprocessor communication mechanism and an adequate
instruction set [1]. Note that if processors do not share a common
memory, they would rather be called multiple SISD (MSISD)
computers [1]. Fig. 2.1 (d) illustrates the MIMD model.

2.1.2 Structure Based Classification

Pipelining Computers: In general pipelining is a time-effective
solution to realize temporal parallelism in digital computers. Similar
to the assembly lines in an industrial plant, tasks are divided into a
sequence of subtasks which are carried out by different functional
units in overlapping time spans. Pipelining computers have
overlapping data processing capabilities in the central processor, in
the I/O processor, or in the memory hierarchy [1].

Linear pipelining is the design of a pipeline in cascaded
processing stages. These stages perform arithmetic and logic
operations over the data stream flowing through the pipe. They are
separated by high speed interface latches which are fast rtegisters
for holding the intermediate results between the stages [1].
Instruction, arithmetic and processor pipelining are common
approaches in the processor pipelining [1]. Fig. 2.2 depicts the
instruction pipelining.

S S2 S3 S4 (stages)
—_— |[F —3 ID M O P EX |—»

Fig. 2.2 The instruction pipelining. IF: instruction fetch, ID: instruction
decode, OF: operand fetch, EX: instruction execute.

Vector Processing Computers: A vector is an ordered set of elements
where an element can be a floating point or a fixed point number, a
logical quantity, or a byte. A vector operation has, at least, a vector
operand and optionally a scalar or another vector operand. It may
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yield either a vector or a scalar. Vector processors are candidates of
fast vector/matrix operation performers and are based on high
performance floating point processors and vector oriented memory

organizations. Pipelining is common to all modern vector processors
also [2].

The power of vector processing computers stem from their
abilities to manipulate all the variables of a vector operand at a
single step. Table 2.1 shows operations which can be found in
modern vector processors [1].

Description Operation
Vector square root B(j) = VA())
Vector sine B(j) = sin(A(}))
Vector summation S = YA()
Vector maximum S = max(A(j))
Vector add C() = A()) + B())
Vector multiply CO) = A * B()
Vector larger C(j) = max(A()),B())
Vector-scalar add B()) = S + A())
Vector-scalar divide B(j)) = A(j)/S

Table 2.1 Vector operations. A,B, and C are N-tupled vectors, and S is a
scalar.

The first two examples of vector processors, CDC-Star-100
and TI-ASC, appeared in the 1960's. Cray-1 and Cyber-200 (1970')
series were the second generation machines. Cray X-MP (1983) had
dual processors. The next generation of vector processing computers
like Cyber-2xx and Cray-2 have very powerful multiple processors

[1].
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Svstolic Arrays: As the hardware costs decline, it has become more
feasible to implement parallel algorithms that realize
computationally bounded algorithms directly in the hardware using
the rapidly advancing VLSI technology. Examples to these
computationally bounded algorithms are FFT, L-U decomposition,
matrix multiplication, and feature extraction algorithms [1].

Memory

PE

(a) A conventional processor

Memory [<————

PE|PE|PE|PE|PE

(b) A systolic array.

Fig. 2.3 The concept of systolic array. PE: processing element.

A systolic array can exploit a wide class of computationally
bounded algorithms where multiple operations are performed on
each data item in a repetitive manner. Once a data item is brought
out from the memory it can be used effectively at each cell it
passes. Thus, information in a systolic system flows between the
cells in a pipelined fashion, and communication with the outside
world occurs only at the boundary cells. The memory fetches act
similar to the pulses of the heart that pushes data in and out of the
systolic array. Fig. 2.3 displays a conventional processor vs. a

systolic array.
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Array Processors (Massively Parallel Computers): A sequential
computer's speed can be improved in various ways. Unfortunately,

since these improvements must combine the latest technological
innovations, such designs tend to be very costly. Array processors
offer a feasible way of achieving the desired performance.

Array processors were first proposed in 1958 [2]. Their most
distinguishing feature is the huge amount of processing elements
they possess in a repetitive structure. This architecture is called fine
grained parallelism contrary to the architecture of a multiprocessor
system, called coarse grained parallelism with fewer but more
complex processors. Table 2.2 lists estimated speeds for three
different massively parallel computers (MPC's).

Shared memory
or
Interconnection network

PE 1 PEN
MEM 1 MEM N

Host Computer

Fig. 2.4 A generalized array processor. A host computer provides the user
interface, usually, by a high level programming language. It detects and
sends the parallel parts of the code to the central control unit (CCU). The CCU
decodes and broadcasts these instructions to the PEs. Every PE has its local
memory (MEM) and communicates with each other either by a shared
memory or an interconnection mnetwork.
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Ancther characteristic of array processors is the way they
receive data and execute instruction streams. Though it is
theoretically possible that an array processor can be organized in
MISD or MIMD fashion, the latter has rarely been implemented, and
the former has never been implemented. SIMD is the most suitable
architectural configuration because of the inherent data parallelism
in most of the problems. Instruction parallelism is hard to achieve
because of the highly complex algorithm threading and
synchronization issues. The array structure is the most efficient for
algorithms which makes every PE execute the same instruction.
However, a partitioned MIMD/SIMD approach is also possible as
exampled in Connection Machine and Image Understanding Array
[6,3]. Fig. 2.4 shows the general layout of the functional parts of an
array processor.

Operation MPP CM DAP
Addition

8-bit fixed 6553 4000 -
32-bit fixed 3343 3300 -
32-bit floating - 470 4000 -
Multiplication .

8-bit fixed 1861 - 1600
32-bit floating 291 4000 -

Table 2.2 Processing rates in millions of operations per second (MOPS) for
different parallel processing systems.

PEs of an array processor are often simple computational
units, usually with one bit registers, i.e., serial, and a limited
instruction set that may contain no more than a few logical
operators. They are simple arithmetic logic units without any
instruction decoding capability. Usually, addition 1is the only
mathematical operator, and some other instructions to accomplish
communication between the PEs or between the PEs and the main
memory are also available. They are also called data processors
because they execute microlevel instructions broadcast from the
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central control unit (CCU, defined in Fig. 2.4) on their local data [3].
However, bit serial processors are quite slow for word-length
operations. Some designers have preferred assigning a floating point
accelerator (CM-2) or a coprocessor (Digital Array Processor (DAP))
to a cluster of PEs or using PEs with internal registers of higher bit
lengths and internal floating point accelerators (The MasPar family)

[2].

In massively parallel processors, PEs communicate with each
other via either an interconnection network or a shared memory.
Many interconnection topologies ranging from one dimensional to n
dimensional networks has been developed. The problem here is to
choose the most suitable topology for a specific problem. If the
shared memory approach is preferred, one must choose a memory
access model tc meet the PE memory access demands. Various
interconnection schemes for interconnection networks and four
memory access models for shared memory communications will be
discussed later in this section.

Another class of array processors is associative processors.
Associative processors use associative memories (AM) which are
content addressable (data accessed by content instead of address
contrary to the random-access memory (RAM)). Thus, parallel
access to multiple words in memory are allowed. Associative
processors are used as text retrieval computers and back-end
database machines [1]. Some examples of associative processors are
the Goodyear Aerospace STARAN, the Parallel Element Processing
Ensemble [1], and the Airborne Associative Processor [7].

The first working processor array, completed at University
College London in 1967, had a two dimensional mesh topology with
20 by 20 PEs. It was used to analyze bubble-chamber tracks [2].
Iliac IV with 64 PEs interconnected under a two dimensional mesh
was fabricated by Burroughs Corporation and delivered to NASA in
1972. Tilliac IV was designed to perform matrix and vector
computations [1]. Burroughs Scientific Processor (BSP), by Burroughs
Corporation (1979), used a crossbar interconnection network to
connect PEs and memory modules (shared memory configuration)
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[1]. The processors of the Digital Array Processor, (1981) by the
International Computer Limited in England, could be grouped into
array sizes ranging from 16 by 16 to 256 by 256. The Massively
Parallel Processor (MPP) of Goodyear Aerospace delivered to NASA
in 1983 [2] had 16K processors arranged on a two dimensional mesh
topology. The MPP was designed for high speed processing of
satellite imagery [7]. CM-1 in 1985 and CM-2 in 1987 by the
Thinking Machines Corporation provided multiple topologies. CM
series were intended for general purpose computing. Some other
current array processors are the AIS family from Applied
Intelligence Corporation, and the MasPar family from MasPar
Computer Corporation [2]. Table 2.3 summarizes the developments
in array processors chronologically.

Computer Type Year

Unger network 1958 (proposed)
Illiac-1V network 1972

Staran associative 1975

BSP shared memory 1979

DAP ; network 1981

MPP network 1983

CM-1 network 1985

CM-2 network 1987

Table 2.3 Developments in array processors.

In the following, we describe in more detail the two basic
schemes for the interprocessor communications in array processors,

Interconnection Network Communications: In most of the
massively parallel computers, PEs communicate with each other by
passing data items to each other through links provided by the

interconnection network.
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The most desirable intercommunication scheme is a fully
connected one but it is very costly. Thus, instead of a fully
connected scheme, other schemes have been proposed and
implemented.

For image processing problems the most popular scheme is
the two dimensional mesh since the spatial structure of numerous
image processing techniques can be decomposed into a two
dimensional array. Some of the other schemes are linear array, X-
grid, tree connection, and n-d cube (3-d cube given in Fig. 2.5).
These network topologies are illustrated in Fig. 2.5.

Most of the MPC's provide a single interconnection scheme.
However, some recent MPC's like the CM series allow multiple
interconnection schemes. CM-1 has a mesh topology but also can
switch to a tree and a relational graph. CM-2 has a hypercube
topology and can switch to a mesh topology [31].

The topology of an MPC is highly important since the
communication complexity may become the governing term in the
time complexity of a parallel algorithm. This subject will be further
discussed in the following sections.

Shared Memory Communications: PEs communicate through a
common memory in this configuration. When a PE wants to pass a
data item to another PE, it writes this data item to a memory
location also accessible by the other PE. Therefore the local

memories of PEs become common, 1.€,. shared.

There are four models of memory access: exclusive-read and
exclusive write (EREW), concurrent-read and exclusive-write
(CREW), exclusive-read and conclusive-write (ERCW), and
concurrent-read and concurrent-write (CRCW) [8]. Concurrency
implies that an operation can be done on a memory location by
more than one processor simultaneously; exclusiveness implies that
only one processor can accomplish an operation on a memory

location at any given time.
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While CRCW is the most general model, it is impossible to
implement it completely because of apparent write conflicts.
Instead, concurrency in writing can be achieved by writing into the
memory a certain result derived (like the addition of all or a logical
operation between them or the maximum or minimum) from the
data items sent by the PEs.

Unfortunately the shared memory configuration is very
costly to realize since when one processor needs to gain access to a
datum in memory, some circuitry 1is needed to create a path from
that processor to the location in memory holding that datum. The
cost of such circuitry is usually expressed as the number of logical
gates required to decode the address provided by the processor [8].
For an M locations memory with N processors cost of circuitry is
proportional to N=*f(M). This difficulty can be overcome by dividing
memory into modules and using an interconnection network
between the PEs and the memory modules. Nevertheless, such
realizations leads to models even weaker than EREW. As an example
to this, Burroughs Scientific Processor (BSP) uses a crossbar switch
network as the intercommunication network.

Multiprocessor _Computers: The instruction stream of an instruction
parallel problem can be divided into multiple streams. Since these
streams are usually few and complex, instruction parallel problems
can not efficiently utilize fine grained parallelism of array

processors.

Processors in a multiprocessing system cooperate
semiautonomously with a loose communication between them. They
run simultaneously under a single operating system.
Multiprocessing systems with pipelining processors, or with
pipelining and vector crunching processors, are very suitable for

instruction parallel problems.

Multiprocessor systems are characterized by common sets of
memory modules, shared peripheral devices, and I/O channels [1].
However, each processor will have its own local memory memory
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and devices which are completely allocated to it. Multiprocessor
systems utilize the MIMD architecture in large.

The interprocessor communication schemes are time shared
common bus, crossbar switch network, and multiport memories [1].
The selection and design of components of a multiprocessor system
highly depends on its being a loosely or tightly coupled system.
Note that a multiprocessor system still refers to a centralized
processing scheme whereas a multicomputer system refers to a
distributed processing scheme which comprises several autonomous

computers.

Some of the commercially available multiprocessor systems
are IBM 370 and 3080 series, Univac 1100 series, the Tandem
Nonstop system, the HEP, the Cray X-MP, and the Cray-2 [1].

2.2 Parallel Algorithms

2.2.1 Design Approaches

Two approaches can be followed to design a parallel
algorithm (All the discussions below are about the array processor
parallel algorithms). These are:

1) To use an existing technique as it is. This approach can be

divided into two different forms.

2. To use a sequential algorithm for that technique and,
to code as if the program will run on a sequential
computer and let the compiler detect parallelizable

parts of the code.
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b. To design a parallel algorithm for that technique and
to code using a programming Janguage providing
special instructions for the utilization of the parallel
processor.

2) To invent a new technique or to design a new algorithm
utilizing a parallel processor heavily.

Usually, the first approach is followed, since designing a new
technique will not be easy, and it is doubtful that a new design will
be more efficient than the existing one.

Before giving examples for the above approaches, a
hypothetical array Processor and its pseudo programming language
are described.

A Hypothetical Array Processor: The hypothetical array Pprocessor
(HAP) has an architecture very similar to the array processor used
in the software simulations of this study (See Appendix B for more
information on the array Pprocessor used in this study). The HAP is
an SIMD mesh array processor with P processing elements (PEs). All
the PEs are controlled by a central control unit. A local RAM acts as
a cache memory for the PEs, but being on the same chip with the
processors, it is small in size. A large random access memory, called
video RAM (VRAM), acts as 2 buffer between the local memory and
the main memory. PEs can not communicate via VRAM because

VRAM area accessible by each PE is different.

A PE can accomplish basic logical and mathematical
operations. It has certain instructions to moOVve data between its
registers, its local memory, and the VRAM. It can send and receive
data items from its immediate neighbours in north, east, west, south
(NEWS), and four other diagonal directions simultaneously. (These
four additional links along with NEWS links is called an X-grid. See

Fig. 2.5 in Section 2.1.2 for an X-grid).
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The HAP has a pseudo-language similar to the C
programming language but also has instructions special to the array
processor architecture. When such an instruction is detected during
the execution, it is sent to the central control unit by the host
computer. Below are some of the instructions from the HAP's
pseudo-language.

SendToDirectionlReceiveFromDirection2(x,y): This is an
instruction to receive a data item in variable x from the PE in
direction Directionl and to send a data item in variable y to the PE
in the opposite direction to the direction Directionl, namely
Direction2. Send and receive operations are simultaneous; therefore,
if x and y are the same as x, x keeps the received value while the
old value of x is sent.

AND: This instruction bitwise ANDs its operands.
OR: This instruction bitwise ORes its operands.

SetRoute(x): This instruction enables a wraparound or grid
mode of routing; x can be "torus" or "grid". See Section 3.1.3 for an
explanation of routing modes.

Other features of the HAP and its instruction set will be
further explained in the subsequent sections if and when necessary.

A mnoise removal algorithm that removes white pixels from a
dark background is a good example to the first of the parallel
algorithm design approaches. This algorithm turns a pixel's value to
black if all of its immediate NEWS neighbours are black. There are P
pixels. The sequential code would be as in Fig. 2.6. In Fig. 2.6, old(,j)
holds the original value of pixel (i,j) and new(i,j) holds the computed

value of pixel (i,j).
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for (i=1 to VP){
for (j=1 to VP){
new(i,j)=(old(i-1,j) and old(i+1,j) and old(i,j-1)
and old(i,j+1)) or old(i,j);

Fig. 2.6 A sequential noise removal algorithm.

A parallelizing compiler may detect the do loops and produce
the executable file accordingly. The same algorithm can be written
using the pseudo-parallel language of the HAP as an example to
part (b) of the first approach. The parallel algorithm is given in Fig,
2.7

FOR ALL PEs (i,j)
SendToSouthReceiveFromNorth(old,north);
SendToWestReceiveFromEast(old,east);
SendToEastReceiveFromWest(old,west);
SendToNorthReceiveFromSouth(old,south);
new=(north and east and west and south)

or old;

Fig. 2.7 A parallel noise removal algorithm.

In Fig. 2.7, the variable old holds the original value of a
pixel, and the variable new holds the computed value of a pixel. An
example to the second approach can be the utilization of a new
technique which can exploit the fine grain parallelism of array
processors for the specific problem. In fact, such approaches are

being developed [9].
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There are three important points that must be considered
while designing or realizing a parallel algorithm. The first is the
computation cost measured, as the number of basic mathematical
or logical operations performed; the second is is the number of
processors and the network topology, and the third is the
communication cost measured as the number of routing operations
performed.

The time complexity, which is expressed in units of time, of a
parallel algorithm is the addition of the times spent to pay these
costs. Note that the communication cost does not exist in sequential
algorithms, but can be the dominant term in the time complexity of
a parallel algorithm. Therefore, the above mentioned points should
be examined carefully for any algorithm.

The ultimate goal in designing a parallel algorithm is to get
shorter solution times, hence, speedup with respect to the
sequential implementations. To be able to achieve the largest
speedup, one needs a methodology to design parallel algorithms.
However, formal models are more than needed for the purposes of
this study. The next two sections briefly present a method named
directed acyclic graphs (DAGs) and how DAGs can be used to
represent, design, develope, and analyze parallel algorithms.

At this point an acknowledgement is in place. The book
"Parallel and Distributed Algorithms" by D. P. Bertsetekas and J. N.
Tsitsiklis is one of the excellent books in its subject. The Sections
2.2.2 to 2.2.5 are largely based on the 15t chapter of this book.

2.2.2 Directed Acyclic Graphs

A directed graph (see Appendix B of [4] for more
information about graphs) is a finite non-empty set N of nodes nj
and a collection A of ordered pairs of distinct nodes from this set.
Each ordered pair of nodes (nj,n;) in A is called an arc. There is only
a single arc between a pair of nodes, but this arc can either be

unidirectional or bidirectional. B
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A path P in a directed graph is a sequence of nodes nj,..,ng
for k 22 and a corresponding sequence of k-1 arcs such that the ith
arc in the sequence is either (ni,ni+1) (a forward arc) or (nj,1,n;) (a
backward arc). Nodes ny and ng are denoted as start and end nodes
of P, respectively. A cycle is a path for which the start and the end
nodes are the same. A positive cycle is a cycle for which all the arcs
are forward.

A directed graph with no positive cycles is adirected acyclic
graph (DAG) (see [4] for more information about DAGs). Thus, any
path in a DAG graph can pass through a node once, and all the arcs
in a path are both unidirectional and in the same direction.

A DAG consists of also a set N of nodes {ni,...,nn} and a set A
of directed arcs (nj,n;). Each node nj represents an operation and
each arc represents a data dependency. An operation can be a
boolean operation, an arithmetic operation, or a complicated
operation like the execution of a subroutine. As an example, a DAG
that represents (a+b)? is given in Fig. 2.8.

2
(a+b)

Fig. 2.8 A DAG for (a+b)2,
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In a DAG, if {n;,n;} € N, and (nj,n;) € A, then n; is said to be a
predecessor  of nj. The in-degree of node n; is defined as the
number of its predecessors and out-degree of node njis defined as
the number of processors for which node njis a predecessor. Thus,
an input node has an in-degree of zero and, an output node has an
out-degree of zero. N, is the set of nodes except the input nodes. A
positive path is a sequence ng,..,ng of nodes where (n;,n;+1) € A for
i=0,..,K-1. K is called the length of a path. The depth D of a DAG is
the maximum of the lengths of all the positive paths. D is positive in
a DAG because of acyclicity and the positive path yielding D must
obviously start at an input node and end at an output node. Note
that the depth of the DAG in Fig. 2.8 is 3.

Now, assume that we have a pool of processors. Let each
node njis assigned a processor P; except the input nodes and, each
processor is capable of performing the operation corresponding to
that node in unit time. We further assume that communication
between the processors is instantaneous.

To be able to represent an algorithm fully by a DAG, one also
needs to fix when an operation is performed by which processor.
This can be done via a schedule .

There are two constraints that must be imposed on a

schedule.

1. A processor can perform at most one operation at a time.
Therefore, if njnj € Ny fori = j and tj = tj, then P;# P; where t;
denotes the time at which the it® step of a schedule ends. Note that
more than one processor can be active at a single step.

2. If (nj,n;) € A, then tj= ti+1 (each operation takes unit

time).

Since input nodes are assigned no processors, their

completion times, tj, are zero.



28

After fixing Pjand t;, a DAG is said to be scheduled, and the
set {(n;,Pi,t) 1 nj € Ny} is called a schedule S.

2.2.3 Computation Complexity

The computation complexity is the time paid for the
computation cost of an algorithm. The following notation will be
used throughout the text:

A is a subset of real numbers R. For f: A—>%R, g: A>NR,
1. f(x) = O(g(x)) implies, for any x = xp, f(x) < cg(x),
2. f(x) = Q(g(x)) implies, for any x = xgp, f(x) = cg(x),
3. f(x) = O (g(x)) implies, for any x = Xo,
cig(x) = f(x) = cog(x),
4. log(x) is logarithm base 2 of x,
where xg,c,C1,C2 E_ER'*,

In the above notation, O(.) puts an upper bound in the order
of its argument, Q(.) puts a lower bound in the order of its

argument, and @(.) denotes the order of its argument.

For a DAG G and a schedule S, {(nj,Pj,ti) I nj € Noy}, of P
processors, the time spent is max(t;). The time complexity, Tp, of an
algorithm is defined as the minimum of the times spent by any
schedule S that realizes the same algorithm described by G using P

pTOCEssors.

Obviously, a schedule using infinitely many processors yields
the minimum time complexity. However, note that for some P=P*.
where P* is a positive finite integer, Te = Tp+ (At least think of the
case with one processor per each node in Np). Thus, the minimum
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time complexity can be achieved with a finite number of processors.
Therefore, T. can be defined as

min

Teo= 51 Tr

(2.1)

Further note that T; is the time complexity of a G and S pair
simulated by a single processor and is equal to [Ngl. Therefore,

T12Tp2Te (2.2)
Another important property of T is its equality to the depth
D of its graph G. This is because a schedule can not be completed
without traversing all the positive paths, and no positive path can
be longer than the path with a depth D.

Now, let's state some properties of Tp:

1. Assume that there is a single output node and in-degree of
each node is at most two. Therefore, for n input nodes

Te = log(n).

2.If g =c.p, then T, € ¢.Tq,

L), then T, = O(T.).

o0

3.1fp =

T
T

T _T
4.1fp = ogﬁ), then T, = §(—).
P

o0

These facts are of fundamental importance. The first puts a
lower bound on the time complexity of any algorithm independent
of the number of processors. The second states if the number of
processors is increased by ¢, then the speedup would be less than c.
The third states if the number of processors are bounded below in
the order of T;/Tw, then the speedup is bounded above in the order
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of T1/Tw. The fourth states if the number of processors are bounded
above in the order of T;/T., then the speedup is in the order of
T1/Te.

The above discussions show us that we can reach T or Tw
within a constant factor using a finite number of processors. Thus, it
is tactful to develop a DAG and a schedule as if we have infinitely
many processors, and then, adapt the algorithm to the available
number of processors. Properties three and four also imply that the
T1/Tew is a limit point for the processor utilization. Indeed, one
might utilize the processors best by chooéing P equal to Ti/Te.

O\a+ b /

2
(a+b)

Fig. 2.9 Another DAG for (a+b)?.

No:e that all of the above discussions are about the time
complexity of a G and S pair but not the time complexity of the
algorithm itself because the time complexity of an algorithm (or
rather a technique) is implementation dependent. So anyone
designing a parallel algorithm must choose a spatially decomposable
technique and must be careful about the optimization of his/her
implementation for an optimal time solution. Fig. 2.9 displays this
fact by giving another DAG for (a+b)? with a smaller depth.



31

2.2.4 Communication Complexity

The communication complexity is the time paid for the
communication cost of an algorithm. It is as important as the
computation complexity since it may contribute to the time
complexity of an algorithm more than the computation complexity.
The communication cost for the array processors is considered
under the following assumptions.

1. A node can use at most two of its incident links at a time.
It can rteceive a message using one and send another message using
the other. Furthermore, all the nodes initiate a communication at
the same time, and send and receive simultaneously since the array
processor is assumed to be running in SIMD fashion.

2. No time is spent to prepare a message or to wait in a
queue. All packets are assumed to be of the same length and,
always the same time is spent to pass any packet between
neigbouring processors at any time.

These assumptions also apply well to the HAP.

" An interconnection network can be represented as a graph
G=(N,A) or as a topology. The nodes of a graph correspond to
processors and the arcs correspond to the links. Interconnection
network topologies can be assessed using the following criteria.

1. The diameter 1 of the network is the maximum distance
between any pair of nodes and is measured as the number of links.
For a network of diameter 1, a packet can travel from one node to

another in O(r) time.

2 Arc and node conmnmectivity of a network is the number of
arcs and nodes that must be deleted to make the network
disconnected. The connectivity of a network is bounded above by
the number of incident links to a node.
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3. The flexibility of a network is defined as the capability of
efficiently simulating algorithms designed for other topologies. To
relieve the communication penalty, after dividing the main task
into subtasks, each subtask must be assigned to a node considering
that a node may need a value computed by another node. Such
nodes must be chosen as immediate neighbours or be located as
close as possible.

4. The communication delays (or costs) incurred for common
communication problems like the single node and multinode
broadcast problems are also important since such problems are
encountered frequently in the parallel implementations of many
numerical algorithms on array processors. These communication
problems are explained below.

Sinele and multinode broadcast [4]: In the single node broadcast
problem the same packet is sent from a single node to every other
node. In the multinode broadcast each node broadcasts a packet to

every other node.

The single node broadcast problem can be solved by
constructing a spanning tree at the given node. Choosing an optimal
spanning tree, one can broadcast a packet from a single node to
every other node in O(r) time (,or since 1 is the minimum distance
between the farthest nodes, a packet between the farthest nodes
travels 1 links at most). Fig. 2.10 (a) shows by simulation how the
single node broadcast problem can be solved on a two dimensional
three by three mesh, and Fig. 2.10 (b) shows the corresponding

spanning tree.

The multinode broadcast problem requires a spanning ftree
per node. However this may result in timing conflicts since some
spanning trees can pOSSESS the same links. Therefore, a more
complex schedule that synchronizes link possessions must be

designed.
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Fig. 2.10 (a) A single node broadcast on a two dimensional mesh.
(b) The corresponding spanning tree.

Sinele and multinode accumulation {4]: In the single node

accumulation, a packet from every other node is sent to a single
node. These packets are combined, e.g., added, ANDed, ORed, etc., on
their way to this single node. Thus, a node on the routing path may
receive more than one packet but it combines these packets, and
sends a single packet to the next node. A multinode accumulation is
a separate single node accumulation for each node.

The single node accumulation problem can be solved by
using the optimal spanning tree of the single node broadcast
problem. Running the single node broadcast schedule in reverse-
time, all the packets can be accumulated at a single node in O(r)
time. Thus, the single node accumulation and broadcast are said to
be duals of each other. Fig. 2.11 (a) shows the simulation of a
solution to the single node accumulation problem, and Fig. 2.11 (b)

shows the corresponding spanning tree.



34

(a) (b)

Fig. 2.11 (a) A single node accumulation on a two dimensional mesh.
(b) The cormresponding spanning tree.

The multinode accumulation problem can be solved by
running the multinode broadcast schedule in reverse-time.

Sinele node scatter. single node gather. and total exchange [4]: Some
algorithms require the sending of a separate packet from a single
node to every other node. This is called a single node scatter
problem. The dual of this problem is the separate collection of
packets from every other node at a given node, ‘and this is called a
single node gather problem. Therefore, a solution to one of these is
the reverse-time solution to the other. Indeed, an algorithm that
schedules packet transmissions on each link and that properly takes
queuing time into account is 2 solution to both of these problems.

In the total exchange problem, every node receives a
separate packet from every other node, or, in other words, every
node sends a separate packet to every other node. Therefore the the
total exchange problem is the multinode version of either of the

single node gather and scatter problems.
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Note that in a multinode accumulation each node sends a
separate packet to every other node, thereby solving the single
node scatter problem. Also note that a total exchange is the
generalization of a multinode broadcast if every node of the
multinode broadcast sends a separate packet to every other node
instead of the same packet. All of these relations are summarized in
Fig. 2.12

Total exchange

N

Multinode broadcast <« »| Multinode accumulation

Single node scatter - Single node gather

; 4

Single node broadcast ~ <—Single node accumulation

Fig. 2.12  Hierarchical ordering of basic communication problems [41.

In Fig. 2.12 a directed arc from problem x to problem y
indicates that an algorithm solving x can also solve vy, and the
optimal time for solving y is no more than the optimal solution time
of x. A bidirectional arc indicates a duality relation.

Some of the parallel algorithms described in Section 3.1

utilize a two dimensional n by n mesh array as n linear arrays of n

nodes, and these algorithms include a single node accumulation and

a single node broadcast.
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A single node broadcast or a single node accumulation on a
linear array takes only (a-1) steps or O(n) time. Fig. 2.13 illustrates
a solution by simulation for the single node broadcast problem on a
linear array.

:0:1 :2:3:

Fig. 2.13 A single node broadcast on a linear array.

225 Combined Complexities and Performance Measures

The time complexity, T, of an algorithm using P processors is
the addition of its communication, T¢omm, and computation, T¢omps

complexities. An algorithm is said to be communication bounded if

T.omm dominates in T, or computation bounded if Teomp dominates

in T, or unbounded otherwise.

The speedup Syof a parallel algorithm using P processors is

defined as
T'/T, (2.3)

where T is the optimal serial time algorithm for the same problem.
Sp describes the advantage of using a parallel algorithm; it is always

greater than one and less than P.
The efficiency E, is defined as

Sp/P (2.4)

The efficiency is a measure of processor utilization and
shows the fraction of time a processor is employed. It is ideally one.

T* can either be the time complexity of the best serial
algorithm known, or the time complexity of a benchmark serial
algorithm, or the simulation time of the parallel algorithm by a
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single processor without any communication costs. The third
definition stresses the degree an algorithm is parallelized but hides
the merits of the particular algorithm in contrast with the first two.

In parallel algorithm design, there is usually a trade-off
between communication and computation costs. The rule is; the less
computation cost is the more is the communication cost. This is
especially true for the solution of system of equations, the
optimization problems and other problems of the form

xi(t+1) = f(x;(t),....x5(1), i=1,..,n

where f is a function from %" to K. Solutions of this form are also
known as relaxation iterations since the system relaxes, i.e.,
converges, after a certain number of iterations. The Hopfield model,
which will be implemented in this study on a massively parallel
computer, is a good example to such problems.

One can increase the concurrency of such an algorithm by
dividing the subtasks into smaller subtasks. Thus more processors
are made active at a time. But this leads to increased
communication between processors since variables, once located in
a single processor, are now shared among several processors.

The communication ratio is defined as Teomm/Tcomp. This
ratio indicates the balance between the communication and the
computation complexities. For computation bounded operations like
relaxation iterations high concurrency with the same
communication ratio can be achieved by increasing the number of
processors appropriately as the problem size increases [4].

Unfortunately, this is not true for communication bounded
algorithms. As an example, consider the problem of adding N
numbers using P processors on an array processor with linear array

topology.
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Assume that there are P processors and k.P numbers where
k € Z*. First, every processor performs k additions sequentially.
Then, these P results are added. The P results can be added in log(P)
addition operations (See the DAG in Fig. 3.5). Therefore, the
computation cost of adding N numbers is N/P+log(P) addition
operations. The communication cost is (P-1), or P assuming P>>1,
routing operations since this is a single node accumulation problem
on a P-noded linear array. Note that all the processors add or route
simultaneously, so, the total number of additions and routing
operations are P times the given costs. Taking unit time for any
operation, communication ratio becomes P/[N/P+ log(P)]. If the
number of processors are large enough, than this ratio is always
greater than one, and it increases as P is increased. Decreasing P
may relieve the communication penalty but lowers the speedup.

The problem of communication bound is also encountered in
multiplying a vector with a matrix on a two dimensional mesh. The
remedy is to use a topology other than the two dimensional mesh
which will decrease the communication cost. For example, if a
hypercube topology is used for a vector-matrix multiplication, then
the time complexity becomes unbounded.
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II IMPLEMENTATION ISSUES AND SIMULATION

In this chapter, the Hopfield artificial neural network model
(see Appendix A for a description of this model) is formulated and
simulated on a bit serial SIMD mesh array processor.

Section 3.1 explains and analyzes basic parallel algorithms
used in the simulations, Section 3.2 analyzes complexity of the
Hopfield network model on the hypothetical array processor (HAP),
Section 3.3 gives the simulation results, and Section 3.4 analyzes the
simulation results for speedup and efficiency.

3.1 Design of the Parallel Algorithms

Designing a parallel algorithm for an array processor is
straightforward if the problem in question has the same spatial

structure “with thetopology. of the array processor at hand. Also, it ..

is better if the interactions between the variables and equations of
the problem are spatially local. The outer product of two vectors,
which is used in the Hopfield model, satisfies both of these
conditions. Parallel implementations of such solution techniques
yield the highest, if not ideal, speedups and efficiencies.

The violation of the first condition above requires the design
of an algorithm that maps the spatial structure of the algorithm to
the topology of the array processor. The second condition can be
violated as a result of the violation of the first condition. If the
second condition is violated, then special algorithms that accomplish
the required interprocessor communications like the spanning trees
of Section 2.2.4 must be developed. The violation of the second
condition usually causes a parallel algorithm to be communication
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bounded. The algorithms, which include matrix operations, like the
class matching part of the Hopfield network, usually violate the
second condition.

The parallel algorithms for vector and matrix storage, outer
product of two vectors, transposition of a block, and multiplication
of a vector with a square matrix have been used in the Hopfield
network simulation.

3.1.1 Vector Storage

Before describing how vectors are stored on the Blitzen array
processor in the simulations of this study, we first define a
structure which will be referred to as a block.

A block is a set of P pieces of local (or VRAM but not both)
memory beginning at the same address. Moreover, every element
of a block consists of the same number of bits and, each belongs to a
different processor. Thus, a block is determined by its type, i.e. local
or VRAM block, an address and a number of bits. A number is said
to be at block B if it is stored at the address of block B using the
same number of bits. The term block of numbers rtefers to P
numbers stored at a block. If one needs to store more than P
numbers, e.g. a long vector or a large matrix, then he/she may use
multiple blocks (not necessarily but preferably) at consecutive
addresses. In the expressions given below, Lx/yl is the greatest
integer less than or equal to x/y, and x%y is the remainder of x/y.

A vector of N elements is stored using
L(N-1)/Pl+1 (3.1)

blocks. A vector element v;, for i=0 to K-1, is stored in processing
element (PE) (l_(i%P)NP_], (i%P)%VP) at the block number

Li/PJ (3.2)
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(a) Block number O. (b) Block number 1.

Fig. 3.1 The storage of an §-tupled vector on a 2 by 2 array.

For example, a vector of 8 elements can be stored using 2
blocks on a 2 by 2 array. Fig. 3.1 depicts this case.

3.1.2 Matrix Storage

(o)
C—

(b) Block number 1.

(2) Block number O.

(¢) Block number 2. (d) Block number 3.

Fig. 3.2 The storage of a 4 by 4 matrix on a 2 by 2 array.
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An M by N matrix is stored using
LM-DANPL+1)((N-1)VP] +1) (3.3)

blocks. A matrix element A(,j), for i=0 to M-1, j=0 to N-1, is stored
in PE (i%P,j%P) at the block number

Li/x[}?J(L(N-l)NTDJ +1) + [jNP] (3.4)

For example, a 4 by 4 matrix can be stored using 4 blocks on
a 2 by 2 array. Fig. 3.2 shows this case.

3.1.3 Transposition of a Matrix

The interconnection network of Blitzen is very suitable for
the transposition of a matrix since it provides routing in the
diagonal directions, and it also allows routing through the PEs on
the edges by connecting North-South and East-West edges. Such an
interconnection network is called a wrap-around X-grid, and routing
through such a topology is called ’wrap-around routing. If the other
mode of routing, called grid routing, is enabled, then the edges are
disconnected. The processors on the incoming edge teceive zeros in

grid routing.

The algorithm given in Fig. 3.3 transposes a block of numbers
utilizing 6 blocks. One of the blocks, called the original block, keeps
the block of numbers to be transposed, and another block, called
the transposed block, keeps the transposed form of the original

block.

The numbers at the original block are divided into two
groups as the northeast (NE) and southwest (SW) travellers. An NE
(SW) traveller is a number whose transposed position is in the
northeast (southwest) direction relative to its original position. Each
group has a pair of blocks. The numbers at the original block are
copied to the first block, called the travellers block (travellerNE
and travellerSW), of each pair at the beginning. The second block of
numbers, called the passport block (passportNE and passportSW),
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are initialized by subtracting the row index of a PE from its column
index for the NE travellers and by subtracting the column index of a
PE from its row index for the SW travellers.

The transposition operation is accomplished in P steps for
each traveller group. At the beginning of each step, the numbers
associated with a zero passport value is copied to the transposed
block. After incrementing (decrementing) the numbers at the
passport block for the NE (SW) travellers, the NE (SW) travellers
and their passports are routed one PE northeast (southwest),
thereby assigning new PEs to each of the travellers.

If an instruction is indented to the right after a "FOR EVERY
PE (i,j)" sign, then this instruction is executed by all the PEs in
parallel. Such instructions end with a semi-colon. The variables in
the algorithm given in Fig.3.3 refer to the numbers stored at the
above mentioned blocks in the PE (i,j) they belong to (e.g.
travellerNE is the number stored at the travellerNE block in PE (i,})
when it takes place in an instruction). Instructions containing
variables are always indented to the right. Note that the letters i
and j are exclusively used for PE indexing in all of the algorithms
and they change from 0 to VP-1. The parallel algorithm for the
transposition of a VP by VP matrix is given in Fig. 3.3 in the pseudo-

language of the HAP.

The notation used to express the time complexity, speedup,
and efficiency of an algorithm is given below.

Tp(x,N): The time complexity of a parallel algorithm x using P

processors for a problem size N.

T (x,N): The time complexity of a sequential algorithm x for a

problem size N.

Sp(x,N): As defined in Section 2.2.5, speedup of an algorithm

x for a problem size N.
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Ep(x,N): As defined in Section 2.2.5, efficiency of an algorithm

of x using P processors for a problem size N.

f(x)=0(g(x)): As defined in Section 2.2.3. We will use this
notation due its convenience for us. That is, by showing that a
problem can be solved with a property expressed as g(x), we will
immediately be obtaining an upper bound in the order of g(x) for
this property.

SetRoute(torus);
FOR EVERY PE (i,j)
travellerNE = original;
passportNE = j-i;
travellerSW = original;
passportSW = i-j;
For (k=0 to VP -1){
If (passportNE = 0) then
transposed = travellerNE;
passportNE = passportNE +1;
SendToNorthEastReceiveFromSouthWest
(travellerNE,travellerNE);
SendToNorthEastReceiveFromSouthWest
(passportNE,passportNE);
If (passportSW = 0) then
transposed = travellerSW;
passportSW = passportSW -1;
SendToSouthWestReceiveFromNorthkast
(travellerSW,travellerSW);
SendToSouthWestReceiveFromNorthEast
(passportSW,passportSW);

Fig. 3.3 A parallel algorithm.for transposition of a VP by VP matrix.
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The problem size for the transposition problem can be
defined as the number of elements of the matrix in question.
Therefore, this parallel transposition algorithm yields

T, (transposition,P) = O(P) (3.5)
compared to the

T, (transposition,P) = O(P) (3.6)
of a sequential transposition algorithm.
3.1.4 Outer Product of a Vector with Itself

The outer product of a vector of size M and a vector of size N
results in an M by N matrix. Such a matrix is constructed in the
weight matrix generation part of the Hopfield network. Although
the storage of such a matrix may cause excessive memory
requirements, the huge size of the images makes the simulation of
the Hopfield network attractive on a SIMD array processor.

The algorithm given in Fig. 3.4 describes the outer product of
a vector of P elements with itself (however, it can easily be
generalized to the case of any size). Since every element must be
multiplied with every other element, the parallel version of the
outer product algorithm includes a multinode broadcast. After the
multinode broadcast, every PE will have the whole input vector,
and PE (i), for 1,j=0 to \VP-1, will generate the row iP+j of the output

matrix by performing P multiplications.

Unfortunately, it may be impossible to implement the outer
product as described above since a PE may not have enough local
memory to store an input vector or a single row of the output
matrix. Therefore, this procedure needs to be revised to account for
the limited local memory of a PE. A revised procedure may receive
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the input vector elements one by one and may swap the result to
the VRAM after each multiplication.

The algorithm given below assumes that a PE has enough
memory to hold the VP elements of the original vector. It solves the
multinode broadcast problem by performing VP single node
broadcasts in parallel on VP sized linear arrays 24P times. Thus, each
PE receives the other operand of every multiplication just before
that multiplication. Each PE, performing P multiplications to find the
outer product of two \/—l;-tupled subvectors, generates P elements of
the output matrix.

The algorithm utilizes 4+VP+P blocks. One of the blocks, called
the original block, keeps the input vector in its original form, and
another block, called the fransposed block, keeps the original block
of numbers transposed as a \/'f"by VP matrix. The next VP blocks is
a series of blocks called the broador blocks. The broador block i, for
i=0 to VP-1 stores the elements from iVP to (i+1)VP of the input
vector. A third kind of block, called the broadlast block, stores the
last number broadcast from the transposed block, and, finally, the
resultant block keeps the result of a multiplication (a broador block
multiplied by the broadlast block). After each multiplication, the
resultant block is saved to a certain VRAM block. These P number
of VRAM blocks are called the matrix blocks.

The input vector and the resultant matrix are stored as
explained in Sections 3.1.1 and 3.1.2. Sometimes, in the algorithms,
only an operation and the input/output blocks are given instead of
the instructions just for the simplicity. Such operations are called
block operations. They also activate all or, if mentioned, only
designated PEs. The HAP accomplishes executing just a group of PEs
by controlling the mask register in every PE. The outer product
algorithm given in Fig. 3.4 is written in the pseudo-language

described in Section 2.2.1.

The problem size for an outer product can be defined as the

input vector size. A sequentizl outer product algorithm yields
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T, (outer product,P) = O(P?) (3.7)

as a direct reflection of its computation cost which is P2
multiplications.

Transpose the numbers in the original block to the
transposed block.
SetRoute(grid);
For (k=0 to VP-1){
Let the PEs at the k" row broadcast the numbers at
the original block to the broador block k of the

PEs in the same column.

}
For (k=0 to VP-1){

Let the PEs at the k' column broadcast the
numbers at the transposed block to the broadlast

block of the PEs at the same row.
For (g=0 to VYP-1){

FOR EVERY PE (i,))
result=broador{[g]*broadlast;

matrix[k*VP+q] = result;

Fig. 3.4 A parallel algorithm for the outer product of a vector with itself.

The computation cost of the algorithm given in Fig. 3.4 is just
P multiplications. Its communication cost is 2P routing operations
computed as 24P single node broadcasts on VP-noded linear arrays.

The transposition operation for the problem size of VP contributes a
complexity of O(V?). Therefore, this algorithm is unbounded with a

time complexity given as,
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Tp (outer product,P) = O(P) + O(2P)+O(\fl_5) (3.8)
=0P)

Note that we can easily extend the analysis and algorithm
given above to the case where the outer product of a kVP-tupled
vector (k € Z* and k<VP) is obtained using P processors.

In this case, each PE performs k? multiplications to find the
outer product of two k-tupled vectors, and thus, generates k2
elements of the kVP by kVP output matrix. For the communication

between the PEs, k single node broadcasts are performed in parallel
on VP sized linear arrays 2k times. The cost due the transposition
operation remains the same since we again need to transpose a
block of numbers. Thus, we obtain the following time complexity for
the parallel implementation of the transposition problem,

T, (outer productkvP) = O(k?) + O(2k\P) + O(P)  (3.92)

(3.9a) can be rewritten as follows since kNP=VP and "2" in
(2kVP) of (3.9a) is a constant.

Tp (outer product,kvVP) = O(k? + kVP) (3.9b)
The time complexity of the sequential implementation of this
case is given as
T, (outer product,kVP) = O(k?P) (3.10)

Note that the outer product algorithm given above, 1is

unbounded or communication bounded depending on the value of k.

3.1.5 Multiplication of a Matrix with a Vector

First, we will show that the HAP can multiply a JP-tupled
vector v with a VP by VP matrix A with a time complexity of O®P).
Then, assuming that we have a P-tupled vector and P by P matrix,
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we will show trllese two can be multiplied in O(PVP). Finally, we will
show that a kVP_—tupled vector can be multiplied with a kVP by kVP
matrix in O(k2VP) time where k € Z* and k<VP.

The multiplication of a vector of VP eclements with a VP by VP
matrix consists of VP inner products. This can be accomplished the
HAP by dividing its P nodes (PEs) into rowwise VP noded P linear
arrays.

The inner product of two VP-tupled vectors consists of VP
multiplication operations and the addition operations needed to
take the sum of the \/—l;multiplication results. Fig. 3.5 gives a DAG G
that can be used to accomplish these VP additions.

The depth of G of Fig. 3.5 is Iog(\@). A schedule S using VP
processors can finish this task in log(VP) steps; it uses 1/2%VP
processors at the first step, 1/2°%VP processors at the n'™ step, and a
single processor at the Iog(\/’P_)th or final step. This G and S pair is
optimal because of the property 1 of Section 2.2.3 which states that

Tw = log(VP) (3.11)

where T. is the time complexity that can be achieved using
infinitely many processors. Therefore, the computation complexity
of the parallel addition algorithm, represented by the above G and S
pair, is minimum and is equal to O(log(\/_lg)).

Since a linear array topology is used, we mneed an
interprocessor communication scheme to enable message (result)
communication between the PEs of the linear array. A solution to
this communication problem is given by the algorithm described in
Section 2.2.4, and this is the solution to the single node

accumulation problem on a linear array.
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Fig. 3.5 A DAG to add VP numbers.

It was shown in Section 2.2.4 that the single node
accumulation problem requires at most (VP-1) routing operations on
a linear array of VP nodes. Therefore, the communication complexity
of realizing the above parallel addition algorithm on a linear array
of VP nodes is O(NP). Then, the total complexity of the parallel
addition algorithm is O(\/—P)+O(log(\ﬁ’)), and this leads to a time
complexity of O(\/TD) for the addition of O(\’—ls) numbers on a VP -

noded linear array.

Assigning an element of each vector to each of the PEs, all of
the multiplications can be completed in a single step. Therei“ore, the
time complexity of performing an inner product of two VP-tupled
vectors on a YP-noded linear array is O(WP).

Let's assume that at the beginning of the matrix-vector
multiplication, j' PE on linear array i, for i,j=0 to VP-1 stores two
vector elements (the element (i,j) of the matrix and the element j

of the vector). Then, the linear array i computes the element i of
the resultant vector with a time complexity of O(\T};). Since all the

linear arrays run in parallel, the resultant vector can be computed
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with a time complexity of O(V?). Therefore, a VP-tupled vector v
can be multiplied with a YP by VP matrix A in a time complexity of
O(VP) using a mesh array processor of P number of PEs. For a
square matrix-vector multiplication (SMVM) the problem size can
be defined as the dimension of the input vector. Therefore,

Tp (SMVMAP) = O(VP) (3.12)

The next task is the multiplication of a P-tupled vector (the
input image to the Hopfield network) with a P by P matrix (the
weight matrix) on a mesh array processor of P processors.
Therefore, this task requires P number of vector inner products
with a vector of size P or PVP subvector inner products (neglecting
addition operations needed to take the sum of the subvector inner
products) for a vector of size VP. Since the HAP can perform VP
inner products of size VP in parallel with a time complexity of O(\/'ls),

the total time complexity is given as

T, (SMVM,P) = [(PVP)APIO(VP) = O(PVP) (3.13)

Now, we will define the terminology for the blocks used in
the matrix vector multiplication algorithm given in Fig. 3.6. All
blocks are local RAM blocks unless otherwise stated. The P-tupled
input vector and the P by P input matrix are stored on the HAP as
described in Sections 3.1.1 and 3.1.2. Therefore, a single block,
called the vector block, must be used to store the input vector
(image) v and, P number of VRAM blocks, called the matrix blocks,
must be used to store the input (weight) matrix A.

The tempmat block stores the matrix block currently
swapped from VRAM. The transposed block stores the numbers at
the vector block as transposed i.e. the numbers at the vector block
are considered as the elements of a VP by VP matrix, and then
transposed. The broadcast block stores the numbers currently
broadcast (a single node broadcast on a VP noded linear array) from
the transposed  block. The multiplied  block stores one to one
multiplication of tempmat and broadcast blocks. The addrow block
stores the addition (a single node accumulation on a VP-noded
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linear array) of all the numbers at a row of the multiplied block.
Finally, the resultant block stores the P-tupled output vector.

The parallel algorithm for SMVM given in Fig. 3.6 is written
in the pseudo-language of the HAP. The instructions indented to the
right after an "ONLY FOR PEs (i,j)" sign are only executed at the
designated PEs. Such instructions also end with a semi-colon. If an
"ONLY FOR PEs (i,j)" sign comes after a "FOR EVERY PE (i,j)" sign, the
former dominates the with reference to "ONLY ..." indented
instructions.

In the algorithm given in Fig. 3.6, a transposition operation
with a problem size of P is performed once, a single node broadcast
operation is performed VP times, a multiplication operation is

performed P times, a single node accumulation is performed P

times, and an addition operation is performed P times. Therefore,
the time complexity, Tp, of the parallel algorithm of Fig. 3.6 is given

as,

Tp (SMVM algorithm,P) = O(VP) + VPO(P) + (3.14)
~ PO(1) + POGP) + PO(1)

hence,

T, (SMVM algorithm,P) = O(P\P) (3.15)

Note that this result is the same as the expression (3.13). A
sequential algorithm accomplishing the same task gives

T, (SMVM,P) = O(P?) (3.16)

Note that the SMVM algorithm given above is communication
bounded since the time complexity of the single node accumulation
accomplished during an inner product governs its time complexity.
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Transpose the input vector into the transposed block.
For (k=0 to VP-1){

Let the PEs at the kM column broadcast the
numbers at the transposed block to the PEs at
the same row.

For (=0 to VP-1){

FOR EVERY PE (i,j)
tempmat = matrix[q.(VP - 1) + kI;
multiplied = tempmat * broadcast;
Add all the numbers at a row of the multiplied
block into the addrow block.
ONLY FOR PEs (i,q)
resultant= resultant + addrow,;

Fig. 3.6 A parallel algorithm for (square) matrix-vector multiplication.

Now, it is easier to show the more general case of kVP by kP
matrix and kﬁ-tupléd vector multiplication where k € Z* and
kS\/E. In this case, we need to perform kVP number of vector inner
products for a vector size of kVP, or k2VP number of subvector inner
products (neglecting addition operations needed to take the sum of
the subvector inner products) for a vector size of VP. Since the HAP
can perform VP inner products of size VP with a time complexity of
O(VP), the time complexity of this case is given as,

Tp (SMYM,KVP) = [(k2VP)NP]O(VP) = OXP) (3.17)

The time complexity for the sequential implementation of

this case is as follows,

T, (SMVMk\P)= O(k?P) (3.18)
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3.2 Complexity of the Hopfield Network

The Hopfield network algorithm consists of two parts. In the
first part, called the weight matrix generation (WMG) part, a matrix
(weight matrix) 1is generated from a set of input vectors called the
image classes. In the second part, called the class matching (CM)
part, another input vector, called the input image, is tried to be
matched with one of the image classes. Note that the input image
and an image class has the same number of pixels.

For the following three sections, assume that the input image
has kVP pixels (k € Z*, k<VP, 1<VP). The problem size (N) is defined

as the number of pixels of an image.
3.2.1 Weight Matrix Generation

The WMG part consists of the outer product of each class
image class vector with itself, the addition of the resultant matrices
and the resetting, i.e. making zero, of the diagonal elements of the
final matrix. Assuming that there are C image classes (1SC<\/—P5) and

using (3.10), the time complexity of the WMG's sequential

implementation 1is

T (WMG,kvP) = COK?P) + (C-1)O(k?P) + O(KVP)  (3.19a)

where the first term in the above expression refers to the outer
product, the second term to the addition of the outer products, and
the third term to the resetting of the diagonal elements.Since k?P>P

and C>1, the following can be obtained using (3.1%a),

T(WMG,P) = CO(k?P) (3.19b)

Based on the arguments given in Section 3.1.4, the time
complexity of the outer product of k.VP-tupled vectors on the
hypothetical array processor (HAP) is O(k2+kxﬁ’). The addition of the

outer products have a time complexity of (C-1)O(1) since the
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addition of these matrices are accomplished by all the PEs in
parallel. Resetting of the diagonal elements of the weight matrix has
a time complexity of O(k) since VP PEs can perform the resetting
operation simultaneously. Therefore, a weight matrix can be
generated with a time complexity of,

To(WMG,kVP) = COK2+k\P) + (C-1)O(1) + O(k)  (3.20a2)

Since (k2+k\ﬁ5)>k and C>1, (3.20a) can be rearranged as
follows,

Tp(WMG,kVP) = CO(k2+kP) (3.20b)

Up until now, we have expressed the problem size (N) in
terms of the number of processors, P. Now, we will derive the time
complexity, speedup, and efficiency expressions for the WMG
without expressing N in terms of P.

Since we have previously assumed that N=kVP, we can
substitute k=N/VP into expressions (3.19b) and (3.20b). Thus, the
following expressions can be obtained,

T(WMG,N) = CO(N?) (3.21)

Tp(WMG,N) = CO(N?/P + N) (3.22)

The speedup and efficiency for the parallel implementation
of the WMG can be obtained as follows.

S(WMG,N) = O(N/(N/P + 1)) (3.23)
E,(WMG,N) = O(N/(N + P)) (3.24)

For the case N=P, in which a single pixel is assigned to each

processor, the following expressions are obtained,

T(WMG,P) = COo(P?) (3.25)
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T(WMG,P) = CO(P) (3.26)
S:(WMG,P) = O(P) (3.27)
Ep(WMG,P)= O(1) (3.28)

3.2.2 Class Matching

The second part of the Hopfield algorithm is a series of
iterations, called class matching iterations, rtepeated until
convergence. In each class matching iteration, the input image
vector is multiplied with the weight matrix. The resultant vector
passes through a nonlinear function to generate the oufput image. If
the output image vector is not the same as the input image vector,
then it is taken as the new input image vector; otherwise, the
iterations are stopped. '

Since a class image has kVP pixels, the weight matrix is a kVP
by KVP matrix. As discussed in Section 3.2.5, the time complexity of
the multiplication of a kVP by kVP matrix with a kVP-tupled vector
on a sequential processor is O(k?P). The application of a nonlinear
function to the kVP- P-tupled resultant vector requires kVP
applications. The comparison of the kVP-tupled input and output
image vectors also requires kVP comparisons. Therefore, the
application of a nonlinear function and the comparison of the kVP-
tupled input and the output image vectors present the same time
complexity, which is O(k\VP), for a sequential implementation.
Adding the time complexities of the matrix-vector multiplication,
application of the nonlinear function, and the comparison of the
input and output image vectors, the time complexity of the
sequential implementation of a class matching iteration is found as

follows,

T, (CMKVP) = O(k?P) + O(k?P) + O(kVP) = O(K?P)  (3.29)

since k?P>kVP.
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In Section 3.1.4, we have shown that the time complexity of
the muliiplication of a kVP by kVP matrix with a kvP-tupled vector
on the HAP is O(k?>VP). The application of a nonlinear function to the
kﬁ;—tupled resultant vector and the comparison of the k\’?-tupled

input and the output image vectors operations have O(1) time
complexities since kVP PEs perform these in parallel. Therefore, the

time complexity of a single class matching iteration is given as,

Tp (CMXVP) =O(k2VP) + O(1) + O(1) = OXP)  (3.30)

Now, it is trivial to derive the expressions for the time
complexities, speedup, and efficiency of a single class matching
iteration in terms of N and P. Substituting k=N/VP into (3.29) and

(3.30), the following expressions can be obtained,
T, (CM\N) = O(N?) (3.31)

Tp (CM,N) = O(N2AP) (3.32)

The speedup and efficiency for the parallel implementation
of the CM is found as follows,

Sp (CM,N) = O(P) (3.33)
E, (CM,N) = O(1NP) (3.34)

For the case N=P, in which a single pixel is assigned to each

processor, the following expressions are obtained,

T, (CM,P) = O(P?) (3.35)
To(CM,P) = O(P\P) (3.36)
Sp(CM,P) = O(VP) (3.37)

Ep(CM,P)= O(1NP) (3.38)
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Note that the implementation of the class matching on the

HAP is communication bounded since the matrix-vector
multiplication governs Tjp.

3.2.3 The Complete Hopfield¢ Algorithm

Assuming that the Hopfield algorithm (HOP) converges in R
iterations, using (3.21) and (3.31) a sequential implementation of
the Hopfield algorithm gives a time complexity of,

T, (HOP,N) = CO(N?) + RO(N?P) (3.39)

Based on the complexities given in (3.22) and (3.32), our
implementation of the Hopfield algorithm on the HAP has a time
complexity

T, (HOP,N) = CO(N?/P+N) + RO(N2AP) (3.40)

Now, assume that we are given a set of image classes and a
certain input image. Thus, C and R can be taken as constants. Under
this assumption, the time complexities of the sequential and parallel

implementations are given as
T, (HOP,N) = ON?) (3.41)
T, (HOP,N) = O(N?/P+ N) + ONZ/NP) (3.42a)
(3.42a) can be written as follows since N2/NP>N2/P,
T, (HOP,N) = O(N?/P + N) (3.42b)

The speedup and efficiency for the overall implementation of
the Hopfield network model can be obtained from (3.41) and

(3.42b) as follows,

S,(HOP,N) = O(1/(1NP +1/N)) (3.43)
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Ep (HOP,N) = O(1/(P +P/N)) (3.44)

For the case N=P, in which a single pixel is assigned to each
processor, the following expressions are obtained,

T, (HOP,N) = O(N?) (3.45)
T, (HOP,P) = O(PVP) (3.46)
Sp (HOP,P) = O(VP) (3.47)
E, (HOP,P) = O(1VP) (3.48)

From the above expressions, one can deduce that for a
problem size large enough, the greater the number of processors,
the higher is the speedup. However, implementation of the Hopfield
algorithm on the HAP is communication bounded and the processor
utilization decreases as the number of processors increases. Also
note that, the parallel algorithm for the Hopfield network model has
similar time complexity, speedup, and efficiency expressions with a
single class matching iteration for large problem sizes. Therefore,
the performance of the parallel implementation of the Hopfield
network model is go{ferned by the class matching iterations.
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3.3 Simulation Results

The parallel Hopfield network algorithm, which is formulated
in Section 3.2.3, is implemented on a software simulator, called the
Blitzen simulator. This software package simulates a bit serial SIMD
mesh array processor, the Blitzen massively parallel processor
(BMPP), which is actually very similar to the HAP (see Appendix B
for the BMPP the Blitzen simulator).

The algorithms described in Section 3.1 are simulated on the
Blitzen simulator. The simulations provided data about the actual
running times of these algorithms since the simulator returns the
number of clock (processor) cycles of the BMPP at the end of a
simulation. One can easily convert the number of processor cycles
into seconds, or any units of time, if the clock cycle of a PE is
known. For example, if a simulation takes 10%105 cycles, and if the
processor speed is 20 Mhz, then the real running time on the BMPP
will be

10%103/20%10%= 0.05 seconds

The Blitzen simulator allows the utilization of any processor
array size ranging from 32 by 32 to P by P where P is a power of 2.
Therefore, the code, which simulates the Hopfield network model,
(see Appendix C for the code) is designed for the utilization any
processor array size. However, due to the limitations on the
computer (DEC's DS5500 with a 32 MB RAM), where the Blitzen
simulator was installed, only 32 by 32 (1K PEs) and 64 by 64 (4K
PEs) array sizes were simulated for this study.

It is thought that only two array sizes would not be enough
to show the effect of array size on the number of cycles in a
simulation study. Therefore, we searched for a method to obtain the
number of cycles without actually running the Blitzen simulator. We
have succeeded to derive three functions, called the cycle

estimation functions for the BMPP  (see Appendix D for these
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functions and their derivations), which return the number of
processor cycles it takes to simulate a Hopfield network model and

its weight matrix generation (WMG) and class matching (CM) parts
on the Blitzen simulator.

The cycle estimation functions for the BMPP were derived
after a careful examination of the code written for the actual
simulations. These functions have the problem size, number of
classes, number of iterations, number of PEs, and number of bits
used to represent a pixel, a weight matrix element, and a PE index
as their arguments. These functions return the same number of
cycles as the Blitzen simulator for the actual simulations of the
cases for 1K and 4K PEs.

The results obtained with the BMPP have to be compared
with the results of a sequential machine in order to evaluate the
performance of this parallel architecture. Therefore, we have
designed the imaginary sequential processor (ISP). Then, we have
derived cycle estimation functions for the ISP similar to the BMPP
cycle estimation functions (see Appendix E for the ISP, cycle
estimation functions for the ISP and their derivations). The ISP
cycle estimation functions return the number of processor cycles it
takes to simulate a Hopfield network model and its WMG and CM

parts on the ISP.

Section 3.3.1 gives the simulation results obtained by
running the Blitzen simulator and using the cycle estimation
functions for the BMPP, and Section 3.3.2 gives the number of
cycles it takes to simulate the Hopfield network models with

different problem sizes on the ISP.

3.3.1 Results for the BMPP

Simulation Results on the Blitzen Simulator: Each simulation had
two image classes. All the input images were distorted ten percent
with a uniformly distributed probability density function. All
simulations converged in 2 iterations. The problem size is defined

as the number of pixels of an image.
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(a) (b) (c) (d)

Fig. 3.7 Images of the simulation test with 1K PEs (each image has 1024
pixels). (a) Image class number 1. (b) Image class number 2. (c¢) Distorted
input image.(d) Output image obtained after convergence.

(b)

(c) (d)

Images of the simulation test with 4K PEs (each image has 4096

ig. 3.8 .
gilfels). (a) Image class number 1. (b) Image class number 2. (c¢) Distorted
input image. (d) Output image obtained after convergence.
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6 simulations with different problem sizes, ranging from 32
to 1024, were run for the 1K PEs case and, 7 simulations with
different problem sizes, ranging from 64 to 4096, were run for the
4K PEs case. Fig. 3.7 (a)&(b) display the two image classes, Fig. 3.3
(c) displays the distorted input image, and Fig. 3.3 (d) displays the
output of the neural network model after convergence. For this test,
1024 PEs were utilized. Fig. 3.8 (a)&(b) display the two image
classes, Fig. 3.8 (c) displays the distorted input image, and Fig. 3.8
(d) displays the output of the neural network model after
convergence. For this test, 4096 PEs were utilized.

Problem Size (N) WMG cycles CM cycles HOP cycles
32 16,580 8,724 34,028
64 20,290 14,451 49,192
128 28,994 35,679 100,352
256 45,260 117,231 286,000
512 117,170 436,719 990,608
1,024 330,610 1,707,136 3,744,882
(a) 1K PEs.
Problem Size (N) WMG cycles CM cycles HOP cycles
64 32,830 16,752 66,334
128 39,484 26,851 93,186
256 54,076 64,095 182,266
512 79,174 206,767 501,930
1,024 177,580 764,847 1,707,274
2,048 438,124 2,971,951 6,382,026
4006 1,287,916 11,765,260 24,818,436
(b) 4K PEs.

Table 3.1 The number of processor cycles for the simulations run as returned
by the Blitzen simulator.



64

TWMG TCM e HOP

log(Y) B o=

10+
5 4
0 ] } i i -
5 6 7 8 9 10
fog(N)
(a) 1K PEs.
- WMG T-CM =+ HOP
25 o
20 £ ‘—/—-‘ -/l

log(Y)
10+
5 .
0 i { } $ { 4
6 7 8 g 10 11 12
log(N)
(b) 4K PEs.

Fig. 3.9 The logarithm of the number of cycles (log(Y)) vs. the logarithm of
the problem size (log(N)) (graph of the data given in Tables 3.1 (a) and (b),
respectively).
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Tables 3.1 (a) and (b) show the number of processor cycles it
takes to simulate Hopfield network models of different problem
sizes on 1K and 4K PEs, respectively. A row of in each table
correspond to a single simulation. The first column, denoted by N,
gives the problem size for that simulation. The second column,
denoted as weight matrix generation (WMG) cycles, gives the
number of cycles it takes in generating the corresponding weight
matrix. The third column, denoted as class matching (CM) cycles,
gives the number of cycles it takes in a single class matching
iteration. Finally, the fourth column, denoted as Hopfield (HOP)
cycles, gives the number of cycles it takes in the overall simulation
of the Hopfield network model.

The data given in Tables 3.1 (a) and (b) are plotted in Fig. 3.9
(a) and (b), respectively, as the logarithm of the number of cycles,
log(Y), vs. the logarithm of the problem size, log(N).

Results by the Cycle Estimation Functions for the BMPP: Tables 3.2
(a) and (b) lists the values taken by the cycle estimation functions
for the BMPP in the cases of 16K and 64K PEs, respectively, for
various problem sizes under the Hopfield network model conditions
et at the beginning of Section 3.3.1. The format of Table 3.2 is the

same as the format of the Table 3.1.

Problem Size (N) WMG cycles CM cycles HOP cycles
128 65,592 32,748 131,088
256 78,134 51,411 180,956
512 104,502 119,967 344,436
1,024 162,374 381,999 926,372
2,048 298,662 1,405,743 3,110,148
4,096 653,414 5,451,951 11,557,316
8,192 1,691,622 21,539,250 44,770,122
16,384 5,082,854 85,693,360 176,469,574

(a) 16K PEs.
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Problem Size (N) WMG cycles CM cycles HOP cycles
256 131,634 64,680 260,994
512 155,952 100,291 356,534

1,024 205,872 230,751 667,374
2,048 310,848 728,623 1,768,094
4,096 541,344 2,672,175 5,885,694
8,192 1,084,512 10,350,510 21,785,532
16,384 2,489,552 40,872,110 84,243,772
32,768 6,644,448 162,575,000 331,794,448
65,536 20,193,500 648,619,700 1,317,433,000
(b) 64K PEs.

Table 3.2 The number of cycles found using the cycle estimation
functions for the BMPP.

The data given in Tables 3.2 (a) and (b) are plotted in Fig. 3.10 (a)
and (b), rtespectively, as the logarithm of the number of cycles,
log(Y), vs. the logarithm of the problem size, log(N).
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Fig. 3.10 The logarithm of the number of cycles (log(Y)) vs. the logarithm of
the problem size (log(N)) (graph of the data given in Tables 3.2 (a) and (b),
respectively).

3.3.2 Results for the ISP

Problem Size(N) |  WMG cycles CM cycles HOP cycles

32 16,604 37,056 90,176

64 60,800 147,840 356,480
128 236,288 590,592 1,417,472
256 031,328 2,360,832 5,652,992
512 3,697,664 9,440,256 22,578,186
1,024 14,735,360 37,589,980 90,245,120
2,048 58,830,850 151,007,200 360,845,300
4,096 235,102,200 604,004,400 1.443,111,000
8,192 939,966,500 2,415,968,000 5,771,903,000
16,384 3,758,981,000 9,663,775,000 23,086,530,000
32,768 15,034,160,000 38,654,900,000 92,343,960,000
65,536 60,133,080,000 154,619,200,000 369,371,500,000

Table 3.3 The number of cycles found using the cycle estimation
functions for the 1SP.
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Table 3.3 lists the values taken by the cycle estimation
functions for the ISP at various problem sizes under the Hopfield
network model conditions set in Section 3.3.1. The format of Table
3.3 is the same as the format of Table 3.1.

The data given in Table 3.3 is plotted in Fig. 3.11,
respectively, as the logarithm of the number of cycles, log(Y), vs.
the logarithm of the problem size, log(N).
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Fig. 3.11 The logarithm of the number of cycles (Iog(Y)).vs. the logarithm of
the problem size (log(N)) (graph of the data given in Table 3.3).



69

3.4 Analysis of Simulation Results and Discussions

The results given in Section 3.3 are analyzed for speedup (S)
and efficiency (P) which are described in Section 2.2.5.

3.4.1 Speedup Analysis

Tables 3.4 (a) and (b) give the speedups obtained using 1K
and 4K processing elements (PEs) and these tables are based on the
data obtained on the Blitzen simulator. Tables 3.4 (c¢) and (d) give
the speedups obtained using 4K and 16K PEs and are based on the
data obtained from the cycle estimation functions for the Blitzen
massively parallel processor (BMPP). These results reflect the
advantage of using the BMPP compared to the imaginary sequential
processor (ISP) (see Appendix E for the ISP). Each row in the tables
corresponds to a single simulation. The first column, denoted by N,
gives the problem size for that simulation. The second column,
denoted as weight matrix generation (WMG) speedup, gives the
speedup obtained in generating the corresponding weight matrix.
The third column, denoted as class matching (CM) speedup, gives
the speedup obtzined in a single class matching iteration. Finally,
the fourth column, denoted as Hopfield (HOP) speedup, displays the
speedup obtained in the overall simulation of the Hopfield network

model.
Problem Size (N) WMG Speedup CM Speedup HOP Speedup
32 1.00 : 4.24 2.65
64 2.99 10.23 7.24
128 8.14 16.55 14.12
256 20.57 20.13 19.76
512 31.55 21.61 22.79
1024 44 .57 22.01 24.09

(2) 1K PEs.
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Problem Size (N) WMG Speedup CM Speedup HOP Speedup
64 1.85 "8.82 5.37
128 5.98 21.99 15.21
256 17.22 36.83 31.01
512 46.70 45.65 44.98
1024 82.97 49.14 52.85
2048 134.27 50.81 56.54
4096 182.54 51.33 58.14
(b) 4X PEs.
Problem Size (N) WMG Speedup CM Speedup HOP Speedup
128 3.60 18.03 10.81
256 11.91 45.92 31.23
512 35.38 78.69 65.55
1024 90.74 98.40 97.41
2048 196.98 107.42 116.02
4086 359.80 110.78 124.86
8192 555.65 112.16 128.92
16384 739.54 112.77 130.82
(c) 16K PEs.
Problem Size (N) WMG Speedup CM Speedup HOP Speedup
256 7.07 36.50 21.65
512 23.71 94.12 63.32
1024 71.57 162.90 135.22
2048 189.25 207.25 204.08
4096 434.29 226.03 245.18
8192 866.71 233.41 264.94
16384 1503.86 236.43 274.04
32768 2262.66 237.76 278.31
65536 2977.84 238.38 280.37
(d) 64K PEs.

values obtained with different number of processing

Table 3.4 Speedup
a P elements (PEs).
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The speedup values given in Tables 3.4 (a) to (d) are
displayed in Fig. 3.12, 3.13, and 3.14 as the logarithm of the
speedup (log(S)), vs. the number of PEs (P) for the WMG, CM, and
HOP cases. The graphs of Fig. 3.15, 3.16, 3.17 display the same data
as log(S) vs. the logarithm of the problem size (log(N)) for the WMG,
CM, and HOP cases. The graphs in Fig. 3.18 (a) to (c) display the
cases, where the problem size (N) is equal to the number of PEs (P).

For the simulation of the WMG, based on the equation (3.23),
one expects the speedup (S) to increase and then to converge to a
certain value in the order of the problem size (N) as the number of
the PEs (P) is increased. In Fig. 3.12, given a certain N for the WMG,
as the number of PEs is increased, we observe that S increases until
a so called threshold value which will be denoted as P*. However,
we also observe a decrease in S after P*. Examining the data given
in Tables 3.4 (a) to (d), we find that P* is 4K for the problem size of
512 pixels and 16K for the problem size of 1024 pixels.

Problem size (N)
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Fig. 3.12 The logarithm of the speedup (log(S)) vs. the number of PEs (P) for
the WMG with different problem sizes (N).
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Problem size (N)
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Fig. 3.13 The logarithm of the speedup (log(S)) vs. the number of PEs (P) for
the CM with different problem sizes (N).
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Fig. 3.14 The logarithm of the speedup (log(S)) vs. .thc number of PEs (P) for
the HOP with different problem sizes (N).
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The decrease in S occurs only at problem sizes relatively
small compared to the number of PEs (P). This decrease is due to
the cycles generated by the operations like the transposition of a
block or indexing of PEs (see the code in Appendix C and cycle
estimation functions for the BMPP in Appendix D for these
operations and their contributions to the total number of cycles of a
simulation). Such operations, which we call overhead generating
operations, are required for the actual simulation of the Hopfield
network model on the BMPP. They do not appear in the time
complexity, speedup, or efficiency of any of the parallel algorithms
used in the simulations of this study, because by generating cycles
proportional to the square root of the number of PEs, they do not
affect the overall time complexity of any of the parallel algorithms
used in the simulations. However, for low N/P ratios, they may
contribute to the number of cycles used in a simulation as much as
the other major operations, and therefore, they can lower the
speedup obtained after a threshold value (P*). P* is roughly
-estimated as N2/2% for the simulation of the WMG on the BMPP
architecture.

In Fig. 3.13, given a certain N for the CM, as P is increased,
we observe that S increases until a threshold value (P*), and then S
decreases. This is expected since we also use the transposition
operation to simulate the CM on the BMPP. However, S continues to
increase until the N/P ratio gets very small and this can be
explained examining the equation (3.33), which states that, for a
given N, S increases in the order of the square root of the increase
in P. Examining the data given in Tables 3.4 (a) to (d), we roughly
estimate P* as N2/22 for the simulation of the CM on the BMPP
architecture and this is much greater than P* of the WMGQG.

In Fig. 3.14, given a certain N for the HOP, as P is increased,
we observe that S increases until a certain P*, and beyond P*, S
decreases. The P* of the HOP is estimated approximately as NZ2/22
based on the data given in Table 3.4 (a) to (d) for the simulation of
the HOP on the BMPP for the Hopfield network model conditions set
in Section 3.3.1. Therefore, P* of the HOP is smaller than the P* of

the WMG but nearly the same as the P* of the CM.
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The speedup values and graphs displayed in Tables 3.4 (a) to
(d) and Fig. 3.14 for the HOP are very similar to the speedup values
and graphs of the CM displayed in Tables 3.4 (a) to (d) and Fig. 3.13,
respectively This is also what we have found after analyzing the
parallel implementation of the HOP on the hypothetical array
processor (HAP) in Section 3.2.3.

Based on the equation (3.23), one expects, for the simulation
of the WMG with a certain number of PEs (P), that the speedup (S)
would increase and then converge to a certain value in the order of
P as the problem size (N) is increased. In Fig. 3.15, we observe that
S increases as N is increased. Fig. 3.15 is not be expected to
illustrate the convergence since it only displays the speedup values
of the cases at which N is less than or equal to P. One must have the
speedup values for the cases at which N is greater than P, as
equation (3.23) shows, to be able to display the convergence.
Therefore, we can not say anything about the convergence merely
‘based on Fig. 3.15. However, we observe in Fig. 3.12 that S increases
at decreasing rates as N is increased, and this is in accordance with
the equation (3.23).

Number of PEs (P)

E-1K TH4K -t 18K <-64K

i i ] 3 3
L]

] ]
¥ L

567891011 12 13 14 15 1686
log(N)

Fig. 3.15 The logarithm of the speedup (log(S)) vs. the logarithm of the
problem size (log(N)) for the WMG with different number of processing
elements (PEs).
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Fig. 3.16 The logarithm of the speedup (Iog(S)) vs. the logarithm of the
problem size (log(N)) for the CM with different number of processing
elements (PEs).

Number of PEs (P)
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Fig. 3.17 The logarithm of the speedup (log(S)) vs. the logarithm of .the
problem size (log(N)) for the HOP with different number of processing
elements (PEs).
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In Fig. 3.16, given a certain P for the CM, we observe that S
1ncreases and converges to a certain value as N is increased. This
can be estimated using the equation (3.33) since it states that the

speedup converges to a certain value in the order of the square root
of P.

In Fig. 3.17, given a certain P for the HOP, as N is increased,
we observe that S increases and converges to a certain value. The
speedup values and graphs (displayed in Tables 3.4 (a) to (d) and
Fig. 3.17 for the HOP are again very similar to the speedup values
and graphs of the CM displayed in Tables 3.4 (a) to (d) and Fig. 3.16,
respectively

In Fig. 3.18 (a) to (c), the problem size (N) is always held
equal to the number of PEs (P) as P is increased. In Fig. 3.18 (a), for
the WMG, we observe that S increases as P is increased, and based
on the data given in Table 3.4, we find that the increase in S is
approximately in the order of the increase in P and this observation
is in accordance with the equation (3.27).

In Fig. 3.18 (b), for the CM, we observe that S increases as P
is increased, and based on the data given in Table 3.4, we find that
the increase in S is approximately in the order of the increase in the
square root of P and this is what equation (3.37) states.

In Fig. 3.18 (c), we observe that S increases as P is increased,
and based on the data given in Table 3.4, we find that the increase
in S is approximately in the order of the increase in the square root
of P, and this is what equation (3.47) states.
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Fig. 3.18 The Ilogarithm of the speedup (log(S)) vs. the number of PEs (P). For

the above cases, the pioblem size (N) is equal to P.
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The S and P values plotted in the Fig. 3.18 (a) to (c) do not
give the results ideally same as the expressions (3.27), (3.37), and
(3.47), because the CM, WMG, and HOP simulations include
operations with different time complexities. The transposition,
indexing of PEs, and memory swapping operations to and from
VRAM cause the discrepancy between the expressions and
simulation results. These operations generate cycles in the order of
some functions of N andfor P other than the functions of N and P
which are dominant in cycle generation during a simulation. They
contribute, in terms of cycles, less to the time complexity of the
WMG, CM, or HOP compared to the operations which are dominant,.
Thus, as P, hence N, is increased, the increase in the number of
processor cycles of a parallel simulation is slightly higher than the
values expected. This causes the speedup (S) to increase slightly
more than expected.

3.4.2 Efficiency Analysis

Efficiency is defined as the ratio of the speedup (S) to
number of processors (P) utilized. It describes the fraction of time a
PE is useful over the whole simulation. Efficiency is ideally one.

Tables 3.5 (a), (b), (c), and (d) display the efficiencies
achieved using 1K, 4K, 16K, 64K processors, rtespectively. These
results reflect the advantage of using the BMPP compared to the
imaginary sequential processor (ISP) (see Appendix E for the ISP).
Each row of the tables correspond to a single simulation. The first
column, denoted by N, shows the problem size for that simulation.
The second column, denoted as weight matrix generation (WMG)
efficiency, gives the efficiency achieved in generating the
corresponding weight matrix. The third column, denoted as class
matching (CM) efficiency, gives the efficiency achieved in a single
class matching iteration. Finally, the fourth column, denoted as
Hopfield (HOP) efficiency, displays the efficiency achieved in the
overall simulation of the Hopfield network model.
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Since all the efficiency values given in Tables 3.5 (a) to (d)
are smaller than one, their logarithms are negative values To
prevent any confusions due to this, we use another efficiency
variable, denoted as normalized efficiency (E'), in the Figures 3.19,

3.20, 3.21, 3.22, 3.23, 3.24, and 3.25 (a) to (c). E' is defined as
follows,

E'=E*105, (3.49)

The efficiency values given in Tables 3.5 (a) to (d) are
displayed in Fig. 3.19, 3.20, and 3.21 as the logarithm of the
normalized efficiency (log(E')) vs. the number of PEs (P) for the
WMG, CM, and HOP cases. The graphs of Fig. 3.22, 3.23, and 3.24
display the same data as log(E'") vs. the logarithm of the problem
size (log(N)) for the WMG, CM, and HOP cases. The graphs in Fig.
3.25 (a) to (c) display the cases, where the problem size (N) is equal
to the number of PEs (P).

Problem Size (N) WMG M HOP
32 0.0009 0.0041 0.0025

64 0.0029 0.0099 0.0070

128 0.0079 0.0161 0.0137

256 0.0200 0.0196 0.0193

512 0.0308 0.0211 0.0222
1024 0.0435 0.0215 0.0235

(a) 1K PEs.
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Problem Size (N) WMG M HOP
64 0.0004 0.0021 0.0013
128 0.0014 0.0053 0.0037
256 0.0042 0.0089 0.0075
512 0.0110 0.0111 0.0109
1024 0.0202 0.0119 0.0129
2048 0.0327 0.0124 0.0138
4096 0.0445 0.0125 0.0141

(b) 4K PEs.
Problem Size (N) WMG M HOP
128 0.0002 0.0011 0.0006
256 0.0007 0.0028 0.0019
512 0.0021 0.0048 0.0040
1024 0.0055 0.0060 0.0059
2048 0.0120 0.0065 0.0070
4086 0.0219 0.0067 0.0076
8192 0.0339 0.0068 0.0078
16384 0.0451 0.0068 0.0079

(c) 16 K PEs.
Problem Size (N) WMG M HOP
256 0.0001 0.0005 0.0003
512 0.0003 0.0014 0.0009
1024 0.0010 0.0022 0.0020
2048 0.0028 0.0031 0.0031
4086 0.0066 0.0034 0.0037
8192 0.0132 0.0035 0.0040
16384 0.0229 0.0036 0.0041
32768 0.0345 0.0036 0.0042
65536 0.0454 0.0036 0.0042

(d) 64 K PEs

Table 3.5

Efficiencies for different problem sizes (N) with different number

of processing elements (P).
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For the WMG, in Fig. 3.19, we observe that the efficiency (P)
decreases for a given problem size (N) as the number of PEs (P) is
increased. This is in accordance with equation (3.24), which states

that, for a given problem size, E decreases in the order of the
increase in P.

For the CM, in Fig. 3.20, we observe that E decreases for a
given N as P is increased. Comparing Fig. 3.15 (b) with Fig. 3.19, we
also observe that the rate of decrease in E for the CM case is lower
than the rate of the decrease in E for the WMG case. Note that these
observations coincide with the equation (3.34), which states that for
any problem size, E is decreased in the order of the square root of
the increase in P.

For the HOP, in Fig. 3.21, we observe that E decreases, for a
given N, as P is increased. Comparing Fig. 3.21 with Fig. 3.19, it is
also observed that the rate of decrease in E for the HOP case, is close
to the rate of the decrease in E for the CM case. This is expected by
the equation (3.44) since equation (3.44) returns similar results
with equation (3.34) for the problem size over the number of PEs
ratios slighlty Iess than one or more.

Problem size (N)

=256 TF512 -+~ 1024

Logarithm of the normalized efficiency (log(E")) vs. the number of

Fig. 3.19 /
¢ PEs (P) for the WMG with different problem sizes (N).
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Fig. 3.20 Logarithm of the normalized efficiency (log(E')) vs. the number of

PEs (P) for the CM with different problem sizes (N).
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Fig. 3.21 Logarithm of the normalized efficiency (log(E")) vs. the number of

PEs (P) for the HOP with different problem sizes (N).
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Examining equation (3.24), one expects the efficiency (E) of
the WMG to increase and then converge to a certain value as the
problem size (N) is increased for a given number of PEs (P). In Fig.
3.22, it is observed that the efficiency (E) is increased as the
problem size (N) is increased. However, we can observe in Fig. 3.22
that E is increased at decreasing rates as N is increased, and this is
in accordance with the equation (3.24).

For the CM, in Fig. 3.23, it is observed that E increases as N is
increased and E converges to a certain value for a given P. This
observation agrees with the equation (3.34), which states that for a
given P, E is independent of N and E is in the order of the inverse of
the square root of the P.

Fig. 3.24 shows that efficiency (E) of the HOP increases and
converges to a certain value as N is increased.

Number of PEs (P)

{K  TF4K -+t 16K € 64K
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i
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5 5 7 8 9 10 11 12 13 14 15 16

fog(N)

Fig. 3.22 Logarithm of the normalized efficiency (log(E")) vs. the logarithm
of the problem size (log(N)) for the WMG with different number of PEs (P).



84

Number of PEs (P)

®-1K 4K -+-18K - 64K

12
1L g = 5
123/0/13/"?:‘?—:?_?—9 . .
log(E) 64 "
4+ |
oL
0 4

5 6 7 8 9 10 11 12 13 14 15 16
log(N)

Fig. 3.23 Logarithm of the normalized efficiency (log(E')) vs. the logarithm
of the problem size (log(N)) for the CM with different number of PEs (P).
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Fig. 3.24 Logarithm of the normalized efficiency (log(E")), vs. the logarithm
of the problem size (log(N)) for the HOP with different number of PEs (P).
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Fig. 3.25 Logarithm of the normalized efficiency (log(E')) vs. the number of
PEs (P) graphs for the case where the problem size (N) is equal to P.
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In Fig. 3.25 (a), it is observed for the WMG that efficiency
(E) remains approximately constant for a given problem size (N) at
any number of PEs (P) as equation (3.38) states.

In Fig. 3.25 (b), it is observed that for the CM that E
decreases as P is increased, and using tables 3.5 (a) to (d), we find
that this decrease is approximately in the order of the square root
of the increase in P,

In Fig. 3.25 (c), it is observed that for the HOP that E
decreases as P is increased, and using Tables 3.5 (a) to (d), we find
that this decrease is approximately in the order of the square root
of the increase in the number of PEs.
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IV CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

In this study, the main objective is to demonstrate the
advantage of using a massively parallel processor for the simulation
of the Hopfield network model. The simulation results are analyzed
for the speedup achieved by the Blitzen massively parallel
processor (BMPP) compared to an imaginary - sequential processor.
The processor utilization, which is measured as the efficiency of a
parallel algorithm, is also studied.

After analyzing the simulation results in Section 3.4, it is
observed that one achieves different speedup and efficiency values
in the simulation of the weight matrix generation (WMG) part of the
Hopfield algorithm, in the simulation of the class matching (CM)
part of the Hopfield algorithm, and in the overall simulation of the
Hopfield network model (HOP) on the BMPP architecture.

Comparison of the analytical derivations .and the simulation
results shows that the greater the "problem size over number of
processors" ratio, the closer the orders of the speedup and -
efficiency values to the analytical expressions derived for the WMG,
CM, and HOP simulations. The reasons are twofold for this

observation.

The first reason is that while analyzing a parallel algorithm
for time complexity, speedup, and efficiency, terms in the relatively
low orders are neglected. However, for "small problem size over
number of processors” ratios, these terms of relatively low orders
contribute to the time complexity of the algorithm as much as the

major terms.
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The second reason is the array processor architecture used in
the simulations of this study. The BMPP architecture requires the
transposition of a matrix at the beginning of both the CM and WMG
simulations. Transposition operation generates cycles only in the
order of the square root of the number of processors, and therefore,
contributes to the time complexity of these algorithms as much as

the major operations for small "problem size over number of
processors” ratios.

The speedup achieved in the (WMG) part of the parallel
implementation of the Hopfield algorithm is a function of the
problem size and the number of processors (P). For a given problem
size (N) the speedup for the WMG increases until a so called
threshold number of processors which is denoted as (P*). If more
than P* number of processors are used, then the speedup decreases.
The threshold number of processors, at which the speedup reaches
a maximum, depends on the array processor architecture. For the
discussed WMG implementation on the BMPP architecture, P* is
estimated roughly as NZ2/64.

For a given number of processors, the speedup for the WMG
increases as the problem size is increased. The speedup is expected
to converge to a certain value in the order of the number of
processors for -‘large "problem size over number of processors”
ratios. This generates a speedup in the order of the number of
processors for large "problem size over number of processors”
ratios. Therefore, with any size and number of processors, the
speedup gain for the WMG is at most in the order of the number of

processors,

The processor utilization is also considered as the efficiency
of a parallel algorithm. For a given problem size, the efficiency of
the parallel implementation of the WMG decreases as the number of

processors is increased. That is, if one increases the number of

processors in the BMPP for an increased speedup at a certain
problem size, hefshe will be utilizing the processors less for the
WMG. However, for a given number of processors, the efficiency
increases and expected to converge to a certain value in the order
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of one as the problem size is increased. Therefore, independent of
the problem size and number of processors (for large "problem size
over number of processors” ratios), the processors used in the WMG
simulation are utilized approximately in the order of one.

As the simulations have shown, for a given problem size (N),
the speedup of the CM increases until a threshold number of
processors (P*) and decreases as the number of processors is
increased beyond the P*. However, the speedup is only a function of
the number of processors ideally. This shows itself in two parts of
the simulation results. The first is that the estimated P*, which is
roughly NZ2/4, for the CM, is much higher than the estimated P* of
the WMG, which is roughly N2/64, for our implementation on the
BMPP architecture. And the second is that the increase in the
speedup of the CM is in the orders of the square root of the increase
in the number of processors even for the simulations done using a
number of processors close to the P* fora given problem size.

For a given number of processors, the speedup for the CM
increases, as the problem size is increased, and then converges to a
value in the order of the square root of the number of processors.
In consequence, for Iafge "problem size over number of processors"”
ratios, the speedup for the CM is in the order of the square root of
the number of processors. Therefore, at any problem size and
number of processors, the maximum speedup of the parallel
implementation of the CM on the BMPP is in the order of the square

root of the number of processors employed.

The efficiency of the CM decreases as the number of
processors is increased for a fixed problem size. For a fixed number
of processors, the efficiency increases as the problem size is
increased, and converges to a certain value in the order of one over
the square root of the number of processors. Therefore, for the
large ‘"problem size over number of processors” ratics, the
processors are utilized in the order of one over the square root of
the number of processors. Hence, if the number of processors are
increased with the aim of increased speedups, processor utilization

will be less.
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The overall speedup for the Hopfield algorithm increases as
the number of processors is increased for a given problem size (N)
until a threshold number of processors which is denoted as P* and
then decreases. P* is estimated roughly as NZ2/4 for the parallel
implementation of the Hopfield algorithm on the BMPP architecture.
For a fixed number of processors, the speedup for the Hopfield
algorithm increases and then converges to a certain value in the
order of the square root of the number of processors as the problem
size is increased. Therefore, for large "problem size over number of
processors” ratios, the increase in speedup is in the order of the
square root of the number of processors.

The overall efficiency of the Hopfield algorithm decreases as
the number of processors is increased for a fixed problem size. For a
fixed number of processors, the efficiency increases and converges
to a certain value in the order of one over the square root of the
number of processors as the problem size is increased. Therefore,
for large "problem size over number of processors" ratios, the
efficiency is decreased in the order of one over the square root of
the number of processors.

The speedup and efficiency of the parallel implementation of
the Hopfield algorithm is governed by the class matching iterations.
This is more significant in the Hopfield model simulations with large
problem sizes contrary to the sequential implementation of the
Hopfield algorithm in which both the weight matrix generation and
class matching iterations contribute the overall time complexity in
the orders of the square of the problem size.

We conclude that the speedup that can be achieved by
simulating the Hopfield neural network model on the BMPP is at
most in the order of the square root of the number of processors
employed. The processor utilization is decreased as MOTe Processors
are used in a simulation. For a fixed problem size, the maximum
speedup can be achieved only at a finite numvber qf Processors,
which is referred to as the threshold number of processors. If the
number of processors are more than the threshold numgber_ of
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processors, the speedup will be less than its maximum possible
value. :

4.2 Future Work

Since the performance of the parallel implementation of the
Hopfield algorithm on the BMPC is governed by the class matching
iterations, the parallel algorithm discussed in this study is
communication bounded. If another array processor topology other
than the mesh topology, e.g n-cube topology, is used, then the
communication cost of the parallel implementation of the Hopfield
algorithm can be decreased. Such a topology can accomplish the
computational part of the Hopfield algorithm at a computational
complexity in the same orders with the mesh topology and, at the
same time, can enable the interprocessor communications with a
communication complexity in the orders lower than the mesh

topology.

Another possibility can be the employment of systolic arrays
for the parallel implementation of the Hopfield algorithm. In this
case, however, a special systolic array architecture must be
designed for each computational step of the Hopfield algorithm like
the outer product, addition of matrices, resetting of the diagonal
elements, matrix vector multiplication, and comparison of the input

and output images.

Finally, as the advances in the VLSI technology flourish, it is
not unrealistic to wait for other computing structures which will
make the imitation of the human intelligence more feasible and cost

effective.



92

APPENDIX A

Hopfield's Artificial Neural Network Algorithm

Hopfield's artificial neural network algorithm can be divided
into two parts. The first part is called the weight matrix generation,
and the second part is called the class matching. The equations (A.1)
and (A.2) given below describes the algorithm. In these equations, C
is the number of image classes, N is the number of pixels of an
image, p is a pixel element of an image class.

C-1 . . -
pipj if b # ]
c=0
Wif{ fori,j=0to N-1 (A.1)
0 ifi=j
Xi(t+1) = f(wij.xi(t)) for i,j = 0 to N-1 (A.2)
1 ify=>0

where f (y) ={_1 ify <0 and xj(o) isinitialized by the input

image vector.

Each input to the Hopfield network is an image with N pixels.
The Hopfield network model matches a test imagfe, called the'input
image, to other images, called image classes which are previously
encoded in the weight matrix of the network.



93

In the first part, a weight matrix is generated by adding the
outer products of the image class vectors and resetting the diagonal
elements. The second part is a series of iterations continuing till
convergence. At the first step of an iteration, the input image vector
is multiplied with the weight matrix. Then, the resultant vector
passes through a nonlinear function, f,, to generate the output
image or a vector corresponding to an image. If the output image
is not the same as the input image, then the output image becomes
the new input image for the network, and the same steps of the
second part are repeated until no change is observed in the output
image.
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APPENDIX B
Blitzen Massively Parallel Processor

and
The Blitzen Simulator

Blitzen Massively Parallel Processor:

The Blitzen massively parallel processor (BMPP) is a
prototype machine built by a research grant from NASA. It was
designed in Microelectronics Center of North Carolina by a group of
scientists, and its architecture is heavily based on another
massively parallel computer, the Massively Parallel Processor
(MPP). The BMPP is actually aimed at processing images at high
speeds sent from satellites in space.

The BMPP is an SIMD array processor. It has a central
control unit (CCU) and thousands of simple processing units, called
processing elements (PEs). The CCU receives an instruction sent
from a host computer, decodes the instruction, and broadcasts it to
all other PEs. All of the PEs execute this broadcast instruction
simultaneously. The CCU can pack certain instructions into a single
decoded instruction. The data I/O between the PEs and the main
memory of a host computer is provided by a special random access
memory (RAM), called video RAM (VRAM).

The PEs can communicate with each other through an X-grid
interconnection network. An X-grid provides PE links in 8 (the
north, east, west, south, and four diagonals) directions. The PEs can
communicate in two modes called the grid and the wraparound
routing modes. In the grid mode the PEs on the input edge receive
zeroes. In the wraparound mode, edges are connected either to

form a cylinder or a torus shape.
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A PE is basically a simple arithmetic-logic unit. Each PE has 6
single bit registers (A, B, C, G, K, P), a variable length (max 32) shift
register, and a 1024 bits local memory unit. A PE can perform 16
different functions (not, and, or, xor, etc.) of logic. A PE can transfer
data between its registers, local memory and VRAM via its single
bit and 4-b data busses. Fig. B.I shows the functional units of a PE.

It is possible to mask a group of PEs by setting their mask
registers G and using masked instructions. The complement register
K can be used in conjunction with the G register to implement
simple if-then-else logic. The BMPP allows local addressing since a
10-b address broadcast to all PEs can be ORed with the most
significant 10 bits of the shift register. Another feature of the BMPP
is that the contents of the single bit data bus of all the PEs can be
ORed. This feature is useful in checking whether there is a true
condition at the end of an operation in any of the PEs at a given
time (for more information on the BMPP see [10] and [11]).

The Blitzen Simulator and Software Package:

The Blitzen simulator and software package (BSSP) is a
package that simulates the BMPP. It is written by Fred Heaton and
is available from the FTP server "mcnc.mcnc.org" under the
directory "/public/blitzen" by anonymous FTP.

The BSSP consists of some C library code which provides the
simulation of the BMPP, tutorials, and examples. The programming
language is actually C, and the programmer uses the C functions
provided by the library code for the simulation. However, these
functions simulate the assembly language specific to the BMPP. This
language enables the programmer to directly command the
processor but it is certainly hard to program at this stage since the
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assembly level instructions are bit serial. At this level, one can only
make logical operations and only the addition operation on the
numbers at the bit level. Therefore, the programmer must design
his own Blitzen library to accomplish complex tasks like adding,
subtracting, multiplying, dividing, or comparing numbers. Since the
PEs are bit serial, algorithms including floating point, or fixed point
operations with large bit lengths may not be efficient on the BMPP.
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APPENDIX C

Simulation Code

The code that simulates the Hopfield network model is in
two parts. The first part is a library, called mylib.c that keeps
Blitzen functions accomplishing basic tasks like addition,
subtraction, and multiplication between fixed point numbers,
bitwise logical operations on the numbers, or more complex tasks
like adding all the numbers at a row of the processor array. This
library uses the Blitzen assembly level instructions provided by the
Blitzen simulator. Most of this library was coded during this study
and some parts of it were taken from the examples provided by the
Blitzen simulator and software package. We have found the number
of cycles taken by each function and included this in the
explanation part of each function.

The other part, called hopfield.c, uses the library functions
provided by mylib.ckand the Blitzen simulator to simulate the
Hopfield network model.The Blitzen simulator and sofiware package
along with the files mentioned above are given in the

diskette.enclosed.
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APPENDIX D

Cycle Estimation Functions for the Blitzen Massively Parallel
Processor

Each "END" instruction in the Blitzen simulator's
programming language signals the end of a processor cycle. The
Blitzen simulator accomplishes the task of returning the number of
cycles passed, at the end of a simulation, by counting the number of
"END" instructions it encounters during the simulation. Therefore,
one can also find how many processor cycles are used at the end of
a simulation by counting the number of "END"s in the software
code.We have used this fact to obtain the cycle data on Blitzen
arrays greater than 64 by 64. An example code, which takes 2.n
cycles when executed, is shown in Fig. D.I.

for(i=0; i<n; i++){
MOV_MD(fromaddr+i);
MOV_DP;
END;

MOV_PD;
MOV_DM{toaddr+i);
END;

Fig. D.1 Sample Blitzen code.

The sample Blitzen code in Fig. D.1 copies a number stored at
n bits beginning at "fromaddr” to n bits beginning at "toaddr." Since
there are 2 "END" instructions in the "for" loop, and since the loop
tarns n times, this code takes 2.n cycles when executed. Note that,
since the PEs must begins and ends to execute the same instruction
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at the same times, there are no branching instructions in the Blitzen
simulator's language. Therefore, a PE executes all the instructions
which are sent to it. Thus, the number of cycles, at a given

simulation, is independent of the contents, i.e., pixel values, of the
input data.

Functions, fWMG,P, fCM,P, fHOP,P, are derived to estimate the
number of cycles in the simulation of the weight matrix generation
(WMG), a single class matching iteration (CM), and the complete
Hopfield algorithm (HOP), respectively. These functions were
derived after careful examination of the simulation code in
Appendix C. They returned the same results as the actual
simulations for 32 by 32 and 64 by 64 cases. Hence, they can be
used to estimate the total number of cycles for problems with
greater dimensions.

fwma,p(C.S,P,nw,np,nx) = C*[B2*(4*nw + 2*np + 3) +

2*B*P1/2+(5xnp +3) + B*6 + 2*P12+(5+np + 6*nx + 3) +

8*np + 5*nx + 8]+ B2+(C-1)*4*nw +

2*((PV2 - 1)*(4 + 2+dim)+nx - dim + 3) +

9*B*nw + 4*nx + 2 (B.1)

fopm p(S,P.nw,np,nx) = B2[13*nw + 9 + nw=(1 + 5*dim + 3*P1/2)] 4
B*(é + PY2+(3 4+ 5*np) + 8*nw) + 2*PV2+(3 + 6*nx + 5*np) +
23*np + 5 nx  + nw +11 | {D.2)

fHOP P(C,R,Sgpsnwrnp:nx) = fV\/MG,P(C’S’P'nW’np,nX) +

R*fCM,P(S,P,nW,np,n) (D.3)
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image (problem size), P: the number of PEs, B: NAP, C: the number
of classes, R: the number of iterations, dim: log(P), nw, np, nx: the
number of bits used to Tepresent a weight matrix element, an image
or a class pixel, and a PE index, respectively.

The functions given in (D.1) to (D.3) are complicated for a
term by term explanation. They are derived by analyzing the code
given in Appendix C step by step. Here, we will only explain briefly
the terms with significant contributions. One, who wonders about
the other terms, must examine the code given in Appendix D. For
specific terms in the below explanation, please consult to the
Appendices B and C, and the description of the hypothetical array
processor (HAP) in Section 2.2.1.

For (D.1), the most important terms are the ones including B2
because B is directly proportional to the problem size. There are
four operations that generate the B2term. These operations are
described in the order they are executed. The first operation is the
copying operation from VRAM prior to a multiplication and an
addition (computed as 4CBZ#nw), the second is the multiplication of
the values of two pixels (computed as 3CB2#np), the third is the
addition of a weight matrix element and the result of the previous
multiplication, which are of different bit lengths, (computed as
CB2(2*nW+np)), and the fourth is the copying operation to VRAM
(computed as 4(C-1)B2*nw) performed after an addition and a

multiplication.

For D.2, the most significant terms are, agaiq, the ones
including B2, The first operation, which generates cycles in the
order of B?,is the copying operation that fetches a block of the
matrix to be multiplied from the VRAM and it takes 4+B2nw cycles.
The second is the multiplication of a vector element with a weight
matrix element which takes B2?(2#*nw+4) cycles. The third is the
addition of all the numbers at a column (the result of a sub-inner
product), where each number is a PE of the column, and this takes
B2(1+5%dim+3P"2)*nw. The fourth is the addition of the result of
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the sub-inner product with the result of the previous sub-inner
product, and this takes I+3%nw cycles. The fifth is the swapping of
the last addition to VRAM which takes 4#nw cycles, and the sixth is
a routing operation which takes only 3 cycles to adjust mask
registers of the PEs.
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APPENDIX E

Cycle Estimation Functions for the Imaginary Sequential Processor

The imaginary sequential processor (ISP) has a single control
unit and a single processor. This single processor is the same as one
processing element (PE) of the Blitzen massively parallel processor
(BMPP) except that this single processor has a large local RAM.
Therefore, it takes the ISP the same number of cycles to perform
the basic mathematical and Iogical operations as a single PE of the
BMPP,

In the following, we describe the cycle estimation functions
that return how many cycles it takes for the ISP pass to simulate
the weight matrix generation (WMG), a single class matching
iteration (CM), and the complete Hopfield algorithm (HOP).

Assume that the images presented to the Hopfield algorithm
has N pixels; there are C classes, and the convergence is achieved in
R iterations; nw and np are the number of bits, which are used to
represent a weight matrix element and an image pixel, respectively

The ISP needs to perform CN2 multiplications, (C-1)N2
additions, and N reset operations ,i.e., to make an element zero, to
generate the weight matrix. The corresponding multiplication,
addition, and reset operations take 3+np, 2*nw+np, 2+nw+np cycles
on the BMPC, respectively. Adding these figures after multiplying
them with the number of times they are performed, the fWMG,S

function in (E.1) can be found.

The ISP needs to perform N2 multiplications and N(N-1)
additions to perform an N-tupled vector and an N by N matrix
multiplications. Each of the corresponding multiplication and
addition operations take 2Z#nw+4 and 3%nw cycles, respectively. To
complete a single class matching iteration, the ISP also needs to
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perform N applications of the nonlinear function to each element of
the N-tupled resultant vector, each application costing 1+np cycles,
and N comparisons to compare the elements of the N-tupled input
and output vectors, each comparison costing 2*np+1 cycles. Adding

all these together after multiplying them with the number of times
they are performed, one can obtain the function, fCM,S, of (E.2).

Adding the functions (E.1) and (E.2), one can find the
function, fHOP,S, in (E.3) which gives the total number of cycles,
which will be passed, for a whole simulation of the Hopfield
network. In (E.1) to (E.3), the following notation is used, N: the
problem size, C: the number of classes, R: the number of iterations,
W, np, nx: the number of bits used to represent a weight matrix
element, a class or an image pixel, and a PE index, respectively.

furnig, s(C.S:mw,mp,nx) = CN*Ginp) + (C-DN2(24nwinp) + (E.1)
N(2+nw+np)
fonm s(S.,nw,np,nx) = N2(2+nw+4) + N(N-1)3*nw + (E.2)

N.(1+np) + N(2*np+1)

fop,s (CR,S.nw,np,nx) = fyyy6 5(C.S,nw,np,nx) + (E.3)
R#fy 5(S,nw,np,nx)
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