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ABSTRACT

ON INFINITE DIMENSIONAL SPHERICAL ANALYSIS

This thesis is concerned with the spherical analysis of two different Olshanski

pairs, one of which is related to Heisenberg groups, and the other to the automorphism

groups of homogeneous trees. The spherical functions of positive type on the infinite

dimensional Heisenberg group H(∞) which are invariant under the natural action of

the infinite dimensional unitary group U(∞) are determined. On the other hand, we

consider an Olshanski pair which is constructed from the stabilizers of the horicycles

of homogeneous trees of finite degree, where the horicycles form a partition of the set

of vertices of the tree, and then we find all spherical functions of this pair. Finally, we

give realizations of the corresponding irreducible unitary representations.
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ÖZET

SONSUZ BOYUTLU KÜRESEL ANALİZ ÜZERİNE

Bu tezde biri Heisenberg grupları, diğeri ise homojen ağaçların otomorfizma

grupları ile bağlantılı iki farklı Olshanski çiftinin küresel analizi ile ilgilenilmiştir.

H(∞) sonsuz boyutlu Heisenberg grubu üzerinde tanımlı, U(∞) sonsuz boyutlu üniter

grubunun doğal etkisi altında değişmez tüm pozitif tanımlı küresel fonksiyonlar belir-

lenmiştir. Diğer bir taraftan, sonlu dereceli homojen ağaçların, noktalar kümesinin be-

lirli bir parçalanışını sabitleyen otomorfizma grupları kullanılarak kurulan bir Olshan-

ski çifti ele alınmış ve bu çiftin tüm küresel fonksiyonları bulunmuştur. Son olarak, bu

küresel fonksiyonlara karşılık gelen tüm indirgenemez üniter temsiller realize edilmiştir.
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Ĝ The unitary dual of G

Hn Heisenberg group

H(∞) Infinite dimensional Heisenberg group

Hk
n Horicyle of a (k + 1)-homogeneous tree

H∞n Horicyle of a homogeneous tree of countably-infinite degree

HomG(π, π
′
) The collection of all G-intertwinning operators from π to π

′

Im Imaginary part

IndGH(π) The representation of G induced from the representation π of

H

L1(Hn)Kn The algebra of integrable, Kn-invariant functions on Hn

L2(X,µ) The space of square integrable functions on (X,µ)

mult(π, ψ) The multiplicity of π in ψ

N {1,2,3,...}

O(Cn) The space of complex-valued holomorphic functions on Cn

R The set of real numbers

R∗ The set of non-zero real numbers

R>0 The set of strictly positive real numbers

Re Real part

S1 The circle group

sgn(λ) The sign of the real number λ

span The linear span

U(n) The unitary group of n× n complex matrices

U(∞) The infinite dimensional unitary group



viii

U(V ) The group of unitary operators on the Hilbert space V

Vπ The representation space corresponding to π

V ⊥ The orthogonal complement of V

z The conjugate of the complex number z

ρ�N The restriction of ρ to N

1K One-dimensional trivial representation of K

1E The characteristic function of the set E

·\· Difference of sets

| · | The usual absolute value of a complex number

‖ · ‖ The usual norm on Cn

‖ · ‖λ The norm on the Fock space Fnλ
〈·, ·〉 An inner product on a Euclidean space or the usual inner

product on Cn

〈·, ·〉λ The inner product on the Fock space Fnλ
n Semidirect product

⊗ Tensor product

⊕ Direct sum⊕̂
Hilbert space direct sum



ix

LIST OF ABBREVIATIONS

GNS Gelfand-Naimark-Segal



1

1. INTRODUCTION

In representation theory, studying not only a single group G, but a pair (G,K)

for a subgroup K of G, is an important idea to define a reasonable family of represen-

tations of the group G. The theory of Gelfand pairs, spherical functions and spherical

representations is a well-known example of this idea of studying group pairs. Let G

be a locally compact group and K be a compact subgroup of G. Then G possesses a

Haar measure so that we have the convolution algebra L1(K\G/K) of K-bi-invariant,

integrable functions with respect to a Haar measure on G. The pair (G,K) is said

to be a Gelfand pair if this algebra L1(K\G/K) is commutative. In the language of

representation theory, this definition amounts to say that the multiplicity of the trivial

representation of K in each unitary representation of K restricted from an irreducible

unitary representation of G is at most one. A K-bi-invariant, non-zero, continuous

complex function ϕ on G is said to be a spherical function for the Gelfand pair (G,K)

if

ϕ(x)ϕ(y) =

∫
K

ϕ(xky) dk (1.1)

for every x, y ∈ G where dk is the normalized Haar measure on K. An irreducible

unitary representation (π, V ) of G is called spherical for the Gelfand pair (G,K) if

the space V K of K-invariant vectors in V is non-zero. In this case there is essen-

tially a unique v ∈ V K which has norm 1. Then ϕ(g) = 〈v, π(g)(v)〉 is a positive

definite spherical function on G. Conversely, there is a construction, the so-called

Gelfand-Neimark-Segal construction, which gives a spherical representation of (G,K)

corresponding to every positive definite spherical function for (G,K). Therefore there

is essentially a one-to-one correspondence between positive definite spherical functions

and spherical representations of the Gelfand pair (G,K). It is hence a natural prob-

lem to find spherical functions and then to find the realizations of the corresponding

spherical representations of a Gelfand pair (G,K) given by the GNS-construction.
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A general theory for harmonic analysis on the inductive limit G of some locally

compact groups Gn and understanding the irreducible unitary representations of the

inductive limit group G in terms of the irreducible unitary representations of Gn are

first studied by Olshanski in [20]. With this inductive limit approach, in particular,

Olshanski studied the inductive limits of Gelfand pairs, which are now called as Ol-

shanski spherical pairs (Olshanski pairs in short), and he generalized the notion of

spherical functions from Gelfand pairs to Olshanski pairs so that the one-to-one corre-

spondence between spherical representations and positive definite spherical functions

given by the GNS-construction still holds. From then on, it has also been a natural

programme to find all positive definite spherical functions and to make realizations

of the corresponding spherical representations for an Olshanski pair (G,K). Several

examples of infinite dimensional groups and pairs arising from classical matrix groups

and also from the symmetric group were investigated in a large number of different

papers such as [13], [20], [22], [23] and [27].

The positive definite spherical functions for a Gelfand pair (G,K) are uniquely

determined by the characters of the commutative convolution algebra L1(K\G/K).

In the case of an Olshanski pair (G,K), the group G under discussion is not locally

compact in general. Hence we do not have a Haar measure, a convolution and an

algebra structure anymore. The problem that initiated this thesis was to construct a

structure, an algebra structure if possible, which corresponds to the spherical functions

of a general Olshanski pair as there is one in the case of Gelfand pairs. On the way

of this algebraic aspect on the abstract theory of Olshanski pairs, we considered the

harmonic analysis of two different Olshanski pairs, one is related to the Heisenberg

group and the other is related to the automorphism group of a countable-degree tree.

We determined the spherical dual, i.e. the positive definite spherical functions for the

one related to the Heisenberg group and we constructed both the spherical functions

and the spherical representations for the one related to the automorphism group of a

homogeneous tree of countable degree. It still remains open whether there exists an

algebra structure whose characters determine the positive definite spherical functions

for an Olshanski pair or not.



3

For an n-dimensional complex Euclidean vector space Vn, any closed subgroup

Kn of the unitary group U(Vn) acts by automorphisms on the (2n+1)-dimensional

Heisenberg group Hn = Vn × R where the multiplication on Hn is given by

(z, t)(z
′
, t
′
) = (z + z

′
, t+ t

′
+ Im〈z, z′〉). (1.2)

This action gives a yield to the locally compact group Gn = KnnHn. For some special

choices of the vector space Vn and the subgroup Kn of the unitary group U(Vn), it

was observed that the pair (Gn, Kn) forms a Gelfand pair and the spherical functions

for these pairs were determined. The question of determining all closed subgroups

Kn of the unitary group U(Vn) such that (Gn, Kn) is a Gelfand pair was answered by

Carcano in [5] with a representation-theoretic criteria. Kn ≤ U(Vn) was required to act

multiplicity free on the polynomial ring P (Vn). There is a description of the bounded

spherical functions for such Gelfand pairs, due to Benson, Jenkins and Ratcliff [3].

Recently, Faraut [14] presented a work on the spherical analysis for some special cases

of inductive limits of Gelfand pairs associated to Heisenberg groups.

When it comes to the homogeneous trees of finite degree, the so-called Bruhat-

Tits trees, they appeared as a special type of Bruhat-Tits buildings of rank one and

the automorphism groups of Bruhat-Tits trees gave an attractive family of locally

compact, totally disconnected, seperable, metrizable groups. The study of irreducible

unitary representations of the automorphism group G of a Bruhat-Tits tree was started

by Cartier in [6] and [7]. If K is a maximal compact subgroup of G stabilizing one

vertex, then (G,K) is a Gelfand pair and the spherical functions for this pair were

computed in [17]. Later in the mid-seventies, all irreducible representations of G were

constructed by Olshanski in [19]. The study of trees and the groups acting on trees was

also stimulated by the course notes [25] of J-P. Serre where he clarified the connections

between trees, amalgams and the p-adic SL2. On the other hand, the automorphism

groups of homogeneous trees of infinite degree first occured in the work of Olshanski [21]

where all irreducible unitary representations of these groups were found.
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In Chapter 2, we present the introductory and fundamental materials of the thesis.

We introduce Olshanski pairs, their spherical functions and spherical representations.

In the theory of Gelfand pairs, it is a well-known fact that the positive definite spherical

functions and the unitary equivalence classes of spherical representations are in one-

to-one corrrespondence. The main objective of this chapter is to reach the result of

Olshanski saying that we can carry this fact from the theory of Gelfand pairs to the

theory of Olshanski pairs.

Chapter 3 is devoted to harmonic analysis of the Gelfand pairs of the form

(Kn nHn, Kn) where Hn = Cn × R and Kn is a closed subgroup of the unitary group

U(n) = U(Cn) and to determination of the spherical dual of the Olshanski spherical pair

(U(∞)nH(∞), U(∞)) which is the inductive limit of the Gelfand pairs (KnnHn, Kn)

where Hn = Cn × R and Kn = U(n). Spherical analysis on the Gelfand pairs of the

form (Kn n Hn, Kn) already exists in the literature, but the works on the spherical

representations and the works on the spherical functions are found separately only in

some references like [3], [14] and [28]. In this chapter, we bring these works together in

a nearly self-contained form by giving the correspondences between the positive def-

inite spherical functions and the spherical representations. For λ ∈ R∗, we introduce

the Fock representations (Tλ,Fnλ ) of the Heisenberg group Hn and see that they form

a class of non-equivalent irreducible unitary representations of Hn by making use of

the fact that the Fock spaces Fnλ are reproducing kernel Hilbert spaces. Following the

approach of Wolf in [28], we determine the unitary dual Ĥn of the Heisenberg group Hn

by using Mackey’ s machinary that constructs the unitary dual of a locally compact,

Type I group by inducing representations from certain closed subgroups. The unitary

dual Ĥn of Hn consists only of the unitary characters and the Fock representations.

Applying Mackey machine once more, we determine the unitary dual ̂Kn nHn and

then the spherical representations for (Kn n Hn, Kn) (whenever it forms a Gelfand

pair) by some multiplicity computations of the trivial representation of Kn in some

certain representations. There are two types of spherical representations for a Gelfand

pair of the form (Kn n Hn, Kn): the ones that derive from unitary characters of Hn

and the ones that derive from infinite dimensional Fock representations of Hn. In both

cases applied, the steps of Mackey machine are performed in great detail.
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We then turn our attention to the determination of the positive definite spherical

functions for the Gelfand pair (U(n)nH(n), U(n)). In this case, the spherical functions

can be considered as functions on Hn which are U(n)-invariant and every character of

the commutative convolution algebra L1(Hn)U(n) of integrable U(n)-invariant functions

on Hn gives rise to a unique bounded spherical function. In [14], Faraut describes a

family of characters of the algebra L1(Hn)U(n). We find explicitly the bounded spherical

functions corresponding to these characters. We observe that they are indeed positive

definite and they correspond to the spherical representations that derive from infinite-

dimensional Fock representations of Hn. We also find explicitly the positive definite

spherical functions corresponding to the spherical representations that derive from

one-dimensional representations of Hn in order to complete the determination of the

spherical dual of (U(n) nH(n), U(n)).

The main results of the thesis are contained in Section 3.3 of Chapter 3 and in

Chapter 4. Our main result in Chapter 3 is Theorem 3.3.14 where we determine the

spherical dual of the Olshanski spherical pair (U(∞) n H(∞), U(∞)). To simplify

the asymptotic functional equation satisfied by the spherical functions for (U(∞) n

H(∞), U(∞)), we use two lemmas from analysis on the unitary group U(n), due to

Faraut. We also prove a result on positive definite functions on the Heisenberg group

Hn which has the key role on positive definiteness arguments in the proof of Theorem

3.3.14.

In Chapter 4, the same problems of harmonic analysis are considered for a dif-

ferent Olshanski pair related to the automorphism groups of homogeneous trees of

countably infinite degree. If X is a homogeneous tree of finite degree, one can fix a

point ω on the boundary of X and consider the group of stabilizers of the corresponding

horicycles which gives rise to a Gelfand pair. In [18] Nebbia found all spherical functions

of this pair and described the corresponding spherical representations. In [1] Axelgaard

studied an embedding of the k-homogeneous tree into the (k + 1)-homogeneous tree

and the embedding of the corresponding automorphism groups Gk ⊂ Gk+1. This way

he gets an Olshanski pair. He describes all spherical functions and the corresponding

spherical representations. He mentions that such an embedding is also possible for
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the Gelfand pairs studied by Nebbia in [18] and states in [1] the description of spher-

ical functions and representations of that pair as an open problem. We complete this

picture by describing all spherical functions and the realizations of the corresponding

spherical representations in this case.
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2. OLSHANSKI SPHERICAL PAIRS

In this thesis, we study harmonic analysis on two different Olshanski spherical

pairs. In order to explain what it means to study harmonic analysis on an Olshan-

ski spherical pair by formulating the natural problems of the subject, we devote this

chapter to the presentation of some basic results on the abstract theory of Olshanski

spherical pairs which are the generalizations of some well-known results on the abstract

theory of Gelfand pairs. All results and proofs of this introductory chapter are based

on the lecture notes [11] of Jacques Faraut on finite and infinite dimensional spheri-

cal analysis which form one of the few materials on the abstract theory of Olshanski

spherical pairs.

2.1. Olshanski Spherical Pairs

Let G be a topological group and K be a closed subgroup of G. Given a unitary

representation (π, V ) of G on a Hilbert space V , we always assume that it is continuous

in the sense that π : G→ U(V ) is a continuous group homomorphism with respect to

the strong operator topology on the group of unitary operators U(V ) on V . Let V K

be the space of vectors in V which are invariant under the action of K, i.e.

V K = {v ∈ V | π(k)v = v for all k ∈ K}.

Note that V K is a closed subspace of V . The following proposition gives a relation

between the irreducibility of V and how small V K is.

Proposition 2.1.1. Let G be a topological group and K be a closed subgroup of G.

Let (π, V ) be a unitary representation of G. Then if V has a non-zero, K-invariant,

cyclic vector v and dim(V K) = 1, then V is irreducible.

Proof. Let W be a closed invariant subspace of V . We will show either W = {0} or

W = V . Let PW be the orthogonal projection on W . Note that PW ∈ HomG(π, π).
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Hence π(k)PW (v) = PW (π(k)v) = PW (v) for all k ∈ K so that PW (v) ∈ V K . Then

dim(V K) = 1 together with v ∈ V K implies that PW (v) = λv for some λ ∈ C. If

λ = 0, then PW (v) = 0 so that v ∈ W⊥. Since W is invariant, then 〈w, π(x)v〉 =

〈π(x−1)w, v〉 = 0 for all w ∈ W and x ∈ G. Since v is cyclic, it follows that W = {0}.

If λ 6= 0, then v ∈ W and since v is cyclic and W is closed invariant, we get W = V .

Conversely, for an irreducible unitary representation V of a topological group G,

every non-zero vector in V is cyclic, but if V K 6= {0}, then V K need not to be one-

dimensional. In case K consists only of the identity element, then V K = V which is not

one-dimensional in general. Hence it makes sense to make the following definition of a

spherical pair. We say that the pair (G,K) is a spherical pair if for every irreducible

unitary representation (π, V ) of G, we have dim(V K) ≤ 1.

A function f : G→ C is called K-left-invariant if f(kx) = f(x) for all x ∈ G and

k ∈ K, K-right-invariant if f(xk) = f(x) for all x ∈ G and k ∈ K and K-bi-invariant

if it is both K-left-invariant and K-right-invariant.

If G is locally compact, we have a Haar measure µG on G. Then the space L1(G)

of complex-valued, integrable functions on G becomes an involutive Banach algebra

under convolution where the convolution f ∗ g of f, g ∈ L1(G) and the involution f ∗ of

f are defined by

f ∗ g(x) =

∫
G

f(y)g(y−1x) dµG(y), f ∗(x) = f(x−1).

The space M b(G) of bounded, complex Borel measures on G is also a Banach algebra

with involution where the product of two measures µ, ν ∈ M b(G) is given by their

convolution µ ∗ ν defined by

∫
G

f(x) dµ ∗ ν(x) =

∫
G

∫
G

f(yz) dµ(y) dν(z) (2.1)

for every measurable function f : G→ C.
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An involution is given by µ∗ where µ∗(f) = µ(f ∗) for all continuous compactly sup-

ported functions f : G→ C. The norm ‖µ‖ of a measure µ is defined by ‖µ‖ = |µ|(G)

where |µ| is the total variation of µ. Taking f = 1A for a Borel subset A of G in the

equation (2.1), we get

µ ∗ ν(A) =

∫
G

µ(Ay−1) dν(y). (2.2)

For a unitary representation (π, V ) of G and a bounded complex measure µ ∈M b(G),

the continuous linear operator π(µ) ∈ B(V ) is defined by

π(µ)(v) =

∫
G

π(x)v dµ(x)

for all v ∈ V . Then, π : M b(G)→ B(V ) gives a ∗-representation of the algebra M b(G)

on the Hilbert space V , i.e π : M b(G)→ B(V ) is a linear map satisfying the equations

π(µ ∗ ν) = π(µ)π(ν) and π(µ∗) = π(µ)∗ (2.3)

for all µ, ν ∈M b(G).

The algebra L1(G) can be regarded as a dense ∗-Banach subalgebra of M b(G)

via the map f 7→ fµG.

Let L1(K\G/K) be the ∗-Banach subalgebra of L1(G) consisting ofK-bi-invariant,

integrable functions on G and M b(K\G/K) be the ∗-Banach subalgebra of M b(G)

consisting of K-bi-invariant, bounded, complex Borel measures on G. Note that

L1(K\G/K) is a dense Banach ∗-subalgebra of M b(K\G/K) as well.

If G is locally compact, K is compact and the algebra L1(K\G/K) is commuta-

tive, we say that the pair (G,K) is a Gelfand pair.

Let ((Gn, Kn))n∈N be an increasing sequence of Gelfand pairs (in the sense that

Gn ⊆ Gn+1 and Kn ⊆ Kn+1 for each n ∈ N) satisfying the following properties:
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Gn is Hausdorff , Gn is a closed subgroup of Gn+1, the topology of Gn is the topology

induced from the topology of Gn+1 and Kn = Kn+1 ∩Gn. Define

G = ∪∞n=1Gn, K = ∪∞n=1Kn.

Then the pair (G,K) is called an Olshanski spherical pair (or Olshanski pair in short).

We put the inductive limit topology and the natural multiplication on G. Then G is a

Hausdorff topological group which is generally not locally compact and K is a closed

subgroup of G which is generally not compact. Also each Kn is a compact, hence a

closed subgroup of G.

Now let (G,K) be an Olshanski spherical pair and (π, V ) be a unitary represen-

tation of G. Let Pn and P be the orthogonal projections on the closed subspaces V Kn

and V K of V respectively. Note that

Pn(v) =

∫
Kn

π(kn)v dµn(kn)

for every v ∈ V where µn is the normalized Haar measure on Kn. Since Kn ⊆ Kn+1 for

each n ∈ N, we have V Kn+1 ⊆ V Kn and since K = ∪∞n=1Kn, we have V K = ∩∞n=1V
Kn .

Hence the projections Pn converge to the projection P in the strong operator topology.

Proposition 2.1.2. If (G,K) is an Olshanski spherical pair, then it is a spherical

pair.

Proof. Let (π, V ) be an irreducible unitary representation of G such that V K 6= {0}.

As (Gn, Kn) is a Gelfand pair, the algebra L1(Kn\Gn/Kn) is commutative. Then the

measure algebra M b(Kn\Gn/Kn) is also commutative. Let µn be the normalized Haar

measure on Kn. We extend the measure µn to a compactly supported measure νn on

the Borel σ-algebra of Gn by νn(E) = µn(E ∩ Kn). Then νn ∈ M b(Kn\Gn/Kn) and

Pn(v) =
∫
Gn
π(x)v dνn(x) for all v ∈ V . For x ∈ Gn, let δx be the Dirac measure at x.



11

Then π(x)v =
∫
Gn
π(y)v dδx(y) for all v ∈ V . Hence

Pn = π(νn) and π(x) = π(δx). (2.4)

By using Kn-bi-invariance of νn and Equation 2.2, we get νn∗δx∗νn ∈M b(Kn\Gn/Kn).

Then since M b(Kn\Gn/Kn) is commutative, for any x, y ∈ Gn

νn ∗ δx ∗ νn ∗ νn ∗ δy ∗ νn = νn ∗ δy ∗ νn ∗ νn ∗ δx ∗ νn. (2.5)

Now applying π to both sides of the equation (2.5) and using the equations (2.3) and

(2.4), we get

Pnπ(x)Pnπ(y)Pn = Pnπ(y)Pnπ(x)Pn

for every x, y ∈ Gn. Since V Kn+m ⊆ V Kn for all m ∈ N, Pn+m = PnPn+m = Pn+mPn.

Hence for all n,m,m
′ ∈ N and x, y ∈ Gn,

Pn+m′π(x)Pnπ(y)Pn+m = Pn+m′π(y)Pnπ(x)Pn+m.

When we take limits as m,m
′

and then n converges to infinity, we get

Pπ(x)Pπ(y)P = Pπ(y)Pπ(x)P

for all x, y ∈ G as Pn converges to P in the strong operator topology. Hence the

operator norm closed algebra A generated by the operators Pπ(x)P , x ∈ G is commu-

tative. Since irreducible representations of commutative Banach algebras are at most

1 dimensional and V K is invariant under the action of A, it sufficies to show that V K

is irreducible as a representation of A.

So assume that V K = V1 ⊕ V2 where V1, V2 are A-invariant orthogonal subspaces

of V K and V1 6= {0}. Let v1 ∈ V1 and v1 6= 0. Then for any x ∈ G and v2 ∈ V2,

〈Pπ(x)Pv1, v2〉 = 0 so that 〈π(x)v1, v2〉 = 0. Since (π, V ) is an irreducible representa-
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tion of G, v1 is a cyclic vector. Hence V2 = {0} as desired.

2.2. Positive Definite Functions on Groups and GNS-construction

Let G be a group and ϕ : G→ C be a function. The function ϕ is called positive

definite if

n∑
i,j=1

cicjϕ(x−1
i xj) ≥ 0

for any finite subset {x1, x2, ..., xn} in G and for all systems {c1, c2, ..., cn} of complex

numbers. Given a unitary representation (π, V ) of G and a vector v ∈ V , the function

ϕ defined by

ϕ(x) = 〈v, π(x)v〉

is positive definite since

n∑
i,j=1

cicjϕ(x−1
i xj) =

n∑
i,j=1

cicj〈π(xi)v, π(xj)v〉 = ‖
n∑
i=1

ciπ(xi)v‖2 ≥ 0.

Remark 2.2.1. If ϕ : G→ C is positive definite, then for every x ∈ G, ϕ(x−1) = ϕ(x).

Assume G is a topological group and K is a closed subgroup of G and denote by

P1(K\G/K) the convex set consisting of continuous, K-bi-invariant, positive definite

functions ϕ on G such that ϕ(e) = 1. Let (π, V ) be a unitary representation of G with a

K-invariant, unit vector v ∈ V . Then for ϕ(x) = 〈v, π(x)v〉, we have ϕ ∈ P1(K\G/K).

Conversely, any ϕ ∈ P1(K\G/K) can be obtained in this way and this is exactly what

the so-called Gelfand-Naimark-Segal construction says.

Proposition 2.2.2. [11] (GNS-construction) Let G be a topological group and K be

a closed subgroup of G. Given ϕ ∈ P1(K\G/K), there exists a unitary representation
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(π, V ) of G with a K-invariant, unit and cyclic vector v ∈ V such that for all x ∈ G,

ϕ(x) = 〈v, π(x)v〉.

The triple (π, V, v) is unique up to isomorphism in the following sense: If (π
′
, V

′
, v
′
) is

another triple such that (π
′
, V

′
) is a unitary representation of G with a K-invariant,

unit and cyclic vector v
′ ∈ V ′ and ϕ(x) = 〈v′ , π′(x)v

′〉 for all x ∈ G, then there exists

an isometric isomorphism T : V → V
′

such that T (v) = v
′

and T is an intertwinning

operator between the representations (π, V ) and (π
′
, V

′
), i.e. Tπ(x) = π

′
(x)T for all

x ∈ G.

An irreducible unitary representation of G with a non-zero, K-invariant vector

is called a spherical representation of the pair (G,K). If (π, V ) is a spherical repre-

sentation of (G,K) with a K-invariant, unit vector v ∈ V , then for ϕ(x) = 〈v, π(x)v〉,

we have ϕ ∈ Ext[P1(K\G/K)] where Ext[P1(K\G/K)] is the set of extremal points in

the convex set P1(K\G/K). Conversely, for each function ϕ in Ext[P1(K\G/K)] the

representation associated with ϕ by the GNS-construction is a spherical representation

of (G,K) ([Proposition 1.4, [11]]).

Remark 2.2.3. Let G be a topological group and K be a closed subgroup of G. From

the GNS-construction, it follows that if ϕ ∈ P1(K\G/K), then |ϕ(x)| ≤ 1 for all x ∈ G,

so ϕ is bounded.

2.3. Positive Definite Spherical Functions and Spherical Representations

In this section, let (G,K) be an Olshanski spherical pair which is the inductive

limit of the increasing sequence ((Gn, Kn))n∈N of Gelfand pairs.

Definition 2.3.1. A non-zero, continuous, K-bi-invariant function ϕ : G → C is said

to be a spherical function for the Olshanski spherical pair (G,K) if the functional

equation

lim
n→∞

∫
Kn

ϕ(xky) dµn(k) = ϕ(x)ϕ(y)
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is satisfied for all x, y ∈ G where µn is the normalized Haar measure on Kn.

As an immediate property following the previous definition, note that for a spher-

ical function ϕ : G→ C for an Olshanski spherical pair (G,K), we have ϕ(e) = 1 (here

by e we denote the identity element of G) as

ϕ(x)ϕ(e) = lim
n→∞

∫
Kn

ϕ(xk) dµn(k) = lim
n→∞

∫
Kn

ϕ(x) dµn(k) = ϕ(x)

for all x ∈ G and ϕ is non-zero.

Olshanski’ s definition of a spherical function for an Olshanski spherical pair which

is given via Definition 2.3.1 generalizes a famous result for Gelfand pairs as follows:

Proposition 2.3.2. Let ϕ ∈ P1(K\G/K). Then the unitary representation corre-

sponding to ϕ by the GNS-construction is spherical if and only if ϕ is spherical.

Proof. Let (π, V, v) be the triple corresponding to ϕ by the GNS-construction. Let

P be the projection operator onto V K and Pn be the projection operator onto V Kn .

Recall that Pn converges to P strongly. For all x, y ∈ G

lim
n→∞

∫
Kn

ϕ(xky) dµn(k) = lim
n→∞

∫
Kn

〈π(x−1)v, π(k)π(y)v〉 dµn(k)

= lim
n→∞
〈π(x−1)v, Pn(π(y)v)〉

= 〈π(x−1)v, Pπ(y)v〉

and

ϕ(x)ϕ(y) = 〈v, π(x)v〉〈π(y)v, v〉 = 〈v, π(x)〈π(y)v, v〉v〉 = 〈π(x−1)v, 〈π(y)v, v〉v〉.

Then since v is cyclic, ϕ is spherical if and only if Pπ(y)v = 〈π(y)v, v〉v for all y ∈ G.

Assume first that π is spherical, hence irreducible.
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By Proposition 2.1.2, dim(V K) = 1 so that V K = Cv and the projection operator P

onto V K is given by P (w) = 〈w, v〉v for all w ∈ V . Hence Pπ(y)v = 〈π(y)v, v〉v for all

y ∈ G and ϕ is spherical.

Conversely assume that ϕ is spherical, hence Pπ(y)v = 〈π(y)v, v〉v for all y ∈ G.

Then since v is cyclic, the image V K of the operator P is just Cv so that dim(V K) = 1.

Then by Proposition 2.1.1 the representation π is irreducible, hence spherical.

Note that two unitary representations (π, V ) and (π
′
, V

′
) of a topological group G

are said to be equivalent if there is a continuous vector space isomorphism T : V → V
′

such that T is also an intertwinning operator between (π, V ) and (π
′
, V

′
). Moreover, if

T is a unitary operator, then (π, V ) and (π
′
, V

′
) are called unitarily equivalent. Given

an Olshanski spherical pair (G,K), by the GNS-construction we obtain a one-to-one

correspondence between the positive definite spherical functions for (G,K) and the uni-

tary equivalence classes of the spherical representations of (G,K). Indeed, a positive

definite spherical function ϕ for (G,K) is matched with the unitary equivalence class of

the unitary representation (π, V ) associated to ϕ by the GNS-construction. By Propo-

sition 2.3.2, this unitary representation (π, V ) associated to ϕ by the GNS-construction

is spherical. Conversely, the unitary equivalence class [(π, V )] of a spherical representa-

tion (π, V ) of (G,K) is matched with the positive definite function ϕ : G→ C defined

by ϕ(x) = 〈v, π(x)v〉 for all x ∈ G, where v is an arbitrary unit, K-invariant vector

in V . By Proposition 2.1.2, dim(V K) = 1 so that the function ϕ is independent both

from the choice of a unit, K-invariant vector in V and the choice of a spherical rep-

resentation from the unitary equivalence class [(π, V )]. Also by Proposition 2.3.2, this

positive definite function ϕ is spherical. Hence both matches are well-defined.

By harmonic analysis for an Olshanski spherical pair (G,K), we mean deter-

mining its spherical dual Ω(G,K) consisting of all positive definite spherical functions

for (G,K) and giving realizations of the spherical representations corresponding to

the positive definite spherical functions by the GNS-construction. In the following

chapters, we study harmonic analysis for two different Olshanski spherical pairs.
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3. SPHERICAL DUAL OF (U(∞) nH(∞), U(∞))

Let Vn be a finite dimensional complex Euclidean vector space and Hn = Vn × R

be the corresponding Heisenberg group where the group operation on Hn is given by

(z, t)(z
′
, t
′
) = (z + z

′
, t+ t

′
+ Im〈z, z′〉).

Let Kn be a closed subgroup of the group U(Vn) of all unitary operators on Vn. Then

Kn acts on Hn by automorphisms by k(z, t) = (kz, t).

Hence we have the semidirect product Gn = KnnHn where the multiplication is given

by

(k, z, t)(k
′
, z
′
, t
′
) = (kk

′
, z + kz

′
, t+ t

′
+ Im〈z, kz′〉).

Theorem 3.0.1. [5] The pair (Gn, Kn) defined as above is a Gelfand pair if and only

if Kn acts on the polynomial ring P (Vn) multiplicity free.

Now we assume that (Vn)n is an increasing sequence of finite dimensional complex

vector spaces, each Kn acts multiplicity free on P (Vn) and that Kn = {k ∈ Kn+1 :

k(Vn) = Vn}. We define

V = ∪∞n=1Vn, H = ∪∞n=1Hn, K = ∪∞n=1Kn, G = ∪∞n=1Gn.

Then K acts on H by automorphisms by k(z, t) = (kz, t). Furthermore, G = K nH

and the pair (G,K) is an Olshanski spherical pair.

Remark 3.0.2. Let µn be the normalized Haar measure on Kn. For a continuous,

Kn-bi-invariant function ϕ : Gn → C, define ϕ̃ : Hn → C by ϕ̃(z, t) = ϕ(1, z, t). Then

ϕ̃ is a continuous, Kn-invariant function on Hn, i.e. ϕ̃(kz, t) = ϕ̃(z, t) for all k ∈ Kn

and (z, t) ∈ Hn. The map ϕ 7→ ϕ̃ gives a one-to-one correspondence between the
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continuous, Kn-bi-invariant functions on Gn and the continuous, Kn-invariant functions

on Hn. Moreover, the map ϕ 7→ ϕ̃ gives an isomorphism between L1(Kn\Gn/Kn) and

L1(Hn)Kn as convolution algebras where L1(Hn)Kn denotes the convolution algebra

consisting of all Lebesgue-integrable, Kn-invariant functions on Hn.

We call a non-zero, continuous, Kn-invariant, complex-valued function ϕ on Hn

to be spherical if

∫
Kn

ϕ((z, t)k(z
′
, t
′
)) dµn(k) = ϕ(z, t)ϕ(z

′
, t
′
) (3.1)

for all (z, t), (z
′
, t
′
) ∈ Hn. Then, the map ϕ 7→ ϕ̃ gives a one-to-one correspondence

between spherical functions for the Gelfand pair (Gn, Kn) and the spherical functions

on Hn. Throughout the text, we will identify ϕ with ϕ̃.

Similarly if ϕ : G → C is a continuous, K-bi-invariant function, then ϕ can be

considered as a continuous, K-invariant function on H where H has the inductive limit

topology. A spherical function ϕ for (G,K) can be seen as a spherical function on H

which is defined to be a non-zero, continuous, K-invariant, complex-valued function

on H satisfying

lim
n→∞

∫
Kn

ϕ((z, t)k(z
′
, t
′
)) dµn(k) = ϕ(z, t)ϕ(z

′
, t
′
) (3.2)

for all (z, t), (z
′
, t
′
) ∈ H. Moreover, a positive definite function on G corresponds to a

positive definite function on H.

In this chapter, we will take Vn = Cn and Kn = U(n). Then Hn = Cn × R and

Gn = U(n) nHn. Once we prove the following proposition, we will have (Gn, Kn) is a

Gelfand pair by Theorem 3.0.1.
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Proposition 3.0.3. The unitary group U(n) acts multiplicity free on the polynomial

ring P (Cn).

Proof. Denote by π the representation of U(n) on P (Cn). It is enough to prove that

the commutant A := HomU(n)(π, π) of the representation π is commutative.

Let A ∈ A. Given a = (a1, a2, ..., an) ∈ Nn, let pa(z) be the monomial defined

by pa(z) = za11 .z
a2
2 ...z

an
n where z = (z1, z2, ..., zn) ∈ Cn. Now we fix a ∈ Nn. For an

arbitrary b = (b1, b2, ..., bn) ∈ Nn, we write A(pa(z)) = Abpb(z) + qb̂(z) for some Ab ∈ C

and qb̂(z) ∈ P (Cn) not containing the monomial pb(z) as a summand. For θ ∈ [0, 2π]

and l = 1, 2, ..., n, by kl,θ ∈ U(n), let us denote the diagonal matrix, with the lth

diagonal entry is e−iθ and all other diagonal entries are 1. Then,

eialθAbpb(z) + eialθqb̂(z) = Aπ(kl,θ)(pa(z))

= π(kl,θ)A(pa(z)) = eiblθAbpb(z) + π(kl,θ)qb̂(z).

Since π(kl,θ) multiples each monomial with a constant, the polynomial π(kl,θ)qb̂(z) does

not contain the monomial pb(z). So, eialθAbpb(z) = eiblθAbpb(z) for all l and θ and since

al, bl ∈ N, this implies either Ab = 0 or al = bl for all l. So, for each monomial

pa(z) ∈ P (Cn), there exists a constant Aa ∈ C such that A(pa(z)) = Aapa(z). Hence,

for anyB ∈ A and for all monomials pa(z) ∈ P (Cn), we have AB(pa(z)) = AaBapa(z) =

BaAapa(z) = BA(pa(z)) which shows by linearity of A and B that A commutes with

B. So, we are done.

Therefore the choices Vn = Cn and Kn = U(n) give rise to an Olshanski pair

(K nH,K) constructed as previously described when we embed Vn = Cn into Vn+1 =

Cn+1 by z 7→ (z, 0) and also Kn = U(n) into Kn+1 = U(n+ 1) by

(
k
)
7→

 k 0

0 1

 .
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In this case, K = U(∞) where U(∞) is the infinite dimensional unitary group.

Note that an infinite matrix k = (kij)i,j≥1 is an element of U(∞) if and only if there

is an N ∈ N such that (kij)
N
i,j=1 ∈ U(N) and kij = δij for i > N or j > N . When it

is considered as a subgroup of U(∞), the group U(N) consists of all infinite matrices

k = (kij)i,j≥1 such that (kij)
N
i,j=1 ∈ U(N) and kij = δij for i > N or j > N . Also,

V = C(∞) where C(∞) consists of all infinite sequences of complex numbers with all

but finitely many terms are zero. Given elements z = (zi)i∈N = (z1, z2, ..., 0, 0, ...) ∈ V

and w = (wi)i∈N = (w1, w2, ..., 0, 0, ...) ∈ V we can define the norm of z by ‖z‖ =√
z2

1 + z2
2 + · · · and the inner product of z with w by 〈z, w〉 =

∑
i∈N ziwi. The group

K = U(∞) acts on V = C(∞) by natural automorphisms and this action preserves

the norm. Let H(∞) = C(∞) × R be the infinite dimensional Heisenberg group with

multiplication defined in just the same way as in the finite dimensional case. The group

K = U(∞) also acts on H(∞) by k(z, t) = (kz, t) for all k ∈ K, z ∈ C(∞) and t ∈ R.

Then, H = H(∞) and G = U(∞) nH(∞).

Our main goal in this chapter is to determine the positive definite spherical func-

tions of the Olshanski spherical pair (U(∞) nH(∞), U(∞)).

3.1. Spherical Representations of the Gelfand pair (U(n) nHn, U(n))

In this section, we will determine the unitary dual of the Heisenberg group Hn

and then the unitary dual of U(n)nHn. For both, we will use the Mackey Little Group

Theorem which provides a machinery to construct the irreducible unitary representa-

tions of a certain class of locally compact groups by inducing representations of their

certain subgroups. Finally, we will find the (U(n) n Hn, U(n))-spherical ones among

all irreducible unitary representations of U(n) nHn.

3.1.1. Fock representations of Hn

Let O(Cn) be the space of complex-valued holomorphic functions on Cn. The

spaceO(Cn) is a Fréchet space when equipped with the topology of uniform convergence
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on compact subsets. For λ ∈ R∗, define the Fock space Fnλ by

Fnλ = {f ∈ O(Cn) : ‖f‖2
λ := (

|λ|
π

)n
∫

Cn
e−|λ|‖z‖

2|f(z)|2 dz <∞}

where dz is the Lebesgue measure on Cn.

The norm ‖ · ‖λ on Fnλ is induced by the inner product defined by

〈f, g〉λ = (
|λ|
π

)n
∫

Cn
e−|λ|‖z‖

2

f(z)g(z) dz.

Let γn be the probability measure on Cn given by dγn(z) = ( |λ|
π

)ne−|λ|‖z‖
2
dz. The

Fock space Fnλ is a subspace of the Hilbert space L2(Cn, γn) of all square integrable,

complex-valued functions on Cn with respect to the measure γn.

Proposition 3.1.1. Let (fm)m∈N be a sequence in Fnλ and f ∈ L2(Cn, γn). Assume

(fm)m∈N converges to f in L2(Cn, γn). Then (fm)m∈N converges to f uniformly on

compact subsets.

Proof. Take a bounded domain U in Cn. Then there exists A > 0 such that ‖z‖2 < A

for all z ∈ U so that e−|λ|‖z‖
2
> e−|λ|A for all z ∈ U . Hence,

(
|λ|
π

)n
∫
U

e−|λ|A|fm(z)− f(z)|2 dz < ‖fm − f‖2
λ

so that

∫
U

|fm(z)− f(z)|2 dz < (
|λ|
π

)−ne|λ|A‖fm − f‖2
λ. (3.3)

Since U is bounded, the restrictions (fm)�U and also f�U are contained in the space

L2(U) of all square integrable, complex valued functions on U with respect to the

Lebesgue measure. Then the equation (3.3) together with the convergence of (fm)m∈N

to f in L2(Cn, γn) indicates the convergence of ((fm)�U )m∈N to f�U in L2(U). But each

(fm)�U is holomorphic on U and the convergence in L2(U) of holomorphic functions
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implies uniform convergence on compact subsets contained in U . Since every compact

set is contained in a bounded domain in Cn, the result follows.

Corollary 3.1.2. The Fock space (Fnλ , ‖ · ‖λ) is a Hilbert space.

Proof. It is enough to show that Fnλ is a closed subspace of L2(Cn, γn). Let fm → f in

L2(Cn, γn) where each fm ∈ Fnλ . By Proposition 3.1.1, fm → f uniformly on compact

subsets as well. Then since each fm holomorphic, so is f . Hence f ∈ Fnλ and we are

done.

For ν = (ν1, ν2, ..., νn) ∈ Nn, let |ν| := ν1 + ν2 + ... + νn and ν! := ν1!ν2!...νn!.

Also given z = (z1, z2, ..., zn) ∈ Cn, let zν := zν11 z
ν2
2 ...z

νn
n . Then, ‖zν‖2

λ = ν!|λ|−|ν| so

that zν ∈ Fnλ for all ν ∈ Nn. Let Fm denote the space of all homogeneous polynomials

of degree m in P (Cn) for m ∈ N. Then Fm is contained in Fnλ and since Fm is finite-

dimensional, Fm is a Hilbert subspace of Fnλ for all λ ∈ R∗ and m ∈ N. Moreover, for

eν =

√
|λ||ν|
ν!
zν , the sequence {eν}ν∈Nn forms an orthonormal basis for Fnλ . Hence Fnλ is

a seperable Hilbert space and

Fnλ =
⊕̂
m∈N

Fm.

Proposition 3.1.3. Let f ∈ O(Cn) and f(z) =
∑

ν∈Nn aνz
ν where the series converges

to f in O(Cn). Then,

‖f‖2
λ =

∑
ν∈Nn

ν!|λ|−|ν||aν |2. (3.4)

Hence f ∈ Fnλ if and only if the series
∑

ν∈Nn ν!|λ|−|ν||aν |2 converges.

Proof. Assume
∑

ν∈Nn ν!|λ|−|ν||aν |2 <∞. Let

fk(z) =
k∑

m=0

∑
|ν|=m

aνz
ν ∈ Fnλ .
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Then, the sequence (fk)k forms a Cauchy sequence in the Fock space Fnλ , because given

N > L

‖
N∑
m=0

∑
|ν|=m

aνz
ν −

L∑
m=0

∑
|ν|=m

aνz
ν‖2

λ = ‖
N∑

m=L+1

∑
|ν|=m

aνz
ν‖2

λ =
N∑

m=L+1

∑
|ν|=m

‖aνzν‖2
λ

=
N∑

m=L+1

∑
|ν|=m

ν!|λ|−|ν||aν |2

can be made arbitrarily small for L large enough by our assumption. Hence, the

sequence (fk)k has a limit in the Fock space Fnλ and by Proposition 3.1.1, this limit is

identical with its limit in O(Cn) which is f . Hence, f ∈ Fnλ .

Now, if f /∈ Fnλ , by the argument above, both ‖f‖2
λ and

∑
ν∈Nn ν!|λ|−|ν||aν |2

diverge to infinity so that the equation (3.4) is satisfied. If f ∈ Fnλ , then since {eν}ν∈Nn

forms an orthonormal basis for Fnλ , we get

‖f‖2
λ =

∑
ν∈Nn

|〈f,
√
|λ||ν|
ν!

zν〉λ|2 =
∑
ν∈Nn

|λ||ν|

ν!
|〈f, zν〉λ|2 =

∑
ν∈Nn

|λ||ν|

ν!
|aν |2(ν!|λ|−|ν|)2

=
∑
ν∈Nn

ν!|λ|−|ν||aν |2

as desired.

By Proposition 3.1.1, the inclusions from Fnλ into O(Cn) are continuous. Hence,

for any z ∈ Cn the evaluation map evz : Fnλ → C given by evz(f) = f(z) is a bounded

linear functional. Then, by the Riesz Representation Theorem, for any z ∈ Cn we have

a unique function Kz ∈ Fnλ such that f(z) = evz(f) = 〈f,Kz〉λ for all f ∈ Fnλ . That

is to say, Fnλ is a reproducing kernel Hilbert space and the map Kλ : Cn × Cn → C

defined by Kλ(z, w) = Kw(z) is the reproducing kernel function of Fnλ . Since Fnλ is a

seperable functional Hilbert space, we can find the kernel function Kλ of Fnλ explicitly
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in terms of the orthonormal basis {eν}ν∈Nn by

Kλ(z, w) =
∑
ν∈Nn

eν(z)eν(w) =
∑
ν∈Nn

|λ||ν| 1
ν!
zνwν = e|λ|〈z,w〉.

Since Fm is a Hilbert subspace of Fnλ for all λ ∈ R∗ and m ∈ N, from Proposition

3.1.1 it follows that for all z ∈ Cn, there exists a unique function (Kλ,m)z ∈ Fm such

that f(z) = 〈f, (Kλ,m)z〉λ for all f ∈ Fm. Hence, (Fm, 〈·, ·〉λ) has a reproducing kernel

Kλ,m defined by Kλ,m(z, w) = (Kλ,m)w(z), which can be computed via the orthonormal

basis {eν}|ν|=m of (Fm, 〈·, ·〉λ) as

Kλ,m(z, w) =
∑
|ν|=m

eν(z)eν(w) =
∑
|ν|=m

|λ|m

ν!
zνwν =

|λ|m

m!

∑
|ν|=m

m!

ν!
zνwν =

|λ|m

m!
〈z, w〉m.

(3.5)

Note that for all z ∈ Cn,

Kz =
∑
m

(Kλ,m)z

where the convergence is in Fnλ , hence uniform on compact subsets.

For λ > 0, the Fock representation Tλ of Hn on Fnλ is given by

[Tλ(z, t)f ](w) = eλ(it− 1
2
‖z‖2−〈w,z〉)f(w + z)

for any (z, t) ∈ Hn and f ∈ Fnλ . For λ < 0, we define Tλ(z, t) = T−λ(z,−t). For each

λ ∈ R∗, the Fock representation (Tλ,Fnλ ) defines a unitary group representation of the

Heisenberg group Hn. Moreover, it is irreducible which we shall now show.

Proposition 3.1.4. The Fock representation (Tλ,Fnλ ) of the Heisenberg group Hn is

irreducible for all λ ∈ R∗.
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Proof. It is enough to prove the assertion for λ > 0. So let λ > 0 and W be a non-zero,

closed subspace of Fnλ that is invariant under Tλ(z, t) for all (z, t) ∈ Hn. Let P be

the orthogonal projection on W . As an orthogonal projection to a subrepresentation

of a unitary representation, P commutes with the action of Hn. For the constant 1

function in Fnλ , we have Tλ(−z, t)1 = Cz,tKz for all (z, t) ∈ Hn where Cz,t = eλ(it− 1
2
‖z‖2).

It follows that for every z ∈ Cn,

P (1)(z) = 〈P (1), Kz〉λ = 〈P (1), (Cz,t)
−1Tλ(−z, t)1〉λ

= (Cz,t)−1〈Tλ(z,−t)P (1), 1〉λ

= (Cz,t)−1〈P (Tλ(z,−t)1), 1〉λ

= (Cz,t)−1〈Tλ(z,−t)1, P (1)〉λ

= (Cz,t)−1C−z,−t〈P (1), K−z〉λ = P (1)(−z).

Hence, P (1)(z) = P (1)(−z) for all z ∈ Cn so that both P (1) and P (1) are holo-

morphic. This implies that P (1) ∈ W is a constant function, so 1 ∈ W . Then

Kz = (Cz,0)−1Tλ(−z, 0)1 ∈ W for all z ∈ Cn.

Now let f ∈ W⊥. Since Kz ∈ W for all z ∈ Cn, we have f(z) = 〈f,Kz〉λ = 0 for

all z ∈ Cn. Hence W = Fnλ .

3.1.2. Mackey Machine and Its Application to Hn

In order to find the unitary dual of the Heisenberg group Hn and the group

U(n) nHn, we need two technical results from Harmonic Analysis.

Let G be a locally compact group and N be a normal closed subgroup of G.

Since N E G, G acts on the unitary dual N̂ of N . Indeed, given g ∈ G and (π, V ) an

irreducible unitary representation of N , we define g.(π, V ) = (πg, V ) where πg(n) :=

π(g−1ng) for all n ∈ N . Then (πg, V ) is also an irreducible unitary representation of

N . If π and ρ are two equivalent irreducible unitary representations of N , then πg and

ρg are also equivalent. So given g ∈ G and [π] ∈ N̂ , we define g.[π] = [πg] and get an
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action of G on N̂ . Let G[π] be the stabilizer of [π] ∈ N̂ in G, i.e.

G[π] = {g ∈ G : [πg] = [π]}.

If g ∈ N , then π(g) ∈ HomN(πg, π) so that [πg] = [π]. Hence N E G[π]. Let E([π]) be

the set of extensions of [π] ∈ N̂ to Ĝ[π] defined by

E([π]) = {[γ] ∈ Ĝ[π] : γ�N is equivalent to a multiple of π}.

Before stating the next theorem, we need some more terminology. In [ [16], Realization

II], a useful formulation of producing unitary representations of a locally compact group

G by inducing representations of a closed subgroup H is given. We summarize this

realization in the following definition.

Definition 3.1.5. Let G be a locally compact group and H be a closed subgroup of

G. Let BG be the Borel σ-algebra of G. The Borel σ-algebra BG/H of the quotient

space G/H is defined by BG/H := {E ⊆ G/H : p−1(E) ∈ BG} where p : G → G/H is

the natural quotient map. Fix a quasi-invariant measure µ on BG/H , i.e. the action of

G on G/H preserves null sets.

Let ∆H and ∆G be the modular functions of H and G. A rho-function for the pair

(G,H) is a continuous function ρ : G→ (0,∞) such that for all x ∈ G and h ∈ H

ρ(xh) =
∆H(h)

∆G(h)
ρ(x).

Let ρ be a rho-function for (G,H) (the existence of a rho-function for (G,H) is given

by [Proposition 2.54, [15]]. Note that if H is a closed normal subgroup, then G/H has

the structure of a locally compact group. So µ can be chosen as a Haar measure on

G/H and hence ρ can be chosen as the constant 1 function on G by [Theorem 1.5.2, [9]]

.

Let (π, Vπ) be a unitary representation ofH. Let VIndGH(π) be the Hilbert space consisting

of all measurable functions f : G → Vπ such that f(xh) = π(h−1)f(x) for almost all

x ∈ G and for all h ∈ H, and satisfying
∫
G/H
‖f(x)‖2 dµ(xH) < ∞ where the inner
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product of f, g ∈ VIndGH(π) is given by

〈f, g〉 =

∫
G/H

〈f(x), g(x)〉 dµ(xH).

Then, the representation (IndGH(π), VIndGH(π)) of G induced from the representation π of

H, or briefly the induced representation, is given by

(IndGH(π)(x)f)(y) =

√
ρ(x−1y)

ρ(y)
f(x−1y)

for all f ∈ VIndGH(π), x ∈ G and almost all y ∈ G. (IndGH(π), VIndGH(π)) defines a unitary

representation of G.

Theorem 3.1.6. [28] (Mackey Little Group Theorem) Let G be a locally compact group

of Type I and N be a closed normal subgroup of G which is also of Type I. Assume

that N̂ has a Borel measurable section under the action of G. Then,

Ĝ = {[IndGG[π]
(γ)] : [π] ∈ N̂ and [γ] ∈ E([π])}.

Moreover, for [π], [π
′
] ∈ N̂ , [γ] ∈ E([π]) and [γ

′
] ∈ E([π

′
]),

[IndGG[π]
(γ)] = [IndGG

[π
′
]
(γ
′
)] if and only if [π

′
] = [πg] and [γ

′
] = [γg] for some g ∈ G.

The pair (G,N) is said to have the extension property if for every irreducible

unitary representation π of N , there exists an irreducible unitary representation π̃ of

Ĝ[π] such that π̃�N = π.

Corollary 3.1.7. Let G be a locally compact group and N be a closed normal subgroup

of G. Assume G and N are of Type I and that the pair (G,N) has the extension

property. Given [π] ∈ N̂ , let [π̃] ∈ Ĝ[π] be such that π̃�N = π. Assume also that N̂ has

a Borel measurable section under the action of G. Then,

E([π]) = {[π̃ ⊗ µ̂] : [µ] ∈ Ĝ[π]/N is lifted to [µ̂] ∈ Ĝ[π]}
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so that

Ĝ = {[IndGG[π]
(π̃ ⊗ µ̂)] : [π] ∈ N̂ and [µ] ∈ Ĝ[π]/N is lifted to [µ̂] ∈ Ĝ[π]}.

Type I condition is a technical one related to the operator algebraic aspects of

the theory of group representations. We do not want to go into this. But we will see

that the groups which we study satisfy this condition.

The commutator subgroup [Hn, Hn] of the Heisenberg group equals to its center

Z(Hn) = {0}×R. Hence Hn is a nilpotent group of nilpotency class 2. Let N := Rn×R.

To be more precise, N consists of those elements ((z1, z2, ..., zn), t) ∈ Hn such that

Im(zi) = 0 for all i = 1, ..., n. In [10], Dixmier showed that every connected nilpotent

Lie group is of Type I. Both the Heisenberg group Hn and its abelian subgroup N are

connected nilpotent Lie groups, hence both are of Type I. So we can apply Theorem

3.1.6 to G = Hn and its closed normal subgroup N := Rn × R. N is isomorphic to the

abelian additive topological group (Rn+1,+). Hence N̂ consists of unitary characters

Ψ(r1,r2,...,rn+1) : N → S1 where S1 is the circle group, (r1, r2, ..., rn+1) runs over Rn+1

and

Ψ(r1,r2,...,rn+1)((z1, z2, ..., zn), t) := ei(rn+1t+
∑n
i=1 rizi)

for all ((z1, z2, ..., zn), t) ∈ N . Given (z, t) = ((z1, z2, ..., zn), t) ∈ Hn, we have

(Ψ(r1,r2,...,rn+1))
(z,t) = Ψ(r1+2rn+1 Im(z1),r2+2rn+1 Im(z2),...,rn+2rn+1 Im(zn),rn+1).

So,

(Hn)[Ψ(r1,r2,...,rn+1)
] =

Hn rn+1 = 0

N rn+1 6= 0.
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In case rn+1 = 0, given an irreducible unitary representation Ψ(r1,r2,...,rn,0) of N , we can

extend it to an irreducible unitary representation Ψ̃(r1,r2,...,rn,0) of the stabilizer Hn of

[Ψ(r1,r2,...,rn,0)] by defining

Ψ̃(r1,r2,...,rn,0)(z, t) := ei(
∑n
i=1 ri Re(zi))

for all (z, t) = ((z1, z2, ..., zn), t) ∈ Hn in the sense that (Ψ̃(r1,r2,...,rn,0))�N = Ψ(r1,r2,...,rn,0).

Thus, the pair (Hn, N) has the extension property and by Corollary 3.1.7

E([Ψ(r1,r2,...,rn,0)]) = {[Ψ̃(r1,r2,...,rn,0) ⊗ µ̂] ∈ Ĥn : [µ] ∈ R̂n is lifted to [µ̂] ∈ Ĥn}

so that

⋃
(r1,r2,...,rn)∈Rn

E([Ψ(r1,r2,...,rn,0)]) = {Φw : Hn → C : Φw(z, t) = eiRe〈z,w〉, w ∈ Cn}.

By the family {Φw}w∈Cn , we obtain all unitary characters of Hn. By Theorem 3.1.6, we

get one more type of representations of Hn that are obtained by inducing the characters

Ψ(r1,r2,...,rn,rn+1) where rn+1 6= 0 from N to Hn. Again by Theorem 3.1.6, it follows that

two induced representations IndHnN (Ψ(r1,r2,...,rn,rn+1)) and IndHnN (Ψ(s1,s2,...,sn,sn+1)) with

rn+1, sn+1 ∈ R∗ are equivalent if and only if there exists (z, t) ∈ Hn such that

Ψ(s1,s2,...,sn,sn+1) = (Ψ(r1,r2,...,rn,rn+1))
(z,t)

= Ψ(r1+2rn+1 Im(z1),r2+2rn+1 Im(z2),...,rn+2rn+1 Im(zn),rn+1). (3.6)

For non-zero rn+1 and sn+1, such (z, t) ∈ Hn satifying the equation (3.6) exists if and

only if rn+1 = sn+1. Hence

Ĥn = {Φw : w ∈ Cn} ∪ {[IndHnN (Ψ(0,0,...,0,λ))] : λ ∈ R∗}.

Now, we compute the central characters of the induced representation IndHnN (eiλt) and

the Fock representation Tλ of the Heisenberg group Hn where λ 6= 0. The center
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Z(Hn) = {0}×R of the Heisenberg group Hn is completely contained in N . We denote

by VIndHnN (eiλt) the representation space corresponding to the induced representation

IndHnN (eiλt) of Hn. Then given f ∈ VIndHnN (eiλt) and (0, t0) ∈ Z(Hn),

(IndHnN (eiλt)(0, t0)f)(z, t) = f((0,−t0)(z, t)) = f((z, t)(0,−t0)) = eiλt0f(z, t)

for all (z, t) ∈ Hn.

When we consider the Fock space representation (Tλ,Fnλ ) of Hn, given f ∈ Fnλ
and (0, t0) ∈ Z(Hn), for all w ∈ Cn we have (Tλ(0, t0)f)(w) = eiλt0f(w). Hence for

each non-zero real number λ, the homomorphism

Z(Hn)→ C∗

(0, t) 7→ eiλt

is the central character of both IndHnN (eiλt) and Tλ, which are irreducible unitary rep-

resentations of Hn. Then, it follows that

[IndHnN (eiλt)] = [Tλ]

and we have the following lemma.

Lemma 3.1.8. The unitary dual Ĥn of the Heisenberg group Hn consists of two types

of representations up to unitary equivalence. First, there are unitary characters Φw

defined by Φw(z, t) = eiRe〈z,w〉 where w ∈ Cn and (z, t) ∈ Hn. Second, there are infinite

dimensional Fock representations (Tλ,Fnλ ) for λ ∈ R∗.

3.1.3. Spherical Representations of (U(n) nHn, U(n))

We will now classify the irreducible unitary representations of the locally compact

group Gn = Kn n Hn where Kn is a closed subgroup of the unitary group U(n).

For this goal, we will once more follow the steps of Mackey Little Group Theorem
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and then among all irreducible unitary representations we will uncover the ones with

Kn-invariant non-zero vectors. Finally, for the case when Kn = U(n), we will write

explicitly the spherical representations of the Gelfand pair (U(n) nHn, U(n)).

The Heisenberg group Hn can be regarded as a closed normal subgroup of Gn.

Let (k0, z0, t0) ∈ Gn. The action of (k0, z0, t0) on a representation π of Hn is given by

π(k0,z0,t0)(z, t) = π((k0)−1z, t − 2 Im〈z, z0〉) for all (z, t) ∈ Hn. Hence, for the unitary

character Φw of Hn where w ∈ Cn, we have

(Φw)(k0,z0,t0)(z, t) = eiRe〈(k0)−1z,w〉 = eiRe〈z,k0w〉 = Φk0w(z, t)

for all (z, t) ∈ Hn so that (Φw)(k0,z0,t0) = Φk0w. So, the stabilizer (Gn)[Φw] = (Kn)wnHn

where (Kn)w = {k ∈ Kn : kw = w}. For the Fock representation Tλ of Hn,

((Tλ)
(k0,z0,t0)(z, t)f)(w) = eλ(i(t−2 Im〈z,z0〉)− 1

2
‖z‖2−〈w,(k0)−1z〉)f(w + (k0)−1z) if λ > 0, and

((Tλ)
(k0,z0,t0)(z, t)f)(w) = eλ(i(t−2 Im〈z̄,z0〉)+ 1

2
‖z‖2+〈w,(k0)−1z̄〉)f(w + (k0)−1z̄) if λ < 0

for all (z, t) ∈ Hn, f ∈ Fnλ and w ∈ Cn. Then for each λ ∈ R∗, (Tλ)
(k0,z0,t0)(0, t)f = eiλtf

for all (0, t) ∈ Hn and f ∈ Fnλ so that the central character of (Tλ)
(k0,z0,t0) is the map

(0, t) 7→ eiλt from Z(Hn) to C∗ which is exactly the central character of Tλ. Hence,

(Tλ)
(k0,z0,t0) is unitarily equivalent to Tλ and the stabilizer (Gn)[Tλ] = Gn.

In the following two propositions we will determine the set of extensions of irre-

ducible unitary representations of Hn to their stabilizers that we have just found.

Proposition 3.1.9. [28] Given w ∈ Cn, let Φw be the unitary character of Hn given

by Φw(z, t) = eiRe〈z,w〉 for all (z, t) ∈ Hn. Then Φw can be extended to a unitary

character Φ̃w of its stabilizer (Kn)w n Hn in Gn defined by Φ̃w(k, z, t) = Φw(z, t).

Hence E([Φw]) = {[Φ̃w ⊗ µ̂] : [µ] ∈ (̂Kn)w is lifted to [µ̂] ∈ ̂(Kn)w nHn}.
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Proof. It is enough to show Φ̃w : (Kn)w nHn → S1 is a group homomorphism. So we

take two elements (k0, z0, t0) and (k1, z1, t1) from (Kn)w nHn. Then since

(k0, z0, t0)(k1, z1, t1) = (k0k1, z0 + k0z1, t0 + t1 + Im〈z0, k0z1〉)

we get

Φ̃w((k0, z0, t0)(k1, z1, t1)) = eiRe〈z0+k0z1,w〉 = eiRe〈z0,w〉eiRe〈k0z1,w〉

= eiRe〈z0,w〉eiRe〈z1,(k0)−1w〉 = eiRe〈z0,w〉eiRe〈z1,w〉 = Φ̃w(k0, z0, t0)Φ̃w(k1, z1, t1)

as desired.

Given λ ∈ R∗, the group Kn has a natural action on the Fock space Fnλ via the

homomorphism πλ : Kn → U(Fnλ ) given by

(πλ(k)f)(z) = f(k−1z). (3.7)

For λ > 0,

(Tλ(z, t)πλ(k
−1)f)(w) = eλ(it− 1

2
‖z‖2−〈w,z〉)(πλ(k

−1)f)(w + z)

= eλ(it− 1
2
‖z‖2−〈w,z〉)f(kw + kz)

so that

(πλ(k)Tλ(z, t)πλ(k
−1)f)(w) = eλ(it− 1

2
‖z‖2−〈k−1w,z〉)f(w + kz)

= eλ(it− 1
2
‖kz‖2−〈w,kz〉)f(w + kz) = (Tλ(kz, t)f)(w) (3.8)

for all k ∈ Kn, (z, t) ∈ Hn, f ∈ Fnλ and w ∈ Cn. The equation (3.8) also holds for all

λ < 0. Hence for all k ∈ Kn and (z, t) ∈ Hn,
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πλ(k)Tλ(z, t)πλ(k
−1) = Tλ(kz, t). (3.9)

Proposition 3.1.10. [28] For λ ∈ R∗, the Fock representation Tλ of Hn can be extended

to an irreducible unitary representation T̃λ of Gn on the Fock space Fnλ defined by

T̃λ(k, z, t) = Tλ(z, t)πλ(k). Hence E([Tλ]) = {[T̃λ ⊗ γ̂] : [γ] ∈ K̂n is lifted to [γ̂] ∈ Ĝn}.

Proof. The fact that T̃λ : Gn → U(Fnλ ) is a group homomorphism follows from Equa-

tion 3.9 and irreducibility of T̃λ follows from the irreducibility of Tλ which is already

proved in Proposition 3.1.4.

Now Proposition 3.1.9 and Proposition 3.1.10 together with Theorem 3.1.6 gives

the unitary dual of the group Gn = Kn nHn as stated in the following theorem.

Theorem 3.1.11. [28] Let Kn be a closed subgroup of the unitary group U(n). Then

the unitary dual ̂Kn nHn consists of two types of representations:

First, there are classes of representations of the form [IndKnnHn(Kn)wnHn(Φ̃w⊗µ̂)] where

w ∈ Cn, (Kn)w = {k ∈ Kn : kw = w}, Φ̃w is the character of (Kn)w nHn defined by

Φ̃w(k, z, t) = Φw(z, t) and [µ] ∈ (̂Kn)w is lifted to [µ̂] ∈ ̂(Kn)w nHn.

Second, there are classes of representations of the form [T̃λ ⊗ γ̂] where (T̃λ,Fnλ )

is the irreducible unitary representation of KnnHn given by T̃λ(k, z, t) = Tλ(z, t)πλ(k)

and [γ] ∈ K̂n is lifted to [γ̂] ∈ ̂Kn nHn.

Among all irreducible unitary representations of Kn n Hn given by Theorem

3.1.11, we will determine the ones with non-zero Kn-invariant vectors. Hence if Kn is

a closed subgroup of U(n) acting multiplicity free on the polynomial ring P (Cn), we

will have determined the spherical representations of the Gelfand pair (Kn nHn, Kn).

Remark 3.1.12. If G is a locally compact group with a compact subgroup K and

(π, V ) is a unitary representations of G, then the restriction (π�K , V ) is a unitary
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representation of the compact group K. The representation space V has a non-zero

vector v such that π(k)v = v for all k ∈ K if and only if (π�K ,Cv) is a subrepresen-

tation of (π�K , V ) where Cv is the one-dimensional C-linear subspace of V generated

by v. But (π�K ,Cv) is equivalent to the one-dimensional trivial representation (1K ,C)

of K. Hence V has a non-zero vector v invariant under π(k) for all k ∈ K if and

only if mult(1K , π�K ) ≥ 1 where mult(1K , π�K ) denotes the multiplicity of the trivial

representation 1K of K in π�K .

In the light of the previous remark, for the determination of all irreducible unitary

representations of the locally compact group Kn n Hn with non-zero Kn-invariant

vectors, we will compute the multiplicities mult(1Kn , (IndKnnHn(Kn)wnHn(Φ̃w ⊗ µ̂))�Kn ) and

mult(1Kn , (T̃λ ⊗ γ̂)�Kn ) consecutively.

Proposition 3.1.13. For all [µ] ∈ (̂Kn)w,

[(IndKnnHn(Kn)wnHn(Φ̃w ⊗ µ̂))�Kn ] = [IndKn(Kn)w
(µ)] (3.10)

where µ̂ is the lifting of µ to (Kn)w nHn.

Proof. Since Φ̃w is a one-dimensional representation of (Kn)w nHn, we have VΦ̃w
= C.

Thus, VΦ̃w
⊗ Vµ̂ = Vµ̂ = Vµ and (Φ̃w ⊗ µ̂)(k, z, t) = Φw(z, t)µ(k) = eiRe〈z,w〉µ(k) for all

(k, z, t) ∈ (Kn)w nHn.

Now we define a bounded linear operator A : VIndKn
(Kn)w

(µ) → V(IndKnnHn
(Kn)wnHn

(Φ̃w⊗µ̂))�Kn
by

(Af)(k, z, t) = e−iRe〈z,kw〉f(k) for all f ∈ VIndKn
(Kn)w

(µ) and (k, z, t) ∈ KnnHn. We show

A gives an equivalence between the representations of Kn given in the equation (3.10)

as follows:

Given g ∈ V(IndKnnHn
(Kn)wnHn

(Φ̃w⊗µ̂))�Kn
, for all (k, z, t) ∈ Kn nHn we have

g(k, z, t) = g((k, 0, 0)(1, k−1z, t)) = Φ̃w⊗µ̂(1,−k−1z,−t)g(k, 0, 0) = e−iRe〈z,kw〉g(k, 0, 0).
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Then, for f : Kn → Vµ given by f(k) = g(k, 0, 0), we have Af = g and that f ∈

VIndKn
(Kn)w

(µ). Thus A is onto. Moreover, Af = 0 if and only if e−iRe〈z,kw〉f(k) = 0 for all

(k, z, t) ∈ Kn nHn. But this is only possible when f = 0. Hence A is also one-to-one.

Let ρ be a rho-function for the pair (Kn, (Kn)w). Then ρ0 : Kn n Hn → (0,∞)

defined by ρ0(k, z, t) = ρ(k) is a rho-function for the pair (KnnHn, (Kn)wnHn). Then

for all k0 ∈ Kn, (k, z, t) ∈ Kn nHn and f ∈ VIndKn
(Kn)w

(µ),

A(IndKn(Kn)w
(µ)(k0)f)(k, z, t) = e−iRe〈z,kw〉 IndKn(Kn)w

(µ)(k0)f(k)

= e−iRe〈z,kw〉

√
ρ(k−1

0 k)

ρ(k)
f(k−1

0 k)

where

(IndKnnHn(Kn)wnHn(Φ̃w ⊗ µ̂))�Kn (k0)(Af)(k, z, t) =

√
ρ0((k−1

0 , 0, 0)(k, z, t))

ρ0(k, z, t)
Af(k−1

0 k, k−1
0 z, t)

=

√
ρ(k−1

0 k)

ρ(k)
e−iRe〈z,kw〉f(k−1

0 k)

as well. Thus, A is an intertwining operator.

Now Proposition 3.1.13 together with the Frobenious Reciprocity Theorem for

compact groups gives that

mult(1Kn , (IndKnnHn(Kn)wnHn(Φ̃w ⊗ µ̂))�Kn ) = mult(1Kn , IndKn(Kn)w
(µ)) = mult(µ, 1(Kn)w).

But, mult(µ, 1(Kn)w) = 1 if µ = 1(Kn)w and mult(µ, 1(Kn)w) = 0 otherwise. Hence,

in case (Kn n Hn, Kn) is a Gelfand pair, a representation of Kn n Hn of the form

IndKnnHn(Kn)wnHn(Φ̃w ⊗ µ̂) is spherical for (Kn nHn, Kn) if and only if µ = 1(Kn)w .

Proposition 3.1.14. [28] Let Kn be a closed subgroup of U(n). Let [γ] ∈ K̂n and

[γ̂] ∈ ̂Kn nHn where γ̂ is the lifting of γ from Kn to Kn nHn. Then for all λ ∈ R∗,

mult(1Kn , (T̃λ ⊗ γ̂)�Kn ) = mult(γ∗, π) where γ∗ is the contragredient of γ and π is the
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natural representation of Kn, as a subgroup of U(n), on the ring of polynomials P (Cn).

Proof. Since T̃λ�Kn = πλ and γ̂�Kn = γ, we have

[(T̃λ ⊗ γ̂)�Kn ] = [πλ ⊗ γ].

The Fock representation πλ of Kn is equivalent to the natural representation π of Kn

on the ring of polynomials P (Cn). The representation π decomposes as π =
∑

j πj

where πj’ s are irreducible representations of Kn. Hence, π ⊗ γ =
∑

j πj ⊗ γ and

mult(1Kn , π ⊗ γ) =
∑
j

mult(1Kn , πj ⊗ γ).

But, mult(1Kn , πj⊗γ) = 1 if πj is equivalent to γ∗ and mult(1Kn , πj⊗γ) = 0 otherwise.

Hence the result follows.

We combine Theorem 3.1.11 with the above multiplicity calculations in the next

theorem and right after we give the spherical representations of the Gelfand pair

(U(n) nHn, U(n)) as its corollary which is the main result of this section.

Theorem 3.1.15. [28] Let Kn be a closed subgroup of the unitary group U(n) acting

multiplicity free on the polynomial ring P (Cn). Then there are two types of spherical

representations of the Gelfand pair (Kn nHn, Kn) given as follows:

First, there are classes of representations of the form [IndKnnHn(Kn)wnHn(Φ̃w)] where

w ∈ Cn, (Kn)w = {k ∈ Kn : kw = w}, Φ̃w is the character of (Kn)w nHn defined by

Φ̃w(k, z, t) = Φw(z, t) = eiRe〈z,w〉.

Second, there are classes of representations of the form [T̃λ ⊗ γ̂] where γ̂ is the

lifting of [γ] ∈ K̂n to KnnHn such that mult(γ∗, π) = 1 where γ∗ is the contragredient

of γ and π is the natural representation of Kn, as a subgroup of U(n), on the ring of

polynomials P (Cn).
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Corollary 3.1.16. There are two types of spherical representations of the Gelfand pair

(U(n) nHn, U(n)) given as follows:

First, there are classes of representations of the form [Ind
U(n)nHn
(U(n))wnHn(Φ̃w)] where

w ∈ Cn, (U(n))w = {k ∈ U(n) : kw = w}, Φ̃w is the character of (U(n))wnHn defined

by Φ̃w(k, z, t) = Φw(z, t) = eiRe〈z,w〉.

Second, there are classes of representations of the form [T̃λ⊗ π̂m] where π̂m is the

lifting to U(n) nHn of the representation πm of U(n) on the polynomials of degree m

on Cn.

3.2. Spherical Functions of (U(n) nHn, U(n))

Throughout this section, let Gn = U(n)nHn and Kn = U(n). As we have seen in

Remark 3.0.2, we may identify the spherical functions for the Gelfand pair (Gn, Kn) by

the spherical functions on Hn. Given h ∈ L1(Hn)Kn and λ > 0, consider the operator

Tλ(h) ∈ B(Fnλ ). From the equation (3.9), it follows that Tλ(h) commutes with the

natural action of Kn on Fm. Hence by Schur’ s Lemma the restriction of Tλ(h) to Fm

is a scalar multiple of identity, i.e. for all f ∈ Fm,

Tλ(h)f = ĥ(λ,m)f (3.11)

where ĥ(λ,m) is the spherical Fourier transform of h given by

ĥ(λ,m) =

∫
Hn

h(z, t)ϕλ,m(z, t) dzdt. (3.12)

We want to write the bounded spherical functions ϕλ,m explicitly. For all f ∈ Fm,

h ∈ L1(Hn)Kn and w ∈ Cn, we have
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ĥ(λ,m)f(w) = Tλ(h)f(w) = 〈Tλ(h)f,Kw〉λ =

∫
Hn

h(z, t) 〈Tλ(z, t)f,Kw〉λ dzdt

=

∫
Hn

h(z, t) (Tλ(z, t)f)(w) dzdt. (3.13)

When we apply the equation (3.13) for a fixed w ∈ Cn and f ∈ Fm such that f(w) = 1,

then we get

ĥ(λ,m) =

∫
Hn

h(z, t) (Tλ(z, t)f)(w) dzdt

=

∫
Hn

h(z, t) eλ(it− 1
2
‖z‖2−〈w,z〉)f(w + z) dzdt

=

∫
Kn

∫
Hn

h(kz, t) eλ(it− 1
2
‖kz‖2−〈w,kz〉)f(w + kz) dzdtdk

=

∫
Kn

∫
Hn

h(z, t) eλ(it− 1
2
‖z‖2−〈w,kz〉)f(w + kz) dzdtdk

=

∫
Hn

∫
Kn

h(z, t) eλ(it− 1
2
‖z‖2−〈w,kz〉)f(w + kz) dkdzdt

=

∫
Hn

h(z, t) eiλte−
1
2
λ‖z‖2

∫
Kn

e−λ〈w,kz〉f(w + kz) dk dzdt.

So the function ϕ(z, t) = eiλte−
1
2
λ‖z‖2 ∫

Kn
e−λ〈w,kz〉f(w + kz) dk is a continuous

Kn-invariant function such that the map h 7→
∫
Hn
h(z, t)ϕ(z, t) dzdt is a character

of the commutative algebra L1(Hn)Kn . Hence ϕ defines a spherical function for the

Gelfand pair (Gn, Kn). Note that ϕ is bounded and the characters of the commutative

algebra L1(Hn)Kn are uniquely determined by the bounded spherical functions for the

Gelfand pair (Gn, Kn) (see [Lemma 6.1.7, [26]]). Therefore, we get

ϕλ,m(z, t) = ϕ(z, t) = eiλte−
1
2
λ‖z‖2

∫
Kn

e−λ〈w,kz〉f(w + kz) dk

where w ∈ Cn is fixed and f ∈ Fm is chosen such that f(w) = 1. To move one more step

forward, let us take w = (0, 0, ..., 0, 1) ∈ Cn and f(z) = zmn for z = (z1, z2, ..., zn) ∈ Cn.
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Then, since f ∈ Fm and f(w) = 1,

ϕλ,m(z, t) = eiλte−
1
2
λ‖z‖2

∫
Kn

e−λ(kz)n(1 + (kz)n)m dk. (3.14)

The integral in the above equation is an integral of some special form which is given

and computed in the next proposition.

Proposition 3.2.1. [14] Let λ ∈ R∗. For f1, f2 ∈ Fnλ , we write f1 =
∑∞

m=0 f1,m and

f2 =
∑∞

m=0 f2,m uniquely where f1,m, f2,m ∈ Fm for all m and both series converges in

Fnλ . Then,

∫
Kn

f1(kz)f2(kz) dk =
∞∑
m=0

1

dm
Kλ,m(z, z)〈f1,m, f2,m〉λ

where Kλ,m is the reproducing kernel of (Fm, 〈·, ·〉λ) and dm = dim(Fm) =
(
n+m−1

m

)
.

Proof. Let πλ be the natural action of Kn on the Fock space Fnλ given as in the

equation (3.7). Then Fm’s are pairwise orthogonal, non-equivalent, irreducible unitary

subrepresentations of the representation (πλ,Fnλ ) of Kn. Let k ∈ Kn and z ∈ Cn. Note

that (Kλ,m)z ∈ Fm for each m. Then for j = 1, 2 we have

fj(kz) = (πλ(k
−1)fj)(z) = 〈πλ(k−1)fj, Kz〉λ =

∑
m

〈πλ(k−1)fj, (Kλ,m)z〉λ

=
∑
m

〈fj, πλ(k)(Kλ,m)z〉λ

=
∑
m

〈fj,m, πλ(k)(Kλ,m)z〉λ.

Then by the Schur’ s Orthogonality Relations for the matrix coefficients of the irre-

ducible unitary representations (πλ, Fm) of the compact group Kn, we get
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∫
Kn

f1(kz)f2(kz) dk =
∑
m,m′

∫
Kn

〈f1,m, πλ(k)(Kλ,m)z〉λ〈f2,m′ , πλ(k)(Kλ,m′ )z〉λ dk

=
∑
m

∫
Kn

〈f1,m, πλ(k)(Kλ,m)z〉λ〈f2,m, πλ(k)(Kλ,m)z〉λ dk

=
∞∑
m=0

1

dm
〈(Kλ,m)z, (Kλ,m)z〉λ〈f1,m, f2,m〉λ

=
∞∑
m=0

1

dm
Kλ,m(z, z)〈f1,m, f2,m〉λ

as desired.

Corollary 3.2.2. For λ > 0, the spherical function ϕλ,m of the Gelfand pair (Gn, Kn)

given in the equation (3.14) can be expressed explicitly as

ϕλ,m(z, t) = eiλte−
1
2
λ‖z‖2Ln−1

m (λ‖z‖2)

where Lnm(x) is the generalized Laguerre polynomial of order n and of degree m,

Lnm(x) = n!
m∑
i=0

(
m

i

)
(−x)i

(n+ i)!
. (3.15)

Proof. For z = (z1, z2, ..., zn) ∈ Cn, let f1(z) = (1 + zn)m and f2(z) = e−λzn . Since

f1(z) =
∑m

i=0

(
m
i

)
zin is a finite sum of monomials in Fnλ , we have f1 ∈ Fnλ . Also,

f2(z) =
∑∞

i=0
(−λ)i

i!
zin and since

∑∞
i=0 i!λ

−i| (−λ)i

i!
|2 = eλ, by Proposition 3.1.3 we have

f2 ∈ Fnλ as well. Let f1,i(z) =
(
m
i

)
zin ∈ Fi for 0 ≤ i ≤ m and f1,i(z) = 0 for i > m. Let

f2,i(z) = (−λ)i

i!
zin ∈ Fi for all i. If we denote the product n(n + 1)...(n + i − 1) by the

Pochhammer symbol (n)i, then di = dim(Fi) =
(
n+i−1

i

)
= (n)i

i!
. Then by Proposition

3.2.1,
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∫
Kn

f1(kz)f2(kz) dk =
∞∑
i=0

1

di
Kλ,i(z, z)〈f1,i, f2,i〉λ

=
m∑
i=0

i!

(n)i

λi

i!
‖z‖2i

(
m

i

)
(−λ)i

i!
‖zin‖2

λ

=
m∑
i=0

i!

(n)i

λi

i!
‖z‖2i

(
m

i

)
(−λ)i

i!

i!

λi

=
m∑
i=0

1

(n)i

(
m

i

)
(−λ)i‖z‖2i

= (n− 1)!
m∑
i=0

(
m

i

)
(−λ‖z‖2)i

(n+ i− 1)!
= Ln−1

m (λ‖z‖2).

Hence, ϕλ,m(z, t) = eiλte−
1
2
λ‖z‖2 ∫

Kn
f1(kz)f2(kz) dk = eiλte−

1
2
λ‖z‖2Ln−1

m (λ‖z‖2) as de-

sired.

In the following proposition, we give another expression of the spherical function

ϕλ,m for λ > 0, which directly indicates that it is indeed positive definite.

Proposition 3.2.3. Let λ > 0. Take any unit vector f0 ∈ Fm. Then,

ϕλ,m(z, t) = 〈Tλ(z, t)f0, f0〉λ.

Hence, ϕλ,m is positive definite.

Proof. Since ‖f0‖2
λ = 1, from the equations (3.11) and (3.12), it follows that for every

h ∈ L1(Hn)Kn ,

∫
Hn

h(z, t) 〈Tλ(z, t)f0, f0〉λ dzdt

= 〈Tλ(h)f0, f0〉λ = 〈ĥ(λ,m)f0, f0〉λ = ĥ(λ,m) =

∫
Hn

h(z, t)ϕλ,m(z, t) dzdt.

Moreover, the function (z, t) 7→ 〈Tλ(z, t)f0, f0〉λ is a bounded, continuous function on

Hn, which is also Kn-invariant by the equation (3.9). Then, the result follows from
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the uniqueness of a bounded, spherical function of Hn corresponding to the character

h 7→ ĥ(λ,m) of the algebra L1(Hn)Kn .

Theorem 3.2.4. (i) The positive definite spherical function for the Gelfand pair

(U(n) n Hn, U(n)) corresponding to the equivalence class of the spherical repre-

sentation Ind
U(n)nHn
(U(n))wnHn(Φ̃w) by the GNS-construction is

ψw(k, z, t) =

1, if w = 0

2n−1(n−1)!
(‖w‖‖z‖)n−1Jn−1(‖w‖‖z‖), if w 6= 0

(3.16)

where Jn(x) = 1 +
∑∞

i=0
1
i!

1
n(n+2)...(n+2m−2)

(−x
2

2
)i is the Bessel function of order n.

(ii) The positive definite spherical function for the Gelfand pair (U(n) n Hn, U(n))

corresponding to the equivalence class of the spherical representation T̃λ ⊗ π̂m by

the GNS-construction is ϕλ,m if λ > 0 and it is ϕ−λ,m if λ < 0 where

ϕλ,m(k, z, t) = eiλte−
1
2
λ‖z‖2Ln−1

m (λ‖z‖2) (3.17)

and Lnm(x) = n!
∑m

i=0

(
m
i

) (−x)i

(n+i)!
is the generalized Laguerre polynomial of order n

and of degree m.

Proof. (i) Since (U(n) n Hn, U(n)) forms a Gelfand pair, the group U(n) n Hn is

unimodular by [Proposition 6.1.2, [26]]. Then as a closed normal subgroup of U(n)nHn,

the Heisenberg group Hn is unimodular as well. The unimodularity of Hn and the

compact group (U(n))w implies the unimodularity of (U(n))w n Hn by [Proposition

3.3.10, [28]]. Hence the constant 1 function is a rho-function for the pair (U(n) n

Hn, U(n)w nHn).

For each w ∈ Cn, define fw : U(n) n Hn → C by f(k, z, t) = e−iRe〈z,kw〉. It

can be easily checked that fw is a U(n)-invariant, unit element in V
Ind

U(n)nHn
(U(n))wnHn

(Φ̃w)
.

Hence the positive-spherical function ψw corresponding to the spherical representation

Ind
U(n)nHn
(U(n))wnHn(Φ̃w) is given by
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ψw(k, z, t) = 〈fw, Ind
U(n)nHn
(U(n))wnHn(Φ̃w)(k, z, t)fw〉

=

∫
U(n)

e−iRe〈z,k′w〉 dµU(n)(k
′
) (3.18)

where µU(n) is the normalized Haar measure on U(n). Then for w = 0, ψw(k, z, t) = 1.

By the left U(n)-invariance of the normalized Haar measure on U(n), the integral in

(3.18) depends only on two parameters: w and the usual norm of z in Cn. Hence ψw

is a function of ‖z‖. For w 6= 0, it follows from (6.4) in [3] that the integral in (3.18),

hence ψw, can be expressed in terms of a Bessel function as it is stated in (3.16).

(ii) We start with the case λ > 0. Let πm be the restriction on Fm of the natural

action πλ of U(n) on Fnλ . Let Fm = {f : f ∈ Fm} and πm be the action of U(n) on Fm

defined by πm(k)f = πm(k)f for f ∈ Fm and k ∈ U(n). Clearly, [πm] = [πm] in Û(n).

Now, consider the reproducing kernel Kλ,m of (Fm, 〈·, ·〉λ). Then,

Kλ,m(z, w) =
∑
|ν|=m

eν(z)eν(w) =
∑
|ν|=m

(eν ⊗ eν)(z, w) ∈ Fnλ ⊗ Fm

where ν ∈ Nn and eν(z) =

√
|λ||ν|
ν!
zν is a unit vector in Fnλ . Since

Kλ,m(kz, kw) =
|λ|m

m!
〈kz, kw〉m =

|λ|m

m!
〈z, w〉m = Kλ,m(z, w)

for all k ∈ U(n), the reproducing kernelKλ,m(z, w) is a U(n)-invariant vector in Fnλ⊗Fm
under the action of U(n) nHn via the representation T̃λ ⊗ π̂m. Here, π̂m is the lifting

of πm from U(n) to U(n) nHn. So, given (k, z, t) ∈ U(n) nHn, we have
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〈T̃λ ⊗ π̂m(k, z, t)Kλ,m, Kλ,m〉

= 〈T̃λ ⊗ π̂m(k, z, t)
∑
|ν|=m

(eν ⊗ eν), T̃λ ⊗ π̂m(k, 0, 0)
∑
|ν|=m

(eν ⊗ eν)〉

= 〈
∑
|ν|=m

T̃λ(k, z, t)eν ⊗ π̂m(k, z, t)eν ,
∑
|ν|=m

T̃λ(k, 0, 0)eν ⊗ π̂m(k, 0, 0)eν〉

=
∑
|ν|=m

∑
|ν′ |=m

〈Tλ(z, t)πλ(k)eν , πλ(k)eν′ 〉λ〈πm(k)eν , πm(k)eν′ 〉λ

=
∑
|ν|=m

〈Tλ(z, t)πλ(k)eν , πλ(k)eν〉λ. (3.19)

Since πλ(k)eν is a unit vector in Fm, by Proposition 3.2.3,

∑
|ν|=m

〈Tλ(z, t)πλ(k)eν , πλ(k)eν〉λ =
∑
|ν|=m

ϕλ,m(z, t) = ϕλ,m(z, t)
∑
|ν|=m

1 = ϕλ,m(z, t) dimFm.

Therefore,

ϕλ,m(z, t) = (dimFm)−1〈Kλ,m, T̃λ ⊗ π̂m(k, z, t)Kλ,m〉

and since [T̃λ ⊗ π̂m] = [T̃λ ⊗ π̂m] in ̂U(n) nHn, the result follows.

To continue with the case λ < 0, take (k, z, t) ∈ U(n)nHn and choose k0 ∈ U(n)

such that k0z = z̄. Then,

〈Tλ(z, t)πλ(k)eν , πλ(k)eν〉λ = 〈T−λ(z̄,−t)πλ(k)eν , πλ(k)eν〉λ

= 〈T−λ(k0z,−t)πλ(k)eν , πλ(k)eν〉λ

= 〈πλ(k)eν , T−λ(−k0z, t)πλ(k)eν〉λ

= 〈πλ(k)eν , πλ(−k0)T−λ(z, t)πλ(−k−1
0 )πλ(k)eν〉λ

= 〈πλ(−k−1
0 k)eν , T−λ(z, t)πλ(−k−1

0 k)eν〉λ = ϕ−λ,m(z, t).
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Hence, following the equation (3.19),

〈T̃λ ⊗ π̂m(k, z, t)Kλ,m, Kλ,m〉 =
∑
|ν|=m

〈Tλ(z, t)πλ(k)eν , πλ(k)eν〉λ =
∑
|ν|=m

ϕ−λ,m(z, t)

= ϕ−λ,m(z, t) dimFm

(3.20)

so that

ϕ−λ,m(z, t) = (dimFm)−1〈Kλ,m, T̃λ ⊗ π̂m(k, z, t)Kλ,m〉

as desired.

3.3. Spherical Dual of (U(∞) nH(∞), U(∞))

In the asymptotic functional equation satisfied by the spherical functions for the

pair (U(∞) nH(∞), U(∞)), we will confront with integrals over the unitary group of

functions which depend only on the first entry. The next lemma will enable us to turn

such integrals over the unitary group into integrals over the closed unit ball in C. It

is indeed a special case of Lemma 5.1 in [14], but we shall give a simple proof that is

specific to this case.

Lemma 3.3.1. Let n ≥ 2 and D be the closed unit ball in C. Consider the projection

Λ : U(n)→ D defined by Λ((uij)
n
i,j=1) = u11. If f is a continuous function on D, then

∫
U(n)

(f ◦ Λ)(U) dµU(n)(U) =
n− 1

π

∫
D

f(w)(1− |w|2)n−2 dµ(w) (3.21)

where µ is the Lebesgue measure on D and µU(n) is the normalized Haar measure on

U(n).
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Proof. Let

S2n−1 = {(z1, ..., zn) ∈ Cn :
n∑
i=1

|zi|2 = 1}

be the unit sphere in Cn and let e1 = (1, 0, ..., 0) ∈ Cn. Let F : U(n) → S2n−1 be

the function defined by F (U) = U(e1), i.e. F ((uij)
n
i,j=1) = (u11, u21, ..., un1). Since

the Haar measure on U(n) is left translation invariant, the pushforward F∗(µU(n)) of

the normalized Haar measure µU(n) is a rotation invariant probability measure on the

sphere S2n−1. Indeed, given f : S2n−1 → C and g ∈ U(n),

∫
S2n−1

(f ◦ g)(x) dF∗(µU(n))(x) =

∫
U(n)

(f ◦ g ◦ F )(U) dµU(n)(U)

=

∫
U(n)

(f ◦ F )(gU) dµU(n)(U)

=

∫
U(n)

(f ◦ F )(U) dµU(n)(U)

=

∫
S2n−1

f(x) dF∗(µU(n))(x).

Then since the uniform measure σ2n−1 is the unique rotation invariant probability

measure on the sphere S2n−1, we get F∗(µU(n)) = σ2n−1. For the function Θ : S2n−1 →

D defined by Θ(z1, ..., zn) = z1, we have Θ ◦ F = Λ. Then since F∗(µU(n)) = σ2n−1, we

get

∫
U(n)

(f ◦ Λ)(U) dµU(n)(U) =

∫
S2n−1

(f ◦Θ) dσ2n−1.

Let B2 denote the open unit ball in C. By Theorem A.4. in [2], for some certain

constant C ∈ C we have
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∫
S2n−1

(f ◦Θ) dσ2n−1

= C.

∫
B2

(1− |w|2)n−2

∫
S2n−3

(f ◦Θ)(w,
√

1− |w|2ζ) dσ2n−3(ζ) dµ(w)

= C.

∫
B2

(1− |w|2)n−2

∫
S2n−3

f(w) dσ2n−3(ζ) dµ(w)

= C.

∫
B2

f(w)(1− |w|2)n−2 dµ(w).

Hence, for a certain constant C ∈ C,

∫
U(n)

(f ◦ Λ)(U) dµU(n)(U) = C.

∫
D

f(w)(1− |w|2)n−2 dµ(w).

But, C−1 =
∫
D

(1−|w|2)n−2 dµ(w) =
∫ 2π

0

∫ 1

0
(1− r2)n−2r dr dθ = π

n−1
. So, the equation

(3.21) follows.

The following lemma will play a crucial role in the computation of the limit

appearing in the asymptotic functional equation satisfied by the spherical functions for

the pair (U(∞) nH(∞), U(∞)).

Lemma 3.3.2. [12] Let X be a compact space and µ be a measure such that µ(U) > 0

for all nonempty open subset U of X. Let δ ≥ 0 be a continuous function on X which

attains its maximum at only one point x0. Then for a continuous function f on X,

lim
n→∞

1∫
X
δ(x)n dµ(x)

∫
X

f(x)δ(x)n dµ(x) = f(x0).

Proof. Define an = (
∫
X
δ(x)n dµ(x))−1. Let M = δ(x0). Given r > 0, also define

Br = {x ∈ X : δ(x) > M − r}. Note that

(an)−1 =

∫
X

δ(x)n dµ(x) ≥
∫
Br

δ(x)n dµ(x) ≥
∫
Br

(M − r)n dµ(x) = (M − r)nµ(Br)

for all r > 0.
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Given an open neighbourhood U0 of x0, there exists an r0 > 0 such that δ(x) ≤

M − r0 for all x ∈ X\U0. Hence Br0 ⊆ U0. Then,

an

∫
X\U0

δ(x)n dµ(x) ≤ an

∫
X\U0

(M − r0)n dµ(x)

≤ an

∫
X\Br0

(M − r0)n dµ(x) ≤ (M − r0)nµ(X\Br0)

(M − r0
2

)nµ(B r0
2

)

so that limn→∞ an
∫
X\U0

δ(x)n dµ(x) = 0.

Since X is compact, every continuous function g on X is bounded so that

lim
n→∞

an

∫
X\U0

g(x)δ(x)n dµ(x) = 0

as well.

Now let f be a continuous function on X and let ε > 0 be given. Choose an open

neighbourhood U of x0 such that for all x ∈ U , |f(x) − f(x0)| < ε
2

is satisfied. By

the last equation above, we have limn→∞ an
∫
X\U(f(x)− f(x0))δ(x)n dµ(x) = 0. Hence

there exists N ∈ N such that for all n > N , |an
∫
X\U(f(x) − f(x0))δ(x)n dµ(x)| < ε

2
.

Then, for all n > N

|an
∫
X

f(x)δ(x)n dµ(x)− f(x0)|

= |an
∫
X

f(x)δ(x)n dµ(x)− an
∫
X

f(x0)δ(x)n dµ(x)|

= |an
∫
X

(f(x)− f(x0))δ(x)n dµ(x)|

≤ |an
∫
U

(f(x)− f(x0))δ(x)n dµ(x)|+ |an
∫
X\U

(f(x)− f(x0))δ(x)n dµ(x)|

<
ε

2
.

∫
U
δ(x)n dµ(x)∫

X
δ(x)n dµ(x)

+
ε

2
< ε.

We will give a type of positive definite functions on the Heisenberg group Hn.
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Priorly, we list some useful notions, remarks and theorems related to positive definite

kernels, hence to positive definite functions on groups.

Definition 3.3.3. Let X be a non-empty set. A function K : X × X → C is called

a positive definite kernel if and only if
∑n

i,j=1 cicjK(xi, xj) ≥ 0 for any finite subset

{x1, x2, ..., xn} in X and for all systems {c1, c2, ..., cn} of complex numbers. That is

to say, the matrix (K(xi, xj))
n
i,j=1 is positive definite for all n ∈ N and for any finite

subset {x1, x2, ..., xn} in X.

Remark 3.3.4. Let G be a group and ϕ : G→ C be a function. Define Kϕ : G×G→ C

by Kϕ(x, y) = ϕ(x−1y). Then ϕ is positive definite if and only if Kϕ is a positive definite

kernel.

Remark 3.3.5. Let X 6= ∅ and f : X → C be an arbitrary function. Then K(x, y) =

f(x)f(y) is a positive definite kernel, because
∑n

i,j=1 cicjf(xi)f(xj) = ‖
∑n

i=1 cif(xi)‖2 ≥

0.

The following theorem, due to Schur, shows that the convex cone of positive

definite kernels is closed under pointwise multiplication.

Theorem 3.3.6. [4] Let X be a non-empty set. If K1, K2 : X ×X → C are positive

definite kernels, then their pointwise product K1.K2 : X × X → C is also a positive

definite kernel.

Corollary 3.3.7. If K : X ×X → C is a positive definite kernel, then so is exp(K).

Proof. By Theorem 3.3.6, for each i ∈ N the kernel Ki is positive definite so that

the finite sum
∑n

i=1
1
i!
Ki is also positive definite for each n ∈ N. Then since the

pointwise limits of positive definite kernels are again positive definite, we get exp(K) =

limn→∞
∑n

i=1
1
i!
Ki is positive definite.

Definition 3.3.8. Let X be a non-empty set. A function K : X × X → C is called

a negative definite kernel if and only if K is Hermitian, i.e. K(x, y) = K(y, x) for all

x, y ∈ X and
∑n

i,j=1 cicjK(xi, xj) ≤ 0 for any finite subset {x1, x2, ..., xn} in X and for

all systems {c1, c2, ..., cn} of complex numbers with
∑n

i=1 ci = 0 and n ≥ 2.
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Remark 3.3.9. A real-valued kernel K : X×X → R is negative definite if and only if

K is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈ X and
∑n

i,j=1 cicjK(xi, xj) ≤ 0 for

any finite subset {x1, x2, ..., xn} in X and for all systems {c1, c2, ..., cn} of real numbers

with
∑n

i=1 ci = 0 and n ≥ 2.

There is a beautiful relation between positive definite and negative definite kernels

given by Schoenberg in [24] as follows.

Theorem 3.3.10. Let X be a non-empty set. A function K : X×X → C is a negative

definite kernel if and only if exp(−tK) is a positive definite kernel for all t ∈ R>0.

For the proof of Theorem 3.3.10, one can see Theorem 3.2.2 in [4]. We are now

ready to give some results on positive definite functions on Cn and Hn.

Proposition 3.3.11. Let Q be a positive definite quadratic form on Cn. Then, e−Q(z)

is a positive definite function on Cn.

Proof. Let B be the positive definite Hermitian form corresponding to Q. By Remark

3.3.4, we need to show that K(z, w) = e−Q(−z+w) = e−B(−z+w,−z+w) is a positive definite

kernel. By Theorem 3.3.10, it is enough to show that T (z, w) = B(−z + w,−z + w)

is a negative definite kernel. T is clearly symmetric. Now let c1, c2, ..., cN ∈ R with∑N
i=1 ci = 0 and z1, z2, ..., zN ∈ Cn. Then,

N∑
i,j=1

cicjT (zi, zj) =
N∑

i,j=1

cicjB(−zi + zj,−zi + zj)

= −(
N∑

i,j=1

cicjB(zi, zj) +
N∑

i,j=1

cicjB(zj, zi))

= −2.B(
N∑
i=1

cizi,

N∑
i=1

cizi) ≤ 0.

Hence by Remark 3.3.9, T is a negative definite kernel.

Proposition 3.3.12. For each λ ∈ R the map ψ(z, t) = eiλt−
1
2
|λ|‖z‖2 is positive definite

on the Heisenberg group Hn.
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Proof. We need to show that K((z, t), (w, s)) = ψ((z, t)−1(w, s)) is a positive definite

kernel on Hn. Let z = (z1, z2, ..., zn) and w = (w1, w2, ..., wn) for zj, wj ∈ C for all

j = 1, 2, ..., n. Then,

K((z, t), (w, s)) = ψ((−z,−t)(w, s))

= eiλ(−t+s)e−iλ Im〈z,w〉e−
1
2
|λ|‖−z+w‖2

= eiλ(−t+s)
n∏
j=1

e−iλ Im(zjwj)

n∏
j=1

e−
1
2
|λ||−zj+wj |2

= eiλ(−t+s)
n∏
j=1

e−iλ Im(zjwj)

n∏
j=1

e|λ|Re(zjwj)

n∏
j=1

e−
1
2
|λ|(|zj |2+|wj |2)

= eiλ(−t+s)
n∏
j=1

e|λ|(Re(zjwj)−i.sgn(λ) Im(zjwj))

n∏
j=1

e−
1
2
|λ|(|zj |2+|wj |2). (3.22)

Now, define A((z, t), (w, s)) = eiλ(−t+s) and given j ∈ {1, 2, ..., n}, let Bj((z, t), (w, s)) =

zjwj and Cj((z, t), (w, s)) = e−
1
2
|λ|(|zj |2+|wj |2). Since A((z, t), (w, s)) = f(z, t)f(w, s)

where f(z, t) = e−iλt for (z, t) ∈ Hn, by Remark 3.3.5 we get that A is a positive definite

kernel. Bj((z, t), (w, s)) = fj(z, t)fj(w, s) where fj(z, t) = zj for (z, t) ∈ Hn. Hence Bj

is a positive definite kernel by Remark 3.3.5. Then |λ|Bj and by Corollary 3.3.7 also

e|λ|Bj are positive definite kernels. Moreover, since Cj((z, t), (w, s)) = gj(z, t)gj(w, s)

where gj is the function defined on Hn by gj(z, t) = e−
1
2
|λ||zj |2 , we have Cj is a positive

definite kernel by Remark 3.3.5 as well. The equation (3.22) shows that if λ < 0,

then K = A
∏n

j=1 e
|λ|Bj

∏n
j=1Cj and if λ ≥ 0, then K = A

∏n
j=1 e

|λ|Bj
∏n

j=1 Cj. In

both cases, as a product of positive definite kernels, K is a positive definite kernel by

Theorem 3.3.6.

Lemma 3.3.13. Let λ ∈ R and assume Q is a positive definite quadratic form on Cn.

Consider ϕ : Hn → C defined by

ϕ(z, t) = eiλte−Q(z).

Then the function ϕ is positive definite if and only if Q(z) ≥ 1
2
|λ|‖z‖2.
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Proof. In case λ = 0, it follows from Proposition 3.3.11 that ϕ(z, t) = e−Q(z) is positive

definite on Hn for any positive definite quadratic form Q on Cn. Now let λ ∈ R∗.

Assume ϕ : Hn → C given by ϕ(z, t) = eiλte−Q(z) is positive definite on Hn. Fix u ∈ Cn

with ‖u‖ = 1. We define the map ϕu : H1 → C by

ϕu(z, t) = ϕ(zu, t) = eiλte−Q(u)|z|2

for all z ∈ C and t ∈ R. Since ϕ is positive definite on Hn and ‖u‖ = 1, we get ϕu is

positive definite on H1.

Given µ ∈ R>0, let ψλ,µ : H1 → C defined by ψλ,µ(z, t) = eiλte−µ|z|
2
. By [p.269,

[8]], the ordinary generating function of the sequence {Lm(x)}∞m=0 of the Laguerre

polynomials is given by

∞∑
m=0

Lm(x)rm =
1

1− r
e−

r
1−rx (3.23)

if −1 < r < 1. Given z ∈ C, taking x = |λ||z|2 and r = 2µ−|λ|
2µ+|λ| in the equation (3.23),

we get

∞∑
m=0

Lm(|λ||z|2)(
2µ− |λ|
2µ+ |λ|

)m =
2µ+ |λ|

2λ
e(−µ+

|λ|
2

)|z|2 . (3.24)

Then we multiply both sides of the equation (3.24) with eiλte−
1
2
|λ||z|2 and we get

ψλ,µ(z, t) =
2|λ|

2µ+ |λ|

∞∑
m=0

(
2µ− |λ|
2µ+ |λ|

)mϕλ,m(z, t) (3.25)

where ϕλ,m(z, t) = eiλte−
1
2
|λ||z|2Lm(|λ||z|2) is positive definite on H1 for each m ∈ N as

it follows from Proposition 3.2.3. Hence ψλ,µ is positive definite on H1 if and only if

2µ ≥ |λ|. Since ϕu is positive definite on H1 and ϕu = ψλ,Q(u) for all u ∈ Cn with

‖u‖ = 1, we then get 2Q( z
|z|) ≥ |λ| for all non-zero z ∈ Cn so that Q(z) ≥ 1

2
|λ|‖z‖2 for

all z ∈ Cn.
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Conversely, assume Q(z) ≥ 1
2
|λ|‖z‖2. Let ψ(z, t) = eiλt−

1
2
|λ|‖z‖2 and χ(z, t) =

e
1
2
|λ|‖z‖2−Q(z). By Proposition 3.3.12, ψ is positive definite on Hn. For (z, w) ∈ Cn×Cn,

let C(z, w) = B(z, w) − 1
2
|λ|〈z, w〉 where B is the positive definite Hermitian form

corresponding to Q. Then C is also a positive definite Hermitian form on Cn and by

Proposition 3.3.11, e−C(z,z) is a positive definite function on Cn so that χ(z, t) = e−C(z,z)

is positive definite on Hn. Therefore, ϕ(z, t) = ψ(z, t)χ(z, t) is positive definite by

Theorem 3.3.6.

Theorem 3.3.14. Let ϕ : U(∞) n H(∞) → C be a continuous and U(∞)-invariant

function. Then, ϕ is a positive definite spherical function for the Olshanski pair

(U(∞) nH(∞), U(∞)) if and only if

ϕ(k, z, t) = eiλte−µ‖z‖
2

for some λ, µ ∈ R such that µ ≥ 1
2
|λ|.

Proof. Let ϕ : U(∞) n H(∞) → C be a continuous and U(∞)-invariant function.

Then as already mentioned in Remark 3.0.2, ϕ does not depend on the parameter k

and we can consider ϕ as a continuous, U(∞)-invariant function on H(∞). Given

z, w ∈ C(∞), there exists k ∈ U(∞) such that kz = w if and only if ‖z‖ = ‖w‖. Then

by U(∞)-invariance of ϕ, we get ϕ(z, t) = ϕ((‖z‖, 0, 0, ...), t) for all (z, t) ∈ H(∞).

That is to say, there exists a unique continuous function Fϕ : [0,∞)×R→ C such that

ϕ(z, t) = Fϕ(‖z‖2, t) for all (z, t) ∈ H(∞).

Given (z1, t1) and (z2, t2) in H(∞), for N sufficently large, we can choose k1, k2 ∈

U(N) such that z1 = k1(‖z1‖, 0, 0, ...) and z2 = k2(‖z2‖, 0, 0, ...). Then by U(∞)-left-

invariance of ϕ and the unimodularity of the Haar measure on the compact group U(n),

for all n > N we have



53

∫
U(n)

ϕ((z1, t1)U(z2, t2)) dµU(n)(U)

=

∫
U(n)

ϕ(k1((‖z1‖, 0, 0, ...), t1)Uk2((‖z2‖, 0, 0, ...), t2)) dµU(n)(U)

=

∫
U(n)

ϕ(((‖z1‖, 0, 0, ...), t1)U((‖z2‖, 0, 0, ...), t2)) dµU(n)(U).

Hence, ϕ is (U(∞) nH(∞), U(∞))-spherical if and only if

lim
n→∞

∫
U(n)

ϕ(xUy) dµU(n)(U) = ϕ(x)ϕ(y)

for all x = ((r, 0, 0, ...), t) ∈ H(∞) and y = ((r
′
, 0, 0, ...), t

′
) ∈ H(∞) where r, r

′ ∈ R>0.

Now for r, r
′ ∈ R>0, let x = ((r, 0, 0, ...), t) ∈ H(∞) and y = ((r

′
, 0, 0, ...), t

′
) ∈

H(∞). Given U = (uij)i,j≥1 ∈ U(n),

ϕ(xUy) = ϕ((r + u11r
′
, u21r

′
, ..., un1r

′
, 0, 0, ...), t+ t

′
+ rr

′
Im(u11))

= Fϕ(r2 + (r
′
)2 + 2rr

′
Re(u11), t+ t

′ − rr′ Im(u11)).

Then by Lemma 3.3.1,

∫
U(n)

ϕ(xUy) dµU(n)(U)

=
n− 1

π

∫
D

Fϕ(r2 + (r
′
)2 + 2rr

′
Re(w), t+ t

′ − rr′ Im(w))(1− |w|2)n−2 dµ(w).

By taking limits as n goes to ∞ of the above equation and applying Lemma 3.3.2,

lim
n→∞

∫
U(n)

ϕ(xUy) dµU(n)(U) = Fϕ(r2 + (r
′
)2, t+ t

′
).



54

Therefore, it turns out that ϕ is (U(∞) nH(∞), U(∞))-spherical if and only if

Fϕ satisfies the multiplicative property given by the equation

Fϕ(r2, t)Fϕ((r
′
)2, t

′
) = Fϕ(r2 + (r

′
)2, t+ t

′
) (3.26)

for all r, r
′
, t, t

′ ∈ R.

Now, to prove the ‘only if’ part of the statement of the theorem, assume ϕ is

positive definite and spherical for the Olshanski pair (U(∞)nH(∞), U(∞)). Then we

have the equation (3.26) which implies Fϕ(r2, t) = Fϕ(r2 + 0, 0 + t) = Fϕ(r2, 0)Fϕ(0, t)

for all r, t ∈ R. Now let f : R → C and g : R>0 → C be the continuous functions

defined by f(t) = Fϕ(0, t) and g(r) = Fϕ(r, 0). Since Fϕ(r2, t) = Fϕ(0 + r2, 0 + t) =

Fϕ(0, 0)Fϕ(r2, t) = f(0)Fϕ(r2, t) for all r, t ∈ R and ϕ is non-zero, we have f(0) = 1.

Since ϕ is positive definite, ϕ satisfies the Hermitian symmetry so that for any t ∈ R,

‖f(t)‖2 = f(t)f(t) = ϕ((0, 0, ...), t)ϕ((0, 0, ...),−t) = Fϕ(0, t)Fϕ(0,−t) = Fϕ(0, 0) =

f(0) = 1. Hence, f : R → S1 and since f(t + s) = Fϕ(0, t + s) = Fϕ(0, t)Fϕ(0, s) =

f(t)f(s) for all t, s ∈ R, it follows that f : R→ S1 is a continuous group homomorphism.

Therefore, f(t) = eiλt for some λ ∈ R. When it comes to g, we have g(r2 + s2) =

Fϕ(r2 + s2, 0) = Fϕ(r2, 0)Fϕ(s2, 0) = g(r2)g(s2) for all r, s ∈ R and together with the

continuity of g, we get g(r) = ecr for some c = α + iβ ∈ C. By positive definiteness

of ϕ, we have ϕ(z, 0) = ϕ(−z, 0) for all (z, 0) ∈ H(∞) and since ϕ(z, 0) = g(‖z‖2), we

get eα‖z‖
2
eiβ‖z‖

2
= eα‖z‖

2
e−iβ‖z‖

2
for all z ∈ C(∞). Hence β = 0. Since ϕ is bounded, g

is also bounded so that α ≤ 0. So, for all r ∈ R, g(r2) = e−µr
2

for some µ ≥ 0. Thus,

ϕ(z, t) = Fϕ(0, t)Fϕ(‖z‖2, 0) = f(t)g(‖z‖2) = eiλte−µ‖z‖
2

for some λ ∈ R and µ ≥ 0. Since ϕ is positive definite, the restriction ϕ�H(n) is positive

definite on Hn for all n. Then, by Lemma 3.3.13, we get µ ≥ 1
2
|λ|.

To prove the ‘if part’, let ϕ(z, t) = eiλte−µ‖z‖
2

where λ, µ ∈ R, µ ≥ 1
2
|λ| and

(z, t) ∈ H(∞). Since ϕ�H(n) is continuous for each n, ϕ is continuous on H(∞) with

the inductive limit topology. The function ϕ is obviously U(∞)-invariant. Moreover,
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the corresponding function Fϕ satisfies the equation (3.26) so that ϕ defines a spherical

function on H(∞). Since µ ≥ 1
2
|λ|, by Lemma 3.3.13, ϕ�H(n) is positive definite on

H(n) for each n. Hence, ϕ is positive definite on H(∞) as well.
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4. HARMONIC ANALYSIS FOR AN OLSHANSKI PAIR

CONSISTING OF STABILIZERS OF HORICYCLES OF

HOMOGENEOUS TREES

4.1. The Olshanski Pair (Bω, Bn)

In this section we give the necessary definitions and notations to construct the

second Olshanski pair on which we study.

Let (X,E) be a homogeneous tree of countably infinite degree where X is the set

of vertices and E is the set of edges. Let d denote the natural distance on X which

counts the number of edges between two points. Fix two distinct elements ω and ω
′

of

the boundary of the tree (X,E). There is a unique doubly infinite chain on the tree

(X,E) connecting the boundary points ω and ω
′
. Denote it by (ω

′
, ω). Enumerate the

vertices on (ω
′
, ω) by a sequence (xn)n∈Z such that xn and xn+1 are neighbours (i.e.

d(xn, xn+1)=1), the infinite chain (xn)∞n=0 corresponds to the boundary point ω and the

infinite chain (xn)−∞n=0 corresponds to the boundary point ω
′

(for the definitions of the

notions used up to now, one can see [1]).

For each vertex x in X, we enumerate its neighbours: If x 6= xn for any n ∈ Z,

then we choose a bijection τx : N → {y ∈ X | d(x, y) = 1} such that τx(1) is the

neighbour of x with minimal distance to the chain (ω
′
, ω). If x = xn for some n ∈ Z,

then we choose a bijection τx : N→ {y ∈ X | d(x, y) = 1} such that τx(1) = xn−1 and

τx(2) = xn+1. We fix these bijections {τx}x∈X .

For each integer k ≥ 2, we define a subtree (Xk, Ek) of the tree (X,E) as follows:

If x = xn for some n ∈ Z, we let x ∈ Xk. If x 6= xn for any n ∈ Z, then there exists

a unique vertex xn0 on the chain (ω
′
, ω) with minimal distance to x. Suppose y0, y1,

..., ym are the vertices on the path from xn0 to x with y0 = xn0 and ym = x and that

yj+1 is a neighbour of yj. Then we say that x ∈ Xk if yj+1 ∈ τyj({2, 3, ..., k + 1}) for
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all j ∈ {0, 1, ...,m− 1}. Let Ek = {{x, y} ∈ E | x ∈ Xk, y ∈ Xk}. Note that (Xk, Ek)

is a locally finite, homogeneous subtree of degree k + 1 ≥ 3 of the tree (X,E).

We now define the horicycle H∞n of the tree (X,E) associated to the boundary

point ω, for n ∈ Z: For x ∈ X, let xn0 be the vertex on the chain (ω
′
, ω) with min-

imal distance to x. Then we say that x belongs to the horicycle H∞n if the equation

d(x, xn0) = d(xn, xn0) holds. Given n ∈ Z and an integer k ≥ 2, set the horicycle Hk
n of

the subtree (Xk, Ek) by Hk
n = H∞n ∩Xk. Note that the families {Hk

n}n∈Z and {H∞n }n∈Z

give partitions of Xk and X respectively.

Given an integer k ≥ 2, let Aut(Xk) be the group of all automorphisms of the tree

(Xk, Ek), i.e. the group of all bijections from Xk onto itself which preserve the edges.

The group Aut(Xk) is a metrizable Hausdorff topological group with the topology

of compact convergence. The collection of sets UF (g) = {h ∈ Aut(Xk) : h(x) =

g(x) for all x ∈ F} forms a base for this topology where g ∈ Aut(Xk) and F ⊂ Xk is

finite. Since Xk is a homogeneous tree of finite degree, the group Aut(Xk) is locally

compact. One can also see a fundamental system of compact open neighbourhoods

of the identity in [19]. Given a vertex x ∈ X, let Kk
x be the subgroup of Aut(Xk)

consisting of all automorphisms fixing the vertex x. Then Kk
x is an open compact

subgroup of Aut(Xk) and the pair (Aut(Xk), Kk
x) is a Gelfand pair (see [Proposition

2.3.2, [1]]). In particular, the pair (Aut(Xk), Kk
xn) is a Gelfand pair for all n ∈ Z. Let

Stab(Hk
n) = { g ∈ Aut(Xk) | g(Hk

n) = Hk
n} and Bk

ω = ∩n∈NStab(Hk
n) = ∩n∈ZStab(Hk

n).

It can be observed that

Bk
ω = { g ∈ Aut(Xk) | g(xn) = xn for n sufficiently large }.

Indeed, if g ∈ Bk
ω and g(x0) = x0, then g(xn) = xn for all n ≥ 0. If g ∈ Bk

ω and

g(x0) = x for some x ∈ Hk
n\{x0} and if xm is the vertex on (ω

′
, ω) with minimal

distance to x, then g(xn) = xn for all n ≥ m.



58

On the group Bk
ω we consider the topology induced from that of Aut(Xk). Let

{gm}m be a sequence in Stab(Hk
n) converging to g ∈ Aut(Xk). Let x ∈ Hk

n. Since

gm → g, there exists M ∈ N such that gm ∈ U{x}(g) for all m ≥ M . In particular

g(x) = gM(x) ∈ Hk
n. So g ∈ Stab(Hk

n). This argument shows that Stab(Hk
n) is a closed

subgroup of Aut(Xk) for each n ∈ Z. Then the group Bk
ω = ∩n∈ZStab(Hk

n) is also a

closed subgroup of Aut(Xk), hence Bk
ω is itself a locally compact topological group.

For all n ∈ Z, set Bk
n = Bk

ω ∩Kk
xn . Then Bk

n is an open compact subgroup of Bk
ω

for which we have the following proposition.

Proposition 4.1.1. [18] The pair (Bk
ω, B

k
n) is a Gelfand pair for all integers k ≥ 2

and for all n ∈ Z.

Proof. Let k, n ∈ Z be such that k ≥ 2. Let g ∈ Bk
ω. Suppose that g /∈ Bk

n. Then

since Bk
ω = ∪n∈ZB

k
n and Bk

n ⊂ Bk
n+1 for all n ∈ Z, there exists m > n such that

g ∈ Bk
m\Bk

m−1. Let m0 ∈ Z be such that m0 < n < m. Since g(xm0) 6= xm0 and

d(g(xm0), xm) = d(g(xm0), g(xm))

= d(xm0 , xm) = d(g−1(xm0), g
−1(xm)) = d(g−1(xm0), xm), (4.1)

there exists h ∈ Bk
m0

such that hg(xm0) = g−1(xm0). This implies that g−1 ∈ Bk
m0
gBk

m0
.

Since Bk
m0
⊂ Bk

n, we get g−1 ∈ Bk
ngB

k
n. If g ∈ Bk

n, obviously g−1 ∈ Bk
ngB

k
n. Hence

for all g ∈ Bk
ω, we have g−1 ∈ Bk

ngB
k
n. Then by Gelfand’ s trick [Theorem 6.1.3, [26]],

(Bk
ω, B

k
n) is a Gelfand pair.

By using these Gelfand pairs (Bk
ω, B

k
n), we construct an Olshanski pair as follows:

Let Aut(X) be the group of all automorphisms of the tree (X,E) and let

B∞ω = { g ∈ Aut(X) | g(H∞n ) = H∞n for all n ∈ Z }.
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The group Aut(X) is a topological group with the compact-open topology. B∞ω

is also a topological group with the topology induced from that of Aut(X).

We can embed Aut(Xk) in Aut(X) for each integer k ≥ 2 as follows: Let g ∈

Aut(Xk). We will extend g to an automorphism g̃ in Aut(X) ( which is called the

natural extension of g), so we just need to define g̃(x) for the vertices x ∈ X\Xk so

that g̃ ∈ Aut(X). So let x ∈ X\Xk and let y be the vertex of Xk with minimal

distance to x. Assume that y0, y1, ..., ym are the vertices on the path from y to x

with y0 = y, ym = x and d(yi, yi+1) = 1. Since y1, ..., ym are not in Xk, for each

i ∈ {0, 1, ...,m − 1} there exists an integer ki > k + 1 such that yi+1 = τyi(ki). We

can now define g̃(x) = g̃(ym) where g̃(ym) is defined inductively by g̃(y0) = g(y) and

g̃(yi+1) = τg̃(yi)(ki) for all i ∈ {0, 1, ...,m− 1}. Then,

Lemma 4.1.2. [1] The map ϕk : Aut(Xk) → Aut(X) defined by ϕk(g) = g̃ is an

injective group homomorphism, which is also a homeomorphism onto its image.

For g ∈ Bk
ω, we have g̃ ∈ B∞ω . Hence if we let ψk to be the restriction of the map

ϕk to Bk
ω, then as a corollary of Lemma 4.1.2, we have

Corollary 4.1.3. The map ψk : Bk
ω → B∞ω defined by ψk(g) = g̃ is an injective group

homomorphism, which is a homeomorphism onto its image.

Given n ∈ Z, we identify Bk
ω and Bk

n with their images ψk(B
k
ω) and ψk(B

k
n) in B∞ω

respectively. We define

Bω = ∪∞k=2B
k
ω and Bn = ∪∞k=2B

k
n.

We endow Bω with the inductive limit topology. Then,

Proposition 4.1.4. The pair (Bω, Bn) is an Olshanski spherical pair for all n ∈ Z.

Proof. By Proposition 4.1.1 and Corollary 4.1.3, we have a sequence of Gelfand pairs

(Bk
ω, B

k
n)k≥2. Given g ∈ Bk

ω, the automorphism g is the natural extension of its
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restriction onto the finite degree subtree Xm for each m ≥ k. Hence Bk
ω ⊂ Bk+1

ω ,

Bk
n ⊂ Bk+1

n and Bk
n = Bk+1

n ∩Bk
ω for all k ≥ 2.

What is rest is to show that Bk
ω is a closed subgroup of Bk+1

ω . For this, we identify

each Aut(Xk) with its image in Aut(X) under ϕk. By [Proposition 3.1.2, [1]], Aut(Xk)

is a closed subgroup of Aut(Xk+1). Both of the topologies on Bk+1
ω and Aut(Xk+1) are

induced from the same topology of Aut(X) and Bk+1
ω ⊂ Aut(Xk+1), so the topology of

Bk+1
ω is the one induced from the topology of Aut(Xk+1).

Hence Bk+1
ω \Bk

ω = (Aut(Xk+1)\Aut(Xk)) ∩Bk+1
ω is open in Bk+1

ω as desired.

Within the rest of the text, we fix n ∈ Z and consider the Olshanski pair (Bω, Bn).

It is a natural programme to find all positive definite spherical functions and the

corresponding spherical representations of this Olshanski pair.

4.2. Spherical Functions for (Bω, Bn)

The spherical functions for the Gelfand pair
(
Bk
ω, B

k
n

)
are given by the following

result of Nebbia.

Proposition 4.2.1. [18] The non-trivial spherical functions for the Gelfand pair
(
Bk
ω, B

k
n

)
are the following:

ϕm,k = 1Bkm +
1

1− k
1Bkm+1\Bkm (4.2)

for every m ≥ n. (1E is the characteristic function of the set E.)

Proof. Let ϕ be a non-trivial spherical function for the pair
(
Bk
ω, B

k
n

)
. If f, g ∈

Bk
m\Bk

m−1 for some m > n, then d(f(xm−1), xn) = d(g(xm−1), xn), therefore f(xm−1)

can be sent to g(xm−1) via an automorphism in Bk
n and so, g ∈ Bk

nfB
k
n. Hence complex-

valued Bk
n-bi-invariant functions on Bk

ω are constant on Bk
m\Bk

m−1 for all m > n and

also on Bk
n. In particular, ϕ is a linear combination of the characteristic functions 1Bkn

and 1Bkm\Bkm−1
for m > n. Let ϕ(m) denote the value of ϕ on Bk

m\Bk
m−1 for m ≥ n.
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Let µ be a Haar measure on Bk
ω such that µ(Bk

n) = 1. Then since for each i ∈ N,

Bk
n+i−1 is an index k subgroup of Bk

n+i, we have µ(Bk
n+i) = ki so that µ(Bk

n+i\Bk
n+i−1) =

(k − 1)ki−1. Let χi = (λi)
−11Bkn+i\Bkn+i−1

where λi = (k − 1)ki−1 and i ∈ N. Direct

computation gives that for j > i, χi∗χj = χj. Then as the spherical functions are char-

acters of the commutative convolution algebra Cc(B
k
n\Bk

ω/B
k
n) of continuous compactly

supported Bk
n-bi-invariant functions on Bk

ω, for j > i we have

ϕ(n+ j) =

∫
Bkω

χj(f)ϕ(f) dµ(f) =

∫
Bkω

χi ∗ χj(f)ϕ(f) dµ(f)

=

∫
Bkω

χi(f)ϕ(f) dµ(f)

∫
Bkω

χj(f)ϕ(f) dµ(f)

= ϕ(n+ i)ϕ(n+ j).

It can be immediately derived from the above equation that if ϕ(n + i) = 0 for some

i ∈ N, then ϕ(n + j) = 0 for all j > i and moreover that if ϕ(n + j) 6= 0 for some

non-zero j ∈ N, then ϕ(n+ i) = 1 for all i < j. Then since ϕ is non-trivial, we get

ϕ = 1Bkn+i + α1Bkn+i+1\Bkn+i

for some α ∈ C and i ∈ N. By [Proposition 6.1.6, [26]], for all j > i + 1 there is a

constant cj ∈ C such that ϕ∗χj = cjϕ. But, for all j > i+1, ϕ∗χj = [α.(k−1)+1]kiχj

as well. Then we get [α.(k − 1) + 1]kiχj = cjϕ which is possible for some j > i + 1 if

and only if cj = 0 = [α.(k − 1) + 1]. Hence α = 1
1−k as desired.

Conversely, let ϕ = 1Bkn+i + 1
1−k1Bkn+i+1\Bkn+i for some i ∈ N. Then ϕ is Bk

n-bi-

invariant. Since for each m ∈ N the group Bk
m is compact open, every characteristic

function of the form 1Bkm and 1Bkm\Bkm−1
is continuous, so is ϕ. Note that every function

in Cc(B
k
n\Bk

ω/B
k
n) is a finite linear combination of the characteristic functions 1Bkn and

1Bkm\Bkm−1
for m > n. It can be verified directly that for all j ∈ N, ϕ∗χj = χj ∗ϕ = cjϕ

for some cj ∈ {0, 1} and that ϕ ∗ 1Bkn = 1Bkn ∗ ϕ = ϕ. Then by [Proposition 6.1.6, [26]],

we get ϕ is spherical for
(
Bk
ω, B

k
n

)
.
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As we see in Proposition 4.2.1, the support of a spherical function for the Gelfand

pair
(
Bk
ω, B

k
n

)
is one of the compact sets Bk

m for some m > n. Then by Proposition

4.2.2 which we next prove, all spherical functions for
(
Bk
ω, B

k
n

)
are positive definite.

Proposition 4.2.2. [18] If ϕ is a compactly supported spherical function for a Gelfand

pair (G,K), then ϕ is positive definite.

Proof. Since ϕ is a continuous compactly supported K-bi-invariant function on G, so

is ϕ∗. Hence both ϕ and ϕ∗ are in L2(G, µ) where µ is a Haar measure on G. Denote

by LG the left regular representation of G on L2(G, µ). Then for all x ∈ G,

ϕ ∗ ϕ∗(x) =

∫
G

ϕ(y)ϕ∗(y−1x) dµ(y) =

∫
G

ϕ(y)ϕ(x−1y) dµ(y)

=

∫
G

ϕ(y)LG(x)ϕ(y) dµ(y) = 〈LG(x)ϕ, ϕ〉.

Hence ϕ∗ϕ∗ is a function of positive type. By [Proposition 6.1.6, [26]] we have ϕ(e) = 1

(here e is the identity element of G) and ϕ∗ϕ∗ = ϕ∗∗ϕ = λϕ for some complex number

λ. Then since ϕ 6= 0,

λ = ϕ ∗ ϕ∗(e) =

∫
G

ϕ(y)ϕ∗(y−1e) dµ(y) =

∫
G

ϕ(y)ϕ(y) dµ(y) = ‖ϕ‖2
2 > 0

where ‖ϕ‖2 is the L2-norm of ϕ in L2(G, µ). Thus ϕ = (λ)−1(ϕ ∗ ϕ∗) is positive

definite.

According to Theorem 22.10 in [20], every positive definite spherical function for

an Olshanski spherical pair is the uniform limit on compact sets of positive definite

spherical functions of the underlying Gelfand pairs. Hence, for each m ≥ n we consider

the following pointwise limits

lim
k→∞

ϕm,k = 1Bm

as candidates of positive definite spherical functions of the Olshanski pair (Bω, Bn).
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Next we observe that the set {1Bm : m ≥ n} consists of all non-trivial spherical func-

tions for (Bω, Bn).

Theorem 4.2.3. The non-trivial spherical functions for the pair (Bω, Bn) are the char-

acteristic functions 1Bm with m ≥ n. The spherical functions are all positive definite.

Proof. Let ϕ : Bω → C be a spherical function. If g, h ∈ Bm\Bm−1 for some integer

m > n, then the equality d(xn, g(xn)) = d(xn, h(xn)) holds. Hence, there exists k ∈ Bn

satisfying k(g(xn)) = h(xn). This shows that h−1kg ∈ Bn, i.e. g ∈ BnhBn and that

ϕ(g) = ϕ(h) by the Bn-bi-invariance of ϕ. So, ϕ is constant on Bn and Bm\Bm−1 for

all m > n. Let us denote by ϕ(n) the value of ϕ on Bn and by ϕ(m) the value of ϕ on

Bm\Bm−1 given m > n.

Now, fix two integers m and p such that m > p ≥ n. Let g ∈ Bp\Bp−1 and

h ∈ Bm\Bm−1. Choose L such that g, h ∈ BL
m. If k > L and l ∈ Bk

n, then glh(xm) =

gl(xm) = g(xm) = xm, whereas glh(xm−1) 6= xm−1 because otherwise h(xm−1) =

l−1g−1(xm−1) = l−1(xm−1) = xm−1 which is impossible as h ∈ Bm\Bm−1. Hence,

glh ∈ Bm\Bm−1 and ϕ(glh) = ϕ(m) for all l ∈ Bk
n. Since ϕ is spherical, we then get

ϕ(p)ϕ(m) = ϕ(g)ϕ(h) = lim
k→∞

∫
Bkn

ϕ(glh) dl = lim
k→∞

∫
Bkn

ϕ(m) dl = ϕ(m).

where dl is the normalized Haar measure on Bk
n.

By the equality above, we conclude that if ϕ(p) = 0 for p ≥ n, then ϕ(m) = 0

for all m > p and that if ϕ(m) 6= 0 for some m > n, then ϕ(p) = 1 for all p < m. So,

if ϕ 6= 0 and ϕ 6= 1, then either ϕ = α1Bn for some α ∈ C∗ or ϕ = 1Bm−1 + α1Bm\Bm−1

for some α ∈ C∗ and m > n.

To compute α in case ϕ = α1Bn , take g ∈ Bn. Since ϕ is spherical,

α2 = ϕ(g)2 = lim
k→∞

∫
Bkn

ϕ(glg) dl = lim
k→∞

∫
Bkn

ϕ(n) dl = ϕ(n) = α
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so that α = 1 and ϕ = 1Bn .

In case ϕ = 1Bm−1 + α1Bm\Bm−1 , take g ∈ Bm\Bm−1. There exists L such that

g ∈ BL
m\BL

m−1. Given k > L, let y1, y2, ..., yk−1 be the neighbours of xm in Xk except

from xm−1 and xm+1. We may assume that y1 = g−1(xm−1). For l ∈ Bk
n, l(g(xm−1)) may

take one of the k−1 values y1, y2, ..., yk−1. Therefore, Bk
n is the disjoint union of the sets

A1, A2, ..., Ak−1 where Ai =
{
l ∈ Bk

n : l(g(xm−1)) = yi
}

. Choosing an automorphism

ki,j in Bk
n such that ki,j(yi) = yj, we observe that ki,j(Ai) = Aj. It follows that each Ai

has the same measure 1
k−1

with respect to the normalized Haar measure on Bk
n. Then,

∫
Bkn

ϕ(glg) dl =

∫
A1

ϕ(glg) dl +

∫
Bkn\A1

ϕ(glg) dl

=

∫
A1

1 dl +

∫
Bkn\A1

ϕ(m) dl

=
1

k − 1
+
k − 2

k − 1
α

and together with the fact that ϕ is spherical we get

α2 = (ϕ(m))2 = (ϕ(g))2 = lim
k→∞

∫
Bkn

ϕ(glg) dl = lim
k→∞

(
1

k − 1
+
k − 2

k − 1
α) = α.

So, α = 1 and ϕ = 1Bm−1 + 1Bm\Bm−1 = 1Bm .

Conversely, let ϕ = 1Bm for m ≥ n. Since Bm is an open subgroup of Bω and

Bn ⊆ Bm, the function 1Bm is continuous and Bn-bi-invariant.

Now, let g, h ∈ Bω and ε > 0. There exists L such that g, h ∈ BL
ω . Since for all

m and k, the function ϕm,k given in the equation (4.2) is spherical for the Gelfand pair

(Bk
ω, B

k
n), for all k > L we get

∣∣∣∣∫
Bkn

1Bm(glh)− 1Bm(g)1Bm(h) dl

∣∣∣∣
≤

∫
Bkn

|1Bm(glh)− ϕm,k(glh)| dl + |ϕm,k(g)ϕm,k(h)− 1Bm(g)1Bm(h)|

(4.3)
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But, |1Bm(glh)− ϕm,k(glh)| is either 0 or 1
k−1

for any l ∈ Bω and we can choose N1 > L

so that for all k > N1 we have 1
k−1

< ε
2
. Since ϕm,k → 1Bm as k → ∞, we can choose

N2 > N1 so that for all k > N2, both |ϕm,k(g)− 1Bm(g)| < ε
4

and |ϕm,k(h)− 1Bm(h)| <
ε
4
. Hence by (4.3) for all k > N2,

∣∣∣∫Bkn 1Bm(glh)− 1Bm(g)1Bm(h) dl
∣∣∣ < ε and this shows

1Bm is spherical for the Olshanski pair (Bω, Bn).

Every spherical function 1Bm is positive definite because given an arbitrary group

G and a subgroup H of G, the characteristic function 1H of H is positive definite.

Remark 4.2.4. The restriction of the (Bω, Bn)-spherical function 1Bm with m ≥ n to

Bk
ω is the characteristic function 1Bkm which is a non-spherical function for

(
Bk
ω, B

k
n

)
by

Proposition 4.2.1. Hence, the restriction of a spherical function for an Olshanski pair

to an underlying locally compact group need not to be spherical for the corresponding

Gelfand pair.

4.3. Spherical Representations for (Bω, Bn)

Now, we will make concrete realizations of the spherical representations of the

Olshanski pair (Bω, Bn) which correspond to the positive definite spherical functions

for the pair (Bω, Bn) by the Gelfand-Naimark-Segal construction.

Given m ∈ Z, consider the horicycle H∞m containing the vertex xm. The group

Bω acts transitively on the horicycle H∞m . Indeed, if x, y ∈ H∞m , let m1 ≥ m be such

that xm1 is the unique vertex on (ω
′
, ω) with minimal distance to x and m2 ≥ m be

such that xm2 is the unique vertex on (ω
′
, ω) with minimal distance to y. Assume

m1 ≥ m2 and x, y ∈ Xk for k ∈ Z. Then we can find an automorphism g ∈ Aut(Xk)

such that g(x) = y and g(xn) = xn for all n ≥ m1. So, the natural extension g̃ of g is

an automorphism in Bw which sends x to y.

The spherical function ϕ = 1 corresponds to the one-dimensional trivial repre-

sentation.
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For the spherical function ϕm = 1Bm with m ≥ n, consider the Hilbert space

l2(H∞m ) = L2(H∞m , λm) where λm is the counting measure on H∞m . By the action of Bω

on the horicycle H∞m , we get a representation πm of Bω on the Hilbert space l2(H∞m ) if we

define (πm(g)f)(x) = f(g−1(x)) where g ∈ Bω, f ∈ l2(H∞m ) and x ∈ H∞m . Indeed, πm is

a group homomorphism from Bω to the group of unitary operators on the Hilbert space

l2(H∞m ). πm is moreover a continuous representation of Bω on l2(H∞m ) where we put the

strong operator topology on U(l2(H∞m )): Since
{

1{x} : x ∈ H∞m
}

form an orthonormal

basis for l2(H∞m ), it suffices to prove that the map g 7−→ πm(g)1{x} is continuous for

each x ∈ H∞m . Given x ∈ H∞m and g0 ∈ Bω, the set U0 = {g ∈ Bω : g(x) = g0(x)} is

open in the topology induced from Aut(X). The inductive limit topology on Bω is

stronger than the topology induced from Aut(X). So, the set U0 is also open in the

inductive limit topology. The map g 7−→ πm(g)1{x} is constant on the open set U0. So,

the map g 7−→ πm(g)1{x} is locally constant, hence continuous as desired. Therefore,

πm defines a unitary representation of Bω.

1{xm} is a Bn-bi-invariant unit vector in l2(H∞m ). By the transitive action of Bω

on l2(H∞m ), we have

span
{
πm(g)1{xm} : g ∈ Bω

}
= span

{
1{g(xm)} : g ∈ Bω

}
= span

{
1{y} : y ∈ H∞m

}
= l2(H∞m )

so that 1{xm} is also a cyclic vector.

Moreover,

< 1{xm}, πm(g)1{xm} > =
∑
y∈H∞m

1{xm}(y).πm(g)1{xm}(y)

=
∑
y∈H∞m

1{xm}(y).1{xm}(g
−1y)

= 1{xm}(g
−1xm)

= 1Bm(g).



67

We summarize our observations in the following theorem.

Theorem 4.3.1. The spherical representation of the Olshanski pair (Bω, Bn) corre-

sponding to the spherical function ϕ = 1 by the Gelfand-Naimark-Segal construction is

the one-dimensional trivial representation.

The spherical representation of the Olshanski pair (Bω, Bn) corresponding to the

spherical function ϕm = 1Bm, m ≥ n by the Gelfand-Naimark-Segal construction is the

left regular representation πm on l2(H∞m ).
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5. CONCLUSION

The problem which initiated this thesis and which has always been in mind during

the study is the following: “Is it possible to construct an algebra structure whose char-

acters correspond to the bounded spherical functions for a general Olshanski spherical

pair?”. Two facts drived us to seek for such a result. The first one is the existence of

a positive answer in the case of Gelfand pairs as we have mentioned and used in sev-

eral places in the thesis. Secondly, Gelfand pairs are the building blocks of Olshanski

pairs. This abstract problem created the need to study spherical harmonic analysis

on some concrete examples of infinite dimensional spherical pairs. We first studied

an Olshanski pair related to the group of isometries of homogeneous trees of infinite

degree and we found all spherical functions and spherical representations of that pair.

Then we considered the Olshanski pair (U(∞) nH(∞), U(∞)) related to Heisenberg

groups. Inspired by the ideas and works of J. Faraut, we calculated all positive definite

spherical functions for this pair. On the way to make realizations of the corresponding

irreducible unitary representations, we have developed a couple of approaches to define

the analogue of the Fock space F∞λ which works in the case of infinitely many com-

plex variables. They both carry meaningful representations of H(∞). The question of

whether these representations are irreducible and they can be extended to representa-

tions of U(∞) n H(∞) which correspond to the positive definite spherical functions

we have is still waiting to be worked out. It also seems that to construct the algebraic

counterpart of harmonic analysis on Olshanski pairs will be challenging.
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