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ABSTRACT

ON INFINITE DIMENSIONAL SPHERICAL ANALYSIS

This thesis is concerned with the spherical analysis of two different Olshanski
pairs, one of which is related to Heisenberg groups, and the other to the automorphism
groups of homogeneous trees. The spherical functions of positive type on the infinite
dimensional Heisenberg group H(oo) which are invariant under the natural action of
the infinite dimensional unitary group U(oco) are determined. On the other hand, we
consider an Olshanski pair which is constructed from the stabilizers of the horicycles
of homogeneous trees of finite degree, where the horicycles form a partition of the set
of vertices of the tree, and then we find all spherical functions of this pair. Finally, we

give realizations of the corresponding irreducible unitary representations.



OZET

SONSUZ BOYUTLU KURESEL ANALIZ UZERINE

Bu tezde biri Heisenberg gruplari, digeri ise homojen agaclarin otomorfizma
gruplart ile baglantili iki farkli Olshanski c¢iftinin kiiresel analizi ile ilgilenilmistir.
H (o0) sonsuz boyutlu Heisenberg grubu tizerinde tanimli, U(oco) sonsuz boyutlu iiniter
grubunun dogal etkisi altinda degigsmez tiim pozitif tanimh kiiresel fonksiyonlar belir-
lenmigtir. Diger bir taraftan, sonlu dereceli homojen agaclarin, noktalar kiimesinin be-
lirli bir pargalanigini sabitleyen otomorfizma gruplar: kullanilarak kurulan bir Olshan-
ski ¢ifti ele alinmig ve bu ¢iftin tiim kiiresel fonksiyonlar1 bulunmustur. Son olarak, bu

kiiresel fonksiyonlara karsilik gelen tiim indirgenemez tiniter temsiller realize edilmistir.
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1. INTRODUCTION

In representation theory, studying not only a single group G, but a pair (G, K)
for a subgroup K of G, is an important idea to define a reasonable family of represen-
tations of the group GG. The theory of Gelfand pairs, spherical functions and spherical
representations is a well-known example of this idea of studying group pairs. Let G
be a locally compact group and K be a compact subgroup of G. Then GG possesses a
Haar measure so that we have the convolution algebra L'(K\G/K) of K-bi-invariant,
integrable functions with respect to a Haar measure on G. The pair (G, K) is said
to be a Gelfand pair if this algebra L'(K\G/K) is commutative. In the language of
representation theory, this definition amounts to say that the multiplicity of the trivial
representation of K in each unitary representation of K restricted from an irreducible
unitary representation of G is at most one. A K-bi-invariant, non-zero, continuous
complex function ¢ on G is said to be a spherical function for the Gelfand pair (G, K)

if
o(r)p(y) = /Kso(xky) dk (1.1)

for every x,y € G where dk is the normalized Haar measure on K. An irreducible
unitary representation (m, V') of G is called spherical for the Gelfand pair (G, K) if
the space VX of K-invariant vectors in V is non-zero. In this case there is essen-
tially a unique v € V& which has norm 1. Then ¢(g) = (v,7(g)(v)) is a positive
definite spherical function on G. Conversely, there is a construction, the so-called
Gelfand-Neimark-Segal construction, which gives a spherical representation of (G, K)
corresponding to every positive definite spherical function for (G, K'). Therefore there
is essentially a one-to-one correspondence between positive definite spherical functions
and spherical representations of the Gelfand pair (G, K). It is hence a natural prob-
lem to find spherical functions and then to find the realizations of the corresponding

spherical representations of a Gelfand pair (G, K) given by the GNS-construction.



A general theory for harmonic analysis on the inductive limit G of some locally
compact groups G,, and understanding the irreducible unitary representations of the
inductive limit group G in terms of the irreducible unitary representations of G,, are
first studied by Olshanski in [20]. With this inductive limit approach, in particular,
Olshanski studied the inductive limits of Gelfand pairs, which are now called as Ol-
shanski spherical pairs (Olshanski pairs in short), and he generalized the notion of
spherical functions from Gelfand pairs to Olshanski pairs so that the one-to-one corre-
spondence between spherical representations and positive definite spherical functions
given by the GNS-construction still holds. From then on, it has also been a natural
programme to find all positive definite spherical functions and to make realizations
of the corresponding spherical representations for an Olshanski pair (G, K). Several
examples of infinite dimensional groups and pairs arising from classical matrix groups
and also from the symmetric group were investigated in a large number of different

papers such as [13], [20], [22], [23] and [27].

The positive definite spherical functions for a Gelfand pair (G, K) are uniquely
determined by the characters of the commutative convolution algebra L'(K\G/K).
In the case of an Olshanski pair (G, K), the group G under discussion is not locally
compact in general. Hence we do not have a Haar measure, a convolution and an
algebra structure anymore. The problem that initiated this thesis was to construct a
structure, an algebra structure if possible, which corresponds to the spherical functions
of a general Olshanski pair as there is one in the case of Gelfand pairs. On the way
of this algebraic aspect on the abstract theory of Olshanski pairs, we considered the
harmonic analysis of two different Olshanski pairs, one is related to the Heisenberg
group and the other is related to the automorphism group of a countable-degree tree.
We determined the spherical dual, i.e. the positive definite spherical functions for the
one related to the Heisenberg group and we constructed both the spherical functions
and the spherical representations for the one related to the automorphism group of a
homogeneous tree of countable degree. It still remains open whether there exists an
algebra structure whose characters determine the positive definite spherical functions

for an Olshanski pair or not.



For an n-dimensional complex Euclidean vector space V,,, any closed subgroup
K, of the unitary group U(V,) acts by automorphisms on the (2n+1)-dimensional
Heisenberg group H, = V,, X R where the multiplication on H,, is given by

(z,0)(z 1) = (z+ 2, t+t +1Im(z,2)). (1.2)

This action gives a yield to the locally compact group G,, = K,, x H,. For some special
choices of the vector space V,, and the subgroup K, of the unitary group U(V},), it
was observed that the pair (G, K,) forms a Gelfand pair and the spherical functions
for these pairs were determined. The question of determining all closed subgroups
K, of the unitary group U(V,) such that (G,, K,) is a Gelfand pair was answered by
Carcano in [5] with a representation-theoretic criteria. K, < U(V,,) was required to act
multiplicity free on the polynomial ring P(V},). There is a description of the bounded
spherical functions for such Gelfand pairs, due to Benson, Jenkins and Ratcliff [3].
Recently, Faraut [14] presented a work on the spherical analysis for some special cases

of inductive limits of Gelfand pairs associated to Heisenberg groups.

When it comes to the homogeneous trees of finite degree, the so-called Bruhat-
Tits trees, they appeared as a special type of Bruhat-Tits buildings of rank one and
the automorphism groups of Bruhat-Tits trees gave an attractive family of locally
compact, totally disconnected, seperable, metrizable groups. The study of irreducible
unitary representations of the automorphism group G of a Bruhat-Tits tree was started
by Cartier in [6] and [7]. If K is a maximal compact subgroup of G stabilizing one
vertex, then (G, K) is a Gelfand pair and the spherical functions for this pair were
computed in [17]. Later in the mid-seventies, all irreducible representations of G were
constructed by Olshanski in [19]. The study of trees and the groups acting on trees was
also stimulated by the course notes [25] of J-P. Serre where he clarified the connections
between trees, amalgams and the p-adic SLs. On the other hand, the automorphism
groups of homogeneous trees of infinite degree first occured in the work of Olshanski [21]

where all irreducible unitary representations of these groups were found.



In Chapter 2, we present the introductory and fundamental materials of the thesis.
We introduce Olshanski pairs, their spherical functions and spherical representations.
In the theory of Gelfand pairs, it is a well-known fact that the positive definite spherical
functions and the unitary equivalence classes of spherical representations are in one-
to-one corrrespondence. The main objective of this chapter is to reach the result of
Olshanski saying that we can carry this fact from the theory of Gelfand pairs to the
theory of Olshanski pairs.

Chapter 3 is devoted to harmonic analysis of the Gelfand pairs of the form
(K, x H,, K,) where H, = C" x R and K, is a closed subgroup of the unitary group
U(n) = U(C"™) and to determination of the spherical dual of the Olshanski spherical pair
(U(oo) X H(o0),U(00)) which is the inductive limit of the Gelfand pairs (K, x H,, K,,)
where H,, = C" x R and K, = U(n). Spherical analysis on the Gelfand pairs of the
form (K, x H,, K,) already exists in the literature, but the works on the spherical
representations and the works on the spherical functions are found separately only in
some references like [3], [14] and [28]. In this chapter, we bring these works together in
a nearly self-contained form by giving the correspondences between the positive def-
inite spherical functions and the spherical representations. For A € R*, we introduce
the Fock representations (7, F}) of the Heisenberg group H,, and see that they form
a class of non-equivalent irreducible unitary representations of H, by making use of
the fact that the Fock spaces F} are reproducing kernel Hilbert spaces. Following the
approach of Wolf in [28], we determine the unitary dual I/-I\n of the Heisenberg group H,
by using Mackey’ s machinary that constructs the unitary dual of a locally compact,
Type I group by inducing representations from certain closed subgroups. The unitary
dual ]f.l; of H, consists only of the unitary characters and the Fock representations.
Applying Mackey machine once more, we determine the unitary dual Kmn and
then the spherical representations for (K, X H,, K,) (whenever it forms a Gelfand
pair) by some multiplicity computations of the trivial representation of K, in some
certain representations. There are two types of spherical representations for a Gelfand
pair of the form (K, x H,, K,): the ones that derive from unitary characters of H,
and the ones that derive from infinite dimensional Fock representations of H,. In both

cases applied, the steps of Mackey machine are performed in great detail.



We then turn our attention to the determination of the positive definite spherical
functions for the Gelfand pair (U(n)x H(n),U(n)). In this case, the spherical functions
can be considered as functions on H,, which are U(n)-invariant and every character of
the commutative convolution algebra L'(H,,)V™ of integrable U (n)-invariant functions
on H, gives rise to a unique bounded spherical function. In [14], Faraut describes a
family of characters of the algebra L'(H,,)V™. We find explicitly the bounded spherical
functions corresponding to these characters. We observe that they are indeed positive
definite and they correspond to the spherical representations that derive from infinite-
dimensional Fock representations of H,,. We also find explicitly the positive definite
spherical functions corresponding to the spherical representations that derive from
one-dimensional representations of H, in order to complete the determination of the

spherical dual of (U(n) x H(n),U(n)).

The main results of the thesis are contained in Section 3.3 of Chapter 3 and in
Chapter 4. Our main result in Chapter 3 is Theorem 3.3.14 where we determine the
spherical dual of the Olshanski spherical pair (U(oo) x H(oc0),U(oc0)). To simplify
the asymptotic functional equation satisfied by the spherical functions for (U(oo)
H(o0),U(o0)), we use two lemmas from analysis on the unitary group U(n), due to
Faraut. We also prove a result on positive definite functions on the Heisenberg group
H,, which has the key role on positive definiteness arguments in the proof of Theorem

3.3.14.

In Chapter 4, the same problems of harmonic analysis are considered for a dif-
ferent Olshanski pair related to the automorphism groups of homogeneous trees of
countably infinite degree. If X is a homogeneous tree of finite degree, one can fix a
point w on the boundary of X and consider the group of stabilizers of the corresponding
horicycles which gives rise to a Gelfand pair. In [18] Nebbia found all spherical functions
of this pair and described the corresponding spherical representations. In [1] Axelgaard
studied an embedding of the k-homogeneous tree into the (k + 1)-homogeneous tree
and the embedding of the corresponding automorphism groups Gy C Giiq. This way
he gets an Olshanski pair. He describes all spherical functions and the corresponding

spherical representations. He mentions that such an embedding is also possible for



the Gelfand pairs studied by Nebbia in [18] and states in [1] the description of spher-
ical functions and representations of that pair as an open problem. We complete this
picture by describing all spherical functions and the realizations of the corresponding

spherical representations in this case.



2. OLSHANSKI SPHERICAL PAIRS

In this thesis, we study harmonic analysis on two different Olshanski spherical
pairs. In order to explain what it means to study harmonic analysis on an Olshan-
ski spherical pair by formulating the natural problems of the subject, we devote this
chapter to the presentation of some basic results on the abstract theory of Olshanski
spherical pairs which are the generalizations of some well-known results on the abstract
theory of Gelfand pairs. All results and proofs of this introductory chapter are based
on the lecture notes [11] of Jacques Faraut on finite and infinite dimensional spheri-
cal analysis which form one of the few materials on the abstract theory of Olshanski

spherical pairs.

2.1. Olshanski Spherical Pairs

Let G be a topological group and K be a closed subgroup of G. Given a unitary
representation (mw, V') of G on a Hilbert space V', we always assume that it is continuous
in the sense that 7 : G — U(V) is a continuous group homomorphism with respect to
the strong operator topology on the group of unitary operators U(V) on V. Let VX

be the space of vectors in V' which are invariant under the action of K, i.e.
VE={veV |r(k)v=v forall k€ K}.
Note that V¥ is a closed subspace of V. The following proposition gives a relation

between the irreducibility of V' and how small V¥ is.

Proposition 2.1.1. Let G be a topological group and K be a closed subgroup of G.
Let (w, V') be a unitary representation of G. Then if V' has a non-zero, K-invariant,

cyclic vector v and dim(VE) =1, then V is irreducible.

Proof. Let W be a closed invariant subspace of V. We will show either W = {0} or
W = V. Let Py be the orthogonal projection on W. Note that Py € Homg(m, 7).



Hence 7(k)Pw (v) = Pw(n(k)v) = Py (v) for all k € K so that Py (v) € VE. Then
dim(VE) = 1 together with v € V¥ implies that Py (v) = Av for some A € C. If
A = 0, then Py (v) = 0 so that v € WL, Since W is invariant, then (w,n(z)v) =
(r(z7H)w,v) =0 for all w € W and x € G. Since v is cyclic, it follows that W = {0}.
If A # 0, then v € W and since v is cyclic and W is closed invariant, we get W = V. [

Conversely, for an irreducible unitary representation V' of a topological group G,
every non-zero vector in V is cyclic, but if VE # {0}, then V& need not to be one-
dimensional. In case K consists only of the identity element, then V¥ = V which is not
one-dimensional in general. Hence it makes sense to make the following definition of a
spherical pair. We say that the pair (G, K) is a spherical pair if for every irreducible

unitary representation (m, V) of G, we have dim(V*) < 1.

A function f : G — C is called K-left-invariant if f(kz) = f(z) for all z € G and
k € K, K-right-invariant if f(zk) = f(z) for all z € G and k € K and K-bi-invariant
if it is both K-left-invariant and K-right-invariant.

If G is locally compact, we have a Haar measure g on G. Then the space L'(G)
of complex-valued, integrable functions on GG becomes an involutive Banach algebra
under convolution where the convolution f * g of f,g € L'(G) and the involution f* of

f are defined by

f gl /f oly'2) ducly),  f(x) = T ).

The space M°(G) of bounded, complex Borel measures on G is also a Banach algebra
with involution where the product of two measures pu,v € M°(G) is given by their

convolution y * v defined by

| 1@ duwsvt@) = [ [ ) dutw) avte 2.1)

for every measurable function f: G — C.



An involution is given by p* where p*(f) = p(f*) for all continuous compactly sup-
ported functions f : G — C. The norm ||u|| of a measure u is defined by ||| = |p|(G)
where |u] is the total variation of . Taking f = 1,4 for a Borel subset A of G in the
equation (2.1), we get

e d) = [ Ay avly) (2.2

For a unitary representation (m, V) of G and a bounded complex measure u € M(G),

the continuous linear operator 7(u) € B(V) is defined by

7)) = [ wle)o duto)

for all v € V. Then, 7 : M*(G) — B(V) gives a *-representation of the algebra M°(G)
on the Hilbert space V, i.e m : M®(G) — B(V) is a linear map satisfying the equations

m(pxv) =m(p)r(v) and w(u*) =m(p)" (2.3)
for all u,v € Mb(G).

The algebra L'(G) can be regarded as a dense x-Banach subalgebra of M®(G)

via the map f +— fug.

Let L'( K\G/K) be the x-Banach subalgebra of L'(G) consisting of K-bi-invariant,
integrable functions on G and M*(K\G/K) be the *-Banach subalgebra of M°(G)
consisting of K-bi-invariant, bounded, complex Borel measures on . Note that

LY(K\G/K) is a dense Banach *-subalgebra of M°(K\G/K) as well.

If G is locally compact, K is compact and the algebra L'(K\G/K) is commuta-
tive, we say that the pair (G, K) is a Gelfand pair.

Let ((Ghn, Ky))nen be an increasing sequence of Gelfand pairs (in the sense that

Gn C Gy and K, C K, for each n € N) satisfying the following properties:
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G, is Hausdorff | GG, is a closed subgroup of G,,11, the topology of GG,, is the topology
induced from the topology of G, .1 and K,, = K,,;1 N G,,. Define

G=U2,G, K=U2 K,

Then the pair (G, K) is called an Olshanski spherical pair (or Olshanski pair in short).
We put the inductive limit topology and the natural multiplication on GG. Then G is a
Hausdorff topological group which is generally not locally compact and K is a closed
subgroup of G which is generally not compact. Also each K, is a compact, hence a

closed subgroup of G.

Now let (G, K) be an Olshanski spherical pair and (7, V') be a unitary represen-
tation of G. Let P, and P be the orthogonal projections on the closed subspaces V%r
and VE of V respectively. Note that

P,(v) :/ 7(kn)v dpty(ky)
for every v € V' where p,, is the normalized Haar measure on K,,. Since K,, C K, for
each n € N, we have VE»+1 C VE» and since K = Upe K, we have VE = ﬁ;’f’:lVK".

Hence the projections P, converge to the projection P in the strong operator topology.

Proposition 2.1.2. If (G, K) is an Olshanski spherical pair, then it is a spherical

pair.

Proof. Let (m, V) be an irreducible unitary representation of G such that V* = {0}.
As (G,, K,,) is a Gelfand pair, the algebra L'(K,\G,/K,) is commutative. Then the
measure algebra M°(K,\G,/K,) is also commutative. Let y, be the normalized Haar
measure on f{,,. We extend the measure u, to a compactly supported measure v, on
the Borel g-algebra of G,, by v,(E) = p,(E N K,,). Then v, € M*(K,\G,/K,) and

P.(v) = [ m(x)v dv,(z) for allv € V. For x € Gy, let d, be the Dirac measure at .
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Then 7(z)v = fGn 7(y)v do,(y) for all v € V. Hence
P, =n(v,) and 7(x)=m(d,). (2.4)

By using K,,-bi-invariance of v,, and Equation 2.2, we get v, 6,1, € M°(K,\G,/K,).
Then since M°(K,\G,/K,) is commutative, for any x,y € G,,

Up % Oy % Uy % Up % Oy % Uy, = Uy, % Oy % Up % Uy % Oy % U (2.5)

Now applying 7 to both sides of the equation (2.5) and using the equations (2.3) and
(2.4), we get

P,m(x)P,m(y)P, = Pym(y)P,m(x)P,

for every x,y € G,. Since VEntm C VEn for allm € N, Py, = PoPoiin = Poim P

Hence for all n,m,m" € N and z,y € G,
B (@) P (y) Py = Py m(y) Pt (2) Py
When we take limits as m,m’ and then n converges to infinity, we get
Pr(z)Pr(y)P = Prn(y)Pr(x)P

for all z,y € G as P, converges to P in the strong operator topology. Hence the
operator norm closed algebra A generated by the operators Pr(z)P, x € G is commu-
tative. Since irreducible representations of commutative Banach algebras are at most
1 dimensional and V¥ is invariant under the action of A, it sufficies to show that V¥

is irreducible as a representation of A.

So assume that VE =V, @ V, where Vi, V, are A-invariant orthogonal subspaces
of VE and V; # {0}. Let v; € V; and v; # 0. Then for any x € G and vy € V5,

(Pr(x)Pvy,v9) = 0 so that (m(x)vy,ve) = 0. Since (m, V) is an irreducible representa-
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tion of G, vy is a cyclic vector. Hence V, = {0} as desired. O

2.2. Positive Definite Functions on Groups and GNS-construction

Let GG be a group and ¢ : G — C be a function. The function ¢ is called positive
definite if

n

Z cicip(ztzy) >0

ij=1

for any finite subset {x1, s, ...,z,} in G and for all systems {¢j, ¢a, ..., ¢, } of complex
numbers. Given a unitary representation (7, V') of G and a vector v € V, the function

¢ defined by

p(x) = (v, m(x)v)

is positive definite since

> atp(r ) =Y agg(m(@)v, w(z)v) = || cim(@i)vl* > 0.
4,j=1 i,j=1 i=1

Remark 2.2.1. If ¢ : G — C is positive definite, then for every z € G, p(z7!) = p(x).

Assume G is a topological group and K is a closed subgroup of G and denote by
P (K\G/K) the convex set consisting of continuous, K-bi-invariant, positive definite
functions ¢ on G such that ¢(e) = 1. Let (m, V') be a unitary representation of G with a
K-invariant, unit vector v € V. Then for p(z) = (v, 7(z)v), we have p € P (K\G/K).
Conversely, any ¢ € Pi(K\G/K) can be obtained in this way and this is exactly what

the so-called Gelfand-Naimark-Segal construction says.

Proposition 2.2.2. [11] (GNS-construction) Let G be a topological group and K be
a closed subgroup of G. Given ¢ € Pi(K\G/K), there exists a unitary representation
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(m, V) of G with a K-invariant, unit and cyclic vector v € V' such that for all x € G,

p(x) = (v, m(2)v).

The triple (m,V,v) is unique up to isomorphism in the following sense: If (x', V', v') is
another triple such that (7r/, V’) 1s a unitary representation of G with a K-invariant,
unit and cyclic vector v’ € V' and ¢(x) = (v', 7 (x)v') for all x € G, then there exists
an isometric isomorphism T : V' — V' such that T(v) = v" and T is an intertwinning
operator between the representations (m,V) and (x', V'), i.e. Tn(x) = 7 (2)T for all

€.

An irreducible unitary representation of G with a non-zero, K-invariant vector
is called a spherical representation of the pair (G, K). If (r,V) is a spherical repre-
sentation of (G, K) with a K-invariant, unit vector v € V| then for ¢(x) = (v, 7(z)v),
we have ¢ € Ext[P(K\G/K)] where Ext[P;(K\G/K)] is the set of extremal points in
the convex set Pi(K\G/K). Conversely, for each function ¢ in Ext[P,(K\G/K)] the
representation associated with ¢ by the GNS-construction is a spherical representation

of (G, K) ([Proposition 1.4, [11]]).

Remark 2.2.3. Let GG be a topological group and K be a closed subgroup of G. From
the GNS-construction, it follows that if ¢ € P;(K\G/K), then |p(z)| < 1forallz € G,

so ¢ is bounded.

2.3. Positive Definite Spherical Functions and Spherical Representations

In this section, let (G, K) be an Olshanski spherical pair which is the inductive

limit of the increasing sequence ((G, K,))nen of Gelfand pairs.

Definition 2.3.1. A non-zero, continuous, K-bi-invariant function ¢ : G — C is said
to be a spherical function for the Olshanski spherical pair (G, K) if the functional

equation

n—o0 K
n
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is satisfied for all x,y € G where p,, is the normalized Haar measure on K,,.

As an immediate property following the previous definition, note that for a spher-
ical function ¢ : G — C for an Olshanski spherical pair (G, K), we have ¢(e) = 1 (here
by e we denote the identity element of G) as

for all z € G and ¢ is non-zero.

Olshanski’ s definition of a spherical function for an Olshanski spherical pair which

is given via Definition 2.3.1 generalizes a famous result for Gelfand pairs as follows:

Proposition 2.3.2. Let ¢ € P(K\G/K). Then the unitary representation corre-
sponding to ¢ by the GNS-construction is spherical if and only if ¢ is spherical.

Proof. Let (mw,V,v) be the triple corresponding to ¢ by the GNS-construction. Let
P be the projection operator onto VX and P, be the projection operator onto V=,

Recall that P, converges to P strongly. For all x,y € G

lim [ (zky) dpn(k) = lim [ (m(z" v, 7 (k)7 (y)v) dpa(k)

= lim (7(z™")v, Pu(7(y)v))

n—oo

= (m(z" v, Pr(y)v)

and

p()e(y) = (v, m()v)(r(y)v,v) = (v, 7(@) {7 (y)v, v)v) = (r(z" v, (T (y)v, v)v).

Then since v is cyclic, ¢ is spherical if and only if Pr(y)v = (n(y)v,v)v for all y € G.

Assume first that 7 is spherical, hence irreducible.
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By Proposition 2.1.2, dim(V%) = 1 so that VX = Cv and the projection operator P
onto VE is given by P(w) = (w, v)v for all w € V. Hence Pr(y)v = (x(y)v, v)v for all
y € G and ¢ is spherical.

Conversely assume that ¢ is spherical, hence Pr(y)v = (7(y)v,v)v for all y € G.
Then since v is cyclic, the image VE of the operator P is just Cv so that dim(VE) = 1.

Then by Proposition 2.1.1 the representation 7 is irreducible, hence spherical. O

Note that two unitary representations (7, V) and (7', V') of a topological group G
are said to be equivalent if there is a continuous vector space isomorphism T : V — V'
such that 7T is also an intertwinning operator between (7, V) and (7', V). Moreover, if
T is a unitary operator, then (r,V) and (7', V') are called unitarily equivalent. Given
an Olshanski spherical pair (G, K), by the GNS-construction we obtain a one-to-one
correspondence between the positive definite spherical functions for (G, K) and the uni-
tary equivalence classes of the spherical representations of (G, K). Indeed, a positive
definite spherical function ¢ for (G, K) is matched with the unitary equivalence class of
the unitary representation (7, V") associated to ¢ by the GNS-construction. By Propo-
sition 2.3.2, this unitary representation (m, V') associated to ¢ by the GNS-construction
is spherical. Conversely, the unitary equivalence class [(7, V)] of a spherical representa-
tion (m, V') of (G, K) is matched with the positive definite function ¢ : G — C defined
by ¢(z) = (v,m(x)v) for all € G, where v is an arbitrary unit, K-invariant vector
in V. By Proposition 2.1.2, dim(V%) = 1 so that the function ¢ is independent both
from the choice of a unit, K-invariant vector in V' and the choice of a spherical rep-
resentation from the unitary equivalence class [(m, V')]. Also by Proposition 2.3.2, this

positive definite function ¢ is spherical. Hence both matches are well-defined.

By harmonic analysis for an Olshanski spherical pair (G, K), we mean deter-
mining its spherical dual Q(G, K) consisting of all positive definite spherical functions
for (G, K) and giving realizations of the spherical representations corresponding to
the positive definite spherical functions by the GNS-construction. In the following

chapters, we study harmonic analysis for two different Olshanski spherical pairs.
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3. SPHERICAL DUAL OF (U(o0) x H(0),U(c0))

Let V,, be a finite dimensional complex Euclidean vector space and H,, = V,, x R

be the corresponding Heisenberg group where the group operation on H, is given by

(z,0)(2,t) = (z+ 2, t+t +Im(z,2)).

Let K, be a closed subgroup of the group U(V},) of all unitary operators on V,,. Then
K, acts on H,, by automorphisms by k(z,t) = (kz,t).
Hence we have the semidirect product G,, = K,, X H,, where the multiplication is given

by

(k,z,t) (K, 2, t) = (kk',z + k2 ,t +1 4+ Im(z, kz')).

Theorem 3.0.1. /5] The pair (G, K,,) defined as above is a Gelfand pair if and only
if Ky, acts on the polynomial ring P(V,) multiplicity free.

Now we assume that (V},), is an increasing sequence of finite dimensional complex
vector spaces, each K, acts multiplicity free on P(V},) and that K,, = {k € K, :
k(V,) = V,}. We define

V=U2V, H=UH, K=U%K, G=U20G,

Then K acts on H by automorphisms by k(z,t) = (kz,t). Furthermore, G = K x H
and the pair (G, K) is an Olshanski spherical pair.

Remark 3.0.2. Let pu, be the normalized Haar measure on K,. For a continuous,
K,-bi-invariant function ¢ : G,, — C, define ¢ : H, — C by ¢(z,t) = ¢(1, 2z,t). Then
¢ is a continuous, K,-invariant function on H,, i.e. ¢(kz,t) = ¢(z,t) for all k € K,

and (z,t) € H,. The map ¢ — @ gives a one-to-one correspondence between the



17

continuous, K,,-bi-invariant functions on Gz,, and the continuous, K, -invariant functions
on H,. Moreover, the map ¢ +— @ gives an isomorphism between L!'(K,\G,/K,) and
L'(H,)%" as convolution algebras where L'(H,)X" denotes the convolution algebra

consisting of all Lebesgue-integrable, K,-invariant functions on H,,.

We call a non-zero, continuous, K,-invariant, complex-valued function ¢ on H,

to be spherical if

| AGEORE ) diah) = ol )0 ) (31)
for all (z,t),(z',t) € H,. Then, the map ¢ — $ gives a one-to-one correspondence
between spherical functions for the Gelfand pair (G, K,,) and the spherical functions

on H,. Throughout the text, we will identify ¢ with ¢.

Similarly if ¢ : G — C is a continuous, K-bi-invariant function, then ¢ can be
considered as a continuous, K-invariant function on H where H has the inductive limit
topology. A spherical function ¢ for (G, K) can be seen as a spherical function on H
which is defined to be a non-zero, continuous, K-invariant, complex-valued function

on H satisfying

lim [ (2, k(2 1)) dpn(k) = (2, 0)p(2 1) (3:2)
n—oo Kn
for all (z,t),(z',t) € H. Moreover, a positive definite function on G corresponds to a

positive definite function on H.

In this chapter, we will take V;, = C" and K,, = U(n). Then H, = C" x R and
G, =U(n) x H,. Once we prove the following proposition, we will have (G,, K,,) is a
Gelfand pair by Theorem 3.0.1.
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Proposition 3.0.3. The unitary group U(n) acts multiplicity free on the polynomial
ring P(C").

Proof. Denote by 7 the representation of U(n) on P(C"). It is enough to prove that

the commutant A := Homy (7, 7) of the representation 7 is commutative.

Let A € A. Given a = (a1, as,...,a,) € N, let p,(z) be the monomial defined

an
n

by pa(z) = 2*.25%...28" where z = (21, 29,...,2,) € C". Now we fix a € N". For an
arbitrary b = (b1, by, ..., b,) € N”, we write A(p,(2)) = Appp(2) + ¢;(2) for some A, € C
and ¢;(z) € P(C") not containing the monomial p,(2) as a summand. For § € [0, 27]
and | = 1,2,...,n, by kg € U(n), let us denote the diagonal matrix, with the /th
diagonal entry is e™* and all other diagonal entries are 1. Then,
et Aypy(2) + € q5(2) = Am (ki) (pa(2))

= (ko) A(pa(2)) = €™ Aypy(2) + (ki o) g5(2).-

Since (ki) multiples each monomial with a constant, the polynomial 7(k;¢)g;(2) does
not contain the monomial p,(z). So, €/ Ayp,(2) = ¥ Ayp,(2) for all [ and 6 and since
a;,b; € N, this implies either A, = 0 or a@; = b; for all [. So, for each monomial
pa(2) € P(C"), there exists a constant A, € C such that A(p.(z)) = Aupa(2). Hence,
for any B € A and for all monomials p,(z) € P(C"), we have AB(p,(2)) = AuBapa(2) =
B,Aupa(z) = BA(py(z)) which shows by linearity of A and B that A commutes with

B. So, we are done. O

Therefore the choices V,, = C" and K,, = U(n) give rise to an Olshanski pair
(K x H, K) constructed as previously described when we embed V,, = C" into V,, 41 =

C"™ by 2 + (2,0) and also K,, = U(n) into K,,;; = U(n + 1) by
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In this case, K = U(oo) where U(00) is the infinite dimensional unitary group.
Note that an infinite matrix & = (k;;); j>1 is an element of U(oo) if and only if there
is an N € N such that (k;;)),_, € U(N) and ky; = d;; for i > N or j > N. When it
is considered as a subgroup of U(o0), the group U(N) consists of all infinite matrices
k = (kij)ij>1 such that (k:ij)f\fj:l € U(N) and k;; = 6;; for i > N or j > N. Also,
V = C(*) where C(™ consists of all infinite sequences of complex numbers with all
but finitely many terms are zero. Given elements z = (z;);en = (21, 29, ...,0,0,...) € V
and w = (w;)ien = (w1, w2, ...,0,0,...) € V we can define the norm of z by ||z|| =
V22 + 22+ -+ and the inner product of z with w by (z,w) = Y ien Ziwi. The group
K = U(00) acts on V = C() by natural automorphisms and this action preserves
the norm. Let H(co) = C®) x R be the infinite dimensional Heisenberg group with
multiplication defined in just the same way as in the finite dimensional case. The group
K = U(oo) also acts on H(co) by k(z,t) = (kz,t) for all k € K, 2 € C®) and t € R.
Then, H = H(oo) and G = U(00) X H(00).

Our main goal in this chapter is to determine the positive definite spherical func-

tions of the Olshanski spherical pair (U(oo) x H(c0),U(c0)).
3.1. Spherical Representations of the Gelfand pair (U(n) x H,,U(n))

In this section, we will determine the unitary dual of the Heisenberg group H,
and then the unitary dual of U(n) x H,. For both, we will use the Mackey Little Group
Theorem which provides a machinery to construct the irreducible unitary representa-
tions of a certain class of locally compact groups by inducing representations of their
certain subgroups. Finally, we will find the (U(n) x H,, U(n))-spherical ones among

all irreducible unitary representations of U(n) X H,.
3.1.1. Fock representations of H,

Let O(C™) be the space of complex-valued holomorphic functions on C". The

space O(C™) is a Fréchet space when equipped with the topology of uniform convergence
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on compact subsets. For A € R*, define the Fock space F} by

(0@ IR i= (2 [ MR dx <o)
where dz is the Lebesgue measure on C”.

The norm || - ||» on F} is induced by the inner product defined by

= By [ b1 1) a

Let 7, be the probability measure on C" given by dv,(z) = (MI) e~ M=’ dz. The
Fock space F} is a subspace of the Hilbert space L?(C",,) of all square integrable,

complex-valued functions on C™ with respect to the measure ~,.

Proposition 3.1.1. Let (fi,)men be a sequence in Fy and f € L*(C",v,). Assume
(fm)men converges to f in L*(C",7,). Then (fm)men converges to f uniformly on

compact subsets.

Proof. Take a bounded domain U in C". Then there exists A > 0 such that ||z||* < A

for all z € U so that e MIZI* > ¢=N4 for all z € U. Hence,

A
By [ ePge) = 1P b <l = 11;
U

so that

[ 1) = 1P dz < (Ehynebiagg, - gz 33

Since U is bounded, the restrictions (f,,);, and also f;, are contained in the space

U
L*(U) of all square integrable, complex valued functions on U with respect to the
Lebesgue measure. Then the equation (3.3) together with the convergence of (f,,)men
to f in L*(C",,) indicates the convergence of ((fin)1, )men to f, in L?(U). But each

(fm)1y is holomorphic on U and the convergence in L*(U) of holomorphic functions
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implies uniform convergence on compact subsets contained in U. Since every compact

set is contained in a bounded domain in C", the result follows. O

Corollary 3.1.2. The Fock space (F{,|| - ||x) is a Hilbert space.

Proof. Tt is enough to show that F} is a closed subspace of L*(C",~,). Let f,, — f in
L*(C",,) where each f,, € F%. By Proposition 3.1.1, f,, — f uniformly on compact

subsets as well. Then since each f,,, holomorphic, so is f. Hence f € F} and we are

done. O
For v = (11,1, ...,v,) € N* let |v| := 11 + 1o + ... + v, and V! == vl .y,
Also given z = (21,2, ..., 2,) € C", let 2 1= z}'24>..2%». Then, ||z*|? = v\ so

that 2 € FY for all v € N". Let F}, denote the space of all homogeneous polynomials
of degree m in P(C™) for m € N. Then £}, is contained in F} and since F,, is finite-
dimensional, F}, is a Hilbert subspace of F} for all A € R* and m € N. Moreover, for
e, = %z”, the sequence {e, },enn forms an orthonormal basis for F}{. Hence F7 is

a seperable Hilbert space and

7 - @

meN

Proposition 3.1.3. Let f € O(C") and f(z) = >, cnn av2” where the series converges
to f in O(C™). Then,

A3 =D vIAMa, (3.4)

veNn

Hence f € FY if and only if the series ) VA" a,|? converges.

veNn

Proof. Assume >, . V!|A[7"]a, > < co. Let

fr(z) = Z Z a,z’ € Fy.

m:O ‘y|:m
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Then, the sequence (fi) forms a Cauchy sequence in the Fock space FY, because given

N> 1L

N L N N
122> a =3 Y ali=1 X0 D ali= 3 > el

m=0 |v|=m m=0 |v|=m m=L+1 |v|=m m=L+1 |v|=m

N
= 3 3 v Me,?

m=L+1 ‘y|:m

can be made arbitrarily small for L large enough by our assumption. Hence, the
sequence (fx)r has a limit in the Fock space F{ and by Proposition 3.1.1, this limit is
identical with its limit in O(C™) which is f. Hence, f € F}.

Now, if f ¢ F}, by the argument above, both || f||2 and > _x. V! A7"]a,|?

veN™
diverge to infinity so that the equation (3.4) is satisfied. If f € F}, then since {e, },enn

forms an orthonormal basis for 77, we get

vl
1913 = 30 1 2 = 32 B = 3 P gy

veN” vEN? ’ vEN?

= 3 VA Ma,

veNn

as desired. n

By Proposition 3.1.1, the inclusions from F} into O(C") are continuous. Hence,
for any z € C" the evaluation map ev, : F{ — C given by ev,(f) = f(z) is a bounded
linear functional. Then, by the Riesz Representation Theorem, for any z € C" we have
a unique function K, € F} such that f(z) = ev,(f) = (f, K.), for all f € F}. That
is to say, FY is a reproducing kernel Hilbert space and the map Ky : C" x C" — C
defined by Ky (z,w) = K,(2) is the reproducing kernel function of F7. Since F} is a

seperable functional Hilbert space, we can find the kernel function Ky of F} explicitly
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in terms of the orthonormal basis {e,},enn by

— 1
Ka(z,w) = Z e, (2)e,(w) = Z |)\|IV\Jvau — =)

veEN™ veEN™

Since F},, is a Hilbert subspace of F} for all A € R* and m € N, from Proposition
3.1.1 it follows that for all z € C", there exists a unique function (K),,). € F,, such
that f(z) = (f, (Kxm):)a for all f € F,,. Hence, (F,, (-,-)») has a reproducing kernel
K\ defined by K (2, w) = (K m)w(%), which can be computed via the orthonormal
basis {€, }yj=m of (Fm, (-,-)x) as

AI™ v—V Al™ m! V—V AI™ m
Kym(z,w) = Z e (2)e,(w) = Z %z W’ = % Z —Z'w” = L(z,w) :

vl m!

[v|=m lv|=m " vl=m

Note that for all z € C",

K.

Z(KA,m)z

m

where the convergence is in FY, hence uniform on compact subsets.
For A > 0, the Fock representation T) of H,, on FY is given by
T3z, f](w) = A0 o 42

for any (z,t) € H, and f € F{. For A < 0, we define T)(z,t) = T_(%Z, —t). For each
A € R*, the Fock representation (7, Fy) defines a unitary group representation of the

Heisenberg group H,. Moreover, it is irreducible which we shall now show.

Proposition 3.1.4. The Fock representation (T, FY) of the Heisenberg group H, is
irreducible for all A € R*.
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Proof. Tt is enough to prove the assertion for A > 0. So let A > 0 and W be a non-zero,
closed subspace of F} that is invariant under T)(z,t) for all (z,¢) € H,. Let P be
the orthogonal projection on W. As an orthogonal projection to a subrepresentation
of a unitary representation, P commutes with the action of H,. For the constant 1
function in F{, we have T\(—z,t)1 = C, K, for all (z,t) € H, where C,; = Ait=51211%)

It follows that for every z € C",

P(1),(Ceo) ™' (=2, 1) 1)x

= (P(1) )
= (Coa) UTa(2, —1)P(1), 1)
= (Coa) UP(Ta(z, —)1), 1)
= (C0) HTa(z, =)L, P(1))
= (Co) 10 (P(1), K.), = P(1)(=2).

Hence, P(1)(z) = P(1)(—=z) for all z € C" so that both P(1) and P(1) are holo-
morphic. This implies that P(1) € W is a constant function, so 1 € W. Then
K, =(C,0) 'T\(—2,0)1 € W for all z € C".

Now let f € W+, Since K, € W for all z € C", we have f(z) = (f, K,), = 0 for
all z € C". Hence W = FY. O

3.1.2. Mackey Machine and Its Application to H,

In order to find the unitary dual of the Heisenberg group H, and the group

U(n) x H,, we need two technical results from Harmonic Analysis.

Let G be a locally compact group and N be a normal closed subgroup of G.
Since N < G, G acts on the unitary dual N of N. Indeed, given g € G and (7, V') an
irreducible unitary representation of N, we define g.(7,V) = (79,V) where 79(n) :=
7(g 'ng) for all n € N. Then (79, V) is also an irreducible unitary representation of
N. If 7 and p are two equivalent irreducible unitary representations of IV, then 79 and

p? are also equivalent. So given g € G and [r] € N, we define g.[7] = [79] and get an
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action of G on N. Let G be the stabilizer of 7] € Nin G, ie.
G ={9€G:[r] =[r]}.

If g € N, then 7(g9) € Homy(n?,7) so that [79] = [n]. Hence N < Gpy. Let E([n]) be
the set of extensions of [1] € N to éﬁ defined by

—_

E([7]) = {[7] € G : 71y is equivalent to a multiple of }.

Before stating the next theorem, we need some more terminology. In [ [16], Realization
I1], a useful formulation of producing unitary representations of a locally compact group
G by inducing representations of a closed subgroup H is given. We summarize this

realization in the following definition.

Definition 3.1.5. Let G be a locally compact group and H be a closed subgroup of
G. Let Bg be the Borel o-algebra of G. The Borel o-algebra Bg/g of the quotient
space G/H is defined by Bg/g :={E C G/H : p~'(E) € Bg} where p: G — G/H is
the natural quotient map. Fix a quasi-invariant measure y on Bg, g, i.e. the action of
G on G/H preserves null sets.

Let Ay and Ag be the modular functions of H and GG. A rho-function for the pair
(G, H) is a continuous function p : G — (0, 00) such that for all z € G and h € H

p(zh) = Ac(h) p().

Let p be a rho-function for (G, H) (the existence of a rho-function for (G, H) is given
by [Proposition 2.54, [15]]. Note that if H is a closed normal subgroup, then G/H has
the structure of a locally compact group. So p can be chosen as a Haar measure on

GG/H and hence p can be chosen as the constant 1 function on G by [Theorem 1.5.2, [9]]

Let (7, V) be a unitary representation of H. Let Vindg () be the Hilbert space consisting
of all measurable functions f : G — V; such that f(zh) = n(h™')f(z) for almost all
z € G and for all h € H, and satisfying [, [[f(2)||* du(zH) < oo where the inner
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product of f,g € Vlndg (x) 18 given by

ug>=[;;f@xww>mmﬁw

Then, the representation (Ind% (), Vina¢ (x)) of G induced from the representation 7 of

H, or briefly the induced representation, is given by

(WS () @) ) = /2D oty

for all f € Vi,q¢ (), € G and almost all y € G. (Ind% (), Vina¢ (r)) defines a unitary

representation of G.

Theorem 3.1.6. [28] (Mackey Little Group Theorem) Let G be a locally compact group
of Type I and N be a closed normal subgroup of G which is also of Type 1. Assume

that N has a Borel measurable section under the action of G. Then,
G ={[Indg,_(7)] : [r] € N and [y] € E([x])}.
Moreover, for [x],[x'] € N, [7] € E([x]) and [y'] € E([x),

[Indg[ﬂ] (7)) = [Indg[ ,](7,)] if and only if [7'] = [79] and [y] = [17] for some g € G.

The pair (G, N) is said to have the extension property if for every irreducible
unitary representation w of N, there exists an irreducible unitary representation 7 of

éﬁ such that m, = 7.

Corollary 3.1.7. Let G be a locally compact group and N be a closed normal subgroup
of G. Assume G and N are of Type 1 and that the pair (G, N) has the extension
property. Given [x] € N, let [7] € C/ﬁ;] be such that 7, = m. Assume also that N has

a Borel measurable section under the action of G. Then,

E(fn)) = {7 @ i) : [u] € G/ N is lifted to [7] € G}
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so that

G ={[Indg_(7®@):[x] € N and [u] € Gm/N is lifted to [fi] € G}

Type I condition is a technical one related to the operator algebraic aspects of
the theory of group representations. We do not want to go into this. But we will see

that the groups which we study satisfy this condition.

The commutator subgroup [H,, H,| of the Heisenberg group equals to its center
Z(H,) = {0} xR. Hence H, is a nilpotent group of nilpotency class 2. Let N := R" xR.
To be more precise, N consists of those elements ((z1, 22, ..., 2,),t) € H, such that
Im(z) =0 for all i = 1,...,n. In [10], Dixmier showed that every connected nilpotent
Lie group is of Type I. Both the Heisenberg group H,, and its abelian subgroup N are
connected nilpotent Lie groups, hence both are of Type 1. So we can apply Theorem
3.1.6 to G = H,, and its closed normal subgroup N := R™ x R. N is isomorphic to the
abelian additive topological group (R™™! +). Hence N consists of unitary characters

Uy rarmsn) - N — ST where S is the circle group, (1,72, ...,7p4+1) Tuns over R™*!

and

Wrnp1t+d 1 g Tizi)

\I/(rl,rg ..... T’n+1)((zla Z2y e Zn)7t> = 6‘(
for all ((z1, 22, ..., 2n),t) € N. Given (z,t) = ((21, 22, ..., Zn), t) € H,,, we have

(\p( )(z,t) _

71,725, Tr41) \IJ(T1+2Tn+1 Im(z1),r24+2rn4+1 Im(22),...,rn+2rn+1 Im(zn),rny1) -

So,

Hn Tn+1 = O

(Hn)

[qj(rl,rg ,,,,, rn+1)]

N T'n+1 # 0.
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In case 1,41 = 0, given an irreducible unitary representation ¥, ,, .0y of N, we can

Tn,
extend it to an irreducible unitary representation \AIvf(sz_,rmo) of the stabilizer H,, of
[\I[(Tlﬂ"z ..... rn,O)] by deﬁning

\AI}(Tl,TQ,...,Tn,O) (Z’ t) = 67’(2?:1 Ti Re(zl))

for all (z,t) = ((21, 22, ..., 2n), t) € H,, in the sense that (‘T/(n,rg,...,rn,O)){N =V gm0
Thus, the pair (H,, N) has the extension property and by Corollary 3.1.7

—~

E(% 0 rmmn)) = {Wrs o) @ Al € H, =[] € R7 s lifted to [A] € H,}
so that

U E(¥eimrno)) = {®u: Hy = C: 0y(z,1) = e e C

(r1,725..,70 ) ER™

By the family {®,, },ecn, we obtain all unitary characters of H,. By Theorem 3.1.6, we
get one more type of representations of H,, that are obtained by inducing the characters
U y where r,, .1 # 0 from N to H,. Again by Theorem 3.1.6, it follows that

)) and Indy" (W, o

T1,725--s"nTn+1

two induced representations Indj" (¥ ) with

71,7250, Tpp1) ) GHE LU AR (59,50, SnySnd1)

Tnil, Snp1 € R* are equivalent if and only if there exists (z,¢) € H,, such that
‘11(51,327~-'75n,5n+1) = (\Ij(m,rz,m,?“nﬂ“nﬂ)>(Z’t)

= q](r1+2rn+1 Im(z1),r2+2rp41 Im(22),...,rn+2rn+1 Im(2n),rn+1) - (36)

For non-zero r, 41 and s,.1, such (z,t) € H, satifying the equation (3.6) exists if and

only if r, 41 = Sp41. Hence

Hy,={®y: weC}U{[Indy" (Yo, on):\ERY.

Now, we compute the central characters of the induced representation Indﬁ"(e”‘t) and

the Fock representation T\ of the Heisenberg group H, where X # 0. The center
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Z(H,) = {0} xR of the Heisenberg group H, is completely contained in N. We denote

by V. alin (eixty the representation space corresponding to the induced representation

Ind&" (e') of H,. Then given f € Vinatin ey and (0,t0) € Z(H,),

(Indy (e)(0,20) ) (2, 1) = F((0, ~to)(2,1)) = f((2,£)(0, ~t0)) = €™ f(2,1)
for all (z,t) € H,.

When we consider the Fock space representation (7, Fy) of H,, given f € F}
and (0,t0) € Z(H,), for all w € C" we have (T)(0,t0)f)(w) = e f(w). Hence for

each non-zero real number A, the homomorphism

Z(H,) —C*

(0,t) — M

is the central character of both Indy" (") and T, which are irreducible unitary rep-

resentations of H,. Then, it follows that
[Indy" (¢*)] = [T)]

and we have the following lemma.

Lemma 3.1.8. The unitary dual f[; of the Heisenberg group H, consists of two types
of representations up to unitary equivalence. First, there are unitary characters ®,,
defined by ®,(z,t) = 'R where w € C* and (z,t) € H,. Second, there are infinite

dimensional Fock representations (T, FY) for A € R*.

3.1.3. Spherical Representations of (U(n) x H,,U(n))

We will now classify the irreducible unitary representations of the locally compact
group G,, = K, x H, where K, is a closed subgroup of the unitary group U(n).

For this goal, we will once more follow the steps of Mackey Little Group Theorem
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and then among all irreducible unitary representations we will uncover the ones with
K,-invariant non-zero vectors. Finally, for the case when K, = U(n), we will write

explicitly the spherical representations of the Gelfand pair (U(n) x H,,U(n)).

The Heisenberg group H,, can be regarded as a closed normal subgroup of G,,.
Let (ko, 20,t0) € G,. The action of (ko, 2o,%9) on a representation 7 of H,, is given by
mkoz0t0) (2 1) = w((ko) 'z, t — 2Im(z, 20)) for all (2,t) € H,. Hence, for the unitary

character ®,, of H,, where w € C", we have

1

((I)w)(ko,zo,to) (Z,t) — eiRe((ko)_ zw) eiRe(z,kgu)) — (I)kow<zat>
for all (z,t) € H, so that (®,,)*ko20:%0) = @, . So, the stabilizer (G = (Kn)w X Hy,
where (K,,), = {k € K,, : kw = w}. For the Fock representation T\ of H,,

((Ty)Fo20:t0) (5 ) ) (w) = eAﬁ(t_QIm(z’ZO))_%“Z||2_<w’(k°)7lz>)f(w + (ko) '2) if A > 0, and

(1) 90201 (z,0) ) ) = 002G 00079 f (w4 (k) 12) i A < 0

for all (z,t) € H,, f € F and w € C". Then for each A € R*, (Ty)ko2000) (0, ¢) f = e f
for all (0,t) € H, and f € F} so that the central character of (Ty)*o*0:%) is the map
(0,t) = €™ from Z(H,) to C* which is exactly the central character of T). Hence,
(Ty)ko:#0:t0) i unitarily equivalent to Ty and the stabilizer (Gn)iry = Gh.

In the following two propositions we will determine the set of extensions of irre-

ducible unitary representations of H,, to their stabilizers that we have just found.

Proposition 3.1.9. [28] Given w € C", let ®,, be the unitary character of H, given
by ®,(z,t) = R for all (z,t) € H,. Then ®, can be extended to a unitary
character C/}:U of its stabilizer (K,), X H, in G, defined by C/ﬁ;(k,z,t) = Oy (2,1).

— — —

Hence E([®y]) = {[Pw @ 1] : [1] € (Ky)w s lifted to (1] € (Ky)w X Hy}
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Proof. 1t is enough to show o, : (K,)w X H, — S'is a group homomorphism. So we

take two elements (ko, 29, to) and (k1, 21,t1) from (K,), X H,. Then since
(Ko, 20, to) (K1, 21, t1) = (kok1, 20 + Koz, to + 1 4 Im(z0, ko21))
we get

i)\:u((km Zo,to)Uﬁ, 21, tl)) _ eiRe<z0+k0z1,w> _ eiRe(zo,w>eiRe<k0z1,w>

— eiRelaow) giRe(z1,(ko) "lw) _ piRe(z0.0) giRe(zrw) _ &)Tu(k‘o, 20, t0) Po (K1, 21, 1)

as desired. O

Given A € R*, the group K, has a natural action on the Fock space F} via the

homomorphism 7, : K,, — U(FY) given by

(ma(k)F)(2) = f(k"2). (3.7)
For A > 0,
(Ta (2, O)ma (k™) f) (w) = X200 (k7)) (w 4 2)
— At 3llz12—(w,2)) Fllw + k2)
so that

(mA(R)Ta (2, O)ma (k™) f) (w) = Xzl g 4 )

_ e)\(it—%||kz\|2—<w,kz>)f(w + kz) = (Th(kz,t) f)(w) (3.8)

for all k € K,,, (2,t) € H,, f € F{ and w € C". The equation (3.8) also holds for all
A < 0. Hence for all k € K,, and (z,t) € H,,
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7T>\(]€)T)\(Z,t)7'(')\(l€_1) = T)\(kz,t). (39)

Proposition 3.1.10. /28] For A € R*, the Fock representation Ty of H,, can be extended
to an irreducible unitary representation ﬁ of Gy, on the Fock space Fy defined by

Ta(k, z,t) = Ta(z, t)ma(k). Hence E([T)]) = {[Tx ®7] : [7] € K, is lifted to 3] € G,,}.

Proof. The fact that Ty: G, —= U (F7) is a group homomorphism follows from Equa-
tion 3.9 and irreducibility of ﬁ follows from the irreducibility of T which is already
proved in Proposition 3.1.4. ]

Now Proposition 3.1.9 and Proposition 3.1.10 together with Theorem 3.1.6 gives
the unitary dual of the group G,, = K,, x H,, as stated in the following theorem.

Theorem 3.1.11. [28] Let K,, be a closed subgroup of the unitary group U(n). Then
the unitary dual Kmn consists of two types of representations:

First, there are classes of representations of the form [Indﬁ?ﬁf&Hﬂ(@w@ﬁ)] where

w e C, (Ky)w ={k € K, : kw = w}, 5; is the character of (K,), X H, defined by

Bk, 2,t) = (2, 1) and (1] € (K,)w is lifted to [i] € (Kn)w x H,.

Second, there are classes of representations of the form [ﬁ ® 74| where (i’:, F1)
is the irreducible unitary representation of K, x H,, given by ﬁ(k, z,t) = Th(z, t)m\(k)
and [v] € K, is lifted to 7] € K,  H,.

Among all irreducible unitary representations of K, x H, given by Theorem
3.1.11, we will determine the ones with non-zero K,-invariant vectors. Hence if K, is
a closed subgroup of U(n) acting multiplicity free on the polynomial ring P(C"), we
will have determined the spherical representations of the Gelfand pair (K, x H,, K,).

Remark 3.1.12. If G is a locally compact group with a compact subgroup K and

(w,V) is a unitary representations of G, then the restriction (m,,V) is a unitary
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representation of the compact group K. The representation space V' has a non-zero
vector v such that m(k)v = v for all k € K if and only if (m,,Cv) is a subrepresen-
tation of (7., V) where Cv is the one-dimensional C-linear subspace of V' generated
by v. But (7, Cv) is equivalent to the one-dimensional trivial representation (1x,C)
of K. Hence V has a non-zero vector v invariant under m(k) for all £ € K if and
only if mult(1g, ) > 1 where mult(1g, 7, ) denotes the multiplicity of the trivial

representation 1y of K in mp,.

In the light of the previous remark, for the determination of all irreducible unitary
representations of the locally compact group K, X H, with non-zero K,-invariant
vectors, we will compute the multiplicities mult(1g, , (IndK"'XHQ Hn(q)w ® 1)1y, ) and

mult(1gk, , (ﬁ ® 7)1k, ) consecutively.

Proposition 3.1.13. For all 1] € (K,)w,
(A (B @ )] = [’z (1) (3.10)

where [i is the lifting of p to (Ky)w X H,.

Proof. Since (E, is a one-dimensional representation of (K,), X H,, we have V@J =C.

Thus, V- @ V3 =V =V, and (D @ 1) (K, 2, 1) = Boy(z, ) (k) = e B0 (k) for all

(k,z,t) € (Kp)w X Hy.

Now we define a bounded linear operator A : V; wdf2 )y = V (ISt (@), by

(Af)(k, 2,t) = e~iRe(=kw) £(k) for all f € Vlnd{%) (o and (k,z,t) € K, x H,. We show
Kn w

A gives an equivalence between the representations of K, given in the equation (3.10)

as follows:

Given g € V(I a2 I (E0m)

, for all (k, z,t) € K,, x H, we have

g(ka Z,t) = g((k,0,0)(l, /{3_127t)) = (/I;\;J®ﬁ(17 _k_lzv _t)g(k7070) - —zRe shw) (k O 0)
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Then, for f : K, — V, given by f(k) = ¢(k,0,0), we have Af = g and that f €

Vinakn (- Thus A is onto. Moreover, Af = 0 if and only if e *RezFv) £(k) = 0 for all
nd (K (1)

(k,z,t) € K,, x H,. But this is only possible when f = 0. Hence A is also one-to-one.

Let p be a rho-function for the pair (K,, (K,)y). Then py : K,, x H, — (0, 00)
defined by po(k, z,t) = p(k) is a rho-function for the pair (K, X H,, (K,), X H,). Then

for all ko € Ky, (k,2,1) € Ky % Hy and f € Vi, .

A(Idfe ) () (ko) f)(k, 2,t) = e &R Indfe | (1) (ko) f (k)

—iRe(zkw) p(ko__lk‘)

il

=€

where

po((ko,0,0)(k, 2,t))
o(k, z,t)

(Ind 25, (B @ 1)) 1, (ko) (AS) (K, 2, 1) :\/ Af(kgtk, kytz,t)

1k —zRe zk:w lk)

as well. Thus, A is an intertwining operator. O

Now Proposition 3.1.13 together with the Frobenious Reciprocity Theorem for

compact groups gives that
mult(1g,, (Ind(z5% (P @ 1)1, ) = mult(Lg, , Ind( ) (1)) = mult(p, Lx,), )

But, mult(p,1(x,),) = 1 if © = 1k,), and mult(y,1,),) = 0 otherwise. Hence,
in case (K, x H,, K,) is a Gelfand pair, a representation of K, x H, of the form

IndK”KHZH (@w ® 11) is spherical for (K, x H,, K,) if and only if u = 1(x,), -

Proposition 3.1.14. [28] Let K,, be a closed subgroup of U(n). Let [v] € K, and
7] € Kmn where 7 is the lifting of v from K, to K, x H,. Then for all A € R*,
mult(1x , (Th ® 7) ', ) = mult(y*, ) where v* is the contragredient of v and 7 is the
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natural representation of K,, as a subgroup of U(n), on the ring of polynomials P(C™).

Proof. Since ﬁmn = 7y and 7}, =, we have

(Th ®F) i, ] = [mr ® 7]

The Fock representation 7 of K, is equivalent to the natural representation 7 of K,
on the ring of polynomials P(C"). The representation m decomposes as m = >, ;

where 7;’ s are irreducible representations of K,,. Hence, 7 @ v = ;T @7y and

mult(lg, , 7 ®v) = Z mult(1g,, 7; @ 7).

J

But, mult(1g,, m;®7v) = 1 if 7; is equivalent to v* and mult(1g,, 7;®7) = 0 otherwise.

Hence the result follows. O]

We combine Theorem 3.1.11 with the above multiplicity calculations in the next
theorem and right after we give the spherical representations of the Gelfand pair

(U(n) x H,,U(n)) as its corollary which is the main result of this section.

Theorem 3.1.15. [28] Let K,, be a closed subgroup of the unitary group U(n) acting
multiplicity free on the polynomial ring P(C"). Then there are two types of spherical
representations of the Gelfand pair (K, x H,, K,) given as follows:

First, there are classes of representations of the form [Ind{%ﬁfﬁm((ﬁ;)] where
w € C", (K,)w ={k € K, : kw =w}, Cg; is the character of (K,), X H, defined by

i):;(k, 2,1) = By (2, 1) = eiRelzw)

Second, there are classes of representations of the form [ﬁ ® 4] where 7 is the
lifting of [y] € l/(; to K,, x H, such that mult(~v*, ) = 1 where v* is the contragredient
of v and 7 is the natural representation of K, as a subgroup of U(n), on the ring of

polynomials P(C™).
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Corollary 3.1.16. There are two types of spherical representations of the Gelfand pair
(U(n) x H,,U(n)) given as follows:

First, there are classes of representations of the form [IndE]U(?z;f;Hn(i)\;)] where

weC", (Un))w=1{keUn):kw=uw}, 5; is the character of (U(n)), x H, defined
by @U(k, 2, t) = ®y(2,t) = piRe(zw)

Second, there are classes of representations of the form [ﬁ@ﬂ] where T, is the
lifting to U(n) x H, of the representation m,, of U(n) on the polynomials of degree m

on C".

3.2. Spherical Functions of (U(n) x H,,U(n))

Throughout this section, let G,, = U(n) x H, and K,, = U(n). As we have seen in
Remark 3.0.2, we may identify the spherical functions for the Gelfand pair (G,,, K,,) by
the spherical functions on H,,. Given h € L*(H,)%» and X > 0, consider the operator
T\(h) € B(FY). From the equation (3.9), it follows that T)(h) commutes with the
natural action of K,, on F,,. Hence by Schur’ s Lemma the restriction of T)\(h) to F,

is a scalar multiple of identity, i.e. for all f € F,,,
Ta(h)f = h(\,m)f (3.11)

where ﬁ()\, m) is the spherical Fourier transform of h given by

A\ m) = / Bz ) orm (2, t) dedt. (3.12)

We want to write the bounded spherical functions ¢, ,, explicitly. For all f € F),,

h € LY(H,)% " and w € C", we have
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h(Am) f(w) = Ty(h) f(w) = (Ts(h) f, Ku)x —/ h(z,t) (Tx(z, 1) f, Kuw)x dzdi

n

_ / Bz ) (Ta(2, ) f)(w) dzdt. (3.13)

n

When we apply the equation (3.13) for a fixed w € C" and f € F), such that f(w) =1,
then we get

nAm) = [ h(zt) (Tx(zt)f)(w) dzdt

n

h(z,t) e’\(it_%||z“2_<w’z>)f(w + 2) dzdt

I
3

h(kz,t) et alk=lP=wka)) £y 4 k) dzdtdk

h(z,t) eMit=al=lP=wka) £ 4 k) didzdt

J,
/ h(z,t) eXit=alzlP=wka) ¢y 4 ko) dzdidk
H,
J,

h(z,t) ei’\teé)‘ZHQ/ e MWk (w4 kz) dk dzdt.

n n

So the function p(z,t) = ¢Me 2=l Jie, €28 f(w + kz) dk is a continuous
Kp-invariant function such that the map h — [, h(z,t)p(z,t) dzdt is a character

En  Hence ¢ defines a spherical function for the

of the commutative algebra L'(H,,)
Gelfand pair (G, K,,). Note that ¢ is bounded and the characters of the commutative
algebra L*(H, )% are uniquely determined by the bounded spherical functions for the

Gelfand pair (G,, K,,) (see [Lemma 6.1.7, [26]]). Therefore, we get
oam(2,t) = p(z,t) = ei’\te_é’\”zg/ e MWk £ 4 k2) dk

where w € C" is fixed and f € F,, is chosen such that f(w) = 1. To move one more step

forward, let us take w = (0,0,...,0,1) € C" and f(z) = 2" for z = (21, 29, ..., 2n) € C".
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Then, since f € F,, and f(w) =1,
Oam(z,t) = ei)‘te_%’\”ZQ/ e_)‘m(l + (k2),)™ dk. (3.14)

The integral in the above equation is an integral of some special form which is given

and computed in the next proposition.

Proposition 3.2.1. [14] Let A\ € R*. For fi, fo € F{, we write fi = >~ fim and
fo =20 fom uniquely where fi,,, fom € F, for all m and both series converges in

FY. Then,

kT dk = 3 (22 s foma

m=0 "

where Ky, is the reproducing kernel of (Fy,, (-,-)x) and d,, = dim(F},) = ("*mfl),

m

Proof. Let ) be the natural action of K, on the Fock space F{ given as in the
equation (3.7). Then F,,’s are pairwise orthogonal, non-equivalent, irreducible unitary
subrepresentations of the representation (my, Fy) of K,,. Let k € K, and z € C". Note
that (Kx.,). € Fy, for each m. Then for j = 1,2 we have

Filkz) = (ma(k™) f;)(2) = (ma(k) £, Kadx = Y (w5, (Kam) =)

m

= Z<fj,7T)\(k)<K)\,m)z>)\

m

= Z<fj’m’ WA(k)(K)\,m)z>)\'

m

Then by the Schur’ s Orthogonality Relations for the matrix coefficients of the irre-

ducible unitary representations (my, F},,) of the compact group K, we get
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- iﬁmm@,zmm,fzmn
as desired. O

Corollary 3.2.2. For A\ > 0, the spherical function @y, of the Gelfand pair (G, K,)

given in the equation (3.14) can be expressed explicitly as
pam(zt) = e LI 12))

where LT () is the generalized Laguerre polynomial of order n and of degree m,

L (z) = nl i (T) (;_fz), (3.15)

Proof. For z = (21,22, ...,2,) € C", let fi(2) = (1 + 2,)™ and fo(z) = e . Since

1(2) = 3% ()4, | , 1 : ,
fi(z) = X7 ()2 is a finite sum of monomials in Fy, we have f; € Fy. Also
f2(2) = Y0 (' 2i and since Zfioi!k_i|(;w|2 = ¢*, by Proposition 3.1.3 we have

3! 4!

fo € Fyaswell. Let fi,(z) = (7)zL € Fi for 0 <i < mand fi;(z) =0 for i >m. Let

fai(2) = (_Z—f‘)zfl € F; for all 7. If we denote the product n(n + 1)...(n +1i — 1) by the
Pochhammer symbol (n);, then d; = dim(F;) = ("77") = (7% Then by Proposition
321,
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Fi 02 TalR) b = 3 = Knal,2) i foihs

. 2.3
-3 gt () S
B i_n; (S)i?_;”z”zi (T)%;_'
> () e
- (") S~ e

Hence, oy m(z,t) = ez I Ji, [i(k2) fo(kz) dk = ez Ml Ln=1()12]2) as de-
sired. O

In the following proposition, we give another expression of the spherical function

©xm for A > 0, which directly indicates that it is indeed positive definite.

Proposition 3.2.3. Let A > 0. Take any unit vector fo € F,,. Then,

Oam(z,t) = (Tx(2,1) fo, fo)xr.

Hence, @y is positive definite.

Proof. Since || fo|3 = 1, from the equations (3.11) and (3.12), it follows that for every
h e LMNH,)%,

/H h(Z,t) <T,\(Z,t)f07f0>)\ dzdt

= (T\(h) fo, fo)s = (h(A,m) fo, fo)x = R(A,m) = / h(z, ) oam(z,t) dzdt.

n

Moreover, the function (z,t) — (Ix(z, 1) fo, fo)x is a bounded, continuous function on

H,,, which is also K,-invariant by the equation (3.9). Then, the result follows from
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the uniqueness of a bounded, spherical function of H,, corresponding to the character

h s h(\,m) of the algebra L'(H,,)%". O

Theorem 3.2.4. (i) The positive definite spherical function for the Gelfand pair

(U(n) x H,,U(n)) corresponding to the equivalence class of the spherical repre-

n)x Hy, =

sentation Ind"! (®y,) by the GNS-construction is

(U(n))wx Hp,

1, if w=0
Yu(k, 2,t) = (3.16)

2n71 n—1)! .
T g (ellllz]), i w # 0

where Jn(x) =14+ 7, %n(n+2)...(1n+2m72) (_73‘32)z is the Bessel function of order n.

(i1) The positive definite spherical function for the Gelfand pair (U(n) x H,,U(n))

corresponding to the equivalence class of the spherical representation /T: ® Tm by

the GNS-construction is Oy, if A > 0 and it is _x,m if A <0 where
oam(k, 2, 1) = eMe 2 P L1 ()] 2|12 (3.17)

and L (x) =nl )", (T)% is the generalized Laguerre polynomial of order n

and of degree m.

Proof. (i) Since (U(n) x H,,U(n)) forms a Gelfand pair, the group U(n) x H, is
unimodular by [Proposition 6.1.2, [26]]. Then as a closed normal subgroup of U(n)x H,,
the Heisenberg group H, is unimodular as well. The unimodularity of H, and the
compact group (U(n)), implies the unimodularity of (U(n)), x H, by [Proposition
3.3.10, [28]]. Hence the constant 1 function is a rho-function for the pair (U(n) x
H,,U(n), x Hy).

For each w € C", define f,, : U(n) x H, — C by f(k,z,t) = e Relzkw) [t

can be easily checked that f, is a U(n)-invariant, unit element in Vi, QUK g
(U (n))w x Hp \ P

Hence the positive-spherical function 1, corresponding to the spherical representation
U(n)x Hp, —~ . .
Ind(lf((g;wan(q)w) 18 given by
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/

:/ e—zRezk’w d,uU(n (k’)
U(n)
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(3.18)

where fi7() is the normalized Haar measure on U(n). Then for w = 0, ¢, (k, z,t) = 1.

By the left U(n)-invariance of the normalized Haar measure on U(n), the integral in

(3.18) depends only on two parameters: w and the usual norm of z in C". Hence 1),

is a function of ||z||. For w # 0, it follows from (6.4) in [3] that the integral in (3.18),

hence 1,,, can be expressed in terms of a Bessel function as it is stated in (3.16).

(ii) We start with the case A > 0. Let m,, be the restriction on F, of the natural

action 7y of U(n) on F}. Let F,, = {f : f € F,,,} and 7, be the action of U(n) on F},

—

defined by (k) f = mm(k)f for f € F,, and k € U(n). Clearly, [Tm] = [mn] in U(n).

Now, consider the reproducing kernel K ,,, of (Fy,, (-,)»). Then,

Kym(z,w) = Y e(2)e,(w) = ) (e, 08)(2,0) € F{ © Fn

lv|=m lv|=m

/1Al :
where v € N* and e, (2) = ‘)" z” is a unit vector in FY. Since

A |m<k kw)™ w(z,w)’”zfﬁ,m(zaw)

m)! m)

Ky m(kz, kw) =

for all k € U(n), the reproducing kernel K} (2, w) is a U(n)-invariant vector in FR®@F,,

under the action of U(n) x H, via the representation i’: ® ﬁ Here, ﬁ is the lifting

of T, from U(n) to U(n) x Hy,. So, given (k,z,t) € U(n) x H,, we have
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<TZ/_;;\ ® ﬁ(k7 Z, t)K)\,rm K)\,m>

= (T @ Tk, 2,8) Y (0, ©8), Th @ T(k,0,0) Y (e, ©7))

[v|=m lv|=m

lv]=m lv|=m

= Z Z <T>\(Z,t)7r)\(/€)6y,7T>\(/€)€l/>)\<ﬂ'm(k)euaWm(k)ey'>>\
|

vi=m |y |=m

= Y (D2, O)ma(k)ew, ma(k)es) . (3.19)

lv[=m

Since my(k)e, is a unit vector in F,,, by Proposition 3.2.3,

D> Tz t)ma(k)es, malk)enhr = Y oam(z ) = @am(z,t) > 1= @am(z,t) dim F,.

[v|=m lv[=m [v|=m

Therefore,

G (2, 8) = (dim Fp) ™ (K, Th @ T (e, 2, £) Ky )

o —

and since [Ty ® T] = [Th ® T in U(n) x H,, the result follows.

To continue with the case A < 0, take (k, z,t) € U(n) x H, and choose ko € U(n)
such that kygz = z. Then,

(Th(z, t)ma(k)ew, ma(k)en)n = (Tox(Z, —t)mr(k)en, ma(k)ew)n
= (T_x(koz, —t)ma(k)ey, ma(k)ew)
= (ma(k)ev, T-x(—koz, t)mr(k)ew)
= (ma(k)ew, ma(—ko) T-x(z, ) (=K ) ma(k)en)
— (ma(— ke E)en, T (2 )y (— ke k) en)s = (2, 1),
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Hence, following the equation (3.19),

(Th @ T (ke 2, ) Ky K} = Y (Ta(z,)ma(K)ey, ma(k)es)s = Y a2, 1)

lv|=m lv|=m
=P _am(z,t)dim F,
(3.20)

so that
@ am(z,t) = (dim Fy) " (K, T @ T (k, 2, 1) Ky )

as desired. O

3.3. Spherical Dual of (U(co) x H(c0),U(c0))

In the asymptotic functional equation satisfied by the spherical functions for the
pair (U(oo) x H(o0),U(0)), we will confront with integrals over the unitary group of
functions which depend only on the first entry. The next lemma will enable us to turn
such integrals over the unitary group into integrals over the closed unit ball in C. It
is indeed a special case of Lemma 5.1 in [14], but we shall give a simple proof that is

specific to this case.

Lemma 3.3.1. Let n > 2 and D be the closed unit ball in C. Consider the projection
A:U(n) = D defined by A((u;;)?,_q) = uir. If f is a continuous function on D, then

3,j=1

n

JL om0 @) =" [ )0y ) 21

where i s the Lebesque measure on D and puy(,) 1s the normalized Haar measure on

U(n).
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Proof. Let
STl = {(21, .., 2,) €C™ Z |zi|? = 1}
i=1

be the unit sphere in C" and let e; = (1,0,...,0) € C". Let F : U(n) — S*! be
the function defined by F(U) = Uf(e1), i.e. F((uij)ij=;) = (u11,u21, ..., Un1). Since
the Haar measure on U(n) is left translation invariant, the pushforward F,(uy(n)) of

the normalized Haar measure piy(,) is a rotation invariant probability measure on the

sphere S?"~1. Indeed, given f: S?*"~! — C and g € U(n),

/ (f 0.9)(x) dF. (i) () = / (f 090 F)U) duy(U)
gon-1 Utn)

— /U( )(foF)(gU) Ay (U)
:/U( (2 F)V) diivn (V)
_ /S @) dE (o) (@)

2n—

Then since the uniform measure 0?"~! is the unique rotation invariant probability

measure on the sphere S**~!, we get Fi(upn)) = o®*~'. For the function © : $*"~1 —
D defined by ©(z1, ..., z,) = 21, we have © o F' = A. Then since Fy(uy) = 02", we

get

[ Gom@) duw@)= [ (ro0)ar
U(n) g2n—1

Let By denote the open unit ball in C. By Theorem A.4. in [2], for some certain

constant C' € C we have
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/szn-l<f 0 ) do!
:C-/ o / w, /1= [wC) do®3(¢) dpu(w)

S2n—3

=c. [ a-ppy / ) Q) dw)

=C. f(’w)(l — [w]*)"* dp(w).

Ba

Hence, for a certain constant C' € C,

[ oM@ (@) = [ ) - Py dutw)
U(n) D

But, C~' = [,(1—|w[*)"? du(w) fo (1—72)""?r dr df = <. So, the equation
(3.21) follows. O

The following lemma will play a crucial role in the computation of the limit
appearing in the asymptotic functional equation satisfied by the spherical functions for

the pair (U(oo) x H(00),U(c0)).

Lemma 3.3.2. [12] Let X be a compact space and p be a measure such that u(U) > 0
for all nonempty open subset U of X. Let 6 > 0 be a continuous function on X which

attains its maximum at only one point xo. Then for a continuous function f on X,

! " = f(x
i s T ) = Fr)

Proof. Define a, = ([, 0(z)" du(x))~'. Let M = 6(xp). Given r > 0, also define
B, ={z € X :§(xr) > M —r}. Note that

(@) = [y dute) = [ S duta)= [ 1 =0 dute) = O = 1)(B,)

for all » > 0.
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Given an open neighbourhood Uy of xg, there exists an rg > 0 such that d(z) <
M —rq for all z € X\Uy. Hence B,, C Uy. Then,

an/ O(x)" du(z) < an/ (M —ro)" dp(x)
X\Uo X\Uo

. (M —10)"1(X\By,)
= /X\Bm(M O ) S R By

s0 that limy 0 an [y, 0(2)" dp(z) = 0.

Since X is compact, every continuous function g on X is bounded so that

lim a, /X L A dua) =0

n—o0

as well.

Now let f be a continuous function on X and let € > 0 be given. Choose an open
neighbourhood U of xy such that for all x € U, |f(x) — f(xo)| < § is satisfied. By
the last equation above, we have lim,,_, a, fX\U(f(x) — f(20))0(z)™ du(x) = 0. Hence
there exists N € N such that for all n > N, |a, fX\U(f(ZL’) — f(x0))0(x)" du(z)| < 3.

Then, for all n > N

:\an/f( )0(x)" dp(x —an/fa:o dpu()]

We will give a type of positive definite functions on the Heisenberg group H,.
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Priorly, we list some useful notions, remarks and theorems related to positive definite

kernels, hence to positive definite functions on groups.

Definition 3.3.3. Let X be a non-empty set. A function K : X x X — C is called
a positive definite kernel if and only if > 7. ;65K (2, 7;) > 0 for any finite subset
{z1,22,...,x,} in X and for all systems {cy,co,...,c,} of complex numbers. That is
to say, the matrix (K (z;,2;))7,=, is positive definite for all n € N and for any finite

subset {x1, %, ...,z,} in X.

Remark 3.3.4. Let G be a group and ¢ : G — C be a function. Define K, : GxG — C
by K,(z,y) = ¢(x'y). Then ¢ is positive definite if and only if K, is a positive definite

kernel.

Remark 3.3.5. Let X # () and f : X — C be an arbitrary function. Then K(z,y) =

f(z)f(y) is a positive definite kernel, because 3", ;& f () f(x;) = || Y25, cof (@) []> >
0.

The following theorem, due to Schur, shows that the convex cone of positive

definite kernels is closed under pointwise multiplication.

Theorem 3.3.6. [/] Let X be a non-empty set. If K1, Ky : X x X — C are positive
definite kernels, then their pointwise product K1.Ky : X x X — C is also a positive

definite kernel.

Corollary 3.3.7. If K : X x X — C is a positive definite kernel, then so is exp(K).

Proof. By Theorem 3.3.6, for each ¢ € N the kernel K is positive definite so that

the finite sum Y., 2K is also positive definite for each n € N. Then since the

=171
pointwise limits of positive definite kernels are again positive definite, we get exp(K) =

lim, oo > %K% is positive definite. O

i=1 4!

Definition 3.3.8. Let X be a non-empty set. A function K : X x X — C is called
a negative definite kernel if and only if K is Hermitian, i.e. K(z,y) = K(y,z) for all
x,y € X and ZZ].ZI ¢ K (x;, ;) <0 for any finite subset {z1, 2, ..., 2, } in X and for

all systems {cy, ¢z, ..., ¢, } of complex numbers with Y " , ¢; = 0 and n > 2.
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Remark 3.3.9. A real-valued kernel K : X x X — R is negative definite if and only if

K is symmetric, i.e. K(z,y) = K(y,z) forallz,y € X and ) cic; K (x;,x5) <0 for

n
ij=1
any finite subset {1, xs, ..., x,} in X and for all systems {cy, co, ..., ¢, } of real numbers

with Y ", ¢; =0 and n > 2.

There is a beautiful relation between positive definite and negative definite kernels

given by Schoenberg in [24] as follows.

Theorem 3.3.10. Let X be a non-empty set. A function K : X x X — C is a negative
definite kernel if and only if exp(—tK) is a positive definite kernel for all t € R>°.

For the proof of Theorem 3.3.10, one can see Theorem 3.2.2 in [4]. We are now

ready to give some results on positive definite functions on C" and H,,.

Proposition 3.3.11. Let Q be a positive definite quadratic form on C*. Then, e~ @)

is a positive definite function on C™.

Proof. Let B be the positive definite Hermitian form corresponding to ). By Remark
3.3.4, we need to show that K (z,w) = e~ @(—#+w) = ¢=B(=z+w,—z4u) jg 5 positive definite
kernel. By Theorem 3.3.10, it is enough to show that T'(z,w) = B(—z 4+ w, —z + w)
is a negative definite kernel. T is clearly symmetric. Now let ¢y, co,...,cxy € R with

ZZ‘JL ¢; =0 and z1, 29, ..., zy € C". Then,

N N
Z CZ‘CjT(Zi, Zj) = Z CZ‘C]‘B(—ZZ‘ + Zj, —Z; + Zj)
i,j=1 i,J

2,7=1
N N
= —<Z CiCjB(Zz‘, Zj) + Z CZ‘CjB(Zj, Zz))
i,j=1 i,j=1

N N
= 2B ez, Y azm) <0,
=1 i=1

Hence by Remark 3.3.9, T' is a negative definite kernel. O

Proposition 3.3.12. For each A € R the map ¥(z,t) = eM=3 I s positive definite

on the Heisenberg group H,.
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Proof. We need to show that K((z,t), (w,s)) = ¥((z,t)"}(w, s)) is a positive definite
kernel on H,. Let z = (21,2,...,2,) and w = (wy,wo, ..., w,) for z;,w; € C for all

j=1,2,...,n. Then,

K((Za t)> (w> S)) = @D((—Z, _t)(w> S))

_ 61)\( t—&-s)6 z)\Im(z,w)e 5 Al =z+w]|

n n
— iM(=t+s) H oA (2,75) H e—%|/\u—z]—+wj\2
j=1 j=1
n n n
— piA(—tts) H e~ m(zw5) H Al Re(z;w5) H e*%MI(\ZjIZJr\wJ'I?)
j=1 j=1 j=1
n

— Nt T M etesm)—iagn ) m(ay) TT =3P+l (3.99)

J=1 Jj=1

Now, define A((2,1), (w, s)) = e+ and given j € {1,2,...,n}, let B;((z,1), (w,s)) =
z;w; and Cj((z,t), (w,s)) = e MUz P+ - Since A((2, 1), (w,s)) = f(z,t)f(w,s)
where f(z,t) = e”* for (2,t) € H,, by Remark 3.3.5 we get that A is a positive definite
kernel. B;((z,t), (w,s)) = f;(z,t)f;(w, s) where f;(z,t) = z; for (z,t) € H,. Hence B;
is a positive definite kernel by Remark 3.3.5. Then |A|B; and by Corollary 3.3.7 also
eMBi are positive definite kernels. Moreover, since C;((z,1), (w,s)) = g;(z,t)g;(w, s)
where g, is the function defined on H,, by g¢;(2,t) = e_%‘)‘”Zj'Z), we have C} is a positive
definite kernel by Remark 3.3.5 as well. The equation (3.22) shows that if A < 0,
then K = A[]_ M5 [T, Cj and if X > 0, then K = AT[}_, ePBi [[[,Cj. In

both cases, as a product of positive definite kernels, K is a positive definite kernel by

Theorem 3.3.6. O
Lemma 3.3.13. Let A € R and assume @) is a positive definite quadratic form on C™.
Consider ¢ : H, — C defined by

o(z,1) = eMe @G,

Then the function o is positive definite if and only if Q(z) > Z|\|||z|*.

1
2
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Proof. In case A = 0, it follows from Proposition 3.3.11 that o(z,t) = e"?®) is positive
definite on H,, for any positive definite quadratic form ) on C". Now let A € R*.
Assume ¢ : H, — C given by ¢(z,t) = e*e~? is positive definite on H,,. Fix u € C"
with ||ul| = 1. We define the map ¢, : H; — C by

0u(z,t) = p(zu, t) = e QP

for all z € C and t € R. Since ¢ is positive definite on H,, and ||u|| = 1, we get , is

positive definite on Hj.

Given pu € R7?, let ¢y, : H; — C defined by 9y ,(z,t) = eMe~rlz” By [p.269,
[8]], the ordinary generating function of the sequence {L,,(x)}°_, of the Laguerre

polynomials is given by

- 1 -
> L(z)r™ = e (3.23)

m=0

if -1 <r < 1. Given z € C, taking z = |\||z]? and r = ;Z;RI in the equation (3.23),

we get

= Ay _ 2085 D] (s
> L) Gy )" = g e (3.24)
m=0

Then we multiply both sides of the equation (3.24) with e e~z and we get

Prulert) = 520 Z%m:i:) Pz 1) (3.25)

where oy (2, t) = eMe 2MIZP L (1A]|2]2) is positive definite on Hy for each m € N as
it follows from Proposition 3.2.3. Hence 1, , is positive definite on H; if and only if
2/ > |A|. Since ¢, is positive definite on H; and ¢, = ¥y g for all v € C" with
|lu|| = 1, we then get 2@(@) > |A| for all non-zero z € C" so that Q(z) > 3|A[[|z? for

all z € C".
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Conversely, assume Q(z) > S|A[|z]|2. Let ¢(z,t) = eM=3IFI® and y(z, ) =
e2MIzI°=Q(=) | By Proposition 3.3.12, ¢ is positive definite on H,,. For (z,w) € C"xC",
let C(z,w) = B(z,w) — 3|A\[(z,w) where B is the positive definite Hermitian form
corresponding to (). Then C' is also a positive definite Hermitian form on C" and by
Proposition 3.3.11, e~¢(*) is a positive definite function on C" so that y(z,t) = e~¢(*7)

is positive definite on H,. Therefore, ¢(z,t) = ¥(z,t)x(z,t) is positive definite by
Theorem 3.3.6. O

Theorem 3.3.14. Let ¢ : U(oo) X H(oo) — C be a continuous and U(oo)-invariant

function. Then, ¢ is a positive definite spherical function for the Olshanski pair

(U(oo) X H(00),U(00)) if and only if

(b, 2,8) = eNe M

for some X, pu € R such that pn > $|)|.

Proof. Let ¢ : U(oo) x H(co) — C be a continuous and U(oco)-invariant function.
Then as already mentioned in Remark 3.0.2, ¢ does not depend on the parameter &
and we can consider ¢ as a continuous, U(oo)-invariant function on H(oo). Given
z,w € C(*) there exists k € U(oco) such that kz = w if and only if ||z|| = ||w||. Then
by U(oo)-invariance of ¢, we get ¢(z,t) = ¢©((]|z],0,0,...),t) for all (z,t) € H(c0).
That is to say, there exists a unique continuous function F, : [0, 00) x R — C such that

o(z,t) = F,(||z]|%,t) for all (z,t) € H(co).

Given (z1,t1) and (22, t2) in H(00), for N sufficently large, we can choose ki, ko €
U(N) such that z; = ki(]|z1]],0,0,...) and 292 = ko(]|22]],0,0,...). Then by U(co)-left-
invariance of ¢ and the unimodularity of the Haar measure on the compact group U(n),

for all n > N we have
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/U( )90<(21,t1)U(z2,t2)) Aty (U)
— /U( )@(h((Hzlﬂ,O,O,...),tl)Ukz((HzQH,O,O, )i ta)) dugy (U)

-/ Al 0,000 0)(21,0.0.). ) di O

Hence, ¢ is (U(o0) X H(00),U(00))-spherical if and only if

lim p(zUy) dppmy(U) = o(x)p(y)

n—00 U(n)

for all z = ((r,0,0,...),t) € H(co) and y = ((r',0,0,...),t') € H(co) where r,r" € R*.

Now for r,7 € R® let x = ((r,0,0,...),t) € H(co) and y = ((r',0,0,...),t) €
H(OO) Given U = (Uij)i,]Zl S U(n),

e(xUy) = o((r + U, Uit s ey Upt 0,0, )b+ {4+ Im(@g))

= F@(TQ + (7“l)2 + 2 Re(u11),t + t — Im(us7)).
Then by Lemma 3.3.1,

/ o(2Uy) duvge (U)
U(n)

- 1 ! !/ ’ ’
_ / F,(r* + (r')? + 2rr Re(w),t +t —rr Im(w))(1 — |w[*)"? du(w).
T Jp

By taking limits as n goes to oo of the above equation and applying Lemma 3.3.2,

lim o(2Uy) dpymy(U) = Fg(,('r’2 + (7")2,t + t').
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Therefore, it turns out that ¢ is (U(oco) x H(00), U(00))-spherical if and only if
F,, satisfies the multiplicative property given by the equation

i

Fo(r? ) Fp((r')?,8) = Fyp(r? 4+ (r')% t + 1) (3.26)
for all r,r', ¢, t € R.

Now, to prove the ‘only if” part of the statement of the theorem, assume ¢ is
positive definite and spherical for the Olshanski pair (U(co) X H(00), U(o0)). Then we
have the equation (3.26) which implies F,(r?,t) = F,,(r* + 0,0+ ¢) = F,(r*,0)F,(0,t)
for all 7,t € R. Now let f : R — C and ¢g : R”Y — C be the continuous functions
defined by f(t) = F,(0,t) and g(r) = F,(r,0). Since F,(r?,t) = F,(0 +r*0+1¢) =
F,(0,0)F,(r?,t) = f(0)F,(r? ) for all r,t € R and ¢ is non-zero, we have f(0) = 1.

Since ¢ is positive definite, ¢ satisfies the Hermitian symmetry so that for any ¢ € R,

PO = FOFD = 90,0, 09((0,0,..), 1) = F,(0,)F,(0, 1) = F,(0,0) =
f(0) = 1. Hence, f : R — S* and since f(t + s) = F,(0,t + s) = F,(0,t)F,(0,s) =
f(t)f(s) forallt, s € R, it follows that f : R — S! is a continuous group homomorphism.
Therefore, f(t) = e for some A € R. When it comes to g, we have g(r?* + s?) =
F (r? 4 s%,0) = F,(r?,0)F,(s*,0) = g(r?*)g(s?) for all 7,s € R and together with the
continuity of g, we get g(r) = e for some ¢ = a + iff € C. By positive definiteness
of ¢, we have ¢(2,0) = ¢(—2,0) for all (z,0) € H(co) and since ¢(z,0) = g(||2]|?), we
get eollzl?gBll=l® = eallzl® o =iBll=I” for all z € C(°). Hence § = 0. Since @ is bounded, g
is also bounded so that o < 0. So, for all r € R, g(r?) = e+ for some @ > 0. Thus,

[

o (z1) = F,(0,)F,(||2]%,0) = F(D)g(]|=?) = ePMevl*

for some A € R and p > 0. Since ¢ is positive definite, the restriction ¢z () is positive

definite on H,, for all n. Then, by Lemma 3.3.13, we get p > 3|\l

To prove the ‘if part’, let ¢(z,t) = eMe #II" where A\, € R, > 1|\ and
(2,t) € H(c0). Since @u(y is continuous for each n, ¢ is continuous on H(oo) with

the inductive limit topology. The function ¢ is obviously U(co)-invariant. Moreover,
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the corresponding function F,, satisfies the equation (3.26) so that ¢ defines a spherical
function on H(co). Since p > 1|A|, by Lemma 3.3.13, ¢ () is positive definite on

H(n) for each n. Hence, ¢ is positive definite on H(oo) as well. O
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4. HARMONIC ANALYSIS FOR AN OLSHANSKI PAIR
CONSISTING OF STABILIZERS OF HORICYCLES OF
HOMOGENEOUS TREES

4.1. The Olshanski Pair (B,, B,)

In this section we give the necessary definitions and notations to construct the

second Olshanski pair on which we study.

Let (X, E) be a homogeneous tree of countably infinite degree where X is the set
of vertices and FE is the set of edges. Let d denote the natural distance on X which
counts the number of edges between two points. Fix two distinct elements w and w’ of
the boundary of the tree (X, E). There is a unique doubly infinite chain on the tree
(X, E) connecting the boundary points w and w’. Denote it by (w’,w). Enumerate the
vertices on (w',w) by a sequence (x,),ez such that z, and z,,; are neighbours (i.e.
d(zp, Tpy1)=1), the infinite chain (x,,)2, corresponds to the boundary point w and the
infinite chain (z,,),>5 corresponds to the boundary point w’ (for the definitions of the

notions used up to now, one can see [1}).

For each vertex x in X, we enumerate its neighbours: If x # x,, for any n € Z,
then we choose a bijection 7, : N — {y € X | d(z,y) = 1} such that 7,(1) is the
neighbour of z with minimal distance to the chain (w',w). If z = x,, for some n € Z,
then we choose a bijection 7, : N — {y € X | d(x,y) = 1} such that 7,(1) = z,,_; and

7.(2) = x,41. We fix these bijections {7, },ex-

For each integer k > 2, we define a subtree (X*, E¥) of the tree (X, E) as follows:
If x = x, for some n € Z, we let € X*. If 2 # x,, for any n € Z, then there exists
a unique vertex xz,, on the chain (w',w) with minimal distance to z. Suppose v, y1,
..., Ym are the vertices on the path from z,, to z with yo = z,, and y,,, = = and that

yj+1 is a neighbour of y;. Then we say that x € X* if y;4, € 7,,({2,3,...,k + 1}) for
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all j € {0,1,....,m —1}. Let E* = {{z,y} € E | z € X*, y € X*}. Note that (X*, E)
is a locally finite, homogeneous subtree of degree k + 1 > 3 of the tree (X, E).

We now define the horicycle H:° of the tree (X, E) associated to the boundary
point w, for n € Z: For x € X, let x,, be the vertex on the chain (w',w) with min-
imal distance to x. Then we say that = belongs to the horicycle H;* if the equation
d(x, Tny) = d(Tp, Tpn,) holds. Given n € Z and an integer k > 2, set the horicycle HF of
the subtree (X*, E¥) by HY = H*NX*. Note that the families { H%},cz and { H>®},.c2

give partitions of X* and X respectively.

Given an integer k > 2, let Aut(X*) be the group of all automorphisms of the tree
(X* E*), i.e. the group of all bijections from X* onto itself which preserve the edges.
The group Aut(X*) is a metrizable Hausdorff topological group with the topology
of compact convergence. The collection of sets Ur(g) = {h € Aut(X*) : h(z) =
g(z) for all z € F'} forms a base for this topology where g € Aut(X*) and F C X* is
finite. Since X* is a homogeneous tree of finite degree, the group Aut(X*) is locally
compact. One can also see a fundamental system of compact open neighbourhoods
of the identity in [19]. Given a vertex x € X, let K¥ be the subgroup of Aut(X*)
consisting of all automorphisms fixing the vertex x. Then KF is an open compact
subgroup of Aut(X*) and the pair (Aut(X*), K¥) is a Gelfand pair (see [Proposition
2.3.2, [1]]). In particular, the pair (Aut(X"), K¥ ) is a Gelfand pair for all n € Z. Let

Stab(HF) = { g € Aut(X") | g(H*) = H*} and BF = n,enStab(HFY) = N,ezStab(HF).
It can be observed that

BF = { g€ Aut(X*) | g(x,) = x, for n sufficiently large }.
Indeed, if g € B and g(zo) = z¢, then g(z,) = x, for all n > 0. If g € B* and

g(xo) = x for some z € HF\{x} and if z,, is the vertex on (w',w) with minimal

distance to z, then ¢(z,) = z, for all n > m.
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On the group B we consider the topology induced from that of Aut(X*). Let
{9gm}m be a sequence in Stab(H¥) converging to g € Aut(X*). Let x € H*. Since
gm — g, there exists M € N such that g,, € Uy(g) for all m > M. In particular
g(z) = gu(x) € HY. So g € Stab(HY). This argument shows that Stab(H?) is a closed
subgroup of Aut(X*) for each n € Z. Then the group B* = N,czStab(H¥) is also a

closed subgroup of Aut(X*), hence B is itself a locally compact topological group.

For all n € Z, set Bf = BE N K . Then BF is an open compact subgroup of B

for which we have the following proposition.

Proposition 4.1.1. [18] The pair (B*, B¥) is a Gelfand pair for all integers k > 2

and for allmn € Z.

Proof. Let k,n € Z be such that k > 2. Let g € B*. Suppose that g ¢ B*. Then
since BY = U,ezBF and BF C BE,_| for all n € Z, there exists m > n such that

g € B¥\BX | Let my € Z be such that mg < n < m. Since g(Tm,) # Tm, and

d(g(Tmo); Tm) = d(9(Zm,), 9(2m))

= d($mov xm) = d(g_l(l‘mo)ag_l(xm)) = d(g_l(xmo)wmm)? (41)

there exists h € BE, such that hg(2y,) = g~ (@m,). This implies that g~! € B,
Since BY C BE,

for all g € B*, we have g=' € B¥¢B¥. Then by Gelfand’ s trick [Theorem 6.1.3, [26]],
(BE BY) is a Gelfand pair. O

k
ogBmo'

we get g1 € BfgBF. If g € BY, obviously g7! € BfgB*. Hence

By using these Gelfand pairs (B*, BX), we construct an Olshanski pair as follows:
Let Aut(X) be the group of all automorphisms of the tree (X, E) and let

BY ={ge€ Aut(X) | g(H) =H forallneZ}.
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The group Aut(X) is a topological group with the compact-open topology. B°
is also a topological group with the topology induced from that of Aut(X).

We can embed Aut(XF¥) in Aut(X) for each integer k > 2 as follows: Let g €
Aut(X*). We will extend g to an automorphism ¢ in Aut(X) ( which is called the
natural extension of g), so we just need to define g(x) for the vertices x € X\ X* so
that § € Aut(X). So let x € X\X* and let y be the vertex of X* with minimal
distance to z. Assume that yo,v1,...,¥m are the vertices on the path from y to =z
with ¥ = ¥, Ym = 2 and d(y;,y;41) = 1. Since yi, ..., Y, are not in X% for each
i €{0,1,...,m — 1} there exists an integer k; > k + 1 such that y; 11 = 7, (k;). We
can now define g(x) = §(y,,) where g(y,,) is defined inductively by g(yo) = ¢(y) and
G(Yir1) = Ty (ki) for all i € {0,1,...,m — 1}. Then,

Lemma 4.1.2. [1] The map oy, : Aut(X*) — Aut(X) defined by or(g) = § is an

injective group homomorphism, which is also a homeomorphism onto its image.

For g € B*, we have § € B>. Hence if we let 1, to be the restriction of the map

¢r to B¥, then as a corollary of Lemma 4.1.2, we have

Corollary 4.1.3. The map vy, : B¥ — B> defined by 1r(g) = § is an injective group

homomorphism, which is a homeomorphism onto its image.

Given n € Z, we identify B* and B with their images v(B¥) and ¢, (B%) in B

respectively. We define

B, =UX,Br and B, =2, B

We endow B, with the inductive limit topology. Then,

Proposition 4.1.4. The pair (B, B,) is an Olshanski spherical pair for allm € Z.

Proof. By Proposition 4.1.1 and Corollary 4.1.3, we have a sequence of Gelfand pairs

(BE BE)is2. Given g € BE, the automorphism g is the natural extension of its
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restriction onto the finite degree subtree X™ for each m > k. Hence B* C BF!,

Bf ¢ BE*L and BF = B¥'n B” for all k > 2.

What is rest is to show that B¥ is a closed subgroup of B*™!. For this, we identify
each Aut(X*) with its image in Aut(X) under ;. By [Proposition 3.1.2, [1]], Aut(X*)
is a closed subgroup of Aut(X**1). Both of the topologies on Bf! and Aut(X*+1) are
induced from the same topology of Aut(X) and B¥! C Aut(X**!), so the topology of
B s the one induced from the topology of Aut(X**1).

Hence B¥1\ B* = (Aut(X* 1)\ Aut(X*)) N B¥*1 is open in B¥*! as desired. O

Within the rest of the text, we fix n € Z and consider the Olshanski pair (B,,, B,).
It is a natural programme to find all positive definite spherical functions and the

corresponding spherical representations of this Olshanski pair.
4.2. Spherical Functions for (B,, B,,)
The spherical functions for the Gelfand pair (Bolj, Bﬁ) are given by the following

result of Nebbia.

Proposition 4.2.1. [18/ The non-trivial spherical functions for the Gelfand pair (B, B¥)

are the following:

1
Omk = lpr + 1_ lean\B&n (4.2)

for every m > n. (1g is the characteristic function of the set E.)

Proof. Let ¢ be a non-trivial spherical function for the pair (BE,BF). If f,g €
BE\BE | for some m > n, then d(f(zm_1),2n) = d(g(m_1),7,), therefore f(z,_1)
can be sent to g(z,,_1) via an automorphism in B¥ and so, g € B* f B¥. Hence complex-
valued BE-bi-invariant functions on B are constant on B¥\BF _, for all m > n and
also on BF. In particular, ¢ is a linear combination of the characteristic functions 1 BE

and 1ge\pr  for m >n. Let ¢(m) denote the value of ¢ on B \By,_, for m > n.
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Let 11 be a Haar measure on BF such that u(BY) = 1. Then since for each i € N,
BF_,_, is an index k subgroup of B¥_;, we have u(BF_;) = k¥ so that u(BF \BF.,_|) =
(k — 1k Let xi = (A) 'lpr \pr,  where \; = (k — 1)k""" and i € N. Direct
computation gives that for j > 4, x;*x; = x;. Then as the spherical functions are char-

acters of the commutative convolution algebra C,(BX\ B* / B¥) of continuous compactly

supported B¥-bi-invariant functions on B¥, for j > i we have

e+ = [ D duth) = [ xion(Dels) duth

w w

= [ x(Det duts) [ et ducs)

BE

= p(n+i)p(n +j).

It can be immediately derived from the above equation that if p(n 4 i) = 0 for some
i € N, then ¢(n + j) = 0 for all j > i and moreover that if ¢(n + j) # 0 for some

non-zero j € N, then ¢(n + i) =1 for all i < j. Then since ¢ is non-trivial, we get

o =lpge, Tolpe  m
for some o € C and i € N. By [Proposition 6.1.6, [26]], for all j > i 4+ 1 there is a
constant ¢; € C such that pxy; = ¢;¢. But, forall j > i+1, p*x; = [a.(k—1)+1]k"x;
as well. Then we get [a.(k — 1) + 1]k"x; = ¢;p which is possible for some j > i + 1 if
and only if ¢; =0 = [o.(k — 1) + 1]. Hence a = 2 as desired.

Conversely, let ¢ = lB,’i+i + ﬁlBLm\BZH for some i € N. Then ¢ is BF-bi-
invariant. Since for each m € N the group BF is compact open, every characteristic
function of the form 1py and 1pk\pr  is continuous, so is ¢. Note that every function
in Co(BX\BE/BE) is a finite linear combination of the characteristic functions 1p. and
lpk\pe  form >mn. It can be verified directly that for all j € N, oxx; = x;*p = ¢jp
for some ¢; € {0,1} and that ¢ 1gr = 1k * ¢ = ¢. Then by [Proposition 6.1.6, [26]],
we get  is spherical for (BE, BF). O
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As we see in Proposition 4.2.1, the support of a spherical function for the Gelfand
pair (Bf}, ij) is one of the compact sets B* for some m > n. Then by Proposition

4.2.2 which we next prove, all spherical functions for (ij, Bﬁ) are positive definite.

Proposition 4.2.2. [18] If ¢ is a compactly supported spherical function for a Gelfand
pair (G, K), then ¢ is positive definite.

Proof. Since ¢ is a continuous compactly supported K-bi-invariant function on G, so
is ©*. Hence both ¢ and ¢* are in L?(G, 1) where p is a Haar measure on G. Denote

by L¢ the left regular representation of G on L*(G, u). Then for all z € G,

@ * Q" (1) = /Gw(y)w*(y‘lrr) du(y) = /Gw(y)w(x‘ly) du(y)
_ /G ) Le(@)P(y) du(y) = (La(2)P. 7).
Hence ¢*¢* is a function of positive type. By [Proposition 6.1.6, [26]] we have p(e) =1

(here e is the identity element of G) and ¢ *p* = p*xp = Ay for some complex number

A. Then since ¢ # 0,

A=p*p(e) = /Gso(y)s@*(y‘le) du(y) = /Gso(y)@ du(y) = [l¢ll3 > 0

where |||z is the L*norm of ¢ in L?*(G,pu). Thus ¢ = (A)7(p * ¢*) is positive
definite. O

According to Theorem 22.10 in [20], every positive definite spherical function for
an Olshanski spherical pair is the uniform limit on compact sets of positive definite
spherical functions of the underlying Gelfand pairs. Hence, for each m > n we consider

the following pointwise limits

lim ¢, =1p5,
k—oo ’

as candidates of positive definite spherical functions of the Olshanski pair (B, B,)-
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Next we observe that the set {1g,_ : m > n} consists of all non-trivial spherical func-

tions for (B, B,).

Theorem 4.2.3. The non-trivial spherical functions for the pair (B, B,,) are the char-

acteristic functions 1g_ with m > n. The spherical functions are all positive definite.

Proof. Let ¢ : B, — C be a spherical function. If g,h € B,,\B,,—1 for some integer
m > n, then the equality d(z,, g(x,)) = d(x,, h(x,)) holds. Hence, there exists k € B,
satisfying k(g(z,)) = h(x,). This shows that h™'kg € B,, i.e. g € B,hB,, and that
©(g) = p(h) by the B,-bi-invariance of ¢. So, ¢ is constant on B,, and B,,\B,,_1 for
all m > n. Let us denote by ¢(n) the value of ¢ on B,, and by ¢(m) the value of ¢ on

B \B—1 given m > n.

Now, fix two integers m and p such that m > p > n. Let g € B,\B,_; and
h € B, \Bm_1. Choose L such that g,h € BL. If k > L and | € B¥, then glh(z,,) =
gl(zm) = g(xm) = X, whereas glh(x,,_1) # x,_1 because otherwise h(z,,_1) =
It Y vmo1) = 7Y 2pm_1) = @1 which is impossible as h € B,,\B,,_1. Hence,

glh € B, \B,,_1 and ©(glh) = o(m) for all | € B*. Since ¢ is spherical, we then get

p(p)p(m) = (g)p(h) = lim [ @(glh) dl = lim [ @(m) dl = p(m).

k—o0 Bk k—o00 BE

where dl is the normalized Haar measure on BE.

By the equality above, we conclude that if p(p) = 0 for p > n, then ¢(m) = 0
for all m > p and that if p(m) # 0 for some m > n, then ¢(p) = 1 for all p < m. So,
if ¢ # 0 and ¢ # 1, then either ¢ = alp, for some a € C* or ¢ =15, , +alp, \B,_,

for some o € C* and m > n.

To compute « in case p = alp, , take g € B,,. Since ¢ is spherical,

o’ =(g)* = lim [ ¢(glg) dl = lim [ p(n) dl = p(n) = a
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so that « =1 and ¢ = 15, .

In case ¢ = 1p,, , + alp,\5, ., take g € B, \Bp—1. There exists L such that
g € BE\BL | Given k > L, let y1,%s, ..., yr_1 be the neighbours of x,, in X* except
from x,, ; and z,,,1. We may assume that y; = g~ !(x,, ). Forl € B 1(g(z,,_1)) may
take one of the k—1 values yi, yo, ..., yx_1. Therefore, BF is the disjoint union of the sets
Ay, Ay, Ay where A; = {l € BF 1 l(g(zm1)) = yi}. Choosing an automorphism

ki j in B¥ such that k; ;(y;) = y;, we observe that k; ;(A;) = A;. It follows that each A;

has the same measure ﬁ with respect to the normalized Haar measure on BY. Then,

u@f@@dhifw@mﬂ+/‘ w(glg) dl

Ay BE\ A4

= / 1dl —|—/ o(m) dl
Aq B,’i\Al

_ 1 k=2

k-1 k1"

and together with the fact that ¢ is spherical we get

1 k—2

a® = (p(m))* = (p(9))* = ,}1_{20 . ¢(glg) dl = kh_{{)lo(m + m@) = .

SO? o = 1 and 90 = ]‘Bmfl + ]‘Bm\Bmfl = 1B

m*

Conversely, let ¢ = 15 for m > n. Since B,, is an open subgroup of B, and

m

B, C B,,, the function 15 _ is continuous and B,-bi-invariant.

Now, let g,h € B, and € > 0. There exists L such that g,h € BL. Since for all
m and k, the function ¢,, ; given in the equation (4.2) is spherical for the Gelfand pair

(BE BY), for all k > L we get

/glem(glh)“1Bm(g)13m(h)cu

< [ lth) = @il 1+ Lo a0)om 1) = 15, (6)1s, (1)

(4.3)
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But, |15,,(glh) — @mk(glh)| is either 0 or X5 for any | € B,, and we can choose Ny > L
so that for all £ > N; we have ﬁ < 5. Since @ — 1p,, as k — oo, we can choose
Ny > Nj so that for all & > Na, both |¢mx(9) — 1B, (9)| < § and |@n(h) — 15, (h)] <
$- Hence by (4.3) for all & > Ny, st 1g, (glh) —1g,(g9)1p, (h) dl| < € and this shows

1p,, is spherical for the Olshanski pair (B, B,).

Every spherical function 1p  is positive definite because given an arbitrary group

G and a subgroup H of GG, the characteristic function 15 of H is positive definite. [

Remark 4.2.4. The restriction of the (B,,, B,)-spherical function 1 with m > n to
BE is the characteristic function 1p. which is a non-spherical function for (B, BF) by
Proposition 4.2.1. Hence, the restriction of a spherical function for an Olshanski pair
to an underlying locally compact group need not to be spherical for the corresponding

Gelfand pair.

4.3. Spherical Representations for (B, B,)

Now, we will make concrete realizations of the spherical representations of the
Olshanski pair (B, B,,) which correspond to the positive definite spherical functions
for the pair (B,,, B,) by the Gelfand-Naimark-Segal construction.

Given m € Z, consider the horicycle H° containing the vertex z,,. The group
B, acts transitively on the horicycle H;°. Indeed, if x,y € H;°, let m; > m be such
that z,,, is the unique vertex on (w',w) with minimal distance to 2 and my > m be
such that x,,, is the unique vertex on (w',w) with minimal distance to y. Assume
my1 > my and x,y € X* for k € Z. Then we can find an automorphism ¢ € Aut(Xk)
such that g(z) =y and g(x,) = z,, for all n > m,. So, the natural extension § of ¢ is

an automorphism in B,, which sends z to y.

The spherical function ¢ = 1 corresponds to the one-dimensional trivial repre-

sentation.
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For the spherical function ¢,, = 1, with m > n, consider the Hilbert space
I>(H®) = L*(H>, \,,) where ), is the counting measure on H>°. By the action of B,
on the horicycle H>, we get a representation 7, of B,, on the Hilbert space I?( H2°) if we
define (m,,(9) f)(z) = f(g~ ' (x)) where g € B,,, f € >(H) and x € H°. Indeed, 7, is
a group homomorphism from B, to the group of unitary operators on the Hilbert space
I>(H®). 7, is moreover a continuous representation of B, on [2( H°) where we put the
strong operator topology on U(I2(H)): Since {1(, : @ € HY} form an orthonormal
basis for [*(H:?), it suffices to prove that the map g — m,,(g)1,) is continuous for
each x € HX®. Given x € H° and gy € B,, the set Uy = {g € B, : g(x) = go(x)} is
open in the topology induced from Aut(X). The inductive limit topology on B, is
stronger than the topology induced from Aut(X). So, the set Uy is also open in the
inductive limit topology. The map g — 7,,(9)1{y} is constant on the open set Uy. So,
the map g — 7,,,(¢)1ay is locally constant, hence continuous as desired. Therefore,

T, defines a unitary representation of B,,.

l¢y,1 is a By-bi-invariant unit vector in [*(HZ°). By the transitive action of B,

on [?(HS), we have

span {mm(9) sy 1 9 € B} = span {1{y@.)y : 9 € Bu}

= span {1{y} ty € Hﬁf}
= *(H})

so that 1y,,,1 is also a cyclic vector.

Moreover,

<y T Dy > = D Ly 0) 7T (9) Ly ()

yeH®

=) 1wy @) Ly (97'y)

yeHy
= 1{:Jcm}(g_1$m)

= 15,.(9).
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We summarize our observations in the following theorem.

Theorem 4.3.1. The spherical representation of the Olshanski pair (B, B,,) corre-
sponding to the spherical function ¢ = 1 by the Gelfand-Naimark-Segal construction is

the one-dimensional trivial representation.

The spherical representation of the Olshanski pair (B,,, By,) corresponding to the
spherical function @, = 1p,, m > n by the Gelfand-Naimark-Segal construction is the

left reqular representation m,, on I>(HZ®).
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5. CONCLUSION

The problem which initiated this thesis and which has always been in mind during
the study is the following: “Is it possible to construct an algebra structure whose char-
acters correspond to the bounded spherical functions for a general Olshanski spherical
pair?”. Two facts drived us to seek for such a result. The first one is the existence of
a positive answer in the case of Gelfand pairs as we have mentioned and used in sev-
eral places in the thesis. Secondly, Gelfand pairs are the building blocks of Olshanski
pairs. This abstract problem created the need to study spherical harmonic analysis
on some concrete examples of infinite dimensional spherical pairs. We first studied
an Olshanski pair related to the group of isometries of homogeneous trees of infinite
degree and we found all spherical functions and spherical representations of that pair.
Then we considered the Olshanski pair (U(oco) x H(00),U(o0)) related to Heisenberg
groups. Inspired by the ideas and works of J. Faraut, we calculated all positive definite
spherical functions for this pair. On the way to make realizations of the corresponding
irreducible unitary representations, we have developed a couple of approaches to define
the analogue of the Fock space F{° which works in the case of infinitely many com-
plex variables. They both carry meaningful representations of H(co). The question of
whether these representations are irreducible and they can be extended to representa-
tions of U(oo) x H(oo) which correspond to the positive definite spherical functions
we have is still waiting to be worked out. It also seems that to construct the algebraic

counterpart of harmonic analysis on Olshanski pairs will be challenging.
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