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ABSTRACT 
 

FUNCTIONAL ENRICHMENT METHODOLOGY FOR ANALYZING 

OMICS DATA TO STUDY AETIOLOGY OF RARE DISEASES 
 

 Rare diseases (RDs) are a large and diverse group of disorders and defined by low 

prevalence, in other words, it is any disease that affects a small percentage of the 

population. According to OMIM and Orphanet, ~7000 different RDs have been estimated, 

but the number of phenotypes that remain to be defined could be considerably higher. The 

difficulty in obtaining the correct diagnosis is the most dramatic problem to be solved for 

the patients, about 30% still lack a diagnostic definition. The patients living with rare 

diseases visit an average of 7.3 physicians before receiving an accurate diagnosis and the 

mean length of time from symptom onset to accurate diagnosis is 4.8 years. Late diagnoses 

delay specific treatments and may have severe and life-threatening consequences. 

Molecular diagnosis is the most prominent way to facilitate earlier and accurate diagnosis, 

and hence an effective treatment for rare undiagnosed cases. In this dissertation project, a 

novel bioinformatics workflow is constructed for whole-exome/genome sequencing data 

analysis, variant prioritization and pathogenicity prediction from a cascade of different 

tools shading light into different aspects of the diagnostic process. The pathogenicity 

mechanisms of mutations are elucidated via molecular dynamics (MD) simulations. The 

newly developed pipeline is planned to be used for diagnosis of undiagnosed patients with 

a suspected genetic disorder, where other testing modalities have been inconclusive or non-

informative. The workflow was tested on several undiagnosed clinical cases with their 

family members and achieved high success rates by identifying the causative variant. For 

two of these families, the pathogenicity mechanisms of mutations were described via MD 

simulations, and these findings have been submitted to two different SCI journals and 

passed the editorial approval. The diagnosis of one of these families was Periventricular 

Nodular Heterotopia, while the other was Nail Dysplasia-10. Both of the diseases are 

extremely rare that is seen in one in a million cases. In conclusion, we developed a unique 

workflow for molecular diagnosis of rare undiagnosed diseases. Our pipeline contributes to 

the already existing knowledge through the combination of population frequency, 

pathogenicity prediction tools, gene intolerance scores, and MD simulations for the first 

time.  
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ÖZET 
 

ÖZGÜN BİR OMİK VERİ ANALİZ YÖNTEMİ İLE  

NADİR HASTALIKLARIN ETİYOLOJİSİNİN TAYİNİ 
 

 Nadir hastalıklar, toplumda görülme sıklığı son derece düşük olan ve literature 

girmiş yaklaşık 7000 hastalığı başlığı altında toplayan bir hastalık grubudur. Günümüzde, 

nadir hastalıklarla yaşayan hastaların yaklaşık %30'una tanı konulamamaktadır, tanı 

alabilen hastalar için ise semptom başlangıcından kesin tanıya kadar geçen ortalama süre 

4.8 yıldır ve hastalar kesin tanı almadan önce ortalama 7.3 doktoru ziyaret etmektedirler. 

Bu durum, hem genetik tanının diğer tanı yaklaşımları arasında daha erken 

önceliklendirilmesini hem de nadir hastalıklarla ilişkili yeni genlerin tanımlanmasını 

zorunlu kılmaktadır. Bu çalışmada, tüm ekzom/genom dizileme verisinin analizi, varyant 

önceliklendirme ve varyant patojenisite mekanizmasının açıklanması için farklı yöntemleri 

bir araya getirerek ve birkaç nadir hastalığı model olarak kullanarak, yeni bir analiz 

yöntemi geliştirdik. Bu analiz yöntemi tanı konmamış nadir hastalıklardan muzdarip  birey 

ya da bireyler içeren aileler üzerinde test edilmiş, vakalarda patojenik varyantı 

tanımlayarak ve hastalığı teşhis ederek yüksek bir başarı oranı elde edilmiştir. Bu 

ailelerden ikisinde moleküler dinamik simülasyon yöntemi ile mutasyonların patojenite 

mekanizmaları açıklanmış ve bu bulgular rapor edilmek üzere SCI kapsamındaki dergilere 

gönderilmiş, yayına kabul edilmiştir. Bu ailelerden birinin teşhisi Periventriküler Nodüler 

Heterotopi olurken diğerininki ise Tırnak Displazisi-10 olmuştur. Bu hastalıkların ikisi de 

milyonda bir görülen son derece nadir hastalıklar sınıfına girmektedirler. Genleri hastalık 

ile ilişkilendirmek karmaşık, çok aşamalı bir süreçtir. Günümüzün büyük veri analiz 

aktivitelerinin çoğuna benzemekle birlikte, klinik doğası gereği daha da 

karmaşıklaşmaktadır. Sonuç olarak, şüphelenilen genetik bozukluğu olan ancak tanı 

konamamış hastaların tanısında kullanılmak üzere bir yöntem geliştirdik. Üç ana 

basamaktan oluşan yöntemimiz; varyantların populasyonda görülme sıklığını, birçok 

patojenite tahmin aracının kombinasyonunu ve gen intoleransı puanlarını moleküler 

dinamik simülasyonları ile birleştirerek ve nadir hastalıklara uygulayarak halihazırda 

varolan literatüre büyük katkı sağlamaktadır.  
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1. INTRODUCTION 
 

1.1. Rare Diseases 

 

 Rare diseases (RDs) are a diverse group of diseases and defined on the basis of low 

prevalence, in other words, any disease which affects “small" percentage of a population 

can be added to the rare disease list (Boykott et al., 2013). However, the threshold for 

defining “small” changes from region to region. In the European population, RD is 

classified as a disease which affects not more than five individuals per 10,000. In the USA, 

RD is defined as “any disease or condition that affects less than 200,000 people in the 

United States”. In Japan, the definition changes to a condition that affects less than 50,000 

people in the country. About 80% of RDs have genetic origins and mostly still unknown. 

RDs also called orphan diseases because drug companies are not interested in adopting 

them to develop new treatments.  

 

 Patients with severe illnesses see physicians to be diagnosed and be provided the 

information needed. However, the life of people with rare diseases is not that easy, due to 

the low prevalence of their diseases and hence the lack of knowledge of their health care 

providers, they often face challenges. Among those challenges, the most persisting ones 

are delayed diagnosis and misdiagnosis. Despite the fact that early and accurate diagnosis 

is very critical, about 30% of patients still wait for diagnosis; moreover, the rest can get an 

accurate diagnosis quite late. The faster the diagnosis is made, the better for the patients; 

patients with a longer delay in diagnosis have a more severe disease in comparison to the 

time of initial diagnosis. Moreover, early diagnosis allows better management and 

facilitates primary preventive measures.  

 

 Unfortunately, in rare diseases, different conditions mostly produce overlapping 

symptoms, instead of characteristically manifesting themselves as repeating collections of 

stereotypical symptoms which together define a disease status. This is the main factor of 

why some patients remain undiagnosed despite undergoing an exhaustive workup. For 

instance, when patients see a clinician with symptoms of epilepsy and mental retardation, 

there are more than thirty rare diseases where these symptoms may be related. 

Periventricular Nodular Heterotopia, Pseudo-Torch Syndrome, Tranebjaerg Svejgaard 
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syndrome. It is very challenging to distinguish most rare diseases from each other, as 

symptoms can be very mild to distinguish one condition from another. 

 

 Even though RDs are individually infrequent, they are common in cumulative; 

there are approximately 7,000 described RDs. The majority (50-75%) affects children; they 

are collectively responsible for 35% of deaths in the first year of life, one-third of children 

born with a rare disease will not live to see their fifth birthday (Eurodis, 2005). The 

importance of new methods to help early and accurate diagnosis is extremely crucial, and 

awareness in this regard is increasing day by day. Molecular testing is the most prominent 

way to enable accurate diagnosis and potentially pave the way for appropriate treatment of 

rare undiagnosed diseases. It should be added to the routine testing approach for diagnosis 

of undiagnosed patients with a suspected genetic disorder. Furthermore, the addition of 

molecular diagnosis to the routine testing approaches is not enough, it must be prioritized 

earlier than other diagnostic approaches. 

 

 Turkey is a country where consanguineous marriage and having children at young 

ages are common. This cultural phenomenon raises the importance of rare disease studies 

in the country. In such a society where rare diseases are seen at higher percentages in 

comparison to the other societies, speed up and strengthen the diagnosis phase and the 

birth follow-up programs to prevent the increase in the number of patients is very critical 

for both the quality of life and the country's economy.  

 

 This section will give information about the two diseases which were diagnosed, in 

the scope of this thesis: 

 

1.1.1. Periventricular Nodular Heterotopia 

 

 Neuronal heterotopia (NH) is defined by the presence of normal neurons such as 

periventricular, subcortical and leptomeningeal glioneuronal in an inappropriate location 

due to primary failure of neuronal migration (Barkovich et al., 2001, 2005, 2012; Guerrini 

and Barba, 2010). Periventricular nodular heterotopia (PNH, OMIM: 300049) is the most 

widespread type of neuronal heterotopia and defined by groups of normal neurons line the 

ventricular walls. It is the most significant reason of drug-resistant epilepsy, characterized 
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mainly by seizures; some affected individuals have been reported with additional 

symptoms like mild intellectual disability, movement problems and dyslexia (Fallil et al., 

2015).  

 

 The genetic basis of PNH is X-linked dominant and was first found to be associated 

with F-actin-binding protein A (FLNA) gene in 1998 (Fox et al., 1998). In a study of PNH 

patients in 2001, FLNA mutations were detected in 83% of familial and 19% of sporadic 

cases (Sheen et al., 2001). This form of PNH is also associated with cardiac 

malformations, mainly in females (Bardon-Cancho et al., 2014; Parrini et al., 2006; 

Scherer et al., 2005). Other types of PNH have also been known; such as an autosomal 

recessive PNH due to mutations in the ARFGEF2 gene (OMIM 608097), PNH with 

chromosome 5p duplications (OMIM 608098) (Sheen et al., 2004).  

 

 As more than one gene can cause the same disease, defects in one gene can also 

lead to more than one disease. This can happen for a variety of reasons: The mutations may 

fall in different locations of a protein, they may differ in their magnitudes of effect on 

function or have different functional effects on a protein. Tissue specificity can also cause 

different diseases for mutations in different parts of a gene. Moreover, modifier genes may 

cause more severe, less severe phenotypes or novel phenotypes. And finally, different 

mutations on the protein-protein interaction interface region of a protein may exhibit 

different etiology depending on which region of interfaces they are present in. FLNA is an 

example of such a single gene that causes more than one disease since it causes both 

neurological and non-neurological diseases. It recruits F-actin into extended networks,  

binds many cellular components other than F-actin; such as transcription factors, 

membrane receptors, enzymes and signaling intermediates (Stossel et al., 2001; Feng and 

Walsh, 2004; Popowicz et al., 2006).  

 

 FLNA consists of 48 exons and encodes a large (280-kD) cytoplasmic actin-binding 

phosphoprotein that connects membrane receptors to the actin cytoskeleton (Carroll et al., 

1982; Chen et al., 1989; Patrosso et al., 1994). As we described in Figure 4.1, the protein is 

composed of three main functional domains: An actin-binding domain at the N-terminus, a 

rod domain with 23 repeats divided by two hinge regions and a dimerization and binding 

domain at the C-terminus (Noegel et al., 1989; Gorlin et al., 1990; Hock et al., 1990). 



 

 

 
4 

 The majority of individuals with PNH with FLNA mutations are female with no 

mental retardation and partial epilepsy-(Kamuro and Tenokuchi, 1993; Dobyns et al., 

1996, Poussaint et al., 2000). In contrast, liveborn males with FLNA mutations are very 

rare. The mutations are mostly lethal for males, as suggested by the common occurrence of 

miscarriages and premature male deaths of affected mothers and skewed sex-ratio in the 

families (Kamuro and Tenokuchi, 1993; Huttenlocher et al., 1994; Jardine et al., 1996; 

Moro et al., 2002). The fetal viability of male patients seems to depend on the severity of 

the FLNA mutation. Mild to moderate variants in surviving males; either missense, splice 

site or truncations near the C-terminus, mostly manifest milder clinical phenotypes in 

females and thus avoid detection of the disease. (Sheen et al., 2001; Moro et al., 2002). In 

other words, splicing or severe truncations presumed loss of function of the FLNA lead to 

male lethality and only partial-loss-of-function variants are found in surviving males. 

These observations in males point out the obligatory presence of FLNA during human 

embryonic development (Robertson, et al., 2005). 

 

 Since 1998, more than 60 mutations of FLNA have been reported in patients with 

PNH, and these mutations are distributed homogeneously on the protein (Robertson et al., 

2003; Hidalgo-Bravo et al., 2005; Stefanova et al., 2005). However, if we consider male 

patients with 14 different FLNA mutations the picture is quite different. Instead of a 

homogeneous distribution, mutations seen in viable males are grouped into the beginning 

or end of the protein (Figure 1.1). 
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Figure 1.1. The schematic representation of reported male FLNA mutations in the literature 

  

 The first living male with FLNA mutation reported the literature in 2001 (Sheen et 

al., 2001). Since that day, only 19 male patients with FLNA mutations have been 

published, including the two male cases of this study (Sheen et al., 2001; Parrini et al., 

2004; Gerard-Blanluet et al., 2006; Hehr et al., 2006; Kasper et al., 2012; Fergerot et al., 

2012; Oegema et al., 2013; Oda et al., 2015; Lange et al., 2015; Liu et al., 2017). The 

type/location of mutations and the age of onset of male patients can be found in Table 1.1. 
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Table 1.1. FLNA mutations reported in viable males 

 
Number 

of 
patients 

AO Amino 
acid Alteration 

Nucleotide 
Alteration 

Type of 
Mutation 

Exon Parental 
Consanguinity 

Ref 

1 - Truncation at 2305aa C to G at 
6915bp 

Nonsense 40 Sporadic Sheen et 
al., 2001 

1 - Leu to Phe at 656aa C to T at 
1966bp 

Missense 12 Sporadic Sheen et 
al., 2001 

1 15 Protein truncation at 
574aa 

A>G 
substitution 

 

Splice Site intron 
11  

splice 
site 

Sporadic Parrini et 
al., 2004 

Dizygoti
c twin 
boys 

At birth Pro2641Leu 7922C>T Missense 48 Familial Gerard-
Blanluet et 
al., 2006 

1 At birth G640G, premature 
stop codon at 

681aa 

1923C>T Splice Site 12 Not known Hehr et 
al., 2006 

        1 15 abolish correct 
splicing of intron 35 

5686G> A Splice site 36 Familial Kasper et 
al., 2012 

1 _ Ile119Asn 356T > A Missense 2 Familial Fergelot et 
al, 2012 

1 20 Ala39Glu 116C > A Missense 2 Familial Fergelot et 
al, 2012 

3 At birth *2648Serext*100 7941_7942delCT No-stop 
Frameshift 

       48 Familial Oegema et 
al., 2013 

2 At birth Glu2142AlafsTer22 6425_6428delA
GAG 

Frameshift        40 Familial Oda et al., 
2015 

1  Ser2352* 7055_7070delC
TTTTGCAGTC

AGCCT 

Nonsense 42 Sporadic Lange et 
al., 2015 

2 27 
5 

Pro2554Leu 
Gly475* 

7661C>T 
1425C>A 

Missense 
Nonsense 

46 
10 

Sporadic 
Sporadic 

Liu et al., 
2017 

2 11 
16 

R484Q G1451A Missense 10 Familial This study 

 

1.1.2. Nail disorder, nonsyndromic congenital, 10 

 

 Nails grow over the nail bed throughout life as a result of matrix epithelial cell 

differentiation. The development of human nails starts around the ninth week of gestation 

and is completed during the fifth month of pregnancy (Baran et al., 2012). Human 

hereditary nail disorders are divided into 10 different subtypes (Nail disorder, 

nonsyndromic congenital 1-10; NCDC 1-10; OMIM 161050, 149300, 151600, 206800, 

164800, 107000, 605779, 607523, 614149, 614157). They constitute a rare and 

heterogeneous group of ectodermal dysplasia and occur as isolated and/or syndromic 

ectodermal conditions, where other ectodermal appendages are also involved. Nail 

dysplasia can also be associated with skeletal dysplasia phenotypes. Five genes have been 

found to be associated thus far; namely HPGD, RSPO4, PLCD1, COL7A1 and FZD6 

(Khan et al., 2015). Even though considerable advances were achieved in the diagnosis and 
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management of nail disorders, the knowledge of the molecular pathways of nail growth 

and morphogenesis is still quite limited.  

 

 In 2011, Fröjmark et al. were the first to identify the mutations in FZD6 gene as a 

cause of autosomal recessive nail dysplasia (NCDC10, OMIM 614157). They reported two 

consanguineous Pakistani families with 11 members affected by isolated nail dysplasia 

(Khan et al., 2015; Fröjmark et al., 2011). According to the study of Fröjmark et al., the 

homozygous FZD6 mutations (p.Glu584* and p.Arg511Cys) result in dysfunctional FZD6 

and the loss of FZD6 followed by misregulation of several FZD6-mediated pathways 

needed for the formation and regeneration of nails in a proper manner. The action of FZD6 

protein at the molecular level was studied by Cui et al. with the study of claw development 

in mice, and their findings pointed out a regulatory role for FZD6-mediated Wnt signaling 

in the differentiation process of claw/nail formation (Cui et al., 2013). To date, seven 

different mutations have been reported in eleven families, including two missense, two 

nonsense, two frameshifts and one compound heterozygous mutation (Table 1.2).  Five of 

these seven mutations are clustered in the C-terminus which suggests that the C-terminal 

region could be a mutation hotspot. The discovered variants include: amino acid 

substitutions in highly conserved residues and nonsense/frameshift variants leading to 

signaling disruption in the C-terminal cytoplasmic domain (Fröjmark et al., 2011; Naz et 

al., 2012; Raza et al., 2013; Wilson et al., 2013; Kasparis et al., 2016; Mohammadi-asl et 

al., 2017). 
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Table 1.2. FZD6 mutations that are found to be associated with NCDC10 

 

Amino acid 

Change 

Mutation 

Type 

Mode of 

Inheritance 
Location Ref 

Gly422Asp Missense Homozygous 
6th transmembrane 

domain 
Raza et al., 2012 

Arg509Ter Nonsense Homozygous C-terminus Wilson et al., 2013  

Arg511Cys Missense Homozygous C-terminus 
Fröjmark et al., 

2011 

Gly559Aspfs*16 Frameshift Homozygous C-terminus 
Kasparis et al., 

2016 

Glu584Ter Nonsense Homozygous C-terminus 
Fröjmark et al., 

2011 

Ser620Cysfs*75 Frameshift Homozygous C-terminus 
Mohammadi-asl et 

al., 2017 

Arg96Cys/ 

Glu438Lys 
Missense 

Compound 

Heterozygous 

N-terminus/3rd 

extracellular loop 
Wilson et al., 2013 

 

 As we described in Figure 1.2, FZD6 is composed of seven transmembrane 

domains (amino acids 202–222, 234–254, 284–305, 325–345, 371–391, 417–437, 474–

494) and seven topological domains (amino acids 19–201, 223–233, 255–284, 306–324, 

346–370, 392–416, 438–473) (Figure 1.2). The crystal structure of FZD6 has not yet been 

deposited to Protein Data Bank (PDB). It belongs to the frizzled family and, in general, 

frizzled family proteins expose their N-terminus on the extracellular side that contains a 

cysteine-rich domain (CRD) that binds the receptor’s ligands (Yang-Snyder et al., 1996; 

Nusse et al., 2003). All known interaction partners bind the extracellular cysteine-rich 

domains (CRD) of FZD proteins (Rodriguez et al., 2005; Smallwood et al., 2007; Bafico et 

al., 1999; Nam et al., 2006; Mercurio et al., 2004; Dann et al., 2001). Even though this 

domain is necessary for ligand binding, it is not known to be necessary for signal 

transduction (Povelones et al., 2005). Mutagenesis studies have shown that there are 

several residues in the intracellular loops and the C-terminus that are very critical for 

signaling (Cong et al., 2004). 
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Figure 1.2. The schematic representation of reported FZD6 mutations in the literature 

 

1.2. Whole Exome/Genome Sequencing 

 

 Mendelian diseases are described based on the assumption that one variant is 

responsible for the disease of an individual, and the pattern of inheritance is consistent with 

the transfer of alleles at a single locus. The identification of the genetic defects in 

Mendelian diseases traditionally conducted by focusing on the regions that are inherited 

with the disease and linkage analysis is a predominant statistical method used for more 

than seventy years (Morton et al., 1955; Ott et al., 1999; Teare et al., 2005). Specifically, 

parametric linkage analysis is used for traits with a Mendelian form of inheritance. In this 

technique, polymorphic markers are utilized to follow the co-segregation of variations with 

the phenotype in the family (Teare et al., 2005). The LOD score, developed by Newton 

Morton, compares the probability of the two loci are indeed linked, to the probability of 
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observing this by chance. Positive LOD (logarithm (base 10) of odds) scores approve the 

existence of linkage, and negative LOD scores indicate that linkage is less probable. This 

technique can quantify the evidence of the involvement of variants in disease 

predisposition, but it cannot find the causative gene. Identifying the real causative variants 

responsible for linkage signals has challenges due to the difficulties in sequencing large 

regions highlighted by linkage peaks. Moreover, errors on the level of inbreeding have an 

enormous influence on the LOD scores (Miano et al., 2000). Some prefer to arbitrarily put 

first or second cousin consanguinity into the pedigrees if there is evidence for inbreeding 

without known details which makes the absolute value of the LOD score meaningless 

(Hildebrandt et al., 2009). 

 

 Homozygosity mapping ensures a rapid mapping of autosomal recessively inherited 

genes in consanguineous families via the identification of chromosomal regions with 

homozygous segments (ROH). ROH defines the genomic regions that occur if two copies 

of an ancestral haplotype came together in an individual. In consanguineous families, the 

same genomic segments are inherited from both parents, hence the members of these 

families have much more homozygous stretches on their genomes. This situation leads to a 

higher prevalence of recessive diseases in these families; homozygosity mapping is based 

on this observation. To date, ROH was found to be associated with an increased risk of 

schizophrenia (Lencz et al., 2007; Keller et al., 2012), Alzheimer’s disease (Nalls et al., 

2009; Ghani et al., 2015), autism (Chahrour et al., 2012; Lin et al., 2013), intellectual 

disabilities (Gamsiz et al., 2013), lung (Orloff et al., 2012), breast (Thomsen et al., 2015) 

and thyroid cancer (Thomsen et al., 2016). Moreover, ROH was also found to have an 

effect on inbreeding depression, bone mineral density (Yang et al., 2015), height (Joshi et 

al., 2015), cognitive ability. However, no effect of ROH was seen on several complex 

disorders, namely bipolar disorder, colorectal cancer, breast cancer, prostate cancer, and 

childhood acute lymphoblastic leukemia.  

 

 Even though the alternatives of traditional linkage analysis haven’t become the 

common choice for homozygosity mappings, several methods have been developed. There 

are two main algorithms to identify ROH; sliding-window algorithms and Hidden-Markow 

Model (HMM) algorithms. Sliding-window algorithms scan each chromosome by moving 

a fixed size window throughout the genome in search of stretches of sequential 
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homozygous SNPs. This approach is applied in PLINK (Purcell et al., 2007), 

Homozygosity-Mapper (Seelow and Schuelke, 2012) and HomSI (Gormez et al., 2014). 

HMM algorithms account for background levels of linkage disequilibrium, like the one 

implemented in H3M2 (Magi et al., 2014) and BCFtools/RoH (Narasimhan et al., 2016).  

As a result of new technical improvements, direct identification of the causative variants 

from WES/WGS data of affected individuals plus their healthy family members and 

omitting the predominant linkage step has apparently gained popularity. Moreover, it is 

also preferred to combine WES/WGS with linkage studies/homozygosity mapping to 

identify causal variants, since some rare variants are quite common in the general 

population. But, sample size with sufficient statistical power is very significant for the 

success of the linkage analysis. For instance, when only one affected offspring is present in 

a sibship, statistical power reduces dramatically (Wong et al., 1986). Hence, this 

combination is often successful for large families due to the noticeable decrease in 

statistical significance of the peaks for the trio analysis. 

 

 More than hundreds of publications about application of WES on rare diseases, 

~25% report mutations from known disease-causing genes that match the symptoms of the 

patient being investigated and one can surely predict that the number of unpublished 

studies is much higher. As the number of known disease-causing genes grows, de facto 

conversion of WES from a research tool to a diagnostic tool becomes inevitable (Bamshad 

et al., 2011). Till now, most of the medical treatments were designed according to the one-

size-fits-all approach; hence treatments are successful for some but not for others. 

Precision Medicine takes individual differences in patients’ genes into account. Ivacaftor 

which was developed for cystic fibrosis patients can be an excellent example for this. 

Cystic fibrosis is an autosomal recessive disease that affects almost 70.000 people around 

the world and found to be associated with the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene. Genetic understanding of cystic fibrosis results in the 

categorization of the disease into subgroups. The channel arrives the cell surface, but 

channel activity is not sufficient in some subgroups, the channel stays in the cell cytoplasm 

in another subgroup. The Ivacaftor was designed to improve the opening time of activated 

CFTR channels at the cell surface. So, for patients whose channels do not reach to the cell 

surface, it might only have some minimal effect. In patients with adequately transported 
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channels effect could be dramatic, this is the situation for 5% of patients with the G551D 

mutation (Ramsey et al., 2011; Brodlie et al., 2015).  

 

 Since the first human genome was sequenced in 2001 at the cost of around US$3 

billion, the price of sequencing an entire genome remained expensive to be used for routine 

medical practice. However, NGS approaches that entered the research setting in 2008 

resulted with a significant decline in sequencing prices. Now, genomes can be sequenced 

for almost US$500. As a result, newly developed genomic applications pave the way not 

only for precision medicine but also for diagnosis of rare disorders, where conventional 

techniques have failed.  

 

 One of the obstacles for understanding the potential of WES in personalized 

medicine is the bioinformatics analysis which mostly requires a strong computer power. 

Analysis of WES data with publicly or commercially available algorithms requires a 

proper computational infrastructure. As a second, many publicly available algorithms focus 

on a single aspect and do not provide a workflow from start to finish which is required for 

the construction of a bioinformatics pipeline. Thirdly, there are no gold standards for 

translating WES into clinical knowledge, since different diseases may need different 

strategies for the data analysis.  

 

 Multiple methods have been developed to analyze data with respect to the different 

kinds of variants. For calling single nucleotide polymorphisms (SNVs) and short indels, 

software including the Genome Analysis Toolkit (GATK) (McKenna et al., 2010), 

FreeBayes (Garrison et al., 2012) and SAMtools (Li et al., 2009) can be applied in 

combination with a short-read aligner like Burrows-Wheeler Alignment Tool (BWA) (Li& 

Durbin, 2009) or Bowtie2 (Langmead et al., 2009). It has been shown for WES, that a 

combination of different variant callers and short-read aligners outperforms any single 

method. Sensitivity can be substantially increased with neglectable impact and specificity 

(Bao et al, 2014). A combination of tools is also required to target the different types of 

variants. An efficient analysis strategy would, on the one hand, need to integrate multiple 

methods for each type of variants, and on the other hand, it would also need to integrate 

results for the different types of variants into a single comprehensive solution. 
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 Once the variants are obtained, there are a variety of tools that can be used for the 

annotation step; such as VarAFT, VAAST, TransVar, MAGI, SNPnexus, VarMatch and 

Annovar. Among them, Annovar is preferred more than the others since it is easily updated 

if new information is available for the annotation and has several functionalities that are 

very beneficial for the ones working on rare diseases. It is a command-line Perl program 

and can be used where standard Perl modules are installed. It annotates the functional 

effects of variants and can compare the frequency of variants in known variation databases, 

such as dbSNP, the 1000 Genomes Project.  

 

 In the present, our ability to sequence the genome is much greater than our ability 

to interpret an enormous number of resulting variants. Not only methods used for 

alignment, variant calling, and filtering can considerably influence the variant detection; 

but also differentiating disease-causing variants from an enormous number of candidate 

variants is a multidimensional task. A considerable proportion of cases still remain 

undiagnosed even after WES was performed. 

 

 In the previous paragraphs of this part of the introduction, the significance of the 

tools used for bioinformatic analysis was pointed out. Not only the tools used to obtain the 

variants are still changing from the lab to the lab, but also the variant prioritization strategy 

is also quite unique to each lab itself.  

 

 Variant interpretation means the determination of which of the potentially 

functional variants found in patients’ genome actually contributes to their disease. 

Assumptions such as, if a variant creates a premature stop codon, it is more damaging than 

a missense change or if a variant creates a non-synonymous change, it is more damaging 

than a synonymous change are mostly ill-advised. A human carries lots of loss of function 

alleles in heterozygous and homozygous states on average. A stop codon in a less 

conserved gene could be more tolerated than a missense variant in a very conserved gene. 

Moreover, synonymous variations are associated with human diseases by affecting splicing 

(Sheikh et al., 2013) mRNA stability (Nackley et al., 2006) and altering protein 

conformation (Kimchi-Sarfaty et al., 2007).  One must also keep in mind that a variant can 

be damaging but not disease-causing, so candidate variants filtered according to population 

frequency and classified by pathogenicity and intolerance tools must be evaluated very 
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carefully. Pathogenicity scores should never be considered as a hundred percent correct. 

They are useful start¬ing points, but they are only starting points, the strengths and 

weaknesses of those tools vary. In addition, over-filtering (excluding causative variants) 

and under-filtering (ending up with an enormous number of variants) of variants must be 

avoided. As a result of its complexity and impact on patient diagnosis, the prioritization 

process is based largely on expert interpretations and literature review.  

 

 The databases and tools that have been used in this dissertation project are listed 

below: 

 

1.2.1. Exome Aggregation Consortium (ExAC) Database 

  

 Exome data for 60,706 individuals of various ancestries were assembled by the 

Exome Aggregation Consortium. 10,195,872 candidate variants  were identified with a 

subset of 7,404,909 high-quality variants, including 317,381 insertions or deletions 

(indels). This data was used to create objective metrics of pathogenicity and to identify 

which genes are subjected to strong selection against several mutations (Karczewski et al., 

2016). 

 

 They deviation of variations from expectation is quantified with a Z score 

(Samocha et al., 2014), it is zero for synonymous variants, but significantly shifted to 

higher values for missense and truncating variants. They also developed an expectation 

maximization algorithm by using the observed and expected truncating variant counts 

within each gene and separated each gene as a loss-of-function (LoF) intolerant (pLI) (pLI 

≥ 0.9) or LoF tolerant (pLI ≤ 0.1) (Lek et al., 2016). 

 

 Using data from 60,706 exomes in Exome Aggregation Consortium, Cassa et al. 

also analyzed the genome-wide distribution of protein-truncating variants and developed a 

scoring system (shet) to predict the mode of inheritance probabilities and fitness loss due to 

the truncation mutations for each gene. They have also predicted the phenotypic severity, 

the age of onset, penetrance in a set of high-confidence haploinsufficient disease-

associated genes (Cassa et al., 2017).  

 



 

 

 
15 

1.2.2. Genome Aggregation Database (GnomAD)  

 

 GnomAD is the next release version of ExAC and contains both 123,136 whole 

exome and 15,496 genome sequencing data from unrelated individuals. Individuals who 

were affected by severe pediatric diseases and their first-degree relatives were removed.  

 

1.2.3. Genic Intolerance  

 

 Petrovski et al. developed a system to score gene intolerance, the system measures 

if genes have relatively less or more functional variation than expected based on neutral 

variations on the gene; using the data from the NHLBI Exome Sequencing Project. They 

support their system with the fact that the genes responsible for Mendelian diseases are less 

tolerant of genetic variation in comparison to the genes that associate with no disease. 

Basically, the lower the residual variation intolerance score as percentiles (RVIS%), the 

higher the intolerance of the gene. 

 

 The defined threshold to divide common and rare variants is r=0.1% MAF in the 

combined ESP6500 population. Y is the missense and truncating SNVs with MAF > r and 

X is the total number of protein-coding variants observed in a gene. They then regress Y 

on X and take the studentized residual as RVIS (Petrovski et al., 2013). 

 

1.2.4. PrimatAI 

 

 PrimatAI trained deep neural network algorithm by using hundreds of thousands of 

common variants from the sequencing of six non-human primate species and identified 

pathogenic mutations in rare disease patients (Sundaram et al., 2018). 

 

 Even though assaying common variation across diverse human populations is an 

effective strategy for detecting benign variants (Lek et al., 2016), the total amount of 

common variation in humans is limited due to bottleneck events which a large fraction of 

ancestral diversity was lost (Mallick et al., 2016). Population sizes of databases are still not 

large enough, hence from out of more than 70 million potentially protein altering missense 
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substitutions in the reference genome, only around 1/1,000 are present at greater than 0.1% 

MAF (Lek et al., 2016, Liu et al., 2011). 

 Outside of modern human populations, chimpanzees comprise the next closest 

extant species, since we share 99.4% amino acid sequence identity (Chimpanzee 

Sequencing Analysis Consortium, 2005). If polymorphisms that are identical-by-state 

similarly affect fitness in the two species, the presence of a variant at high allele 

frequencies in chimpanzee populations should indicate benign consequence in human. 

 

 PrimateAI threshold of > 0.8 is for likely pathogenic classification, < 0.6 is for 

likely benign, and 0.6–0.8 is as intermediate in genes with dominant modes of inheritance, 

and a threshold of > 0.7 is for likely pathogenic and < 0.5 for likely benign in genes with 

recessive modes of inheritance (Sundaram et al., 2018). 

 

1.2.5. Mouse Genome Informatics (MGI)  

 

 Model organisms are vital to reveal the mechanisms of human diseases. MGI is the 

international database resource to investigate the genetic basis of human diseases by 

translating information from mouse phenotypes and disease models. It provides 

phenotypes for over 50,000 mutant alleles in mice and provides experimental model 

descriptions for over 1500 human diseases. Curated data from scientific publications are 

integrated with those from high-throughput phenotyping and gene expression centers. Data 

are standardized using defined, hierarchical vocabularies such as the Mammalian 

Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies 

(GO) (Law et al., 2018).  

 

1.2.6. Combined Annotation–Dependent Depletion (CADD) 

 

 CADD, REVEL, and M-CAP are designed to solve the same problem, and all three 

have different strengths and weaknesses. Neutral rare variants are more difficult to be 

distinguishable from disease-causing variants, and most tools tend to classify them as 

damaging (Li et al., 2013; Hodgkinson et al., 2013). Many of the tools predict the 

pathogenicity of missense variants based on the conservation of amino acid or nucleotide, 
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biochemistry of the amino acid substitutions and population frequency (Kumar et al., 2009; 

Li et al., 2009; Chun et al., 2009; Adzhubei et al., 2010; Schwarz et al., 2010; Reva et al., 

2011; Choi et al., 2012; Shihab et al., 2013; Carter et al., 2013; Kircher et al., 2014; Quang 

et al., 2015; Niroula et al., 2015). However, individual tools often disagree since different 

predictive features are taken into consideration and combining the results of multiple 

predictors can improve performance (Gonzalez-Perez et al., 2011; Crockett et al., 2012; 

Lopes et al., 2012; Olatubosun et al., 2012; Li et al., 2012; Li et al., 2013; Frousios et al., 

2013; Capriotti et al., 2013; Bendl et al., 2014; Dong et al., 2015).  

 

 The American College of Medical Genetics (ACMG) suggests that any variant with 

an allele frequency higher than 5% in control population can be classified as benign 

(Richards et al., 2015), and it is usual to lower the threshold to reduce the number of 

variants to a manageable number (Taylor et al., 2015; Lek et al., 2016). Even after such 

filtering, between 200-500 missense and truncating variants that are not present in any 

database of control individuals are remained (Taylor et al., 2015; Lek et al., 2016; 1000 

Genomes Project Consortium, 2011). So, pathogenicity prediction tools that can 

differentiate between neutral and pathogenic rare variants are urgent needs. 

 

 CADD integrates information from several annotations of genetic variation into one 

score by contrasting variants that survived natural selection with simulated mutations 

(Paten et al., 2008). For mutation simulation, they used an empirical model of sequence 

evolution with CpG dinucleotide-specific rates. To generate annotations, they used the 

Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2010), data from the ENCODE 

Project (ENCODE Project Consortium, 2012) and information from UCSC Genome 

Browser tracks (Meyer et al., 2013). Annotations include conservation metrics such as 

GERP (Cooper et al., 2005), phastCons (Siepel et al., 2005) and phyloP (Pollard et al., 

2010); regulatory information (ENCODE Project Consortium, 2012) such as genomic 

regions of DNase I hypersensitivity (Boyle et al., 2008) and transcription factor binding 

(Johnson et al., 2007); transcript information such as distance to exon-intron boundaries or 

expression levels in commonly studied cell lines (ENCODE Project Consortium, 2012); 

and protein-level scores such as those generated with Grantham (Grantham et al., 1974), 

SIFT (Ng et al., 2003) and PolyPhen (Adzhubei et al., 2010). C scores are highest for 
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potential nonsense variants and then for missense and canonical splice-site variants, 

moreover intergenic variants has with the lowest C scores.  

 

1.2.7. Rare Exome Variant Ensemble Learner (REVEL) 

 

 Many of the meta-predictors performed superior performance in comparison to 

different algorithms for the prediction of benign or pathogenic variants (Katsonis et al., 

2014). REVEL and M-CAP are two well-known meta-predictors; they collect multiple 

tools into a single prediction output. 

 

 To develop REVEL scores, the team trained a random forest on the set of variants 

from the Human Gene Mutation Database (HGMD), Exome Sequencing Project (ESP) 

(Tennessen et al., 2012) and Atherosclerosis Risk in Communities (ARIC) study (The 

ARIC investigators, 1989) European-American and African-American populations, the 

1000 Genomes Project (KGP) (Abecasis et al., 2012) European, Yoruban, and Asian 

populations by using the R ‘‘randomForest’’ package (Liaw et al., 2002) with 1,000 binary 

classification trees (Breiman et al., 2001; Hastie et al., 2009). They incorporated 18 

pathogenicity prediction scores from 13 tools as predictive features: MutPred, FATHMM, 

VEST, Poly-Phen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, 

SiPhy, phyloP, and phastCons (Ioannidis et al., 2016). 

 

1.2.8. The Mendelian Clinically Applicable Pathogenicity (M-CAP) 

 

 The features M-CAP uses for classification are based on existing pathogenicity 

scores, measures of evolutionary conservation and the cross-species analog to the 

frequency within the human population (Hastie et al., 2003; Ogutu et al., 2011). To 

evaluate the pathogenicity of missense variants as a machine learning task, M-CAP uses 

pre-existing and new features. It uses nine established pathogenicity programs: SIFT13, 

PolyPhen-2, CADD15, MutationTaster, MutationAssessor, FATHMM22, LRT23, 

MetaLR16 and MetaSVM16. It also joints seven established measures of base pair, amino 

acid, genomic region, and gene conservation: RVIS24, PhyloP25, PhastCons26, PAM250, 

BLOSUM62, SIPHY28, and GERP29. Moreover, M-CAP brings 298 new features derived 
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from the multiple-sequence alignment of 99 primates, mammalian and vertebrate genomes 

to the human genome (Kuhn et al., 2013). 

 

1.3. Computational Protein Structure and Functional Impact Prediction 

 

 Despite all of the advances, referring disease causation to prioritized variants still 

remains an inexact process. The most critical point to keep in mind is that: If a variant of a 

protein is found to be associated with a certain disease, this does not mean that the variant 

is pathogenic. Low population frequency, pathogenicity scores, intolerance scores, and 

more can only inform about how that variant might damage a gene; but since reporting it is 

a very big step that affects the patient’s life, it is very essential to have additional proofs to 

show the pathogenicity. The importance of molecular dynamic (MD) simulations appeared 

at this stage. 

 

 

Figure 1.3. Workflow for computational protein structure determination 

 

 Above diagram shows the basic workflow to decide the most reliable way for 

protein structure prediction (Figure 1.3). The study of the macromolecular structure is a 

key point in the understanding of biology. Protein data bank (PDB) holds around 100,000 

proteins crystal or NMR structure which is quite low when we consider all proteins in the 

human. However, obtaining a high-resolution structure of a protein requires a time-
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consuming experimental process; due to the difficulties in the nature of crystallization and 

obtaining a sufficient amount of protein. In addition, proteins are flexible, and dynamics 

can play a significant role in their functionality, they also undergo conformational changes 

while performing their function and crystallographic studies cannot observe proteins in 

motion. So, both comparative and ab initio methods for the prediction of protein structure 

gains much more interest year by year; due to their speed in obtaining the results and their 

increase in reliability and consistency. These computational methods can be used not only 

to predict the structure of proteins but also to determine the effect of mutations on the 

protein.  

 

 In order to predict the structure of proteins or determine the effect of mutations on 

protein structures with the MD simulation, one must either have a crystal/NMR structure of 

a protein or obtain a predictive structure by comparative/homology modeling. Homology 

modeling means modeling a protein’s structure by using a known experimental structure of 

another homologous protein. MD is a computer simulation method that measures the 

physical movements several hundreds of atoms and molecules. The interactions of atoms 

and molecules for a fixed period of time are allowed to give an idea about the dynamic 

evolution of the system. It was initially developed for theoretical physics in the late 1950s, 

but now it is also applied in materials science, chemical physics and the modeling of 

biomolecules. 

 



 

 

 
21 

2. PURPOSE 
 

 Rare diseases are a type of diseases which affect a small number of people in 

comparison to the general population. A remarkable number of patients remain 

undiagnosed despite undergoing an exhaustive workup. Early and accurate diagnosis is 

very critical since patients who present with longer diagnostic delays have more advanced 

disease compared to the time of initial diagnosis. Moreover, the sooner the diagnosis is 

made, the less the expenses will be. 

 

 The goal of this dissertation is to create a novel pipeline for analyzing WES/WGS 

datasets from undiagnosed patients with suspected rare Mendelian disorders. An effective 

approach is created for data analysis, variant prioritization and pathogenicity prediction 

from a cascade of different tools shading light into different aspects of the diagnostic 

process and using several undiagnosed rare diseases as a model. Linux operating system 

and Bash shell scripting are used for the bioinformatics analysis. The statistical analysis is 

carried out in R. For variant discovery, GATK, and for annotating SNP/indel calls, the 

software Annovar is used. Performing WES/WGS data analysis allows us to determine the 

quality of the variants obtained and also organize the resulting output format with the 

content appropriate for our variant prioritization strategy. We choose which tools to take 

into account and these tools automatically assigned their scores during bioinformatics 

analysis; the bioinformatics part involves prioritization part as well. And finally, molecular 

dynamics simulations are done to model both wild-type and mutant proteins and elucidate 

the pathogenicity mechanisms of mutations.  

 

 The WES datasets used to establish the bioinformatics methodologies are generated 

from several index cases with an undiagnosed disorder, plus their family members. Our 

novel approach achieved a high success rate by identifying the causative variant and 

providing the diagnosis. The pipeline contributes to the already existing knowledge 

through the combination of population frequency, pathogenicity prediction tools, gene 

intolerance scores and MD simulations for the first time. 
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3. MATERIALS AND METHODS 
 

3.1. Tools, databases, cases, and primers 

 

Table 3.1. Resources that must be downloaded (compiled) into the server before starting to 

the analysis 

 

 

 A minimum of 4 to 8 Gb of computer memory is needed for exome, 12 Gb is 

needed for whole-genome.  

 

3.1.1. Case I 

 

 The index patient is a sixteen year old male. There is no known parental 

consanguinity. His clinical symptoms are occipital lobe epilepsy and epileptic status in 

sleep. Pedigree analysis demonstrated one additional eleven year-old affected brother and 

healthy parents. 

 

 

 

 

Tools Databases 
Trimmomatic version 0.36 Reference Assembly (hg19/GRCh37) 

 BWA Indexes of the reference 
Picard HapMap-3.3-sites-(hapmap.vcf)  

Samtools Omni-2.5-sites-(omni.vcf) 
GATK 1000G-high-confidence-sites-(1000G.vcf)  

BedTools dbSNP-(dbsnp.vcf)  
R-and-R-libraries-ggplot2-and 

gsalib 
Mills-&-1000G-Gold-Standard-Indels 

(mills.vcf) 
ANNOVAR MD5Sums 

Linux Annovar Database 
VMD Software ExAC database 

CHARMM36  Software GnomAD database 
The FoldX Suite Software 1000 Genomes database 

 OMIM database 
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3.1.2. Case II 

 

 The index patient is a thirty-three year old female. Her parents are first cousins. She 

was diagnosed with congenital nail dysplasia at birth. She was referred for genetic 

counselling during her first pregnancy. She had thickened, hard, shiny, hyperplastic and 

hyperpigmented, claw-shaped (onycholysis) nails on the hands and feet. All nails in all 

four extremities were affected. Intermitently she loses her nails and the newly grown ones 

are similarly affected. They become hard, thickened and claw-shaped in time. Pedigree 

analysis demonstrated two additional affected sisters and a healthy brother with parental 

consanguinity (Figure 4.13). The patient and her sisters did not give consent for publishing 

of images. Her sisters were also recognized to have nail dysplasia from birth. Photographic 

images were examined and they suggested an identical phenotype. Both sisters were 

married with unrelated partners and had healthy children. The patient’s was not related to 

her partner. Analysis of the pedigree suggested autosomal recessive inheritance pattern. 

Therefore, recurrence of the phenotype was considered low. She was counseled 

accordingly. She later gave birth to a healthy boy. Postpartum she was diagnosed with 

uveitis and treated for ocular tuberculosis without pulmonary involvement.  Her treatment 

regimen included nine months of anti-tuberculosis agents. Corticosteroids were also used 

for the first two months. 

 

Primers 

• FLNA 

 5’to 3’ F: GAGGCAAGGGAGGGGTC 

 5’ to 3’ R: CATCATCAGGTGGGGAGG 

• FZD6 

 5’to 3’ F: CCAATCAGTGAAAGTCGAAGAGTAC 

 5’ to 3’ R: TTCACTCCGCGCACTTTCA 
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3.2. Whole Exome/Genome Data Analysis Pipeline 

 

 In this part of the dissertation, WES/WGS data analysis will be explained in detail. 

The workflow we applied for WES/WGS data analysis composed of the following steps:  

 

• Quality Control       

• Preprocessing: Trimming the Ends and Adaptors     

• Mapping the Reads to the Reference Genome: Preparation of input files and actual 

alignment          

• Post-Alignment Processing        

Sorting and Conversion of .sam file       

Marking and Removing PCR Duplicates       

Indexing .bam file       

Base Quality Score Recalibration (BQSR)      

• Germline Variant Calling (Haplotyping) and Joint Genotyping   

Haplotypingand Joint Genotyping       

Variant Quality Score Recalibration       

• Variant Annotation         

Run Annovar          

       Visualization of the Variants by IGV 
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Figure 3.1. Scheme of the input&output file formats, workflow, and the tools used 
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3.2.1. Quality Control 

 

 The raw data of sequencing machine is called as FastQ files, it includes a sequence 

information like fasta files and also an information about the quality of the sequence. A 

fastq file typically consists of four lines for a single read (Figure 3.2). 

 

 

Figure 3.2. Typical fastq file 

 The first line begins with @ and represents the name of the read and information 

about the position on the flow-cell for Illumina sequences (Figure 3.3). 

 

Figure 3.3. First line of fastq files for Illumina sequences 

 The sequence of the read is found on the second line. A,C,G,T and N characters can 

be seen. The third line has either '+' sign or the read name after the '@' sign. The last line is 

the ASCII, it encodes of the Phred Scaled quality of the base two lines above.  

 

 Exome data we used in this dissertation are generated by a paired end sequencing. 

Sequence data has two files, all the forward sequences and all the reverse sequences in the 

same order. The molecules are greater than twice the reading length of an average Illumina 

experiment, do not overlap and have a gap between them. This approach helps to detect 

PCR duplicates. 

 

 Analysis of the quality of the FastQ files is the first step to do before starting the 

analysis.  

fastqc *.fastq.gz -t 8 
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 FastQC report is used which outputs graphics such as read-length plots, read-

quality plots, sequence-duplication levels. Among all of the graphics, most crucial ones are 

per base sequence quality, per base sequence content and adaptor content. On the below, 

quality scores of R1 for one of the members of trios are seen and the most critical points 

that must be taken into consideration from each is explained briefly. 

 

 

Figure 3.4. Basic statistics of fastq files 

 

 Sequence length and GC content is optimal, but total amount of sequence read is 

lower. This is one of the signs of low coverage (Figure 3.4). 

 

 

Figure 3.5. Per base sequence quality 
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 The median value is the red line, the yellow box represents the inter-quartile range 

(25-75%), the upper and lower whiskers represent 10% and 90% points and the mean 

quality is the blue line. This data looks consistent, quality is high along the reads (Figure 

3.5). 

 

 

Figure 3.6. Per sequence quality scores 

 

 Quality scores are uniformly distributed, most are high quality sequences (Figure 

3.6). 
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Figure 3.7. Per tile sequence quality 

 

 The plot shows the deviation from the average quality for each tile. The colours are 

on a cold to hot scale, colder colours mean the quality is at or above the average for that 

base, and hotter colours mean a tile had worse qualities than other tiles for that base. A 

good plot should be all blue if there is no loss in quality associated with only one part of 

the flowcell and this plot’s quality looks quite high (Figure 3.7). 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Per base sequence content 
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 Assuming the data is a random sample from the sequence space, the base content at 

each position the contribution should be identical. Thus, straight lines are expected to be 

seen. The first few bases might indeed show some erratic behavior, which could be due to 

noncompletely random primers. For this case, the ends have to be trimmed (Figure 3.8). 

 

 

Figure 3.9. Per base N content 

 

 If a sequencing machine cannot make a confident base call then it will represented 

by N. For this case, unknown base is not seen (Figure 3.9). 

 

 

Figure 3.10. Per sequence GC content 
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 The GC content of each sequence is measured and compared with a modelled 

normal distribution of GC content. The above result fits with expected (Figure 3.10). 

 

 

Figure 3.11. Sequence length distribution 

 

 This graph shows the distribution of fragment sizes in the data. The reads form our 

data are mostly around 150bp, as expected (Figure 3.11). 

 

 

Figure 3.12. Sequence duplication levels 
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 The degree of duplication is counted for every sequence in a library and the plot 

shows the relative number of sequences with different degrees of duplication. For this case, 

the duplication level is very low (Figure 3.12). A low level of duplication may indicates a 

very high level of coverage of the target sequence and the lesser the PCR artifacts seen, 

whereas a high level of duplication may indicates enrichment bias such as PCR over 

amplification. 

 

 

Figure 3.13. Adapter content 

 

 Adaptor contents are one kind of overrepresented sequences in the library, they 

have to be trimmed not to negatively affect the mapping process. For this case, adaptor 

contamination is not detected (Figure 3.13). 

 

3.2.2. Preprocessing 

 

 When one receives sequence data from a sequencing provider, the data is typically 

in a raw state, in other words, it is not immediately usable for variant discovery analysis. 

Raw data quality check and trimmimg the adaptors/ends of the reads need to be done 

before starting to map the sequence reads to the reference genome. 

  

 Adapters must be ligated to the 5’ and 3’ ends of each single DNA molecule after 

fragmentation step for Illumina short read sequencing. These adapter sequences hold 
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barcoding sequences, forward/reverse primers and the binding sequences to immobilize the 

fragments to the flow cell and allow bridge-amplification. 

 

 Since the adapter sequences are synthetic and they are not seen in the genomic 

sequence, adapter contamination leads to NGS alignment errors and an increased number 

of unaligned reads. Hence, they need to be trimmed before starting to mapping. Not only 

adaptors but also end bases are needed to be clipped in order to cope with lower quality 

bases. Typically they are seen in the 3' end. For both ends and adaptors trimming, 

Trimmomatic version 0.36 is used. 

 

INPUT: fastq.gz -> OUTPUT: trim.fastq.gz 

 

for x in *_R1_*fastq.gz; do java -jar /opt/bioinf/Trimmomatic-0.36/trimmomatic-0.36.jar 

PE $x ${x/_R1_/_R2_} ${x/_001.fastq.gz/_trim.fastq.gz} 

${x/_001.fastq.gz/_unpaired.fastq.gz} ${x/R1_001.fastq.gz/R2_trim.fastq.gz} 

${x/R1_001.fastq.gz/R2_unpaired.fastq.gz} -threads 24 CROP:150 TRAILING:10 

MINLEN:40; done 

 

3.2.3. Mapping the Reads to the Reference Genome 

 

 For humans the most well-known options for reference sequence are UCSC and 

Ensembl. We have used the UCSC release of the human genome hg19. 

Necessary Resources 

• Software 

BWA 

SAMtools 

Picard Tools 

Genome Analysis Toolkit (GATK) 

R and R libraries ggplot2 and gsalib 

• Hardware 

A minimum of 2 Gb of memory is recommended for WES and 4 to 8 Gb is for 

WGS. The software can run on Linux or MacOS X with Java 1.7 installed.  
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• Files 

Sequence trimmed reads in fastq format (trimmed_reads.fq) 

The human reference genome in fasta format (reference.fa) 

 

 A database of known variants in vcf format (dbsnp137.vcf) If it is compressed, it 

must be unpacked. 

Gunzip *gz             

 

The GATK uses two files to access the reference file: a dictionary of the contig 

names and sizes, an index file to allow random access to the reference bases. These files 

must be generated to use the reference file in fasta format with GATK tools. 

 

i.   The BWA index is generated by running this BWA command: 

bwa index -a bwtsw /opt/storage/GATK_hg19/ucsc.hg19.fasta 

ii.  The fasta file index is generated by running this SAMtools command: 

samtools faidx /opt/storage/GATK_hg19/ucsc.hg19.fasta 

iii. The sequence dictionary is generated by running the this Picard command: 

java -jar /tools/picard/picard.jar CreateSequenceDictionary \ 

REFERENCE=/opt/storage/GATK_hg19/GATK_hg19/ucsc.hg19.fasta \  

OUTPUT=/opt/storage/GATK_hg19/GATK_hg19/ucsc.hg19.dict 

 

Burrows-Wheeler Aligner (BWA2) is used to map the reads to the human genome. 

It works very well with Illumina data and has the ability to run using several threads. 

 

INPUT: trim.fastq.gz -> OUTPUT: .sam 

 

for x in *_1_paired.fastq.gz; do bwa mem -t 12 -M -R 

"@RG\tID:"${x/_1_paired.fastq.gz/}"\tSM:"${x/_1_paired.fastq.gz/}"\tPL:illumina\tLB:st

andard" /opt/storage/GATK_hg19/ucsc.hg19.fasta $x ${x/_1_/_2_} > 

${x/_1_paired.fastq.gz/.sam}; done 

 

BWA uses many different options to adjust the mapping. The -t commands BWA 

the number of threads to use, the –M marks shorter split hits as secondary and –R STR 
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completes read group header line. BWA outputs the alignments in .sam format; 

summarizing position, quality, and structure for each read (Figure 3.14). 

 

 
 

Figure 3.14. .sam file format 

 

3.2.4. Post-Alignment Processing 

 

The .sam file is the starting point to obtain the binary alignment/map format (.bam). 

For converting the .sam file to .bam Picard is used. It compresses and indexes the .sam file, 

so portions of the file can be accessed without the need to load the whole file.  

 

INPUT: .sam -> OUTPUT: .bam 

(for x in *.sam; do java -Xmx4g -jar /tools/picard/picard.jar SortSam 'INPUT='$x 

'OUTPUT='/mnt/data/${x/.sam/.bam} SORT_ORDER=coordinate; done) |& tee run.log 

 

Before doing any kind of manipulation or analysis using a reference sequence, the 

files usually has to be indexed. .bam index file is created by using Samtools as .bam.bai. 

 

INPUT: rdup.bam -> OUTPUT: .bam.bai 

 

for x in *rdup.bam; do samtools index $x; done 

 

 Remove Duplicates. PCR duplicates arise at the step of PCR amplification of 

fragments. Since they share the same sequence and the same alignment position, they can 

lead to problems in SNP calling since some allele may be overrepresented due to 
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amplification biases. Again, Picard is used to mark PCR duplicates in the .bam with a 

certain tag and then remove those marked ones. 

 

INPUT: .bam -> OUTPUT: rdup.bam 

 

(for x in *bam; do echo $x; java -Xmx3g -jar /tools/picard/picard.jar MarkDuplicates 

'INPUT='$x 'OUTPUT='${x/.bam/.rdup.bam} METRICS_FILE=metrics.txt 

REMOVE_DUPLICATES=true; done) |& tee run.log 

 

 Base Quality Score Recalibration (BQSR). DNA sequencing machines provide a 

rate for the quality of each base that they read, which is called Phred score. A Phred score 

of 10 represents 90% accuracy, 20 equals 99%, 30 equals 99.9% and so on. The produced 

scores are subject to technical errors, leading to over- or under-estimated base quality 

scores. BQSR is a machine learning process to model these errors empirically and adjust 

the quality scores accordingly. More accurate base qualities are obtained and this increases 

the accuracy of the variant calls.  

 

The base recalibration process involves two steps: Generating quality scores and 

applying the scores to bases. The program builds a model of covariation based on the data 

and a set of known variants, then it adjusts the base quality scores in the data based on the 

model.  

 

 Generating Quality Scores. INPUT: rdup.bam -> OUTPUT: reca.table 

 

for x in *.rdup.bam; do java -Xmx12g -jar /opt/bioinf/gatk/GenomeAnalysisTK.jar --

num_cpu_threads_per_data_thread 12 -T BaseRecalibrator -R 

/ref/Homo_sapiens/gatk_hg19/ucsc.hg19.fasta -I $x -knownSites 

/ref/Homo_sapiens/gatk_hg19/dbsnp_138.hg19.vcf -knownSites 

/ref/Homo_sapiens/gatk_hg19/Mills_and_1000G_gold_standard.indels.hg19.vcf -

knownSites /ref/Homo_sapiens/gatk_hg19/1000G_phase1.indels.hg19.vcf -o 

${x/.bam/.reca.table}; done 
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 Applying the Scores to Bases. INPUT: reca.table -> OUTPUT: reca.bam 

 

for x in *.rdup.bam; do java -Xmx12g -jar /opt/bioinf/gatk/GenomeAnalysisTK.jar --

num_cpu_threads_per_data_thread 12 -T PrintReads -R 

/ref/Homo_sapiens/gatk_hg19/ucsc.hg19.fasta -I $x -BQSR ${x/.bam/.reca.table} -o 

${x/.bam/.reca.bam}; done 

 

Optional Before/After Plotting for Chromosome 20 only. There is also an optional 

step for building a second model and generating before/after plots to see the effects of the 

recalibration process. This tool performs the first step described above: it builds the model 

of covariation and produces the recalibration table.  

 

for x in 62357526_S10.rdup.bam; do java -Xmx12g -jar 

/opt/bioinf/gatk/GenomeAnalysisTK.jar --num_cpu_threads_per_data_thread 12 -T 

BaseRecalibrator -R /ref/Homo_sapiens/gatk_hg19/ucsc.hg19.fasta -I $x -knownSites 

/ref/Homo_sapiens/gatk_hg19/dbsnp_138.hg19.vcf -knownSites 

/ref/Homo_sapiens/gatk_hg19/Mills_and_1000G_gold_standard.indels.hg19.vcf -

knownSites /ref/Homo_sapiens/gatk_hg19/1000G_phase1.indels.hg19.vcf -o 

${x/.bam/.pre.table} -L chr20; done 

 

for x in 62357526_S10.rdup.bam; do java -Xmx12g -jar 

/opt/bioinf/gatk/GenomeAnalysisTK.jar --num_cpu_threads_per_data_thread 12 -T 

BaseRecalibrator -R /ref/Homo_sapiens/gatk_hg19/ucsc.hg19.fasta -I $x -knownSites 

/ref/Homo_sapiens/gatk_hg19/dbsnp_138.hg19.vcf -knownSites 

/ref/Homo_sapiens/gatk_hg19/Mills_and_1000G_gold_standard.indels.hg19.vcf -

knownSites /ref/Homo_sapiens/gatk_hg19/1000G_phase1.indels.hg19.vcf -o 

${x/.bam/.post.table} -BQSR ${x/.bam/.pre.table} -L chr20; done 

 

for x in 62357526_S10.rdup.bam; do java -Xmx12g -jar 

/opt/bioinf/gatk/GenomeAnalysisTK.jar -T AnalyzeCovariates -R 

/ref/Homo_sapiens/gatk_hg19/ucsc.hg19.fasta -L chr20 -before ${x/.bam/.pre.table} -after 

${x/.bam/.post.table} -plots recalibration_plots.pdf; done 
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3.2.5. Haplotyping and Joint Genotyping 

 

Once the pre-processed data are obtained, everything is ready for getting SNP calls. 

The next step is identifying the sites where data displays variation relative to the reference 

genome taking into consideration that some variations can be caused by mapping and 

sequencing artifacts. 

 

The workflow involves running Haplotype Caller on each sample separately in gvcf 

mode to get an intermediate file format. The gvcfs of multiple samples are then run 

through a joint genotyping to get a multi-sample vcf callset, which can then be filtered to 

balance sensitivity and specificity as desired.  

 

Necessary Resources 

• Software 

GATK 

• Hardware 

A minimum of 2 Gb of memory is recommended for WES and 4 to 8 Gb is for 

WGS. The software can run on Linux or MacOS X with Java 1.7 installed.  

 

• Files 

The processed sequence data in bam format. 

The human reference genome in fasta format (reference.fa) 

 

The Haplotype Caller program can call SNPs and indels via local de novo assembly 

if it encounters an active region, a region that shows many variations. It discards the 

current mapping information for that region and reassembles the reads. Haplotype Caller 

algorithm: 

• Define active regions: The program detects regions that show significant variation 

and then applies de novo assembly to those regions. 

• Determine haplotypes of the active region: For each active region, the program 

assembles a De Bruijn-like graph for the reassembly and identification of 
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haplotypes and then to identify potentially variant sites it realigns each haplotype 

against the reference haplotype using the Smith-Waterman algorithm. 

• Determine likelihoods of the haplotypes: For each active region, PairHMM 

algorithm is used to perform a pairwise alignment of each read against each 

haplotype and a matrix of likelihoods of haplotypes are produced. These 

probabilities are then marginalized to obtain the likelihoods of alleles for each 

variant site. 

• Assign sample genotypes: For each variant site, the program performs Bayes' rule, 

then the most likely genotype is assigned to the sample. 

 

INPUT: reca.bam -> OUTPUT: raw.g.vcf 

 

for x in *.reca.bam; do java -Xmx36g -jar /tools/GATK/GenomeAnalysisTK.jar --

num_cpu_threads_per_data_thread 12 -T HaplotypeCaller -R 

/opt/storage/GATK_hg19/ucsc.hg19.fasta -I $x --emitRefConfidence GVCF -o 

${x/.reca.bam/.raw.g.vcf}; done 

 

GenotypeGVCFs merges gVCF records that were produced. At each position of the 

input gVCFs, this tool combines all records, adjust genotype likelihoods, re-genotype the 

recently combined record and re-annotate it. 

 

INPUT: raw.g.vcf -> OUTPUT: joint_FM.vcf 

 

java -Xmx32g -jar /opt/bioinf/gatk/GenomeAnalysisTK.jar -T GenotypeGVCFs -R 

/ref/Homo_sapiens/gatk_hg19/ucsc.hg19.fasta --variant 62304381_S42.rdup.raw.g.vcf --

variant 62304392_S43.rdup.raw.g.vcf --variant 62304396_S44.rdup.raw.g.vcf --variant 

62304409_S45.rdup.raw.g.vcf -o 62304381_62304392_62304396_62304409_joint.vcf 
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3.2.6. Variant Quality Score Recalibration (VQSR) 

 

Variant quality score recalibration (VQSR) uses machine learning to identify 

annotation profiles of variants that are likely to be real. It requires a large callset (minimum 

30 exomes, more than one whole genome if possible) and highly curated sets of known 

variants. The aim is to assign a well-calibrated probability to each variant call to create 

accurate call sets by filtering. 

 

Necessary Resources 

• Software 

 GATK 

RStudio, R libraries ggplot2 and gsalib 

• Hardware 

A minimum of 2 Gb of memory is recommended for WES and 4 to 8 Gb is for 

WGS. The software can run on Linux or MacOS X with Java 1.7 installed.  

• Files 

Call set in vcf format (raw_variants.vcf) 

The-human-reference-genome-in-fasta-format (reference.fa) 

Sets-of-known/true-variants-in-vcf format-for-training-the-model: 

HapMap 3.3 sites (hapmap.vcf) (International-HapMap-3-Consortium-et al., 2010) 

Omni-2.5-sites (omni.vcf) (Durbin et al., 2010) 

1000G-high-confidence-sites (1000G.vcf) (Durbin et al., 2010) 

dbSNP (dbsnp.vcf) (Sherry et al., 2001) 

Mills-&-1000G-Gold-Standard-Indels (mills.vcf) 

 

The approach is composed of two steps: 

 

 Train Model Using HapMap (Separate models for SNPs and Indels). This model is 

based on known sites and Gaussian mixture model is used to determine different 

parameters. Aim is to develop an estimate of the relationship between SNP call annotations 

and the likelihood that a SNP is a true genetic variant, not a sequencing or data analysis 

artifact. 
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Before continuing with training of snps and indels; annotations, the desired truth 

sensitivity and model parameters must be specified for the program to evaluate the 

likelihood of SNPs being real. Annotations (coverage, quality by depth, FisherStrand, 

MappingQualityRankSumTest, ReadPosRankSumTest) are mostly included in the input 

file. Model parameters are used to define the percentage of the worst scoring variants and 

the minimum number of worst scoring variants to use when building the model of bad 

variants. 

 

The desired truth sensitivity values are used by the program to generate tranches. 

100.0, 99.9, 99.0 and 90.0 are first to fourth tranche thresholds used by default. The 

threshold values mean the sensitivity that can be obtained when we apply them to the call 

sets to train the model. The lowest tranche is highly specific but less sensitive and each 

subsequent tranche introduces additional true positive calls and also false positive calls. 

This allows to filter variants based on how delicate one needs the call set to be, as opposed 

to applying hard filters. 

 

#VQSR SNPs  
java -Xmx24g -jar /tools/GATK/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R /reference/hg19/bwa/ucsc.hg19.fasta --num_threads 6 \ 
-input /mnt/30_epigenetics_10_centogene_joint.vcf \ 
-input /mnt/1003308-1003310-1003311/S1_S4_S8_S2_S9_S3_joint.vcf \ 
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 
/db/vcf/hg19/hapmap_3.3.hg19.sites.vcf \ 
-resource:omni,known=false,training=true,truth=false,prior=12.0 
/db/vcf/hg19/1000G_omni2.5.hg19.sites.vcf \ 
-resource:1000G,known=false,training=true,truth=false,prior=10.0 
/db/vcf/hg19/1000G_phase1.snps.high_confidence.hg19.sites.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
/db/vcf/hg19/dbsnp_138.hg19.vcf \ 
-an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR -an DP \ 
-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \ 
-mode SNP \ 
--recal_file snp.recal \ 
--tranches_file snp.tranches \ 
--rscript_file snp.plots.R 
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#VQSR INDELs  
java -Xmx24g -jar /tools/GATK/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R /reference/hg19/bwa/ucsc.hg19.fasta --num_threads 6 \ 
-input /mnt/30_epigenetics_10_centogene_joint.vcf \ 
-input /mnt/1003308-1003310-1003311/S1_S4_S8_S2_S9_S3_joint.vcf \ 
-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \ 
-mode INDEL \ 
--recal_file indel.recal \ 
--tranches_file indel.tranches \ 
--rscript_file indel.plots.R \ 
--maxGaussians 4 \ 
-resource:mills,known=false,training=true,truth=true,prior=12.0 
/db/vcf/hg19/Mills_and_1000G_gold_standard.indels.hg19.sites.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
/db/vcf/hg19/dbsnp_138.hg19.vcf \ 
-an QD -an DP -an FS -an SOR -an ReadPosRankSum -an MQRankSum 

 

Apply the Model to the Callset. The trained Gaussian mixture model is applied to 

both known and novel variations to assess the likelihood of being real. The score added as 

an info to each variant is called as VQSLOD, it is the log odds of being a real variant 

versus being a false variant. 

 

 

 

Figure 3.15. Threshold model of VQSR 
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 INPUT: joint_FM.vcf -> OUTPUT: FM.snp.vcf & FM.indels.vcf 

 

java -jar /tools/GATK/GenomeAnalysisTK.jar \ 
-T ApplyRecalibration \ 
-R /reference/hg19/bwa/ucsc.hg19.fasta \ 
-input /mnt/1003308-1003310-1003311/S1_S4_S8_S2_S9_S3_joint.vcf \ 
--ts_filter_level 99.9 \ 
-tranchesFile /mnt/1003308-1003310-1003311/snp.tranches \ 
-recalFile /mnt/1003308-1003310-1003311/snp.recal \ 
-mode SNP \ 
-o /mnt/1003308-1003310-1003311/snp_S1_S4_S8_S2_S9_S3_joint.vcf 
 
java -jar /tools/GATK/GenomeAnalysisTK.jar \ 
-T ApplyRecalibration \ 
-R /reference/hg19/bwa/ucsc.hg19.fasta \ 
-input /mnt/1003308-1003310-1003311/S1_S4_S8_S2_S9_S3_joint.vcf \ 
--ts_filter_level 99.9 \ 
-tranchesFile /mnt/1003308-1003310-1003311/indel.tranches \ 
-recalFile /mnt/1003308-1003310-1003311/indel.recal \ 
-mode INDEL \ 
-o /mnt/1003308-1003310-1003311/indel_S1_S4_S8_S2_S9_S3_joint.vcf 
 

 Merge SNPs and Indels. INPUT: FM.snp.vcf & FM.indels.vcf -> OUTPUT: 

FM.merged.vcf 

 

java -jar /tools/picard/picard.jar MergeVcfs INPUT=snp.YNS_EPIX_32333435.vcf 

INPUT=indel.YNS_EPIX_32333435.vcf OUTPUT=YNS_EPIX_32333435.merged.vcf 

 

for x in *.snp.vcf; do java -jar /mnt/tools/picard/picard.jar MergeVcfs 'INPUT='$x 

'INPUT='${x/.snp./.indel.} 'OUTPUT='${x/.snp./.merged.}; done (WITH LOOP - 

OPTIONAL) 

 

 Select Header and Passing Variants. INPUT: FM.merged.vcf -> OUTPUT: 

pass.vcf 

 

grep -P "^#|PASS" YNS_EPIX_32333435.merged.vcf | uniq > YNS_EPIX_32333435.pass.vcf 

for x in *.merged.vcf; do grep -P "^#|PASS" $x | uniq > ${x/merged/pass}; done 
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3.2.7. Variant Annotation 

 

 Convert to Annovar. For annotating SNP calls the software Annovar is used. 

ANNOVAR takes a simple format that includes chr, start, end, ref, alt, plus optional fields, 

as an input. To use Annovar, one must convert .vcf file format to the Annovar input file 

format. The convert2annovar.pl script can convert other "genotype calling" format into 

ANNOVAR format. 

 

INPUT: pass.vcf -> OUTPUT: pass.txt 

 

for x in *pass.vcf; do perl /tools/annovar/convert2annovar.pl -format vcf4 $x -allsample -

withfreq -include > ${x/vcf/txt}& done 

 

 Run Annovar. Annovar annotates functional effects of variants; the location of each 

variant with respect to genes; exonic, intronic, intergenic, splice site, 5’/3’-UTR and so on. 

The option preferred in this project is to gene-based annotation.  

 

INPUT: pass.txt -> OUTPUT: multianno.txt 

 

(perl /mnt/tools/annovar/table_annovar.pl /mnt/YNS_EPIX_32333435.pass.txt 

/mnt/tools/annovar/humandb/ -buildver hg19 -protocol 

refGene,avsnp147,snp138NonFlagged,clinvar_20170130,popfreq_max_20150413,exac03n

ontcga,revel,dbnsfp33a -operation g,f,f,f,f,f,f,f --argument '--splicing_threshold 40',,,,,,, -

nastring '' --otherinfo;) |& tee run.log 
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3.2.8. Visualization and Interpretation of NGS Read Alignments via Integrative 

Genomics Viewer (IGV) 

 

IGV is a visualization tool for aligned read data and read coverage. Paired ends 

sequencing produce reads from both ends of genomic fragments of known size. IGV color-

codes paired ends if the insert size is larger than expected, falls on different chromosomes, 

or has unexpected pair orientations (Figure 3.16). Several file formats can be used as an 

input of IGV, but for sequence alignment data, only .sam or .bam files can be used; we 

prefer to use .bam files. IGV also requires bam index files and index file must be named by 

appending .bai. For instance, the index file for abc.bam must be named abc.bam.bai or 

abc.bai (Robinson et al., 2011). 

 

 

Figure 3.16. The IGV application window 

 

Visualization of the datasets aids to check the average coverage, enrichment 

specificity and a number of random errors in the dataset. Moreover, clear segregation 

mistakes are easily detected by quickly looking at specific genes or regions and comparing 

multiple datasets detection. 
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3.3. Variant Filtration ad Prioritization Strategy 

 

We preferred a trio-based analysis instead of a proband-only. The samples from the 

child (affected sister/brother) and both of their biological parents were analyzed. This 

enabled us to identify de novo variants that are present only in the child, to filter out rare 

benign familial variants, and to establish the phase of variants in recessive or imprinted 

disorders by inheritance. 

 

Our pipeline outputs three different variant lists namely de novo heterozygous, 

homozygous and compound heterozygous variants. By using the affected and healthy 

family members as an input, it reports the de novo heterozygous, homozygous and 

compound heterozygous variant lists that are seen in only the affected members. 

Independent from the pedigree information, the first thing we do is figuring out all de novo 

heterozygous, homozygous and compound heterozygous variant scenarios separately 

(Figure 3.17). 

 

  

Figure 3.17. Disease gene identification strategies 
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One of the clearest proof to consider a variant as benign is its high allele frequency 

in the human population, being too high for causation of a disease (Lek et al., 2016; 

Whiffen et al., 2017). Hence, from variants with a MAF of <0.1% and without 

homozygous carriers in public databases, the ones predicted to affect protein coding were 

analyzed. If no prominent variant is found, the threshold is increased to <0.5%. For the 

intronic alterations, the ones at exon-intron boundaries from -10 bases to +10 bases are 

retained. If no prominent variant is found, the threshold is increased to -40 to +40. Then, 

we prioritize variant lists and start with the list that matches the most expected segregation 

pattern. Symptoms of affected individuals and family history were reviewed to prioritize 

variants with the highest degree of symptom match. Evidence from various sources; 

population databases, computational assessments, PubMed, OMIM and MGI were 

gathered. Seven different tools are being considered for pathogenicity estimations; namely 

CADD, REVEL, M-CAP, PrimatAI, SIFT, Polyphen, and MutationTaster. We also 

investigated the effect of the splice site mutations via four different splice site prediction 

programs; Human Splicing Finder, NetGene2Server, Berkeley Drosophila Genome 

Project-Splice Site Prediction by Neural Network and Oriel SpliceView. Instead of 

expecting the support for the disease-causing effect of the variant from all of the in silico 

tools, the information obtained from each tool is taken into account; since each tool has 

several varying strengths and weaknesses. 
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Table 3.2. Classes of evidences to prioritize the variants in rare diseases 

 

Evidence 
Level 

Evidence Aim and Examples 

 
 
 
 
 
 
 

Gene 
Level 

Genetic 
 

 
 

Experimental 
 
 
 

 
 

Literature 

the gene shows statistically low number of variants 
Exome-Aggregation-Consortium-Database (ExAC) 

Genome-Aggregation-Database (GnomAD) 
Genic-Intolerance 

Model systems: Animal models with mutated/knock-out gene 
present a phenotype that has overlaps with the human disease 

Mouse Genome Informatics (MGI) 
Protein Interactions: The product of the gene interacts with 

proteins which found to be related with the disease of interest 
Protein Interactions: STRING 

Biochemical function: The product of the gene has  
a function consistent with the phenotype 

Deep literature search 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variant 
Level 

Genetic 
 
 
 
 

 
 

Informatic 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Simulation 
 
 

 
 

Literature 

the variant is found in databases with a very low frequency or 
not found in any databases of healthy population cohorts 

the variant is co-inherited with the disease in affected families 
PopFreq 

Exome-Aggregation-Consortium Database (ExAC) 
Genome-Aggregation-Database (GnomAD) 

Conservation: the variant show evolutionary conservation 
Predicted affect on function: the variant is found on the gene 

predicted to cause functional effect 
Combined-Annotation–Dependent-Depletion (CADD) 

Rare-Exome-Variant-Ensemble-Learner (REVEL) 
The Mendelian-Clinically-Applicable Pathogenicity (M-CAP) 

PrimatAI 
Human Splicing Finder (HSF) 

NetGene2 Server 
Berkeley-Drosophila-Genome-Project-Splice Site Prediction by 

Neural-Network 
Oriel-SpliceView 

SIFT 
PolyPhen 
MutTaster 

Homozygosity Mapper 
BCFtools/ROH 

Comparing the mutated and native protein by studying the 
physical movements several hundreds of atoms in solution with 

explicit solvent representations 
Homology Modeling 

Molecular Dynamics Simulations (MD) 
Whether the variation is located at the functional 

domains/motifs or the mutational hotspots of the protein 
Deep literature search 
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 As mentioned, variant prioritization is based on several factors including population 

allele frequency, conservation, penetrance, prevalence and mode of inheritance of the 

variant and patient symptoms. 

 

3.3.1. Population Allele Frequency 

 

 Population-level minor allele frequency (MAF) is critical since causative alleles for 

most Mendelian disorders are expected to be rare, because of their deleterious effects on 

reproductive fitness. Large-scale genome/exome sequencing efforts have cataloged 

protein-coding variations observed more than 250,000 individuals and, among all, ExAC 

(Lek et al., 2016) and GnomAD are the largest datasets of variant allele frequency. 

Typically, causative alleles are less likely to be found in these databases. If they are found, 

then they are not present with high allele frequencies. In any global population, >5% MAF 

is considered benign for most of the Mendelian disorders, except for the well-known 

founder alleles (Richards et al., 2015). 

 

 Using the ExAC dataset, Kobayashi and colleagues pointed out that 97.3% of 

pathogenic variants in genes that are found to be associated with disorders had MAF < 

0.1% (Kobayashi et al., 2017).  Hence, we consider MAF threshold of 0.1% as a suitable 

starting point. If no prominent variant is found, the threshold is increased to 0.5%. 

 

3.3.2. Gene Constraints 

 

 Several groups have developed statistical methods that predict the tolerance of a 

gene to synonymous, missense and loss-of-function changes by using the measurements of 

allele frequencies in populations. 

 

 The Genic Intolerance Residual Variation Intolerance Score (RVIS) uses more than 

6,500 exomes from the NHLBI-Exome-Sequencing-Project. The linear model compares 

the number of common functional variants and the number of total variants observed in the 

gene. Constrained genes have less common functional variation than expected and have 

lower RVIS % score, genes with more common functional variants have higher RVIS % 

score (Petrovski et al., 2013). 
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 Moreover, ExAC database is used 60,706 exomes to calculate the probability of 

loss-of-function intolerance (pLI) and synonymous/non-synonymous intolerance (z) for 

each gene in the human genome. For the loss-of-function intolerance (pLI), they model the 

expected number of de novo mutations per gene, compares the observed and expected 

numbers of loss-of-function variants to derive a probability score. The closer the pLI is to 

1, the less tolerant to variation the gene is and pLI >0.9 is an important sign for 

pathogenicity. For the synonymous/non-synonymous intolerance (z), they again model the 

expected number of mutations per gene, compares the observed and expected numbers of 

variants to derive the probability score. The higher the z, the less tolerant to variation the 

gene is predicted to be and z >3 is an important sign for pathogenicity. 

 

3.3.3. Splice Variant Location 

 

 We have searched the locations of pathogenic splice site mutations in the literature 

and noticed that the majority were on the region of ± 10, with a few pathogenic mutations 

around ± 30. Moreover, Bergant et al. reanalyzed 1,059 unsolved cases of WES 

specifically for copy number variations (CNVs), splice site variants, breakpoints, and 

mtDNAs. Among all pathogenic splice-site mutations, majority nonconsensus splicing 

variants were seen at positions +4 and +5 (63.6%), ± 1 and ±2 contributing to 1.2%. Two 

splice defects seen at positions −3, −12 and two synonymous variants were predicted to 

affect splicing (Bergant et al., 2017). Hence, we decided to take ± 10 as an initial threshold 

and ± 40 as the second threshold for splice site mutations. 

 

3.3.4. Conservation Status 

 

 The degree of conservation is obtained by aligning human protein sequences to 

homologous protein sequences from other organisms. The less conserved the column, the 

more likely it will be tolerated.  
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3.3.5. Region of Homozygosity 

 

 To check whether our prominent gene from homozygous variant list is within a 

ROH or in the case that there are genes in homozygous filtered variants that are close to 

each other less than 10Mb to check whether these genes are within a ROH, WES data was 

used to perform homozygosity mapping by using two programs; namely Homozygosity-

Mapper (Seelow and Schuelke, 2012) and BCFtools/ROH (Narasimhan et al., 2016). 

Homozygosity-Mapper identifies ROH with a sliding-window approach and also proposed 

that the program always identify the same genomic regions as conventional linkage 

analyses. The graphical visualization tool, easy-to-use and very fast to obtain a qualitative 

measure of homozygosity around the locus of interest. The .vcf file upload into the 

databases as inputs and analysis of projects are done within a few minutes. Independent 

from parameters like family structure or allele frequencies, the score is measured from the 

observed homozygosity. In addition to Homozygosity-Mapper, BCFtools/ROH is also used 

in this study. It is an extension to the BCFtools software package, applies HMM to 

simulated data and real data from the 1000-Genomes-Project. However, to keep in mind, 

all these ROH programs are more useful if you have more than one family with the same 

disease. 

 

3.3.6. Phenotypic Evaluation 

 

 Mendelian diseases show themselves as combinations of stereotypical symptoms 

that together define a disease. However, in the case of rare diseases, many different 

conditions produce overlapping symptoms.  

 

 If the prioritized genes of the patient are associated with any rare disease, text-

mining the literature must be done to answer if the disease has similar symptoms with the 

patient’s phenotype. Considering the overlapping symptoms of rare diseases very carefully, 

the main symptoms and exceptional symptoms should be noted and, if necessary, the 

patient should be re-examined for certain conditions. 
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3.3.7. Threshold for in silico Pathogenicity Prediction Tools 

 

CADD. Based on their observation on training sets, they set up at several thresholds. C-

score >10 means the 10% most deleterious substitutions and C-score >20 indicates the 1% 

most deleterious substitutions. 

 

REVEL. The score for each variant can range from zero to one, reflecting the proportion of 

trees in the random forest that classified the variant as pathogenic. Pathogenicity threshold 

can be set either as 0.50 or 0.75. 75.4% of disease mutations, 10.9% of neutral variants 

have a score above 0.5; whereas 52.1% of disease mutations, 3.3% of neutral variants, and 

4.1% of all missense variants have a score above 0.75. 

 

M-CAP. The threshold to define a variant as pathogenic is > 0.025 for M-CAP. 

 

PrimatAI. The recommended threshold is > 0.8 for likely pathogenic classification, <0.6 

for likely benign, and 0.6–0.8 as intermediate in genes with dominant modes of 

inheritance, on the basis of the enrichment of de novo variants in cases as compared to 

controls, and a threshold of >0.7 for likely pathogenic and <0.5 for likely benign in genes 

with recessive modes of inheritance. 

 

3.4. Validation via Sanger Sequencing 

 

3.4.1. DNA Extraction from Peripheral Blood 

 

200 µl of blood sample from the tube containing K2EDTA was transferred to sterile 

1.5ml centrifuge tubes, 20 µl proteinase K and 200 µl red blood cell lysis buffer were 

added. The sample was vortexed for approximately 15 sec. and then incubated at 56 °C for 

10 min. After incubation, 200 µl absolute ethanol was added to the tube and vortexed again 

for approximately 15 sec. Then, the mixture was applied to a QIAamp spin column and 

centrifuged at 6000 x g (8000 rpm) for 1 min. The filtrate was discarded, and the column 

was washed with 500 µl wash buffer-1 by centrifuging at 6000 x g (8000 rpm) for 1 min. 

The filtrate was discarded, and the column was washed with the same amount of wash 

buffer-2 by centrifuging at full speed for 3 min. Discard the filtrate. Finally, 200 µl water 
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was added on top of the filtrate, and the sample was incubated at room temperature for 1 

min. and centrifuged at 6000 x g (8000 rpm) again for 1 min. to elute the genomic DNA. 

 

3.4.2. Quantitative Analysis of Extracted DNA 

 

Qubit fluorometer was used to determine the concentration of the extracted DNA 

samples. The measurement was done at 260 nm to determine the nucleic acid 

concentration. To monitor the purity of DNA samples, 230 and 280 nm absorbances were 

also measured. A260/A280 ratio between 1.8-2 and A260/A230 ration higher than 2 were 

considered as a sign of purity. For WES, minimum 1 µg of a sample was used. 

 

3.4.3. Polymerase Chain Reaction (PCR) 

 

The primers for the target regions were designed via Primer3 and whether the 

primer pairs amplify only one product with the right position and size is checked via 

UCSC in-silico PCR. 

 

 PCR reactions included 100 ng DNA, 10 µl 5X polymerase buffer, 3 µl MgCl2, 1 µl 

dNTPs, 0,2 µl of each primer with a concentration of 100 pmol and 1U of Taq polymerase 

in a volume of 50 µl. The program was as follows: An initial denaturation step at 96 °C for 

2 min., followed by 35 cycles of 30 sec. at 94 °C, 30 sec. at annealing temperature, 40 sec. 

at 72 °C and a final elongation for 5 min. at 72 °C. PCR products were loaded on 1% 

agarose gels to verify the amplicon size with respect to the appropriate DNA ladder. 

 

3.4.4. Sanger Sequencing 

 

Due to the Mendelian patterns of inheritance, segregation in family members is 

strong evidence for variant pathogenicity. In accordance with this, lack of segregation is 

accepted as strong evidence that a variant is not pathogenic.  

 

When a condition is inherited in a dominant manner, co-segregation in affected 

family members is strong supporting evidence for pathogenicity. When the de novo 

occurrence of a variant is suspected, the absence of past family history of the disease 
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considered strong evidence of pathogenicity. When a condition is inherited in a recessive 

manner, the maternal and paternal copies of damaging variant and homozygosity in the 

affected individual is strong supporting evidence for pathogenicity. For the compound 

heterozygosity, the damaging variants are at different positions in the maternal and 

paternal copies of the same gene. 

 

Sequence validation and segregation analysis were performed by Sanger-

sequencing. Sequence electropherograms were analyzed using the FinchTV (Geospiza, 

USA). Mutation nomenclature refers to GenBank mRNA reference sequence.  

 

3.5. Homology Modeling 

 

Basically, the steps required in homology modeling, also called comparative 

modeling are the following: 

 

• Template identification and initial alignment: The percentage identity between 

the sequence of interest and a possible template must be high enough to be 

detected with basic sequence alignment programs such as BLAST (Altschul et 

al., 1990). 

• Alignment correction: More sophisticated methods are used for better alignment, 

for instance, CLUSTAL-W (Thompson, Higgins, and Gibson, 1994). 

• Backbone generation 

• Loop modeling: The alignment between model and template sequence usually 

contains deletions and insertions. All insertions or deletions in the alignment are 

modeled as loops and turns 

• Side-chain modeling: The side-chain conformations of residues in structurally 

similar proteins often have similar the torsion angles. So, it makes sense to copy 

conserved residues from the template to the model and achieve higher accuracy 

than by simply copying the backbone and repredicting the side chains. 

• Overall model optimization and verification: Modeling programs either restrain 

the atom positions or apply hundreds of steps of energy minimization to 
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optimize the model. The most straightforward approach to model optimization is 

running a molecular dynamics simulation of the model.  

 

I-TASSER (Iterative Threading Assembly Refinement) is used for homology 

modeling. It is an automated modeling and structure-based function annotation server 

(Yang et al., 2015). 

 

3.6. Molecular Dynamics Simulations 

 

VMD (Visual Molecular Dynamics) is written in C++; it is a molecular graphics 

program with three-dimensional graphics rendering and coloring options to display and 

analyze biopolymers. The molecules are displayed as one or more representations, and the 

atoms in each representation are chosen using atom selection syntax. VMD provides a 

graphical user interface for program control and also a text interface using the Tcl 

embeddable parser to allow for complex scripts with variable substitution and function 

calls. It can be used to display MD simulation trajectories. New molecules from MD 

simulations can be uploaded into VMD from a set of structure files that include static 

information about the system, such as bond connectivity and atomic mass and charge 

values; and also coordinate files that contain the positions of all the atoms that make up the 

molecule. The read data from formats other than PBD or PSF are converted into those 

formats and then can be used as an input. 

 

The main steps of molecular dynamics simulation can be summarized as follows: 

• If the protein we are interested in has a known crystal structure or an NMR 

structure in the Protein Data Bank (PDB), this structure can be used for 

molecular dynamics simulations. If not, one should start with the homology 

modeling as described in the previous section and use the predicted structure. 

• dH2O and NaCl should be added to the structure at the nearest 5 Å. The addition 

of NaCl is necessary to neutralize the charge balance and to calculate the 

electrostatic balance accurately. The distance should be at least 5 Å not to 

interfere with the protein itself.  



 

 

 
56 

• The energy of the structure should be minimized either by NpT (constant 

pressure and temperature) or NvT (constant volume and temperature). Then, the 

simulation can be started. We simulated the motion of proteins (mutated protein 

and wild-type protein) on a femtosecond (10−15 s) timescale and mimicked the 

true folding process by calculating the electrostatic charges via CHARMM36 for 

20 ns. Two different temperature conditions are preferred, 310 °K and 450 °K. 

In the case of high temperature, more energy is given to the system, the system 

progress faster. Hence, we are also able to observe the movements of proteins 

further. 

• At the end of the analysis, MD simulations provide four main information: 

RMSD (Root Mean Square Deviation): Average distance of the backbone atoms. 

This calculates how close the protein backbone atoms are to each other. 

RMSF (Root Mean Square Flexibility): Calculating the displacement distance of 

each amino acid. 

Salt-Bridge Analysis: Salt-bridges are bonds between oppositely charged and 

sufficiently close to each other residues to have an electrostatic attraction. They 

have a role in protein structure and specificity of the interaction of proteins with 

other biomolecules. Salt-bridge analysis calculate whether any new salt-bridge 

dissociations or association is seen in the protein as a result of the mutation. 

FoldX (ΔΔG= ΔGmut–ΔGwt): Calculates the difference in the structural stability 

of the protein. 

 

3.6.1. FLNA Protein 

 

The crystal structure of the N-terminus unit of flaming protein (PDB ID: 4M9P) 

was captured as monomer (Light et al., 2012). The identified mutant (R484Q) as described 

in bioinformatics section was constructed as in-silico with VMD (Humphrey et al., 1996). 

Native and mutant complexes were solvated in water boxes and neutralized with NaCl 

using the cutoff distance for solute and protein of 5 Å. The overall charge of all systems 

was adjusted to zero. Native and mutant systems were composed of ~125,000 atoms. 
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The monomer and dimer systems were simulated with the NAMD program by 

using CHARMM 36 all-atom force fields parameters including the correction maps 

(MacKerell et al., 1998; MacKerell et al., 2004; Brooks et al., 2009; Philips et al., 2005). 

Along with all simulations, water molecules were treated explicitly using TIP3P model 

(Jorgensen et al., 1983). Following a 10,000-step minimization with the Greedy algorithm, 

native and mutant systems were equilibrated at 298 °K at 1 atm for 1 ns. The production 

simulations were performed along 20 ns trajectory at 310 °K collected as NpT ensemble. 

To reveal the impacts of high temperature on the system within shorter MD trajectories, 

MD simulations were also run at 450 °K along 20 ns as NvT ensemble. The pressure and 

temperature controls of systems were done with Langevin pressure and temperature 

coupling. All MD simulations were performed with an integration velocity as 2 fs, and the 

long-range Coulomb interactions were calculated with particle-mash Ewald (PME) method 

in (x,y,z) dimensions (Essman et al., 1995; Darden et al., 1993). To test the reproducibility 

of simulations, they were repeated at 310 °K NpT ensemble and at 450 °K NvT ensemble, 

which different velocity seeds were used.  

 

VMD was used for both visualization and analysis of MD trajectories (Humphrey 

et al., 1996). For all system, RMSD, RMSF, and salt-bridge analysis were performed. In 

addition to that, the initial and final coordinates of 20 ns MD simulation trajectories, the 

mutant and native configurations were saved in every 5 ns along trajectories, and the 

effects of mutations on destabilization tendency of enzyme were calculated as ∆∆G 

(kcal/mole) FoldX analysis used as YASARA plug-in (Schymkowitz et al., 2005; Krieger 

et al., 2002).   

 

Hinge motion prediction 

 

 HingeProt is a tool developed to predict hinge motions of a protein by employing 

Elastic Network Models which are Gaussian Network Model (GNM) to predict the motion 

in the slowest mode and Anisotropic Network Model (ANM) to predict the direction of this 

motion (Emekli et al., 2008). HingeProt was used for the minimized and equilibrated wild-

type and mutant (R484Q) structures to observe the effect of the mutation on hinge motion 

of FLNA. Moreover, cut-off distances for GNM and ANM were chosen as a default of 

HingeProt, which were 10 Å and 18 Å, respectively. 
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3.6.2. FZD6 Protein 

 

Based on the NGS sequencing results, the protein sequence containing our mutant 

(p.Gly559Aspfs*16; c.1676_1683delGAACCAGC.), called as FZD6 mutant, were 

translated via Ensembl Tool. Since the crystal structure of FZD6 protein is not known yet, 

through I-TASSER, the structure of FZD6 mutant was predicted, and the best model 

among generated several ones was selected based on C-score (Zhang et al., 2008; Yang et 

al., 2015). All MD simulations were performed with NAMD program, where CHARMM 

36 all-atom force fields including the correction maps were used (MacKerell et al., 1998; 

MacKerell et al., 2004; Brooks et al., 2009; Philips et al., 2005). Water molecule was 

described as TIP3P model (Jorgensen et al., 1983).  Before production simulations, FZD6 

mutant was subjected to 40,000-step minimization performed with Greedy algorithm, and 

it was followed by 2 ns equilibration, collected as NpT ensemble at 298 °K. During 

simulations, periodic boundary conditions were applied at all dimensions, the systems were 

run with 2 fs velocity, and Langevin pressure coupling was used to keep pressure constant 

at 1 atm. Particle-mesh Ewald (PME) method was used to calculate the electrostatic 

interactions (Essman et al., 1995; Darden et al., 1993). Production simulations of FZD6 

and FZD6 mutant were collected at 310 °K as 20 ns followed by the minimization of 

ionized systems with the Greedy algorithm and NpT equilibration performed at 298 °K 

with 2 fs step velocity. All MD simulations were run twice by changing their initial 

coordinates to avoid any artifact.  The native and mutant systems were prepared to MD 

simulation, e.g. solvation and ionization, with VMD. Also, the visualization and analysis of 

systems, e.g. RMSD and RMSF calculations, and salt-bridge interactions were performed 

with VMD (Humphrey et al., 1996). 
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4. RESULTS 
 

4.1. Rare Disease Cohort 

 

 Molecular testing is the most prominent way to prevent delayed diagnosis of 

undiagnosed rare disorders. Its contribution to diagnosis is still numerically not yet 

calculated. We built up a unique workflow that contributes to the already existing 

knowledge through the combination of selected threshold for population frequency, 

pathogenicity prediction tools, gene intolerance scores, and MD simulations for the first 

time. The workflow created in this dissertation project was tested on families with 

members of undiagnosed diseases and achieved a high success rate by identifying the 

causative variant. Since only two of these families have undergone molecular dynamics 

simulation to explain pathogenicity mechanisms of the mutations, these two families were 

written to the result part of the dissertation. 

 

4.2. Case I 

 

 The family was ascertained in the Medipol Hospital, Istanbul and enrolled for a 

molecular genetic study at Acıbadem University as part of a whole exome/genome 

sequencing project investigating undiagnosed disorders in Turkish families. Written 

approved informed consent was obtained from all participants. We immediately pursued 

WES analysis. At the end of the WES data analysis, we had 666 variants for de novo 

heterozygous, 755 variants for homozygous and just 152 variants for compound 

heterozygous scenario. After the population frequency and splice site filtering, quantity 

decreased to 21, 19, 2 for de novo heterozygous, homozygous, compound heterozygous 

respectively. After recruiting data for gene intolerance (ExAC, GnomAD and Genic 

Intolerance DB), mouse phenotype (MGI), pathogenicity scores (CADD, REVEL, M-CAP, 

PrimatAI, SIFT, Polyphen, and MutationTaster); five genes were highlighted namely 

SULT1C3, SLAIN1, ZFHX3, TKTL1, FLNA (Table 4.1 and Table 4.2). We have also 

checked the top shet score gene list of Cassa et al. and only FLNA gene is found in top list 

with a score of 0,33. However, PrimatAI score for FLNA is also 0,54; which is on the area 

of likely benign. 
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Table 4.1. The most prominent homozygous variants for case I 

 
Gene Variant_Type Change OMIM MGI 

SULT1C3     _ _ 

SLAIN1 
frameshift 

insertion 

NM_001242868:e

xon1:c.219_220in

sGG:p.A73fs 

_ _ 

ZFHX3 
nonframeshift 

deletion 

NM_001164766:e

xon8:c.2436_2450

del:p.812_817del 

Prostate 

cancer, 

susceptibility  

Mice homozygous for a knock-out allele exhibit prenatal 

lethality. Mice heterozygous for the same allele exhibit 

partial postnatal lethality, decreased body size and 

prolonged conception time. 

TKTL1 
nonsynonymous 

SNV 

NM_001145934:e

xon5:c.G628A:p.

D210N 

_ 
Mice homozygous for a knock-out allele exhibit increased 

susceptibility to DSS-induced colitis. 

FLNA 
nonsynonymous 

SNV 

NM_001110556:e

xon10:c.G1451A:

p.R484Q 

  

“Females heterozygous for an X-linked, ENU-induced 

mutation exhibit dilated pupils and milder cardiac, 

sternum, and palate defects than males. Hemizygous 

males are inviable and exhibit incomplete septation of the 

outflow tract, septal defects, cleft palate and incomplete 

fusion of the sternum.” 

 

Table 4.2. More information regarding the most prominent homozygous variants for case I 

 

Gene ExAc GnomAD ExAc Metrix Genic Intolerance 

SIFT   

PolyPhen   

MutTaster 

REVEL                       

M-CAP                  

CADD                                             

SULT1C3 _ _ _ 94.95% 

_                       

_                        

_ 

_                       

_                        

_ 

SLAIN1 _ 

1.000                  

26376/26376                

HOM:13188 

_ 46.12% 

_                       

_                        

_ 

_                       

_                        

_ 

ZFHX3 _ _ _ 0.26% 

_                       

_                        

_ 

_                       

_                        

_ 

TKTL1 _ _ _ 3.11% 

D                       

B                        

D 

0.158                           

0.010                     

20,5 

FLNA 

0,04887                         

4/81858                       

HOM:0                    

HEMI:3 

0.00007887                   

14/177518                           

HOM:0                                 

HEMI:6 

z = 4.95                     

806.2/519                         

pLI = 1.00                           

54.4/1 

0.44% 

D                     

D                

            D 

0.574                               

0.635                         

26,8 

  

 All the articles in the literature related to these five genes were compiled at this 

stage. Known functions, domains, motifs of each protein; distribution of mutations on the 
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gene, associated diseases, their inheritance patterns, exceptions regarding the inheritance 

pattern, overlapping and differentiating symptoms in patient phenotypes were all collected, 

and hypothesis created. Among all, the FLNA gene was the most significant gene that can 

be associated with the disease due to the findings in the literature and results of MD 

simulations. 

 

 The available clinical symptoms for the evaluation of the WES results can be listed 

as occipital lobe epilepsy and epileptic status in sleep. After the analysis steps that 

described in the method section and deep literature search, the genetic diagnosis we 

proposed for the patient was Periventricular Nodular Heterotopia. This diagnosis was 

confirmed by the clinician as the patient re-examined afterward for additional evaluation to 

determine the clinical fit. 

 

 Here, we reported the transmission of PNH from a clinically asymptomatic mother 

to two sons, in a fully penetrant classical X-linked dominant manner. We identified a novel 

c. 1451G>A, p.R484Q change in FLNA exon 10. Mutation nomenclature refers to 

GenBank mRNA reference sequence NM_001110556. Using whole-exome sequencing, 

the index case and his affected brother are found to be hemizygous for the missense 

mutation (Figure 4.1). This mutation leads to the substitution of a very conserved amino 

acid and not previously reported in the literature. 

 

 

Figure 4.1. Pedigree of a non-consanguineous Turkish family segregating X-linked 

dominant PNH. Circles and squares represent females and males, respectively. Clear 

symbols represent unaffected while filled symbols represent affected individuals 
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 The mutation was confirmed via Sanger sequencing. The healthy mother is a 

heterozygous carrier for this mutation, and the healthy father is carrying the reference 

allele while the index case and his affected brother are hemizygous as expected (Figure 

4.2). 

 

 

Figure 4.2. The electropherograms of the mother showing her heterozygous state while the 

the father showing his wild-type state in the upper panel. The index case and his affected 

brothers are hemizygous for c. 1451G>A. The arrow designates the position of the variant 

 

 Evolutionary conservation of the missense amino acid in other FLNA orthologues 

was examined by Clustal Omega (Sievers et al., 2014). The functional importance of the 

missense mutation is strengthened by the fact that the region is quite conserved in several 

species including human, rat, and mouse. Species abbreviations and accession numbers are 

as follows: Cf, Castor fiber, APD32923.1; Hs, Homo sapiens, NP_001447.2; Mm,Mus 

musculus,NP_034357.2; Rn, Rattus norvegicus, NP_001128071.1; Oh, Ophiophagus 

hannah, ETE70682.1; Bt, Bos taurus, NP_001193443.1; Mn, Macaca nemestrina, 

XP_011716088.1; Ml, Myotis lucifugus, XP_023608786.1 (Figure 4.3). 
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Figure 4.3. Partial amino acid sequence of human FLNA protein with orthologues from 

other species. The p. R484Q is indicated by an arrow  

 

4.2.1. MD Simulations 

 

 Along 20 ns of MD trajectories, RMSD values are fitted against the crystal 

structures of native and mutant (R484Q) FLNA proteins. Specifically, there is a dramatic 

change in RMSD patterns of the mutant protein as it is jumping from ~2.4 Å to ~3.4 Å 

within 0.08 ns around ~17.6 ns of 20 ns MD trajectories whereas RMSD pattern of native 

protein remains stable along with a whole trajectory (Figure 4.4.a). For further explanation 

of jump in RMSD pattern of the protein upon R to Q mutation, we measure the flexibilities 

of residues in mutant FLNA protein between 17.58th ns and 17.66th ns (Figure 4.4) and 

categorize RMSF values from highest to smallest ones (Table 4.3). 
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Figure 4.4. a) RMSD and b) RMSF results of modeled FLNA proteins, native and mutant, 

along 20 ns 

 

 28 out of 290 residues experienced change in RMSF values more than 1 Å. Pro480, 

Ser481 and Ala482 residues are included in these 28 residues out of 290 in mutant FLNA 

protein as displayed in Table 4.3. 
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Table 4.3. The changes in RMSF values in mutant FLNA protein upon R484Q  

replacement at 310 °K 

 

Residue 

ID 

∆RMSF 

(Å) 

Residue 

ID 

∆RMSF 

(Å) 

Residu

e ID 

∆RMSF(

Å) 

Residue 

ID 

∆RMSF 

(Å) 

766 1,60 478 1,31 701 1,20 557 1,11 

535 1,60 532 1,30 531 1,18 703 1,09 

512 1,58 533 1,30 509 1,17 537 1,08 

668 1,57 514 1,25 558 1,15 482 1,07 

511 1,57 667 1,21 575 1,15 536 1,07 

534 1,51 576 1,21 481 1,14 479 1,04 

513 1,33 669 1,20 607 1,14 480 1,04 

 

 Yet; these particular differences in RMSF values of residues in mutant FLNA 

protein are not enough to explain this particular jump in RMSD pattern (Figure 4.4.a). 

Hence, the snapshots are taken from MD trajectories from 16th ns to 20th ns in every 1 ns. 

As displayed in Figure 4.5, the gap between domain 3 and 4 begins to open from 17th ns of 

trajectory. This particular gap becomes more apparent at 18th ns and remains through the 

end of the trajectory.  

 

 In addition to differences in RMSD patterns of native and mutant FLNA proteins, it 

is also worthy to note that residues in mutant FLNA are more flexible with respect to 

residues in native one. Specifically, we focus on the RMSF pattern around Arg484 to 

reveal the impacts of R484Q mutant and conclude that there is an increase in flexibilities 

of residues around Arg484 as in the range of ~1.4-fold to ~2.8-fold, resid displayed in 

Figure 4.5. Upon R484Q mutation, there is ~2.8-fold increase in flexibility of 484th 

residue, see Figure 4.6. 
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Figure 4.5. The configurations of mutant FLNA protein between 16th ns and 20th ns at 310 

°K. Here, the secondary structures of FLNA protein are displayed in ‘Cartoon’ format by 

indicating R484Q residue as a red 

 

 

Figure 4.6. RMSF patterns of residues around 484th amino acid in native and mutant FLNA 

protein at 310 °K 
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 After revealing the structural differences in backbone motion and flexibilities of 

residues involved in domain 3, 4 and 5 of FLNA protein, we focus on how R484Q 

mutation alters the intra-molecular interactions within the protein. Specifically, Arg484 

residue is involved in salt-bridge interaction with Glu642 in native FLNA protein (Figure 

4.7) with  ~3.5 Å average distance, stabilized after 9th ns through the end of the trajectory 

at 310 °K (Figure 4.9). With Arg to Gln replacement at 484th position, this particular 

interaction is lost, and it results in the distancing of domain 3 from domain 4 by disrupting 

the stabilization of interface between domain 3 and 4, Figure 4.5. 

 

 

Figure 4.7. Arg484:Glu642 salt-bridge interaction in FLNA protein 

 

 Further, the evolutions of other salt-bridge formations, named as Glu499:Arg488, 

Asp653:Lys493, Glu614:Lys493, Asp653:Arg496 and Glu652:Arg496, along interaction 

interphase between domain 3 and 4 are examined along 20 ns MD trajectories at 310 °K in 

order to reveal whether R484Q mutant affects their strength/ their existence or not. We 

conclude that just Glu499:Arg488 salt-bridge interaction out of five is affected with Arg to 

Gln replacement at the 484th position. As displayed in Figure 4.8, this interaction becomes 

weakened after 12th ns and its strength is lost especially after 17th ns with average distance 

more than ~7 Å. Herein, it is worthy to note that this weakness time period of 

Glu499:Arg488, 17th ns, corresponds to time period that domain 3 is going away from 

domain 4 as displayed in Figure 4.5. Together the loss of Arg484:Glu642 interaction with 

the weakness of Glu499:Arg488 interaction, we conclude that Arg484:Glu642 interaction 

in FLNA protein has a role to stabilize the interaction between domain 3 and domain 4. 
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Even other salt-bridge interactions existed in interaction interphase of domain 3 and 

domain 4 are conserved; it is not enough to prevent a distancing of domain 3 from domain 

4. Hence, we consider Arg484 as the most crucial residue along with the interaction 

interphase of domain 3 and 4 for keeping all three domain of FLNA protein together. 

 

 

Figure 4.8. The evolution of Glu499:Arg488 salt-bridge interaction in FLNA native and 

mutant proteins along 20 ns MD trajectory at 310 °K 
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Figure 4.9. The evolution of salt-bridge interaction between Arg484 and Glu642 in native 

FLNA protein along 20 ns MD at 310 °K 

 

 Moreover, we aim to reveal the impact of R484Q replacement on destabilization 

tendency of FLNA protein. Through 20 ns of MD trajectory at 310 °K, the configurations 

of mutant and native FLNA protein are saved in every 5 ns, and the destabilization 

tendencies of overall mutant and native FLNA proteins are documented by calculating 

∆∆G (kcal/mole) with FoldX (Schymkowitz et al., 2005). As displayed in Figure 4.10, we 

do not get noticeable difference in ∆∆G (kcal/mole) values of native and mutant FLNA. It 

means that R484Q mutant doesn’t lead to the full dissociation of whole protein by leading 

to higher ∆∆G value. 
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Figure 4.10. FoldX results of native and mutant FLNA protein at 310 K along 20 ns MD 

trajectories 

 

 The slowest models of HingeProt were chosen as prediction results. There were no 

differences between the predictions for hinge motions of the minimized and equilibrated 

wild-type and mutant structures. For both structures, the residue 576 was predicted as the 

hinge residue by separating the protein into two rigid parts. Therefore, the same hinge 

motions were expected to observe for the wild-type and mutant FLNA structures in an 

adequate time interval. Furthermore, the predicted motion was observed in the 20 ns MD 

trajectory of mutant FLNA protein between 16th ns and 20th ns at 310 °K as can be seen in 

Figure 4.5 whereas not observed in the wild-type trajectories. The reason for this 

observation could be the weakened interaction at the 484th residue by reduced bulkiness 

with Gln and disrupted salt-bridge interaction between Arg484 and Glu642 in the R484Q 

mutant. These weakened interactions were probably brought about the observation of the 

predicted hinge motion much earlier in the mutant than expected in the wild-type structure. 
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4.3. Case II 

 

 The family was ascertained in the Acıbadem Hospital, Istanbul and enrolled for a 

molecular genetic study at Acıbadem University as part of a whole exome/genome 

sequencing project investigating undiagnosed disorders in Turkish families. Written 

approved informed consent was provided from all participants. We immediately pursued 

WES analysis. At the end of the WES data analysis, we had 96 variants for de novo 

heterozygous, 421 variants for homozygous and 185 variants for compound heterozygous 

scenario. After the population frequency and splice site filtering, quantity decreased to 19, 

46, 3 for de novo heterozygous, homozygous, compound heterozygous respectively. After 

recruiting data for gene intolerance (ExAC, GnomAD, and Genic Intolerance databases), 

mouse phenotype (MGI), pathogenicity scores (CADD, REVEL, M-CAP, PrimatAI, SIFT, 

Polyphen, and MutationTaster); four genes were highlighted namely IGSF9, FZD6, EPYC, 

DIO2 (Table 4.4). We have also checked the top shet score gene list of Cassa et al. but 

none of the gene is found in the top list. 

 

Table 4.4. The most prominent homozygous variants for case II 

 
Gene Variant_Type Change OMIM MGI 

IGSF9 splicing 
NM_020789:exon

20:c.3183-6T 
_ 

“Mice homozygous are viable and fertile but show abnormal 

miniature inhibitory postsynaptic currents and increased 

susceptibility to pharmacologically induced seizures.” 

FZD6 exonic 

FZD6:NM_00131

7796:exon5:c.761

_768del:p.G254fs 

Nail disorder, 

nonsyndromic 

congenital, 10 

“Homozygous mice for one mutation display abnormal hair 

follicle orientation. Another mutation of this gene does not 

appear to result in a phenotype.” 

EPYC splicing 
NM_004950:exon

3:c.166-6T>- 
_ 

“Mice homozygous for a knock-out exhibit short femurs and 

borderline osteoarthritis at 9 months of age.” 

DIO2 splicing 
NM_013989:exon

2:c.223-9->T>T 
_ 

“Mice homozygous for a disruption in this gene display 

elevated thyroxine (T4) and thyroid-stimulating hormone 

levels and changes in the metabolism and excretion of 

iodothyronines.” 
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Table 4.4. The most prominent homozygous variants for case II (cont.) 

 

Gene ExAc GnomAD ExAc Metrix Genic Intolerance 

SIFT   

PolyPhen   

MutTaster 

REVEL                       

M-CAP                  

CADD 

IGSF9  _ 

z = 0.92                      

438.5/399                     

pLI = 0.57                   

41.7/9 

10.44% 

_                             

_                                

_ 

_                             

_                                

_ 

FZD6 _ _ 

z = 0.71                   

209.9/189                    

pLI = 0.00                 

20.2/14 

20.07% 

_                             

_                                

_ 

_                             

_                                

_ 

EPYC _ _ 

z = -1.71                

94.1/128                 

pLI = 0.00                 

11.2/8 

59.92% 

_                             

_                                

_ 

_                             

_                                

_ 

DIO2 _ _ 

z = 0.44                

97.9/89                

pLI = 0.22                

6.8/2 

45.71% 

_                             

_                                

_ 

_                             

_                                

_ 

 

 Text-mining the literature for each remained variant is the first thing to do at this 

stage. Known functions, domains, motifs of each protein; distribution of mutations on the 

gene, associated diseases, their inheritance patterns, exceptions regarding the inheritance 

pattern, overlapping and differentiating symptoms in patient phenotypes were all collected, 

and hypothesis created. Among all, the FZD6 gene was the most significant gene that can 

be associated with the disease even though the mutation does not have high intolerance or 

pathogenicity prediction scores, due to its known association with NCDC10 in the 

literature and the results of MD simulations. 

 

 The available clinical symptoms for the evaluation of the WES results can be listed 

as thickened, hard, shiny, hyperplastic and hyperpigmented, claw-shaped (onycholysis) 

nails on the hands and feet. After the analysis steps that described in the method section 

and deep literature search, the genetic diagnosis we proposed for the patient was Nail 

Dysplasia 10. This diagnosis was confirmed by the clinician as the patient re-examined 

afterward for additional evaluation to determine the clinical fit. 
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 Here, we report a consanguineous Turkish family with three affected individuals 

with homozygous 8 bp deletion mutation, p.Gly559Aspfs*16; 

c.1676_1683delGAACCAGC. The unaffected parents of each child are heterozygous 

carriers for this mutation. This amino acid change creates a premature stop codon at 

position 16 of the new reading frame where 133 amino acid is lost in C-terminus compared 

to native protein. Mutation nomenclature refers to GenBank mRNA reference sequence 

NM_001317796. So far, only two reports have described a small frameshift deletion in the 

FZD6 gene (Kasparis et al., 2016; Mohammadi-asl et al., 2017). Previously, our mutation 

was reported in two other Turkish families with NDNC10, and therefore, this is the third 

Turkish family with the same mutation, indicating that all three families have a common 

ancestor. 

 

 
 

Figure 4.11. Pedigree of a consanguineous Turkish family segregating NCDC10. Circles 

and squares represent females and males, respectively. Clear symbols represent unaffected 

individuals while filled symbols represent affected individuals 
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The mutation was confirmed via Sanger sequencing. The electropherograms of the 

father and mother show their heterozygous state for deletion in the upper panel while the 

index case and her two affected sisters are homozygous for c.1859delC. The arrow 

designates the position of the variant (Figure 4.12.a). 

 

Evolutionary conservation of the disappeared amino acid region in other FZD6 

orthologues was examined using Clustal Omega (Sievers et al., 2014). The potential 

functional significance of the frameshift mutation is supported by the fact that the region is 

quite conserved in several species including human, rat, and mouse. Species abbreviations 

and accesstion numbers are as follows: Species abbreviations are as follows: Hs, Homo 

sapiens; Pt, Pan troglodytes; Ma m, Macaca mulatta; Pa, Pongo abelii; Bt, Bos taurus, Cf, 

Canis lupus familiaris; Rn, Rattus norvegicus; Mm, Mus musculus; Xl Xenopus laevis. 

The accession numbers for the respective proteins are as follows: Hs, NP_003497.2; Pt, 

XP_001156717.1; Mm, NP_032082.2; Pa, XP_009242274.1 ; Cf, NP_001003065.1; Rn, 

NP_001124008.1; Mm, NP_032082.2; Xl, NP_001088182.2 (Figure 4.12.b). The Clustal 

Omega results of the paralogs of FZD6 suggest that both the N- and C-terminal regions are 

highly variable compared to the transmembrane domains. In the light of this fact, we 

deduce that there is an alteration in the interactions partners and thus of variations of 

functions in FZD family proteins. 
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(a) 

 

(b) 

 

Figure 4.12. (a) The electropherograms of the family. (b) Partial amino acid sequence of 

the human FZD6 protein in comparison with orthologues from other species. The mutation 

point of c.1676_1683delGAACCAGC frameshift deletion is indicated by an arrow  
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4.3.1. MD Simulations 

 The crystal structure of FZD6 protein has not yet deposited to Protein Data Bank 

(PDB). Thus, 3D structures of FZD6 protein, including native form and p.Gly559Aspfs*16 

mutation, were modeled via I-TASSER before performing 20 ns MD simulations. As 

displayed in Figure 4.14, mutant protein (FZD6 mutant) displays higher backbone motion 

compared to native one. From beginning of 4th ns through the end of MD trajectory, the 

tendency for increased RMSD is clearly observed and the particular differences in 

backbone responses of native and mutant ones become more apparent within last 5 ns. As 

in line with RMSD patterns, higher RMSF values are observed in FZD6 mutant. 

Especially, Leu253-Cys282, Ala329-Phe380 and His549-Ser571 regions display higher 

RMSF values then the native protein (Fig 4.13). The increased flexibilities in Leu253-

Cys282 and Ala329-Phe380 regions of FZD6 mutant could be explained by the crosstalk 

between these regions from loop structures, closely located to each others (Fig 4.14). 

 

(a) 

 

Figure 4.13. RMSD (a) and RMSF (b) results of modeled FZD6 proteins, native and 

mutant, along 20 ns 
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(b) 

 
Figure 4.13. RMSD (a) and RMSF (b) results of modeled FZD6 proteins, native and 

mutant, along 20 ns (cont.) 

 

 

Figure 4.14. The secondary structure formations in FZD6 mutant displaying higher RMSF 

values compared to native protein 

 



 
 

 

 
78 

 It is also important to notice that KTxxxW motif, considered as significant for FZD 

signaling, is not closely located to these listed regions. Specifically, we focus on the 

flexibilities of residues in KTxxxW motif. As displayed in Figure 4.15, the increase in 

flexibilities of KTxxxW motif has been captured in mutant protein. This particular increase 

in KTxxxW motif could be considered as a part of general trend observed in mutant 

protein with respect to native one. 

 

 

Figure 4.15. Comparison of the flexibilities of residues in KTxxxW motif 

 

 Secondly, the significant salt-bridge interactions for native and mutant proteins are 

evaluated along 20 ns MD trajectory. Due to the existence of p.Gly559Aspfs*16 mutation, 

28 salt-bridge interactions among 89 ones are not existed in the mutant proteins. This 

number corresponds to almost 30% of all salt-bridge interactions, and the loss of this 

portion would be one of reasons behind increased RMSD pattern (Figure 4.13a). Among 
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these 28 salt-bridge interactions, 7 ones are established between C-terminal structure and 

β–sheet structures, being considered as a part of the seven trans membrane-spanning 

receptor (Figure 1.2). Thus, the loss of these particular interactions results in the 

weakening of intramolecular interactions in an obvious way. As displayed in Figure 4.16, 

these salt-bridge interactions are mostly strong, except Glu697-Lys552, to contribute the 

stability of protein in positive manner. 

 

 

Figure 4.16. The salt-bridge interactions loss in FZD6 mutant upon mutation 
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5. DISCUSSION 
 

5.1. Overview 

 

 Rare diseases (RDs) are any kind of diseases that affect a small percentage of the 

population. About 30% are still lacking a diagnostic definition, and the rest can get an 

accurate diagnosis quite late. Molecular diagnosis is the most prominent way to facilitate 

accurate diagnosis and an effective and appropriate treatment for rare undiagnosed cases. 

WES/WGS provides a great potential to develop high-throughput and low-cost platforms 

for clinical diagnostics. Technical hurdles to clinical applications of these methods are 

mainly downstream bioinformatics analysis and causative variant detection. 

 

 This dissertation aims to construct a bioinformatics workflow to diagnose 

undiagnosed patients with a suspected genetic disorder, where other testing modalities 

have been inconclusive or noninformative. More specifically, the objectives were to 1) 

develop a bioinformatics workflow for detection of SNVs/indels 2) develop a variant 

prioritization workflow aiming not to miss the causative variant and also end up with 

manageable number of variants through the selected threshold for population frequency, 

excellent combination of pathogenicity prediction tools and gene intolerance scores 3) 

explain the pathogenicity mechanisms of mutations via molecular dynamics simulations. 

Since the prices of WGS are falling rapidly and turnaround time including data analysis 

can be reduced to a few days, WGS is now started to be considered as an alternative to 

WES. It is important in this regard that our pipeline is also appropriate for WGS. 

 

 The bioinformatics workflows created from the very first step, the WES paired-end 

library files. Trimmomatic was used to remove adapters and low quality (Phred quality 

score <5) bases (Bolger, Lohse, & Usadel, 2014). Further processing was performed 

following the GATK best practice recommendations. Briefly, BWA mem v0.7.12 is used 

to map the trimmed reads to the human reference genome (UCSC GRCh37/hg19) (Li & 

Durbin, 2009) and then Picard tools (v1.141) were used to mark and remove the duplicate 

reads. GATK (v3.4) was used for indel realignment, BQSR, calling variants, joint 

genotyping and VQSR (McKenna et al., 2010). Annovar (v2015-03-22) was used to 
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annotate and filter variations against public databases (dbSNP138, 1000 Genomes Project, 

and ExAC Browser) (Wang, Li, and Hakonarson; 2010).  

 

 Our pipeline outputs three different variant lists with the information of the affected 

and control cases as an input. It outputs three different variant lists; de novo heterozygous, 

homozygous and compound heterozygous variants. Independent from the pedigree 

information, we figure out all variants that are inherited in an autosomal 

dominant/recessive or X-chromosome/Y-chromosome manner. 

 

 The first strategy that we consider to filter the benign variants is their existence in 

the human population at an allele frequency higher than >0.1%. So, variants with a MAF 

of <0.1%, without homozygous carriers in public databases and predicted to affect protein 

coding were taken into consideration. For the intronic alterations, the ones at exon-intron 

boundaries ranging from -10 to + 10 are retained. If no prominent variant is found, then the 

threshold is increased to -40 to +40 (Figure 5.1). To prioritize those rare variants, data 

collected from various sources: ExAC and GnomAD for allele frequencies; MGI for mouse 

phenotypes; CADD, REVEL, M-CAP, PrimatAI, SIFT, Polyphen, and MutationTaster for 

pathogenicity predictions and Pubmed for the literature search. For the splice site 

mutations, four splice site prediction programs were used; Human Splicing Finder, 

NetGene2Server,  Berkeley Drosophila Genome Project-Splice Site Prediction by Neural 

Network and Oriel SpliceView. Instead of expecting the support for the disease-causing 

effect from all of the tools, the information obtained from each tool is taken into account. 
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Figure 5.1. The workflow for filtering large genomic datasets generated from rare 

Mendelian diseases  

 

 After prioritization of the variants via the criteria listed above, we continue with 

text-mining the literature for each remained variant. Finally, we have done MD simulations 

for the most prominent one to compare the wild-type and mutated proteins and predict the 

pathogenicity mechanism of the causative variant. MD is a computer simulation method 

that mimics and monitors the physical movements of several hundreds of atoms and 

molecules in solution with explicit solvent representations on a femtosecond timescale by 

calculating the electrostatic charges. It is a very suitable method for routine clinical 

practice and should be added to the molecular diagnosis pipeline since the time of each 

simulation takes will decrease as computational power in cpu/gpu develops in the near 

future (Teo et al., 2014) and the information obtained with this technique provides very 

significant contributions to the variant pathogenicity as long as it is interpreted by 

experienced scientists. 
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 Finally, the workflow was applied to several undiagnosed cases and their family 

members and successfully prioritized variants and provided the diagnosis. For two of these 

families, the pathogenicity mechanisms of mutations were described via molecular 

dynamics simulations. 

 

5.2. Bioinformatic Analysis, Diagnosis and Functional Impact Prediction of Case I 

 

 The available clinical symptoms for the index case are occipital lobe epilepsy and 

epileptic status in sleep. After the analysis steps that described in the method section and 

deep literature search, the genetic diagnosis we proposed for the patient was FLNA-Related 

Periventricular Nodular Heterotopia. This diagnosis was confirmed by the clinician as the 

patient re-examined afterward. 

 

 The human FLNA protein is a 280 kDa elongated protein composed of an N-

terminus followed by a long rod region (Fig. 1.1). This rod region consists of 24 domains 

(each containing about 96 amino acids) that are separated by a flexible, non-conserved, 25-

residue-long hinge 1 segment; rod 1 (domains 1-15) and rod 2 (containing domains 1-15). 

The other hinge segment is 35-residue-long and stays between the domains 23 and 24 

(Gorlin et al. 1990). FLNA binds to actin through its actin-binding domain located at the 

N-terminus, whereas the C-terminal domain contains the site of homo-dimerization and 

binds to membrane glycoproteins. 

 

 FLNA expression is essential not only for mammalian development (Feng et al., 

2006; Ferland et al., 2006; Hart et al., 2006), but also for development of other organisms, 

such as Dictyostelium (Khaire et al., 2007; Annesley et al., 2007), Drosophila and C. 

elegans (Kovacevic et al., 2010). FLNA-associated PNH is predominantly seen in women 

with difficult to treat seizures. In contrast, hemizygous FLNA mutations in males are 

mostly lethal, and it is assumed that the loss of function mutations in males results in a 

more severe phenotype (Fox et al., 1998; Sheen et al., 2003; Guerrini and Parrini, 2010). 

So far, only nineteen viable males have been reported in the literature (Sheen et al., 2001; 

Parrini et al., 2004; Gerard-Blanluet et al., 2006; Hehr et al., 2006; Kasper et al., 2012; 

Fergelot et al., 2012; Oegema et al., 2013; Oda et al., 2015; Lange et al., 2015; Liu et al., 

2017; Saygı et al., 2018). There are two different scenarios to explain the liveborn males 
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with FLNA mutation: Mosaicism and partial loss of function of the gene. There are several 

reports that revealed the mosaicism with FLNA in males with a classical PNH phenotype 

(Guerrini et al., 2004; Parrini et al., 2004). In addition, mutations in FLNA consistent with 

residual function were reported to cause PNH in males, with a less severe outcome; often 

missense changes, or alleles that only truncate the extreme C-terminus (Parrini et al., 2006; 

Sheen et al., 2001; Sole et al., 2009). Hehr et al. reported a male with splice site mutation 

in FLNA. They showed that the splice site resulted in both normal and aberrant mRNA 

transcripts and this can result by retaining some normal FLNA function (Hehr et al., 2006). 

Oda et al. also reported two boys with a milder phenotype who carry in-frame exome 

skipping of a 4 bp deletion in FLNA (Oda et al., 2016).  

 

 Mutations in FLNA cause several allelic X-linked disorders, not only PNH, but also 

skeletal syndromes like Melnick–Needles syndrome, cardiac valvular dystrophy, chronic 

idiopathic intestinal pseudo-obstruction, FG syndrome, and terminal osseous dysplasia 

(Robertson, et al., 2005; Unger et al., 2007; Sun et al., 2010). Since numerous binding 

partners interact with FLNs, the pathological mechanisms of the diseases are most likely 

attributed to the loss of partner binding or aberrant interactions caused by mutations 

(Robertson et al., 2005). This supports its diverse interactions with many different protein 

networks. The long list of FLNA-interacting proteins supports this point of view (Feng and 

Walsh, 2004).  

 

 Based on the crystal structure of FLNA protein containing domain 3, 4, and 5, it has 

been suggested that the interfaces between domain 3, 4 and 5 are highly conserved, and 

these interfaces are interacting through β-sheet formations, located side by side with each 

other (Sethi et al., 2014). The interaction between domain 3 and 4 is mediated via the 

edges of β-sheets whereas domain 4 and domain 5 interact along three β-sheet formations. 

Compared to the interaction between domain 4 and 5, tighter one is established between 

domain 3 and 4 with polar residues (Sethi et al., 2014). In FLNA protein, Trp582 is 

playing a crucial role to establish the proper interactions between domain 4 and 5. This 

particular domain-domain interaction reported for the crystal structure of FLNA protein, 

domain 3, 4 and 5, is a unique property of the entire Ig superfamily.  

 



 
 

 

 
85 

 Our mutant, R484Q, is located to interaction interface between domain 3 and 4. 

Upon R to Q mutation, the characteristic of the interface as being polar is not altered. 

Based on previous studies, it is concluded that mutation proline or valine to glutamine or 

aspartate has to lead the substantial changes even being in a hydrophobic core by 

destabilizing the individual β-sheet formations.  

 

 Molecular dynamics simulations of FLNA protein including domain 3, 4 and 5, is 

firstly carried out by Sethi et al. along 50 ns MD trajectory, collected at 300 °K as NpT 

ensemble.  This theoretical calculation is performed to validate SAXS data suggesting that 

domain 3 is changing its orientation with respect to domain 4 and domain 5 whose 

interactions remained intact (Sethi et al., 2014). Thermal stability assay performed with 

individual domain has suggested that the presence of domain 5 stabilizes domain 4 

whereas domain 3 does have an additional role to stabilize domain 3 (Sethi et al., 2014). 

 

 In summary, we diagnosed a family PNH in an X-linked dominant transmission 

from a clinically asymptomatic mother to two sons. We detected a novel c. 1451G>A 

change in FLNA exon 10, leading to the substitution of a very conserved amino acid 

(p.R484Q). Arg484 residue is involved in salt-bridge interaction with Glu642 in native 

FLNA protein. With Arg to Gln replacement at 484th position, this particular interaction is 

lost, and it results in the distancing of domain 3 from domain 4 by disrupting the 

stabilization of interface between domain 3 and 4. Together the loss of Arg484:Glu642 

interaction, the Glu499:Arg488 interaction is also weakened; we conclude that 

Arg484:Glu642 interaction in FLNA protein has a role to stabilize the interaction between 

domain 3 and domain 4. Even other salt-bridge interactions existed in interaction 

interphase of domain 3 and domain 4 are conserved; it is not enough to prevent a 

distancing of domain 3 from domain 4. Hence, we consider Arg484 as the most crucial 

residue along with the interaction interphase of domain 3 and 4 for keeping all three 

domain of FLNA protein together. 
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5.3. Bioinformatic Analysis, Diagnosis and Functional Impact Prediction of Case II 

 

 The available clinical symptoms for the index case are thickened, hard, shiny, 

hyperplastic and hyperpigmented, claw-shaped (onycholysis) nails on the hands and feet. 

After the analysis steps that described in the method section and deep literature search, the 

genetic diagnosis we proposed for the patient was Nail Dysplasia 10. This diagnosis was 

confirmed by the clinician as the patient re-examined afterward. 

 

 So far, ten types of NDNC were recorded in the literature, six of which are 

inherited in an autosomal dominant manner. The genes associated with human hereditary 

nail disorders are listed as HPGD, RSPO4, PLCD1, COL7A1 and FZD6 (Khan et al., 

2015). HPGD gene is found to be associated with isolated congenital nail clubbing (OMIM 

119900) and is responsible for the metabolism of prostaglandins. Following irritation or 

injury, arachidonic acid (AA) is released and oxygenated by calcium-dependent enzyme 

systems leading to the formation of prostaglandins. Specifically, prostaglandin E2 is 

readily detectable in equine acute inflammatory exudates. Moreover, both the influx of 

extracellular calcium and mobilization of intracellular calcium are very critical for the 

process of prostaglandin formation (Taylor et al., 1990). Another gene is RSPO4, linked to 

nail disorder, nonsyndromic congenital (NCDC4; OMIM 206800); encodes a secreted 

protein R-spondin 4 with a known role in embryonic development and homeostatic self-

renewal in adult tissues; besides its role in Wnt signaling which has both anti-inflammatory 

and pro-inflammatory functions. PLCD1 is linked to NDNC3 (OMIM 151600); a member 

of the phospholipase C family that regulates homeostasis of the immune system in the skin. 

The lack of PLCD1 protein induces skin inflammation; since the skin of PLCD1 -/- mice 

shows typical inflammatory phenotypes, including increased dermal cellularity, leukocyte 

infiltration and expression of pro-inflammatory cytokines. Moreover, exogenously 

expressed PLCD1 attenuates LPS-induced expression of IL-1b (Ichinohe et al., 2007). 

Another gene related to nail disorders is COL7A1, which the alpha chain of type VII 

collagen that is associated with NDNC8 (OMIM 607523). Mutations in COL7A1 induce 

lifelong severe skin and mucosal blistering followed by scarring, caused by loss of 

adhesion between the epidermis and the dermis. COL7A1 -/- mice also display blisters and 

erosion at sites of trauma, subepidermal blistering, and high postnatal lethality. Finally, 

FZD6 gene is known to be associated with NDNC10 (OMIM 614157). FZD6 is a member 
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of G-protein coupled receptor Class 6. It is the largest member of the FZD family and C-

terminus of FZD3 and FZD6 are longer than the other FZDs. The gene function is defined 

as a negative regulator of the canonical Wnt/beta-catenin signaling. FZD6 signaling was 

shown to activate beta-catenin in a study of patients affected by nail dysplasia. The same 

study reported that Wnt3a signaling causes beta-catenin accumulation in healthy, but not 

FZD6-mutant fibroblasts, indicating a canonical role of FZD6 in this context (Fröjmark et 

al., 2011).  

 

 The common intersection point of all known genes is their association with the 

immune system, specifically innate immunity. Some NCDC patients show inflammation 

problems and all known NDCD associated genes play roles in inflammation (Gattinoni et 

al., 2010; Kuehl & Egan, 1980). The truncation mutation we found was previously 

reported in two other Turkish families, indicating founder effect. The phenotype of the 

affected individuals in our family is very similar to the other two families; except the 

uveitis in the index patient. The diagnosis of uveitis and possible ocular tuberculosis in the 

index patient is noteworthy. Ocular follow-up of our patient will probably help 

differentiate between an autoinflammatory granulomatous process and ocular tuberculosis. 

 

 Limited information is available regarding the interaction of WNT–FZD protein 

families. However, Kilander et al., showed via fluorescence recovery after photo-bleaching 

(FRAP) that recombinant WNT-1, -2, 3A, -4, -5A, -7A, -9B, and -10B affect FZD6 surface 

mobility and thus directly act on FZD6 (Kilander et al., 2014). The loss of interaction 

partners we proposed due to our truncation mutation could mainly be WNT family 

proteins. WNT pathway and innate immunity are also shown to be interrelated. There is an 

interaction among the WNT signaling network, inflammatory cytokines, and innate 

immune signaling pathways (Gatica-andrades et al., 2017). Individual WNT proteins was 

shown to have pro- or anti-inflammatory functions. WNT ligands and WNT/β-catenin 

signaling was found to positively regulate LPS-induced pro-inflammatory cytokines. The 

WNT signaling pathway plays a major role in regulating tolerance versus immunity, 

particularly in DCs, and more (Swafford et al., 2015). Therefore, it is not unexpected that 

immune-related problems are seen in NCDC patients. 
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 Fröjmark et al. were the first to link the mutations in FZD6 gene to autosomal 

recessive nail dysplasia (Fröjmark et al., 2011). They identified two different mutations in 

two large consanguineous Pakistani families. Affected individuals were homozygous for 

missense mutation p.Arg511Cys for one family and homozygous for nonsense mutation 

p.Glu584Ter in the other family. Later, several reports of other patients from Pakistan, 

Iran, and Turkey were reported. Naz et al. reported two more Pakistani families where 

affected individuals were also homozygous for mutation p.Glu584Ter, indicating a 

common ancestor (Naz et al., 2012). Raza et al. also reported another Pakistani family with 

a homozygous p.Gly422Asp; c.1265G>A mutation (Raza et al., 2013). At the same year, 

two other families with new mutations were reported; in one family affected individuals 

were homozygous for missense mutation p.Arg509Ter and in the second family affected 

individuals were compound heterozygous for mutations p.Arg96Cys/p.Glu438Lys (Wilson 

et al., 2013). Moreover, in 2016, homozygous mutation for an 8 bp deletion, 

p.Gly559Aspfs*16; c.1676_1683delGAACCAGC was detected in two Turkish families 

(Kasparis et al., 2016). In 2017, a homozygous 1bp deletion variant, c.1859delC 

(p.Ser620Cysfs*75) was seen in an Iranian family (Mohammadi-asl et al., 2017). To date, 

seven different mutations have been reported in eleven families, including two missense, 

two nonsense, two frameshifts, and one compound heterozygous (Fröjmark et al., 2011; 

Naz et al., 2012; Raza et al., 2013; Wilson et al., 2013; Kasparis et al., 2016; Mohammadi-

asl et al., 2017). Five out of mutations are clustered in the C-terminus, which suggests that 

the C-terminal region could be a mutation hotspot. 

 

 Currently very little is known regarding the structure and function of Frizzled 

receptors. In general, the link between FZDs and heterotrimeric G proteins is a matter of 

discussion in the field. Through mutagenesis studies, it has been revealed that several 

residues in the intracellular loops and the C-terminus of FZDs play critical roles for 

signaling. Specifically, the mutation of the highly conserved internal KTxxxW motif 

between 498th and 503rd positions in the C-terminus or single amino acid changes in the 

first (R340A) or the third (L524A) intracellular loops of, another protein from human FZD 

family, FZD5 completely abolished FZD signaling. The same mutations completely 

ablated the binding of the phosphoprotein DVL and its membrane recruitment by FZD 

(Cong et al., 2004) which is a central player in FZD-induced signal transduction and 

functionally necessary for all FZD signaling pathways (Wallingford et al., 2005; Malbon et 
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al., 2006). PDZ domain of DVL directly binds the KTxxxW motif of FZD (Wong et al., 

2003). 

 

 Also, in general, agonists binding to GPCRs were shown to induce changes in C-

tail conformation that is necessary for activating heterotrimeric G protein (Nie et al., 

2001). Prolonged agonist stimulation catalyzes the phosphorylation of the C-tail, 

promoting arrestin binding, desensitization, and GPCR internalization (Drake et al., 2006). 

Studies utilizing the peptides encoding the C-tail of FZD also suggest alpha-helicity in C-

terminus of the Frizzleds seems a must for efficient protein-protein interaction with DVL 

and other downstream signaling elements (Punchihewa et al., 2009; Lemma et al., 2013). 

Moreover, shortening the C-tail beyond C507 of, another protein from human FZD family, 

FZD5 impaired normal DVL recruitment and the ability of Wnt activator to activate Lef/ 

Tcf-dependent transcription (Cong et al., 2004; Tauriello et al., 2012).  

 

 In terms of experimental studies, the existing knowledge about FZD6 is still 

limited. Fröjmark et al. expressed wild-type and mutant (p.Glu584X and p.Arg511Cys) 

variants of FZD6 fused to green fluorescent protein (GFP) in HEK293T cells. While the 

missense mutation has no or little effect on total FZD6 levels, no expression was detected 

from the nonsense one. FZD6 was shown to be critical for the morphogenesis of hair 

follicles in Drosophila and mice. FZD6 -/- mice are viable and fertile; but among more 

than 100 FZD6 -/- mice examined, all have abnormal macroscopic hair whorls (Guo et al., 

2004). Besides, FZD3 -/- and FZD6 -/- double-mutant mice die within minutes of birth and 

have a mis-oriented pattern of inner-ear sensory hair cells, this points out the role for FZD6 

in planar-cell polarity. According to the same study of Wang et al, FZD6 gene is expressed 

in all sensory hair cells and in many nonsensory epithelial cells in the inner ear (Wang et 

al., 2006). Moreover, Fröjmark et al. reinvestigated the FZD6 -/- mouse model and about 

50% of male knock-out mice, but none of the female mice had absent or abnormal claws 

compared to wild-type mice. To link the expression of FZD6 to early nail development 

they also checked FZD6 expression in mouse embryos at several embryonic days and 

revealed that at E16.5 there was an expression of FZD6 in the epidermis of the digital tip in 

the region corresponding to the developing nail bed and ventral part of the digit (Fröjmark 

et al., 2011). In addition to that, Naz et al. reported a strong expression level of FZD6 in 

the ventral nail matrix and some FZD6 staining in the nail bed (Wilson et al., 2013). 
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 Due to the lack of crystal structure of FZD6, computer-based analyzes of FZD6 is 

also very limited. The first attempt made by Mohammadi-asl, et al. as predicting the 

formation of multiple helical secondary structures in the distal cytoplasmic region of the 

p.Ser620Cysfs*75 mutant protein which does not exist in the normal protein via I- 

TASSER (Roy et al., 2010). Moreover, they used NtePhos 3.1 server and revealed 

pathogenic consequence of the mutation by disturbing the cytoplasmic domain structure 

and signaling through loss of phosphorylation residues (Mohammadi-asl et al., 2017). 

They concluded that the nonsense mutation causes the loss of the distal end of the 

topological domain (amino acids 495-706). This domain mediates Wnt/beta-catenin 

signaling by relocalization and phosphorylation of disheveled proteins. Even though, 

KTXXXW is present, loss of phosphorylation residues and formation of unusual helical 

secondary structures can result in lack of proper response to WNT-3A and WNT-5A 

activation consistent with previous studies (Fröjmark et al., 2011; Naz et al., 2012; 

Mohammadi-asl et al., 2017). 

 

 For the same reason, we performed the homology modeling of native and mutant 

forms of FZD6 protein with I-TASSER. To gain more insight about the impacts of 

mutation on the structure of the protein, we performed 20 ns MD simulations and 

concluded that FZD6 mutant displayed higher RMSD pattern compared to native. This 

result suggests us that the introduction of stop codon to C-terminus, associated with the 

translation of new 15 amino acids upon the frame-shift, results in increased tendency for 

unfolding than native structure with higher backbone motion at 310 °K. This result is also 

supported with RMSF pattern that Leu253-Cys282, Ala329-Phe380, and His549-Ser571 

regions (mutant numbering) are more flexible in FZD6 mutant compared to native one. 

Specifically, His549-Ser571 region (mutant numbering) displays almost ~8-fold more 

flexibility compared to native. Hence, the loss of C-terminus, even being in partial, would 

disrupt the intramolecular interactions and we could end up with unstable protein. It is also 

crucial to notice that the conservation of KTxxxW motif in C-terminus, previously 

suggested as essential for FZD signaling in FZD5 protein, is not enough for FZD6 mutant. 

This fact suggests that the problem in our case can be the loss of structural integrity in 

addition to the loss of signaling region. 
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 Along 20 ns MD trajectory, we also consider the impacts of mutations in terms of 

intramolecular interactions such as salt-bridge formations. Upon this particular mutation, 

almost 30% of salt-bridge interactions are lost. Even explaining protein stability is a 

complex issue, there is a well-known fact in literature that the intramolecular interactions, 

such as salt-bridge formations, are crucial elements for the stability of proteins and their 

positions on 3D structure of protein contribute to its stability in different manners, e.g., the 

salt-bridge formations on protein surface contribute to enzyme stability less than 1 

kcal/mole (Marti et al., 2003) while those buried and positioned on hydrophobic core 

contribute more than 4 kcal/mole (Anderson et al., 1990). The loss of these seven salt-

bridge formations, established with β–sheet structures, considered as a part of the seven 

transmembrane-spanning receptor (Fig 1.1), would adversely affect the protein stability 

and result in its non-functionality. Except for Glu697-Lys552 interactions, these particular 

salt-bridge interactions are strong enough to contribute to the stability of the protein in a 

positive manner. As a well-known fact, entropy is a crucial element of thermodynamic of 

macromolecules to create a favorable environment for protein or substrate binding, 

happened in the signaling pathway. Upon the alterations in entropy of protein with 

negative manner caused by the loss of these salt-bridge interactions, the expected 

interaction(s) of protein would be either lacked or disrupted in FZD6 mutant and this non-

functionality happens. 

 

 In summary, we diagnosed a consanguineous Turkish family with NCDC10 via the 

identification of a homozygous frameshift mutation, p.Gly559Aspfs*16, in FZD6 gene. 

Published functional data of FZD family proteins convincingly demonstrate the importance 

of C-terminus on signal transduction of FZDs. The 8 bp deletion reported 

p.Gly559Aspfs*16 leads to loss of 133 amino acid in C-terminus of FZD6 compared to 

native protein. We propose that the pathogenicity of this frameshift mutation is caused by 

disturbing the C-terminal domain structure and hence interaction partners of FZD6. 
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6. CONCLUSION 
 

 The sequencing technology has become much faster and cheaper since the first 

human genome was sequenced in 2001 at the cost of around US$3 billion. Now, genomes 

can be sequenced for around US$500. As a result, WES/WGS has entered the medical 

practice; they will pave the way not only for precision medicine but also for diagnosis of 

rare disorders, where conventional techniques have failed. WES/WGS was proven to be a 

cost-effective method to detect disease-causing somatic or germline variants, but, it still 

cannot dominate the clinical field. Even though, there are many publicly available 

algorithms for data analysis; they tend to focus on a single aspect and do not provide an 

extensive workflow from start to finish. Also, there are no gold standards for translating 

WES/WGS into clinical knowledge; however, different diseases may require different 

strategies. These are the most critical factors that prevent their widespread usage in the 

clinical field. 

 

 With this study, we have shown that with an effective methodology including 

bioinformatics analysis, variant prioritization and the elucidation of pathogenicity 

mechanisms, patients can reach a rapid and reliable diagnosis. This study carried the 

genetic findings one step further and report the effect of the mutations on protein structure 

and hence the pathogenicity mechanisms. Our pipeline adds to the already existing 

knowledge through the selected threshold for population frequency, excellent combination 

of pathogenicity prediction tools, gene intolerance scores, and MD simulations. MD 

simulation is a very appropriate method that should be added to the workflow due to its 

reliability and ability to be implemented in a shorter time in the near future due to the 

developing computational power in cpu/gpu (Teo et al., 2014). It should be routinely 

performed for molecular diagnoses in addition to WES and WGS. The WES datasets used 

to help establish the bioinformatics methodologies was tested on undiagnosed index cases 

and their family members. Our novel approach achieved a high success rate by identifying 

the causative variant and providing the diagnosis. For two of these families, the 

pathogenicity mechanisms of mutations were described via MD simulations, and these 

findings have been submitted to two different SCI journals and passed the editorial 

approval. 
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