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ABSTRACT

COMPOSITION FACTORS OF THE FUNCTOR OF THE

COMPLEX CHARACTERS

When we consider CRC as a map sending any finite group G to the complex

vector space CRC(G) of complex valued class functions on G, it becomes an A-fibered

biset functor for any group A ≤ C×. Its structure is known for tirivial fiber groups

A = 1 and A = C×. While it is a direct sum of simple biset functors in the case that

A = 1, in the other case it is a simple C×-fibered biset functor. We noticed that as the

fiber group grows, some of simple summands of 1-fibered biset functor CRC unite and

form new fibered simple summands.

In this thesis, we investigate the structure of the functor CRC for two intermediate

fiber groups. The first one is a group containing all pn-th roots of unity for any n ∈ N

and for any prime number p from a fixed set of primes π. The second one is the group

of all pn-th roots of unity for a fixed n ∈ N. For both cases, we identify its new fibered

simple summands by determining uniting summands via defining equivalence relations

on them.
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ÖZET

KARMAŞIK KARAKTERLER İZLECİNİN BİLEŞKE

ÇARPANLARI

Herhangi bir sonlu G grubunu, grubun sınıf fonksiyonlarının karmaşık vektör

uzayı olan CRC(G) uzayına gönderen bir dönüşüm olarak düşündüğümüzde CRC, her

A ≤ C× grubu için bir A-fiberli ikili küme izleci olur. Yapısı, A = 1 ve A = C×

aşikar fiber grupları için bilinmektedir. Fiber group A = 1 olduğunda basit ikili küme

izleçlerinin direkt toplamı iken diğer durumda bir basit C×-fiberli ikili küme izlecidir.

Fiber grup büyüdüğünde direkt toplamdaki basit parçalardan bazılarının birleştiğini

ve yeni fiberli basit parçaları oluşturduğunu farkettik.

Bu tezde, CRC izlecinin yapısını iki ara fiber grubu için inceledik. Birincisi,

asal sayıların sabitlenmiş bir π altkümesinden alınan her asl sayı p ve her n ∈ N için

birim elemanın pn. dereceden bütün köklerini içeren bir gruptur. İkincisi, sabit bir

n ∈ N için birim elemanın pn. dereceden bütün köklerinin grubudur. İki durumda

da, ilk durumdaki parçalardan hangilerinin birleştiğini üzerlerinde denklik bağıntıları

tanımlayarak belirledik ve yeni fiberli basit parçaları bulduk.
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1. INTRODUCTION

Representation theory is the study of algebraic structures in linear algebra by

representing elements of structures as linear transformations of vector spaces. This

makes abstract structures more concrete by describing the structure in terms of matri-

ces and their algebraic operations as matrix operations. Algebraic structures studied

in this way include groups, associative algebras, and Lie algebras. In this thesis, we are

interested in representations of finite groups, in which group elements represented by

invertible matrices such that the group operation is the matrix multiplication. Repre-

sentations of finite groups allow us to state group theoretic problems in terms of linear

algebra, which reduces the complexity of problems because linear algebra is a well un-

derstood branch of mathematics. Just as that the group concept is an abstraction of

symmetries of geometric objects, representations of finite groups can be considered as

abstractions of groups beause the results obtained via represantation theory can extend

beyond the boundaries of the theory itself. For instance, although the fact that every

group of order square of a prime number is abelian can be proved in group theory, it

is an evident consequence of basic facts of representations. Therefore understanding

representations of finite groups can enable us to understand structures of groups. The

theory of representations of finite groups starts with representations over a field of

characteristic zero. If the field is also algebraically closed, then three different notions,

namely representations, modules of group algebras and characters can be studied in-

terchangeably whichever offers the easiest way. In this thesis, prefer characters and

consider character rings of finite groups. However, analyzing character rings for each

group separately is not an easy task. In the sense of abstraction, Bouc added another

link to the chain and introduced biset functors since representation rings turn out to

be the evaluations of a biset functor at the finite groups.

The character of a group representation is a function on the group that asso-

ciates the trace of the matrix of each group element to the corresponding group element.

Characters contain all of the essential information of representations in a more compact

way. One of the fundamental constructions in the theory is the ring of characters of a
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finite group. Based on its importance, the character ring is studied in many different

ways since its introduction by Richard Brauer. Artin’s and Brauer’s induction theo-

rems describe generating sets for the character ring. These two fundamental theorems

show that only the induction map provides a convenience for determining characters

of finite groups. Therefore, including all module theoretic maps, induction, restric-

tion, isogation, inflation, and deflation, should have given much better results. This

idea results in the birth of biset functors. To name a few of those studying the biset

structure of the ring of characters, Thevenaz and Webb’s theorem describes its Mackey

functor structure, whereas Bouc’s Theorem describes its biset functor structure. The

structure of it as a Green biset functor is investigated by Romero. More recently, Boltje

and Coşkun show that this functor is simple as a C×-fibered biset functor. Moreover,

analyzing the ring of characters as a biset functor enables us with determining the

structure of it for any finite group instead of determining it for each group separately.

Also, fiber actions provide a look into their structure under extra conditions. In this

thesis, we are aiming to study the structure of the functor of complex characters as a

fibered biset functor for some nice choices of non-trivial fiber groups A < C×. In par-

ticular, our aim is to identify simple A-fibered subfunctors of it. Since achieving this

aim mainly depends on the decomposition of A-fibered bisets, we analyze the structure

of A-fibered bisets and decompose them with our choices of fiber groups. Boltje and

Coşkun decompose A-fibered bisets in general provided that A is a divisible group. On

the other hand, Coşkun and Yılmaz adapted Boltje and Coşkun’s decomposition to

abelian groups. We used Coşkun and Yılmaz’s decomposition for the first part of our

main theorems. In the second part, since we choose a fiber group that is not divisible,

we decompose fibered bisets. But, as it is a challenging task we first obtain it for cyclic

groups.

The thesis is designed as follows. In Section 2, the basic definitions, examples and

theorems about representations and characters of finite groups are introduced. Section

3 is devoted to details of bisets and fibered bisets. Also, Burnside group is introduced

in the same section. The definition of fibered biset functors and the structure of

simple fibered biset functors constitute the topics of Section 4. Applications of some

of previous results to abelian groups is shown in Section 5. Detailed information about
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the functor of complex character ring takes place in Section 6. We conclude the thesis

with the statements and the proofs of the main theorems in Section 7.

We now give some notations that will be valid throughout the thesis. First, unless

otherwise explicitly stated, we assume all groups to be finite and fix a multiplicatively

written (not necessarily finite) abelian group A. For any group G, we set

GA := Hom(G,A) and G∗ := Hom(G,C)

and view them as abelian groups with pointwise multiplication. The order of any

element g ∈ G is denoted by o(g). If π is a set of prime numbers and n ∈ N , then we

denote by nπ and nπ′ the π and π′-parts of n, respectively. That is, n = nπnπ′ where

nπ′ is the largest factor of n provided that p ∤ nπ′ for any p ∈ π. For an abelian group

G, we denote by the subgroup of order |G|π by Gπ.
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2. REPRESENTATIONS AND CHARACTERS

In this chapter, we introduce three different notions of representation theory,

namely representations, modules and characters. We give just necessary but sufficient

details to establish the close connection among them and to justify the reason why

we can use them interchangeably. All results in this chapter and more can be found

in [11], [10] and [9]. Throughout this chapter, G is an arbitrary finite group unless

otherwise stated.

Definition 2.1. A representation of G over C, or shortly a C-representation of G, is

a group homomorphism

ρ : G→ GL(n,C) (2.1)

for some n, where GL(n,C) denotes the multiplicative group of invertible n×n matrices

with entries in complex numbers. The number n is called the degree deg(ρ) of ρ. A

representation is said to be faithful if it is injective.

Another definition of a representation can be given as follows. Let V be an n-

dimensional C-vector space, and let GL(V ) denote the group of all automorphisms

of V , under the composition of maps. That is, GL(V ) is the group of all bijective

C-linear transformations on V . A representation of G over C is a homomorphism

ρ : G→ GL(V ). Actually, this definition is equivalent to the former one because after

fixing a basis of V , every automorphism corresponds to an n × n invertible matrix

with complex number entries and vice versa. The degree of a representation is given as

dim(V ) in the latter definition since the correspondence verifies dim(V ) = deg(ρ) = n.

Examples 2.1. (i) The map ρ : G → GL(n,C), g 7→ ρ(g) = In for all g ∈ G, where

In is the identity n × n matrix, is a representation of G. If we take n = 1, ρ is

called the trivial representation of G.
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(ii) Let C3 = {1, a, a2} be the cyclic group of order 3, generated by a. Then,

ρ : C3 → GL(2,C), a 7→





0 1

−1 −1



 (2.2)

is a C-representation of C3 of order 2.

(iii) (Permutation Representation) Let X = {x1, . . . , xn} be a set on which G acts

from the left. Consider the C-vector space

CX = {c1x1 + · · ·+ cnxn | ci ∈ C, 1 ≤ i ≤ n}. (2.3)

If x = c1x1 + · · ·+ cnxn ∈ CX is an arbitrary element, the map

ρg : CX → CX, x 7→ gx := c1(gx1) + · · ·+ cn(gxn) (2.4)

gives an automorphism of CX for each g ∈ G. Then

ρ : G→ GL(CX), g 7→ ρg (2.5)

is a C-representation of G of degree n, namely the permutation representation of

G on CX.

(iv) (Regular Representation) Take X = G in the previous example with the action in-

duced by the group multiplication. In this case, the corresponding representation

is called the regular representation of G.

(v) Let G be the symmetric group Sn of degree n. For any σ ∈ G, define the action

σ · ei := eσ(i) on Rn, where ei := (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ i ≤ n are the canonical

basis elements of Rn such that 1 is the i-th entry. The R-linear extension

σ · (r1e1 + · · ·+ rnrn) := r1eσ(1) + · · ·+ rneσ(n) (2.6)

of the action gives an automorphism of Rn as in Example 3. Arbitrary elements

(r1, . . . , rn) ∈ Rn are here expressed as r1e1 + · · ·+ rnen.
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Remark 2.1. The first example shows that any group has a representation of order n

for any n. The fifth one is actually a special case of the third one. Indeed, if we take

xi = ei and define the action of G = Sn as the C-linear extension of σ · ei := eσ(i),

1 ≤ i ≤ n, we obtain the representation in the last example.

Definition 2.2. Let X be an arbitrary finite set. The set CX is called the complex

linearization or C-linearization of the set X. The complex linearization map is the

induced map

linC : X 7→ CX. (2.7)

Next, we regard the ways of relating representations of groups that are alge-

braically connected such as subgroups, quotient groups and isomorphic groups.

2.1. New Representations from Old Ones

(i) Let ρ : G → GL(n,C) be a representation of G and T ∈ GL(n,C). Then, the

map σ(g) := T−1ρ(g)T is also a representation of G of the same degree n. The

representations ρ and σ are said to be equivalent representations.

(ii) If ρ is a C-representation of G, and H ≤ G, then

ResGHρ : H → GL(n,C), ResGHρ(h) := ρ(h) (2.8)

is a representation of H, namely the restriction of ρ from G to H.

(iii) Let ρ be a C-representation of H of degree n for some H ≤ G. Choose a left

transversal {t1H, . . . , tmH} of H in G, i.e. a set of representatives of left cosets

G/H, where m = |G : H| is the index of H in G. We define the homomorphism

IndGHρ : G→ GL(nm,C) (2.9)
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as m×m block matrices where each block is an n× n matrix afforded by ρ. For

any g ∈ G, the ij-th block of IndGHρ(g) is equal to ρ(t
−1
i gtj) if t

−1
i gtj ∈ H, or to

[0]n×n otherwise. The representation IndGHρ is called the induction of ρ from H

to G. The degree of IndGHρ is equal to |G : H|deg(ρ).

(iv) From any representation ρ of G/N , where N EG, we can obtain a representation

of G, that assigns to every g ∈ G the value ρ(gN). This new representation is

called the inflation of ρ from G/N to G, and denoted by InfGG/Nρ.

(v) Let ρ be a representation of G whose kernel contains N EG. Then, the deflation

of ρ from G to G/N is the representation defined as DefGG/Nρ(gN) := ρ(g) for all

g ∈ G.

(vi) If f : H → G is a group isomorphism for some group H, we may define a

representation HIso
f
Gρ of H from any representation ρ of G via f . This new

representation is called the isogation from G to H, and is defined as HIso
f
Gρ(h) :=

ρ(f(h)) for any h ∈ H. We sometimes write HIsoGρ if the isomorphism f is clear

from the context.

In fact, each of the ways above gives a map between representations of related

groups. For instance, ResGH sends the representations of G to the representations of the

subgroup H ≤ G.

Remark 2.2. Since tr(BC) = tr(CB) for any n × n matrices, the traces of equivalent

representations are the same. In other words, if ρ, σ : G → GL(n,C) are equivalent

representations, then tr(ρ(g)) = tr(σ(g)) for all g ∈ G.

Remark 2.3. Let ρ be a C-representation of G with deg(ρ) = n. Consider the C-vector

space V = Cn, the space of n× 1 column matrices with complex entries. We can equip

V with the G-action g · v := ρ(g)v ∈ Cn for any g ∈ G, v ∈ V . This action satisfies the

following conditions for all g, h ∈ G, v, u ∈ V , c ∈ C.

(i) g · v ∈ V

(ii) h · (g · v) = (hg) · v

(iii) 1 · v = v

(iv) g · (cv) = c(g · v)
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(v) g · (v + u) = g · v + g · u

In fact, any C-vector space V is said to be a left CG-module if it is equipped

with a left G-action satisfying the conditions (i)-(v). This points to that if G has

a representation, we can obtain a CG-module through the representation. On the

other hand, if V is a CG-module, the conditions (i),(iv) and (v) ensure that the map

sending any element v of V to the element v · g is an automorphism of V for any

g ∈ G. Let B be a basis of V and let [g]B denote the matrix corresponding to the

linear transformation above relative to the basis B. Then, the map g 7→ [g]B yields a

representation of G, which means that the existence of a CG-module guarantees the

existence of a representation of G. Clearly, the representations of the form [g]B depend

on choices of bases. If we choose a basis other than B, we obtain a representation

equivalent to [g]B. This is a special case of a result which we state later

The first item in Section 2.1 suggests that from a given representation, we may

obtain infinitely many new representations as T varies. We call such representations

equivalent because it indeed gives an equivalence relation on representations. From

now on, when we say distinct representations, we refer to a set of unequivalent repre-

sentations.

Definition 2.3. A non-zero CG-module V is called irreducible or simple if it has no

non-trivial CG-submodule, that is {0} and V are the only CG-submodules of V . In

connection with this definition, a representation ρ→ GL(n,C) is said to be irreducible

if the CG-module Cn induced by ρ is irreducible.

Definition 2.4. Let V1 and V2 be CG-modules. A linear transformation L : V1 → V2

is said to be a CG-homomorphism if L(g · v) = g · L(V ) for all g ∈ G, v ∈ V1. In

the case that L is bijective, it is called a CG-isomorphism, and V1 and V2 are called

isomorphic CG-modules.

Now, we have given all that is needed to state connection between representations

of G and CG-modules.
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Theorem 2.1. There is a one-to-one correspondence between isomorphism classes of

simple CG-modules, and equivalence classes of irreducible C-representations of G.

A fundamental result that describes the structure of the algebra CG is Maschke’s

Theorem.

Theorem 2.2 (Maschke). If V is a CG-module and V1 is a CG-submodule of V , then

there exists a CG-submodule V2 of V such that V = V1 ⊕ V2.

As a consequence of Maschke’s Theorem, any CG-module can be written as a

direct sum of its simple submodules. Therefore, we can focus on isomorphism classes

of simple CG-modules or on equivalence classes of irreducible representations of G in-

terchangeably to understand all CG-modules and representations of G. But, this raises

the questions of how we can identify simple modules and how many non-isomorphic

simple modules there are. The answers are hidden in the regular CG-module.

Definition 2.5. The C-linearization

CG =

{

∑

g∈G

cgg : cg ∈ C

}

(2.10)

of G is a CG-module with the action g′ ·
(

∑

g∈G cgg
)

:=
∑

g∈G cg(g
′g) for any g′ ∈ G.

It is called the regular CG-module.

Theorem 2.3. Every simple CG-module is isomorphic to a simple submodule of the

regular CG-module CG.

The last theorem answers the first question but not the second one. It only

implies the finiteness of non-isomorphic simple CG-modules. The exact number of

them is revealed after introducing characters.

Definition 2.6. Let ρ be a representation of G. Then the character χ of ρ is the map

χ : G→ C, g 7→ χ(g) := tr(ρ(g)). (2.11)
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We say that χ is a character of G if it is the character of a representation of G.

Similarly, we define the character of a CG-module V using a representation obtained

from V .

Definition 2.7. The regular character χreg of G is the character of the regular CG-

module CG.

Definition 2.8. A character of G is called irreducible if it is the character of a simple

CG-module. We denote the set of all irreducible characters of G by Irr(G).

Examples 2.2. (i) The character χ of the first representation in Examples 2.1 is

χ(g) = n for any g ∈ G.

(ii) The map sending the elements 1, a, a2 to 2,−1,−1, respectively, is the character

of the representation ρ : C3 → GL(2,C) in 2.1.

(iii) The regular character χreg of G is the character of the regular representation

introduced in Examples 2.1. It sends the identity element to the order |G| of G,

and sends each non-identity element to 0.

Remark 2.2 implies that the characters of equivalent representations are the same.

Therefore, since equivalent representations correspond to isomorphic CG-modules, all

isomorphic CG-modules have the same character.

Actually, this is a very surprising and powerful result because to understand

representations one needs to deal with n2 complex numbers, whereas the character

theory reduces this to a single complex number. In the character theory, we can

try to reach our aims by taking advantage of field properties and convenience of C in

comparison to GL(n,C), n > 1. To sum up, it is more advantageous to study irreducible

characters of G to understand all representations of G. However, the definition of

irreducible characters depends on simple modules. Luckily, the inner product below

provides us with a way to detect irreducible characters without going into module

theory.

Definition 2.9. A function f : G → C is said to be a class function if it is constant

on conjugacy classes of elements in G, i.e. f(g) = f(x−1gx) for all g, x ∈ G. The set

of C-valued class functions on G is denoted by Cf(G,C).
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The set Cf(G,C) naturally forms a C-vector space under pointwise addition and

multiplication by scalars from C. This space has an inner product defined as

〈f1, f2〉 :=
1

|G|

∑

g∈G

f1(g)f2(g) (2.12)

where f1, f2 ∈ Cf(G,C) and f2(g) is the complex conjugation of f2(g). As characters

are class functions, we can talk about the inner product of characters and state the

following theorem.

Theorem 2.4. A character χ of G is irreducible if and only if 〈χ, χ〉 = 1.

Since every CG-module is a direct sum of simple CG-modules, we need to find

out the relation between the characters and the direct sum.

Theorem 2.5. Let χ and ψ be the characters of CG-modules M and N , respectively.

Then, the character of the CG-module M ⊕N is χ+ ψ, where

(χ+ ψ)(g) := χ(g) + ψ(g) (2.13)

for all g ∈ G.

As a result of this theorem and Maschke’s Theorem, every character χ is of

the form χ = d1χ1 + · · · + drχr, where Irr(G) = {χ1, . . . , χr}, and d1, . . . , dr are

non-negative integers. Moreover, together with Theorem 2.3, we deduce that every

irreducible character is a summand of the regular character χreg, that is

χreg = e1χ1 + · · ·+ erχr (2.14)

where e1, . . . , er are now positive integers. The coefficients d1, . . . , dr of any character

χ is calculated by di = 〈χ, χi〉, i ∈ {1, . . . , r} due to the next theorem and the linearity

of the inner product.
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Theorem 2.6. Irreducible characters of G form an orthonormal set in the vector space

Cf(G,C), i.e. if Irr(G) = {χ1, . . . , χr}, then

〈χi, χj〉 = δij =











1 if i = j

0 otherwise.

(2.15)

Finally, the question about the number of non-isomorphic simple CG-modules is

answered by the next theorem

Theorem 2.7. The set of irreducible characters Irr(G) is an orthonormal basis for the

vector space Cf(G,C) whose dimension is equal to the number of conjugacy classes of

G.

Hence, any class function f ∈ Cf(G,C) is of the from f = c1χ1+ · · ·+ crχr where

Irr(G) = {χ1, . . . , χr} and ci ∈ C, 1 ≤ i ≤ r. However, although all characters are class

functions, the converse is not always true. The next theorem helps us decide whether

a class function is a character or not.

Theorem 2.8. Let f = c1χ1 + · · · + crχr ∈ Cf(G,C) where Irr(G) = {χ1, . . . , χr}.

Then, f is a character if and only if c1, . . . , cr are non-negative integers.

Consequently, the set of characters of G is a semigroup. Then, the Z-linear

combinations of characters of G becomes an additive abelian group. The following

theorem shows that we can also equip the set of characters with a multiplication in

order to get a ring structure.

Theorem 2.9. Let χ and ψ be the characters of CG-modules M and N , respectively.

Then, the character of the CG-module M ⊗N is χψ, where

(χψ)(g) := χ(g)ψ(g) (2.16)

for all g ∈ G.
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Hence, the product of two characters of G is again a character of G. Now, we

can define the complex character ring.

2.2. Character Ring

Let RC(G) denote the set of Z-linear combinations of all characters of G. Then,

(RC(G),+, ·) is a ring, where

(χ+ ψ)(g) := χ(g) + ψ(g) and (χ · ψ)(g) := χ(g)ψ(g)

for all g ∈ G.

Since irreducible characters are generators of all characters, the character ring

can be given as

RC(G) :=
⊕

χ∈Irr(G)

Zχ. (2.17)

The elements of RC(G) are called virtual characters or generalized characters of G.

The module theoretical correspondant of the character ring is defined as the

Grothendieck group of the category of finitely generated CG-modules. Precisely, RC(G)

is the quotient of the free abelian group on the set of isomorphism classes of finitely

generated CG-modules, by the subgroup generated by all the elements of the form

[M ⊕N ]− [M ]− [N ] (2.18)

where [M ] and [N ] denote the isomorphism classes of the CG-modules M and N ,

respectively. In fact, what is done by this quotient group is inducing a semi-group

structure on the set of isomorphism classes of finitely generated CG-modules via

[M ⊕N ] := [M ] + [N ]. (2.19)
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Letting integer coefficients yields an additive abelian group structure and the tensor

product over C completes the ring structure. To sum up, the ring

RC(G) :=
r
⊕

i=1

Z[Mi] (2.20)

is the representation ring of G, where M1, . . . ,Mr are the complete list of all non-

isomorphic simple modules. This ring is commutative because M ⊗N is isomorphic to

N ⊗M for all CG-modules M and N .

2.3. Maps Between Character Rings

In 2.1, we have introduced the operations induction, restriction, inflation, defla-

tion and isogation connecting representations of algebraically related groups. Since

these maps are essential in representation theory, they are of great importance in the

sequel. We now give the exact correspondence of them in terms of modules and charac-

ters, separately. For this aim, let H ≤ G and N EG unless otherwise stated. Consider

the regular CG-module CG. As its action is induced by the group action, we can

equipped it with a two sided CG-action, CH-action, or C(G/N)-action. For example,

if we take CG as a left CG-module and as a right CH-module, we call CG a (CG,CH)-

bimodule. For a CH-module M , the tensor product CG ⊗CH M yields a CG-module

when we regard CG as a (CG,CH)-bimodule. The module CG⊗CH M is the induced

module. The definition in character theory is a bit more complicated. For a character

χ of H, the induced character IndGHχ of G is given as

IndGHχ(g) :=
∑

x∈G
x−1gx∈H

χ(x−1gx). (2.21)

Hence, the induction map is defined as follows in both sense

IndGH : RC(H) → RC(G), [M ] 7→ [CG⊗CH M ]

χ 7→ IndGHχ.
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The restriction of a character is just evaluating it on the elements of a subgroup.

Similarly, the map is given

ResGH : RC(G) → RC(H), [M ] 7→ [CG⊗CGM ]

χ 7→ χ|H

where CG is now a (CH,CG)-bimodule. The inflation of a C(G/N)-module M from

C(G/N) to CG is to consider M as a CG-module via the intuitive way. In the case

that C(G/N) is taken as a (CG,C(G/N))-bimodule, the iflation of M isomorphic to

the CG-module C(G/N)⊗C(G/N) M . Thus

InfGG/N : RC(G/N) → RC(G), [M ] 7→ [C(G/N)⊗CGM ]

χ 7→ InfGG/Nχ

where InfGG/Nχ(g) := χ(gN) for any g ∈ G. Similarly, if we take C(G/N) as a

(C(G/N),CG)-bimodule, we define

DefGG/N : RC(G) → RC(G/N), [M ] 7→ [C(G/N)⊗C(G/N) M ]

χ 7→ DefGG/Nχ

where DefGG/Nχ(gN) := χ(gN) if N ≤ ker(χ) := {g ∈ G | χ(g) = χ(1)}. If ker(χ) does

not contain N , then DefGG/Nχ gives the zero character directly. Lastly, let f : H → G be

an isomorphism for some group H. When we afford the H-action via the isomorphism

f , the CG-module CG becomes a (CH,CG)-bimodule. Then

HIso
f
G : RC(G) → RC(H), [M ] 7→ [CG⊗CGM ]

χ 7→ HIso
f
Gχ

where HIso
f
Gχ(h) := χ(f(h)) for any h ∈ H.



16

As it is generally easier to study small groups, we try to reach to global knowl-

edge from local knowledge, that is deducing results for groups from results for their

subgroups. The following main theorems shows practicability of these maps for this

aim.

Theorem 2.10 (Brauer). Let Ep be the set of p-elementary subgroups of G, i.e. sub-

groups of G isomorphic to direct product of cyclic groups and p-groups. Then

RC(G) =
∑

H∈
⋃

p Ep

IndGHRC(H) (2.22)

that is every character of G is a Z-linear combination of characters induced from p-

elementary subgroups of G to G.

Theorem 2.11 (Artin). Each character of a group is a Q-linear combination of char-

acters induced from cyclic subgroups of G to G.

As the induction theorems of Brauer and Artin show, we have powerful and useful

results with only the induction map. Therefore, it is natural to expect that one may

obtain more powerful results by using all maps. Biset functor notion serves to meet

this expectation by unifying the treatment of all these five basic operations.
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3. BISETS AND FIBERED BISETS

This chapter is devoted to basic knowledge about bisets and fibered bisets. One

may find almost all about bisets in [5]. As for fibered case, we refer the reader to [4], [8]

and [1]. We mostly follow the notations of [4]. Throughout this chapter, the letters

G,H,K are reserved for finite groups, whereas X, Y, Z denote sets.

Definition 3.1. A set X is said to be a left G-set if there is a left G-action on it, i.e.

there exists a map f : G×X → X, (g, x) 7→ g · x subject to the following conditions

(i) 1 · x = x

(ii) g · (g′ · x) = (gg′) · x

for all g, g′ ∈ G, x ∈ X.

Definition 3.2. A set X is called a (G,H)-biset if it has a left G-action and a right

H-action such that the actions commute with each other, that is

(g · x) · h = g · (x · h) (3.1)

for all g ∈ G, h ∈ H, x ∈ X.

Remark 3.1. A (G,H)-biset X can also be considered as a left (G × H)-set via the

action (g, h) · x := g · x · h−1, which we generally use for convenience.

Examples 3.1. Let H ≤ G and N EG unless otherwise stated.

(i) Every left G-set is a (G,H)-biset with the trivial right H-action. By the same

token, any set X is a (G,H)-biset with the trivial actions, that is g · x · h = x for

all g ∈ G, h ∈ H, x ∈ X.

(ii) The group G itself is a (G,G)-biset with the actions induced by the group mul-

tiplication. This biset is called the identity (G,G)-biset, and denoted by IdG.

(iii) The group G is a (G,H)-biset with the group multiplication. This biset is called
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the induction from H to G, denoted by IndGH .

(iv) Similarly, the restriction biset ResGH from G to H is the (H,G)-biset G with the

group multiplication.

(v) Consider the quotient group G/N . It has an obvious right (G/N)-action, the

group multiplication in G/N , and the left G-action g · (g′N) := gg′N . The

(G,G/N)-biset G/N is the inflation from G/N to G, which we denote by InfGG/N .

(vi) Likewise, the deflation biset DefGG/N from G/N to G is the (G/N,G)-biset G/N .

(vii) Let f : G → H be a group isomorphism. Then, the group H is an (H,G)-biset

with the actions h ·h′ ·g := hh′f(g) for all g ∈ G, h, h′ ∈ H. This biset is denoted

by HIso
f
G, and called the isogation biset.

Definition 3.3. Let X be a (G,H)-biset. For any x ∈ X, the set

G · x ·H := {g · x · h | (g, h) ∈ G×H} (3.2)

is called the (G,H)-orbit of x. The set of (G,H)-orbits in X is denoted by G\X/H.

If the set G\X/H is a singleton, that is, if we can obtain whole X by performing the

(G,H)-action on any element of X, we call X transitive.

Because the set G\X/H gives a partition of X, any (G,H)-biset is a disjoint

union of its (G,H)-orbits. Also, since every (G,H)-orbit is clearly a transitive (G,H)-

biset, every (G,H)-biset is a disjoint union of transitive ones. On the other hand,

disjoint union of bisets are again bisets. Therefore, we can focus only on transitive

bisets instead of all bisets.

Definition 3.4. Let X and Y be two (G,H)-bisets. A map f : X → Y is called a

morphism of (G,H)-bisets if it is a (G,H)-equivariant map, i.e.

f(g · x · h) = g · f(x) · h (3.3)

for all g ∈ G, h ∈ H, x ∈ X. A morphism f is an isomorphism if it is bijective. Class

of all (G,H)-bisets and their morphisms form a category denoted by GsetH .
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Lemma 3.1. (i) For any U ≤ G × H, the set
(

G×H
U

)

of left cosets in G × H is a

transitive (G,H)-biset.

(ii) Every transitive (G,H)-biset X is isomorphic to
(

G×H
U

)

for some U ≤ G×H.

The proof follows from the fact that any transitive G-set is isomorphic to G/K

for some K ≤ G and that, as we stated in Remark 3.1, any A-fibered (G,H)-biset is a

(G×H)-set. The subgroup U above is the stabilizer of some x ∈ X in G×H, that is

U = Sx := {(g, h) ∈ G×H | (g, h) · x = x}. (3.4)

Here, different choice of x ∈ X, gives a subgroup conjugate to U in G × H. Conse-

quently, there is bijective correspondence between

(i) isomorphism classes [X] of transitive (G,H)-bisets, and

(ii) conjugacy classes [U ] of subgroups of G×H.

Due to this bijection, from now on, we denote transitive (G,H)-bisets and their

isomorphism classes by

(

G×H

U

)

and

[

G×H

U

]

respectively, for appropriate subgroups U . Now, let us see new notations of some of

our examples given in 3.1. In the examples, we introduce some other notations that

one can encounter in the rest of the thesis.

(i) IdG ∼=
(

G×G
G×G

)

.

(ii) GGH := IndGH
∼=
(

G×H
∆(H)

)

, where ∆(H) := {(h, h) | h ∈ H}.

(iii) HGG := ResGH
∼=
(

H×G
∆(H)

)

.

(iv) G(G/N)G/N := InfGG/N
∼=
(

G×G/N
∆π(G)

)

, where ∆π(H) := {(g, gN) | g ∈ G} and π is

the canonical projection of G onto G/N .

(v) G/N(G/N)G := DefGG/N
∼=
(

G/N×G

π∆(G)

)

where π∆(H) := {(gN, g) | g ∈ G}.
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(vi) HIso
f
G
∼=
(

H×G

f∆(G)

)

, where f∆(G) := {(f(g), g) | g ∈ G} for a group isomorphism

f : G→ H.

We prefer to use these new notations because they are more suitable when we

consider bisets as maps. We show how bisets become maps after introducing the

Mackey product and the Burnside group.

3.1. Mackey Product of Bisets

Let X ∈ GsetH and Y ∈ HsetK . Then, the Mackey product X ×H Y ∈ GsetK of

X and Y is defined as the set of H-orbits under the action

(x, y) · h = (x · h, h−1 · y) (3.5)

for all (x, y) ∈ X × Y , h ∈ H. The H-orbit (x, y) ·H ∈ X ×H Y of (x, y) is denoted by

(x,H y).

For any X,X ′ ∈ GsetH and Y, Y ′ ∈ HsetK , we have the distributive laws

X ×H (Y ⊔ Y ′) ∼= (X ×H Y ) ⊔ (X ×H Y
′)

(X ⊔X ′)×H Y ∼= (X ×H Y ) ⊔ (X ′ ×H Y ).
(3.6)

3.2. Burnside Group of Bisets

The Burnside group B(G,H) of the (G,H)-bisets is the Grothendieck group of

the category GsetH . Definitively, it is the quotient of the free abelian group on the set

of isomorphism classes of the (G,H)-bisets, by the subgroup generated by the elements

of the form

[X ⊔ Y ]− [X]− [Y ] (3.7)
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where X, Y ∈ GsetH , and [X] is the isomorphism class of X. Since every (G,H)-biset

is the disjoint union of transitive ones, we have

B(G,H) :=
∑

[U ]∈sG×H

Z

[

G×H

U

]

(3.8)

where sG×H is a set of representatives of (G × H)-conjugacy classes of subgroups of

G×H. Recall Section 2.2 for details of the construction of Grothendieck groups.

Let X ∈ GsetH and Y ∈ Hset1 := Hset. As we stated in Examples 3.1, Y is

an H-set, and X ×H Y ∈ Gset1 := Gset is a G-set by the definition of the Mackey

product. Therefore, by the distributivity of the Mackey product on the disjoint union,

the (G,H)-biset X can be considered as a map as follows

X ×H − : B(H) → B(G), [Y ] 7→ [X ×H Y ] (3.9)

where B(G) := B(G, 1) denotes the Burnside group of left G-sets after identifying G

with G× 1.

Remark 3.2. We can regard bisets as an abstraction of bimodules because for any

(G,H)-biset X, the C-linearization CX of X naturally becomes a (CG,CH)-bimodule.

By tensor product with this bimodule, we can define the map

CX ⊗CH − : RC(H) → RC(G), [M ] 7→ [CX ⊗CH M ]. (3.10)

We need the notations below to calculate the Mackey product of two bisets pre-

cisely.
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Notations 3.1. Let U ≤ G×H and V ≤ H ×K. Then, we set

U ∗ V = {(g, k) ∈ G×K | (g, h) ∈ U, (h, k) ∈ V for someh ∈ H},

p1(U) := {g ∈ G | (g, h) ∈ U for someh ∈ H},

p2(U) := {h ∈ H | (g, h) ∈ U for some g ∈ G},

k1(U) := {g ∈ G | (g, 1) ∈ U} and k2(U) := {h ∈ H | (1, h) ∈ U}.

All the sets above are subgroups of the related groups. Furthermore, we have

k1(U)E p1(U), k2(U)E p2(U), and

p1(U)/k1(U) ∼= p2(U)/k2(U) ∼= U/(k1(U)× k2(U)). (3.11)

As it is seen, we get a quintuple (P,K, η, L,Q) := (p1(U), k1(U), η, k2(U), p2(U)), from

a given U ≤ G × H, where the isomorphism η : Q/L → P/K is determined via U

as η(hL) = gK if (g, h) ∈ U . Conversely, a given quintuple (P,K, η, L,Q) satisfying

K E P ≤ G and LEQ ≤ H, and that η : Q/L→ P/K is an isomorphism determines

a unique subgroup U = {(g, h) ∈ P × Q | η(hL) = gK} ≤ G × H. This is known

as Goursat’s Theorem. Via these notations, we can give the Mackey formula, which

enables us to identify Mackey product of transitive bisets.

3.3. Mackey Formula

Theorem 3.1. ( [5, Lemma 2.3.24]) Let U ≤ G×H and V ≤ H ×K. Then

(

G×H

U

)

×H

(

H ×K

V

)

∼=
⊔

h∈[p2(U)\H/p1(V )]

(

G×K

U ∗ (h,1)V

)

(3.12)

where [p2(U)\H/p1(V )] is a set of representatives of (p2(U), p1(V ))-orbits in H.

Although our biset examples look very simple, they are of great importance. In

fact, Bouc proved that any transitive biset is the Mackey product of five of them.
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Theorem 3.2 (Bouc). Let (P,K, η, L,Q) = (p1(U), k1(U), η, k2(U), p2(U)) be the da-

tum associated to some U ≤ G×H. Then,

(

G×H

U

)

∼= IndGP ×P InfPP/K ×P/K P/KIso
η
Q/L ×Q/L DefQQ/L ×Q ResHQ . (3.13)

Now, we let another player into the game, namely the fiber group A. We aim to

analyze fibered bisets to obtain similar results as in the ordinary case.

Definition 3.5. Let A be a multiplicatively written (not necessarily finite) abelian

group. An A-set X is said to be an A-fibered (G,H)-biset if the following conditions

hold.

(i) A acts freely on X, i.e. if a · x = x for all x ∈ X, then a = 1.

(ii) The set of A-orbits in X is a finite (G,H)-biset.

(iii) All three actions commute with each other.

In contrast to the ordinary bisets, in the fibered case, we allow sets to be infinite

but we want the set of A-orbits of them to be finite. The fibered case can be regarded

as a generalization of the former one because when we take A = 1, the trivial group,

we obtain the ordinary bisets.

Examples 3.2. (i) As remarked above all bisets are A-fibered bisets for the fiber

group A = 1.

(ii) Let G = S3, H =<(13)> and A =<(123)>∼= C3. In this case, G becomes an

A-fibered (G,H)-biset.

Definition 3.6. An A-fibered (G,H)-biset X is transitive if the set of A-orbits in X

is a transitive (G,H)-biset.

Recall that if X is a transitive A-fibered (G,H)-biset, the set of A-orbits in X

is isomorphic to
(

G×H
U

)

as a biset, where U = S[x] for some A-orbit [x]. Then, if

(g, h) ∈ U , we have (g, h) · [x] = [(g, h) · x] = [x] by the commutativity of the actions
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on X. Since [(g, h) · x] = [x], then (g, h) · x = a · x for some a ∈ A. The element a ∈ A

is uniquely determined because A-action is free on X. Therefore, the map

φx : U → A, (g, h) 7→ φx(g, h) = a (3.14)

is a well-defined group homomorphism.

Definition 3.7. The pair (S[x], φx) above is called the stabilizing pair of x.

Notation 3.2. We denote by MG×H(A) the set of all pairs (U, φ), where U is a subgroup

of G×H and φ : U → A is a group homomorphism.

The set MG×H(A) admits a (G×H)-conjugation via (g,h)(U, φ) := ((g,h)U, (g,h)φ),

where (g,h)φ
(

(g,h)u
)

:= φ(u) for all u ∈ U . Moreover, MG×H(A) is a partially ordered

set (poset) with the ordering given by

(U, φ) � (V, ψ) if U ≤ V and φ = ψ|U .

Clearly, the poset structure is invariant under conjugation, i.e. if (U, φ) � (V, ψ),

then (g,h)(U, φ) � (g,h)(V, ψ) for all (g, h) ∈ G × H. We denote the conjugacy class of

(U, φ) ∈ MG×H(A) by [U, φ]G×H .

Lemma 3.2. For any (U, φ) ∈ MG×H(A), the set
(

G×H×A
Uφ

)

is a transitive A-fibered

(G,H)-biset, where Uφ := {(u, φ(u−1) | u ∈ U} ≤ G×H × A.

Definition 3.8. A morphism of A-fibered (G,H)-bisets is a morphism of (G,H)-bisets

that is also A-equivariant. A bijective morphism is called isomorphism. The category

whose objects are A-fibered (G,H)-bisets with their morphisms denoted by Gset
A
H .

With this definition, we have all to show the characterization of transitive fibered

bisets.

Theorem 3.3. There exists a bijection between isomorphism classes [X] of transitive

A-fibered (G,H)-bisets and conjugacy classes [U, φ]G×H of elements in MG×H(A).



25

In detail, for a given transitive A-fibered (G,H)-biset X, the corresponding ele-

ment of MG×H(A) is (S[x], φx) for some A-orbit [x] in X. The inverse correspondence

of the bijection is as shown in Lemma 3.2.

As a result of this bijection, we denote transitive A-fibered (G,H)-bisets and

their isomorphism classes by

(

G×H

U, φ

)

and

[

G×H

U, φ

]

respectively, for an appropriate pair (U, φ) ∈ MG×H(A). In the sequel, we show that

ordinary bisets constitute a major part of the fibered biset formulae also. But, when

we use ordinary (G,H)-bisets in the fibered case, we use the notation
(

G×H
U,1

)

instead

of
(

G×H
U

)

.

Definition 3.9. Let X ∈ Gset
A
H . The opposite Xop ∈ Hset

A
G of X is the A-fibered

(H,G)-biset X with the same A-action, and with the (H ×G)-action given via

(h, g) · x := (g−1, h−1) · x. (3.15)

Remark 3.3. If X ∼=
(

G×H
U,φ

)

, then Xop ∼=
(

H×G
Uop,φop

)

, where

Uop := {(h, g) | (g, h) ∈ U} ≤ H ×G and φop(h, g) := (φ(g, h))−1.

3.4. Tensor Product of Fibered Bisets

Let X ∈ Gset
A
H and Y ∈ Hset

A
K . Then, the Mackey product X ×AH Y ∈ GsetK

of X and Y is defined as the set of orbits in X × Y under the (A×H)-action

(x, y) · (a, h) = (x · (a, h), (a−1, h−1) · y) (3.16)
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for all (x, y) ∈ X × Y , (a, h) ∈ A × H. The (A × H)-orbit of (x, y) is denoted by

(x,AH y). The set X ×AH Y is both an A-set and a (G,H)-biset via the actions

a · (x,AH y) := (a · x,AH y) = (x,AH a · y),

(g, k) · (x,AH y) := (g · x,AH y · k
−1),

(3.17)

respectively. We have the following properties on X ×AH Y .

(i) For every a ∈ A, we have a · (x,AH y) = (x · a,AH y) = (x,AH a · y) = (x,AH y · a).

The equations in the left and right hold because A is abelian and we can switch

a left A-action to a right A-action. To verify the middle equation, observe that

(x ·a,AH y) = (a, 1) · (x ·a,AH y) = ((x ·a) ·a−1,AH a ·y) = (x,AH a ·y) as (x ·a,AH y)

is an (A×H)-orbit.

(ii) By the same token, (x · h,AH y) = (x,AH h · y), for any h ∈ H.

Despite all these properties, X ×AH Y is not always an A-fibered biset because

A-action may not remain free. Therefore, we define the tensor product

X ⊗AH Y ∈ Gset
A
K (3.18)

as the union of the elements of X×AH Y on which A acts freely. Since the construction

is the same as the Mackey product of bisets, the distribution on the disjoint union is

also valid for the tensor product. We use the notation x⊗AH y for elements of X⊗AHY .

We need the following notations for Boltje and Coşkun’s formula calculating the

tensor product of transitive fibered bisets.

Notations 3.3. If (U, φ) ∈ MG×H(A) and (V, ψ) ∈ MH×K(A), then the homomorphism

φ ∗ ψ : U ∗ V → A is defined by

(φ ∗ ψ)(g, k) = φ(g, h)ψ(h, k) (3.19)
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for some choice of h ∈ H such that (g, h) ∈ U and (h, k) ∈ V . Sometimes, we

need only parts of the datum (p1(U), k1(U), η, k2(U), p2(U)), which are left invariants

l(U, φ) := (p1(U), k1(U), φ1) and right invariants r(U, φ) := (p2(U), k2(U), φ2) of (U, φ),

where the homomorphisms φi : ki(U) → A, i = 1, 2 are defined through the equation

φ|(k1(U)×k2(U)) := φ1 × (φ2)
−1. We take the inverse of the second homomorphism in

order to have formulae in the sequel looked nicer.

Adopting the notations above and those of Section 3.3, the formula for the tensor

product of transitive A-fibered bisets is given in [4, Corollary 2.5] as

(

G×H

U, φ

)

⊗AH

(

H ×K

V,ψ

)

∼=
⊔

x∈[p2(U)\H/p1(V )]
φ2|Hx=

xψ1|Hx

(

G×K

U ∗ (x,1)V, φ ∗ (x,1)ψ

)

(3.20)

where Hx = k2(U)∩
xk1(V ). Due to the condition φ2|Hx = xψ1|Hx , the homomorphism

φ ∗ (x,1)ψ is independent of the choice of h ∈ H.

Let
(

G×H
U,φ

)

be any transitive A-fibered (G,H)-biset and (P,K, η, L,Q) be the

quintuple (p1(U), k1(U), η, k2(U), p2(U)) afforded by U . As we stated in Theorem 3.2,

any transitive biset is the Mackey product of five canonical bisets. A similar decom-

position for any A-fibered (G,H)-biset is obtained partially in [4]. It is precisely

(

G×H

U, φ

)

∼= IndGP ⊗AP InfP
P/K̂

⊗A(P/K̂) Y ⊗A(Q/L̂) Def
Q

Q/L̂
⊗AQ ResHQ (3.21)

where K̂ and L̂ are kernels of φ1 and φ2, respectively. Let us denote the stabilizing

pair of the transitive A-fibered (P/K̂,Q/L̂)-biset Y by (Ū , φ̄). Here, the first and

the second projections of Ū are full, i.e. p1(Ū) = P/K̂ and p2(Ū) = Q/L̂, and the

homomorphisms φ̄1 and φ̄2 are faithful. Boltje and Coşkun decomposed Y fully with

the following additional condition on A. To state the full decomposition, we need

many new definitions that we will not use in the sequel, therefore see [4, Section 10] for

further details. Since we also impose the condition on A in certain parts of the thesis,

we recall it.
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Hypothesis 3.1. There exists a (unique) set π of primes such that for every n ∈ N,

the n-torsion part of A is cyclic of order nπ, where nπ denotes the π-part of n.

The meaning of the hypothesis is that A is divisible, that is if A contains p-th

roots of unity for some prime number p ∈ π, then A contains pn-th roots of unity for

every n ∈ N.

3.5. Burnside Group of Fibered Bisets

The Burnside group BA(G,H) of the A-fibered (G,H)-bisets is the Grothendieck

group of the category Gset
A
H . As in the ordinary case, due to the fact that transitive

A-fibered (G,H)-bisets form a basis for BA(G,H) and Theorem 3.3, we have

BA(G,H) :=
∑

[U,φ]∈[MG×H(A)]

Z

[

G×H

U, φ

]

(3.22)

where [MG×H(A)] is a set of representatives of (G×H)-conjugacy classes of elements

in MG×H(A). Recall 2.2 for details of the construction of Grothendieck groups. As

tensor product is possible in EG = EndC(G) := RBA(G,G), it also has a ring structure

and hence, EG is an R-algebra.

Definition 3.10. The elements of BA(G,H) are called virtual A-fibered (G,H)-bisets.

Similar to the ordinary case, fibered bisets can be regarded as maps via the tensor

product. That is

X ⊗AH − : BA(H) → BA(G), [Y ] 7→ [X ⊗AH Y ] (3.23)

where X is an A-fibered (G,H)-biset.
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3.6. Idempotents in EG

Let MG(A) denote the set MG×1(A). Recall that MG(A) is a G-set via conju-

gation. We denote by MG(A)
G the set of G-fixed points in MG(A), i.e. the set of

pairs (K, κ) ∈ MG(A) such that K E G, and κ(kg) = κ(k) for all k ∈ K, g ∈ G. For

(K, κ) ∈ MG(A)
A, Boltje and Coşkun introduced the A-fibered (G,G)-biset

EK,κ :=

(

G×G

∆K(G), φκ

)

(3.24)

where ∆K(G) := {(gk, g) | g ∈ G, k ∈ K} = (K × 1)∆(G) = (1 × K)∆(G), and

φκ(gk, g) := κ(k). They called EK,κ reduced if it cannot be factored through a group of

smaller order than |G|, and found the necessary and sufficient conditions to be reduced

when A satisfies Hypothesis 3.1 ( [4, Corollary 10.13]). It is an idempotent in EG.

Moreover, if (K, κ) � (L, λ) for some (L, λ) ∈ MG(A)
A, then EK,κ ⊗AG EL,λ ∼= EL,λ

( [4, Proposition 4.2]). Set eK,κ := [EK,κ] ∈ EG = RBA(G,G), and

fK,κ :=
∑

(K,κ)�(L,λ)∈MG(A)A

µ⊳

(K,κ),(L,λ)eL,λ (3.25)

where µ⊳

(K,κ),(L,λ) is the Möbius coefficient with respect to the poset MG(A)
A.

Lemma 3.3. Following the notation above, we have

∑

(K,κ)∈MG(A)A

fK,κ = e1,1 = 1 ∈ EG. (3.26)

The idempotent EK,κ is crucial for us because we show that it is a multiplier of

any transitive A-fibered biset when A does not satisfy Hypothesis 3.1 in our set-up.

That is why, we also find when EK,κ is reduced to achieve full decomposition of any

transitive fibered biset for cyclic groups.
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4. A-FIBERED BISET FUNCTORS

Definition 4.1. Let R be a commutative ring with unity. The A-fibered biset category

C := CAR of finite groups is the category defined as below

(i) The objects of C are finite groups.

(ii) For any two objects G and H, HomC(G,H) := RBA(H,G) := R ⊗Z B
A(H,G),

i.e. morphisms from G to H are the R-linear extensions of the virtual A-fibered

(H,G)-bisets.

(iii) The composition of morphisms in C is the R-linear extension of the tensor product

of fibered bisets.

(iv) For any object G, the identity morphism of G is R⊗Z [IdG] = R⊗Z

[

G×G
G×G

]

.

Remark 4.1. The category C is an R-linear category, that is for any objects G and H,

the set of morphisms HomC(G,H) is an R-module, and the composition of morphisms

is R-bilinear.

Definition 4.2. An A-fibered biset functor F over R is an R-linear functor from the

category C to the category R-Mod, that is a functor F from C to R-Mod such that the

maps that F induces between sets of morphisms are R-linear.

Examples 4.1. (i) The map RBA sending any finite group G to the Burnside group

RBA(G) of left A-fiberedG-sets, is an A-fibered biset functor over R, called the A-

fibered Burnside functor. For any virtual biset γ ∈ RBA(G,H) = HomC(H,G),

the map RBA(γ) : RBA(H) → RBA(G) is the R-linear extension of the map

X ⊗AH − : BA(H) → BA(G) shown in Section 3.4.

(ii) Consider the map

RC : G 7→ RC(G) (4.1)

sending any finite group G to its representation ring RC(G). Then, RC is an

A-fibered biset functor for any A ≤ C×, where C× := C\{0} is the multiplicative

group of invertible complex numbers. We call it the functor of complex character
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ring.

(iii) Let F be an algebraically closed field of characteristic p > 0, and let A ≤ F×. We

denote the ring of trivial source FG-modules by TF(G). Then, the map assigning

the ring TF(G) to each finite group G is an A-fibered biset functor for any A ≤ F×.

See [2] for the definition of trivial source modules.

Together with natural transformations, A-fibered biset functors form a category

which we denote by F := FA
R . Since the category R-Mod is abelian, the category F is

also abelian with the pointwise evaluation of kernels and cokernels. That is to say, if

f : F1 → F2 is the natural transformation, then

(ker(f))(G) = ker(fG) and (coker(f))(G) = coker(fG) (4.2)

where fG : F1(G) → F2(G) for any finite group G. This property enables us to define

subfunctors, quotient functors, projective functors, simple functors, etc.

Definition 4.3. A group G is said to be minimal for an A-fibered biset functor F if

F (G) 6= 0 and F (H) = 0 for any group H such that |H| < |G|.

Let (K, κ) ∈ MG(A)
G, a G-fixed pair in MG(A). The canonical basis elements

[

G×H
U,φ

]

∈ BA(G,G) satisfying l(U, φ) = (G,K, κ) = r(U, φ) form a group ΓG,K,κ. The

identity element of the group is eK,κ shown in 3.6, and the inverse of
[

G×H
U,φ

]

is the

opposite biset
[

H×G
Uop,φop

]

.

Definition 4.4. Let (K, κ) ∈ MG(A)
G and (L, λ) ∈ MH(A)

H . If there exists a

pair (U, φ) ∈ MG×H(A) such that l(U, φ) = (G,K, κ) and r(U, φ) = (H,L, λ), then

(G,K, κ) and (H,L, λ) are said to be linked.

Remark 4.2. Assume the hypothesis of the definition above. The set

G,K,κΓH,L,λ := {

[

G×H

U, φ

]

| l(U, φ) = (G,K, κ) and r(U, φ) = (H,L, λ)} (4.3)
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is a (ΓG,K,κ,ΓH,L,λ)-biset. Obviously this set is non-empty if and only if (G,K, κ) and

(H,L, λ) are linked. Notice that G,K,κΓH,L,λ induces a bijection

(R⊗Z G,K,κΓH,L,λ)⊗RΓH,L,λ
− : Irr(RΓH,L,λ) → Irr(RΓG,K,κ) (4.4)

between irreducible left modules of the related algebras.

Theorem 4.1. [4, Theorem 9.2] Any simple A-fibered biset functor S is parametrized by

the quadruples (G,K, κ, [V ]), that is S is of the form SG,K,κ,[V ], where G is a minimal

group for S, the pair (K, κ) ∈ MG(A)
G such that EK,κ is reduced, and [V ] is the

isomorphism class of the irreducible RΓG,K,κ-module V .

Examples 4.2. (i) If F is a field, then the the first functor example FBA above is

a projective A-fibered biset functor and it is an indecomposable object of F .

Besides, FBA is a projective cover of the simple functor S1,1,1,[F].

(ii) The functor CRC : G 7→ CRC(G) := C⊗Z RC(G) is the C-linear extension of the

second functor in Examples 4.1. This functor is also an A-fibered biset functor for

any A ≤ C×. Besides, it is simple and isomorphic to the simple functor S1,1,1,[C]

when A = C×.
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5. ABELIAN CASE

The basic theory of fibered bisets and fibered biset functors are almost fully

analyzed by Boltje and Coşkun in the case that the fiber group satisfies Hypothesis

3.1. In the present thesis, we free the fiber group from this condition. Because it is a

challenging task, we decided to move step by step. As a first step, we aim to obtain

our results for cyclic groups. That is why, we need to cover previous results for abelian

groups, then reduce them to cyclic groups when it is necessary. From now on, in this

chapter all groups are assumed to be abelian groups unless otherwise stated.

Let G =<g> be a cyclic group of order n. Since characters of abelian groups are

group homomorphisms, any character ψ : G→ C is of the form gi 7→ ai for some i ∈ N,

where a is an n-th root of unity. Because any n-th root unity a is of the form a = ωj,

1 ≤ j ≤ n for a fixed primitive n-th root of unity ω, any character of G is of the form

ψj : G → C, gi 7→ ωij for some 1 ≤ j ≤ n. Hence, if we denote the character of G

sending g to ω by χ, we obtain that ψj = χj, that is Irr(G) = {χ, χ2, . . . , χn = 1}. With

the multiplication χi · χj := χi+j, the set Irr(G) becomes a group. Moreover, Irr(G) is

a cyclic group generated by χ, and isomorphic to G. Note that Irr(G) = Hom(G,C×).

In general, let G be an abelian group and let |G| = p1
n1p2

n2 . . . pr
nr be the prime

factorization of |G|. Since G ∼= Cp1n1 × Cp2n2 × · · · × Cprnr , any character (homomor-

phism) χ : G → C is of the form (χ1)
j1(χ2)

j2 . . . (χr)
jr , 1 ≤ ji ≤ pi

ni , where χj is the

generator of Irr(Cpini ), 1 ≤ i ≤ r.

Recall that we did not give the final decomposition of any transitive A-fibered

biset due to its complication and the excessive notations even if A satisfies Hypothesis

3.1. However, in the case that G and H are abelian groups and A satisfies the hypoth-

esis, we can state the full decomposition of a transitive A-fibered (G,H)-biset with a

new fibered biset in addition to the five canonical bisets: Twist.

Until the end of this chapter, we assume that A satisfies Hypothesis 3.1.
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Definition 5.1. If ϕ : G→ A is a group homomorphism, then the Twist by ϕ at G is

the A-fibered (G,G)-biset

Twϕ
G =

(

G×G

∆(G),∆(ϕ)

)

(5.1)

where ∆(G) := {(g, g) | g ∈ G} and ∆(ϕ)(g, g) := ϕ(g) for any g ∈ G.

Let (U, φ) ∈ MG×H(A) and (P,K, η, L,Q) = (p1(U), k1(U), η, k2(U), p2(U)) be

the invariants determined by (U, φ). We use the notation φ̃ = φ̃1 × φ̃2 for an extension

of φ to P ×Q which exists since the group P ×Q is abelian and A is divisible by the

hypothesis.

Theorem 5.1. ( [7, Coşkun-Yılmaz]) Let G,H,A and (U, φ) be as above. Then

(

G×H

U, φ

)

∼= IndGP Twφ̃1
P InfPP/K P/KIso

η
Q/L DefQQ/LTw

φ̃2
Q ResHQ . (5.2)

We need to introduce some notations to classify simple fibered biset functors

whose minimal groups are abelian. We denote by ĒG the subalgebra of the algebra

EG = RBA(G,G) consisting of the A-fibered (G,G)-bisets which cannot be factored

through a group of smaller order. The algebra ĒG plays an essential role in the classi-

fication. Its structure is analyzed generally in [4, Section 8]. We describe its structure

when G is abelian. Note that, in this paper, we only need the case that the minimal

group is cyclic, but we include a more general case since the same arguments still work

in this case.

Let
(

G×G
U,φ

)

be a transitive A-fibered (G,G)-biset which does not factor through

a group of smaller order. Then, it is decomposed as

(

G×G

U, φ

)

∼= Twφ̃1
G ⊗AG GIso

λ
G ⊗ Twφ̃2

G (5.3)
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since we deduce by Theorem 5.1 that

P = Q = G, K = L = 1, and U = {(g, λ(g)) ∈ G×G | λ ∈ Out(G)}.

The homomorphism φ̃ = φ̃1 × φ̃2 above is an extension of φ to G×G. Moreover, from

the tensor product formula, we easily obtain

GIso
λ
G ⊗AG Twφ

G
∼= Twφ◦λ

G ⊗AG GIso
λ
G. (5.4)

Therefore, the algebra ĒG is generated by all A-fibered (G,G)-bisets of the form

Twφ
G ⊗AG GIso

λ
G, where φ ∈ GA = Hom(G,A) and λ ∈ Out(G). We use the nota-

tion

[φ, λ]G := Twφ
G ⊗AG GIso

λ
G (5.5)

for short. Now, if λ, µ ∈ Out(G) and φ, ψ ∈ GA, again from the tensor product formula,

we obtain the following equations

[1, λ]G · [1, µ]G = [1, λ · µ]G, (5.6)

[1, λ]G · [φ, 1]G · [1, λ−1] = [φ ◦ λ, 1]G, (5.7)

[φ, 1]G · [ψ, 1]G = [φ ◦ ψ, 1]G. (5.8)

As a result, by the equations above we construct an algebra isomorphism between ĒG

and R[GA ⋊Out(G)], via the map

ĒG → R[GA ⋊Out(G)], [φ, λ] 7→ φ · λ. (5.9)
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5.1. Simple Functors

Let S be a simple fibered biset functor such that its minimal group is abelian. In

this case, it can easily be shown that S(G) is a simple EG-module.

The evaluation V := S(G) is actually a simple ĒG-module as the minimality of

G implies that any A-fibered (G,G)-biset which factors through a group of smaller

order annihilates S(G). Thus, V is a simple R[GA ⋊ Out(G)]-module by Map 5.9.

Furthermore, any minimal group for S should be isomorphic with G ( [4, Proposition

9.4]).

Indeed, recall that general parametrization of any simple A-fibered biset functor

is of the form SG,K,κ,V for some quadruple (G,K, κ, V ) such that EK,κ is reduced. In

the case A satisfies the hypothesis, it is shown that EK,κ is reduced if and only if K is a

cyclic π-group such thatK ≤ Z(G)∩G′, and κ is a faithful character ofK ( [4, Corollary

10.13]). Since we take G as abelian in our case, there is only one possibility for such

(K, κ), which is (1, 1). Moreover, in this case, we have ΓG,1,1 ∼= GA ⋊Out(G).

On the other hand, let H be another minimal group for S. We claim that H ∼= G.

Indeed, by Theorem 9.2 in [4], we have |H| = |G| and by Proposition 9.5 in [4], if S(H)

is non-zero then there is a section H1EH2 ≤ H of H and a subgroup L of H∗ = H2/H1

such that G ∼= H∗/L and L ∩ (H∗)′ = 1. Now since |G| = |H|, we must have G ∼= H.

As a result, we have proved the following theorem.

Theorem 5.2. Let F be a field. Then, there is a bijective correspondence between the

set of isomorphism classes of simple A-fibered biset functors with an abelian minimal

group and the set of pairs (G, V ), where G runs over all finite abelian groups, up to

isomorphism, and V runs over the isomorphism classes of simple k[GA ⋊ Out(G)]-

modules.



37

6. FUNCTOR OF COMPLEX CHARACTER RING

This chapter is devoted to details related to the structure of the functor of complex

character ring introduced in Examples 4.1. It is studied as various objects such as a

Mackey functor, a Green biset functor, an ordinary biset functor and a C×-fibered biset

functor. For completeness, we include known results regarding the aspects in which the

complex character ring treated. We refer to [13] and [12] for preliminaries on Mackey

functors and Green biset functors, respectively. Before recalling the results, we need

the following definition.

Definition 6.1. For any character or equivalently homomorphism ζ : (Z/mZ)× → C×,

the map ζ̃ : Z/mZ → C given by

ζ̃(x) =











ζ(x) if x ∈ (Z/mZ)×

0 otherwise

(6.1)

for any x ∈ Z/mZ is called a Dirichlet character modulo m. A Dirichlet character

ζ̃ : Z/mZ → C is called primitive if ζ cannot be factored through a proper quotient of

(Z/mZ)×, that is it is not induced from any character of smaller modulus. We denote

by Γ the set of pairs (m, ζ), where m ∈ Z+ and ζ̃ is a primitive Dirichlet character

modulo m.

Theorem 6.1. Let F be a field of characteristic zero. Then

(i) ( [13, Thévenaz-Webb]) For any finite group G, there is an isomorphism

QRG
C
∼=

⊕

(H,V ):H cyclic
H≤GG

nH,V S
G
H,V (6.2)

of Mackey functors for G over Q. Here, nH,V denotes the multiplicity of the

Q[NG(H)/H]-module V in Q(ζ|H|), and S
G
H,V is the simple Mackey functor for G

parameterized by (H, V ).
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(ii) ( [12, Romero]) The functor CRC is simple as a Green biset functor.

(iii) ( [5, Bouc]) There is an isomorphism

CRC
∼=

⊕

(m,ζ)∈Γ

SZ/mZ,Cζ
(6.3)

of biset functors, where Cζ denotes the COut(Z/mZ)-module C on which the

group Out(Z/mZ) ∼= (Z/mZ)× acts via ζ.

(iv) ( [4, Boltje-Coşkun]) There is an isomorphism

FRC
∼= S1,1,1,[F] (6.4)

of C×-fibered biset functors where the right hand side is the simple functor pa-

rameterized by the trivial group.

We pointed out in Examples 4.2 that CRC is an A-fibered biset functors for any

A ≤ C×. When we take A = 1, it becomes an ordinary biset functor. Note that Bouc’s

decomposition can be thought as a decomposition of 1-fibered biset functors, and hence

the above two results cover the two extreme cases where the fiber group is the smallest

and the largest. For the rest of the thesis, we want to determine the structure of CRC

as an A-fibered biset functor for some other nice choices of the fiber group A. We

should give some details about the simple summands of CRC to reach our aim. More

details can be found in [5, Chapter 7].

As in Chapter 4, let BA denote the A-fibered Burnside functor, sending any group

G to the Burnside group BA(G). The well-known C-linearization map associates to any

transitive A-fibered G-set X with the stabilizing pair (U, φ) the monomial CG-module

CX with monomial basis X. In other words, CX is the C-vector space with basis X

and the CG-action inherited from the G-action on X. It is easy to show that

CX ∼= IndGUCφ (6.5)
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as CG-modules, where Cφ denotes the 1-dimensional representation of U with the

character φ. Now, the linearization map is defined as the linear extension of this

correspondence. Similarly, if Y is an A-fibered (H,G)-biset, then the linearization of

Y can be regarded as a monomial (CH,CG)-bimodule and hence we obtain a group

homomorphism

RC(Y ) : RC(G) → RC(H) (6.6)

given by RC(Y )([M ]) = [CY ⊗CG M ]. For simplicity, we denote RC(Y ) by RY . It is

shown in [4, Subsection 11B] that with this action of fibered bisets, the functor RC

becomes an A-fibered biset functor.

In this thesis, we want to work with characters instead of CG-modules. The

following lemma describes the above group homomorphism in terms of characters.

Lemma 6.1. Let χ ∈ RC(G) be the character of the CG-moduleM and Y =
(

H×G
V,ψ

)

be

a transitive A-fibered (H,G)-biset. Then the character RY (χ) of the module [CY⊗CGM ]

is given by

RY (χ)(h) =
1

|V |

∑

x∈H,g∈G
(hx,g)∈V

ψ(hx, g)χ(g). (6.7)

Proof. Since CY is a (CH,CG)-bimodule, then [CY ⊗CG M ] ∈ RC(H). Therefore,

RY (χ) ∈ RC(H) is a character of H. Hence, by the formula of the characters of tensor

product of modules found in [5, Lemma 7.1.3], the character RY (χ) is given by

RY (χ)(h) =
1

|G|

∑

g∈G

θ(h, g)χ(g) (6.8)

where θ is the character of the monomial (CH,CG)-bimodule CY . Now, we need to

identify the character θ. It is equal to the function sending any (h, g) ∈ H ×G to the

trace of the endomorphism y 7→ (h, g)y of CY . Since Y is an A-fibered (H,G)-biset

and A ≤ C×, the basis of CY is a set [Y ]/ ∼ of the representatives of the A-orbits [Y ]
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of Y . It is precisely equal to

θ(h, g) =
∑

y∈[Y ]/∼
(h,g)[y]=[y]

ψy(h, g) (6.9)

where ψy(h, g) ∈ A is determined by the equation (h, g)y = ψy(h, g)y. On the other

hand, since Y is transitive, there exists some (a, b)V ∈ (H × G)/V satisfying the

equation (a, b)[y] = [y′] for any [y], [y′] ∈ [Y ]. Also, if (h, g) stabilizes [y], then (h, g)(a,b)

stabilizes [y′]. Thus,

RY (χ)(h) =
1

|G|

∑

g∈G

θ(h, g)χ(g)

=
1

|G|

∑

g∈G

∑

(a,b)V ∈(H×G)/V

(ha,gb)∈V

ψ(ha, gb)χ(g).

Since ϕb : G→ G, g 7→ gb is an isomorphism and the characters are class functons, we

have

RY (χ)(h) =
1

|G|

∑

bg∈G

∑

(a,b)V ∈(H×G)/V
(ha,g)∈V

ψ(ha, g)χ(g). (6.10)

If (a, b)V ∈ (H ×G)/V , then for each (u, v) ∈ V and for any [y] ∈ [Y ],

(hau, gv)[y] = (ha, g)v[y] = (ha, g)[y]. (6.11)
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Then

RY (χ)(h) =
1

|G|

1

|V |

∑

bg∈G

∑

(a,b)∈(H×G)
(ha,g)∈V

ψ(ha, g)χ(g)

=
1

|G|

1

|V |

∑

g∈G

∑

(a,b)∈H×G
(ha,g)∈V

ψ(ha, g)χ(g)

=
1

|G|

1

|V |

∑

g∈G

∑

a∈H

∑

b∈G:
(ha,g)∈V

ψ(ha, g)χ(g)

=
1

|V |

∑

a∈H,g∈G
(ha,g)∈V

ψ(ha, g)χ(g). (6.12)

We also need the explicit descriptions of the actions of basic fibered bisets. Note

that if Y is one of induction, restriction, inflation, deflation or isogation bisets, then

the above formula becomes the corresponding well-known maps in Section 2.3 from

character theory.

Since we have long expressions containing biset actions on characters in the sequel,

we prefer to use the notation Y · χ or Y χ instead of RY (χ).

Proposition 6.1. Let ϕ : G → A be a homomorphism for some group G and let

χ ∈ Irr(G). Then Twϕ
Gχ = ϕχ.

Proof. The chain of equations

(Twϕ
Gχ)(g) =

1

|∆(G)|

∑

x∈G,g′∈G
(gx,g′)∈∆(G)

∆(ϕ)((gx, g′))χ(g′)

=
1

|G|

∑

x∈G

∆(ϕ)((gx, gx))χ(gx)

=
1

|G|

∑

x∈G

ϕ(g)χ(g) = ϕ(g)χ(g) (6.13)

is a direct result of the formula in Lemma 6.1 and completes the proof.
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Proposition 6.2. Let G be an abelian group, χ ∈ Irr(G) and EK,κ =
(

G×G
∆K(G),φκ

)

be

an idempotent for some pair (K, κ) ∈ MG(A). Then

EK,κχ =











χ if χ|K = κ

0 otherwise.

(6.14)

Proof. Keeping in mind that G is abelian, we obtain from Lemma 6.1 that

(EK,κχ)(g) =
1

|∆K(G)|

∑

x∈G,g′∈G
(gx,g′)∈∆K (G)

φκ((g
x, g′))χ(g′)

=
1

|G||K|

∑

x∈G,k∈K

φκ((g, gk))χ(gk)

=
1

|K|

∑

k∈K

φκ((g, gk))χ(gk)

=
1

|K|

∑

k∈K

κ(k−1)χ(gk).

Since any character of an abelian group is a homomorphism, we have

(EK,κχ)(g) =
1

|K|

∑

k∈K

κ(k−1)χ(g)χ(k)

= χ(g)

(

1

|K|

∑

k∈K

κ(k−1)χ(k)

)

=











χ(g) if χ|K = κ

0 otherwise

by the row orthogonality relation of characters.

Notation 6.1. Let EK,κ be an idempotent in EG for some finite group G. Abusing the

notation, we denote this idempotent by EA,κ if κ : K → A is an isomorphism, and we

set eA,κ := [EA,κ].

Lemma 6.2. Let fA,κ be the virtual A-fibered biset defined in Section 3.6. If G is a

finite cyclic group, then fA,κ = eA,κ.
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Proof. Note first that fA,κ = fK,κ for some K ≤ G such that K ∼= A, and

fK,κ :=
∑

(K,κ)�(L,λ)∈MG(A)A

µ⊳

(K,κ),(L,λ)eL,λ. (6.15)

In the case that G is cyclic, the Möbius coefficient µ⊳

(K,κ),(L,λ) becomes

µ⊳

(K,κ),(L,λ) =



























0 if |L : K| has repeated prime factors

1 if K = L

−1 if K is maximal in L.

(6.16)

On the other hand, since κ : K → A is an isomorphism, the only pair satisfying

(K, κ) � (L, λ) is (K, κ) itself due to the condition λ|K = κ, that is fA,κ = eA,κ.

Lemma 6.3. Let G be a finite cyclic group of order m. Then,

∑

α

(eA,αχ) = χ (6.17)

for any irreducible character χ ∈ Irr(G).

Proof. First, notice that MG(A)
A = MG(A) if G is abelian. Then fK,κ takes the form

fK,κ =
∑

(K,κ)�(L,λ)∈MG(A)

µ⊳

(K,κ),(L,λ)eL,λ = eK,κ −
∑

p2∤|L:K|
λ|K=κ

eL,λ (6.18)

for any (K, κ) ∈ MG(A) by Equations 3.25 and 6.16. The number p in the second sum

above is any prime number because Möbius coefficient is zero if |L : K| has repeated

prime factors. Now, consider fK,κχ for any χ ∈ Irr(G). It equals zero if the sum
∑

p2∤|L:K|
λ|K=κ

eL,λ is non-zero, i.e. if there exist pairs (L, λ) such that K is maximal in

L and λ|K = κ. Indeed, if eK,κχ = 0, that is if χ|K 6= κ, then
∑

p2∤|L:K|
λ|K=κ

eL,λχ = 0

because χ|L cannot be equal to λ due to the equality λ|K = κ. On the other hand, if

eK,κχ = χ, that is if χ|K = κ, then fK,κχ = 0 again because
∑

p2∤|L:K|
λ|K=κ

eL,λχ = χ. Since
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G is cyclic, there exists for certain at least one pair (L, λ) with χ|L = λ, which implies

the equalities
∑

p2∤|L:K|
λ|K=κ

eL,λχ = χ and fK,κχ. We know by Lemma 6.2 that fA,α = eA,α

for any isomorphism α : A→ A. If we set

fA :=
∑

α

fA,α =
∑

α

eA,α (6.19)

then

1 =
∑

(K,κ)∈MG(A)

fK,κ = fA + f ′
A where f ′

A :=
∑

(K,κ)∈MG(A)

K≇A

fK,κ = 1− fA

by Lemma 3.3. Notice that if (K, κ) is any pair with K ≇ A, then there exists surely

a pair (L, λ) such that λ|K = κ because G is cyclic and κ is not an isomorphism.

Therefore fK,κχ = 0 by the argument above which implies that f ′
Aχ = 0. Now, if we

apply the identity element 1 ∈ EG to χ, we obtain

χ = 1 · χ = (fA + f ′
A) · χ = fAχ+ f ′

Aχ = fAχ =
∑

α

eA,αχ (6.20)

which is what we desire to prove.
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7. MAIN RESULTS

We have stated that CRC is a semisimple biset functor and a simple C×-fibered

biset functor. In other words, while CRC is semisimple for the minimal fiber group

A = 1 ≤ C×, it is simple for the maximal fiber group A = C×. Our aim is to study the

structure of CRC for some non-trivial cases, i.e. for some specific groups A such that

1 < A < C×. We separate our investigation into two parts:

(i) Part I: Large Fiber Group

(ii) Part II: Small Fiber Group

where by a large fiber group, we mean a group satisfying Hypothesis 3.1. Otherwise,

we call it a small fiber group.

7.1. Part I: Large Fiber Group

We first concentrate on a fiber group satisfying the hypothesis. For simplicity,

we let π be a set of prime numbers and let A = π∞ be an abelian group containing

all pn-th roots of unity for all powers n ∈ N and all primes p ∈ π. We are aiming

to show that CRC is still semisimple as a π∞-fibered biset functor by determining a

decomposition of it into simple summands.

Before stating our first main theorem of this part, we introduce some notation.

Let Γ be the set of all pairs (m, ζ) as defined in the previous section. We define a

relation on Γ as follows. Two pairs (m, ζ), (n, ν) ∈ Γ are said to be π-equivalent,

written (m, ζ) ≡ (n, ν) if the π′-parts mπ′ and nπ′ are equal and after identifying the

groups Z/mπ′Z ∼= Z/nπ′Z, we have

Cζπ′
∼= Cνπ′ . (7.1)
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Remark 7.1. The last condition means that the π′-parts ζ̃π′ and ν̃π′ of ζ and ν affords

the same one dimensional representation of Z/mπ′Z ∼= Z/nπ′Z, and hence they differ

by a non-zero complex scalar.

Clearly, this is an equivalence relation on the set Γ. We denote the equivalence

class containing (m, ζ) by [m, ζ] and write Γπ∞ for the set of equivalence classes. It

is also clear that each equivalence class contains a unique pair (n, ν) where n is a

π′-number. Now, we can state our first main result of this part.

Theorem 7.1. Assume the above notation. Further assume that m is a π′-number

and denote by SAm,ζ the π∞-fibered subfunctor of CRC generated by the simple biset

subfunctor SZ/mZ,Cζ
. Then, there is an isomorphism

SAm,ζ
∼=

⊕

(n,ν)∈[m,ζ]

SZ/nZ,Cν (7.2)

of biset functors.

Proof. To simplify the proof of the theorem, we introduce the following temporary

notation

S[m,ζ] =
⊕

(n,ν)∈[m,ζ]

SZ/nZ,Cν . (7.3)

Clearly, S[m,ζ] is a biset functor and the first part of the theorem claims that forgetting

the fibered structure of the functor SAm,ζ , we obtain an isomorphism S[m,ζ]
∼= SAm,ζ of

biset functors. We prove the claim in two steps. First, let (n, ν) ∈ [m, ζ]. We show

that the simple biset subfunctor SZ/nZ,Cν of CRC is contained in SAm,ζ . Since m is a

π′-number, there is a π-number k such that n = mk and without loss of generality, the

π′-part ν̃π′ of ν̃ coincides with ζ̃. On the other hand, the π-part ν̃π of ν̃ is a virtual

character of Z/kZ, and hence it is a complex linear combination of the irreducible



47

characters of Z/kZ, say

ν̃π =
∑

χ∈Irr(Z/kZ)

cχχ (7.4)

for some complex numbers cχ. Moreover, since k is a π-number, Z/kZ embeds in A

and hence each irreducible character χ of Z/kZ induces a twist biset Twχ
Z/kZ. Thus,

putting

Twν̃π =
∑

χ

cχTw
χ
Z/kZ (7.5)

we obtain

ν̃π = Twν̃π · 1 (7.6)

where 1 denotes the trivial character of the group Z/kZ. Moreover, writing Z/nZ =

Z/kZ× Z/mZ, we can regard the A-fibered (Z/kZ,Z/kZ)-biset Twν̃π as an A-fibered

(Z/nZ,Z/nZ)-biset by letting Z/mZ act trivially on both sides. Therefore, the above

equality becomes

ν̃π × 1 = Twν̃π · 1 (7.7)

where 1 on the right hand side is the trivial character of the group Z/nZ. On the other

hand, we clearly have

1× ν̃π′ = Inf
Z/nZ
Z/mZζ̃ . (7.8)

Combining these two equalities, we get

ν̃ = ν̃π × ν̃π′ = Twν̃π · Inf
Z/nZ
Z/mZ · ζ̃ . (7.9)

In particular, ν̃ is contained in the A-fibered subfunctor generated by ζ̃. We already
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know that the simple biset functor SZ/nZ,Cν is generated by ν̃. Thus we have proved

that

SZ/nZ,Cν ⊆ SAm,ζ (7.10)

for all (n, ν) ∈ [m, ζ]. In particular, we have shown that

S[m,ζ] ⊆ SAm,ζ (7.11)

as required.

To prove the reverse inclusion, it is sufficient to show that any simple biset sub-

functor of SAm,ζ is parameterized by a pair equivalent to (m, ζ). Indeed, since CRC is

semisimple, the subfunctor SAm,ζ is also semisimple and hence it is a sum of its simple

subfunctors. Therefore, let SZ/nZ,Cν ⊆ SAm,ζ . We need to show is that (n, ν) is equiva-

lent to (m, ζ). Since SZ/nZ,Cν (Z/nZ) ⊆ SAm,ζ(Z/nZ) and the functor SAm,ζ is generated

by ζ̃, we should have

ν̃ = γ · ζ̃ (7.12)

for some virtual A-fibered biset γ ∈ BA(Z/nZ,Z/mZ). Recall that π∞ satisfies Hy-

pothesis 3.1. Hence, by the decomposition given in Theorem 5.1, we deduce that ν̃ is

a C-linear combination of elements of the form

Ind
Z/nZ
P Twφ̃1

P InfPP/K cηP/K,Q/L DefQQ/L Twφ̃2
Q Res

Z/mZ
Q ζ̃ (7.13)

for appropriate choices of the notation. But Z/mZ is a minimal group for the functor

SAm,ζ . Thus the maps factoring through a group of smaller order annihilates ζ̃ and

hence any transitive summand of γ must be of the form

Ind
Z/nZ
Z/sZ Twφ

Z/sZ Inf
Z/sZ
Z/mZ ζ̃ (7.14)
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where φ : Z/sZ → A is a homomorphism. Also, since Z/nZ is a minimal group for the

biset functor SZ/nZ,Cν , the induction maps in the above decomposition must be trivial,

that is, s must be equal to n. Thus the above form reduces to

Twφ
Z/nZ Inf

Z/nZ
Z/mZ ζ̃ . (7.15)

By its transitivity we can divide the inflation map above into two parts as

Twφ
Z/nZ Inf

Z/nZ
Z/nπ′Z

Inf
Z/nπ′Z

Z/mZ ζ̃ (7.16)

where nπ′ denotes the π′-part of n. We need to show that the inflation map on the

right side is trivial and hence m is the π′-part of n. Assume it is not trivial. Then we

have

Twφ
Z/nZ Inf

Z/nZ
Z/nπ′Z

Inf
Z/nπ′Z

Z/mZ ζ̃ = Twφ
Z/nZ (τ × 1) (7.17)

where τ = Inf
Z/nπ′Z

Z/mZ ζ̃. On the other hand, because of the structure of the group A

and the fact that φ is a homomorphism whose image is in A, φ must be trivial on the

π′-part of Z/nZ, i.e. following the previous notations, φ must be of the form 1 × φπ.

Hence, the expression above becomes

Twφ
Z/nZ (τ × 1) = Tw1×φπ

Z/nZ (τ × 1) = τ × φπ. (7.18)

But the last map τ × φπ can be given as Inf
Z/nπ′Z

Z/mZ (ζ̃ × φπ), which contradicts the

primitivity of ν. Therefore, nπ′ = m and all together imply that (m, ζ) ≡ (n, ν), which

is what we want to show to justify

SAm,ζ ⊆ S[m,ζ]. (7.19)

Theorem 7.2. The π∞-fibered biset functor SAm,ζ is simple.



50

Proof. We have already shown that the π∞-fibered biset functor SAm,ζ is cyclic and

generated by ζ̃. Thus it is sufficient to show that any non-generator must be zero.

This is equivalent to show that the intersection of the kernels of all maps

SAm,ζ(G) → SAm,ζ(Z/mZ) (7.20)

induced by A-fibered (Z/mZ, G)-bisets is zero for any group G.

Let 0 6= ψ ∈ SAm,ζ(G). Assume, for a contradiction, that for any A-fibered

(Z/mZ, G)-biset X, the induced map

X : SAm,ζ(G) → SAm,ζ(Z/mZ) (7.21)

annihilates ψ, that is, we have X(ψ) = 0. By Theorem 7.1, we have

SAm,ζ(G) =
⊕

(n,ν)

SZ/nZ,Cν (G) (7.22)

where the sum is over all pairs (n, ν) equivalent to (m, ζ). Therefore, we can write

ψ =
∑

(n,ν)

ψ(n,ν) (7.23)

where ψ(n,ν) ∈ SZ/nZ,Cν (G). Now let (n0, ν0) be a minimal pair equivalent to (m, ζ)

subject to the condition that ψ(n0,ν0) 6= 0 but ψ(n,ν) = 0 for all n < n0.

Now, by its choice, the element ψ lies in the kernel of any composite map ZY

where

Y : SAm,ζ(G) → SAm,ζ(Z/n0Z) and Z : SAm,ζ(Z/n0Z) → SAm,ζ(Z/mZ)
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are induced by A-fibered bisets. In particular, for any π∞-fibered (Z/mZ,Z/n0Z)-biset

V and for any (Z/n0Z, G)-biset U , we have

(V ⊗A(Z/n0Z) U)(ψ) = 0. (7.24)

Now, the image of ψ under any such biset U can be evaluated. Indeed, since Z/nZ is

a minimal group for the simple biset functor SZ/nZ,Cν , for each n > n0 and any pair

(n, ν) equivalent to (m, ζ), we have

U(ψ(n,ν)) = 0. (7.25)

Hence, the ones lying in the summands SZ/n0Z,Cνi
(Z/n0Z), 1 ≤ i ≤ t, for some integer

t ≥ 1, are the only non-zero components of U(ψ).

For simplicity, we denote by ψi the component ψ(n0,νi) of ψ. As a subfunctor of

CRC, the evaluation SZ/n0Z,Cνi
(Z/n0Z) is generated by ν̃i. This implies the following

equality

U(ψ) =
t
∑

i=1

U(ψi) =
t
∑

i=1

ciν̃i ∈

t
⊕

i=1

SZ/n0Z,Cνi
(Z/n0Z) (7.26)

for some ci ∈ C. Also, since each pair (n0, νi) is equivalent to (m, ζ), we have n0 = mp

for some π-number p and ν̃i = ζ̃ × (ν̃i)π. Now since (ν̃i)π is a character of Z/pZ for

each i, there are complex numbers dij ∈ C such that

(ν̃i)π =

p
∑

j=1

dijχj. (7.27)

Here, χj runs over the all irreducible characters of Z/pZ. Thus, U(ψ) is actually of the

form

U(ψ) =
t
∑

i=1

p
∑

j=1

ci(ζ̃ × dijχj) =
t
∑

i=1

p
∑

j=1

cidij(ζ̃ × χj). (7.28)
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Note that if we deflate the character ζ̃ × χj to the quotient Z/mZ, we get zero unless

χj is the trivial character. Hence, deflation annihilates all the terms in the above some

except for the trivial character χ1. Moreover, given any non-trivial character χj of

Z/pZ, we can multiply U(ψ) by the twist biset Tw
1×(χj)

−1

Z/n0Z
to trivialize the π-part of

the corresponding summand. Hence given any index j, we have

0 = Def
Z/n0Z
Z/mZTw

1×(χj)
−1

Z/n0Z
U(ψ) =

t
∑

i=1

cidij ζ̃ . (7.29)

Since ζ̃ is non-zero, the above equality implies
∑t

i=1 cidij = 0. Now we multiply this

equality by χj and sum over j for 1 ≤ j ≤ p to get

0 =

p
∑

j=1

(

t
∑

i=1

cidijχj

)

=
t
∑

i=1

ci

(

p
∑

j=1

dijχj

)

=
t
∑

i=1

ci(ν̃i)π. (7.30)

But, (ν̃i)π’s are linearly independent as they form a subset of the set of all primitive

characters of Z/n0Z. Therefore we must have c1 = c2 = ... = ct = 0 and hence

U(ψi) = 0 for each i and for all (Z/n0Z, G)-bisets U . In particular, we see that the

element ψi lies in the intersection of kernels of all maps

U : SZ/n0Z,Cνi
(G) → SZ/n0Z,Cνi

(Z/n0Z). (7.31)

induced by (Z/n0Z, G)-bisets. Therefore, since SZ/n0Z,Cνi
is a simple biset functor, ψi

must be equal to zero for each i, which contradicts to the minimality of n0. Therefore

ψ must be zero, as required.

Corollary 7.1. The π∞-fibered biset functor CRC is semisimple and there is an iso-

morphism

CRC
∼=

⊕

[m,ζ]∈Γπ∞

SAm,ζ (7.32)

of π∞-fibered biset functors.
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Proof. It easily follows from Theorems 7.1 and 7.2.

7.2. Part II: Small Fiber Group

Recall that Theorem 5.1 states that EK,κ is always decomposable for a large fiber

group because it is not one of the multipliers. This is why, twist is the only fibered

biset in addition to the canonical bisets as we saw in the decomposition. On the other

hand, for a small fiber group, EK,κ may not disappear. Therefore, we need to determine

new conditions for EK,κ to be reduced because Hypothesis 3.1 is no longer satisfied.

We need some lemmas to find the necessary and sufficient conditions for EK,κ to be

reduced.

Lemma 7.1. If EK,κ is reduced, then κ is faithful and does not extend to G, that is,

there is no homomorphism ϕ : G→ A such that ϕ(k) = κ(k) for some 1 6= k ∈ K.

Proof. Let EK,κ be reduced. Then, because of the decomposition (3.21), the homo-

morphisms (φκ)1 = (φκ)2 = κ must be faithful. The irreducibility of EK,κ implies

the irreducibility of EK,κ ⊗AG Twϕ
G for any homomorphism ϕ : G → A. Indeed, if

EK,κ ⊗AG Twϕ
G were reducible, it would be decomposed as

EK,κ ⊗AG Twϕ
G
∼=

(

G×H

U, φ1

)

⊗AH

(

H ×G

U, φ2

)

(7.33)

for some group H with |H| < |G|. Then, consider the homomorphism ϕ−1 : G → A

defined as ϕ−1(g) := (ϕ(g))−1 for any g ∈ G. If we multiply the right hand-side of

Expression 7.33 by Twϕ−1

G , we obtain

EK,κ ⊗AG

(

Twϕ
G ⊗AG Twϕ−1

G

)

∼= EK,κ ∼=

(

G×H

U, φ1

)

⊗AH

((

H ×G

U, φ2

)

⊗AG Twϕ−1

G

)

which contradicts the irreducibility of EK,κ. Therefore, EK,κ ⊗AG Twϕ
G is also reduced

for any homomorphism ϕ : G→ A. Then, ker[(φκ ∗∆(ϕ))i] must be trivial for i = 1, 2.
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In other words, for any 1 6= k ∈ K, the evaluation

(φκ ∗∆(ϕ))(1, k) = φκ(1, k)∆(ϕ)(k, k) = κ(k−1)ϕ(k) (7.34)

cannot be equal to 1, i.e. ϕ(k) 6= κ(k).

Lemma 7.2. If G and H are groups of coprime orders, then the map

Θ : RBA(G,G)⊗R RB
A(H,H) −→ RBA(G×H,G×H)

(X, Y ) 7−→ X × Y

is a ring isomorphism.

Proof. The proof is almost the same as that of Proposition 2.5.14 in [5].

Remark 7.2. As a result of Lemma 7.2, we have the following isomorphism

EK,κ ∼= ×
p:prime
p||G|

EKp,κp (7.35)

where EKp,κp :=
(

Gp×Gp

∆Kp (Gp),φκp

)

. This isomorphism enables us to reduce the proof to

p-groups because EK,κ is reducible if and only if EKp,κp is reducible for some prime

p | |G|.

Theorem 7.3. Let (K, κ) ∈ MG(A) for a cyclic group G. Then, the A-fibered (G,G)-

biset EK,κ is reduced if and only if the homomorphism κ is faithful, and |A|p < |G|p for

any prime number p dividing |K|.

Proof. Let EK,κ be reduced for a cyclic group G =<g>. By Lemma 7.1, we know that

κ is faithful. Then, κp : Kp → A is also faithful for any prime number p dividing

|K|. Suppose, for a contradiction, that |A|p ≥ |G|p for some prime number p. As a

result of this assumption, A contains all |G|p-th roots of unity. Therefore, the faithful

homomorphism κp : Kp → A can be extended to a faithful homomorphism λ : Gp → A.
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In other words, λ(k) = κp(k) for any k ∈ Kp. Since this contradicts the assertion of

Lemma 7.1, following the notation of Remark 7.2, the idempotent EKp,κp is not reduced.

Then, neither is EK,κ by Remark 7.2.

Conversely, let κ be a faithful homomorphism and |A|p < |G|p for any prime

number p dividing |K|. Assume that EK,κ is not reduced. Then, we can decompose

EK,κ as

(

G×G

∆K(G), φκ

)

∼=

(

G×H

U,ϕ

)

⊗AH

(

H ×G

V, ψ

)

(7.36)

for some group H such that |H| < |G|. Since (x, x) ∈ ∆K(G) for any x ∈ G, then

(g, g) ∈ ∆K(G). By the definition of U∗V , there exists some h ∈ H such that (g, h) ∈ U

and (h, g) ∈ V . We claim that (o(g), o(h)) = d > 1. Indeed, if they were relatively

prime, <g, h> would be equal to <g> × <h>. In that case, U ∗ V = ∆K(G) would

be equal to G × G since <g, h>≤ U and <h, g>≤ V . The equality ∆K(G) = G × G

implies G = K. As κ : K → A is faithful, |K|p = |G|p must be less than or equal to

|A|p for any prime number p dividing |K|, which contradicts the condition |A|p < |G|p.

Therefore d > 1. Now, consider the group <ga, ha>, where a := o(h)
(o(g),o(h))

= o(h)
d
. Due

to the facts (o(g), a) = 1 and o(h) < o(g), we have <ga, ha>∼= G. Let θ :<ga, ha>→ A

be the restriction of ϕ to <ga, ha>, i.e. θ := ϕ|<ga,ha>, and let

L := k1(<g
a, ha>) ∩ k1(U) ≤ k1(∆K(G)) = K. (7.37)

The group L is non-trivial because of the facts <gad, had>=<gad, 1>=<gd, 1> and

<gd, 1>≤ U . Altogether, we obtain θ|L×1 = κ|L as

κ(gd) = φκ(g
d, 1) = ϕ(gd, 1)ψ(1, 1) = ϕ(gd, 1) = θ(gd, 1). (7.38)

Since κ is faithful, so is θ|L×1. Let p be a prime number dividing |L| = |L × 1|.

Then, faithfulness of θ|L×1 implies the faithfulnes of θp. which yields in turn that

| <ga, xa> |p = |G|p ≤ |A|p. This is a contradiction because L ≤ K, which means p
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divides |K| also.

Lemma 7.3. Let G and H be cyclic groups and let U ≤ G×H with the corresponding

quintuple (G,K, η, L,H). If |G| ≥ |H|, then U = UGUL such that UL = 1 × L and

UG =<g, h>∼= G for some generators g and h of G and H, respectively.

Proof. Let g be a generator of G. By Goursat Lemma, there exists a generator h of

H such that (g, h) ∈ U as G/K ∼= H/L. Then, UG ≤ U , where UG :=<g, h>∼= G.

Now, take an arbitrary element (x, y) ∈ U . Notice that (x, y) = (x, z)(1, z−1y), where

(x, z) = (ga, ha) such that x = ga for some a ∈ Z. Hence, we have shown that

U ⊆ UGUL, where UL := 1× L. The reverse inclusion is straightforward.

Remark 7.3. If we take |H| ≥ |G| in Lemma 7.3, we obtain U = UHUK such that

UK = K × 1, and UH ∼= H. It can be easily shown by using opposite bisets and

following the steps above.

Now, we can find a general formula for the decomposition of any transitive A-

fibered (G,H)-biset
(

G×H
U,φ

)

into products of canonical A-fibered bisets. In the light

of Lemma 7.2, it suffices to obtain a formula for p-groups. Assume the conditions

and notations of Lemma 7.3. Not to deal with complicated notations of the general

decomposition (3.21), we assume also that Ker(φ1) = 1 = Ker(φ2). Lemma 7.3 claims

that each pair (U, φ) ∈ MG×H(A) is of the form (UG ·UL, α ·β), where α : UG → A and

β : UL → A are homomorphisms. Notice that the condition Ker(φ1) = 1 = Ker(φ2)

forces β to be faithful. Let ᾱ : G→ A be a homomorphism defined as ᾱ(g) := α(g, h),

where (g, h) is a generator of UG. After all these settings, the decomposition is as

follows

(

G×H

U, φ

)

=

(

G×H

UG · UL, α · β

)

∼= Twᾱ
G ⊗AG

(

G×H

UG · UL, 1 · β

)

∼= Twᾱ
G ⊗AG InfGG/M ⊗A(G/M) G/M IsoH ⊗AH

(

H ×H

∆(H) · UL, 1 · β

)

= Twᾱ
G ⊗AG InfGG/M ⊗A(G/M) G/M IsoH ⊗AH EHL,β
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where M ≤ G such that G/M ∼= H, and

EHL,β :=

(

H ×H

∆L(H), φβ

)

=

(

H ×H

∆(H) · UL, 1 · β

)

. (7.39)

At this point, we separate the decomposition into two cases because it depends

on the orders of the groups. In the light of Theorem 7.3, if |A|p < |H|, then EHL,β is

reduced, and the decomposition above is in its final form. However, if |A|p ≥ |H|, then

EHL,β is decomposable by Theorem 7.3. In this case,

EHL,β
∼= Twξ

H ⊗AH

(

H ×H

∆L(H), 1

)

⊗AH Twξ−1

H

∼= Twξ
H ⊗AH InfHH/L ⊗A(H/L) Def

H
H/L ⊗AH Twξ−1

H

where ξ : H → A is a homomorphism satisfying ξ|L = β. After combining two

decompositions, the final form is as follows.

(

G×H

U, φ

)

∼= Twᾱ
G ⊗AG InfGG/M ⊗A(G/M) G/M IsoH ⊗AH EHL,β

∼= Twᾱ
G InfGG/M G/M IsoH Twξ

H InfHH/L DefHH/L Twξ−1

H

with tensor product over appropriate groups between each two of them. Hence, we

have proved the following theorem.

Theorem 7.4. Let G and H be cyclic p-groups such that |G| ≥ |H|. Then, assuming

the notation above,

(

G×H

U, φ

)

∼=











Twᾱ
G ⊗AG InfGG/M ⊗A(G/M) G/M IsoH ⊗AH EHL,β if |A|p < |H|

Twᾱ
G InfGG/M G/M IsoH Twξ

H InfHH/L DefHH/L Twξ−1

H if |A|p ≥ |H|.
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Remark 7.4. Assume the notations and the conditions of Remark 7.3. Then, any

transitive A-fibered (G,H)-biset is of the form

(

G×H

U, φ

)

=

(

G×H

UK · UH , α · β

)

(7.40)

where α : UK → A and β : UH → A are homomorphisms. Hence, by taking the

opposite of the biset and using Theorem 7.4, the theorem below easily follows.

Theorem 7.5. Assume the hypothesis of the remark above. Then,

(

G×H

U, φ

)

∼=











EK,α ⊗AG GIsoH/N ⊗A(H/N) Def
H
H/N ⊗AH Twβ̄

H if |A|p < |G|

Twτ
G InfGG/K DefGG/K Twτ−1

G GIsoH/N DefHH/N Twβ̄
H if |A|p ≥ |G|

where N ≤ H with G ∼= H/N , β̄ : H → A is defined as β̄(h) := β(h, g) for (h, g) ∈ UH ,

and τ : G→ A is a homomorphism satisfying τ |K = α.

Now, we need to fix our small fiber group and introduce another equivalence

relation on Γ in order to state our main theorems of this part. Let p be a fixed prime

number and let A ≤ C× be the group of all pn-th roots of unity for a fixed n ∈ N.

From now on, we say pn-fibered instead of A-fibered to point the fixed fiber group. We

denote the pn-fibered biset

(

Z/nZ× Z/nZ

∆K(Z/nZ), φκ

)

(7.41)

by EnK,κ. If κ is an isomorphism, i.e. if K ∼= A, we use EnA,κ by an abuse of the notation.

Notice that when we use EnA,κ, it is implicitly assumed that n ≥ |A|. We say that the

pairs (m, ζ), (n, ν) ∈ Γ are pn-equivalent, and write (m, ζ) ≡ (n, ν) if the following

conditions hold.

(i) mp′ = np′ and Cζp′
∼= Cνp′

after identifying the groups Z/mp′Z ∼= Z/np′Z.

(ii) Either (a) mp, np ≤ |A|, or (b) mp = np > |A| and EnA,αζ̃ = cαE
n
A,αν̃ for any

isomorphism α : A→ A and for some cα ∈ C depending on α.
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Let <n, ν> denote the equivalence class of the pair (n, ν), and let Γpn be the set

of equivalence classes in Γ. Notice that any class of pairs equivalent with respect to

the part (a), contains a unique pair (n, ν) such that n is a p′-number. Now, we can

state our first main theorem of this part.

Theorem 7.6. If SAn,ν is the p
n-fibered subfunctor of CRC generated by the simple biset

subfunctor SZ/nZ,Cν , then, adopting the notations above, there is an isomorphism

SAn,ν
∼=

⊕

(m,ζ)∈<n,ν>

SZ/mZ,Cζ
(7.42)

of biset functors.

We need the following lemma to prove the theorem.

Lemma 7.4. Let EnK,κ be any reduced idempotent in BA(Z/nZ,Z/nZ). Then, for any

pair (n, ν) ∈ Γ and for any homomorphism ϕ : Z/nZ → A

EnK,κ (ϕν̃) = cϕE
n
K,κ ν̃ (7.43)

for some cϕ ∈ C depending on ϕ.

Proof. As the Dirichlet characters are also virtual characters of Z/nZ, we can write

ν̃ =
∑n

i=1 ciχ
i, where Irr(Z/nZ) =<χ>. As we know from the preliminaries, the

coefficient ci is equal to 〈ν̃, χi〉 for all 1 ≤ i ≤ n. The exact values of the coefficients

are obtained from the equation

ν̃ = c
n
∑

i=1

ν̃(i)χi (7.44)

for some c ∈ C, where ν̃(i) is the complex conjugation of ν̃(i). Since we work in

complex vector space of characters, we omit the constant coefficient c for short. These
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coefficients have the relation

〈ν̃, χi〉 = ν̃(i)〈ν̃, χ〉 (7.45)

for all 1 ≤ i ≤ n ( [6, Proposition 2.1.39]). We aim to calculate the coefficients of

ϕν̃ for any homomorphism ϕ : Z/nZ → A via Relation 7.45. First, note that any

homomorphism ϕ : Z/nZ → A is an irreducible character of Z/nZ, i.e. ϕ = χs for

some 1 ≤ s ≤ n. Since np > |A| by reducedness, the homomorphism ϕ is not faithful,

which implies s|n. Keeping this in mind, consider the following chain of equations

〈ϕν̃, χi〉 =
1

n

n
∑

j=1

ϕ(j)ν̃(j)χi(j)

=
1

n

n
∑

j=1

ν̃(j)χi+r(j) = 〈ν̃, χi+r〉

where ϕ = χs = χr such that r + s = n. Hence, Equation 7.45 yields that

〈ϕν̃, χi〉 = 〈ν̃, χi+r〉 = ν̃(i+ r)〈ν̃, χ〉. (7.46)

Again by omitting the constant coefficient, we deduce

ϕν̃ =
n
∑

i=1

ν̃(i+ r)χi. (7.47)

As EnK,κ keeps the homomorphisms whose restriction to K is κ as they are, and anni-

hilates the others,

EnK,κ (ϕν̃) =

|G:K|
∑

l=1

ν̃(i+ r + l|K|)χi+l|K| (7.48)

where i ∈ {1, 2, . . . , |K|} is the smallest number satisfying χi|K = κ. Observe that,

since (i, n) = 1 and r|n, (i + r, n) = 1. Therefore, there exists a unique x ∈ (Z/nZ)×,

up to (mod n), such that ix ≡ i+ r (mod n). As |K| divides n, ix ≡ i+ r (mod |K|),

and moreover ix + lx|K| ≡ i + r + l|K| (mod |K|) for any l ∈ {1, 2, . . . , |G : K|}. So,
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x does not depend on l. Taking all into the consideration, we reach the equalities

EnK,κ (ϕν̃) =

|G:K|
∑

l=1

ν̃(i+ r + l|K|)χi+l|K| =

|G:K|
∑

l=1

ν̃((i+ l|K|)x)χi+l|K|

= ν̃(x)

|G:K|
∑

l=1

ν̃(i+ l|K|)χi+l|K| = ν̃(x)EnK,κ ν̃.

We are done because r is determined by ϕ uniquely, that is cϕ := ν̃(x) depends only

on ϕ.

Proof of Theorem 7.6. First, set the following temporary notation for short

S<n,ν> =
⊕

(m,ζ)∈<n,ν>

SZ/mZ,Cζ
. (7.49)

It is obvious that S<n,ν> is a biset functor. Let (m, ζ) ≡ (n, ν). We know for certain

that ζ̃p′ = cν̃p′ for some c ∈ C× by Remark 7.1. If they are equivalent with respect

to the part (a), the bisets Twχ
Z/mpZ

and Twψ
Z/npZ

can be defined for all characters

χ ∈ Irr(Z/mpZ) and ψ ∈ Irr(Z/npZ) because mp, np ≤ |A|. We can express ζ̃p and ν̃p

as

ζ̃p =
∑

χ∈Irr(Z/mpZ)

cχχ and ν̃p =
∑

ψ∈Irr(Z/npZ)

cψψ

since they are virtual characters of Z/mpZ and Z/npZ, respectively. Setting the nota-

tions

Twν̃−1
p ×1 :=

∑

ψ

cψ
−1Twψ−1×1

Z/nZ and Twζ̃p×1 :=
∑

χ

cχTw
χ×1
Z/mZ

we obtain

ν̃p′ = Def
Z/nZ
Z/np′Z

(1× ν̃p′) = Def
Z/nZ
Z/np′Z

(

Twν̃−1
p ×1(ν̃p × ν̃p′)

)

= Def
Z/nZ
Z/np′Z

Twν̃−1
p ×1 ν̃.
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Combining the previous equation and ζ̃p′ = cν̃p′ , we get

ζ̃ = Twζ̃p×1 Inf
Z/mZ
Z/mp′Z

ζ̃p′ = Twζ̃p×1 Inf
Z/mZ
Z/mp′Z

(cν̃p′)

= c
(

Twζ̃p×1 Inf
Z/mZ
Z/mp′Z

Def
Z/nZ
Z/np′Z

Twν̃−1
p ×1 ν̃

)

which implies SAn,ν = SAm,ζ . Since SZ/nZ,Cν ⊆ SAn,ν , then SZ/mZ,Cζ
⊆ SAn,ν = SAm,ζ for any

pair (m, ζ) ∈< n, ν >. This shows that

S<n,ν> ⊆ SAn,ν . (7.50)

Since the biset functor CRC is semisimple, the subfunctor SAn,ν is also semisimple,

and is a direct sum of SZ/mZ,Cζ
for some (m, ζ) ∈ Γ. For the reverse inclusion, let

n ≤ |A| be a p′-number. We need to show that if SZ/mZ,Cζ
is a summand of SAn,ν ,

then (m, ζ) ≡ (n, ν) with respect to the part (a). Therefore, let SZ/mZ,Cζ
⊆ SAn,ν . This

inclusion requires SZ/mZ,Cζ
(Z/mZ) ⊆ SAn,ν(Z/mZ). Since SAn,ν is generated by ν̃, we can

obtain ζ̃ through ν̃, i.e. there exists some virtual pn-fibered biset γ ∈ BA(Z/mZ,Z/nZ)

such that

ζ̃ = γ · ν̃. (7.51)

By the structure of the Burnside group of the fibered bisets and Decomposition 3.21,

the character ζ̃ is a C-linear combination of elements of the form

Ind
Z/mZ
P ⊗AP InfP

P/K̂
⊗A(P/K̂) Y ⊗A(Q/L̂) Def

Q

Q/L̂
⊗AQ Res

Z/nZ
Q ν̃ (7.52)

for appropriate choices of the notation. As Z/nZ is a minimal group for the biset

functor SZ/nZ,Cν , the biset Def
Q

Q/L̂
⊗AQRes

Z/nZ
Q must be trivial because any biset through

a group of smaller order than n annihilates ν̃. Likewise, Ind
Z/mZ
P ⊗AP InfP

P/K̂
is also

trivial due to the minimality of Z/mZ for SZ/mZ,Cζ
. Hence, Expression 7.52 is actually
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of the form

(

Z/mZ× Z/nZ

U, φ

)

ν̃. (7.53)

Since
(

Z/mZ×Z/nZ
U,φ

)

is obtained after applying Decomposition 3.21, the projections of

U are full. We assume that m ≥ n without losing generality to use Theorem 7.4. We

would use Theorem 7.5 otherwise. Then, we deduce that ζ̃ is a C-linear combination

of elements of the form

Twϕ
Z/mZ ⊗A(Z/mZ) Inf

Z/mZ
Z/nZ ⊗A(Z/nZ) Z/nZIso

η
Z/nZ ⊗A(Z/nZ) E

n
K,κ ν̃ (7.54)

for some K ≤ Z/nZ, some faithful homomorphism κ : K → A and some isomorphism

η : Z/nZ → Z/nZ. By the biset Inf
Z/mZ
Z/nZ above, we deduce that n|m. Since the biset

EnK,κ is decomposable by Theorem 7.3, the elements above become

Twϕ
Z/mZ Inf

Z/mZ
Z/nZ Z/nZIso

η
Z/nZ Twξ

Z/nZ Inf
Z/nZ
(Z/nZ)/K Def

Z/nZ
(Z/nZ)/K Twξ−1

Z/nZ ν̃ (7.55)

by Theorem 7.4, where ξ : Z/nZ → A is a homomorphism satisfying ξ|K = κ. Notice

that ξ is faithful because κ is, and this implies that K = 1 due to the facts that n is a

p′-number and A is a p-group. Then the elements above are actually in the form

Twϕ
Z/mZ Inf

Z/mZ
Z/nZ Z/nZIso

η
Z/nZ ν̃ (7.56)

By its transitivity we can divide the inflation map above into two parts as

Twϕ
Z/mZ Inf

Z/mZ
Z/mp′Z

Inf
Z/mp′Z

Z/nZ Z/nZIso
η
Z/nZ ν̃. (7.57)

Since |A| is a p-number, the homomorphism ϕ : Z/mZ → A must be trivial on the

p′-part of Z/mZ, that is ϕ must be of the form ϕ = ϕp × 1 : (Z/mpZ)×Z/mp′Z → A.
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Hence, transitive summands of γ must be of the form

Tw
ϕp×1

Z/mZ Inf
Z/mZ
Z/mp′Z

Inf
Z/mp′Z

Z/nZ Z/nZIso
η
Z/nZ ν̃ = Tw

ϕp×1

Z/mZ(θ × 1) = ϕθ × 1 (7.58)

where θ := Inf
Z/mp′Z

Z/nZ Z/nZIso
η
Z/nZ ν̃. But the last map ϕθ×1 can be given as Inf

Z/mZ
Z/mp′Z

ϕθ,

which contradicts the primitivity of ζ̃. Therefore, the inflation map Inf
Z/mZ
Z/mp′Z

must be

identity, i.e. mp′ = n, which yields (m, ζ) ≡ (n, ν) because ζ̃p′ = ν̃. This justifies the

inclusion

SAn,ν ⊆ S<n,ν> (7.59)

since the pair (m, ζ) is chosen arbitrarily and completes the proof for the part (a).

As for the part (b), let (m, ζ) ∈<n, ν>. Then, we are given that m = n such that

mp = np > |A|, ζp′ = cνp′ for some c ∈ C, and EnA,αζ̃ = cαE
n
A,αν̃ for any isomorphism

α : A→ A and for some cα ∈ C depending on α. If we sum all EA,αζ̃, we obtain

ζ̃ =
∑

α

EA,αζ̃ =
∑

α

cαEA,αν̃ (7.60)

by Lemma 6.3. This equality implies that ζ̃ is generated by ν̃, that is ζ̃ ∈ SAn,ν . As

SZ/nZ,Cζ
is generated by ζ̃, we have SZ/nZ,Cζ

⊆ SAn,ν . But (n, ζ) ∈<n, ν> is chosen

arbitrarily, therefore

S<n,ν> ⊆ SAn,ν . (7.61)

The begining of the verification of the reverse inclusion goes identical with the

one of the part (a). By skipping this identical part, if we take SZ/mZ,Cζ
⊆ SAn,ν , we

deduce that ζ̃ is a C-linear combination of elements of the form

Twϕ
Z/mZ ⊗A(Z/mZ) Inf

Z/mZ
Z/nZ ⊗A(Z/nZ) Z/nZIso

η
Z/nZ ⊗A(Z/nZ) E

n
K,κ ν̃ (7.62)
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for some K ≤ Z/nZ, for some faithful homomorphism κ : K → A and for some

isomorphism η : Z/nZ → Z/nZ. By Lemma 7.2, we can take m and n as p-numbers.

Since m ≥ n > |A|, the homomorphism ϕ cannot be faithful, and it is of the form

ϕ = Inf
Z/mZ
Z/|A|Z τ for some homomorphism τ : Z/|A|Z → A. We can consider ϕ as

Inf
Z/mZ
Z/nZ θ due to the transitivity of the inflation maps and the fact n > |A|, where

θ = Inf
Z/nZ
Z/|A|Z τ . On the other hand, Z/nZIso

η
Z/nZ ⊗A(Z/nZ) E

n
K,κ ν̃ is a map from Z/nZ to

A by the actions of the bisets, and then, it is inflated to Z/mZ. Altogether, Expression

7.62 can be regarded as

Inf
Z/mZ
Z/nZ [θ

(

Z/nZIso
η
Z/nZ ⊗A(Z/nZ) E

n
K,κ ν̃

)

] (7.63)

by the action of the twist map. But, Z/mZ is minimal for ζ̃, therefore n must be equal

to m. i.e. Expression 7.62 must be of the form

Twϕ
Z/nZ ⊗A(Z/nZ) Z/nZIso

η
Z/nZ ⊗A(Z/nZ) E

n
K,κ ν̃. (7.64)

In general, since we can follow the same steps for any prime number q instead of p, we

proved implicitly that mp′ = np′ , which means m = n. The following equations

Twϕ
Z/nZ Z/nZIso

η
Z/nZ EnK,κ ν̃ = Z/nZIso

η
Z/nZ Twϕ◦η

Z/nZ EnK,κ ν̃

= Z/nZIso
η
Z/nZ EnK,κ(ϕ◦η)|K ⊗A(Z/nZ) Tw

ϕ
Z/nZ ν̃

can easily be shown by the tensor product formula, where ϕ ◦ η is the function com-

position of ϕ and η. As the homomorphism ϕ is not faithful, then (ϕ ◦ η)|K is not

either. Therefore, the homomorphism κ(ϕ ◦ η)|K is faithful. Indeed, if we suppose

(κ(ϕ ◦ η)|K)(k) := κ(k)ϕ(η(k)) = 1 for some k ∈ K, then κ−1(k) = ϕ(η(k)). The

last equation obliges k to be 1 because we work on cyclic p-groups, and equality at

an element implies equality on a p-group, which is impossible. Hence, as κ runs over

faithful homomorphisms, so does κ((ϕ ◦ η)|K). Therefore, ζ̃ is a C-linear combination
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of elements

Z/nZIso
η
Z/nZ EnK,λ Twϕ

Z/nZ ν̃ = Z/nZIso
η
Z/nZ EnK,λ (ϕν̃)

= cϕ

(

Z/nZIso
η
Z/nZ EnK,λ ν̃

)

= cϕ
(

EnK,λ ν̃
)

by Lemma 7.4 and the action of isogation bisets, where λ := κ((ϕ ◦ η)|K) : K → A is

a faithful homomorphism. Recall from Section 3.6 that if we multiply EnK,λ ν̃ from the

left by EnA,α, we obtain EnA,αν̃ if (K,λ) � (A,α) and zero otherwise. Consequently, we

deduce that EnA,α ζ̃ is a C-linear combination of elements of the form EnA,α ν̃, that is

EnA,α ζ̃ = cEnA,α ν̃, (7.65)

where α : A → A is an arbitrary isomorphism. Therefore, it is valid for all such

isomorphism, i.e. (n, ζ) ≡ (n, ν), which implies SAn,ν ⊆ S<n,ν>. Hence, we have proved

that

SAn,ν = S<n,ν> (7.66)

which justifies the assertion of the theorem.

Theorem 7.7. The pn-fibered biset functor SAn,ν is simple.

Proof. Theorem 7.6 encapsulates the information that SAn,ν is a cyclic pn-fibered biset

functor generated by ν̃. Hence, to verify that SAn,ν is a simple pn-fibered biset functor,

it suffices to show that the intersection of the kernels of all maps

SAn,ν(G) → SAn,ν(Z/nZ) (7.67)

induced by pn-fibered (Z/nZ, G)-bisets is zero for any groupG. We consider equivalence

classes with respect to the part (b) because the proof for the part (a) is identical with

that of Theorem 7.2. Let ψ ∈ SAn,ν(G) be in the intersection of the kernels of all maps,

that is X(ψ) = 0 for each pn-fibered (Z/nZ, G)-bisets X. We are done if we show that
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ψ = 0. As ψ is in the kernels of all maps, it is also in the kernels of maps induced by

ordinary (Z/nZ, G)-bisets. In other words, X(ψ) = 0 for any map

X : SAn,ν(G) → SAn,ν(Z/nZ) (7.68)

induced by an ordinary (Z/nZ, G)-biset. Note that, we can express ψ as a sum as

follows

ψ =
∑

(n,ζ)∈<n,ν>

ψ(n,ζ) (7.69)

because we know that

SAn,ν(G) =
⊕

(n,ζ)∈<n,ν>

SZ/nZ,Cζ
(G). (7.70)

Since SZ/nZ,Cζ
is an ordinary biset functor, it is closed under biset actions. Therefore,

X(ψ(n,ζ)) = 0 for any (n, ζ) ∈< n, ν > as every X is assumed to be induced by bisets.

On the other hand, the biset functor SZ/nZ,Cζ
is simple. Therefore, if X(ψ(n,ζ)) = 0 for

any (Z/nZ, G)-biset, then ψ(n,ζ) = 0 for any (n, ζ) ∈< n, ν >. Hence, ψ = 0 since all

summands of ψ is zero.

Corollary 7.2. The pn-fibered biset functor CRC is semisimple and there is an iso-

morphism

CRC
∼=

⊕

<n,ν>∈Γp

SAn,ν (7.71)

of pn-fibered biset functors.

Proof. It is immediate from Theorems 7.6 and 7.7.
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13. Thévenaz, J., P. Webb, 1995, ”The Structure of Mackey Functors”, Trans.

Amer. Math. Soc., 347, pp. 1865-1961.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org



