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ABSTRACT

COMPOSITION FACTORS OF THE FUNCTOR OF THE
COMPLEX CHARACTERS

When we consider CR¢ as a map sending any finite group G to the complex
vector space CR¢(G) of complex valued class functions on G, it becomes an A-fibered
biset functor for any group A < C*. Its structure is known for tirivial fiber groups
A =1and A= C*. While it is a direct sum of simple biset functors in the case that
A =1, in the other case it is a simple C*-fibered biset functor. We noticed that as the
fiber group grows, some of simple summands of 1-fibered biset functor CR¢ unite and

form new fibered simple summands.

In this thesis, we investigate the structure of the functor CR¢ for two intermediate
fiber groups. The first one is a group containing all p™-th roots of unity for any n € N
and for any prime number p from a fixed set of primes m. The second one is the group
of all p™-th roots of unity for a fixed n € N. For both cases, we identify its new fibered
simple summands by determining uniting summands via defining equivalence relations

on them.



OZET

KARMASIK KARAKTERLER IZLECININ BILESKE
CARPANLARI

Herhangi bir sonlu G grubunu, grubun simif fonksiyonlarimin karmasik vektor
uzay1 olan CR¢(G) uzayma gonderen bir déntigiim olarak diigindiigiimiizde CRc, her
A < C* grubu i¢in bir A-fiberli ikili kiime izleci olur. Yapisi, A = 1 ve A = C*
agikar fiber gruplar: i¢in bilinmektedir. Fiber group A = 1 oldugunda basit ikili kiime
izleclerinin direkt toplami iken diger durumda bir basit C*-fiberli ikili kiime izlecidir.
Fiber grup biiyiidiigiinde direkt toplamdaki basit parcalardan bazilariin birlestigini

ve yeni fiberli basit parcalar1 olugturdugunu farkettik.

Bu tezde, CR¢ izlecinin yapisimi iki ara fiber grubu igin inceledik. Birincisi,
asal sayilarin sabitlenmig bir 7 altkiimesinden alinan her asl say1 p ve her n € N i¢in
birim elemanin p". dereceden bitiin koklerini igeren bir gruptur. Ikincisi, sabit bir
n € N icin birim elemanm p". dereceden biitiin koklerinin grubudur. Iki durumda
da, ilk durumdaki parcalardan hangilerinin birlestigini iizerlerinde denklik bagintilar:

tanimlayarak belirledik ve yeni fiberli basit parcalar1 bulduk.
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1. INTRODUCTION

Representation theory is the study of algebraic structures in linear algebra by
representing elements of structures as linear transformations of vector spaces. This
makes abstract structures more concrete by describing the structure in terms of matri-
ces and their algebraic operations as matrix operations. Algebraic structures studied
in this way include groups, associative algebras, and Lie algebras. In this thesis, we are
interested in representations of finite groups, in which group elements represented by
invertible matrices such that the group operation is the matrix multiplication. Repre-
sentations of finite groups allow us to state group theoretic problems in terms of linear
algebra, which reduces the complexity of problems because linear algebra is a well un-
derstood branch of mathematics. Just as that the group concept is an abstraction of
symmetries of geometric objects, representations of finite groups can be considered as
abstractions of groups beause the results obtained via represantation theory can extend
beyond the boundaries of the theory itself. For instance, although the fact that every
group of order square of a prime number is abelian can be proved in group theory, it
is an evident consequence of basic facts of representations. Therefore understanding
representations of finite groups can enable us to understand structures of groups. The
theory of representations of finite groups starts with representations over a field of
characteristic zero. If the field is also algebraically closed, then three different notions,
namely representations, modules of group algebras and characters can be studied in-
terchangeably whichever offers the easiest way. In this thesis, prefer characters and
consider character rings of finite groups. However, analyzing character rings for each
group separately is not an easy task. In the sense of abstraction, Bouc added another
link to the chain and introduced biset functors since representation rings turn out to

be the evaluations of a biset functor at the finite groups.

The character of a group representation is a function on the group that asso-
ciates the trace of the matrix of each group element to the corresponding group element.
Characters contain all of the essential information of representations in a more compact

way. One of the fundamental constructions in the theory is the ring of characters of a



finite group. Based on its importance, the character ring is studied in many different
ways since its introduction by Richard Brauer. Artin’s and Brauer’s induction theo-
rems describe generating sets for the character ring. These two fundamental theorems
show that only the induction map provides a convenience for determining characters
of finite groups. Therefore, including all module theoretic maps, induction, restric-
tion, isogation, inflation, and deflation, should have given much better results. This
idea results in the birth of biset functors. To name a few of those studying the biset
structure of the ring of characters, Thevenaz and Webb’s theorem describes its Mackey
functor structure, whereas Bouc’s Theorem describes its biset functor structure. The
structure of it as a Green biset functor is investigated by Romero. More recently, Boltje
and Cogkun show that this functor is simple as a C*-fibered biset functor. Moreover,
analyzing the ring of characters as a biset functor enables us with determining the
structure of it for any finite group instead of determining it for each group separately.
Also, fiber actions provide a look into their structure under extra conditions. In this
thesis, we are aiming to study the structure of the functor of complex characters as a
fibered biset functor for some nice choices of non-trivial fiber groups A < C*. In par-
ticular, our aim is to identify simple A-fibered subfunctors of it. Since achieving this
aim mainly depends on the decomposition of A-fibered bisets, we analyze the structure
of A-fibered bisets and decompose them with our choices of fiber groups. Boltje and
Coskun decompose A-fibered bisets in general provided that A is a divisible group. On
the other hand, Coskun and Yilmaz adapted Boltje and Cogkun’s decomposition to
abelian groups. We used Coskun and Yilmaz’s decomposition for the first part of our
main theorems. In the second part, since we choose a fiber group that is not divisible,
we decompose fibered bisets. But, as it is a challenging task we first obtain it for cyclic

groups.

The thesis is designed as follows. In Section 2, the basic definitions, examples and
theorems about representations and characters of finite groups are introduced. Section
3 is devoted to details of bisets and fibered bisets. Also, Burnside group is introduced
in the same section. The definition of fibered biset functors and the structure of
simple fibered biset functors constitute the topics of Section 4. Applications of some

of previous results to abelian groups is shown in Section 5. Detailed information about



the functor of complex character ring takes place in Section 6. We conclude the thesis

with the statements and the proofs of the main theorems in Section 7.

We now give some notations that will be valid throughout the thesis. First, unless
otherwise explicitly stated, we assume all groups to be finite and fix a multiplicatively

written (not necessarily finite) abelian group A. For any group G, we set

G4 := Hom(G,A) and G*:= Hom(G,C)

and view them as abelian groups with pointwise multiplication. The order of any
element g € G is denoted by o(g). If 7 is a set of prime numbers and n € N, then we
denote by n, and n, the m and n’-parts of n, respectively. That is, n = n,n, where
n. is the largest factor of n provided that p t n, for any p € . For an abelian group

G, we denote by the subgroup of order |G|, by G..



2. REPRESENTATIONS AND CHARACTERS

In this chapter, we introduce three different notions of representation theory,
namely representations, modules and characters. We give just necessary but sufficient
details to establish the close connection among them and to justify the reason why
we can use them interchangeably. All results in this chapter and more can be found
in [11], [10] and [9]. Throughout this chapter, G is an arbitrary finite group unless

otherwise stated.

Definition 2.1. A representation of G over C, or shortly a C-representation of G, is

a group homomorphism

p: G — GL(n,C) (2.1)

for some n, where GL(n, C) denotes the multiplicative group of invertible n xn matrices
with entries in complex numbers. The number n is called the degree deg(p) of p. A

representation is said to be faithful if it is injective.

Another definition of a representation can be given as follows. Let V be an n-
dimensional C-vector space, and let GL(V) denote the group of all automorphisms
of V, under the composition of maps. That is, GL(V') is the group of all bijective
C-linear transformations on V. A representation of G over C is a homomorphism
p: G — GL(V). Actually, this definition is equivalent to the former one because after
fixing a basis of V', every automorphism corresponds to an n X n invertible matrix
with complex number entries and vice versa. The degree of a representation is given as

dim (V) in the latter definition since the correspondence verifies dim(V') = deg(p) = n.

Ezxamples 2.1. (i) The map p : G — GL(n,C), g — p(g) = I, for all g € G, where
I,, is the identity n X n matrix, is a representation of G. If we take n = 1, p is

called the trivial representation of G.



(i)

(iii)

(iv)

Let C3 = {1,a,a*} be the cyclic group of order 3, generated by a. Then,

0 1
p:Cs— GL(2,C), a— (2.2)
-1 -1
is a C-representation of C5 of order 2.
(Permutation Representation) Let X = {z1,...,x,} be a set on which G acts
from the left. Consider the C-vector space
CX ={am+ -+, |, €C1<i<n} (2.3)

If x =cixy + -+ cpx, € CX is an arbitrary element, the map

py: CX = CX, x+— gz :=ci(gz1) + - + cn(92s) (2.4)

gives an automorphism of CX for each g € G. Then

p:G— GL(CX), g p, (2.5)

is a C-representation of GG of degree n, namely the permutation representation of
G on CX.

(Regular Representation) Take X = G in the previous example with the action in-
duced by the group multiplication. In this case, the corresponding representation
is called the regular representation of G.

Let G be the symmetric group S,, of degree n. For any o € (G, define the action
0-e; := €y on R", where ¢; := (0,...,0,1,0,...,0), 1 <i < n are the canonical

basis elements of R™ such that 1 is the ¢-th entry. The R-linear extension

o (r161 + -+ rnrn) I=T1€0(1) T+ Th€o(n) (2-6)

of the action gives an automorphism of R" as in Example 3. Arbitrary elements

(ri,...,r,) € R™ are here expressed as rie; + - -+ + €.



Remark 2.1. The first example shows that any group has a representation of order n
for any n. The fifth one is actually a special case of the third one. Indeed, if we take
r; = ¢; and define the action of G = S, as the C-linear extension of o - ¢; := e,(),

1 <4 < n, we obtain the representation in the last example.

Definition 2.2. Let X be an arbitrary finite set. The set CX is called the complex
linearization or C-linearization of the set X. The complex linearization map s the

induced map

ling : X — CX. (2.7)

Next, we regard the ways of relating representations of groups that are alge-

braically connected such as subgroups, quotient groups and isomorphic groups.

2.1. New Representations from Old Ones

(i) Let p : G — GL(n,C) be a representation of G and 7' € GL(n,C). Then, the
map o(g) := T 'p(g)T is also a representation of G of the same degree n. The
representations p and o are said to be equivalent representations.

(ii) If p is a C-representation of G, and H < G, then
Res%p: H — GL(n,C), Res%p(h) := p(h) (2.8)
is a representation of H, namely the restriction of p from G to H.
(iii) Let p be a C-representation of H of degree n for some H < G. Choose a left
transversal {t1H, ... t,,H} of H in G, i.e. a set of representatives of left cosets

G/H, where m = |G : H| is the index of H in G. We define the homomorphism

Ind%p : G — GL(nm,C) (2.9)



as m X m block matrices where each block is an n x n matrix afforded by p. For
any g € G, the ij-th block of Ind$p(g) is equal to p(t;'gt;) if t;'gt; € H, or to
[0],xn Otherwise. The representation Ind$p is called the induction of p from H
to G. The degree of Ind%p is equal to |G : H|deg(p).

From any representation p of G/N, where N <G, we can obtain a representation
of G, that assigns to every g € G the value p(g/N). This new representation is
called the inflation of p from G/N to G, and denoted by Infg/Np.

Let p be a representation of G whose kernel contains N <G. Then, the deflation
of p from G to G/N is the representation defined as Defg/Np(gN) = p(g) for all
ge€aq.

Ift f: H — G is a group isomorphism for some group H, we may define a
representation HIsoép of H from any representation p of G via f. This new
representation is called the isogation from G to H, and is defined as HIsoép(h) =
p(f(h)) for any h € H. We sometimes write gylsogp if the isomorphism f is clear

from the context.

In fact, each of the ways above gives a map between representations of related

groups. For instance, Resg sends the representations of G to the representations of the

subgroup H < G.

Remark 2.2. Since tr(BC) = tr(CB) for any n x n matrices, the traces of equivalent

representations are the same. In other words, if p,o : G — GL(n,C) are equivalent

representations, then tr(p(g)) = tr(o(g)) for all g € G.

Remark 2.3. Let p be a C-representation of G with deg(p) = n. Consider the C-vector

space V = C", the space of n x 1 column matrices with complex entries. We can equip

V with the G-action g-v := p(g)v € C" for any g € G, v € V. This action satisfies the

following conditions for all g,h € G, v,u € V, c € C.

(i)
(i)
(iif)

)

(iv

g-vevV
h-(g-v) = (hg)-v
l-v=w

g-(cv) =c(g-v)



(v) g-(v+u)=g-v+g-u

In fact, any C-vector space V is said to be a left CG-module if it is equipped
with a left G-action satisfying the conditions (i)-(v). This points to that if G has
a representation, we can obtain a CG-module through the representation. On the
other hand, if V' is a CG-module, the conditions (i),(iv) and (v) ensure that the map
sending any element v of V' to the element v - ¢ is an automorphism of V for any
g € G. Let B be a basis of V and let [g]s denote the matrix corresponding to the
linear transformation above relative to the basis B. Then, the map g — [g]s yields a
representation of GG, which means that the existence of a CG-module guarantees the
existence of a representation of G. Clearly, the representations of the form [g]s depend
on choices of bases. If we choose a basis other than B, we obtain a representation

equivalent to [g]p. This is a special case of a result which we state later

The first item in Section 2.1 suggests that from a given representation, we may
obtain infinitely many new representations as 7' varies. We call such representations
equivalent because it indeed gives an equivalence relation on representations. From
now on, when we say distinct representations, we refer to a set of unequivalent repre-

sentations.

Definition 2.3. A non-zero CG-module V is called irreducible or simple if it has no
non-trivial CG-submodule, that is {0} and V are the only CG-submodules of V. In
connection with this definition, a representation p — GL(n, C) is said to be irreducible

if the CG-module C" induced by p is irreducible.

Definition 2.4. Let Vi and V5 be CG-modules. A linear transformation L : Vi — V,
is said to be a CG-homomorphism if L(g-v) = g+ L(V) for all g € G, v € V;. In
the case that L is bijective, it is called a CG-isomorphism, and Vy and Vay are called

isomorphic CG-modules.

Now, we have given all that is needed to state connection between representations

of G and CG-modules.



Theorem 2.1. There is a one-to-one correspondence between isomorphism classes of

simple CG-modules, and equivalence classes of irreducible C-representations of G.

A fundamental result that describes the structure of the algebra CG is Maschke’s

Theorem.

Theorem 2.2 (Maschke). If V' is a CG-module and V; is a CG-submodule of V', then
there exists a CG-submodule Vo of V' such that V =V, @& V5.

As a consequence of Maschke’s Theorem, any CG-module can be written as a
direct sum of its simple submodules. Therefore, we can focus on isomorphism classes
of simple CG-modules or on equivalence classes of irreducible representations of GG in-
terchangeably to understand all CG-modules and representations of G. But, this raises
the questions of how we can identify simple modules and how many non-isomorphic

simple modules there are. The answers are hidden in the regular CG-module.

Definition 2.5. The C-linearization
CG = {Z g ¢ g € (C} (2.10)

of G is a CG-module with the action ¢ - (deG cgg> =2 ,caC(g'g) forany g € G.
It is called the regular CG-module.

Theorem 2.3. Every simple CG-module is isomorphic to a simple submodule of the

reqular CG-module CG.

The last theorem answers the first question but not the second one. It only
implies the finiteness of non-isomorphic simple CG-modules. The exact number of

them is revealed after introducing characters.

Definition 2.6. Let p be a representation of G. Then the character x of p is the map

x:G—C, g x(g) = tr(p(g))- (2.11)
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We say that x is a character of G if it is the character of a representation of G.
Similarly, we define the character of a CG-module V' using a representation obtained

from V.

Definition 2.7. The regular character x,e; of G is the character of the regular CG-
module CG.

Definition 2.8. A character of G is called irreducible if it is the character of a simple

CG-module. We denote the set of all irreducible characters of G by Irr(G).

Ezamples 2.2. (i) The character x of the first representation in Examples 2.1 is
X(g) = n for any g € G.
(i) The map sending the elements 1, a,a® to 2, —1, —1, respectively, is the character
of the representation p : C5 — GL(2,C) in 2.1.
(iii) The regular character x,e, of G is the character of the regular representation
introduced in Examples 2.1. It sends the identity element to the order |G| of G,

and sends each non-identity element to 0.

Remark 2.2 implies that the characters of equivalent representations are the same.
Therefore, since equivalent representations correspond to isomorphic CG-modules, all

isomorphic CG-modules have the same character.

Actually, this is a very surprising and powerful result because to understand
representations one needs to deal with n? complex numbers, whereas the character
theory reduces this to a single complex number. In the character theory, we can
try to reach our aims by taking advantage of field properties and convenience of C in
comparison to GL(n,C),n > 1. To sum up, it is more advantageous to study irreducible
characters of G to understand all representations of G. However, the definition of
irreducible characters depends on simple modules. Luckily, the inner product below
provides us with a way to detect irreducible characters without going into module

theory.

Definition 2.9. A function f : G — C is said to be a class function if it is constant
on conjugacy classes of elements in G, i.e. f(g) = f(x7'gx) for all g,x € G. The set
of C-valued class functions on G is denoted by Cf(G,C).
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The set Cf(G, C) naturally forms a C-vector space under pointwise addition and

multiplication by scalars from C. This space has an inner product defined as

(fi, f2) = @Zfl(g)m (2.12)

where f1, fo € Cf(G,C) and f3(g) is the complex conjugation of fa(g). As characters
are class functions, we can talk about the inner product of characters and state the

following theorem.

Theorem 2.4. A character x of G is irreducible if and only if {x,x) = 1.

Since every CG-module is a direct sum of simple CG-modules, we need to find

out the relation between the characters and the direct sum.

Theorem 2.5. Let x and i be the characters of CG-modules M and N, respectively.
Then, the character of the CG-module M & N s x + 1, where

(x +¥)(g) = x(9) +v¥(9) (2.13)

forall g € G.

As a result of this theorem and Maschke’s Theorem, every character yx is of
the form xy = dyx1 + -+ + dyx», where Irt(G) = {x1,...,xr}, and dy,...,d, are
non-negative integers. Moreover, together with Theorem 2.3, we deduce that every

irreducible character is a summand of the regular character x,e, that is

Xreg = 61X1 + Tt + erX'r' (214)

where eq, ..., e, are now positive integers. The coefficients dy, ..., d, of any character
X is calculated by d; = (x, xi), ¢ € {1,...,r} due to the next theorem and the linearity

of the inner product.
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Theorem 2.6. Irreducible characters of G form an orthonormal set in the vector space

Cf(G,C), i.e. if Irr(G) ={x1,---,xr}, then

1 ifi=y
(Xi» Xj) = 0ij = (2.15)
0 otherwise.

Finally, the question about the number of non-isomorphic simple CG-modules is

answered by the next theorem

Theorem 2.7. The set of irreducible characters Irr(G) is an orthonormal basis for the

vector space Cf(G, C) whose dimension is equal to the number of conjugacy classes of

G.

Hence, any class function f € Cf(G,C) is of the from f = ¢;x1 + -+ ¢, X, where
Irr(G) = {x1,..., X} and ¢; € C, 1 <i < r. However, although all characters are class
functions, the converse is not always true. The next theorem helps us decide whether

a class function is a character or not.

Theorem 2.8. Let f = cix1 + -+ + ¢, x» € CEH(G,C) where Irr(G) = {x1,...,x+}-

Then, f is a character if and only if c1,...,c, are non-negative integers.

Consequently, the set of characters of G is a semigroup. Then, the Z-linear
combinations of characters of G becomes an additive abelian group. The following
theorem shows that we can also equip the set of characters with a multiplication in

order to get a ring structure.

Theorem 2.9. Let x and v be the characters of CG-modules M and N, respectively.
Then, the character of the CG-module M & N 1is x, where

(x¥)(g) == x(9)¥(9) (2.16)

forall g € G.
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Hence, the product of two characters of G is again a character of G. Now, we

can define the complex character ring.
2.2. Character Ring

Let Rc(G) denote the set of Z-linear combinations of all characters of G. Then,
(Rc(G),+, -) is a ring, where

(x +¥)(g) :==x(g9) +¥(9) and (x-¥)(g) = x(9)¥(9)
for all g € G.

Since irreducible characters are generators of all characters, the character ring

can be given as

Re(G):= P zx. (2.17)

x€Elrr(G)

The elements of Rc(G) are called virtual characters or generalized characters of G.

The module theoretical correspondant of the character ring is defined as the
Grothendieck group of the category of finitely generated CG-modules. Precisely, Rc(G)
is the quotient of the free abelian group on the set of isomorphism classes of finitely

generated CG-modules, by the subgroup generated by all the elements of the form
[M & N] — [M] — [N] (2.18)
where [M] and [N] denote the isomorphism classes of the CG-modules M and N,

respectively. In fact, what is done by this quotient group is inducing a semi-group

structure on the set of isomorphism classes of finitely generated CG-modules via

[M & N] := [M] + [N]. (2.19)
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Letting integer coefficients yields an additive abelian group structure and the tensor

product over C completes the ring structure. To sum up, the ring
Re(G) = P z[M)) (2.20)

is the representation ring of G, where My, ..., M, are the complete list of all non-

isomorphic simple modules. This ring is commutative because M ® N is isomorphic to

N ® M for all CG-modules M and N.
2.3. Maps Between Character Rings

In 2.1, we have introduced the operations induction, restriction, inflation, defla-
tion and isogation connecting representations of algebraically related groups. Since
these maps are essential in representation theory, they are of great importance in the
sequel. We now give the exact correspondence of them in terms of modules and charac-
ters, separately. For this aim, let H < G and N <G unless otherwise stated. Consider
the regular CG-module CG. As its action is induced by the group action, we can
equipped it with a two sided CG-action, CH-action, or C(G/N)-action. For example,
if we take CG as a left CG-module and as a right CH-module, we call CG a (CG,CH)-
bimodule. For a CH-module M, the tensor product CG ®cy M yields a CG-module
when we regard CG as a (CG, CH)-bimodule. The module CG ®cy M is the induced
module. The definition in character theory is a bit more complicated. For a character

x of H, the induced character Indgx of G is given as

Ind$x(g) == Z x(z tgx). (2.21)

zeG
x lgrcH

Hence, the induction map is defined as follows in both sense

Ind% : Re(H) — Re(G), [M] — [CG ®cy M]

X Indgx.
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The restriction of a character is just evaluating it on the elements of a subgroup.

Similarly, the map is given

Res : Re(G) — Re(H), [M] — [CG ®cg M]

X = Xlu

where CG is now a (CH, CG)-bimodule. The inflation of a C(G/N)-module M from
C(G/N) to CG is to consider M as a CG-module via the intuitive way. In the case
that C(G/N) is taken as a (CG, C(G/N))-bimodule, the iflation of M isomorphic to
the CG-module C(G/N) ®c(a/ny M. Thus

Inf¢ v : Re(G/N) = Re(G), [M] — [C(G/N) ®cg M]

X Infg/NX

where Infg/Nx(g) = Xx(gN) for any ¢ € G. Similarly, if we take C(G/N) as a
(C(G/N),CG)-bimodule, we define

Defgy : Re(G) = Re(G/N), (M) = [C(G/N) @ciem M)

X = Defg/NX

where Defg/Nx(gN) = x(gN) if N <ker(x) :={g€ G| x(g) =x(1)}. If ker(x) does
not contain N, then Defg /N X gives the zero character directly. Lastly, let f: H — G be

an isomorphism for some group H. When we afford the H-action via the isomorphism

f, the CG-module CG becomes a (CH, CG)-bimodule. Then

ilsol : Re(G) = Re(H), [M] — [CG ®cq M)

X = pglsobx

where ;Isolx(h) := x(f(h)) for any h € H.
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As it is generally easier to study small groups, we try to reach to global knowl-
edge from local knowledge, that is deducing results for groups from results for their
subgroups. The following main theorems shows practicability of these maps for this

alm.

Theorem 2.10 (Brauer). Let E, be the set of p-elementary subgroups of G, i.e. sub-
groups of G isomorphic to direct product of cyclic groups and p-groups. Then

Re(G)= Y IndfRe(H) (2.22)

Hel, Ep

that is every character of G is a Z-linear combination of characters induced from p-

elementary subgroups of G to G.

Theorem 2.11 (Artin). Fach character of a group is a Q-linear combination of char-

acters induced from cyclic subgroups of G to G.

As the induction theorems of Brauer and Artin show, we have powerful and useful
results with only the induction map. Therefore, it is natural to expect that one may
obtain more powerful results by using all maps. Biset functor notion serves to meet

this expectation by unifying the treatment of all these five basic operations.
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3. BISETS AND FIBERED BISETS

This chapter is devoted to basic knowledge about bisets and fibered bisets. One
may find almost all about bisets in [5]. As for fibered case, we refer the reader to [4], [§]
and [1]. We mostly follow the notations of [4]. Throughout this chapter, the letters

G, H, K are reserved for finite groups, whereas X, Y, Z denote sets.

Definition 3.1. A set X is said to be a left G-set if there is a left G-action on it, i.e.

there exists a map f: G x X = X, (g,x) — g - x subject to the following conditions

(i) 1-x==x
(i) g-(g"-x)=(99') -z

forallg,d € G, x € X.

Definition 3.2. A set X is called a (G, H)-biset if it has a left G-action and a right

H-action such that the actions commute with each other, that is

(9-2)-h=g-(x-h) (3.1)

forallge G,he Hyx € X.

Remark 3.1. A (G, H)-biset X can also be considered as a left (G x H)-set via the

action (g,h) -z :=g-x-h~!, which we generally use for convenience.

Ezxamples 3.1. Let H < G and N < G unless otherwise stated.

(i) Every left G-set is a (G, H)-biset with the trivial right H-action. By the same
token, any set X is a (G, H)-biset with the trivial actions, that is g -z - h = x for
allge G,he Hyx € X.

(ii) The group G itself is a (G, G)-biset with the actions induced by the group mul-
tiplication. This biset is called the identity (G, G)-biset, and denoted by Idg.

(iii) The group G is a (G, H)-biset with the group multiplication. This biset is called
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the induction from H to G, denoted by Ind%.

(iv) Similarly, the restriction biset Res% from G to H is the (H,G)-biset G with the
group multiplication.

(v) Consider the quotient group G/N. It has an obvious right (G/N)-action, the
group multiplication in G/N, and the left G-action ¢ - (¢’ N) := gg’N. The
(G,G/N)-biset G/N is the inflation from G/N to G, which we denote by Infg/N.

(vi) Likewise, the deflation biset Defg/N from G/N to G is the (G/N, G)-biset G/N.

(vii) Let f: G — H be a group isomorphism. Then, the group H is an (H, G)-biset
with the actions h-h'-g := hh'f(g) for all g € G, h, b’ € H. This biset is denoted

by HIsoé, and called the isogation biset.

Definition 3.3. Let X be a (G, H)-biset. For any x € X, the set
G-x-H:={g-z-h|(9,h) e Gx H} (3.2)

is called the (G, H)-orbit of . The set of (G, H)-orbits in X is denoted by G\X/H.
If the set G\X/H is a singleton, that is, if we can obtain whole X by performing the

(G, H)-action on any element of X, we call X transitive.

Because the set G\X/H gives a partition of X, any (G, H)-biset is a disjoint
union of its (G, H)-orbits. Also, since every (G, H)-orbit is clearly a transitive (G, H)-
biset, every (G, H)-biset is a disjoint union of transitive ones. On the other hand,
disjoint union of bisets are again bisets. Therefore, we can focus only on transitive

bisets instead of all bisets.

Definition 3.4. Let X and Y be two (G, H)-bisets. A map f : X — Y s called a
morphism of (G, H)-bisets if it is a (G, H)-equivariant map, i.e.

flg-x-h)=g-f(z)-h (3.3)

forallge G,h € Hyx € X. A morphism f is an isomorphism if it is bijective. Class

of all (G, H)-bisets and their morphisms form a category denoted by gsety.
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Lemma 3.1. (i) For any U < G x H, the set (GEH) of left cosets in G x H is a

transitive (G, H)-biset.

(ii) Bvery transitive (G, H)-biset X is isomorphic to (22 for some U < G x H.

The proof follows from the fact that any transitive G-set is isomorphic to G/K
for some K < G and that, as we stated in Remark 3.1, any A-fibered (G, H)-biset is a
(G x H)-set. The subgroup U above is the stabilizer of some x € X in G x H, that is

U=5,:={(9,h) e Gx H|(g9,h) -z =z} (3.4)

Here, different choice of x € X, gives a subgroup conjugate to U in G x H. Conse-

quently, there is bijective correspondence between

(i) isomorphism classes [X] of transitive (G, H)-bisets, and

(ii) conjugacy classes [U] of subgroups of G x H.

Due to this bijection, from now on, we denote transitive (G, H)-bisets and their

isomorphism classes by

GxH d G x H
an
U U
respectively, for appropriate subgroups U. Now, let us see new notations of some of

our examples given in 3.1. In the examples, we introduce some other notations that

one can encounter in the rest of the thesis.

, where A(H) :={(h,h) | h € H}.

(iv) ¢(G/N)g/n = Infg/N = (GA:%])V), where A, (H) :={(g9,gN) | g € G} and 7 is
the canonical projection of G onto G/N.

(v) an(G/N)g i= Defg = (G/AN(Gf) where ,A(H) := {(gN, g) | g € GY.



20

(vi) glsof, = (%), where (A(G) :={(f(9),9) | g € G} for a group isomorphism

f:G— H.

We prefer to use these new notations because they are more suitable when we
consider bisets as maps. We show how bisets become maps after introducing the

Mackey product and the Burnside group.
3.1. Mackey Product of Bisets

Let X € gsety and Y € gsetx. Then, the Mackey product X xzg Y € gsetx of
X and Y is defined as the set of H-orbits under the action

(z,y) -h=(x-h,h -y (3.5)

for all (z,y) € X xY, h € H. The H-orbit (z,y)- H € X xgY of (z,y) is denoted by

(T,1Y)-
For any X, X' € gsety and Y,Y’ € gsety, we have the distributive laws

XXH(YUY/)g(XXHY)U<XXHY/) (36)
(XUX') g Y = (X xgY)U (X xyY). |

3.2. Burnside Group of Bisets

The Burnside group B(G, H) of the (G, H)-bisets is the Grothendieck group of
the category gsety. Definitively, it is the quotient of the free abelian group on the set
of isomorphism classes of the (G, H)-bisets, by the subgroup generated by the elements

of the form

(X UuY]—[X]-[Y] (3.7)
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where XY € gsety, and [X] is the isomorphism class of X. Since every (G, H)-biset

is the disjoint union of transitive ones, we have

G X H} (3.8)

B(G,H)= Y Z{ -

[Ulesaxu

where sgyp is a set of representatives of (G x H)-conjugacy classes of subgroups of

G x H. Recall Section 2.2 for details of the construction of Grothendieck groups.

Let X € gsety and Y € pyset; := gset. As we stated in Examples 3.1, Y is
an H-set, and X xg Y € gset; := gset is a G-set by the definition of the Mackey
product. Therefore, by the distributivity of the Mackey product on the disjoint union,
the (G, H)-biset X can be considered as a map as follows

X xg—:B(H) = B(G), [Y] = [X xg Y] (3.9)

where B(G) := B(G, 1) denotes the Burnside group of left G-sets after identifying G
with G x 1.

Remark 3.2. We can regard bisets as an abstraction of bimodules because for any
(G, H)-biset X, the C-linearization CX of X naturally becomes a (CG, CH )-bimodule.

By tensor product with this bimodule, we can define the map

CX RcH — - Rc(H> — R(c(G>, [M] — [(CX QcH M] (310)

We need the notations below to calculate the Mackey product of two bisets pre-

cisely.
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Notations 3.1. Let U < G x H and V < H x K. Then, we set

UxV = {(¢9,k) e Gx K |(g,h) €U, (h,k) € Vfor someh € H},
m(U) = {9€G|(g,h) € Ufor someh € H},
pe(U) = {he€ H| (g9,h) € Ufor someg € G},
ki(U) == {g€G|(g9,1) €U} and ko(U) :={h € H | (1,h) e U}.

All the sets above are subgroups of the related groups. Furthermore, we have

ki(U) p1(U), k2(U) < pa(U), and
p1(U)/ k1 (U) = pa(U)/ ka(U) = U/ (k1 (U) x ko (U)). (3.11)

As it is seen, we get a quintuple (P, K,n, L, Q) := (p1(U), k1 (U),n, k2(U), p2(U)), from
a given U < G x H, where the isomorphism 7 : Q/L — P/K is determined via U
as n(hL) = gK if (g,h) € U. Conversely, a given quintuple (P, K, 7, L, Q) satisfying
KQP<Gand L <Q < H, and that : /L — P/K is an isomorphism determines
a unique subgroup U = {(¢g,h) € P x Q | n(hL) = gK} < G x H. This is known
as Goursat’s Theorem. Via these notations, we can give the Mackey formula, which

enables us to identify Mackey product of transitive bisets.

3.3. Mackey Formula

Theorem 3.1. ( [5, Lemma 2.3.24]) Let U < G x H and V < H x K. Then

Gx H Hx K Gx K
( - ) X1 ( - ) = | ] (m) (3.12)
help2(U)\H /p1(V)]

where [p2(U)\H/p1 (V)] is a set of representatives of (p2(U),p1(V'))-orbits in H.

Although our biset examples look very simple, they are of great importance. In

fact, Bouc proved that any transitive biset is the Mackey product of five of them.
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Theorem 3.2 (Bouc). Let (P,K,n,L,Q) = (p1(U),k1(U),n, k2(U), p2(U)) be the da-

tum associated to some U < G x H. Then,

G x H
U

) >~ Ind¥ xp Infg/K Xp/K P/KISOZQ/L XQ/L Defg/L XQ Resg. (3.13)

Now, we let another player into the game, namely the fiber group A. We aim to

analyze fibered bisets to obtain similar results as in the ordinary case.

Definition 3.5. Let A be a multiplicatively written (not necessarily finite) abelian
group. An A-set X is said to be an A-fibered (G, H)-biset if the following conditions
hold.

(i) A acts freely on X, i.e. ifa-x=x for allx € X, then a = 1.
(i) The set of A-orbits in X is a finite (G, H)-biset.

(111) All three actions commute with each other.

In contrast to the ordinary bisets, in the fibered case, we allow sets to be infinite
but we want the set of A-orbits of them to be finite. The fibered case can be regarded
as a generalization of the former one because when we take A = 1, the trivial group,

we obtain the ordinary bisets.

Ezxamples 3.2. (i) As remarked above all bisets are A-fibered bisets for the fiber
group A = 1.
(ii) Let G = S3, H =<(13)> and A =<(123)>= (5. In this case, G becomes an
A-fibered (G, H)-biset.

Definition 3.6. An A-fibered (G, H)-biset X is transitive if the set of A-orbits in X
is a transitive (G, H)-biset.

Recall that if X is a transitive A-fibered (G, H)-biset, the set of A-orbits in X

GxH) as a biset, where U = S|, for some A-orbit [z]. Then, if

is isomorphic to ( =

(9,h) € U, we have (g,h) - [z] = [(g,h) - ] = [z] by the commutativity of the actions
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on X. Since [(g,h) - x] = [z], then (g,h) - x = a -z for some a € A. The element a € A

is uniquely determined because A-action is free on X. Therefore, the map
¢r U — A, (g,h) = ¢.(g,h) =a (3.14)

is a well-defined group homomorphism.
Definition 3.7. The pair (Sp), ¢5) above is called the stabilizing pair of x.

Notation 3.2. We denote by Mg« (A) the set of all pairs (U, ¢), where U is a subgroup

of G x H and ¢ : U — A is a group homomorphism.

The set Mg, z(A) admits a (G x H)-conjugation via 9" (U, ¢) := (9P, 9" ),
where "¢ (@My) := ¢(u) for all u € U. Moreover, Maxu(A) is a partially ordered

set (poset) with the ordering given by
(U,¢) = (V) if U <V and ¢ = |y

Clearly, the poset structure is invariant under conjugation, i.e. if (U, ¢) < (V,v),
then @M (U, ¢) < @M (V1) for all (g,h) € G x H. We denote the conjugacy class of
(U,0) € Maxu(A) by [U, ¢laxn-

Lemma 3.2. For any (U, ¢) € Mgxu(A), the set (GXU—Z)X‘L‘) is a transitive A-fibered

(G, H)-biset, where Uy := {(u,¢p(u™') |u€e U} <G x H x A.
Definition 3.8. A morphism of A-fibered (G, H)-bisets is a morphism of (G, H)-bisets
that is also A-equivariant. A bijective morphism is called isomorphism. The category

whose objects are A-fibered (G, H)-bisets with their morphisms denoted by gsetsy.

With this definition, we have all to show the characterization of transitive fibered

bisets.

Theorem 3.3. There exists a bijection between isomorphism classes [X| of transitive

A-fibered (G, H)-bisets and conjugacy classes [U, ¢laxu of elements in Meaxu(A).
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In detail, for a given transitive A-fibered (G, H)-biset X, the corresponding ele-
ment of Mgy (A) is (Sp), ¢2) for some A-orbit [z] in X. The inverse correspondence

of the bijection is as shown in Lemma 3.2.

As a result of this bijection, we denote transitive A-fibered (G, H)-bisets and

their isomorphism classes by

Gx H q Gx H
(w) o [U,cb]

respectively, for an appropriate pair (U, ¢) € Mgxu(A). In the sequel, we show that

ordinary bisets constitute a major part of the fibered biset formulae also. But, when

we use ordinary (G, H)-bisets in the fibered case, we use the notation (GXH ) instead

U1
of (<51).

Definition 3.9. Let X € gseth. The opposite X € pysetd of X is the A-fibered
(H,G)-biset X with the same A-action, and with the (H x G)-action given via

(h,g) -z := (g, h1) 2. (3.15)

Remark 3.3. If X = (GUXf>, then X°P = (ngxg)p>, where

U = {(hg) | (9.h) €U} <Hx G and ¢*(h, g) = (6(g,h))~"

3.4. Tensor Product of Fibered Bisets

Let X € Gsetﬁ and Y € Hset‘;}. Then, the Mackey product X x5 Y € gsety
of X and Y is defined as the set of orbits in X x Yunder the (A x H)-action

(z,y) - (a,h) = (z - (a,h), (@™, h ™) - y) (3.16)
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for all (z,y) € X xVY, (a,h) € Ax H. The (A x H)-orbit of (z,y) is denoted by
(,an y). The set X X g Y is both an A-set and a (G, H)-biset via the actions

a-(r,any) = (a-v,any) = (T,ama-y), (3.17)

(9.k) - (@,amy) = (g zany - k"),

respectively. We have the following properties on X x 45 Y.

(i) For every a € A, we have a - (,any) = (- a,any) = (T,apa-y) = (,any - a).
The equations in the left and right hold because A is abelian and we can switch
a left A-action to a right A-action. To verify the middle equation, observe that
(z-a,amy) = (a,1) (z-a,amy) = ((z-a)-a hapa-y) = (zan a-y) as (v a,am y)
is an (A x H)-orbit.

(ii) By the same token, (z - h,agy) = (x,ag h - y), for any h € H.

Despite all these properties, X X g Y is not always an A-fibered biset because

A-action may not remain free. Therefore, we define the tensor product

X @anY € gsety (3.18)

as the union of the elements of X X 45 Y on which A acts freely. Since the construction
is the same as the Mackey product of bisets, the distribution on the disjoint union is

also valid for the tensor product. We use the notation x® 4y for elements of X ® 44 Y'.

We need the following notations for Boltje and Cogkun’s formula calculating the

tensor product of transitive fibered bisets.

Notations 3.3. If (U, ¢) € Maxu(A) and (V,¢) € Mpuyxx(A), then the homomorphism
¢px1:UxV — Ais defined by

(¢ x)(g,k) = d(g, h)¥(h, k) (3.19)
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for some choice of h € H such that (g,h) € U and (h,k) € V. Sometimes, we
need only parts of the datum (py(U), k1 (U),n, ko(U), p2(U)), which are left invariants
LU, ¢) == (p1(U), k1(U), 1) and right invariants r(U, ¢) := (p2(U), k2(U), ¢2) of (U, ¢),
where the homomorphisms ¢; : k;(U) — A, i = 1,2 are defined through the equation
Ol (k) xka(0)) = P1 X (¢2)t. We take the inverse of the second homomorphism in

order to have formulae in the sequel looked nicer.

Adopting the notations above and those of Section 3.3, the formula for the tensor

product of transitive A-fibered bisets is given in [4, Corollary 2.5] as

G x H HxKY\ Gx K
(oo )en(55)* U (eivaseny) 00

z€[p2(U)\H/p1(V)]
b2 iy, ="V1|H,

where H, = ko(U) N*k1 (V). Due to the condition ¢o|py, = “41|p,, the homomorphism
¢ * @) is independent of the choice of h € H.

Let (%ﬁf) be any transitive A-fibered (G, H)-biset and (P, K,n, L,(Q) be the
quintuple (p1(U), k1(U),n, k2(U), po(U)) afforded by U. As we stated in Theorem 3.2,
any transitive biset is the Mackey product of five canonical bisets. A similar decom-

position for any A-fibered (G, H)-biset is obtained partially in [4]. It is precisely

<G><H

~ G P Q H

where K and L are kernels of ¢; and @2, respectively. Let us denote the stabilizing
pair of the transitive A-fibered (P/K,Q/L)-biset Y by (U, $). Here, the first and
the second projections of U are full, i.e. py(U) = P/K and po(U) = Q/[:, and the
homomorphisms ¢; and ¢, are faithful. Boltje and Coskun decomposed Y fully with
the following additional condition on A. To state the full decomposition, we need
many new definitions that we will not use in the sequel, therefore see [4, Section 10] for
further details. Since we also impose the condition on A in certain parts of the thesis,

we recall it.
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Hypothesis 3.1. There exists a (unique) set w of primes such that for every n € N,

the n-torsion part of A is cyclic of order n,, where n, denotes the w-part of n.

The meaning of the hypothesis is that A is divisible, that is if A contains p-th
roots of unity for some prime number p € 7w, then A contains p"”-th roots of unity for

every n € N.

3.5. Burnside Group of Fibered Bisets

The Burnside group BA(G, H) of the A-fibered (G, H)-bisets is the Grothendieck
group of the category gsets;. As in the ordinary case, due to the fact that transitive

A-fibered (G, H)-bisets form a basis for B4(G, H) and Theorem 3.3, we have

GxH
BA(G, H) := Z { }
2 (A)] U¢

[U.¢l€Meaxn

(3.22)

where [Mgxm(A)] is a set of representatives of (G x H)-conjugacy classes of elements
in Mgxu(A). Recall 2.2 for details of the construction of Grothendieck groups. As
tensor product is possible in Eg = End¢(G) := RBA(G, G), it also has a ring structure

and hence, Eg is an R-algebra.

Definition 3.10. The elements of BA(G, H) are called virtual A-fibered (G, H)-bisets.

Similar to the ordinary case, fibered bisets can be regarded as maps via the tensor

product. That is

X ®ap — : BANH) = BYG), [Y]— [X ®4n Y] (3.23)

where X is an A-fibered (G, H)-biset.
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3.6. Idempotents in Fg

Let M¢(A) denote the set Mayxi1(A). Recall that Mg (A) is a G-set via conju-
gation. We denote by Mg(A4)Y the set of G-fixed points in Mg(A), i.e. the set of
pairs (K, k) € Mg(A) such that K <G, and (k) = k(k) for all k € K, g € G. For
(K, k) € Mg(A)?, Boltje and Cogkun introduced the A-fibered (G, G)-biset

Ex = (%) (3.24)

where Ag(G) = {(g9k,9) | g € G,k € K} = (K x 1)A(G) = (1 x K)A(G), and
¢x(gk, g) = k(k). They called Ex , reduced if it cannot be factored through a group of
smaller order than |G|, and found the necessary and sufficient conditions to be reduced
when A satisfies Hypothesis 3.1 ( [4, Corollary 10.13]). It is an idempotent in Eg.
Moreover, if (K, x) = (L,\) for some (L,\) € Mg(A)4, then Ex, ®ac Erx = Ep»
( [4, Proposition 4.2]). Set ek, := [Ex..] € F¢ = RBA(G,G), and

Jrw = Z MFK,R),(L,A)GL,A (3.25)
(Kvn)j(Lv)‘)EMG (A)A

where pge o ;4 1s the Mdbius coefficient with respect to the poset Mg (A)A.

Lemma 3.3. Following the notation above, we have

Z frr=e1=1€ Eg. (3.26)
(K.k)EMg(A)A

The idempotent Eg , is crucial for us because we show that it is a multiplier of
any transitive A-fibered biset when A does not satisfy Hypothesis 3.1 in our set-up.
That is why, we also find when Eg , is reduced to achieve full decomposition of any

transitive fibered biset for cyclic groups.
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4. A-FIBERED BISET FUNCTORS

Definition 4.1. Let R be a commutative ring with unity. The A-fibered biset category
C := Cy of finite groups is the category defined as below

(i) The objects of C are finite groups.

(i) For any two objects G and H, Home(G, H) := RBA(H,G) := R®; BA(H,Q),
i.e. morphisms from G to H are the R-linear extensions of the virtual A-fibered
(H,G)-bisets.

(11i) The composition of morphisms in C is the R-linear extension of the tensor product
of fibered bisets.

(iv) For any object G, the identity morphism of G is R @z [Idg] = R @z [$24].

Remark 4.1. The category C is an R-linear category, that is for any objects G and H,
the set of morphisms Hom¢ (G, H) is an R-module, and the composition of morphisms

is R-bilinear.

Definition 4.2. An A-fibered biset functor F' over R is an R-linear functor from the
category C to the category R-Mod, that is a functor F' from C to R-Mod such that the

maps that F' induces between sets of morphisms are R-linear.

Ezamples 4.1. (i) The map RB* sending any finite group G to the Burnside group
RBA(G) of left A-fibered G-sets, is an A-fibered biset functor over R, called the A-
fibered Burnside functor. For any virtual biset v € RBA(G, H) = Hom¢(H, G),
the map RBA(y) : RBA(H) — RB*(G) is the R-linear extension of the map
X ®ap — : BAH) — B4(G) shown in Section 3.4.

(ii) Consider the map

R(c G~ Rc(G> (4.1)
sending any finite group G to its representation ring Rc(G). Then, Rc is an

A-fibered biset functor for any A < C*, where C* := C\{0} is the multiplicative

group of invertible complex numbers. We call it the functor of complex character
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Ting.

(iii) Let F be an algebraically closed field of characteristic p > 0, and let A < F*. We
denote the ring of trivial source FG-modules by Ty(G). Then, the map assigning
the ring Tx(G) to each finite group G is an A-fibered biset functor for any A < F*.

See [2] for the definition of trivial source modules.

Together with natural transformations, A-fibered biset functors form a category
which we denote by F := F5. Since the category R-Mod is abelian, the category F is
also abelian with the pointwise evaluation of kernels and cokernels. That is to say, if

f : I} — Iy is the natural transformation, then

(ker(f))(G) = ker(fe) and (coker(f))(G) = coker(fq) (4.2)

where fg : F1(G) — F3(G) for any finite group G. This property enables us to define

subfunctors, quotient functors, projective functors, simple functors, etc.

Definition 4.3. A group G is said to be minimal for an A-fibered biset functor F if
F(G) #0 and F(H) =0 for any group H such that |H| < |G].

Let (K,x) € Mg(A)Y, a G-fixed pair in Mg(A). The canonical basis elements

[G;]X—f] € BA(G, G) satistying (U, ¢) = (G, K, k) = r(U, ¢) form a group I'g k.. The

identity element of the group is e, shown in 3.6, and the inverse of [GUX;{ ] is the

HXG
gop.¢op |

opposite biset [

Definition 4.4. Let (K,x) € Mg(A)Y and (L,\) € My(A)2. If there exists a
pair (U, ¢) € Maxu(A) such that I(U,¢) = (G, K,k) and r(U,¢) = (H, L, \), then
(G,K,k) and (H,L,\) are said to be linked.

Remark 4.2. Assume the hypothesis of the definition above. The set

G x H
U, ¢

Kl HLN = {{ 1 | L(U,¢) = (G, K, k) and r(U,¢) = (H, L, \)} (4.3)
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is a (g ks, i op)-biset. Obviously this set is non-empty if and only if (G, K, k) and

(H, L, \) are linked. Notice that ¢ x.I'm . induces a bijection

(R X7z G,K,/@FH,L,)\) ®RFH,L,>\ — II"I"(RFH’LV)\) — II‘I‘(RFGJ(,,@) (44)

between irreducible left modules of the related algebras.

Theorem 4.1. [/, Theorem 9.2] Any simple A-fibered biset functor S is parametrized by
the quadruples (G, K, k, [V]), that is S is of the form Sg k . v), where G is a minimal
group for S, the pair (K,r) € Mg(A)Y such that Eg, is reduced, and [V] is the

isomorphism class of the irreducible RI'¢ k ,-module V.

Ezamples 4.2. (i) If F is a field, then the the first functor example FB# above is
a projective A-fibered biset functor and it is an indecomposable object of F.
Besides, FB4 is a projective cover of the simple functor S1,1,1,[F]-

(ii) The functor CR¢ : G — CRc(G) := C ®z Rc(G) is the C-linear extension of the
second functor in Examples 4.1. This functor is also an A-fibered biset functor for
any A < C*. Besides, it is simple and isomorphic to the simple functor S 11 ¢

when A = C*.



33

5. ABELIAN CASE

The basic theory of fibered bisets and fibered biset functors are almost fully
analyzed by Boltje and Cogkun in the case that the fiber group satisfies Hypothesis
3.1. In the present thesis, we free the fiber group from this condition. Because it is a
challenging task, we decided to move step by step. As a first step, we aim to obtain
our results for cyclic groups. That is why, we need to cover previous results for abelian
groups, then reduce them to cyclic groups when it is necessary. From now on, in this

chapter all groups are assumed to be abelian groups unless otherwise stated.

Let G =<g> be a cyclic group of order n. Since characters of abelian groups are
group homomorphisms, any character ¢ : G — C is of the form ¢° — a’ for some i € N,
where a is an n-th root of unity. Because any n-th root unity a is of the form a = w?,
1 <7 < n for a fixed primitive n-th root of unity w, any character of GG is of the form
Y; : G = C, ¢" — w" for some 1 < j < n. Hence, if we denote the character of G
sending ¢ to w by x, we obtain that ¢; = x?, that is Irr(G) = {x, x?, ..., x" = 1}. With
the multiplication x* - x? := x**7, the set Irr(G) becomes a group. Moreover, Irr(G) is

a cyclic group generated by x, and isomorphic to G. Note that Irr(G) = Hom(G, C*).

In general, let G be an abelian group and let |G| = p1™ ps™2 ... p,"" be the prime
factorization of |G|. Since G = Cpn1 X Cpyna X -+ X Cp nr, any character (homomor-
phism) x : G — C is of the form (x1)" (x2)”2 ... (x»)7", 1 < j; < p;", where x; is the

generator of Irr(Cpni), 1 <i <r.

Recall that we did not give the final decomposition of any transitive A-fibered
biset due to its complication and the excessive notations even if A satisfies Hypothesis
3.1. However, in the case that G and H are abelian groups and A satisfies the hypoth-
esis, we can state the full decomposition of a transitive A-fibered (G, H)-biset with a

new fibered biset in addition to the five canonical bisets: Twist.

Until the end of this chapter, we assume that A satisfies Hypothesis 3.1.
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Definition 5.1. If ¢ : G — A is a group homomorphism, then the Twist by ¢ at G is
the A-fibered (G, G)-biset

GxG ) (5.1)

T = (A(Gm(w

where A(G) :={(g,9) | g € G} and Ap)(g,9) := ¢(g) for any g € G.

Let (U,¢) € Maxu(A) and (P, K,n,L,Q) = (p1(U), k1 (U), n, k2(U), p2(U)) be
the invariants determined by (U, ¢). We use the notation gg = gz~51 X gz~52 for an extension
of ¢ to P x ) which exists since the group P x @ is abelian and A is divisible by the
hypothesis.

Theorem 5.1. ( [7, Coskun-Yilmaz|) Let G, H, A and (U, ¢) be as above. Then

(GxH

i ) > Indg Tw}' Infp prelsofy, Defg  Twe Resg. (5.2)

Q/L

We need to introduce some notations to classify simple fibered biset functors
whose minimal groups are abelian. We denote by Eg the subalgebra of the algebra
Eq = RBA(G,G) consisting of the A-fibered (G,G)-bisets which cannot be factored
through a group of smaller order. The algebra E¢ plays an essential role in the classi-
fication. Its structure is analyzed generally in [4, Section 8]. We describe its structure
when G is abelian. Note that, in this paper, we only need the case that the minimal
group is cyclic, but we include a more general case since the same arguments still work

in this case.

Let (GUXq?) be a transitive A-fibered (G, G)-biset which does not factor through

a group of smaller order. Then, it is decomposed as

(GXG

U, ¢ ) 2 Twg' ®ag glsog © Twg (5.3)
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since we deduce by Theorem 5.1 that
P=Q=G, K=L=1, and U={(g9,\(9)) € GxG|XeOut(G)}.

The homomorphism ¢ = ¢ X ¢, above is an extension of ¢ to G x G. Moreover, from

the tensor product formula, we easily obtain

GISO?; X aa TWZ = TW%OA R aa GISOé. (54)
Therefore, the algebra Eg is generated by all A-fibered (G,G)-bisets of the form
Tw’ @4 oIso}y, where ¢ € G4 = Hom(G, A) and A € Out(G). We use the nota-
tion

[0, N = Tw @ac olsop (5.5)

for short. Now, if \, u € Out(G) and ¢, € G4, again from the tensor product formula,

we obtain the following equations

[17 )‘]G ' [L/AG = [17 A M]Ga (56)
1, Mg [0, 1] [, =[poA1]g, (5.7)
[f, 1] - [¥,1]g = [p o, 1]q. (5.8)

As a result, by the equations above we construct an algebra isomorphism between Fg

and R[G? x Out(G)], via the map

Eg — R[GA x Out(G)], [6, A — ¢ -\ (5.9)
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5.1. Simple Functors

Let S be a simple fibered biset functor such that its minimal group is abelian. In

this case, it can easily be shown that S(G) is a simple Eg-module.

The evaluation V := S(G) is actually a simple Eg-module as the minimality of
G implies that any A-fibered (G, G)-biset which factors through a group of smaller
order annihilates S(G). Thus, V is a simple R[G* x Out(G)]-module by Map 5.9.
Furthermore, any minimal group for S should be isomorphic with G ( [4, Proposition

9.4)).

Indeed, recall that general parametrization of any simple A-fibered biset functor
is of the form S¢ k. v for some quadruple (G, K, k, V') such that Ex , is reduced. In
the case A satisfies the hypothesis, it is shown that Ek , is reduced if and only if K is a
cyclic m-group such that K < Z(G)NG’, and & is a faithful character of K ( [4, Corollary
10.13]). Since we take G as abelian in our case, there is only one possibility for such

(K, k), which is (1,1). Moreover, in this case, we have I'g 11 = G x Out(G).

On the other hand, let H be another minimal group for S. We claim that H = G.
Indeed, by Theorem 9.2 in [4], we have |H| = |G| and by Proposition 9.5 in [4], if S(H)
is non-zero then there is a section H; < Hs < H of H and a subgroup L of H* = Hy/H;
such that G = H*/L and LN (H*) = 1. Now since |G| = |H|, we must have G = H.

As a result, we have proved the following theorem.

Theorem 5.2. Let F' be a field. Then, there is a bijective correspondence between the
set of isomorphism classes of simple A-fibered biset functors with an abelian minimal
group and the set of pairs (G,V), where G runs over all finite abelian groups, up to
isomorphism, and V' runs over the isomorphism classes of simple k[G* x Out(G)]-

modules.
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6. FUNCTOR OF COMPLEX CHARACTER RING

This chapter is devoted to details related to the structure of the functor of complex
character ring introduced in Examples 4.1. It is studied as various objects such as a
Mackey functor, a Green biset functor, an ordinary biset functor and a C*-fibered biset
functor. For completeness, we include known results regarding the aspects in which the
complex character ring treated. We refer to [13] and [12] for preliminaries on Mackey
functors and Green biset functors, respectively. Before recalling the results, we need

the following definition.

Definition 6.1. For any character or equivalently homomorphism ¢ : (Z/mZ)* — C*,

the map ¢ : Z/mZ — C given by

- z) ifx € (Z/mZ)*
oy [0 e @) o

0 otherwise

for any x € Z/mZ is called a Dirichlet character modulo m. A Dirichlet character
5 : Z/mZ — C is called primitive if ¢ cannot be factored through a proper quotient of
(Z/mZ)*, that is it is not induced from any character of smaller modulus. We denote
by T the set of pairs (m,(), where m € Z* and 5 15 a primitive Dirichlet character

modulo m.

Theorem 6.1. Let IF be a field of characteristic zero. Then

(1) ( [13, Thévenaz-Webb)]) For any finite group G, there is an isomorphism

QRE> P nuvSHy (6.2)

(H,V):H cyclic
H<gG

of Mackey functors for G over Q. Here, ngy denotes the multiplicity of the
Q[N¢(H)/H]-module V' in Q({m)), and S§  is the simple Mackey functor for G
parameterized by (H, V).
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(ii) ( [12, Romero]) The functor CR¢ is simple as a Green biset functor.

(111) ( [5, Bouc]) There is an isomorphism

CRe= @ Szymzc. (6.3)

(m,¢)el

of biset functors, where C; denotes the COut(Z/mZ)-module C on which the
group Out(Z/mZ) = (Z/mZ)* acts via (.
(iv) ( [4, Boltje-Coskun]) There is an isomorphism

FRe = 51111 (6.4)

of C*-fibered biset functors where the right hand side is the simple functor pa-

rameterized by the trivial group.

We pointed out in Examples 4.2 that CR¢ is an A-fibered biset functors for any
A < C*. When we take A = 1, it becomes an ordinary biset functor. Note that Bouc’s
decomposition can be thought as a decomposition of 1-fibered biset functors, and hence
the above two results cover the two extreme cases where the fiber group is the smallest
and the largest. For the rest of the thesis, we want to determine the structure of CR¢
as an A-fibered biset functor for some other nice choices of the fiber group A. We
should give some details about the simple summands of CR¢ to reach our aim. More

details can be found in [5, Chapter 7].

As in Chapter 4, let B4 denote the A-fibered Burnside functor, sending any group
G to the Burnside group B4(G). The well-known C-linearization map associates to any
transitive A-fibered G-set X with the stabilizing pair (U, ¢) the monomial CG-module
CX with monomial basis X. In other words, CX is the C-vector space with basis X

and the CG-action inherited from the G-action on X. It is easy to show that

CX = Ind§Cy (6.5)
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as CG-modules, where C4 denotes the 1-dimensional representation of U with the
character ¢. Now, the linearization map is defined as the linear extension of this
correspondence. Similarly, if Y is an A-fibered (H, G)-biset, then the linearization of
Y can be regarded as a monomial (CH, CG)-bimodule and hence we obtain a group

homomorphism
Re(Y) : Re(G) — Re(H) (6.6)

given by Rc(Y)([M]) = [CY ®ce M]. For simplicity, we denote Re(Y) by gY. It is
shown in [4, Subsection 11B] that with this action of fibered bisets, the functor R¢

becomes an A-fibered biset functor.

In this thesis, we want to work with characters instead of CG-modules. The

following lemma describes the above group homomorphism in terms of characters.

Lemma 6.1. Let x € Rc(G) be the character of the CG-module M and Y = (I{/—Xf) be
a transitive A-fibered (H, G)-biset. Then the character gY (x) of the module [CY ®@cq M]
s given by
1
RY )0 = > v 9)x(9), (6.7)

|V| zeH,geG
(h*,9)eV

Proof. Since CY is a (CH,CG)-bimodule, then [CY ®cq M| € Rc(H). Therefore,
rY (x) € Rc(H) is a character of H. Hence, by the formula of the characters of tensor
product of modules found in [5, Lemma 7.1.3], the character gY(x) is given by

RO = e D 0l )x(o) (63

geq
where @ is the character of the monomial (CH, CG)-bimodule CY. Now, we need to
identify the character 6. It is equal to the function sending any (h, g) € H X G to the
trace of the endomorphism y — (h,g)y of CY. Since Y is an A-fibered (H, G)-biset
and A < C*, the basis of CY is a set [Y]/ ~ of the representatives of the A-orbits [Y]
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of Y. It is precisely equal to

0(h,g) = > y(h,g) (6.9)
(flji)[?;]]/:[y]

where 1, (h,g) € A is determined by the equation (h,g)y = ¢,(h,g)y. On the other
hand, since Y is transitive, there exists some (a,b)V € (H x G)/V satisfying the
equation (a,b)[y] = [y/'] for any [y], [y/] € [Y]. Also, if (h, g) stabilizes [y], then (h, g)(®?
stabilizes [y]. Thus,

rRY (X)(h) = éZQ(h,g)x(Q)

geG

= éz > e ¢")x(9).

ge€G (a,b)VE(HXG)/V
(ho,gbyev

Since ¢y, : G — G, g+ ¢° is an isomorphism and the characters are class functons, we

have

1
rRY (X)(h) = @Z > Wk 9)x(g): (6.10)
bgeG (@0 U x0)/V

If (a,b)V € (H x G)/V, then for each (u,v) € V and for any [y] € [Y],

(™, ")yl = (h*, 9)"ly] = (A, 9)[y]. (6.11)
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Then

RY (W)(h) = |G||V|Z > w(h 9)x(g)

gGG a,b)E(HXG)
(ha,g)eV

-GS X )

geG (a,b)EHXG
(h9,9)eV

- |G\|V|ZZ 2 v

gEG a€H  bEG:

(h®,g)eV
1 a
= m Z ¥(h*, 9)x(9)- (6.12)
(hgiev

We also need the explicit descriptions of the actions of basic fibered bisets. Note
that if Y is one of induction, restriction, inflation, deflation or isogation bisets, then
the above formula becomes the corresponding well-known maps in Section 2.3 from

character theory.

Since we have long expressions containing biset actions on characters in the sequel,

we prefer to use the notation Y -y or Yy instead of rY ().

Proposition 6.1. Let ¢ : G — A be a homomorphism for some group G and let
x € Irr(G). Then Twix = @X.

Proof. The chain of equations

1

(Twéx)(9) = AG)] xegea Ale) (9", 9))x(9)
(9%,9")EA(G)
= ZA 9°))x(g")
— Zw 2(9)x(9) (6.13)

is a direct result of the formula in Lemma 6.1 and completes the proof. O]
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Proposition 6.2. Let G be an abelian group, x € Irr(G) and E,, = (%) be

an idempotent for some pair (K, k) € Mg(A). Then

X if x|k =k

0 otherwise.

Proof. Keeping in mind that G is abelian, we obtain from Lemma 6.1 that

1 xT / /
Ex)0) = 5@ > oxllg” 9))x(d)

z€G,9'€G
(9%,9")eAK (G)

_ IG!1!K| S 6ul(9,9K)x(gh)
z€GkEK

= T 2 dul(a.a)xlb

keK

— E%TEE:KKk‘Ux(gk)

keK

Since any character of an abelian group is a homomorphism, we have

1 _
Erax)(9) = e D sk x(g)x(k)
Kl i
1 ) x(g) i x|k =~
= x(9) (mzf‘é(/ﬂ I)X(k’)> =
keK 0 otherwise
by the row orthogonality relation of characters. O]

Notation 6.1. Let Ek , be an idempotent in E¢ for some finite group G. Abusing the
notation, we denote this idempotent by E4, if K : K — A is an isomorphism, and we

set €4, 1= [Ea ).

Lemma 6.2. Let fa, be the virtual A-fibered biset defined in Section 3.6. If G is a

finite cyclic group, then fa, = €.



43

Proof. Note first that fa, = fk, for some K < G such that K = A, and

fK,K/ = Z /'L(<]K,F\Z),(L,>\)6L7)" (6.].5)
(K,N)j(L,)\)EMg(A)A

In the case that G is cyclic, the Mobius coefficient ufK (L) becomes

/

0 if |L : K| has repeated prime factors
u(<]K,n),(L,/\) =31 iHK=L (6.16)

—1 if K is maximal in L.

\

On the other hand, since k : K — A is an isomorphism, the only pair satisfying

(K, k) = (L, ) is (K, k) itself due to the condition | = k, that is fa, = €4 . O

Lemma 6.3. Let G be a finite cyclic group of order m. Then,

D (eanx) = x (6.17)

(e}

for any irreducible character x € Irr(G).

Proof. First, notice that Mg(A)* = Mg(A) if G is abelian. Then fr , takes the form

Jrr = Z L5 m) (LA ELA = €K — Z €L (6.18)
(K,k)2(LA)EMG(A) pj‘ﬂL:K|
K=K

for any (K, k) € Mg(A) by Equations 3.25 and 6.16. The number p in the second sum
above is any prime number because Mobius coefficient is zero if |L : K| has repeated
prime factors. Now, consider fx ,x for any x € Irr(G). It equals zero if the sum
> w2k €na is non-zero, i.e. if there exist pairs (L, A) such that K is maximal in
L a?nii:;\\;( = k. Indeed, if exx = 0, that is if x|x # K, then > 2qp.x eLax = 0
because x| cannot be equal to A due to the equality A|x = k. On thAe‘Ko:tnher hand, if

exxX = X, that is if x|k = &, then fx . x = 0 again because ) 2.5 €L x = X. Since
AN g=r
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G is cyclic, there exists for certain at least one pair (L, \) with x|, = A, which implies
the equalities D 2.k ez X = x and fx .x. We know by Lemma 6.2 that fa, =ea,
AN g=r

for any isomorphism o : A — A. If we set

fai= Z fae = Z €A (6.19)

then

1= Z Jfrkw=fa+ [y where f:= Z frw=1—fa

(K,k)EMa(A) (KmEMG(4)
by Lemma 3.3. Notice that if (K, k) is any pair with K 2 A, then there exists surely
a pair (L, ) such that A|x = k because G is cyclic and x is not an isomorphism.
Therefore fr ,x = 0 by the argument above which implies that f)x = 0. Now, if we
apply the identity element 1 € Eg to x, we obtain

X=1-Xx=(fa+ fi)-x=Ffax+ fax=Ffax =) _eaax (6.20)

«

which is what we desire to prove. O
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7. MAIN RESULTS

We have stated that CR¢ is a semisimple biset functor and a simple C*-fibered
biset functor. In other words, while CR¢ is semisimple for the minimal fiber group
A =1<C*, it is simple for the maximal fiber group A = C*. Our aim is to study the
structure of CR¢ for some non-trivial cases, i.e. for some specific groups A such that

1 < A < C*. We separate our investigation into two parts:

(i) Part I: Large Fiber Group
(ii) Part II: Small Fiber Group

where by a large fiber group, we mean a group satisfying Hypothesis 3.1. Otherwise,

we call it a small fiber group.

7.1. Part I: Large Fiber Group

We first concentrate on a fiber group satisfying the hypothesis. For simplicity,
we let 7w be a set of prime numbers and let A = 7 be an abelian group containing
all p"-th roots of unity for all powers n € N and all primes p € 7. We are aiming
to show that CR¢ is still semisimple as a 7*>°-fibered biset functor by determining a

decomposition of it into simple summands.

Before stating our first main theorem of this part, we introduce some notation.
Let ' be the set of all pairs (m,() as defined in the previous section. We define a
relation on I' as follows. Two pairs (m,(),(n,v) € I' are said to be m-equivalent,

written (m, () = (n,v) if the 7'-parts m,. and n, are equal and after identifying the

groups Z/mZ = Z/n. 7, we have
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Remark 7.1. The last condition means that the n'-parts ¢ and 7 of ¢ and v affords
the same one dimensional representation of Z/m7Z = 7Z/n.7Z, and hence they differ

by a non-zero complex scalar.

Clearly, this is an equivalence relation on the set I'. We denote the equivalence
class containing (m, () by [m, (] and write 'z« for the set of equivalence classes. It
is also clear that each equivalence class contains a unique pair (n,v) where n is a

7’-number. Now, we can state our first main result of this part.

Theorem 7.1. Assume the above notation. Further assume that m is a 7 -number
and denote by 57‘27( the m°-fibered subfunctor of CRc generated by the simple biset

subfunctor SZ/mZ@C. Then, there is an isomorphism

S = @ Sz/nz.C, (7.2)

(n.v)€[m.(]

of biset functors.

Proof. To simplify the proof of the theorem, we introduce the following temporary

notation

Smea = P Semac. (7.3)

(n.v)€[m.(]

Clearly, S}, ¢ is a biset functor and the first part of the theorem claims that forgetting
the fibered structure of the functor S;) ., we obtain an isomorphism Sy, = Si - of
biset functors. We prove the claim in two steps. First, let (n,v) € [m,(]. We show
that the simple biset subfunctor Sz/nz,c, of CRc is contained in Srﬁ,C' Since m is a
7’-number, there is a m-number k such that n = mk and without loss of generality, the
7'-part U of U coincides with (~ . On the other hand, the m-part 7, of 7 is a virtual

character of Z/kZ, and hence it is a complex linear combination of the irreducible
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characters of Z/kZ, say

Uy = Z Cy X (7.4)

XEIrr(Z/’CZ)

for some complex numbers ¢,. Moreover, since k is a m-number, Z/kZ embeds in A
and hence each irreducible character x of Z/kZ induces a twist biset Twy Jkz- Lhus,

putting
Tw;, = Z e Twy g (7.5)
X
we obtain
1771— = r:[‘V\/',;?T -1 (76)

where 1 denotes the trivial character of the group Z/kZ. Moreover, writing Z/nZ =
Z/KZ x Z]/mZ, we can regard the A-fibered (Z/kZ,7Z/kZ)-biset Tw;_ as an A-fibered
(Z/nZ,Z./nZ)-biset by letting Z/mZ act trivially on both sides. Therefore, the above

equality becomes
Up X 1 =Twy_ -1 (7.7)

where 1 on the right hand side is the trivial character of the group Z/nZ. On the other

hand, we clearly have
1 x D = Infy)"% . (7.8)
Combining these two equalities, we get

D= g X D = Twy, - Infy)no - C. (7.9)

In particular, 7 is contained in the A-fibered subfunctor generated by ¢. We already
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know that the simple biset functor Sz,.z.c, is generated by ©. Thus we have proved

that
Sz/mzc, € S;:,C (7.10)
for all (n,v) € [m,(]. In particular, we have shown that
S S Sing (7.11)
as required.

To prove the reverse inclusion, it is sufficient to show that any simple biset sub-
functor of Sfm is parameterized by a pair equivalent to (m, (). Indeed, since CR¢ is
semisimple, the subfunctor S;i,g is also semisimple and hence it is a sum of its simple
subfunctors. Therefore, let Sz/,7.c, C Srﬁ,C' We need to show is that (n,v) is equiva-
lent to (m,(). Since Szmzc,(Z/nZ) C Sj (Z/nZ) and the functor S}, . is generated

by C~ , we should have

D= (7.12)

for some virtual A-fibered biset v € BA(Z/nZ,Z/mZ). Recall that 7 satisfies Hy-
pothesis 3.1. Hence, by the decomposition given in Theorem 5.1, we deduce that v is

a C-linear combination of elements of the form

Indy/™ Twg Inff e e o), Det), Twiy Resg ™ ¢ (7.13)
for appropriate choices of the notation. But Z/mZ is a minimal group for the functor
S;;‘L,C. Thus the maps factoring through a group of smaller order annihilates ¢ and
hence any transitive summand of v must be of the form

Indy"; Twy,, Inf/"" ¢ (7.14)
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where ¢ : Z/s7Z — A is a homomorphism. Also, since Z/nZ is a minimal group for the
biset functor Sz/nzc,, the induction maps in the above decomposition must be trivial,

that is, s must be equal to n. Thus the above form reduces to
[0} Z/nl *
TWZ/HZ Ian/mZ C. (7.15)
By its transitivity we can divide the inflation map above into two parts as

Z7./n7Z /naZ %

TW;/nZ Ian?nW/Z Inf?/mz ¢ (7.16)
where n, denotes the n’-part of n. We need to show that the inflation map on the
right side is trivial and hence m is the 7'-part of n. Assume it is not trivial. Then we

have

L[ nZ nal x
Twz/nz Infzénw,z Infgmz (= TWZ/nZ (7 x1) (7.17)

/TLW/Z =

where 7 = Inf’ (. On the other hand, because of the structure of the group A

Z/mZ
and the fact that ¢ is a homomorphism whose image is in A, ¢ must be trivial on the
m'-part of Z/nZ, i.e. following the previous notations, ¢ must be of the form 1 x ¢,.

Hence, the expression above becomes

TWy )y (7% 1) = Twy)fz (7% 1) = 7 % ¢r. (7.18)

But the last map 7 X ¢, can be given as Infé?fnﬁz'z (5 X ¢r), which contradicts the

primitivity of v. Therefore, n» = m and all together imply that (m, () = (n,v), which

is what we want to show to justify

Sivc € Sima- (7.19)

Theorem 7.2. The w*>°-fibered biset functor Sf,‘m s simple.
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Proof. We have already shown that the m*°-fibered biset functor Sﬁ’c is cyclic and
generated by 5 . Thus it is sufficient to show that any non-generator must be zero.

This is equivalent to show that the intersection of the kernels of all maps
S (G) = Sih (Z)mZ) (7.20)
induced by A-fibered (Z/mZ, G)-bisets is zero for any group G.

Let 0 # ¢ € S;QC(G). Assume, for a contradiction, that for any A-fibered
(Z/mZ,G)-biset X, the induced map

X : 8o (G) = Sp (Z/mZ) (7.21)
annihilates v, that is, we have X (¢) = 0. By Theorem 7.1, we have

Sin o(G) = B Szymze. (G) (7.22)
(n,v)
where the sum is over all pairs (n, v) equivalent to (m, (). Therefore, we can write

= V) (7.23)

(n,v)

where Y,y € Sz/mzc,(G). Now let (ng, 1) be a minimal pair equivalent to (m, ()

subject to the condition that 1, ., # 0 but 9, ,) = 0 for all n < ny.

Now, by its choice, the element ¢ lies in the kernel of any composite map ZY

where

Y SA (G) = Sh(Z/neZ) and  Z: Sh (Z[ngZ) — Sip (Z/mZ)
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are induced by A-fibered bisets. In particular, for any m*°-fibered (Z/mZ, Z/n¢Z)-biset
V and for any (Z/noZ, G)-biset U, we have

(V ®az/noz) U)(¥) = 0. (7.24)

Now, the image of 1 under any such biset U can be evaluated. Indeed, since Z/nZ is
a minimal group for the simple biset functor Sz,,zc,, for each n > ny and any pair

(n,v) equivalent to (m, (), we have

U(¥mw) = 0. (7.25)

Hence, the ones lying in the summands Sz/n,z.c,, (Z/n0Z), 1 < i < t, for some integer

t > 1, are the only non-zero components of U(1)).

For simplicity, we denote by v; the component vy, ,,) of ¥. As a subfunctor of
CRc, the evaluation Sz/nzc,. (Z/noZ) is generated by ;. This implies the following
equality

¢ ¢ t
U(yp) = Z U(yi) = Zcz’ﬁi € @ S7/noz.,C., (Z/ M0 L) (7.26)

i=1 i=1 i=1
for some ¢; € C. Also, since each pair (ng,v;) is equivalent to (m, (), we have ng = mp
for some m-number p and 7 = ¢ x (#;),. Now since (), is a character of Z/pZ for

each i, there are complex numbers d;; € C such that
p
(7)r = > _ dijx;j. (7.27)
j=1

Here, x; runs over the all irreducible characters of Z/pZ. Thus, U(v) is actually of the

form

t p

Uy) = chi(f X digx;) = Y Y adii(Cx x;). (7.28)

i=1 j=1 i=1 j=1

o~
=
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Note that if we deflate the character ¢ x X; to the quotient Z/mZ, we get zero unless
X; is the trivial character. Hence, deflation annihilates all the terms in the above some
except for the trivial character x;. Moreover, given any non-trivial character yx; of
Z/pZ, we can multiply U(v)) by the twist biset Twzjif)‘%)_l to trivialize the m-part of

the corresponding summand. Hence given any index j, we have

t
0 = Defy) " Twy N U ) = > edisC. (7.29)

=1

Since 5 is non-zero, the above equality implies Zﬁzl cidi; = 0. Now we multiply this

equality by x; and sum over j for 1 < j < p to get

p t t p t
j=1 \i=1 i=1 j=1 i=1

But, (7;),’s are linearly independent as they form a subset of the set of all primitive

characters of Z/ngZ. Therefore we must have ¢; = ¢; = ... = ¢, = 0 and hence

U(;) = 0 for each i and for all (Z/n¢Z,G)-bisets U. In particular, we see that the

element 1); lies in the intersection of kernels of all maps
U: SZ/noZ,(Cyi (G) — SZ/noZ,(Cui (Z/?”LOZ). (7.31)

induced by (Z/n¢Z, Gi)-bisets. Therefore, since Sz/n,zc,, is a simple biset functor, ¥;
must be equal to zero for each 4, which contradicts to the minimality of ng. Therefore

1 must be zero, as required. O

Corollary 7.1. The m*-fibered biset functor CR¢ is semisimple and there is an iso-

morphism

CRc= @ i (7.32)

[m7der7roo

of m*°-fibered biset functors.
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Proof. 1t easily follows from Theorems 7.1 and 7.2. O

7.2. Part II: Small Fiber Group

Recall that Theorem 5.1 states that Eg , is always decomposable for a large fiber
group because it is not one of the multipliers. This is why, twist is the only fibered
biset in addition to the canonical bisets as we saw in the decomposition. On the other
hand, for a small fiber group, Ex ,, may not disappear. Therefore, we need to determine
new conditions for Ex , to be reduced because Hypothesis 3.1 is no longer satisfied.
We need some lemmas to find the necessary and sufficient conditions for Ex . to be

reduced.

Lemma 7.1. If Ex . is reduced, then r is faithful and does not extend to G, that is,
there is no homomorphism ¢ : G — A such that ¢(k) = k(k) for some 1 #k € K.

Proof. Let Ef, be reduced. Then, because of the decomposition (3.21), the homo-
morphisms (¢.)1 = (¢x)2 = £ must be faithful. The irreducibility of Eg , implies
the irreducibility of Ex , ®a¢ Tw{ for any homomorphism ¢ : G — A. Indeed, if

Ek.. ®ac Tw§, were reducible, it would be decomposed as

GxH Hxd
Ex s ®@ac Twg = ( U o )®AH ( U. o ) (7.33)

for some group H with |H| < |G|. Then, consider the homomorphism ¢p=! : G — A
defined as p~!(g) := (p(g))~! for any ¢ € G. If we multiply the right hand-side of

Expression 7.33 by ngl, we obtain

-1 Gx H Hx G -1
Ex . ®ac <TWZ ®ac Twg ) Z Eg, = ( U.or ) @Al (( U. o ) Qac Tw, )

which contradicts the irreducibility of Ef . Therefore, Ex ., ® a¢ Tw§, is also reduced

for any homomorphism ¢ : G — A. Then, ker[(¢, * A(p));] must be trivial for ¢ = 1, 2.
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In other words, for any 1 # k € K, the evaluation

(6 * A(P)(1, k) = 6 (L, k) A(0) (k. k) = k(K™ )p(k) (7.34)

cannot be equal to 1, i.e. p(k) # k(k). O

Lemma 7.2. If G and H are groups of coprime orders, then the map

©: RBY(G,G) @z RBY(H,H) — RBAG x H,G x H)
(X,Y) — X xY

1S a ring isomorphism.

Proof. The proof is almost the same as that of Proposition 2.5.14 in [5]. O

Remark 7.2. As a result of Lemma 7.2, we have the following isomorphism

Ex.= X Eg,x, (7.35)
p:prime
plIG|
where Eg, ., = <%> This isomorphism enables us to reduce the proof to

p-groups because Eg . is reducible if and only if Eg, ., is reducible for some prime

p |Gl

Theorem 7.3. Let (K, k) € Mg(A) for a cyclic group G. Then, the A-fibered (G, G)-
biset Ef . is reduced if and only if the homomorphism k is faithful, and |A|, < |G|, for

any prime number p dividing |K|.

Proof. Let Eg ,, be reduced for a cyclic group G =<g>. By Lemma 7.1, we know that
k is faithful. Then, k, : K, — A is also faithful for any prime number p dividing
|K|. Suppose, for a contradiction, that |A|, > |G|, for some prime number p. As a
result of this assumption, A contains all |G|,-th roots of unity. Therefore, the faithful

homomorphism k, : K, — A can be extended to a faithful homomorphism A : G, = A.
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In other words, A(k) = k,(k) for any k € K,. Since this contradicts the assertion of
Lemma 7.1, following the notation of Remark 7.2, the idempotent Eg, ., is not reduced.

Then, neither is Ex , by Remark 7.2.

Conversely, let £ be a faithful homomorphism and |A4|, < |G|, for any prime
number p dividing |K|. Assume that Ex . is not reduced. Then, we can decompose

Ek, as

GxG GxH H xd

(mr2) = (T) on (55) (730
for some group H such that |H| < |G|. Since (z,z) € Ag(G) for any z € G, then
(9,9) € Ag(G). By the definition of UV, there exists some h € H such that (g, h) € U
and (h,g) € V. We claim that (o(g),o(h)) = d > 1. Indeed, if they were relatively
prime, <g,h> would be equal to <g> x <h>. In that case, U x V = Ag(G) would
be equal to G x G since <g,h>< U and <h,g>< V. The equality Ax(G) =G x G
implies G = K. As k : K — A is faithful, |K|, = |G|, must be less than or equal to
|A|, for any prime number p dividing | K|, which contradicts the condition |A4|, < |G|,.
Therefore d > 1. Now, consider the group <g®, h*>, where a := % = @. Due

to the facts (0(g),a) =1 and o(h) < o(g), we have <g* h*>= G. Let 0 :<g*, h*>— A

be the restriction of ¢ to <g®, h*>, i.e. 6 := @|<ga pas, and let
L:= k1(<ga, ha>) N k’l(U) < kl(AK(G)) = K. (737)

The group L is non-trivial because of the facts <g®, h*¥>=<g 1>=<g? 1> and

<g?, 1>< U. Altogether, we obtain 0|1 = k| as

k(g%) = dulg®, 1) = (g%, 1)Y(1,1) = (g%, 1) = 0(g", 1). (7.38)

Since k is faithful, so is 0|p«1. Let p be a prime number dividing |L| = |L x 1].
Then, faithfulness of 0|..; implies the faithfulnes of #,. which yields in turn that

| <g* z*> |, = |G|, < |A|,. This is a contradiction because L < K, which means p
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divides | K| also. O

Lemma 7.3. Let G and H be cyclic groups and let U < G x H with the corresponding
quintuple (G, K,n, L, H). If |G| > |H|, then U = UgUy such that U, = 1 x L and

Ug =<g,h>= G for some generators g and h of G and H, respectively.

Proof. Let g be a generator of G. By Goursat Lemma, there exists a generator h of
H such that (¢g,h) € U as G/K = H/L. Then, Us; < U, where Ug :=<g,h>= G.
Now, take an arbitrary element (x,y) € U. Notice that (z,y) = (z, 2)(1, 2 'y), where
(r,z) = (g% h") such that + = ¢g* for some a € Z. Hence, we have shown that

U C UgUyp, where U, := 1 x L. The reverse inclusion is straightforward. O

Remark 7.3. If we take |H| > |G| in Lemma 7.3, we obtain U = UgUk such that
Uk = K x 1, and Uy = H. It can be easily shown by using opposite bisets and

following the steps above.

Now, we can find a general formula for the decomposition of any transitive A-

fibered (G, H)-biset (GXH ) into products of canonical A-fibered bisets. In the light

U7¢
of Lemma 7.2, it suffices to obtain a formula for p-groups. Assume the conditions

and notations of Lemma 7.3. Not to deal with complicated notations of the general
decomposition (3.21), we assume also that Ker(¢;) = 1 = Ker(¢y). Lemma 7.3 claims
that each pair (U, ¢) € Mgxu(A) is of the form (Ug-Uy, «-f), where v : Ug — A and
p : U, — A are homomorphisms. Notice that the condition Ker(¢;) = 1 = Ker(¢s)
forces 5 to be faithful. Let @ : G — A be a homomorphism defined as a(g) := a(g, h),
where (g, h) is a generator of Ug. After all these settings, the decomposition is as

follows

GxH GxH ~ Tyl @ Gx H
— _— = W e
U, ¢ Ug-Up,a-f A\ Uq - Up,1- 8

Tw@ ®ac Infg )y @y o/mlson @ an (

I

HxH

= Twg @ac Infgn @a@m) o/mlson @an Ef 5
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where M < G such that G/M = H, and

At this point, we separate the decomposition into two cases because it depends
on the orders of the groups. In the light of Theorem 7.3, if |A[, < |H|, then Ef ; is
reduced, and the decomposition above is in its final form. However, if |A|, > |H|, then

Ef 5 is decomposable by Theorem 7.3. In this case,

HxH -
Tw} — Tw}
Wi @Al (AL(H), 1) Qan LWy

TwS; ©an Infiy,;, ©acayr) Defjy), ®an Twl,

1

I

H
Ers

1

124

where £ : H — A is a homomorphism satisfying &|;, = (. After combining two

decompositions, the final form is as follows.

Gx H
(7o)

1%

Tw¢; @ac Infe)n @agaynn onlson @am B g

~ Twg Infg/M a/mlsog Tw, Infg/L Defg/L TWH_1

with tensor product over appropriate groups between each two of them. Hence, we

have proved the following theorem.

Theorem 7.4. Let G and H be cyclic p-groups such that |G| > |H|. Then, assuming

the notation above,

Tw Qac Infg/M Qaa/m) amlson @an EZ/} if |[Al, < [H]

I

(G X H)
U,¢ Twg Infg/M c/mlson Tws, Infg/L Defg/L ngl if |Al, > |H].
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Remark 7.4. Assume the notations and the conditions of Remark 7.3. Then, any

transitive A-fibered (G, H)-biset is of the form

G xH GxH
( U.¢ ): (m) (7.40)

where o : Uy — A and f : Uy — A are homomorphisms. Hence, by taking the

opposite of the biset and using Theorem 7.4, the theorem below easily follows.

Theorem 7.5. Assume the hypothesis of the remark above. Then,

Exo ®ac c¢Isom/ny @am)n) DefZ/N ®an TW, if |Al, <G|

1%

(G X H)
U,¢ Tw, Infg/K Defg/K Twy, clsom/n Defg/N Twi, if |Al, > |G|

where N < H with G = H/N, B : H — A is defined as B(h) := B(h, g) for (h,g) € Uy,

and T : G — A is a homomorphism satisfying 7|k = a.

Now, we need to fix our small fiber group and introduce another equivalence
relation on I' in order to state our main theorems of this part. Let p be a fixed prime
number and let A < C* be the group of all p"-th roots of unity for a fixed n € N.
From now on, we say p"-fibered instead of A-fibered to point the fixed fiber group. We
denote the p"-fibered biset

Z/nZ X Z/nZ
(AK(Z/nZ), ¢K> (7.41)

by E% .. If  is an isomorphism, i.e. if K & A, we use E7j | by an abuse of the notation.
Notice that when we use E , it is implicitly assumed that n > [A|. We say that the
pairs (m,(), (n,v) € I' are p"-equivalent, and write (m,() = (n,v) if the following

conditions hold.

(i) my =ny and C;, = C, , after identifying the groups Z/myZ = Z/nyZ.
(ii) Either (a) my,n, < |A|, or (b) m, = n, > |A] and Eﬁ’aé = colY 7 for any

isomorphism « : A — A and for some ¢, € C depending on «.
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Let <n,v> denote the equivalence class of the pair (n,v), and let I'yn be the set
of equivalence classes in I'. Notice that any class of pairs equivalent with respect to
the part (a), contains a unique pair (n,v) such that n is a p-number. Now, we can

state our first main theorem of this part.

Theorem 7.6. If S;?’l, is the p*-fibered subfunctor of CR¢ generated by the simple biset

subfunctor Sz nz.c,, then, adopting the notations above, there is an isomorphism

S;?,V = @ SZ/mZ,(CC (742)

(m,0)e<n,v>

of biset functors.

We need the following lemma to prove the theorem.

Lemma 7.4. Let B} . be any reduced idempotent in BY(Z/nZ,Z/nZ). Then, for any

pair (n,v) € I' and for any homomorphism ¢ : Z/nZ — A
Ek . (o0) = cp B, U (7.43)

for some ¢, € C depending on .

Proof. As the Dirichlet characters are also virtual characters of Z/nZ, we can write
v o=y, cx', where Irr(Z/nZ) =<x>. As we know from the preliminaries, the
coefficient ¢; is equal to (7, x') for all 1 < i < n. The exact values of the coefficients

are obtained from the equation

(i)x" (7.44)

A

n
D:cg
i=1

for some ¢ € C, where (i) is the complex conjugation of (7). Since we work in

complex vector space of characters, we omit the constant coefficient ¢ for short. These
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coeflicients have the relation

(7, x") = v(i)(7, x) (7.45)

for all 1 < ¢ < n ( [6, Proposition 2.1.39]). We aim to calculate the coefficients of
v for any homomorphism ¢ : Z/nZ — A via Relation 7.45. First, note that any
homomorphism ¢ : Z/nZ — A is an irreducible character of Z/nZ, i.e. ¢ = x* for
some 1 < s < n. Since n, > |A| by reducedness, the homomorphism ¢ is not faithful,

which implies s|n. Keeping this in mind, consider the following chain of equations

(. X") = % Z e(1)T(F)X(4)

= Y AN = ()

where ¢ = x* = X" such that r + s = n. Hence, Equation 7.45 yields that

(o, X") = (0, X7 = w(i 4 1) (7, x). (7.46)

Again by omitting the constant coefficient, we deduce

n

o= (i+r)x" (7.47)

i=1

As Ef . keeps the homomorphisms whose restriction to K is x as they are, and anni-

hilates the others,

|G:K]|
Y, (p0) = Y 0(i +r + K])x K (7.48)
=1
where ¢ € {1,2,...,|K|} is the smallest number satisfying x‘|x = k. Observe that,

since (i,n) = 1 and r|n, (i +r,n) = 1. Therefore, there exists a unique x € (Z/nZ)*,
up to (mod n), such that ix =i+ r (mod n). As |K| divides n, ix =i+ r (mod |K|),
and moreover ix + lz|K| =i+ r + | K| (mod |K|) for any | € {1,2,...,|G : K|}. So,
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x does not depend on [. Taking all into the consideration, we reach the equalities

Bl (p9) = 32 00 r H RN = 37 5+ IR )y
=1 =1
|G:K|

= @) S P+ IR = BB, 7,

=1

We are done because r is determined by ¢ uniquely, that is ¢, := 7(x) depends only

on . [

Proof of Theorem 7.6. First, set the following temporary notation for short

S<n,l/> = @ SZ/mZ,(CC- (749)

(m,{)e<n,v>

It is obvious that S., .~ is a biset functor. Let (m,() = (n,v). We know for certain
that fp/ = cvy for some ¢ € C* by Remark 7.1. If they are equivalent with respect
to the part (a), the bisets Twy Jmyz and TWZ Jn,z Can be defined for all characters
X € Irr(Z/m,Z) and ¢ € Irr(Z/n,Z) because m,,n, < |A|. We can express (, and 7,

as

fp: Z cyX and 1, = Z cyt)

X€EIrr(Z/mpZ) Yelrr(Z/npZ)

since they are virtual characters of Z/m,Z and Z/n,Z, respectively. Setting the nota-

tions

o 1 w_le ~ L XXI
Tworta = Z ¢y Twyy and Twe = Z X TV
) X

we obtain

~ Z/nZ ~ Z/nZ. ~ ~ YNRYA ~
Uy = Defzfnplz(l X Upy) = DefzfnplZ (Twl,p_lxl(yp X Vp/)> = DefZ?np,ZTWﬁp_lxl v.
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Combining the previous equation and fp/ = Uy, We get

7/ mZ e 7./ mZ ~
¢ = TW@,x1 Infzjm 2 G = TW& x1 Infzjm N/ (i)

Z/mZ 7 /nZ ~
= ¢ (Twépxl Infzjm .z De fzjn /7 TWf/p—lm V)

n,v’

which implies SA = SA c Since Sz/nz,c, € SA then SZ/mZ@C - S;?y = S;;‘L,C for any

pair (m, () €< n,v >. This shows that

S<n,u> g S’rﬁy (750)

Since the biset functor CR¢ is semisimple, the subfunctor S;gy is also semisimple,
and is a direct sum of SZ/mz,(CC for some (m,() € I'. For the reverse inclusion, let
n < |A] be a p-number. We need to show that if Sz/mzc. is a summand of S,f,/,
then (m, () = (n,v) with respect to the part (a). Therefore, let Sz/mzc, € S, ,. This
inclusion requires Sz/mz.c (Z/mZ) C Sit (Z/mZ). Since S2, is generated by 7, we can
obtain ¢ through 7, i.e. there exists some virtual p"-fibered biset y € BA(Z/mZ, Z/nZ)

such that

F=n-p (7.51)

By the structure of the Burnside group of the fibered bisets and Decomposition 3.21,
the character 5 is a C-linear combination of elements of the form
Z./mZ Z/nZ ~
Indyy"™ @ap It} ¢ © (i) Y ©a(gyzy Dell; ©aq Resg ™ 7 (7.52)
for appropriate choices of the notation. As Z/nZ is a minimal group for the biset
functor Sz/nz,c, , the biset Def?2 y :®aq Res?” o /MZ must be trivial because any biset through

a group of smaller order than n annihilates . Likewise, IndIZj/ mL & AP Infllz K& is also

trivial due to the minimality of Z/mZ for Sz mz.c .- Hence, Expression 7.52 is actually
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of the form

(7.53)

(Z /mZUin /nZ) .

Since (W) is obtained after applying Decomposition 3.21, the projections of
U are full. We assume that m > n without losing generality to use Theorem 7.4. We
would use Theorem 7.5 otherwise. Then, we deduce that ¢ is a C-linear combination

of elements of the form
TWY 1z @a@/mz) 50 @a@mz) 2/nz150% )y @ a@/nz) B 7 (7.54)

for some K < Z/nZ, some faithful homomorphism x : K — A and some isomorphism
n: Z/nZ — Z/nZ. By the biset Infgfzz above, we deduce that n|m. Since the biset
E% . 18 decomposable by Theorem 7.3, the elements above become

Z/mZ I3 Z./nZ Z/nZ 1 .

Twé/mz Ian/nZ Z/nZISO%/nZ TWZ/nZ Inf(Z/nZ)/K Def(Z/nZ)/K TWZ/nZ v (7.55)
by Theorem 7.4, where £ : Z/nZ — A is a homomorphism satisfying £|x = k. Notice
that ¢ is faithful because « is, and this implies that K = 1 due to the facts that n is a
p’-number and A is a p-group. Then the elements above are actually in the form

T,z Inf%f 2mz180% 0 U (7.56)

By its transitivity we can divide the inflation map above into two parts as

m Z/m 17 ~
Twy . Inf%miz Infzénzp z/nzls0] nz V- (7.57)

Since |A| is a p-number, the homomorphism ¢ : Z/mZ — A must be trivial on the

p/-part of Z/mZ, that is ¢ must be of the form ¢ = ¢, x 1 : (Z/m,Z) X Z/myZ — A.
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Hence, transitive summands of v must be of the form

Twgi oy iy Iy oalsol o 7= TwELOx 1) =90 x 1 (7.58)
where 0 := IanZlZ’"Z z/mz1s0,) InZ v. But the last map ¢fx 1 can be given as Inf%%iz 0,

which contradicts the primitivity of (. Therefore, the inflation map Inf%:Z, , must be
P

identity, i.e. m, = n, which yields (m, () = (n,v) because fp/ = v. This justifies the
inclusion

SA CSepis (7.59)

since the pair (m, () is chosen arbitrarily and completes the proof for the part (a).

As for the part (b), let (m, () €<n,v>. Then, we are given that m = n such that

— — n — n = 3 1
my, = n, > |A], {y = cyp for some ¢ € C, and EY ,( = c,E} v for any isomorphism

a: A — A and for some ¢, € C depending on «. If we sum all EAAE, we obtain
= Faal=>) caBan? (7.60)

by Lemma 6.3. This equality implies that ¢ is generated by 7, that is ¢ € Sﬁy. As
Szmzc, 1s generated by ¢, we have Szmzc, C 5’;3,,. But (n,() €<n,v> is chosen

arbitrarily, therefore
Senwvs C S (7.61)

The begining of the verification of the reverse inclusion goes identical with the

one of the part (a). By skipping this identical part, if we take Sz/mzc, C SA  we

n,wo

deduce that ¢ is a C-linear combination of elements of the form

TWY 1z @a@/mz) IE5) @ a@mz) 2/nz150% )y @ a/nz) B 7 (7.62)
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for some K < Z/nZ, for some faithful homomorphism « : K — A and for some
isomorphism 7 : Z/nZ — 7Z/nZ. By Lemma 7.2, we can take m and n as p-numbers.
Since m > n > |A|, the homomorphism ¢ cannot be faithful, and it is of the form

Y = Inf%'%zz 7 for some homomorphism 7 : Z/|A|Z — A. We can consider ¢ as

Inf%;nzz 0 due to the transitivity of the inflation maps and the fact n > |A|, where
0= Infg'njz 7. On the other hand, Z/nZIso%/nZ ®A(z/n2) E?(,H v is a map from Z/nZ to
A by the actions of the bisets, and then, it is inflated to Z/mZ. Altogether, Expression

7.62 can be regarded as
Infz/ "> [0 (Z/nZISOZ/nZ D ae/mz) Efc ﬁ)] (7.63)

by the action of the twist map. But, Z/mZ is minimal for ¢, therefore n must be equal

to m. i.e. Expression 7.62 must be of the form

TW3 )z @ a@/nz) 2/n21507 17 @ a@/mz) Bl V- (7.64)

In general, since we can follow the same steps for any prime number ¢ instead of p, we

proved implicitly that m,» = n,, which means m = n. The following equations

@ n noo~ n pon n o~
Twy g 2/m2180g 0 Vi o V' = zymzlsog ), Twy np B, U

= z/mz1807,,5 Bk wigon)x ®a@mz) TWg 7 ¥

can easily be shown by the tensor product formula, where ¢ o7 is the function com-
position of ¢ and 7. As the homomorphism ¢ is not faithful, then (¢ o n)|x is not
either. Therefore, the homomorphism (¢ o n)|x is faithful. Indeed, if we suppose
(k(p o n)|k)(k) :== k(k)p(n(k)) = 1 for some k € K, then k! (k) = ¢(n(k)). The
last equation obliges k to be 1 because we work on cyclic p-groups, and equality at
an element implies equality on a p-group, which is impossible. Hence, as x runs over

faithful homomorphisms, so does x((¢ o n)|k). Therefore, ¢ is a C-linear combination
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of elements

Z/nZISOZ/nZ Ef ng/nz v o= Z/nZISOZ/nZ Ex .\ (o7)

= ¢ (Z/nzlsog/nz E’}{’A ﬂ) = Cy (E’}O\ y)

by Lemma 7.4 and the action of isogation bisets, where A := k((pon)|x) : K — A is
a faithful homomorphism. Recall from Section 3.6 that if we multiply Ef , o from the
left by E7 ,, we obtain E 7 if (K, \) = (A, a) and zero otherwise. Consequently, we

deduce that E}; , ¢ is a C-linear combination of elements of the form EY , 7, that is
B, C = cEl, 7 (7.65)

where o : A — A is an arbitrary isomorphism. Therefore, it is valid for all such
isomorphism, i.e. (n,() = (n,v), which implies Sg‘,V C Scp>. Hence, we have proved

that
Sy = S<nu> (7.66)

which justifies the assertion of the theorem. O]

Theorem 7.7. The p*-fibered biset functor S2  is simple.

n,v

Proof. Theorem 7.6 encapsulates the information that S;;{V is a cyclic p"-fibered biset
functor generated by . Hence, to verify that S;iu is a simple p"-fibered biset functor,

it suffices to show that the intersection of the kernels of all maps
S (G) = S (Z/nZ) (7.67)

induced by p"-fibered (Z/nZ, G)-bisets is zero for any group G. We consider equivalence
classes with respect to the part (b) because the proof for the part (a) is identical with
that of Theorem 7.2. Let ¢ € S, (G) be in the intersection of the kernels of all maps,
that is X (¢) = 0 for each p"-fibered (Z/nZ, G)-bisets X. We are done if we show that
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1 = 0. As 1 is in the kernels of all maps, it is also in the kernels of maps induced by
ordinary (Z/nZ,G)-bisets. In other words, X (¢) = 0 for any map

X : 892, (G) = S (Z/nZ) (7.68)

induced by an ordinary (Z/nZ,G)-biset. Note that, we can express ¢ as a sum as

follows

b= D e (7.69)
(n,{)e<n,v>
because we know that
SHG) = P Sumzc(G). (7.70)
(n,$)e<n,v>

Since Sy, /nZ,C, 1S an ordinary biset functor, it is closed under biset actions. Therefore,
X (W) = 0 for any (n,() €< n,v > as every X is assumed to be induced by bisets.
On the other hand, the biset functor Sz/nz,c, is simple. Therefore, if X (¢(,¢)) = 0 for
any (Z/nZ,G)-biset, then 1, ) = 0 for any (n,() €< n,v >. Hence, 1) = 0 since all

summands of v is zero. O

Corollary 7.2. The p"-fibered biset functor CRc is semisimple and there is an iso-

morphism

Cre= & Si, (7.71)

<n,v>€l’)p

of p"-fibered biset functors.

Proof. 1t is immediate from Theorems 7.6 and 7.7. O
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