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ABSTRACT

THE FIBERED BURNSIDE RING OF A FUSION SYSTEM

J. S. Reeh, in his PhD thesis [1], described the Burnside ring and its free basis for

the fusion-stable sets. In this thesis we will extend his results for fibered sets. Basically

we will use the same technics J.S. Reeh developed in his thesis and we will show that

these work with little modifications for the fibered case as well. In the end we hope to

provide the reader with a similar description of the fıbered Burnside ring and also to

write a free basis for fusion-stable fibered sets in general.
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ÖZET

FÜZYON SİSTEMLER İÇİN FİBER KÜMELERİN

BURNSIDE HALKASI

J.S.Reeh daha önce doktora tezinde [1] füzyon-değişmez kümeler için Burnside

halkasını ve onun serbest bazını tasvir etmişti. Biz de bu tezde onun elde ettiği bu

sonuçları fiber kümeler için devam ettireceğiz. Temel olarak J.S. Reeh’in tezinde

geliştirdiği teknikleri kullanarak bunların fiber-kümeler durumunda da çok az

değişiklikle çalıştığını göstereceğiz. Sonuçta okuyucuya füzyon-değişmez kümeler için

benzer bir Burnside halkası tasviri sunmayı ve bu halka için genel bir serbest baz

yazmayı umuyoruz.
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1. INTRODUCTION

The thesis will consist of three chapters: the first two, Fibered Sets and Fibered

Burnside Rings, and Fusion Systems will introduce the theory and in the Main Results

we will conclude.

To begin with, we recall that a G−action on a finite set X is a group homomor-

phism G → Aut(X) where AutX denotes the symmetric group on the set X. Such

sets are called G − sets and the maps between G−sets which preserve the G- action

are called G-set morphisms. The isomorphism class of a G−set X is denoted by [X].

We have a natural G-action on the disjoint unions of G− sets and we can define a G−

action on the cartesian products componentwise. Hence, the disjoint unions and the

cartesian products of G−sets have again G-set structures. The irreducible G−sets are

in the form G/P for some P ≤ G and any G-set can be written as a disjoint union of

irreducible G- sets.

The Burnside ring B(G) for a finite group G is known to be an algebraic construc-

tion that encodes the G−action on finite sets. Formally speaking, under the operations

of the disjoint union (written additively) and the cartesian product (written multiplica-

tively) isomorphism classes of G − sets form a semi-ring whose Grothendieck Group

(the set of formal differences) we call the Burnside ring B(G) of G. It is a free abelian

group generated by the irreducible G−sets, that is it is isomorphic to the direct product

of copies of Z over the index set of the isomorphism classes of irreducible G-sets. The

product on the Burnside ring is reflected by Mackey formula in terms of the irreducible

G-sets:

[G/P ][G/Q] =
∑

PgQ∈P\G/Q

[G/P ∩ sQ].

Besides decomposing a G-set into the irreducibles an alternative characterization
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is to determine the number of its fixed points under different subgroups of G. That is

to consider the maps ΦP (X) = |X|P that gives the number of P -fixed (P ≤ G) points

of a G-set X. Each ΦP is a ring homomorphism from the Burnside ring of G into

Z. Compounding all such ring homomorphisms over subgroups P ≤ G we obtain “the

homomorphism of marks” denoted by βG. It is well known that βG maps the Burnside

ring of G injectively into a direct product of copies of Z over P ≤ G as rings. We call

it the ghost ring of G and denote by B(G) . Having multiplication componentwise,

and easier restriction maps these rings are easier for calculations and the injective

homomorphism of marks Φ = (ΦP )P (P ≤ G) provides us with a short exact sequence:

0 // B(G) Φ // B(G) Ψ // Obs(G) // 0

where the obstruction group

Obs(G) =
∏

[P ]G is an G−conjugacy
class of subgroups

Z/(|NGP |/|P |)Z

is the finite cokernel of Φ and Ψ is a group homomorphism.

A useful extension of G−sets in the study of complex, modular and integral group

representations are fibered G-sets. Let A be a fixed Abelian group. We call an A−free

A×G-set with finitely many orbits, an A−fibered G−set. The category of A-fibered

G−sets has finite co-products (disjoint union) and products (tensor products over A)

which are preserved under the isomorphisms. Hence using this semi-ring structure

on isomorphism classes of A-fibered G−sets we get its Grothendieck ring called ”the

monomial Burnside ring for G with fiber group A” by Barker [2], we denote it by

BA(G). In particular if A = 1 then BA(G) = B(G), that is the Burnside ring of G.

We can write BA(G) as a free Abelian group with basis the transitive A-fibered

G−sets. A further description can be given in terms of the A−characters of the sub-

groups V ≤ G; i.e. the group homomorphisms (V, ν) : V → A. If [V, ν]G denotes the

G-conjugacy class of the transitive A-fibered G-set such that V is the stabilizer of a
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fibre Ax, and vx = ν(v)x for all v ∈ V then we can write

BA(G) =
⊕
(V,ν)

Z[V, ν]G

where (V, ν) runs over a complete set of representatives of the isomorphism classes of

the transitive A-fibered G-sets. Here a version of the Mackey formula would describe

the product on the transitive A-fibered G−sets [2]: given A-subcharacters (V, ν) and

(W,ω) of G we have

[V, ν]G[W,ω]G =
∑

V gW∈V \G/W

[V ∩ gW, ν.gω]G

where the product character ν.gω is defined on V ∩ gW in obvious manner. In Chapter

2 we will introduce the basic terms of the theory of the fibered sets following [2] and [3]

and we will write the fibered versions of the ghost ring, the obstruction group and the

integrality conditions we mentioned above. Later in the following chapters our main

objective will be to write these structures for fusion systems.

The concept of fusion in the Finite Group Theory has been introduced by Brauer

in 1950s (cf. [5]). Given any group homomorphism H → A with A abelian we can

define in a canonical way a homomorphism G → A where H ≤ G, called transfer of

G into A via H → A. This transfer map defined on the commutative cosets of the

kernel requires information as to the fusion of g in H, that is information on the orbit’s

elements (conjugates) gG ∩H. This task is accomplished by the normal p-complement

theorems of Burnside and Frobenius, which showed that, under suitable hypotheses on

fusion, G possesses a normal p−complement: for a Sylow-p subgroup S in G we have a

complement normal subgroup N such that NS = G and N∩S = 1. So constructed this

notion of fusion was used by representation theorists to calculate the transfer maps.

Later more complicated results on fusion appeared; e.g. Alperin’s Fusion Theorem

shows that the family of normalizers of suitable subgroups of S control fusion in S,

that is if any pair of elements of S which are conjugate in G are also conjugate under

H.
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In nineties Puig [6] described this notion of fusion in a more abstract setting in

terms of category theory. Let p be a fixed prime number, G be a finite group with a

Sylow p-subgroup S, then the subgroups P ≤ S with isomorphisms P → S induced

by the conjugations in G form a category. Puig abstracted this category by dropping

the ambient group G and instead asserting axioms on the morphisms of the category,

satisfied in particular by the above one. This abstract category was called “Frobenius

category” by Puig. Later in 2000s, Broto-Levi-Oliver [4] following Puig refined this

notion furthermore and provided axioms of what we call today a “fusion system ” over

a p-group S.

By further axioms on the morphisms and objects of a fusion system, one can have

a more concrete structure on which we can imitate/emulate Sylow theory. Such fusion

systems are called “saturated”, which in fact coincides with the original construction

of the Frobenius Category of Puig.

So constructed in categorical terms the theory of fusion systems is quite a new

theory and the main task of the fusion theorists at the beginning was to extend the

primary results on fusions in group theory (such as mentioned above the normal p-

complement theorems of Burnside and Frobenius or Alperin’s fusion theorem) to the

categorical setting. So for example a correspondent of Alperin’s Theorem above would

state that FS(G) is generated/determined by automorphism groups of certain sub-

groups of S. Nevertheless we should note that its usage and importance is not limited

to the representation theory. In fact, Puig created Frobenius categories as a tool for

the modular representation theory but later homotopy theorists like Broto, Levi and

Oliver [4] applied Puig’s ideas to p-completed classifying spaces BG∧p of finite groups

(i.e. a space which allows us to focus on the properties of the classifying space BG “at

the prime p”). Actually, it turned out that there is a close connection between the ho-

motopy theoretic properties of the p-completed classifying space BG∧p for a finite group

G and the structure of its fusion system over a Sylow p-subgroup S: two p-completed

classifying spaces BG∧1p, BG
∧
2p are conjectured to be homotopy equivalent if and only

if their fusion systems are equivalent as categories.
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In Chapter 3 we will provide the reader with a short introduction to the theory

of fusion systems. Besides the basics of the theory we will introduce the concept of

F−modules and in terms of them we will write the fibered Burnside and ghost rings

of a fusion system and the mark homomorphism between them. Later in the main

results we will also define the fibered obstruction group for F and will show that it is

the cokernel of the mark homomorphism.

As mentioned in the abstract our main objective will be to generalize S. P. Reeh’s

results on the Burnside ring of fusion stable S-sets for fibered S-sets over a commutative

group A. S.P. Reeh (2015) [1] extended the short exact sequence on p.2 for the fusion

systems, that is we have an injective ring homomorphism with finite cokernel from the

Burnside ring of a fusion system into a direct product of the copies of Z as rings, and he

showed that the Burnside ring has a free basis consisting of the irreducible F−stable

sets. The details how Reeh constructs these irreducible sets are a little bit technical to

mention here but we will exclusively benefit from his ideas in our own problem with

slight adaptations for fibered sets.

Before moving on let us recall restriction and conjugation maps on Burnside and

ghost rings. We will need them in defining the fusion stable elements. If H ≤ G we

have in general a ring homomorphism ResGH : B(G)→ B(H) defined by

ResGH([G/P ]G) =
∑

HgP∈H\G/P

[H/H ∩ gP ]H .

Similarly, if H ≤ G we have a ring homomorphism ResGH : B(G)→ B(H) defined

by ResGHf(P ) = f(P ) for P ≤ H.

On the other hand if F is a fusion system over a p-group S and if φ : H → K is

an isomorphism in F we can define another ring homomorphism cφH : B(H) → B(K)

by cφH([H/P ]H) = [K/φ(P )]K for P ≤ H.
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Similarly we define cφH : B(H)→ B(K) by cφH(f)(P ) = f(φ−1(P )) for P ≤ K.

We say that an S−set X is F -stable if it satisfies the condition cφH ◦ ResSH(X) =

ResSK(X) for any H ≤ G and for all isomorphisms φ : H → K in F .

We know that F -stable elements in B(S) form a semiring, by taking its

Grothendieck group we obtain a subring of B(S) which we call the Burnside ring of

the fusion system F . We will denote it by B(F). Similarly we can obtain a ghost

ring of F which consists of F -stable functions in B(S). We denote it by B(F).

S.P. Reeh showed that if F is a saturated fusion system over a p-group S then

the underlying abelian group of B(F) is a free group over the F−conjugacy classes of

subgroups of S and by restricting the mark homomorphism βG to B(F) we obtain a

short exact sequence:

0 // B(F)
βF //B(F) π // Obs(F) // 0

where βF is the restriction of βG and π : B(F) → Obs(F) is a group homomorphism

onto the group Obs(F); i.e. the cokernel of βF . We call Obs(F) the obstruction group

of F .

In the final chapter of the thesis we will continue the concept of fibered Burnside

ring to saturated fusion systems as Reeh did for G−sets. The first two sections will

introduce the necessary terms to adapt Reeh’s original idea to fibered sets and we will

prove some basic facts on them. In the final section we will conclude like Reeh by

giving a proof of the fact that fibered version of the Burnside ring of a fusion system

is also free on the F -conjugacy classes of the transitive A-fibered sets.

A possible continuation of the thesis could be the calculation of the idempotents

of the fibered Burnside ring using its embedding in the relatively simpler ghost ring

of F where they amount to be characteristic functions on F−conjugacy classes of the

coordinates.
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2. FIBERED SETS and FIBERED BURNSIDE RINGS

This chapter will consist of two sections. In the first we will introduce fibered

permutation sets besides some notation and preliminaries of the theory which we will

use in the latter chapters. We will first define the fibered Burnside ring and then will

introduce the generalized fixed points and define the mark homomorphism and the

ghost ring in terms of them. At the end of 2.1 we will give the fibered versions of the

integrality conditions we mentioned in the introduction. A proof of them will be given

at the end of the second section.

In Section 2.2 we will follow R. Boltje [3] to write the theory in a more general

setting which can be interesting for the reader. In the first section we will write the

fibered Burnside ring as a functor BA from the category of the subgroups of G into

the category of Ring. In this setting we will write Boltje’s proof of the integrality

conditions in particular for the fibered sets.

2.1. Fibered permutation sets

In this section we review the construction of fibered Burnside rings which can

also be found in [7], [2], [8] or [9] with further details.

2.1.1. Fibered Burnside Ring

Let G be a finite group and A be an abelian group. We construct the product

A × G = {ag : a ∈ A, g ∈ G}. An A-free A × G-set with finitely many A-orbits is

called an A− fibered G− set where A-orbits are called fibers. We can use a finite set

X/A of representatives of fibers to express an A-fibered G-set in the form AX, which

can be seen as a collection of the fibers Ax, x ∈ X/A.

Given A-fibered G-sets X and Y , an A × G-equivariant function f : X → Y is

called a morphism of A-fibered G-sets. Together with these morphisms the class of all
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A-fibered G-sets becomes a category, denoted by GsetA

For A-fibered G-sets X and Y the coproduct X+Y is defined to be the A-fibered

G-set of the disjoint union XtY . We denote the Grothendieck group of GsetA (i.e. the

group generated by the formal differences of isomorphism classes [X]− [Y ]) by BA(G)

and call it the A-fibered Burnside group of G. An A-fibered G−set is called transitive

if the G − action on A-orbits is transitive. We can decompose any fibered set into

a sum of the transitive A-fibered G-sets. Hence the fibered Burnside group is freely

generated by the isomorphism classes of the transitive A-fibered G-sets. To understand

the latter sets we need to talk in terms of group homomorphisms (H, λ); λ : V → A,

called A − subcharacters of G. Given an A-subcharacter (H, λ) a G-action is given

by g(H, λ) = (gH, gλ) for g ∈ G. We denote by [H, λ]G the isomorphism class of a

transitive A-fibered G-set such that H is the stabilizer of the fibre Ax and hx = λ(h)x

for all h ∈ H where x ∈ X/A. We call (H,λ) a stabilizing pair for [H,λ]G. Note that

any other stabilizing pair for [H,λ]G is conjugate to (H,λ) since [H,λ]G = [K,κ]G if

and only if g(H, λ) = (K,κ) for some g ∈ G, moreover every transitive set is in that

form. We denote the set of all pairs (H,λ) with H ≤ G and λ ∈ Hom(H,A) by MA
G.

The group G acts on MA
G and we write MA

G/G for a complete set of representatives

of G-conjugacy classes in MA
G. With this notation, MA

G/G forms a free basis for the

fibered Burnside group BA(G), that is, we have

BA(G) =
⊕

(H,λ)∈MA
G/G

Z · [H, λ]G.

Elements of BA(G) are called virtual A-fibered G-sets and given such an element

X, we have the following coordinate decomposition of X with respect to the above

basis.

X =
∑

(H,λ)∈MA
G/G

cH,λ(X) · [H,λ]G
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On the other hand A acts diagonally on the cartesian product :a(ξ, η) = (aξ, a−1η)

for any a ∈ A, (x, y) ∈ X × Y .we denote by X ⊗ Y the se set of the orbits ξ ⊗ η. The

product XY of the A-fibered G−sets is defined to be the tensor product X ⊗ Y with

the A × G-action ag(ξ ⊗ η) = agξ ⊗ gη. It is a well-defined product on BA(G). For

two basis elements [H,λ]G, [K,κ]G in BA(G), the product becomes

[H, λ]G · [K,κ]G =
∑

x∈[H\G/K]

[H ∩ xK,λ|H∩xK · xκ|H∩xK ]G

where [H\G/K] denotes a complete set of double coset representatives of H and K

in G. We call this Mackey product formula. Together with this multiplication, BA(G)

becomes a commutative associative ring with identity [G, 1]G. It is called the A-fibered

Burnside ring of G. After identifying the isomorphism class [G/H] of a transitive G-set

with stabilizer H and the basis element [H, 1]G, the A-fibered Burnside ring extends

the Burnside ring B(G).

At last we will try to visualize fibered sets over a simple example, namely C-

fibered sets on the dihedral group D8 of order 8. We will later return to this example

in the following chapters when we introduce the fusion systems on D8.

Example 2.1 (C-fibered D8-sets). D8 can be embedded in the symmetric group S4 by

taking the generators x = (13) and a = (1234). It has three normal subgroups of order

4: two Klein 4-subgroups V1 = {e, ax, a2, a3x} and V2 = {e, x, a2, a2x} and a cyclic

subgroup C4 = {e, a, a2, a3}. Moreover each Klein 4-group contains two subgroups of

order 2 which are D8-conjugate: C1
2 = {e, ax} ∼D8 C

2
2 = {e, a3x} ≤ V1 and C3

2 =

{e, x} ∼D8 C
4
2 = {e, a2x} ≤ V2 and the center of D8, Z = Z(D8) = {e, a2} is the other

subgroup of order 2.
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A character table for D8 is given as follows (cf. [10, Ch. 5]):

ak xak

ψ1 1 1

ψ2 1 −1

ψ3 (−1)k (−1)k

ψ4 (−1)k (−1)k+1

for k = 1, 2, 3, 4. So we write Hom(D8,C) = {ψ1, ψ2, ψ3, ψ4}.

On the other hand, in general for cyclic groups Cn we have n irreducible repre-

sentations of degree 1 whose characters χ0, . . . χn−1 are given as χh(a
k) = e2πihk/n [10,

Ch.5]. Hence Hom(C4,C) = {χ0, χ1, χ2, χ3}. It also follows that for Klein 4−subgroups

Vi, being the direct product of its cyclic subgroups the character tables are given by

V1 e ax a2 a3x

ψ5 = 1 1 1 1 1

ψ6 = ψ2|V1 1 −1 1 −1

ψ7 1 1 −1 −1

ψ8 1 −1 −1 1

V2 e x a2 a2x

ψ9 = 1 1 1 1 1

ψ10 = ψ2|V2 1 −1 1 −1

ψ11 1 1 −1 −1

ψ12 1 −1 −1 1

Hence, considering D8-conjugacies (V 1, ψ7) ∼D8 (V 1, ψ8), (V2, ψ11) ∼D8 (V2, ψ12),

(C4, χ1) ∼D8 (C4, χ3) and similarly conjugacies for characters of Ci
2, we have a whole

list of the isomorphism classes of C−fibered D8-sets, or the C-fibered Burnside ring of

D8 :

BC(D8) =
4⊕
i=1

Z[D8, ψi]D8 ⊕
7⊕
i=5

Z[V1, ψi]D8 ⊕
11⊕
i=9

Z[V2, ψi]D8⊕

2⊕
i=0

Z[C4, χi]D8 ⊕ Z[C1
2 , 1]D8 ⊕ Z[C1

2 , ψ2|C1
2
]D8 ⊕ Z[C3

2 , 1]D8⊕
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Z[C3
2 , ψ2|C3

2
]D8 ⊕ Z[Z, 1]D8 ⊕ Z[Z, χ1|Z ]D8 ⊕ Z[1, 1]D8 .

2.1.2. Integrality Conditions for fibered sets

A ghost ring of a group G is in general the codomain of the mark homomorphism

which we will define in the following as an embedding of the Burnside ring. Having a

componentwise product and simpler restrictions the ghost ring has a simpler structure

to study G-sets, e.g. the idempotents of the Burnside ring will appear in the form (ai)

with ai = 0, 1 in the ghost ring. The embedding is subject to some modularity, or

integrality conditions which we calculate by the cokernel of the mark homomorphism

for the Burnside group. We call this cokernel the obstruction group of G.

A ghost ring for fibered Burnside groups together with a mark homomorphism

is introduced by Boltje [8]. Actually he introduced plus constructions which include

fibered Burnside groups as a special case. We will recall basic definitions together with

Boltje’s integrality conditions. Later we will deal Boltje’s construction with more detail

in Section 2.2 and will give Boltje’s proof of the integrality conditions at the end of the

chapter.

For any finite group G, we denote by BA(G) the ring of functions MA
G → Z

which are constant on G-conjugacy classes. As an abelian group, BA(G) has a basis

consisting of characteristic functions χGH,λ of conjugacy classes of pairs (H,λ) ∈ MA
G

and hence there is an isomorphism of rings

BA(G) ∼=
∏

(H,λ)∈MA
G/G

Z

where the right hand side is a ring under coordinate-wise multiplication. Given any

function f ∈ BA(G), we write

f =
∑

(H,λ)∈MA
G/G

f(H,λ)χ
G
H,λ
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where we put f(H,λ) = f((H,λ)).

In order to introduce mark homomorphism, we first consider generalized fixed

points. Given an A-fibered G-set X and let (H, λ) ∈MA
G. We define the set X(H,λ) of

(H,λ)-fixed points in X as the set

X(H,λ) = {x ∈ X | g · x = λ(g) · x for all g ∈ H}.

It is clear that X(H,λ) is an A-fibered H-set via restriction of the G-action on X and

moreover its class [X(H,λ)] in BA(H) satisfies

[X(H,λ)] = cH,λ(ResGHX) · [H,λ]H .

We write βH,λ(X) for the number of A-orbits in the A-fibered H-set X(H,λ), that is

the coefficient cH,λ(ResGHX) at the basis element [H,λ]H . Note that if (K,κ) ∈MA
G is

G-conjugate to (H,λ), say (K,κ) = g(H,λ) for g ∈ G, then the function

X(H,λ) → X(K,κ), x 7→ g · x

is a bijection. In particular βK,κ(X) = βH,λ(X).

With this notation the assignment [X] 7→ ((H,λ) 7→ βH,λ(X))(H,λ)∈MA
G

extends

linearly to a map βG : BA(G)→ BA(G), called ‘the mark homomorphism’. Hence βG

is a ring homomorphism and given x ∈ BA(G), we write

βG(x) =
∑

(H,λ)∈MA
G

βH,λ(x) · χGH,λ.

In Section 2.2 we will see by [8, Prop.2.4] that we have an almost inverse morphism to

βG and we will see that the mark morphism is injective.



13

Finally, MA
G is a partially ordered set with respect to the following ordering:

(L, µ) ≤ (H, λ) iff L ≤ H and λ|L = µ.

Integrality conditions for fibered sets in terms of our definitions will be

Proposition 2.2. [3, Theorem 2.2] Let

f =
∑

(K,ψ)∈MA
G/G

f(K,ψ)χ
G
K,ψ ∈ BA(G).

We have that f ∈ im(βG) if and only if for every (H,φ) ∈MA
G/G one has the congru-

ence

∑
(H,φ)≤(I,σ)∈MA

NS(H,φ)

µH,I .f(I,σ) ≡ 0 mod[NS(H,φ) : H]

in Z where µ denotes the Möbius function of the partially ordered set of subgroups of

G; and NS(H,φ) = {s ∈ S|s(H,φ) = (H,φ)} is the stabilizer of the pair (H,φ) in S.

A proof of this proposition besides the calculation of the cokernel of the mark

homomorphism will be given at the end of the next section after we introduce the

restriction functors.

2.2. Restriction Functors

In this section we will see Burnside ring in a more abstract setting as restriction

functor [3] and at the end we will adopt Boltje’s proof of the integrality conditions for

Proposition 2.2.
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2.2.1. Burnside ring as restriction functor

For each subgroup H ≤ G we have the ring of subcharacters A(H) = Z{ν : H →

A}. Conjugation cgH(ν) = gν and restriction ResHI (ν) = ν|I to I ≤ H furthermore

satisfy the axioms:

• chH = ResHH = idA(H) for h ∈ H

• ResIJ ◦ ResHI = ResHJ , cg
′
gH ◦ c

g
H = cg

′g
H ,

• cgI ◦ ResHI = Res
gH
gI ◦

g
H ,

for all J ≤ I ≤ H ≤ G, h ∈ H and g, g′ ∈ G. Such a family of the rings A(H) is called

a (Z−) restriction functor on G [3].

Then in terms of the above definitions, we will show below that the generalized

Burnside ring of G will be the family of rings

A+(H) =
( ⊕
K≤H

A(K)
)
H

for H ≤ G, where
⊕

K≤H A(K) is a ZH− module under the action of conjugations chK ,

K ≤ H, and for any kH-module M , MH = M/〈m− hm | m ∈ M,h ∈ H〉 is the ring

of H-cofixed points of M . We will write (H,λ) ∈ A(H) to denote the subcharacter

(λ : H → A) ∈ A(H) like a stabilizing pair when there is no confusion.

This module has the ring structure with the multiplication of fibered sets or in

case of transitive sets, the Mackey formula:

[K, a]H .[L, b]H =
∑

KhL∈K\H/L

[K ∩ hL,ResKK∩hL(a).Res
hL
K∩hL(hb)]H .

Before moving on let’s show that the generalized Burnside ring for G we defined
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above actually coincides the main definition we gave at Section 2.1:

BA(G) =
⊕

(H,λ)∈MA
G/G

Z · [H,λ]G.

Proposition 2.3. BA(G) and A+(G) are isomorphic as rings.

Proof. We define a ring homomorphism f : BA(G)→ A+(G) on the basis elements by

the rule

[H,λ]G ∈ BA(G) 7→ (H,λ) + 〈X − gX : X ∈ ⊕I≤GA(I), g ∈ G〉 ∈ A+(G).

For simplicity, let us write X = 〈X−gX : X ∈ ⊕I≤GA(I), g ∈ G〉. One can then easily

check that f is well-defined; i.e (K,κ) ∼G (H, λ) in MA
G then [H,λ]G = [K,κ]G and

(H,λ) + X = (K,κ) + X in A+(G) as co-fixed points. Moreover f is an isomorphism

since (H,λ)− (K,κ) ∈ X only if (H,λ) = g(K,κ) as fibered sets, or [H,λ]G = [K,κ]G

and it is surjective as the conjugacy classes f([H,λ]G) = (H, λ) +X ∈ A+(G) generate

all co-fixed points.

Henceforth we will also denote by [K, a]H the isomorphism class of an element

a ∈ A(K) in BA(H). Besides the multiplication we defined above, the conjugation

g[K, a]H = [gK, ga]gH by g ∈ G and the restriction

ResHI ([K, a]H) =
∑

IhK∈I\H/K

[I ∩ hK,Res
hK
I∩hK(ha)]I

for I ≤ H ≤ G satisfy the above axioms. Hence the Burnside ring BA is a restriction

functor on G.
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2.2.2. Mark Homomorphism

As mentioned before, in a dual way we can obtain a more manageable image of

the Burnside ring. The H−fixed points

A+(H) =
( ∏
K≤H

A(K)
)H

for H ≤ G form a restriction functor with the componentwise multiplication, the

conjugation g(aK)K≤H = (gaK)gK≤gH and the restriction :

ResHI (aK)K≤H = (aK)K≤I .

This functor is called a generalized ghost ring of G. We will show below that the

A−fibered ghost ring BA(G) we defined in Section 2.1 and A+(G) are isomorphic as

rings:

Proposition 2.4. BA(G) and A+(G) are isomorphic as rings.

Proof. We define a ring homomorphism φ : BA(G) → A+(G) by sending the charac-

teristic functions

χGH,λ ∈ BA(G) 7→ φ(χGH,λ) =
( ∑
κ:K→A

aK,κκ
)
K≤G

∈ A+(G)

where

aK,κ =

 1 if [K,κ]G = [H,λ]G

0 otherwise

We first check whether the image φ(χGH,λ) is a G-fixed point:

g
( ∑
κ:K→A

aK,κκ
)
K≤G

= g
( ∑
κ:K→A

χGH,λ(K,κ)κ
)
K≤G

=
( ∑
κ:K→A

χGH,λ(K,κ).gκ
)
gK≤G

=
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( ∑
κ:K→A

χGH,λ(
g−1

K, g
−1

κ)κ
)
K≤G

=
( ∑
κ:K→A

χGH,λ(K,κ).κ
)
K≤G

=
( ∑
κ:K→A

aK,κκ
)
K≤G

since χGH,λ is constant on conjugacy classes.

Then we check that φ is injective: for any f =
∑

(K,ψ)∈MA
G/G

f(K,ψ)χ
G
K,ψ ∈ BA(G),

φ(f) = (
∑

κ:K→A fK,κκ)K≤G = 0 implies that
∑

κ:K→A fK,κκ = 0 for each K ≤ G. This

in turn implies that fK,κ = 0 since the characters κ : K → A are linearly independent

in the group ring A(K). Hence f = 0.

Finally, φ is surjective since any G-fixed point a = (aK)K≤G ∈ A+(G) sat-

isfies gaK = agK where aK =
∑

κ:K→A fK,κκ for some fK,κ ∈ Z. Now we define

f =
∑

(K,κ)∈MA
G/G

f(K,κ)χ
G
K,κ ∈ BA(G) and φ(f) = a as desired.

One can obtain an image of the fibered Burnside ring in its ghost ring by the

mark homomorphism. It is a natural transformation β : BA → BA defined as

βH = (πK ◦ ResHK)K≤H : BA(H)→ BA(H)

where πK : BA(K)→ A(K) is the projection map:

[L, a] 7→

 a if L = K

0 if L < K

It is easy to see that βG coincides with the mark morphism introduced in Section

2.1; i.e. we have the equality

πH ◦ ResGH [P, a]G = πH

( ∑
HgP∈I\H/K

[H ∩ gP,Res
gP
H∩gP (ga)]H

)



18

=
∑

λ:H→A

βH,λ([P, a]G))λ ∈ A(H)

where we recall from Section 2.1 that βH,λ([P, a]G)) is the coefficient of ResGH [P, a]G at

the basis element [H, λ]H .

Conversely, for each H ≤ G there is a natural transformation σH : BA(H) →

BA(G) for each H ≤ G :

(aK)K≤H 7→
∑

L≤K≤H

|L|µL,K [L, aK |L]H

where µL,K is the Mobius function of the partially ordered set of subgroups of G

evaluated at (L,K). It is almost an inverse to βH [8, Prop.2.4]:

σH ◦ βAH = |H|idBA(G) and βAH ◦ σH = |H|idBA(G).

Since BA(G) is a free abelian group, or it has trivial |G|−torsion this proves at once

that the mark homomorphism βG is injective as we mentioned in the previous section.

Using the functor σ we will also be able to write the integrality conditions for the

image of the Burnside ring in BA(H) for H ≤ G. To begin with we must introduce

some terms to express them.

The collection B = (BH)H≤G of sets with BH = Hom(H,A), the canonical basis

of the group ring A(H), is in general called a G− stable basis of BA since it satisfies

that gBH = BgH . We note that with our choice of BH we have {ψ|H : ψ ∈ BG} ⊂ BH
for H ≤ G.

We can associate with them the sets

MH = {(K,ψ) | K ≤ H,ψ ∈ BK}
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for H ≤ G. We note that the setsMG actually coincide with the setsMA
G we introduced

in Section 2.1,MG is a G-set as before by the conjugation of A-subcharacters g(K,ψ) =

(gK, gψ). With this basis we can write the restriction of characters as projection maps

ResHK(φ) = ψ = φ|K ∈ BK .

As in Section 2.1 we can furthermore order the A-characters in the basis MG with

respect to the partial ordering

(K,ψ) ≤ (H,φ)⇐⇒ K ≤ H and φ|K = ψ.

With this notation the elements of the ghost ring can be written in the form:

f =
( ∑
ψ∈BK

fK,ψ.ψ
)
K≤H

with unique coefficients satisfying fK,ψ = fhK,hψ for all (K,ψ) ∈MH and h ∈ H. Thus

as in previous section we may see the ghost ring as the set of functions f :MH → Z

that are constant on H-orbits. Hence in particular it is a free abelian group. [3]

In the sequel we will write the integrality conditions of the Burnside ring of G

and its cokernel, the obstruction group.

2.2.3. A Proof of the Integrality Conditions

In this section we will follow [3] to give a necessary and sufficient condition for an

element f ∈ BA(G) to be in the image of the mark homomorphism. In the following

we denote by NG(H,φ) the stabilizer of (H,φ) in G as in Section 2.1.

Proposition 2.5. [3, Theorem 2.2] An element f =
(∑

ψ∈BK fK,ψ.ψ
)
K≤G ∈ BA(G) is

in the image of the Burnside ring, i.e. f ∈ im(βAG) if and only if for every (H,φ) ∈MG
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and one has the congruence:

∑
(H,φ)≤(I,ψ)∈MNG(H,φ)

µH,IfI,ψ ≡ 0 mod [NG(H,φ) : H].

Proof. Here we adopt R. Boltje’s original proof at [3, 2.2 Theorem ], we make little

changes to suit our case in particular. Let x ∈ BA(G) and f = βG(x). We know

that βG commutes with restrictions;i.e ResSPβS = βP res
S
P for P ≤ S and moreover

σQβQ = |Q|idBA(S) where Q = NG(H,φ). We have

|Q|ResGQ(x) = σQ(βQ(ResGQ(x))) = σQ(ResGQ(βG(x))) = σQ(ResGQ(f)) =

∑
L≤I≤Q

|L|µL,I
∑
ψ∈Î

fI,ψ[L, ψ|L]Q =
∑

(L,λ)≤(I,ψ)∈MQ

|L|.µL,IfI,ψ[L, λ]Q.

Now [L, λ]Q = [H,φ]Q if and only if (L, λ) is Q−conjugate to (H,φ) or (H,φ) = (L, λ).

Hence the coefficient of the basis element [H,φ]Q at the right hand side becomes

∑
(H,φ)≤(I,ψ)∈MQ

|H|.µH,IfI,ψ.

Comparing this with the left hand side proves the necessary part of the condition.

Conversely, let Sf = {(K,ψ) ∈ MG | fK,ψ 6= 0} be the support of f . If Sf is

not empty set we set m(f) := max{|K| |(K,ψ) ∈ Sf} otherwise if Sf is empty we

set m(f) = 0. We will prove by induction on m(f) that f ∈ im(βG) if it satisfies

the integrality condition in the proposition. If m(f) = 0 then f = 0 ∈ im(βG). Now

let’s assume that m(f) > 0 and take a stabilizing pair (Hi, φi) i = 1, . . . , n for each

G-conjugacy classes [Hi, φi]G ⊂ Sf with |Hi| = m(f). The integrality condition implies

that fHi,φi = αi[NG(Hi, φi) : Hi] for some αi ∈ Z. Now

f ′ = f −
n∑
i−1

αiβG([Hi, φi]G).
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By definition of the mark homomorphism (βG[Hi, φi]G)(K,ψ) = 0 for all m(f) < |K|

and on the conjugacy class of (Hi, φi) it takes the value αi[NG(Hi, φi) : Hi]. Hence

m(f ′) < m(f). Since both f and the sum
∑n

i−1 αiβG([Hi, φi]G) satisfy the integrality

condition in the proposition, by induction hypothesis we conclude that f ′ ∈ im(βG)

and hence f is in the image too as desired.

In the next proposition we’ll determine the cokernel for the mark homomorphism,

we begin by introducing the necessary terms. We set M∗
G = {(H,φ) ∈ MG | H <

NG(H,φ)}. SinceM∗
G is stable under G−action and the conditions in Proposition 2.5

are equivalent for conjugate pairs, it suffices to check the conditions for a set RG of

representatives of the G-conjugacy classes inM∗
G. We will see that these conditions for

RG are minimal. Before we give the proposition we need to define the following map

into the cokernel: For each (H,φ) ∈MG we set the projection maps

πH,φ : BA(G)→ Z/[NG(H,φ) : H]Z

by the rule

( ∑
ψ∈BK

fK,ψ.ψ
)
K≤G

7→
∑

(H,φ)≤(I,ψ)∈MNG(H,φ)

µH,I .fI,ψ + [NG(H,φ) : H]Z.

We note that πg(H,φ) = π(H,φ) for g ∈ G, (H,φ) ∈ MG and we denote by π =

(πH,φ)(H,φ)∈RG the product of the projection maps into the fibered obstruction group

of G:

ObsA(G) =
⊕

(H,φ)∈RG

Z/[NG(H,φ) : H]Z.

Proposition 2.6. [3, Proposition 2.4] With the above notation one has the short exact

sequence

0 −→ BA(G) −→ BA(G) −→ ObsA(G) −→ 0
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where the middle maps are the mark homomorphism βG : BA(G) → BA(G) and the

projection map π : BA(G)→ ObsA(G).

Proof. Here we adopt R. Boltje’s original proof for [3, 2.4 Proposition]. We already

know that βG is injective. On the other hand we also know by the integrality conditions

in Proposition 2.5 that f ∈ im(βG) if and only if π(f) = 0. Hence we only need to

show that π is surjective.

We define functions eH,φ ∈ ObsA(G) by

eH,φ(K,ψ) = 1 + [NG(H,φ) : H]Z

if and only if (K,ψ) = (H,φ) ∈ RG and 0 otherwise. These functions form the canonical

basis of the obstruction group ObsA(G). Hence we will prove by induction on |H| that

the functions eH,φ ∈ im(π) for each (H,φ) ∈ RG. If |H| = 1 then π(χG(1,1)) = e1,1

where the stabilizing pair (1, 1) denotes the trivial character on the trivial group 1.

Now let (H,φ) ∈ RG with |H| > 1. By definition we have πK,ψ(H,φ) = 0 unless

(K,ψ) ≤ g(H,φ) for some g ∈ G. Moreover, πH,φ(χGH,φ) = 1 + [NG(H,φ) : H]Z. Hence

eH,φ − πH,φ(χGH,φ) has nonzero components only for (K,ψ) ∈ RG with |K| < |H|.

Therefore by induction eH,φ−πH,φ(χGH,φ) ∈ im(π) and hence eH,φ ∈ im(π) as desired.
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3. FUSION SYSTEMS

3.1. Preliminaries on fusion systems

In this chapter we will generalize the fibered Burnside ring for fusion systems

and then in the final chapter we will conclude by writing the fibered version of the

integrality conditions we gave at Chapter 2.

Let p be a prime number and S be a finite p-group. In this section we introduce

(saturated) fusion systems over S together with their representations. If G is any

group and P,Q ≤ G we denote by HomG(P,Q) the set of all injective homomorphisms

φ : P → Q induced by conjugations in G.

Definition 3.1. Let F be a category where the objects are subgroups of S and if

P,Q ≤ S then HomF(P,Q) is a set of injective group homomorphisms containing the

set HomS(P,Q) together with the composition given by composition of homomorphisms.

Then F is called a fusion system over S if any morphism in F is a composition of an

isomorphism in F followed an inclusion.

Let F be a fusion system over S and let P ≤ S. In F , every morphism φ : P → P

must be an isomorphism. Hence the set of endomorphisms of P in F consists only of

automorphisms of P . We denote the group of automorphisms of P in F by AutF(P ).

Since conjugation by elements of S is always contained in F , the group AutS(P ) of

automorphisms of P induced by conjugations in S is a p-subgroup of AutF(P ). The

subgroup P is called fully automized in F or fully F-automized if AutS(P ) is a Sylow

p-subgroup of AutF(P ).

Given two subgroups P,Q ≤ S, we say that P is F-conjugate to Q if P and Q

are isomorphic in F . In this case, we write P ∼F Q and denote the F -conjugacy class

of P by [P ]F . We sometimes consider [P ]F as an S-set via conjugation action of S and

hence regard it as a union of S-conjugacy classes of subgroups F -conjugate to P . In
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particular, if Q and P are F -conjugate but are not S-conjugate, their normalizers in

S may not be S-conjugate to each other. We call a subgroup P ≤ S fully normalized

in F or fully F-normalized if the order of its normalizer is maximal among those of its

F -conjugates.

Example 3.2. [A Fusion System on D8] The dihedral group D8 under conjugations of

the symmetric group S4 is a fusion system, say F . For subgroups of P ≤ D8 we take

the set of morphisms

HomF(P,D8) = HomS4(P,D8) = {φ ∈ Hom(P,D8) : φ = cs for some s ∈ S4}

where cs denotes the conjugation map by s ∈ S. The subgroups of D8 were listed

in Example 2.1. Subgroups of order 4, V1, V2 and C4, have no F−conjugates, hence

each constitute a conjugacy class itself. The center Z(D8) ∼F C1
2 via conjugation

c(43) ∈ F and considering the cycle types of the elements we see that C3
2 �F C1

2 . Hence

[C1
2 ]F = {C1

2 , C
2
2 , Z(D8)} and [C3

2 ]F = {C3
2 , C

4
2} are the two F−conjugacy classes of

subgroups of order 2. Finally the trivial group form a conjugacy class itself.

Since NS4(D8) = D8 the outer and inner automorphisms of D8 in F coincide,

that is we have AutF(D8) = AutD8(D8) = D8/Z. On the other hand for subgroups of

order 4 we get AutF(V1) = {idV1 , c(13), c(14), c(23), c(24), c(34)}, AutF(V2) = AutD8(V2) =

{idV2 , c(12)(34)} and AutF(C4) = AutD8(C4) = {idC4 , c(13)}. Each of them being normal

subgroups of D8 are fully normalized and since AutD8(V1) = {idV1 , c(13)} is a Sylow

2-subgroup of AutF(V1) they are also fully automized. Finally the subgroups of order

2 all have trivial automorphism groups in F and hence they are all fully automized.

However since ND8(Ci
2) = V1 < D8 = ND8(Z(D8)) only C3

2 , C
4
2 and Z(D8) are fully

normalized.

Given an isomorphism φ : Q→ P in F , we write

Nφ = {g ∈ NS(Q) : φcg ∈ AutS(P )}
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where cg denotes the conjugation by g ∈ G. With this notation, the subgroup P ≤ S

is called F-receptive if for any Q ≤ S and any isomorphism φ : Q → P , there is a

morphism φ̄ : Nφ → S in F extending φ.

Now we define saturation following [11].

Definition 3.3. A fusion system F over S is called saturated if each subgroup of S is

conjugate in F to a fully F-automized and F-receptive subgroup.

A natural example of a saturated fusion system is the category FS(G) defined as

follows. Let G be a finite group which contains S as a Sylow p-subgroup. We define

FS(G) as the fusion system with morphisms induced by conjugations by elements in

G, that is, we put

HomFS(G)(P,Q) = HomG(P,Q) = {φ : P → Q|∃g ∈ G : φ = cg}.

It is straightforward to check that FS(G) is a fusion system and it is proved by Puig

that FS(G) is saturated.

An alternative definition of saturated fusion systems, which we will use in the

next chapter, can be given in terms of Sylow p-subgroups of F−automorphisms and

extension property of morphisms:

Definition 3.4. [12, Definition 1.37] Let S be a p-group. A fusion system F over S

is called saturated if it satisfies the following axioms:

(i) Sylow axiom: AutS(S) is a Sylow p-subgroup of AutF(S)

(ii) Extension axiom: Every morphism φ : Q→ S with Q fully normalized extends to

a morphism φ̄ : Nφ → S.

There are several other equivalent definitions of saturated fusion systems. We

refer to [11] for further details.



26

Example 3.5 (FD8(S4) is saturated). This fusion system on the dihedral group D8 is

the same as in Example 3.2. As we mentioned above we already know it is a saturated

fusion system by construction; i.e. such fusion systems are in general proven to be

saturated by Puig (cf. [12][Theorem 1.39]). Nevertheless we can easily check the Sylow

axiom since the inner and outer automorphism groups coincide:

AutF(D8) = AutD8(D8) = D8/Z(D8).

Moreover, we can also check the extension axiom on the fully normalized subgroups

with some calculations: First of all it holds for the identity automorphisms for ob-

vious reasons. Otherwise c(12)(34) is already defined on Nc(12)(34)
= V1, similarly for

c(14), c(23), c(43) we have Nc(14)
= Nc(23)

= Nc(43)
= V2 and the extension axiom is satis-

fied. On the other hand for c(13) and c(24) we have Nc(13)
= Nc(42)

= D8 but we already

know that (13), (24) ∈ D8 and extension is no problem.

Such saturated fusion systems with an ambient finite group G are called

realizable. Realizable fusion systems reflect the notion of fusion in its original setting

of the finite group theory. However, as mentioned above the fusion systems in their

categorical setting are more abstract and general structures than the original notion of

fusion in groups. That is we expect that not all saturated fusion systems over S are

realizable, i.e. there are exotic fusion systems defined to be non-realizable. One of the

simplest examples of exotic fusion systems are constructed by Ruiz and Viruel [13]:

Example 3.6 (Exotic Fusion Systems). We recall that a group of prime power order

(or, more generally, any p-group) is termed extraspecial if its center, derived subgroup

and Frattini subgroup all coincide, and moreover, each of these is a group of prime

order (and hence, a cyclic group). If S is extraspecial of order p3 and exponent p then

S contains p+ 1 subgroups V1, . . . , Vp+1 of order p2 each of which is isomorphic to C2
p .

It is known by Alperin’s Fusion Theorem that each saturated fusion system F over S is

determined by the outer automorphisms OutF(S) = AutF(S)/Inn(P ), together with the

groups AutF(Vi) for those Vi which are F-radical. Starting with this idea and using the

saturation axioms Ruiz and Viruel gave a complete classification of all saturated fusion
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systems over S for any odd prime p. They so constructed an example of a saturated

fusion system F over S for p = 7 with the outer automorphisms OutF(S) = D16 × C3

which have 4 F - conjugacy classes containing 4 F−radical subgroups among Vi with

Aut(Vi) = SL2(p) o C2 and which is not realizable. The proof of this relies on the

classification of the finite simple groups, cf. [12, Table 9.2], the details can be found in

the original article of Ruiz and Viruel [13].

To speak further on saturated fusion systems we will also need the concept of

being fully centralized:

Definition 3.7. Let F be a fusion system over a finite p-group S and P ≤ S. Then

the subgroup P is said to be fully centralized if for every isomorphism φ : P → Q we

have

|CS(Q)| ≤ |CS(P )|

where CS(P ) denotes the centralizer of P in S.

A generalization of fully normalized and fully centralized subgroups is given in

[11]. We recall this notion of fully K-normalized subgroups. Let F be a fusion system

over S and Q be a subgroup of S. Also let K ≤ Aut(Q) be a group of automorphisms

of Q and let φ : Q→ S be a morphism in F . We put

(i) AutKF (Q) = AutF(Q) ∩K,

(ii) AutKS (Q) = AutS(Q) ∩K,

(iii) NK
S (Q) = {x ∈ NS(Q) : cx ∈ AutKS (Q)},

(iv) φK = {φχ : χ ∈ K} ⊆ Aut(φ(Q)).

With this notation, we have the following definition.

Definition 3.8. The subgroup Q is said to be fully K-normalized in F if for any
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morphism φ : Q→ S in F , we have

|NK
S (Q)| ≥ |NφK

S (φ(Q))|.

Clearly a subgroup Q is fully normalized in F if and only if it is fully Aut(Q)-

normalized in F . Also Q is fully centralized in F if and only if it is fully {idQ}-

normalized in F .

Fully K-normalized subgroups are fundamental to construct normalizer subsys-

tems. The following proposition introduces two more characterizations when F is

saturated.

Proposition 3.9. [12, Lemma 4.35] Let F be a saturated fusion system over S and

Q ≤ S. Also let K ≤ Aut(Q). Then the following are equivalent.

(i) Q is fully K-normalized in F .

(ii) Q is fully centralized in F and AutKS (Q) is a Sylow p-subgroup of AutKF (Q).

(iii) For each P ≤ S and for each isomorphism φ : P → Q in F , there are homomor-

phisms χ ∈ AutKF (Q) and φ̄ ∈ HomF(P ·NKφ

S (P ), S) such that φ̄|P = χ ◦ φ.

Similarly Reeh gives the following extension property for fully normalized groups.

Lemma 3.10. [1, Lemma 2.3] Let F be a saturated fusion system and P ≤ S be

a fully normalized subgroup. Then for any φ : Q → P in F , there is a lifting φ̃ ∈

HomF(NS(Q), NS(P )) such that φ̃|Q = φ.

He uses this lemma in the proof of the main theorem to write a free basis of the

Burnside ring in terms of fully normalized representatives of the F - conjugacy classes

of P ≤ S. Later by Propositon 3.9 we will prove and use a fibered version of this

technical lemma in Chapter 4.
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3.2. Modules over fusion systems

In this thesis, we are interested in fusion stable elements in Mackey functors. For

this aim, we introduce modules over a fusion system.

Definition 3.11. Let F be a fusion system over S. A contravariant functor F : F →

Ab is called an F-module. Given two F-modules F and G, an F-homomorphism

F → G is a natural transformation from F to G. We denote the category of all

F-modules by modF .

In other words an F -module F is a collection of abelian groups (F (P ))P≤S to-

gether with group homomorphisms F (φ) : F (Q)→ F (P ) for each morphism φ : P → Q

in F such that if ψ : Q→ R is another morphism in F , then F (ψ ◦ φ) = F (φ) ◦ F (ψ).

Note that each evaluation F (P ) becomes a Z[AutF(P )]-module with the action of

AutF(P ) given by F (φ) for each φ ∈ AutF(P ).

It is possible to define an F -module as a module over the category algebra of F .

We include this definition. Let k be a commutative ring with unity. Consider the free

algebra over k generated by the following list of symbols.

(i) ResPQ for each Q ≤ P ≤ S,

(ii) IsoφQ,P for each isomorphism φ : Q→ P in F .

Then we define the category algebra ΓF of F over k as the quotient of this algebra by

the ideal generated by the following relations.

(i) ResQRResPQ = ResPR for each R ≤ Q ≤ P ≤ S.

(ii) IsoψR,QIsoφQ,P = IsoφψR,P for all isomorphisms φ : Q→ P and ψ : R→ Q.

(iii) ResPQIsoφP,R = IsoφQ,φ−1(Q)ResRφ−1(Q) for each Q ≤ P and for each isomorpism φ :

R→ P .

(iv) ResPP = Isoid
P,P for each P ≤ S.

(v) 1 =
∑

P≤S ResPP .
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It is clear that any element in ΓF is a linear combination of elements of the form

IsoφR,QResPQ with Q ≤ P ≤ S and φ : Q → R an isomorphism in F . Since any

morphism in F is the composition of an F -isomorphism followed by an inclusion, any

morphism in F is represented by such an element in ΓF and vice versa, any such

element in ΓF corresponds to a morphism in F . Thus ΓF can also be considered as

the algebra generated by all morphisms in F . As shown in [21, 2.1 Proposition], the

module category of ΓF is equivalent to the category Fmod of modules over F . Thus an

F -module can be constructed by specifying an abelian group for each subgroup P ≤ S

together with restriction maps ResPQ for each Q ≤ P ≤ S and isogation maps IsoφP,Q for

each isomorphism φ : Q→ P in F subject to the above conditions. Stated that way we

could alternatively define F−module in terms of a restriction functor satisfying some

extra conditions:

Definition 3.12 (Restriction functors over a fusion system (see Section 2.2)). A

restriction functor over a fusion system F can be defined as a restriction functor on

the p-group S with conjugation maps cφH for each φ : H → S in F which further satisfy

the following axioms:

(i) cφH ◦ ResHI = Res
φH
φI ◦ c

φ
H for I ≤ H ≤ S, φ : H → S in F

(ii) cφH ◦ c
ψ
K = cφψK for φ : H → S and ψ : K → S in F such that ψK = H.

In general we see that a restriction functor over F as we defined above determines

an F−module and vice versa, where we take the symbols ResPQ the restrictions for

Q ≤ P and IsoφQ,P = cφQ for φ : Q→ P in F .

3.3. Examples of F−modules

Example 3.13. (Constant F-module). Let Z denote the F-module where Z(P ) = Z

for each P ≤ S and Z(φ) = id, the identity homomorphism, for each φ : Q→ P in F .

Clearly Z is an F-module. We call it the constant F-module.

Example 3.14. (Globally-defined Mackey functors for F) [14, pp.23-24] [15, Mackey

functors for fusion systems]. Given a globally defined Mackey functor M for F over
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Z with respect to the trivial sets of finite groups X = Y = {1}, M specifies an abelian

group M(P ) for each subgroup P ≤ S together with restriction maps ResPQ = ι∗ for each

inclusion ι : Q→ P and isogation maps IsoφP,Q = φ∗ for each isomorphism φ : Q→ P

in F subject to the above conditions [14, page 24]. Hence a globally defined functor M

is in particular an F-module.

Example 3.15. (Simple F-modules) [14, 9.1 Theorem] Let k be a field, F an F-module

and let Q be a subgroup of minimal order such that F (Q) 6= 0. Consider the submodule

〈V 〉 of F generated by any non-zero AutF(Q)-submodule V ⊆ F (Q). Then 〈V 〉 is

proper whenever V is proper or there is a subgroup P ≤ S not F-conjugate to Q such

that F (P ) is non-zero. Therefore simple F-modules are of the form SQ,V where Q ≤ S

and V is a simple k[AutF(Q)]-module, SQ,V (Q) = V and SQ,V (P ) = 0 is zero if P is

not F-conjugate to Q.

Example 3.16. (Projective or free F- modules) [16, 9. Modules over a category and

a splitting of projectives] Let Ob(F) denote the objects of a fusion system F . The

objects Ob(F) with identity morphisms form a category. An F − set is a functor

Ob(F)→ Set, and maps between F−sets are natural transformations. An F-module

M has the underlying F-set Ob(F). Following [16], we denote this F-set by B. An

F-module M is free with an F-set B as basis if for any F-module N and any map

f : B → N of F-sets there is exactly one F−module homomorphism f̄ : M → N

extending f . And the following statements are equivalent for an F-module P :

(i) P is projective

(ii) Every exact sequence 0→M → N → P → 0 splits.

(iii) HomF(P,−) is exact.

(iv) P is a direct summand of a free F-module.

A description of the projective F−modules can be given in terms of their rep-

resentations in suitable group-ring modules [16, 9]; i.e. a projective F-module P is
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locally represented by an Z[Aut(x)]−module for each x ∈ ObF . Let x, y be two ob-

jects of F , like [16], let P (x)s denote the abelian group generated by the images of

P (f) : M(y) → M(x) for non-isomorphic f : x → y in F . We define the splitting

functor Sx : Fmod → mod Z[X] by M 7→ M(x)/M(x)s. On the other hand any

abelian group can be extended to an F−module; we define the extension functor

Ex : A → Fmod by M(y) 7→ M ⊗Z[x] ZHomF(y, x). By [16, Corollary 9.40] we know

that

P '
⊕

[x]∈IsoP

Ex ◦ SxP.

where IsoP is the set of F-isomorphism classes [x] such that SxP 6= 0.

At last we note that later, after we define the fibered-Burnside ring, we will show

that it is a free F−module on an ‘F-basis’ .

3.4. Fusion stable elements

In this section, we introduce fusion stable elements.

Definition 3.17. Let F be a fusion system over S and M an F-module. We define

the group M(F) of F-stable elements in M by

M(F) = {x ∈M(S)|ResSPx = IsoφP,φ(P )ResSφ(P )x for any φ ∈ HomF(P, S)}.

Equivalently we could see M(F) as the projective limit of the functor M over the

category F :

Lemma 3.18. M(F) = lim←−FM as groups.
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Proof. The projective limit amounts to be a subgroup of the product
∏

P≤SM(P ):

lim←−
F
M = {(aP )P≤S ∈

∏
P≤S

M(P ) | aP = φPQ(aQ)}

where (P,Q ≤ S, φPQ) is the inverse system of all objects directed under F− subcon-

jugation and the morphisms φPQ = IsoP,φ(P ) ◦ ResQφP : M(Q) → M(P ) for φ : P → Q

in F . To get the equality of groups we see F−stable elements x ∈ M(F) as vectors

(xP )P≤S ∈
∏

P≤SM(P ) where xP = ResSPx ∈ M(P ). Now the result follows easily:

x ∈M(F) if and only if

xP = ResSPx = IsoφP,φ(P )ResSφ(P )x = IsoφP,φ(P )ResQφ(P )xQ = φPQxQ

for any φ ∈ HomF(P, S) as desired.

Another characterization for the limit in the above definition uses the constant

F -module. Given an F -module M , we have an isomorphism of abelian groups

lim←−
F
M ∼= HommodF (Z,M).

An isomorphism is given by associating a natural transformation η : Z → M to

ηS(1) ∈ M(S). Since Z is generated, as an F -module, by 1 ∈ Z(S), this image

uniquely determines the natural transformation η. Conversely let (xP )P≤S ∈ lim←−FM ,

we define a natural transformation η ∈ HommodF (Z,M) by ηS(1) = xS ∈M(S). These

isomorphisms of abelian groups are inverse to each other. With this definition, if a

short exact sequence

0 // N
ι //M

π // N ′ // 0 ,

of F -modules is given, we may apply the covariant functor HommodF (Z,−) to obtain
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a long exact sequence

0 // N(F) ι //M(F) π∗ // N ′(F) // Ext1
modF

(Z, N) // . . .

Groups of F -stable elements are considered in special cases by many authors.

In [17], F -stable elements in the Dade group are considered together with the gluing

problem. In [1], Reeh considered F -stable S-sets and showed that there is a free basis

for the monoid of F -stable S-sets and hence constructed a Burnside ring for F . In the

following chapter we will follow his line of thought in detail for fibered S−sets. In [4], F -

stable elements in cohomology groups are considered by Broto, Levi and Oliver. They

showed that the cohomology group H∗(X;Fp) of a p-complete space X is isomorphic

to a certain group of ‘stable elements′ in H∗(BS;Fp) where BS is a Sylow subgroup

of X. In [18], Reeh and Yalci n considered F -stable elements in representation rings,

ghost rings in relation with the group of Borel-Smith functions, which are constant on

F -conjugacy classes of subgroups of S.

3.5. F-stable elements in fibered Burnside groups

Let S be a finite p-group and F a saturated fusion system over S. In this section

we describe F -stable elements in BA(S) and BA(S) and determine a free basis for the

monoid of F -stable A-fibered S-sets. We follow Reeh’s methods from [1].

We begin with the description of an F -module structure on BA(G). We denote

by BA the F -module where for any P ≤ S, we let BA(P ) be the A-fibered Burnside

group of P , and for each φ : Q→ P , we define

Resφ : BA(P )→ BA(Q)
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by

Resφ([R, λ]P ) =
∑

x∈[φ(Q)\P/R]

[φ−1(xR), xλ ◦ φ |φ−1(xR)]Q

for any [R, λ]P ∈ BA(P ) (cf. [19]). In the special case, when φ is an inclusion, the

above formula becomes the usual restriction, and if φ is an isomorphism, it reduces to

the following formula.

IsoφQ,P ([R, λ]P ) = [φ−1(R), λ ◦ φ|φ−1(R)]Q

Definition 3.19. The F-stable elements BA(F) in BA(S) is called the A-fibered Burn-

side group of F .

Following Reeh [1], it is possible to construct another candidate for the A-fibered

Burnside group of F . Recall that the Grothendieck group BA(S) is constructed as

the group completion of the monoid of isomorphism classes of A-fibered S-sets. Hence

we can first consider the F -stable elements in this monoid and then take the group

completion. We denote this group by B̃A(F). It is shown in [1] that for the case of

Burnside groups, these two constructions coincide for saturated fusion systems. Our

aim is to generalize this result to fibered Burnside groups by constructing a free basis

to the monoid of F -stable A-fibered S-sets. As in the case of F -stable S-sets, we need

to consider the ghost ring and mark morphism for F -stable A-fibered S-sets.

Note that the assignment P 7→ BA(P ) becomes an F -module together with the

usual definition of restriction of functions through a group homomorphism. To be more

precise, if φ : Q → P and f ∈ BA(P ) are given, we write Resφf instead of BA(φ)(f)

and for each (R, ν) ∈MA
Q, define (Resφf)(R, ν) = f(φ(R), ν ◦ φ−1|φ(R)).

To find a basis for the ghost ring, we extend the F -conjugacy to the pairs (P, λ)
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as follows. Given a morphism φ : P → Q in F , we put

φ(P, λ) = (φ(P ), λ ◦ (φ−1|φ(P ))).

With this definition two pairs (P, λ), (Q, κ) ∈MA
S are said to be F-conjugate, written

(P, λ) ∼F (Q, κ), if there is an isomorphism φ : P → Q in F such that φ(P, λ) = (Q, κ).

In this case we write φ : (P, λ)→ (Q, κ) and denote the F -conjugacy class of (P, λ) by

[P, λ]F . In general this class is a union of S-conjugacy classes of pairs F -conjugate to

(P, λ). With these definitions, the following result is immediate.

Proposition 3.20. Let F be a fusion system over S and BA(S) the ghost group of the

fibered Burnside group for S. Then a function f ∈ BA(S) is F-stable if and only if it

is constant on F-conjugacy classes.

Proof. Let f ∈ BA(S) be F−stable. Then by definition for any φ : P → S in F , we

have Resφf = ResSPf . Equivalently, for any (Q, κ) ∈ MA
P , we have (Resφf)(Q, κ) =

(ResSPf)(Q, κ).

In particular, if φ : Q → P is an isomorphism in F with φ(Q, κ) = (P, λ), then

we get

f(P,λ) = fφ(Q,κ) = (Resφf)(Q, κ) = (ResSQf)(Q, κ) = f(Q,κ).

Hence f is constant on F−conjugacy classes in MA
S .

Conversely let’s suppose that f ∈ BA(S) is constant on F−conjugacy classes in

MA
S and let φ : P → S be a morphism in F . We need to prove that it is F−stable, or

Resφf = ResSPf . Let (Q, κ) ∈MA
P . Then

(ResSPf)(Q, κ) = f(Q,κ) = fφ(Q,κ) = (Resφf)(Q, κ).
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Definition 3.21. The subgroup BA(F) of BA(S) consisting of functions constant on

F-conjugacy classes in MA
S is called the A-fibered ghost group of F .

We note that for any x ∈ BA(P ) and for any injective group homomorphism

φ : Q→ P in F we can write Resφ(x) = IsoφQ,φ(Q)ResPφQx. Hence using the generalized

version of the mark morphism

βP (x) = (πKResPKx)K≤P

we introduced at Section 2.2 we get

βQ(Resφ(x)) = (πRResQRIsoφQ,φ(Q)ResPφ(Q)x)R≤Q =

(Iso
φ|R
R,φ(R)πφ(R)Res

φ(Q)
φ(R)ResPφ(Q)x)R≤Q = (Iso

φ|R
R,φ(R)πφ(R)ResPφ(R)x)R≤Q =

Resφ(πKResPKx)K≤P = ResφβP (x).

In other words, the mark morphism commutes with generalized restrictions Resφ for

any injective group homomorphism φ : Q → P . Now if x ∈ BA(F) and φ : P → S is

in F we get

ResφβS(x) = βφ(P )(Resφx) = βφ(P )(Iso
φ
(P,φ(P ))ResSPx) =

βφ(P )(ResSφ(P )x) = ResSφ(P )βS(x);

i.e. βS(x) ∈ BA(F). Thus the mark homomorphism βS restricts to a homomorphism

βF : BA(F)→ BA(F), still called the mark homomorphism. The following result gives

a criterion for an element in BA(S) to be F -stable. A version of this proposition is
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proved for S-sets by Reeh [1, Lemma 4.1].

Proposition 3.22. Let F be a fusion system over S. Given an element x ∈ BA(S),

then x is F-stable if and only if βAS (x) is F-stable.

Proof. We already know by the remark above that the criterion is necessary; i.e. the

mark homomorphism has image in BA(F). Conversely let us suppose that βS(x)

is F−stable. Then ResφβS(x) = ResSPβS(x) for any φ : P → S in F . Since βS

commutes with restriction maps we get βP (Resφ(x)) = βP (ResSPx), or since βP is

injective Resφ(x) = ResSPx; i.e. x is F−stable.
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4. MAIN RESULTS

Let’s fix a prime number p, a p−group S and and an abelian group A. Let F

be a saturated fusion system over S and BA(F) the A-fibered Burnside ring of F as

in the previous chapter. In this final chapter we will prove that BA(F) is free on a

basis of irreducible fibered sets and we will write these sets inductively following J.S.

Reeh’s original proof for the Burnside ring [1]. We will have to do some adaptations

for the non-trivial rings of sub-characters λ : P → A, the first two sections will be

these preliminaries besides some basic results to introduce ObsA(F), the A-fibered

obstruction group of F . The obstruction group ObsA(F) is an F−module, in the final

section we will conclude that it is the cokernel of the fibered mark homomorphism by

calculating a basis for F−stable fibered sets inductively, following the original proof of

Reeh [1] and the definitions below for fibered sets. Finally we should note that after

embedding the Burnside ring into the ghost ring, which has the easier componentwise

product, one could continue to calculate the idempotents of the fibered Burnside ring

of F by studying the characteristic functions on the F−conjugacy classes which are in

the image of the fibered Burnside ring.

4.1. Preliminaries

In the rest of the thesis, a version of fully normalized subgroups for the pairs

(P, λ) is necessary. The next definition and the following results introduce this notion

together with basic properties.

Definition 4.1. Let F be a fusion system over S and (P, λ) ∈ MA
S . We call (P, λ)

fully stabilized in F or fully F-stabilized if for any (Q, κ) ∼F (P, λ), we have

|NS(P, λ)| ≥ |NS(Q, κ)|.

Clearly if λ is the trivial homomorphism, then (P, 1) is fully F -stabilized if and
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only if P is fully F -normalized. In general, P need not be fully F -normalized for (P, λ)

to be fully F -stabilized. One of the most important properties of fully normalized

subgroups is the extension property, Lemma 3.10 given in the previous section.

To prove a similar result for fully stabilized pairs, we give another characteri-

zation. Note that for any finite group G, the group Aut(G) of automorphisms of G

acts on the group Ĝ of homomorphisms from G to A via pre-composition, that is

φλ(x) = λ(φ(x)) for x ∈ G, λ ∈ Ĝ and φ ∈ Aut(G)

Proposition 4.2. Let F be a fusion system over S and (P, λ) ∈ MA
S . Let K =

StabAut(P )(λ) be the stabilizer of λ in Aut(P ). Then the following are equivalent.

(i) The pair (P, λ) is fully stabilized in F .

(ii) The subgroup P is fully K-normalized in F .

We introduce further notation before proving this proposition. Let K be as in the

proposition. Then we write AutF(P, λ) = AutKF (P ),AutKS (P, λ) = AutKS (P ). Note that

we also have the equality NS(P, λ) = NK
S (P ). Indeed, NS(P, λ) = {s ∈ S |s(P, λ) =

(P, λ)} = {s ∈ S | cs ∈ AutS(P ) ∩K} = {s ∈ NS(P ) | cs ∈ AutKS (P )} = NK
S (P ).

Proof. Let (P, λ) ∈ MA
S . Then (P, λ) is fully stabilized if and only if |NK

S (P )| ≥

|NS(Q,φ λ)| for isomorphisms φ : Q→ P in F . On the other hand

StabAut(Q)(
φλ)) = {θ ∈ Aut(Q) | φ−1θφλ = λ} = φK.

Therefore, NS(Q,φ λ) = N
φK
S (Q) and P is fully K- normalized in F .

As a corollary we obtain the following characterizations and the extension prop-

erty for fully stabilized pairs when F is saturated.

Corollary 4.3. Let F be a saturated fusion system over S and (P, λ) ∈ MA
S . Then

the following are equivalent.
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(i) (P, λ) is fully stabilized in F .

(ii) P is fully centralized in F and AutS(P, λ) is a Sylow p-subgroup of AutF(P, λ).

(iii) For each Q ≤ S and for each isomorphism φ : Q→ P in F , there are homomor-

phisms χ ∈ AutF(P, λ) and φ̄ ∈ HomF(NS(Q, λ ◦ φ), S) such that φ̄|Q = χ ◦ φ.

Proof. Let us suppose that (P, λ) is fully stabilized in F . By Proposition 4.2 this is

if and only if P is fully K−normalized where K = StabAut(P )(λ). Or by Proposition

3.9, equivalently we know that P is fully centralized in F and AutS(P, λ) is a Sylow

p-subgroup of AutF(P, λ). This shows the equivalence (i)⇔ (ii).

To show the equivalence (ii) ⇔ (iii) we assume that P is fully centralized in F

and AutS(P, λ) is a Sylow p-subgroup of AutF(P, λ). By Proposition 4.2 we get that

for each Q ≤ S and for each isomorphism φ : Q→ P in F , there are homomorphisms

χ ∈ AutKF (P ) and φ̄ ∈ HomF(Q · NKφ

S (Q), S) = HomF(NKφ

S (Q), S) such that φ̄|Q =

χ◦φ where K = StabAut(P )(λ). But we already know that NKφ

S (Q) = NS(Q, λ◦φ) and

the proof is complete.

The following lemma is the version of extension property, Lemma 3.10.

Corollary 4.4. Let F be a saturated fusion system over S and (Q, λ) ∈ MA
S be fully

stabilized in F . Also let (P, κ) ∈ MA
S be such that (P, κ) ∼F (Q, λ). Then there is a

morphism φ ∈ HomF(NS(P, κ), NS(Q, λ)) such that φ(P, κ) = (Q, λ).

Proof. Let (P, κ) and (Q, λ) be as in the hypothesis. By Corollary 4.3 ((i) implies (iii))

we know that there is an extension ψ ∈ HomF(NS(P, κ), S) of φ. Since any morphism

in F is a composition of an isomorphism in F followed an inclusion, we have ψ : ι ◦ φ̄

for the inclusion ι : P → S and some φ̄ ∈ HomF(NS(P, κ), NS(Q, λ)) extending φ.
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4.2. Stabilization and a free basis

In this section we show that the monoid of F -stable A-fibered S-sets is free. For

this aim the first step is to proof a fibered version of Reeh’s stabilization lemma [1,

Lemma 4.6]. The result allows us to construct a free basis by induction. To begin with

we call a subset H of MA
S a collection if it is closed under F -subconjugation. In other

words, H is called a collection if for any (P, λ) ∈ H and any (Q, κ) ∈ MA
S such that

there is a homomorphism φ : (Q, κ)→ (P, λ), we have (Q, κ) ∈ H.

Lemma 4.5. Let F be a saturated fusion system over S and H a collection in MA
S .

Let X be an A-fibered S-set such that

(i) βP,λ(X) = βP ′,λ′(X) for all (P, λ) ∼F (P ′, λ′) with (P, λ), (P ′, λ′) 6∈ H.

(ii) cP,λ(X) = 0 for all (P, λ) ∈ H.

Then there is an F-stable A-fibered S-set X ′ such that

(i) βP,λ(X
′) = βP,λ(X) and cP,λ(X

′) = cP,λ(X) for all (P, λ) 6∈ H.

(ii) cP,λ(X
′) = cP,λ(X) for all (P, λ) which is fully stabilized in F . In particular if

(P, λ) ∈ H is fully stabilized in F , then cP,λ(X
′) = 0.

Proof. Following J.S. Reeh [1, Lemma 4.6] we proceed by induction on the size of H.

If H = ∅, then X is F -stable and X ′ := X. Otherwise let (P, λ) ∈ H be maximal

under F -conjugation and fully F -stabilized.

Let (P ′, λ′) ∼F (P, λ), there is a homomorphism φ ∈ HomF(NS(P ′, λ′), NS(P, λ))

with φ(P, λ) = (P ′, λ′) by Corollary 4.4 since F is saturated.

By Proposition 2.2 we get

∑
(P,λ)≤(Q,κ)∈MA

φNS(P ′,λ′)

µP,QβQ,κ(X) ≡ 0 mod |φ(NS(P ′, λ′))/P |
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and similarly

∑
(P ′,λ′)≤(Q′,κ′)∈MA

NS(P ′,λ′)

µP ′,Q′βQ′,κ′(X) ≡ 0 mod |NS(P ′, λ′)/P ′|.

By the hypothesis of induction

βQ,κ(X) = βQ′,κ′(X) for all (Q, κ) ∼ (Q′, κ′) with (P, λ) <F (Q, κ).

Hence

βP,λ(X) − βP ′,λ′(X) =
∑

(P,λ)≤(Q,κ)∈MA
φNS(P ′,λ′)

µP,QβQ,κ(X) −

∑
(P ′,λ′)≤(Q′,κ′)∈MA

NS(P ′,λ′)

µP ′,Q′βQ′,κ′(X) = 0− 0 mod |NS(P ′, λ′)/P ′|.

It follows that a(P ′,λ′) := (βP,λ(X) − βP ′,λ′(X))|P |/|NS(P ′, λ′)| ∈ Z and thanks

to Lemma 4.6 below we construct a new A-fibered S-set

X̃ := X +
∑

[P ′,λ′]S⊆[P,λ]F

a(P ′,λ′)[P
′, λ′]S.

We have cQ,κ(X̃) = cQ,κ(X) for (Q, κ) �F (P, λ). And if (P ′, λ′) ∼F (P, λ) is fully

stabilized then we will show below at Lemma 4.6 that a(P ′,λ′) = 0 and thus cP ′,λ′(X̃) =

cP,λ(X).

Since βQ,κ([P
′, λ′]S) = 0 unless (Q, κ) ≤S (P ′, λ′) we have βQ,κ(X̃) = βQ,κ(X) for

(Q, κ) /∈ H. It also follows that for each (P ′, λ′) ∼F (P, λ),

βP ′,λ′(X̃) = βP ′,λ′(X) +
∑

[P̃ ,λ̃]S⊂[P,λ]F

a(P̃ ,λ̃)βP ′,λ′ [P̃ , λ̃]S =
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βP ′,λ′(X) + λ(P ′,λ′)βP ′,λ′ [P
′, λ′]S = βP ′,λ′(X) + a(P ′,λ′)

|NS(P ′, λ′)|
|P ′|

= βP,λ(X).

Now we defineH′ := H\[P, λ]F which is again a collection. We showed above that

βQ,κ(X̃) = βQ′,κ′(X̃) for (Q′, κ′) ∼F (Q, κ) /∈ H and moreover that βP,λ(X̃) = βP ′,λ′(X̃)

for (P ′, λ′) ∼F (P, λ); i.e. we know that βQ,κ(X̃) = βQ′,κ′(X̃) for (Q′, κ′) ∼F (Q, κ) /∈

H′. On the other hand, we also saw that cQ,κ(X̃) = cQ,κ(X) for (Q, κ) � (P, λ) or in

particular for (Q, κ) ∈ H′ we have cQ,κ(X̃) = cQ,κ(X) = 0. Therefore X̃ satisfies the

hypothesis (i) and (ii) of the lemma. Hence applying the lemma to X̃ by induction

we get an A-fibered S−set X ′ ∈ BA(F) such that βQ,κ(X
′) = βQ,κ(X̃) and cQ,κ(X

′) =

cQ,κ(X̃) for all Q /∈ H′ and cQ,κ(X
′) = 0 if Q ∈ H′ is fully stabilized.

Finally it follows that βQ,κ(X
′) = βQ,κ(X̃) = βQ,κ(X) and cQ,κ(X

′) = cQ,κ(X̃) =

cQ,κ(X) for all (Q, κ) /∈ H and we also have cQ,κ(X
′) = 0 if (Q, κ) ∈ H is fully

stabilized.

The following lemma is necessary to ensure that the element X̃ ∈ BA(S) is

actually an A-fibered S-set.

Lemma 4.6. Let F be a saturated fusion system over S and (P, λ) ∈MA
S be fully stabi-

lized in F . Also let X be an A-fibered S-set such that cP ′,λ′(X) = 0 for any (P ′, λ′) ∼F
(P, λ). Assume further that βQ,κ(X) = βQ′,κ′(X) for all (Q′, κ′) ∼F (Q, κ) ∈ MA

S such

that (P, λ) ≤F (Q, κ). Then βP,λ(X) ≥ βP ′,λ′(X) for any (P ′, λ′) ∼F (P, λ).

Proof. We’ll follow J.S Reeh [1, Lemma 4.7]. Let (P ′, λ′) ∼F (P, λ) be given. Since

(P, λ) is fully stabilized , there exists by Corollary 4.4, a homomorphism

φ : NS(P ′, λ′)→ NS(P, λ) in F with φ(P ′, λ′) = (P, λ).

Let (A1, λ
′
1), . . . , (Ak, λ

′
k) be the subcharacters ofNS(P ′, λ′) that are strictly larger

than (P ′, λ′); i.e. (P ′, λ′) < (Ai, λ
′
i) with Ai ≤ NS(P ′, λ′). We put (Bi,

φλ′i) := φ(Ai, λ
′
i).

We moreover let (C1, λ1), . . . , (Cl, λl) be the subcharacters of NS(P, λ) that are strictly
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larger than (P, λ) and not in the form (Bi,
φλ′i)s ; i.e. (P, λ) < (Ci, λi) with Ci ≤

NS(P, λ). We denote the indices {1, . . . k} by I and J := {1, . . . l}.

Because cP,λ(X) = cP ′,λ′(X) = 0 by assumption no orbit of X is isomorphic to

[P ′, λ′]S. Hence no fiber Ax in XP ′,λ′ has the stabilizer (P ′, λ′). Let (P ′, λ′) < (K,κ)

be the stabilizing pair of x then as K is a p-group we have (P ′, λ′) < (L, µ) := (K ∩

NS(P ′, λ′),ResKK∩NS(P ′,λ′)κ) with P ′ C L such that Ax ⊂ [L, µ]. We conclude that

XP ′,λ′ =
⋃
i∈I X

Ai,λ
′
i or with a similar reasoning XP,λ =

⋃
XBi,

φλ′i ∪
⋃
XCl,λl . The

proof is then completed like Reeh by showing

|XP,λ| = |
⋃

XBi,
φλ′i ∪

⋃
XCl,λl | ≥ |

⋃
XBi,

φλ′i | = |
⋃
i∈I

XAi,λ
′
i | = |XP ′,λ′ |.

We only need to prove the second identity from the last. For (P, λ) <F (Bi,
φλ′i)

we have |XAi,λi | = |XBi,
φλ′i| by assumption. Then by the inclusion-exclusion principle

|
⋃

XBi,
φλ′i | =

∑
∅6=Λ⊂I

(−1)|Λ|+1|
⋂

XBi,
φλ′i | =

∑
∅6=Λ⊂I

(−1)|Λ|+1|X〈Bi,φλ′i〉Λ| =

∑
∅6=Λ⊂I

(−1)|Λ|+1|X〈Ai,λ′i〉Λ| = . . . = |
⋃

XAi,λ
′
i |

where 〈Bi, λi〉 denotes the transitive fibered set corresponding to the subcharacter

λ(b) =
∏

i∈Λ λi(bi) ∈ A for b =
∏

i∈Λ bi with bi ∈ Bi.

4.3. Stable obstructions

With this result we see that for F -stable elements, the obstructions for being in

the image of βF is the same as obstructions for being in the image of βS. However

being F -stable puts some restrictions on the obstructions also and it turns out that

the group of these stable obstructions is smaller. In the next section we describe this
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group, in other words, the cokernel of βF .

Proposition 4.7. Let F be a saturated fusion system over a p-group S. For each

F-conjugacy class of fibered sets [P, λ]F , there is an F-stable fibered set αP.λ ∈ BA(F)

such that

(i) βQ,κ(αP,λ) = 0 unless (Q, κ) ≤F (P, λ).

(ii) cP ′,λ′(αP,λ) = 1 and βP ′,λ′ = |NS(P ′, λ′)|/|P | when (P ′, λ′) is fully stabilized and

(P ′, λ′) ∼F (P, λ).

(iii) cQ,κ(αP,λ) = 0 when (Q, κ) is fully stabilized and (Q, κ) �F (P, λ).

Proof. Let (P, λ) ∈MA
S be fully stabilized. We let X ∈ BA(S) be the fibered set

X =
∑

[P ′,λ′]S⊂[P,λ]F

|NS(P, λ)|
|NS(P ′, λ′)|

.[P ′, λ′]S ∈ BA(S).

X then satisfies that βQ,κ(X) = 0 unless (Q, κ) ≤F (P, λ). Moreover, βP ′′,λ′′([P
′, λ′]S) =

0 unless [P ′′, λ′′]S = [P ′, λ′]S. Consequently

βP ′,λ′(X) =
|NS(P, λ)|
|NS(P ′, λ′)|

βP ′,λ′([P
′, λ′]S) =

|NS(P, λ)|
|P |

independent of (P ′, λ′) ∼F (P, λ).

We let H be the collection of (Q, κ) <F (P, λ) so that βQ,κ(X) = βQ′κ′(X) for

all (Q, κ) ∼F (Q′, κ′) /∈ H. Now by Lemma 4.5 we get a set αP,λ with the desired

properties.

Corollary 4.8. The αP,λ in the proposition 4.7 are linearly independent.

Proof. This is immediate since every αP,λ contains [P, λ]S but no other αQ,κ does.

Now as in the group case proved by [1, Reeh, S.] we will define the obstruction

group Obs(F) and we will show that it is the cokernel of the mark homomorphism βF .
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Let MA
S/F denote the F−conjugacy classes [P, λ]F of (P, λ) ∈ MA

S . Following

Reeh we define the A-fibered obstruction group of F as the direct product :

Obs(F) =
∏

[P,λ]F∈MA
S /F ,

(P,λ)is fully stabilized

Z/[NS(P, λ) : P ]Z.

Theorem 4.9. Let F be a saturated fusion system over a p−group S, and let BA(F)

be the Burnside ring of F , i.e. the subring of F−stable elements in BA(S). We then

have a short-exact sequence

0 // BA(F)
βAF //BA(F) Ψ // Obs(F) // 0

where βF is the homomorphism of marks, and Ψ = ΨF : BA(F)→ Obs(F) is a group

homomorphism given by the coordinate functions on [P, λ]S :

ΨP,λ(f) =
∑

(P,λ)≤(Q,κ)∈MA
NS(P,λ)

µP,QfQ,κ mod [NS(P, λ) : P ]

when (P, λ) ∈MA
S is a fully stabilized representative of the conjugacy class [P, λ]F .

Proof. We will follow Reeh’s line of thought. We take the conjugacy classes inMA
S/F in

the reverse order; i.e (P, λ) ≤′ (Q, κ) if (Q, κ) ≤ (P, λ) so that the group homomorphism

Ψ can be represented by a lower triangular matrix with 1s on the diagonal, hence it is

surjective. Moreover we already know that the mark homomorphism is injective. So

we only need to show that im(βF) = ker(Ψ).

If f ∈ im(βF) ⊂ im(βS) then ΨS(f) = 0 by Proposition 2.6. Hence (ΨF)P,λ(f) =

(ΨS)P,λ(f) = 0 for fully stabilized coordinates (P, λ) ∈MA
S and Ψ(f) = 0.

Now by computing the cokernel of the submodule H = span{αP,λ} generated by

the elements αP,λ we defined in Proposition 4.7 we will show the converse to finish the

proof. First of all since H ≤ BA(F) we know that |coker(βF |H)| ≥ |coker(βF)| .
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On the other hand with respect to the ordered bases of H and BA(F) the restric-

tion βF |H of βF can be represented by a lower triangular matrix M since M[Q,κ]S ,[P,λ]S =

0 unless (Q, κ) ∼F (P, λ) or (Q, κ) ≤ (P, λ). The diagonal entries MP,λ = βP,λ(αP,λ) =

|NS(P, λ)|/|P | are nonzero, so the cokernel of βF |H is

|cokerβF |H| =
∏

[P,λ]F

MP,λ =
∏

[P,λ]F∈MA
S /F ,

(P,λ)is fully stabilized

|NS(P, λ)|
|P |

.

Moreover since Ψ ◦ βF = 0 we have

|coker(βF |H)| =
∏

[P,λ]F∈MA
S /F ,

(P,λ)is fully stabilized

|NS(P, λ)|
|P |

= |ObsA(F)| ≤ |coker(βF)|.

Therefore we conlude that ObsA(F) = coker(βF) and the proof is complete.

At last we will show how to write a basis for the C−fibered Burnside ring of

FD8(S4):

Example 4.10 (C-fibered Burnside ring of FD8(S4)). Using the proofs of Lemma

4.5 and Proposition 4.7 we can inductively construct a basis for the Burnside ring

BC(FD8(S4)). We continue with the notations introduced at Examples 2.1, 3.2, 3.5.

To begin with let’s determine the F−conjugacy classes and fully stabilized pairs

in them: [1, 1]F = {(1, 1)}, (1, 1) is fully stabilized; [Z, 1]F = {(Z, 1), (C1
2 , 1), (C2

2 , 1)},

(Z, 1) is fully stabilized; [Z, χ1|Z ]F = {(Z, χ1|Z), (C1
2 , ψ2|C1

2
), (C2

2 , ψ2|C2
2
)}, (Z, χ1|Z) is

fully stabilized; [C3
2 , 1]F = {(C3

2 , 1), (C4
2 , 1)}, both are fully stabilized; [C3

2 , ψ2|C3
2
]F =

{(C3
2 , ψ2|C3

2
), (C4

2 , ψ2|C4
2
)}, both are fully stabilized; [C4, 1]F = {(C4, 1)}, [C4, χ1]F =

{(C4, χ1), (C4, χ3)}, both fully stabilized; [C4, χ2]F = {(C4, χ2)}; [V1, 1]F = {(V1, 1)},

[V1, ψ6]F = {(V1, ψ6), (V1, ψ7), (V1, ψ8)}; [V2, 1]F = {(V2, 1)}; [V2, ψ10]F = {(V2, ψ10)},

[V2, ψ11]F = {(V2, ψ11), (V2, ψ12)} both fully stabilized. Finally, [D8, 1]F , [D8, ψ2]F ,

[D8, ψ3]F , [D8, ψ4]F are other conjugacy classes, they consist of single elements that

are fully stabilized.
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Now we should write an F-stable element for each conjugacy class as in Proposi-

tion 4.7. For [1, 1]F we take α1,1 = [1, 1]D8 which is F-stable.

For [Z, 1]F , as in the proof of Proposition 4.7 we first take

X =
|ND8(Z, 1)|
|ND8(C1

2 , 1)|
[C1

2 , 1]D8 + [Z, 1]D8 = 2[C1
2 , 1]D8 + [Z, 1]D8

and let H = {(P, λ) ∈MC
D8

: (P, λ) <F (Z, 1)} = {(1, 1)}. By Lemma 4.5 we conclude

that αZ,1 = X = 2[C1
2 , 1]D8 + [Z, 1]D8 is F-stable.

Similarly, for [Z, χ1|Z ]F , [C3
2 , 1]F , [C3

2 , ψ2|C3
2
]F we get the F-stable sets:

αZ,χ1|Z = 2[C1
2 , ψ2|C1

2
]D8 + [Z, χ1|Z ]D8, αC3

2 ,1
= [C3

2 , 1]D8, αC3
2 ,ψ2|C3

2

= [C3
2 , ψ2|C3

2
]D8.

For [C4, 1]F , we first take X = [C4, 1]S and H = {(1, 1), (Z, 1), (C1
2 , 1), (C2

2 , 1)}.

Then we define inductively X̃ = X + a(C1
2 ,1)[C

1
2 , 1]D8 and H′ = {(1, 1)} where as in

Lemma 4.5,

a(C1
2 ,1) = (βZ,1(X)− βC1

2 ,1
(X))

|Z|
|ND8(C1

2 , 1)|
= (2− 0)

|Z|
|V1|

= 1.

Thus, since (1, 1) is already fully stabilized, we get the F-stable set αC4,1 = X̃ =

[C4, 1]D8 + [C1
2 , 1]D8.

Similarly, we get αC4,χ1 = [C4, χ1]D8 + [C1
2 , ψ2|C1

2
]D8 and αC4,χ2 = [C4, χ2]D8 + [C1

2 , 1]D8 .

Further calculations are tedious but similar, hence we do not mention them here.

In the end, we should get an F-stable element αP,λ for each F−conjugacy class ofMC
D8

where (P, λ) is a fully stabilized representative of its class. We know by Theorem 4.9

that these elements will form a basis of the fibered Burnside ring BC(FD8(S4)).
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5. CONCLUSION

In this thesis we extended S.P. Reeh’s results (2015) for G-sets to fibered G-sets

over an abelian group A. We showed that his techniques work as well for writing a

free basis for the F−stable elements of the fibered Burnside ring with some tools we

adopted from the theory of fusion systems and represenation theory.
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