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ABSTRACT

VERTICAL DISTRIBUTION PROBLEMS IN
ZETA-FUNCTION THEORY

In this thesis, we focus on the vertical distribution problems of the zeros of the
Riemann zeta-function and other related functions. In the first half of our study we
modify Montgomery’s argument [1] in such a way that we can obtain some analogues
of the pair correlation of zeta zeros, which provide some gap and multiplicity results.
In the second half of our study we estimate the averages studied in [2] over the zeta
maximas on the critical line instead of zeros so that we arrive at a result on the number

of distinct zeta zeros.



OZET

ZETA-FONKSIYONU TEORISINDE DIKEY DAGILIM
PROBLEMLERI

Bu tezde Riemann zeta ve diger alakali fonksiyonlarin sifirlarinin dikey dagilimi
problemlerine odaklandik. Caligmamizin ilk yarisinda bosluk ve ¢ok katlilik sonuglar
saglayan zeta sifirlarimin ikili korelasyonu analoglarini elde edebilecek gekilde Mont-
gomery'nin argiimanini [1] degistirdik. Caligmamizin ikinci yarisinda [2]’de ¢aligilmig
olan averajlar1 zeta sifirlar1 yerine 1/2—dogrusundaki zeta maksimumlar: tizerinden

hesapladik Oyle ki farkli zeta sifirlarinin sayisi lizerine bir netice elde ettik.
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LIST OF SYMBOLS

— 627r10

§™ derivative of f(s), f© = f.

A Dirichlet L-function.

The number of complex zeros of ((s) lying in the upper-half
plane up to the height T

The number of simple complex zeros of ((s) lying in the upper-

half plane up to the height T

The number of distinct complex zeros of ((s) lying in the
upper-half plane up to the height T'.

= ((5) = $5(s)¢(s)-

The real part of a complex zero of the zeta function.

= [, e "a*da for o > 0; called the Gamma function.

The imaginary part of a complex zero of the zeta function.
The Riemann zeta-function.

= log p if n = p*, = 0 otherwise; known as the von Mangoldt

Lambda function.

The j—th convolution of A; generated by the Dirichlet series
/ J

(-%=)) ieN

= (—1)*(™ for square-free n, n = 0 otherwise. Known as the

Mébius mu function.

= [ + i7; a complex zero of the zeta function.
= |t| + 4.
The generalized divisor function defined by the relation

anl lez(f) = (C(S))k, where k € N.

The imaginary part of the complex zeros of Z;(s).

The number a, 1 < a < n, for which (a,n) = 1; knowns as

FEuler’s Totient function.
A Dirichlet character.

The function defined by the functional equation for ((s).

The number of distinct primes dividing n.



1X

0 A complex zero of Z;(s).

[«] The unique integer such that [z] < z < [z] + 1; called the
integer part of x.

{z} = x — [z]; called the fractional part of x.

f(z) = O(g(x)) |f(z)] < C|g(x)|, where C' is an absolute constant.

fx) < g(x) f(x) = O(g(x)).

f(x) = Oay. 0. (9(x)) |f(x)] < Cg(x), where C is a constant which depends on
ar, Qz, ...

f(#) a0, 9(x)  f(2) = Oaya,..(9(2)).

f(@) > g(x) g(x) = O(f(x)).

f(@) >ar,0n,.. 9(2)  9(2) = Oay,a,..(f(2)).

f(z) < g(z) f(z) = O(g(x)) and g(x) = O(f(x)).

fx) ~ g(x) lim, o0 f(2)/g(x) = 1.



LIST OF ACRONYMS/ABBREVIATIONS

GRH The generalized Riemann Hypothesis.
RH The Riemann Hypothesis.



1. INTRODUCTION AND STATEMENT OF RESULTS

The Riemann zeta-function, defined by

plays a prominent role in Number Theory. The first unsolved problem occuring to our
minds pertaining to ((s) is the Riemann Hypothesis (abbreviated by RH) stating that
all complex zeros of ((s) lie on the critical line s = 1/2. RH says everything about
the horizontal distribution of the zeros. However, even if we assume RH, there remains
the vertical distribution problem as to how complex zeros are distributed on the critial
line. In this thesis we focus on some problems about the vertical distribution of zeta

zeros on the critical line.

Let p = B + iy run through the nontrivial zeros (i.e. complex zeros) of ((s) and

m¢(p) denote the multiplicity of p. The Riemann-von Mangoldt formula states that

T T T
N(T)=—log— — — + O(logT 1.1

where N(T') is the number of zeros of ((s) with 0 <y < T. We also have some other

countings:

N(T)=1[{p:0<vy<T,({(p) =0, me(p) =1},
Ny(T)=|{p:0<y<T, {(p) =0},
No(T) = |{p:0<~y<T,{(p)=0, =1/2}|.

It readily follows from (1.1) that the average gap between consecutive zeros is ~

27 /logT. In understanding the distribution of the zeros on the critical line, we have



two significant quantities:

n — In 1 n . n —In l n
(g := liminf (Y41 = n) logy and (' := limsup (Y41 = n) logy ,

n—00 21 n—o00 2

(1.2)

where , represents the imaginary part of the n-th zero in the upper half plane. Al-
though there is no need to put any restriction on the real parts of the zeros when

studying these quantities, RH is assumed in most calculations.

It is conjectured that Cs = 0 and Cp = oo, which indicates the existence of
arbitrarily small and large gaps between zeros of ((s). In capturing small differences

Montgomery [1] introduces the double sum over zeta zeros
Feo(x,T) = Z 2O Nw(y =7), x>0, (1.3)

or the version with the normalizer and the substitution z = T

> Ty, (1

0<y,7<T

T
Feela) = Feela,T) = (g log T)

where 7 is the ordinate of a nontrivial zero of ((s), and w(u) = 4/(4 + u?) is a suitable

weight function. Concerning Fr (o) assuming RH he computed
Frela) = (14+01)T4og T + |a| + o(1), (1.5)

as T'— oo, uniformly for |a| <1 —e. By convolving F («) with appropriate kernels,

Montgomery deduced that C's < 0.68 and

NAT) 2 (5 +ol1) 2

(1.6)

The analogous process leading to these conclusions will be seen in §15. However, with a
completely different method, Montgomery and Odlyzko improved to Cs < 0.5179, and

there are some small improvements following the same method. The current record is



0.5155, due to H. M. Bui, M. B. Milinovich and N. C. Ng. There is a barrier at 0.5.

The small gap problem is itself of interest, however, there is also some extra
motivation behind these attempts in breaking the barrier at 0.5. This problem is closely
related to the class number problem and Siegel zeros. The existence of consecutive zeros
whose distance is less than the half of the average implies not only remarkably improved
but also effective lower bounds for the value of Dirichlet-L functions at 1, which clear
zeros off the larger line segment near 1, possibly the Siegel zeros. For detailed treatises

on the subject we refer the reader to [3] and [4].

The first half of our thesis is devoted to studying some analogues of F¢ .. In §6-8
Montgomery’s argument is modified in such a way that beyond obtaining a different
proof of (1.5) we give a new method of correlating the zeros of two (possibly different)

functions. These three sections were originally presented in [5].

In the second half of our study we focus on the multiplicity of the Riemann zeros.

It is conjectured that all zeros are simple, in other words,
N(T) = Ny(T) = Nyg(T).

We remark that this problem is also associated with the gap problems. Obviously, if
there are infinitely many non-simple zeros, then C's = 0. Besides the conditional result
(1.6), Montgomery pointed out that in addition to RH assuming the Pair Correlation

Conjecture, concerned with the behaviour of F ((«) outside o € [—1, 1], it follows that

TlogT
2r

N,(T) (1.7)

that’s to say that almost all zeros are simple. Conrey, Ghosh and Gonek [2] developed

a different approach to this problem. Their starting point is a simple Cauchy-Schwarz



inequality application:

(p)]> < Ny

| )" BC(p)

0<~<T

where

(T) > 1B (p)

0<y<T

b(n) = ju(n)P (log%) ,

logy

y =T and P(-) is a polynomial with real coefficients which satisfies P(0) = 0, P(1) =

1. Assuming the Generalized Lindelof Hypothesis and RH, they calculated the above

two averages for § < 1/2 as

> B~ (% +

0<~y<T

0<y<T

where

=L (o[ rr) w0 [ 7

0 /0 1 P(a:)dx) —T(l(;iT)z,

, sT(logT)?
> B (p) ~ —or

9

1

v)dr + (P’(:c))2 da. (1.8)

The calculus of variations gives the optimal choice P(z) = —0z% + (1 + 0)z. With this

choice,

19
NJ(T) > | —

They also observed that

0(1)) TlogT

2NS(T) < Z (mC(p>_2)<m

N 0<y<T mC (p)

= (1.9)



Combining this with (1.9) and the result

> me(p) < (4/3 +0(1))N(T),

0<y<T

which was proven in [1], they derived that

Ny(T) > (g + 0(1)) Tl;fT. (1.10)

Our plan is to estimate the same averages over the complex zeros of Z;(s), defined

by

Zi(s) == ¢'(s) — 2 (s)Cs). (1.11)

Let o denote the complex zeros of Zi(s), v = Jp, and my, () the multiplicity of
0. Now the application of the Cauchy-Schwarz inequality produces Ny(T') instead of
N,(T). More precisely,

| Y BCP < (NuT)+0() Y 1B (o). (1.12)

0<Se<T 0<Se<T

To see this we must show that

> 1= Ny(T)+0(1).
0<Se<T
¢'(0)#0



We first note that if p is a common zero of ((s) and Z;(s), then it is seen directly from

the definition of Z;(s) that mz, (p) = m¢(p) — 1. So,

O S S S S

0<So<T 0<So<T 0<\sg<T 0<Sp<T 0<Sp<T
¢'(0)#0 ¢'(0)=0

-y 1+0<> No(T) + O(1).

0<sp<t T ()

Here we've appealed to Hall’'s Z; —analogue of (1.1), which will be seen in §3.

In §20 we prove that on GRH (the Generalized Riemann Hypothesis)

Z B('(0) = R4 (P, 9)% <log z) +0 (T(log T)*?(loglog T)*) (1.13)

2T
0<So<T

and
T T\?
Z | B¢ (0)|* = Ra(P, 9)§ (log %) +0 (T(logT)5/2(loglogT)A) , o (1.14)
0<So<T
where
3_¢2 & (—20)~ <‘F1’1(H,;—1;2;2) — (R + 13 2)>
Ri(PO) = itq) : 1.15
1( ) ) 4 +ilz::1a121 I;:l (Zl‘{'/‘f’)! ( )
and
2 1 1 2
Ry(P,0) = ¢ 5/ (P’(t))2 dt — 9/ (P(t))2 dt + =5 (1.16)
o [75=0]
- = i, Ay o] .
21%:1 g j;l 2— 35—0)(3—35)!

Z (=20)% ((3 — js) Fia (K + 153 — j5;2) — 4F1 1 (K + 154 — ji5; 2))

! (iy + K + 1y — [J5 = O]) (i + &' — 1)



Here and throughout the work we frequently use the Iverson notation that for a state-
ment S, [S] = 11if S is true, and [S] = 0 if S is false. Here F}; denotes the confluent

hypergeometric series, defined as

Fllabz Zb(nl

where

Combining (1.12), (1.13) and (1.14), we see that

NY(T) > %(1 + 0(1))% log T. (1.17)

In §21 we try to obtain a lower bound as large as possible for N4 (7') by choosing
appropriate P. Among the polynomials P with deg P = 3, P(0) = 0, P(1) = 1, the

optimal choice is
P(z) = a1z + axx® + azz?®,
where
a; = 0.75816--- , ag = 0.267977--- , ag = —0.0261367 - - - .

With this choice, (1.17) becomes

Ny(T) > 0.7734 - (1 +0(1))%10gT. (1.18)



To derive a result on Ng(7T') from (1.18), first observe that

NT) =Ny Y er Y 1

0<y<T, m¢(p)=2 0<y<T, m¢(p)=3

N(T) — N(T)

Employing (1.18) we get

N,(T) > 0.5468 - - - (1 +0(1))%10gT. (1.19)



2. BASIC FACTS and NOTATION

We write N = ZT U {0}. We have the convention 0° = 1. Let s = o + it, w
denote complex variables, and 7 = |t| + 4. Throughout the article ¢ and A denote
arbitrarily small positive and sufficiently large positive numbers, respectively. The
constant implied by O—term may depend on e, A. We use paranthesis to show the
dependence of one variable or constant on some others. The constants denoted by the
same symbol need not have the same value at each occurrence. If a power series or
a partial sum of it is in question, then the index of the sum starts with 0. However,
as regards a Dirichlet series or summatory functions of arithmetic functions, we make
the index of the sum start with 1. It will be useful to set down certain formulae and

estimates.

The functional equation of the Riemann zeta-function can be expressed in the

asymmetric form

¢(s) = x(s)¢(1 = 9), (2.1)

where
x(s) : = 2°7~ 5 sin (%3#) (1 - s) (2.2)
_ iU =) Er%s_) 2l (2.3)

Firstly, we state two well-known asymptotic formulas involving I" function:
1 1 1
logT'(s) = s=35 logs—s+§log27r+0 s/ (2.4)
s

%(s) = logs — 2—15 +0 (ﬁ) . (2.5)
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These formulas are valid as |s| — oo, in the angle —7+ 0 < args < 7w — 9, for any fixed
0 > 0. By using the above formulas and some fundamental properties of I'—function,

it is easy to show that

X g) = log2m — = (5) + Ttan ™ = log2m — = (1 — 5) + © cot =
. (s) =log2m T (s) + 5 tan 5 = log 27 T (1—s)+ 5 cot 5 (2.6)
1\ 27 i 1
= (= —itlog — + — 1 2.
X(s) (27r exp | —itlog e + 1 sgn(t) +0 il (2.7)
K()——logH—i-O( ) (2.8)
X 2 i

the last two of which holds uniformly in @ < ¢ < § and [t| > 1, for any fixed real

numbers « and S, where

1 if t>0
sgn(t):==4q 0 if t=0
—1 if t<0.
From (2.6),
d x' d T’ T TS\ 2
dsx() dsF<)+<QSeC2> (2.9)

The trigonometric part is < exp (—|t|) if ¢ does not belong to e—neighborhood of odd
integers, and since the error term of (2.5) is analytic, by Cauchy’s integral, ( ) <

|s|~! in where the Stirling formula holds, so that

/

d x -
sy @< (2.10)

in the region |s| > 1 and —7 4+ § < args < 7 — J, excluding e—neighborhood of odd

integers.
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From (1.1) it follows that
N(T +1) — N(T) < log T, (2.11)

which means that for 7' > Tj, there are at most O(log7T) non-trivial zeros whose
imaginary parts lying in [T, T + 1] and among the gaps between the ordinates of these
zeros there must be a gap of length > (log 7).

Consider the standard formula

¢ |
A

This estimate is for large T and uniformly for —1 < ¢ < 2 and the sum is limited to
those p for which |T"— | < 1. Since there are at most O(logT’) terms in the sum of
the above formula and each term is < logT if T is chosen suitably according to the
above reasoning, we have the estimate

/

%<a +iT) < (logT)?,  (for —1<0<2). (2.12)

The Riemann zeta function is a meromorphic function with a simple pole with

residue 1 at s = 1. So, it has a Laurent expansion in the neighborhood of s =1

((s) = 8_%+70+71(s—1)+72(s—1)2+... (2.13)
_ Si1+0(1), (s = 1).

By differentiation of the above Laurent series, it is easy to see that for j € N

(-1

() () — ‘ A s .
¢¥(s) G +0;(1),  (s—=1), (2.14)
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and then

L 0,1, (s—1). (2.15)

The well-known convexity bound for ((s) can be generalized to its derivatives.

We have, for £k =0,1,2,... and [t| > 1

|t|z—ote if ¢<0
(o +it) <op  [t30-  if 0<o<1 (2.16)
e it o> 1,

with an arbitrarily fixed € > 0. (See Gonek [6], section 2) Together with this uncon-
ditional one, we need some conditional order results. For the followings we consult
chapter 13 of [7]:

Let x be any Dirichlet character modulo ¢, ¢ € Z*, and suppose that L(s, x) # 0 for

o > 1/2. Then there exists an absolute constant C' > 0 such that

C'logqt
L < —_— 2.17
s, 0] < exp (BT ) (2.17)
uniformly for 1/2 < o < 3/2; and
! 1
f(S’X) < (1+ (log g7)?~*) min (m,log log q7'> (2.18)

uniformly for 1/2 4+ 1/loglogqr < o < 3/2. See Exercises 4 and 12 of §13.2 in [7]
for the second estimate; FExercise 8 and some results throughout the book, for example

Exercise 3 of §2.3 and (10.20), for the first one.

We now give an estimate for the inverse of L(s,y). Let x be any Dirichlet

character modulo ¢, ¢ € Z*, and suppose that L(s, x) # 0 for o > 1/2. It then follows
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that

3/2 I/
log Lis. ) =log L(s1,) =1 [ Fla+it.)da, (2.19)

g

where s; = 3/2+it, s = o +it, and 1/2 + 1/loglogqr < o < 3/2. By (2.18), the

integral becomes

/

= o<ass/2 + r<a<3/2 + r<a<3/2 f(oz +it, y)da
la—1|<(loglog qr) 1 (loglog q7) < |a—1|<e |a—1]>€
€ 2—2a
< (loggr)* + /T<a<3/2(log qr)**da
|a—1‘>e
log g7)%~2« log g1
(logqr)*** 152 logq

1 e — .
< (loggr)*+ —2loglogqr'? log log qt

Combining this with (2.19), we obtain

Alog gt

< 2 2 — <
[log | (s, ) < /(gL (s, )+ (arg Ls, )7 = [og Lis, )| < 1o q 2~

SO

Alogqr
————— <log|L(s, x)|-
log log q7

Taking exponential of the both sides we obtain the desired result, under GRH,

1 Alogqr
—_— 2.20
L(s,x) < exp (log log QT) ( )

uniformly for 1/2 4 1/logloggr < o < 3/2.

Regarding the generalized divisor function we have some notes. We denote the

number of ways expressing n as a product of k positive integers by 74 (n). In addition,



this arithmetic function can be produced by the relation

> (e

n>1

for 0 > 1. We have two familiar facts on 74(n):
(i) for bounded values of k, 73,(n) < n¢,
(ii) 7e(mn) < 7 (m)7(n).

We will employ these items without referring to, especially in §17 and §18.

14
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3. THE RELATIVE MAXIMA OF [((} + it)]

One of the common points of our two main works is the function

Z1(s) = ¢'s) — 5 ()¢ (3.)

introduced by Conrey and Ghosh [8]. In this section we give some fundamental

properties of Z;(s). From (2.1) and (3.1), it follows that
Z1(s) = —x(8)Z1(1 — s), (3.2)

which is analogous to the functional equation for ((s). On taking logarithmic deriva-

tives we also see that

X
7)== F(1-9) (33)

The well-known Hardy’s Z-function is defined by

1

Z(t) = (x(% + it))_QC(% +it), (3.4)

which is real for real ¢t and satisfies |Z(t)| = |¢(3 + it)|, since

1

1 1
X(5+ it)]* = X(5 +ix(z —it) =1,

which can be easily deduced from (2.1). Taking derivatives of both sides of (3.4) with

respect to ¢t we obtain

Z'(t) = —%(X(% v it))_gx'(% + it)((% +it) + z'(x(% + it))_éf’(% +it)
- Z(Xé Hf))izl(% i),
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1
which gives | Z'(t)| = |Zl(§ +it)|. So on the critical line Z;(s) vanishes at the relative
maxima of |((3 + it)| and at the multiple zeros of ((s) if ever these exist. In the
literature we have two results concerning the zeros of Z;(s). In [8] Conrey and Ghosh
showed that
o Ni(T):=#{0:Z1(0) =0and0 < v < T}
= N(T)+ O(logT). (3.5)
e Assuming RH,
1
# {Q : Z1(0) =0,0 <v <TandRp # 5} < logT.
e Assuming RH, if Z;(p) = 0 and v is sufficiently large, then

[Ro— -] <

N | —
NN T

In [9] Hall improved these to

e Assuming RH,

Ni(T)=N(T) — %sgnggj)) + g

e Under the truth of RH, all the non-trivial zeros of Z;(s) lie on the critical line.

Another point related to the zeros of Z;(s) is the number of relative maxima between
/

two consecutive zeta zeros on the critical line. We first give a formula for 7(t) If we

take s = 1/2 + it in
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it is easily seen that X;/(% + it) is a real number. Combining this with the logarithmic

derivative of (3.4) with respect to ¢, we see that

Z/

(1) = Im = (5 — it) (3.6)

¢ 1 1V s 11
Cymom LIy .
£ () — 2p(2+>+gs_p+p (3.7)
where C' is an absolute real constant, we have
a1 t 1. 5 it 1
Im=(z—it)=———-Im=(- — =) +1 — 3.8
m (5 — i) Ip (g 2)+ng—z‘t—p (3:8)
o
Now we assume RH, and use (3.3), to obtain
A ¢ 1 T 1 2t
ZW)=Im>(=—it)=-—0(- = .
70 =I5 =it = 0<t)+7§t2_72 (39)

This formula reveals that as ¢ crawls up on the critical line from a zero of {(s) to the
next zero, there will be only one point where Z'(t) = 0. Hence we obtain that on RH,
the zeros of Z'(t) are interlaced with the zeros of Z(t), and |((3 + it)| has exactly one
maximum between consecutive zeta zeros in the upper half-plane (and of course by

symmetry also in the lower half-plane).

We now derive two estimates of Z;/Z; on half-planes with infinitely many holes.

By the definition of Z; we see that

i) =

4 3.10
Z - (3.10)

By (2.5) and (2.6), we have X;/(s) > log |s| in where (2.10) holds. Further, if 0 > 1+,

then the Dirichlet series in (3.10) are < 1 and so %(8) < 1. Here we should note
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that if |s| is not large enough, we may lose the lower bound for denominator of (3.10),
so we must check the finite region |s| < 1,0 > 1 + € separately. At this point, from
the study of Hall [9] we know that the real zeros of Z;(s) are all simple and located
at s = 1/2, zp, 1 — 2, where z,, € (2m + 1,2m + 3) for each m € Z*, and that
Z1(s) has simple poles at s = 0,3,5..., and a double pole at s = 1. Here one may
ask why doesn’t the existence of the real zeros of Z;(s) violate the boundedness result
above even though we just exclude e—disc of positive, odd integers? The answer is, as
o — 400, the zeros fall into these discs! In the end, we conclude that

!/

Z

() <1 (3.11)
Zy

in the region o > 1+ € not intersecting with e-neighborhood of any real zero or pole of

Z1. We next study on a negative half-planes. In view of the second formula of x’/y in

(2.5) and (2.6),
X;/(s) < log || (3.12)

as 0 — —oo and s is not in e—neighborhood of any even integer. If 0 < —e and s does

not belong to e-neighborhood of any real zero of Z; or any even integer, then by (3.11),

Z
-5 <1 (3.13)
Z

So, combined (3.12) and (3.13) in (3.3), it follows that

Z

Z(s) = O(log |s]), (3.14)

provided that ¢ < —e and s does not belong to e-neighborhood of any real zero of 7,
or any negative, even integer. Similar to the case of positive half-plane, as ¢ — —o0,
the real zeros fall into e—neighborhood of negative, even integers. The similarity is

actually consequence of the symmetry with respect to the point 1/2 arising from (3.2).
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!/ !
Just as the estimate for >(s), we approximate —(s) by a finite sum of partial

¢ Zy

over the zeros of Z; near to s:

fractions

Zi

2= Y rlgwaogwn (3.15)

[s—ol<1

for —1 <o <2, |t| > 2. The proofs of the Riemann zeta function case also holds for
this case. The formula can be easily seen from the estimate Z;(s) < [t|* throughout

the region —1 < ¢ <2, |t| > 2 and the Lemma due to Landau:

If f(s) is regular, and

‘f(s)

f(50)| <eM (M >1) (3.16)

in the circle |s — so| < r, then

e~ < A e sl <) @1

s—p T
where p runs through the zeros of f(s) such that |p — so| < /2.
From the formula Ny(T) = N(T') + O(log T') we deduce that
N(T +1) — Ni(T) < log T, (3.18)
i.e., the number of zeros of Z;(s) with |[So —T| <1 is < logT. Among the ordinates

of these zeros there must be a gap of length > (log7)~'. Hence by varying T by a

bounded amount, we can ensure that

|So—T| > (logT)™* (3.19)
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for all zeros p. With this choice of T', each term in the sum of the formula (3.15) is

< log T, and the number of terms is also logT" so that we have

Z/
71(0 +4T) < (logT)* (—1<0<2) (3.20)
1

if T is chosen so that the condition (3.19) is satisfied.

Finally, we’ll finish this section off by acquiring formulas approximating Z}(s)/Z(s)

by Dirichlet series. The first two approximations will be unconditional. Since x(s) >

-1
log |s| in the region o > 1+, |t| > A(€), we can expand the denominator <1 + 2 Cé(s))

X(s)

in (3.10) as a power series, and then using (2.10) we obtain

Zo_ -2 )" & A ()
Jo-- = (@) 55

log T m=1
kg loglog T

DY (‘i) ﬁfﬁ%g@ (3:21)
k

+0 (eXp ((A(e)—loglog\s\) log T )+ ! )

loglog T’ |t|log |s|

to which we will appeal in deriving an explicit formula for Z;. Here the coefficients

A*®)(m) and A**®) are produced by the relations

> AN (L) 322)

m=1 m? C
00 )\*(k) / k
> # = (—%(s)) %(s) (3.23)
m=1
for k € N, where
3 AJT';T) = %(s), jeN. (3.24)
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If we replace x’/x by the right-hand side of (2.8) in the above calculations, we have

k
7 2\ & A (i)
G- ¥ () D
1 k< log |t| Og 2 m=1
— log log |¢|
2 e Zd|mA*(k)(d>A2 (%) 1 A(e) log |t|
©Y (i) T EmEEE o (e ()
log |t 10g2— m=1 m |t| log 10g|t|
kéloglgog\t\ 4

(3.25)

in the region 1+ ¢ < o < 0y, |t| > 1, where oy is an arbitrarily fixed number > 1 + e.

However, we need a very similar formula in which we are arbitrarily close to o = 1. If

we take ¢ = 1 in (2.18), we easily derive that

) .
S(5) < loglog Y, (G € 27 0 2 1, 1 = o) (3.26)

under the truth of RH. Proceeding as in the unconditional cases, with the aid of (2.8)

and (3.26), we arrive at

b oo Ax(k+1) (m)

1 2
720 =" 2 (@) 2

RS i 2m /) m=l
B+l o
N Z 2 Z M B) (m) Lo Alog |t|logloglog ||
— — ex
log 1t —ms P log log |¢|
kS g °n m=l

(3.27)

in the region 1 < o < 0y, [t| > 1.

In fact, expanding the denominator in (3.10) as geometric series does not ne-

cessitate the assumption RH. Unconditionally, by the Vinogradov-Korobov theory we

have

%<s> < (log )2/,
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where o > 1, [t| > 1. This gives the same formula with the error term O(|¢t|~1/3+¢),

which leads to a smaller range of o in Theorem 11.1.
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4. ON THE ZEROS OF y/

Here we will show that apart from two exceptional zeros on the critical line all
the zeros of x'(s) lie on the real axis. It follows from the definition of x(s), and the
simple properties of the sine and the Gamma functions that all the zeros of x(s) are
simple and located at s = —2n, n € N. Then by Rolle’s theorem, there exists at least
one zero of x/(s), say x, € (—2n — 2,—2n). The uniqueness of z,, in (—2n — 2, —2n)
can be derived from the second formula in (2.6). We know that F%(1 — s) is analytic,
and > 0 for s < 0, which can be seen from the integral representation of I', and
FT/(l—s) ~log(1—s) as s — —oo. However, cot 5> < 0in (—2n—1, —2n), cot * — —o0
as s — (—2n)~, and cot 57 > 0in (—=2n—2, —2n—1), cot i = +o0as s — (—2n—2)*.
So z, € (—2n — 2,—2n — 1) by the intermediate value theorem. Further, comparing
the derivatives of the logarithm and the cotangent functions we see the uniqueness of

Y

Ty's.
From the functional equation of {(s) it follows that
X(s)x(1 —s) =1,
from which by logarithmic differentiation we obtain
Lo =La-a),
which shows the existence and the uniqueness of the zeros on the positive real-axis. If

we denote these zeros by the sequence (y,)nen, then y, = 1—z, and y,, € (2n+1, 2n+3)

for each n € N.
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We next show that x/(s) # 0 if Ss # 0 and Rs # 1/2, and locate the two

exceptional zeros on the critical line. First observe that

(2u — 1)v
(w2 +v2)((1 —u)? +0?)

1
e ) @

which can be obtained by combining the formulas that

X
I=(u+iv) =
X

I | 1 |

() =1— = —~, . 4.2

AEE ”M(nﬂ = (12)
and

X 1 /1 s 1F’<s>

Xy =logm—-—[=-2) 2= (2 4.

c=leer—om o -3) —5 T ) (43)

which is the logarithmic derivative of (2.3). Here ~. denotes Euler’s constant. From
(4.1) we see that %%(u + dv) is non-zero unless u = 1/2 or v = 0. Furthermore if
u > 1/2, then %X;/(u + iv) is positive; if u < 1/2, then %X;/(u + iv) is negative. For the

case u = 1/2, again using (4.2) and (4.3), we see that

¥ N A ~3(1/4+n) + (v/2)
%;(1/2 +iv) =logm — 149 + =5 - ; (n+ 1)((1/4+n)* + (v/2)?)

Mathematica then works out that the zeros of y’ on the critical line are located at

212 = 1/2 4628984 ... and z_ 1/, = 1/2 — i6.28984 . ...
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5. EXPLICIT FORMULA FOR Z;(s)

We begin with the contour integral

L[ 24 12k, s)ad
—_— — W w., S)r w
21 (c) Zl ’ ’

where (¢) denotes the line of points whose real parts are ¢, and

20— 1
(w—=(s=1/2))(w—(1/2-73))’

k(w,s) =

x > 1, and s belongs to the region og < 0 < o1, where o¢ and o, are arbitrarily fixed
numbers satisfying o9 > 1 + ¢, excluding e—neighborhood of any real zero of Z; or
X' or any pole of Z;. Here we choose ¢ = 1/2 4 € so that on the line (¢) there is no
singularity of %(w + 1/2), and that X;/(w + 1/2) is non-zero, and that o — 1/2 > c.
Thus we do not encounter the pole of k(w, s) at w = s — 1/2 when moving the line of

integration to the left.

Here the kernel k(w, s) was introduced by Farmer and Gonek in [11] to derive
an explicit formula for £'(s). Although it is not very different from Montgomery’s
derivation of the explicit formula for {(s), especially when the logarithmic derivative
of a function for which we want to find an explicit formula has not a Dirichlet series

representation, the approach in [11] is more convenient than that of Montgomery.

Let R be the rectangular contour joining the points ¢ — iV, c+1¢V, —U 4V and
—U — iV, where U and V are large positive numbers so that U >V > 2(|¢t| + 1) and
that the estimates (3.14) and (3.20) are valid for %(w + 1/2) on the left-vertical and
the horizontal sides of R, respectively. We remind that in every interval of length 1 it
is possible to find at least one U and V. However, (3.20) remains true when the real
part of variable of Z{/Z; lies on bounded ranges, for example [—1,2] in (3.20). Thus,
we divide [—U, ¢] into three parts the first of which we apply (3.20) to %(w +1/2); in
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the remaining parts we apply (3.14). Then,

U+iV 7! 1
/ / —1 (0 + 1/2)k(w, 8)adw < OgQV/ wdu
+iV _ivZ 14 —3/2

loo V —-3/2 -V 1 2 V2
+ o8 / x“du+/ Mm“du

V2 \% U u? + V2
¢log® V
7 og |
V2log 2z
—U+iV 7t 2 2
Z w Vieg(U* + V?)
/—U—ZV Z(w +1/2)k(w, s)z"dw < piie ;

both of which tend to 0 as U — oo, then V — oc.

Here we assume the Riemann Hypothesis which implies that Ro = 1/2, due
to the work of Hall. Inside R we encounter the simple poles of the integrand at
w=0,1/2, =1/2,1/2 — z1,...,1/2 — 2z, iv, 1/2 = 5, where |v| < V and 1 — z;41 <
—U +1/2 < 1 — 2. Collecting the above results concerning the contributions of the
horizontal and the left-vertical sides of R, letting U — oo, then V' — oo, by the residue

theorem we can conclude that

1 Z/ 1
L 1/2 Cdw =~k (—5,s ) a7V 2k Y24 k(0
o ()Zl( w+1/2)k(w, s)z"dw ( 2,3> < )x + k(0, 5)
Z/
— /2= SZ -I—Zk‘ (1v sxw—l—le/Q k(12 = 2m, 8).
1 m>1

Since 1+ 2m < z,, < 3+ 2m and s has distance > ¢ from the nearest real zero of Z;,

the above sum over m is

<<9(:*5/2 Z + Z L

m<[t+1 m>|t+1 |(1 = 2m — 8)(2m — 8)|

2
In the first range, the summand is trivially < (ﬁ) . The second part is <

Doms 41 L < It\ﬁ’ by the integral test.
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Using the definition of the kernel k(w, s), we obtain

1 [z oo (20 — 1)z o
) B A e D B i e (7 Ry N A

+0 <%) +0 (%) . (5.1)

We next write the integral on the left in terms of a version of the discontinuous

integral. Let T" be a real variable tending to +oo. In (3.21) we have expressed 7 /7,

as an approximate Dirichlet series. Employing this the integral becomes

1 [ Z .
57 ()Zl(w~|—1/2) (w, 8)x"dw = (5.2)
- Z (_z)ki A*(Hl)(m)L/ k(w, s) <£>wdw
1/2 y k
Pty — m / 210 J o) (X;'(w i 1/2)> m
N E(m) 1 k(w, s) T\W
k+1 )
D S il s () o
9 (Yw+1/2)
A* (k+1) (m) 1 c+iA(e) k(w, S) AW
DDV ()
bl (Yw+1/2)
S A (1 s s G2 e ) A R
m? 2w o iae (x K1\ w
k< pebeT et (¥w+1/2)

Ale) 7!
+ O xc/ |71(c+1/2+iv)k(c+iv,s)}dv

—A(e) 1

A(e) —logl
+0 («’L’/ |k(c+iv, 5)| (exp (< (€) — log 0g|v|)logT) L1 )dv)
[v]>A(e) loglog T |v| log |v]

= Z C;, say.

1<i<6

On the line segment [c—iA(€), c+iA(€)], %(c+1/2+iv) = O(1) and k(c+iv, s) < (|t|+
1)72, so that C5 < MH)Q For the last O-term, k(c+iv, s) < (max{|v|+ 1, [t| +1}) 72
if Jo] < |¢]/2 or |v| > 3|t]/2; < 1if |t]/2 < Jv| < 3|t|/2 and |v — ] < 1; < |v — ¢] 2
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otherwise, from which we deduce that

A(e)logT log T 9
¢ —_— —log log(|t — t+1 .
o atexp (D ) o fexp (—togtog(e + 3 2 (1] + 1)

We remark that this upper bound is < z€exp <%> (|t + 1)~ when |t| < T,

, -1
which will be used later. By the choice of ¢, in C5 and Cy, (X (w + 1/2)) is O(1).

X

In addition to this, using (2.15), it follows that Cs, Cy < Otfi—cl)z,exp (A(e) 1olg(;)igT>'

Combining the results on the C;’s, we obtain

Al) log T
Cs+ Cy + Cs + Cs < 2 exp (ﬂ)

loglog T’
log T

X max {exp (— log log(|t] + 3)w> , (] + 1)_1} . (5.3)

We treat the integrals in the remaining parts C; and Cy in two cases. Assume
first z/m > 1. Let the sequences (x,)nen and (¥, )nen denote the negative and the
positive real zeros of y’/, respectively, so that 1 — z, = y,, —2n — 2 < z, < —2n and
2n+1 <y, < 2n+3 for n € N. Choose U,, > 0 such that z,,,1 —1/2 < =U,, < z,,—1/2
for sufficiently large n € N and X;,(w +1/2) > log U, on the line Rw = —U,, which
can be seen from the second formula in (2.6). Between the lines (¢) and (—U,) we
encounter the simple pole of the integrand at w = 1/2 — 5, coming from the simple
pole of k(w,s), the pole at w = 2/, and the simple poles at w = x, — 1/2, where

0 < ¢ < n. Then the residue theorem gives that

271-7/ c—i / k
Un (X;(w + %))

m

1 e E(w, s) ( T )w du

> R § = 5 (1)

, %
0e{L-521/2-1/220-1/2..zn—1/2} (X;(w + 1/2))
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c+iUn —Up+iUpn —Up—iUpy, k(w,s) T\w
+ + + (5) dw.
—Un+iUp, ) —Un—iU, c—ily, < ' m

§(UJ+-1/2))

For sufficiently large n, k(w,s) < U.? and X;/(w +1/2) > logU, on the three sides

above. We then see that as n tend to oo, the three integrals on the right-hand side
’ —k -3

tends to 0. The residue of the pole at w =1/2 — 3 is — (X;(l - §)> (%)1/2 . So

w=xy—1/2

1 gt (w— (zp1p — 127\ /2y
* (rk —1)! dwrk—1 hlw, s) < Xw+1/2) ) <_>

’LU:Z+1/2—1/2

1 drk=1 (w— (22172 — 1/2))" * T\
* (rk — 1)! dwrk—1 k(w, 5) ( X;l(w +1/2) ) <E> ’

w=z_1/9—1/2

where r is the degree of the zero at w = 241/ — 1/2. By Cauchy’s integral formula
with a circle of an e-radius around z, — 1/2 and 214/ — 1/2, we see that the above
derivatives are < (A(€))*(k — 1)!(x/m)= 12+ (|z, — s||ye — s|) 7! and < (A(€))*(rk —
D!(x/m)<(Jt| + 1)72, respectively. In the second case, we have used r = O(1) and

2112 = 1/2. It then follows that
1 k(w,s) a\e o (X . -k T \1/2-
2mi Jo (X;/(wﬂ/z))k(E) "= (fc(l )) ()
+O((A(e))’“(ac/m) (A /m)o ”2“Z|xf/m e ) 54)

(I +17° 2oy —sllye—s

The sum over /£ is (|t| +1)~!, which can be seen by separating the range of summation
into two parts, namely ¢ < (|t| + 1) and £ > (|t| + 1) and by transforming the second

part into an infinite integral via the integral test.
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In the case x/m < 1, (z/m)™ tends to 0 as Rw — oo so that we pull the line
of integration to the right and sum the residues of the poles at w = s — 1/2 and at

w =y, —1/2, ¢ € N. Similar to the z/m > 1 case, we have

1 k(w,s) TN, R s-1/2
i bz (£) aw=-(Y@) (%)

(A(E))k(m/m)yofl/z,e
+O( ] +1 > (5.5)

Returning to € and Cy, we first introduce the following notation that

a(m,s) = S (<2)F (A*““”(m) (§<s>)_k+zx<’f><m> (X;u)k) (5.6)

log T
k— log log T’

Then using (5.4) and (5.5), we get

Cr+ Gy (Z a(m 1 =) (£) 7+ S atm.s (%)5) 57

m<x m>x

pro—1/2+e A (m) 4 A F) (m)
ot (A(e))*
e+ Z mz< mee
—loglog T -
€ A*(k+1)(m) —i—)\*(k)(m)
O —= Ale))*
+ (|t|+1)2 IZT ( (€>) Z< m1/2+6
k—lo;igT =T
l,yo—l/z—e A*(k+1)(m) —f—)\*(k)(m)
+O0 | =771 (A(e)"
f+1 Z n; mee
—loglog T

The evaluation of the sums over m in the error terms are similar, these can be bounded
by the same quantity. In the first sum, since m < z, m=%~¢ < m~1=¢z!=%_ We replace
m =%~ by m~17¢x!7%0 then the resulting Dirichlet polynomial is a part of the Dirichlet
series which is ~ ¢ #72 by (2.15), so that the first error term can be bounded by the
right-hand side of (5.3).
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The last step before the derivation of the explicit formula for Z; is that we replace

—2'/275Z(1 ~ 5) in (5.1) by

7 RV _ t 2
P =) g o) e

which follows from (2.8), (3.3) and (3.11).

As a summary of what we have done up to now, we combine (5.1), (5.2), (5.3),

(5.7), (5.8) in the following Theorem.

Theorem 5.1. (On RH) Let s = o +it be a complex number satisfying 1+¢€ < o < oy,
where o1 1s an arbitrarily fived number, and that s does not coincide with the zeros of

X' and Zi, and the poles of Zy. Then for large T,

(20 — 1)z™ B
; (v—1)24 (0 —1/2)2

33_1/2(2 a(m, 1—3( ) +Z ms( ))4—3:”2 Slog‘t|2j;2

m<x m>x

1 A(e)log T —(loglog(|t| + 3)) log T 1
+e TN T
+0s (xz exp ( loglog T’ ) Hax {exp ( loglog T [+ 1

+ Oy (z/%79).
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6. A SKETCH OF MONTGOMERY’S DERIVATION

The explicit formula from Landau’s book [12] is that, if z > 1 and = # pF (p

prime, and k a positive integer), then

rP—$ o $—2’r—s

6.1
+;2r+s (6.1)

An !
LS Cg 1—_5‘;

n<x

provided s # 1,s # p, s #* —2r. Here s is a complex variable and the standard
notation s = ¢ + it will be employed, p runs through the nontrivial zeros of ((s), and

the series over p is convergent with the interpretation

xP—*

ym >

[Im p|<U

i (6.2)

Upon assuming RH and manipulating this equation, Montgomery obtained the explicit

formula
7
_ 5 1 o+it U—Ht
20 s = (A T am )
¥ n<z n>x
</
_E<1 _ U—i—’&t) —o+it
(20 — 1)z2

(0 —1+it)(o —it)

Y (20 —1) (
B 6.3
' 2;(‘7_1_“—27”)(0’+it+2r)‘2 )

valid for ¢ > 1, and all z > 1. In this formula Montgomery used the logarithmic
derivative of the functional equation of {(s) to replace $(1 -0 +it) by ——(O’ —it) —

log(|t| +2) +O(1) = —log(|t| + 2) + O, (1) (for s in a fixed strip in ¢ > 1), and he put
upper-bound estimates for the last two terms of (6.3). Montgomery then took o = 2,
squared the modulus of both sides, and then integrated both sides over ¢ from 0 to T'.
From the expression thus arising from the left hand-side of (6.3), he discarded those

v & [0, T] within an error of O(log® T'), and in order to evaluate the integral he extended
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the range of integration to ffooo within an even smaller error. In this way the left-hand
side of (6.3) led to the expression (1.3). To carry out the integration of the square of
the series involving A(n) coming from the right-hand side of (6.2), Montgomery had

recourse to Parseval’s formula for Dirichlet series from [13]:

% T
If E nla,|* converges, then / ‘ E ann”"
n=1 0 n

“dt = JanA(T + O(n)),

The result of this calculation was (1.5).



7. A MODIFIED APPROACH

With ¢ = 2 in (6.3) reads

Ax™ 1 ,,Z §i
SR

n<x n>x
1
gl 24t 42
(== +at)z T+ ;
¢ 2 (3 +it)(5 —it)
e —2r
1 xr
_41'75 .
;(%—QT—it)(g+2r+it)
For the & term here we use
¢ : ¢’ : 1
21— t) = —2(oc—it)+1
c1-o+i) clo ) Hloem 4 s

1/ I"3—o+it, IV, o—it
i A A S )
2(r( ;i)
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(7.1)

which follows from the formulas in pp. 80-82 of [10], with o = 5. Hence we have

4z'07Y -2 it 2
Z4+(7—t>2 = —o?) Az =2y A(n)n
v

n<x n>x

a2 <<C, (= 5 +1it) — log 7T>

T I 1 it M9 4t
*7(?% )+ )
x 2 4yzit
TEoCE_w T CrinG

& —2r

: T
—4 5t )
g Z(%—Qr—it)(%—i—%—i—it)

r=1

(7.2)
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Recalling (2.5) and doing elementary estimations, we can simplify (7.2) into

Z 4pi(—1t) 9 ZA( ) 3_it 2 ZA( ) —2—it
ﬁ = —T nm — T n)n
o 4 + (ry t) n<zx n>x

N
Njot

Xz

+a2(log(Jt| + 3) + O(1)) + O(W> v 0<|;|”+ 197.3)

for x > 1.

When ¢ runs through a set of values we sum both sides of (7.3) over the relevant

t. This will be feasible if one can calculate the sums over ¢, in particular Z p~ " where

t
p is a prime and a is a natural number. In the following sections several examples will

be presented.
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8. PAIR CORRELATION OF ZETA ZEROS

We apply our method first to the quantity (1.3) considered by Montgomery. So,
letting ¢ run through those ordinates 7 of the zeros of the Riemann zeta-function which

are in the interval (0,7, from (7.3) we have

I I I UL VIS Vo D W

v 0<7<T n<z 0<5<T n>z n: 0<~4<T
_ - 1 1
+z72 Z (10g7+0(1))+0<x2 Z ¥>
0<3<T 0<3<T
1
+O<x—3 7) (8.1)
o<r<r |
for x > 1. From the count
T T T
N(T)=—log— — — +O(logT 8.2
(T) =5 -log o — o— + O(logT) (8.2)

of zeta zeros with ordinates in (0,7], we easily estimate the last terms of (8.1) and

re-state (8.1) as

I o LD DL Yo LD D

n2

o O<'y<T n<lx 0<4<T n>x 0<y<T
Tlog®T 1
1+ 0 O(x2 8.3
5 L+ (logT))+ (x2). (8.3)

In the sum on the left-hand side we can exclude those v ¢ [0,7] within an error of

O(log® T'), by a standard calculation based upon (8.2). This exclusion leads to the
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error term

<> D +Z Y.y (8.4)

¥>T 0<7<T ) 0<'y<T

zzzzm

1<m<T m—1<5<m n>0 T+n+1>y>T+n

Y XYY e

1<m<T m—1<7<m n>0 —n—1<y<—n
The first quantity on the right of the equality is, by (8.2),

1
2 : 2 : 2 § : 3
< (logT)’ 4 + T+n m)? < (logT) T—m+1<<(lOgT> '

1<m<T n>0 1<m<T

(8.5)

Similar calculations can be done for the last quantity in (8.4).

We now have recourse to Gonek’s [14] unconditional result

Z Y = _—A( )+ O(ylog 2yT log log 3y)

0<~<T

+0 (min(7, <y_>) logy) + O(min(T, ) log 2T)) (8.6)

Yy log y

for y, T > 1, where p denotes a complex zero of ((s) and (y) denotes the distance
from y to the nearest prime power other than y itself. Assuming RH and using (8.6)
for the inner sum occurring in the first two terms of the right-hand side of (8.3) , the

contribution from the first term of the right-hand side of (8.6) is

T /1 A(n)?
n<x n>x
log 1 5.3
yor T g2+ Ol Hlog 20) )

T /1 ,2? a? 3. 4 5
= %<ﬁ(glog:p—z+0(m210g 2z)) + z*(

T 1
= o logz + O(Tz" 2 log® 2z).
m
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Here we have calculated the sums from

> " A(n) =+ O(x7 log? 2x) (8.8)

n<x

which is the prime number theorem under RH. The first error term in (8.6) contributes

1
< pes Z n*A(n)log 2nT loglog 3n + x Z (n) 5~ log 2nT log log 3n
n<x n>x
< xlog 22T loglog 3. (8.9)

The second error term in (8.6) contributes

1 . An .
< = Z nA(n)lognmin(T, n) + Z % log nmin(7', n) (8.10)
n<x n>x
xlong—i—%logT if =<T,

<
T log x if x>T.

Finally the last error term of (8.6) contributes

log2T A(n)log2T _ logT
<<—ZnA L2y (n)10g 2T  log T (8.11)

= log n n3 logn log 2x

Combining the above we find that

Tlog?T 1 T
Fee(x,T) = 52 (1+ O(m)) + o log x + O(x log 22T log log 3x)

2%log T T log® 2z
7—) +O( . ) (8.12)

+0(

as T' — oo. This gives an asymptotic result for 1 < x = 0(@).
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9. SOME AVERAGES OF A**) AND )\*(*)

In the following section we generalize Gonek’s result on A in [14] to A**) and
M) Lemma 9.4 is the extension of Gonek’s k = 1 case, Lemma 9.5 is the \**)—
analogue of Lemma 9.4. We will use these in estimating the Landau sums in the next

section. Let’s start with some basic exercises.

Lemma 9.1. Let k, M € N. Then we have the following binomial identities:

EO-Car) w

=0
ik MA+k+2
M—i+1)= ) 9.2

Z(/c)( ”)(mz) ©-2)
7=0
Proof. We first note that for m € N

= - n+m-—1\ ,

(;z> :;< 1 )z (9.3)

where for r, s € Z="! the binomial coefficient is defined by

1 lf r=s,
r 0 if s=-1,r>0,
( ) - (9-4)
° 0 if r<s,
\ 5!(:15), otherwise.

From (9.3) we see that comparing the coefficients of 2z in the power series

1 1
2
(I+z+2 +"'>m and S EE
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gives (9.1). Similarly, using

(1 —lz>k+1 (1;)/ T —1z>k+3

we can see (9.2).

Lemma 9.2. Let a, { € N and p a prime number. Define

AT (L) 05
IELEE () S 96)

Then

A O (p7) = (9.7)
0 if a>0.

Assume ¢ € Z". Then
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We now deal with A\* (p®). By (9.6) and the first result of the lemma we have

O (%) = log pz (; B D Y. 9.8)

The values of the arithmetic function As can be calculated easily by the formula

Zu (log ) and (9.8) becomes

dn

O (5°) = loght pZ(T_1> 2 — 2r — 1)

<r<a
a—f(—1

a—~(—1 . .
t0—1 . +0—1
=2log"?p ) (jg_l )(a—J—f log™? p § (‘76_1 )

J=0

by the substitution 7 = r—/¢. Then the proof is completed by the two results of Lemma
9.1.

Lemma 9.3. For k € N, a € R, we have

k

(@)r (a+1)
)3 K =

r=0
k—1
where (a)g := H(a + 1), with the convention (a)o := 1.
i=0

Proof. We show this by induction on k. The case k = 0 is trivial. Assume the claim

holds for & € N*, then

> (e 3ol
p— 7! k+1 o 7!

~ (@)ks1 | (a+ 1)y
CES

ala + 1) N (a+ 1)
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By induction the lemma is proved. ]

Lemma 9.4. Let k € N. We have for N > 1

(k) (N —
Z A*®(N —n) < log" 2N(loglog 3N +7)

_ | ’
o (k—1)!
and
AR (N loglog 3N + 7
(N41) oot o (081083N + T
(k—1)!
n<N/2

with the convention that (—1)! = 1.

Proof. The case k = 0 is trivial. Assume k£ > 1. It follows from mathematical induction

on k and the fact ZA(d) — logn that A*®(n) <log®n for all n € Z*. Using this

din

and applying Stieltjes integration, we obtain
AR (N — N2 qSy(z, N
Z AN —n) < log" 2N/ M’ (9.9)
n - x

n<N/2
and

Sp(x, N) ::‘{N—x<n§N:A*(k)(n)7é0}‘. (9.10)

To obtain an upper bound for Si(x, N) we first quote the result of Tudesq in [15]:

x  (loglog3x 4 6),_1
1 9.11
D o PR () A 5-1)
i

where 1 < x <y, k € Z", and the constant implied by < is absolute. Employing this
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we have

k

k
x (loglog 3z +6);_1
Se(eN) <D D 1<<1og2xZ (i—1)!
i=1 N—z<n<N i=1
w(n)=1

~z (loglog3x 4 7)1
 log 2z (k—1)! ’

(9.12)

by Lemma 9.3. We then return to (9.9), and by integration by parts we obtain

Z A*(k)(N_n) < logk QN{Sk(.Q?,N) N/2 +/N/2 Sk(x’]\odl‘}
— = T -

n 1= 2
n<N/2

Using the upper bound in (9.12) for Si(x, N) in the above inequality, we complete the

proof of the first claim. The second sum can be treated in the same manner.

Here we note that the above results cannot be deduced from one form of the
prime number theorem and partial summation, because, if u = o(N/log N), the upper

bound for the sum ZA(N —n) obtained from the prime number theorem is worse

n<u

than the trivial bound wlog V.

Lemma 9.5. Let k € N. We have for N > 1

NE(N —n) (loglog 3N + 7)j12

(k+1)! ’

< logh™? 2N
n<N/2

and

(log log 3N + 7)k+2
(k+1)!

3 NE(N +n)
n

n<N/2

< logft?2N

Proof. We follow exactly the same lines of the proof of the above lemma. Assume
k> 1, k = 0 is again a trivial case. From definition of A*)(n) we see that \*®)(n) <

log"™? n for all n € Z*, by using the facts that A**®(n) < log" n and Z Ag(d) = log® n.
din
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Employing this bound, we have

ME(N — N2 4T (x, N
3 NOWN =n) oakt2gy iz, N) (9.13)
n 1- T
n<N/2
where
Ti(z, N) := ’ {N<n<N+z:X3P(n)£0} ' (9.14)

To bound Ty (x, N) first observe that A**®)(n) # 0 implies that 1 < w(n) < k + 2.

Similar to the estimation of S(z), we have

x  (loglog3x 4+ 7)1

Ty(x, N 1
bz, V) < log 2 (k+1)! (9.15)
Using this we obtain
/N/2 dTy(z, N) _ Ty(x, N) ny2 . /N/2 Ty (z, N)dx < (loglog 3N + 7) k42 (9.16)
1- x z 1 x? (k+1)! '

Combining (9.13) and (9.16) gives the result. The second claim can be similarly han-
dled.
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10. SOME GENERALIZATIONS OF LANDAU’S SUM

We shall calculate the Landau sums

E:nw(5@+@>k and Y e,

T/2<v<T X 0<y(x)<T

where k € N, ¢ run through the zeros of Zi(s), a = —2 or 2, and p(x), v(x) > 0,
are the zeros of L(s,y), where x is a Dirichlet character modulo ¢ € Z*. Before
the estimation of these sums, we give the following lemma which is necessary for the

oscillating integrals to be encountered.

Lemma 10.1. For A large,

1 .
/B it e o (|10gw\(logA_)T> if w#1,
a o (ogs) | _Boa_ A _—
(log 57) (M£Y+OQMMM) if w=1,

where A < B<2A, w>0,r €N, r=o(logA). The constants of the above O—terms

are absolute.
Proof. We recall Lemma 4.3 of [16]:

Let F'(x), G(x) be real functions, G(z)/F'(x) monotonic, and F'(z)/G(x) > m >
0, or < —m < 0, throughout the interval [A, B]. Then

<

B .
/ G(x)eF @ dx

A

4
-

Using this, if w # 1, we have

/B w' di ‘ <
A (log%)r ~ |logw| (logi)r'



By Bernoulli’s inequality, under the restriction r = o(log A), we have

1 1 1 1

(log 2£)" (1o A)" (1- lﬂ) = (log 4)" (1 — r'ezzz) <1

g
log A log A

which completes the proof of the case w # 1.

If w =1, then integrating by parts gives
B

/B a ot +T/B dt
a (loggr)” (logar) la Ja (log )™

B A Lo r(B—A)
(log 32)"  (logsr)" (log &) ]

Since A < B < 2A, by the calculations in (10.1), the above error term is

< rA
(log A)r+1°

By the mean value theorem of Elementary Calculus and (10.1), we see that

1 B 1 _ —(B—=A)r _ ( r )
(log5z)"  (logs;)" € (log )™ (log A)r+1

2

for some C' € (A, B). Combining (10.2), (10.3) and (10.4) gives the result.

log A)"
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(10.1)

(10.2)

(10.3)

(10.4)

The calculations and Bernoulli’s inequality applications that have been seen in

(10.1) and (10.4) will be done repeatedly throughout the paper without any explana-

tion.

Coming back to the main tasks in this section, let’s start with the average over

the complex zeros of Z;(s). In light of Lemma 10.1, assume k = o(log T"), where T is a
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real variable tending to +00. If n = 1, then the sum is almost trivial, since, by (2.8),

/

X — e L
X(g+a)— log 27T+O(1)

for T/2 < v < T, from which it follows that

3 (%Q N a)) G ) (10g 2) o ((k+1)T(logT)™*) . (10.5)

2
T/2<v<T

Assume n > 1. By the result of Hall on the zeros of Z;(s) under the Riemann hypoth-

esis, the residue theorem implies that

5 (Fero) -

T/2<v<T

1 f 80 (Xt ) nrdst Om-bogT) ). (106)
i L7, s . s+a n~=*ds g , :

where C is the rectangle (oriented counterclockwise) having vertices at —d + it,., 1 +
1
d+it. (r=1,2) with 0 = = and t; =T/2+ O(1), ta = T + O(1) chosen such that

0g
(3.20) is valid on the horizontal sides of C. This choice causes the error term in (10.6),

which can be estimated trivially by using (2.8) and (3.5). By (2.8) and (3.20), we see
that the integrals along the horizontal sides of C satisfy

14-0+it, A / —k log T2k 1
1 X s (logT) <0gn)
—(s) | &=(s+a n *ds < ex . 10.7
/6iitr Zl( ) (X( >> logn P logT ( )
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!/ Z/
Inserting the right-hand sides of (2.8) and (3.27) instead of K(s +a) and 71(3), re-
X 1
spectively, the integral along the right vertical side of C becomes

1 I+o+its g1 / —k
— Z1(s) (&(Ha)) n~ds = (10.8)
20 Jiysri, 41 X
R 3 in/\*(‘””(m) /” (mn)~*dt
Ir o — (mn)1+6 " (lOg %)k-‘rﬁ
—loglog T
(-1)* 1 om MO(m) [ (mn)~tdt
S D DAL Dl e
™ K log T m=1 (mn> tl (log Z)
—loglog T

ko[ 2 t\ " de
- Z1n ; log — =
—l—O(nHa/tl ’Zl< +(5+Zt)|(og2ﬂ) ;

L0 (logT)~* exp AlogT'logloglogT  logn
n loglog T logT ) )"

Z/
By (2.8), (2.10), (3.10) and (3.26), }71(1 + 6 + it)| < loglog |t for || > 1, so the first
1

error term is

loglog T 1
k 0g 10g < ogn) ' (10.9)

n(log T)* P logT

For the above oscillating integrals we first note that m > 1, otherwise A*(”l)(m) and
A (m) vanish. Applying then Lemma 10.1 to these integrals, and using (2.15), the

sums over ¢ can be absorbed in the error term which is

(logT)'—* . (logT)=* AlogT  logn
—_ A — - . 10.10
nitilogn o %T < o loglogT  logT ( )
— loglog T
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It remains to calculate the integral along the left-vertical side of C. Substituting

s — 1 — s, and then using (3.3) we obtain

—84ity 7! ’ —k d 1+8—ity . /s ’ -k d
[ A (&s +a>) b [T (&u s+ a)) I
A X ns 146—ity X X n°

—0+ito
1+5—itq A / —k
+ / “L(s) <&(1 -5+ a)) n*"tds.
1+5—ita Zy X

We integrate the first integral on the right by parts and then use the estimates (2.8)

and (2.10) to have

1+5—it1 1 ’ -k d ’ / =k _s—1 145—it
/ £(s) (K(l—s—l—a)) i :&(s) (K(l—s—i-a)) " 1
146—its X X n-—*° X X log n l146—its
1 1+6—ity ’ / —k
— / (£> (s) (£(1 — s+ a)) n*ds
logn Jiys—it, \X X
1 1+0—ity 1 d / —k
- / K(s)— &(1 —s+a) n*"tds
logn Jijs—iu, X 'ds X
(logT)'=* logn
- . 10.11
< logn P logT ( )
Letting s = 1 + 0 — it, and using (2.8) and (3.27) we have
1 1+0—1itq Z{ X/ —k
— - = (1 - lds = 10.12
27 s 7 (s) (X( s+ a)) n® ds (10.12)
_ (—=1)kn? Z ot Z A /tQ <m>it dt
1T m1+5 n (10 L)k’-i-ﬁ
Z log)lgogT h g 2
it dt
ot+1 / (@)
. %T mZ: m1+5 w1/ (log %)kwﬂ

loglog T

2 g t\ P at
O | kn® L 5 — log — —
: <n /tl ‘Zl( ! )’(Og%) t

_ AlogTlogloglogT  logn
log T)~* :
0 <( 0gT) " exp ( loglog T * log T

It is easy to see that the second error term above dominates the others that occur in

(10.7), (10.8), (10.10) (10.11) and the first error term in (10.12), and as a result putting
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all together,

z (o) -

(10.13)
T/2<v<T
(_1)k ) ' A* f-i—l 2 N it dt
o Z QZ m1+6 (E) log £ )5
egllolgT t1 ( g)
oglogT
A* () m it dt
(+1
-y ey S )
e—lolgolgogT ( g)
_ AlogTlogloglogT  logn
O ( (logT)™* :
+ ((og) exp( loglog T log T

We divide the above sums over m into three parts; the term with m = n, the terms

with 0 < |m — n| < n/2, the terms with |m —n| > n/2. By Lemma 10.1, the diagonal
term m = n gives

(—1)kHT Z 2€(A*(£+1)(n) - 220 (n) )
< log T'

A1n (IOg %) k+2 (IOg %) k+0+1

T A () 22 (n)
+0|— > zf(k+g+1)< i T e | |- (10.14)
(< om T (log 37) (log 37)

The contribution from the non-diagonal terms to (10.13) is

<n’ ¥ 2y A (m 1

1+5 1 m 1 T k+¢
ZSmSigT m#n " ’ %8 ‘( o8 )
>
1+90 m k+0+17
w0 loillesT)

by Lemma 10.1. For m < n/2 and m > 3n/2, we have |log | > 1, so using this and
(2.15) the sum of the terms with |m — n| > n/2 is bounded by

AlogT  logn
logT)! Al < (log T . 10.15
n’(log T) Z < (logT)~ eXp<loglogT+logT> (10.15)
ogT
— loglog T
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In the remaining contribution to (10.13) we can use |log | > W, so the sum of the

terms with 0 < |m —n| <n/2is

2 \* A (m
SEADY (1ogT) 2 |m—(n|>

< tog T 0<|m—n|<n/2

—loglogT
9 +1 )\*(Z)(m)
log T)~* 2
+ (log ) Z (logT> Z |m — n|

< logT 0<|m—n|<n/2
—loglog T

By considering separately the inner sums, n/2 < m < n and n < m < 3n/2, from

Lemma 9.4 and 9.5, we see that the above is dominated by

B 21og 2n\ " (loglog 3n + 7)o
. +
(log T) " (log 2n) g ( log T ) 7

¢ log T
— loglog T

_ 2log2n\ ! (loglog 3n + 7)¢12
log T') *(log 2 —_—
+ (log 7)™ (log 2n) Z ( logT ) €+ 1)

¢ log T
— loglog T

AlogT
The first factors in the above summands are trivially O (exp (%) ) , subject to
og log

the constraint logn < logT', so that the above bound is

AlogT log1
<<(10gT)_"“'exp( og ) Z (loglog3n + 7),

loglog T . 0!
—loglog T
AlogT (loglog 3n + 8)[[%]]
= (log ,_Z"')_]€ exp <1 1 T) logT 1) e )
0g 108 loglogT]]'
by Lemma 9.3. Observe that
log T
oelogT )
(loglog 3n + 8)[[710{50;]] eees” loglog 3n + 7
logT T = &Xp Z log 1+ f
log logT]] : i=[log log 3n]+8

log1
y H (1 | log ogi3n+7) .

1<i<loglog 3n+7
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The product is trivially

< (loglog 3n + 8)[[10g log 3n]+7

Using log(1 + z) < z, for |z| < 1, the exponential part above is

log T’ ]]
loglog T'

1
< exp | (loglog3n +7) E - | <exp((loglog3n+ 7)loglogT).
i
i=[log log 3n]+8

So the contribution of the terms with 0 < |m —n| < n/2 is

AlogT
< (logT) " exp ( o8 ) :

loglog T’
Combining the above in (10.13) leads to

Theorem 10.1. (RH) AsT — +oo, fora=—2 ora =2,k € Nandn € Z* satisfying
logn < logT and k = o(logT), we have

s () -

T/2<v<T

(—1)k+1T B T , (A*(fﬂ)(n) 2250 (n) )
———— | —[n=1]log — + 2 — o
g > ]

k 7
d1tn (log %) 2 (< BT (log %) (10g %
T(k + 1) ([n = 1J10g £ + e ez A’ (A:“*j@ + f”i‘?%))

+O og log (Ogﬁ) (Ogﬂ>

n (1og %)Hl

Alog T logloglog T
+ O [ (logT) ™ exp 08 - 108708708 :
loglog T

We now deal with the special case of Theorem 10.1 that £ = 0 and n is a prime
power. Assume n = p", r € Z*, logn < logT. From Lemma 9.2, we see that

AV () = 0 and MO (n) = 0 for £ > r. If r < 1o§’£go§T + 1, then Theorem 10.1
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becomes

T1 21 '
S owe= 22 <<1+1 ng) —2)
T/2<v<T ™ 08 37
T Alogp ) Alog T'log log log T
+0| =1+ ng +exp( 8- 0808 08 ) .
p" log 5 loglog T

logT
loglogT

logT
loglog T’

Otherwise, r > <t <r, we

adding and substracting the terms with

again arrive at the main term of the first case, within an error term
T1 1\ (2l0gp)’ 2logp\
0 r— 0 r o
< Tlogr 3 (( ) 5P +2( ) 8P
P ok T g 14 log 5- t+1) \ log o
| 51 0+1
r— 0
n ng
14 log o

loglog T —
< Tlogp Z r Alogp ¢
L4 (+1 logT )
log lgog T <€§T

r re
Employing the i liti <
mploying the inequalities (6—1—1) < (€+1

the Stirling formula, and logn = rlogp < log T, the above can be simplified to

l+1
) , which is a simple consequence of

T logp” Arlogp ¢ T'logp” A\*
Z (flogT < p" Z l

g e SR cocr
log T’
Tlogp" (AloglogT \ e o T ., Alog T logloglog T
< L p o exp .
" log T logT

At the end of these calculations, in the case considered Theorem 10.1 reduces to the

following Corollary.

Corollary 10.1. (RH) Suppose that n = p” is a prime power, r € Z+*. As T — 400,
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if logn < logT', then we have

Tl 21 '
S o= B ((1+ 1 Ong> —2)
T/2<v<T ™ 08 37

T Al ' Alog T'log loglog T
+O|(—=(1+ Ong —i—exp( oe- 080808 ) .
p’” logg IOgIOgT

For the remainder of this section we shall be dealing with the Landau sum over

the zeros of L(s,x). If n =1, then

Y Y= N(T) = |p(x) : L{p(x),x) = 0,0 <~(x) <T|
0<y(x)<T

T T
= —log— +O(Tlog?2 10.16
5 log o+ (T'log 2q) ( )

for any Dirichlet character y modulo ¢ € Z*. Assume n > 1. If x is principal, then

L(s.x) =) [] (1 - X(p)) . (10.17)

In addition to the zeros of ((s), L(s, x) has extra zeros on the imaginary axis, and the
number of these additional zeros up to height 7" is O(T'logq). So the contribution of

these zeros to the sum Z nP) is O(T'log 2q), and by Gonek’s uniform estimate

0<y(x)<T
quoted in (8.6) we have

T
Z nfO) = — 2—A(n) + O(nlog 2nT loglog 3n) + O(T log 2q)
0<y(x)<T "
n

+ O (min(T, )

)logn). (10.18)

Assume Yy is non-principal, so ¢ > 3. Then there exists ¢;|q such that y is induced by

a primitive character x* modulo ¢;. Since (10.17) holds if we write L(s, x*) instead of
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¢(s), we can reduced an imprimitive case to a primitive one, and similarly we have

> el > ) 1 0(Tlogg). (10.19)

0<y(x)<T 0<vy(x*)<T

Suppose T' > T, is not the imaginary part of the zeros of L(s,x*) and further
that |T"— vy(x*)| > 1/logqT for any ~y(x*). This restriction on 7" is harmless within
the error term O(nlogqT’). For this chosen 1" we have

!/

L
f(a +4T) < log® qT, (10.20)

uniformly on any bounded range of . We put ¢ = 1 + 1/log3n, and consider the
integral around the rectangle R joining the points c+1icqy, c+i1, 1 —c+iT, 1 —c+icy,
where cyis a sufficiently large constant so that the estimate (10.20) holds along the line

segment [1 — ¢ + icy, ¢ + icp]. By the residue theorem we have

c+1T 1—c+iT 1—c+ico c+ico L/
Z nPXx) — (/ / / _|_/ ) — (s, x*)n’ds
c+ico 1—c+iT 1—c+ico L

0<y()<T
+O0((n+T)logql) =11 + Iy + 15+ 14 + O((n+ T)log ¢T'), say.
(10.21)

Here we note that the contribution of the terms with 0 < v(x) < ¢y to the above
sum is trivially absorbed in the error term O(nloggq). It follows from (10.20) that
I, + I, < nlog®¢T. Tt is possible to sharpen this estimate by means of the asymptotic
formula for L'/L with an error term log¢T. But this weak result is sufficient for our

alms.
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L G
We now deal with [;. Replacing f(s, X") by — Z A(m)x*(m)m~*° and integrat-
m=2

ing term by term, we find that
- nye 1 [T/ nyit
== > M () o [ ()
— (m)x" (m) m/ 2w [, \m

_ T S Am)X (n) + O > Am) () i (T’ WM)

my_én

By Lemma 2 in [14] we obtain

11:—%A( n)x*(n )+O(nlog2nloglog3n)+0(lognmin (T, <Z—>))

Finally we treat I3, and then this case is completed. We first write the logarithmic

derivative of the functional equation for L(s, x*):

L, altl L 1
Z<S>X):_log;_|ﬂ_|_f(1 >+O(‘t|> <_1<0<27‘t’2t0)'

Using this, I35 becomes

nlfc T 'LI e nlfc T ‘ qlt
I; = U (e —it, F)dt og ——dt + O(log T).
3= 5o /Con L(c it, x*)dt + 5 /cgn og 5 —dt + (logT')

log g, T
log 2n

Integration by parts the second integral is < . Using the Dirichlet series rep-

resentation of L'/L the first integral becomes

1—c

__n Z A(m)f(m)m_c/ (nm)™dt < Z L) < 1.

2 me¢log nm
m>2 co g

Collecting all these results we obtain the g-analogue of (8.6):

Proposition 10.1. Suppose that T > Ty and n € Z". Let x be a Dirichlet character
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modulo q € Z. Then if n =1,

T T
> o= 5108 o— + O (T'log 20) (10.22)
0<y(x)<T m

if x 1s principal and n > 1,

T
Z nfo) = — 2—A(n) + O(nlog 2nT loglog 3n) + O(T log q)
0<y(X)<T :

n
+ O(min(7, —) logn);
(min (7. ) logn)

if x 1s non-principal and n > 1,

Z nPx :——A() *(n) + O(T'log q) + O(nlog® qT)

0<y(x)<T

+ O (nlog2nloglog 3n) + O <lognmin (T, %)) ,
n

where x* is a primitive character induces x.
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11. CORRELATION OF ZETA ZEROS WITH THE
RELATIVE MAXIMA OF [((} + it)]

We introduce the correlation function
T -1 .
Gem(2,T) = (g log T) > 20wy —w), (11.1)

where x > 1 and 7" — +o0. Here w(u) is a suitable weighting function, w(u) =

4/(4 + w?). From (3.5) and (7.3) we have

Do TraoaE= i At Y, e (11.2)

¥ T/2<’U<T n<z T/2<v<T
Tlog?’T 1
2 -2 -
—x ZA(n)n Z n-?¢+ - (1+O(logT>>
n>x T/2<v<T

+ O(xé I;gT> +O(z % logT)

Tlog*T 1 x%logT _5
=% 4% 140 o )+ 0@t logT
1+ et — 3 ( + (logT>)+ T +O(z 2 logT)

forx > 1 and T > Tj. In the same way as for (8.3), those v € [T'/2,T] can be discarded
from the sum on the left-hand side within an error of O(log® T'). In view of Corollary
10.1 we impose the constraint logx < logT and divide the sum over n > z into two
parts, T > n > z and n > TM, where M is large fixed constant, so that Corollary

10.1 is applicable to the first v—sum and the first part of the second v—sum. However,
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the remainder of the second sum can be estimated trivially. As a result, we have

2w a?

S =3 pllogp)® — —— (log _12 (log p)?® (11.3)
1—4M2p<xp gp 8o p(logp -

p<w

T T Alogp '
— 1 — (1 21
+0 <x2 I;p( 0gp)> +0 IQZ;CP (log p) ( + 1og§>

reZt
r>2

Lo <exp (Alongog loglogT) wQZA(n)n2>

loglogT'

n<x

=211 — 212 + 213+ X4+ Xy 5, say,

and

Tx? (logp)? Ta? T\ " (log p)?

logp 2 (logp)? Alogp
+0(T2* Y —==|+0|12> ) 14—
T]\l 2p>x T]\l ZPT>I

reZt
r>2

Alog T logloglog T N
+0 eXp( Toglog T z? Z A(n)n 2

TM>n>zx

+0 <x2T(1ogT) > A(n)n_5/2>

n>TM

=Xg1 — 2o + a3+ Xoa + dos + Lo, say.

In 31 5 we remove the factor n? from the sum trivially, then by the prime number

theorem,

(11.5)

Alog T logloglog T’
215 <L T exp ( . 050608 >

loglog T’
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As simple consequences of the prime number theorem and partial summation, we have

A(n) 1 1
= O(——7—— 11.6
nzﬂ nt (01 — 1)zt1! - (ﬂ—llog 237) ’ (11.6)
fg—‘rll —1
Zpb logh p = # +0 (szH logh—2 Qx) , (11.7)
lH+1
p<z
1 k 1 k—1 1 k722
St 0 () (11.8)
pbs (03 — 1)xts—1 xts—1

p>x

for by, x > 1, 41, {3 > 2 and k = 1,2 or 3. In view of these results, compared the main
terms coming from 3 ; and X, 5 with the error term in (11.5), we are forced to require

the condition x < T'¢. So

Tlogx 2logx 1
Y11 — Y12 =291 — Yoo = 87Tg (1 — gT + 0 ( )) , (11.9)

Y, 23 LT (11.10)

if M > 1. For ¥, 4 and 334 we use the inequality that (14 )" < exp(uwv) for u,v > 0,
so that

r4 Ar
SiatSoa< Tz Y > p e log’p (11.11)

2<T<logx p<x1/r

e S 3 A g oy Lelp

2<r<Clogz p>gl/m P log 57 2<r<Clogz p>TM/7 D log 5

4T Z Z logp

MlogT log
Clogz<r< lo;gQ p<TT 27

where C' > 0 is so large that 21/ < 2 for r > C'logx. By (11.7) and (11.8), the first

1
;%33. The third is, by (11.8),

two parts on the right above is <

x%log 2T
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if M >6/5. In ¥y5 and Y96 by (11.6) we have

22 AlogTlogloglog T
¥ ¥ S T 11.1
25 1+ 206 K <JZ + TM> exp < loglog T ) <K ( 3)

under the constraints x < T'7¢ and M > 6/5. For the last one in (11.11), we note that

the sum over p is trivially < 273", Then the fourth part is

T T log x
xQCIOg 2—2 < \/E

< (11.14)

if C is sufficiently large. Finally, putting all findings together we arrive at

’U

T'logx 2logx 1
= 1— O
Z Z )? 4m ( log = * <log2x>>

Y T/2<’U<T
Tlog*T 1
1+0
* Ao’ ( * (logT)>

for sufficiently large T, say T > T,. We replace T by T/2, T/22, ... and add all the

results. This process contains < logT" steps. We then have

DT 2 T (11.15)

¥ 0<’U<T o 0<U<T0

T'log —k 1
2 1
N 4m ( Z )( +O<log2x>)
0<kklog T

T log x 1
TR 2 (log £ — klog2)

0<k<logT (log 2m
Tlog®T L k 1
2 1 1 .
" ( 2 < +O<10gT>>> ( +O(10gT))
0<kklog T

For any d > 1 and C' > 0, we have

> at=(1-3) (40w (-GosacD).

0<k<C
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We examine the second sum over k in (11.15) by separating the range into two parts
according to whether k < loglogT'. The first part on the right of (11.15) is < log T,
which can be seen by dividing the double sum into two parts, according to v € (0, Tp)
or not and using (2.11). Then, in the same way as for the pair correlation of zeta zeros,
we discard the terms with v ¢ (0, 7y] within an error term of O ((logT)?3). As a result

of these two steps,

Z 47 0r=v) _ T'logx 1 2logx L0 1
44 (y—v)? 2 logT log 2z

0<vy,v<T

Tlog*T 1
— (140 .
* 2ma? ( * (log T) )

Putting x = T* and re-defining G z, (z,T) as

1
> Ty — ), (11.16)

0<y,v<T

T
Gez (o) == (% log T)

we arrive at

Theorem 11.1. Assume the Riemann Hypothesis. Then G¢ z («) is asymptotically

real and even. Further, uniformly for —1 4+ ¢ < a <1 — ¢, we have

Gz (@) = la] — 2|04|2 + (1+0(1)) T2l logT + o(1).
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12. CORRELATION OF THE ZEROS OF TWO DISTINCT
DIRICHLET L— FUNCTIONS

Let x, ¥ be two primitive character modulo ¢, ¢’, respectively. Here ¢ and ¢’ are
fixed positive integers. We quote the analogue of Montgomery’s explicit formula from

[17]:

2 (X)

(20, . 1) ( A 1 o+it
%(a—@mt—m 2 A
A +it 1 —+at qT O O l‘il/Zia
0' T 5—0T1 1 1 > 1 ) ,
+HZ>I )—l—:m (0g27T—|— (1)) + < - >

where 0 > 1, z > 1 and

0 if  x(—-1)=1,

a:
1 if  x(-1)=-1

This formula is valid under the truth of GRH for L(s, x). Taking o = 5/2, and letting
t run through those ordinates v(¢) € (0,7 of the zeros of L(s, 1)), we obtain

Sy 4000 W) I S

(x) 0<y(¥) <T 7( 7 n<z 0<y()<T
— 2> An)x(n Z W 42 N (loggy(y) + O(1))
n>w 0<~(y 0<y(y)<T

+0 (x_1/2 log? T) .

As in the previous two pair correlation cases, on the left-hand side above the contri-

bution of the terms with v(x) ¢ (0,7] is O (log3 T). By Stieltjes integration and the



formula
N(T, )= |{o+it:0<0o<1,0<t<T, Llo+it,y) =0} |
T JgT T
— log it — 4 OlogT
2w 8 2 27T+O(og ):
we find that

> loggqy(v) = % (log %)2 <1 +0 (1O;T)> .

0<y(¥)<T
It then follows from the above result and Proposition 10.1 that

4t 00—7(¥)) T

2 TR 0@ AE o N0

0<y () y()<T
Ta? ¢~ M(m)(@)(n) | T g7\’ 1
log — 1+0
* 27 Z n3 * 2ma? (og 27r) < * (logT

n>x

+0 ((log T)* + TlLiogT Z A(n)n + (log T° Z A(n)n?

x x?
n<x n<lx

A(n A(n
—i—TleoglogTZ r(L?’) +x2(1ogT)QZ 752))

n>x n>x

under the restriction 1 < o < T If y # ¢, then we have

> A (n)(x¥)(n) <z exp(—éy/log x)

n<x

for some ¢ > 0. This assertion can be proved easily by first observing that

A?(n n d Aln n
3 (n)(x¥)(n) S (n)(x¥)(n)

ns ds ns

n>1 n>1

?

))
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(12.1)

(12.2)

(12.3)
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and then modifying the proof of prime number theorem for arithmetic progressions.

By (12.3) and partial summation,

Z M <z % exp(—éy/log z). (12.4)

n3
n>zx

We divide the range of integral we encounter in the partial summation application into

two parts, [z, 2% and [2?, 00), and in the second range we bound ZAQ(n) (X)) (n) by
n<u
the amount ulogu with the aid of the prime number theorem. The calculations of the

sums over n in (12.1) when y = ¢ are the same as those in §8. As a result, if x # 1,

A (00— () T T\ 2 1
) e o T P ow et (log%> (1 o <10gT)) ;

0<y(¥),y()<T

if x =14,
i(y0)—v(¥))
Z dx 2:Tlogx(1+0( 1 ))
4+ (v(¥) —v(x) o log 2

0<y(¥),y(X)<T
T T\? 1
log — 1+0 )
* 2ma? (og 2%) ( * (logT))

We define

T - 1o —
Fol)i= (gieT) X TU0000G0) < 5@, (129)
0<y(X) () <T

then we get

Theorem 12.1. Assume GRH for L(s,x) or L(s,v). Then F\ () is asymptotically

real and even. Further, uniformly for —1 4+ ¢ < a <1 — ¢, we have

Fyp(a) = B(x,¥)|a] + (14 0(1)) T72og T + o(1).
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where

0 if X #F Y,

1 otherwise.

For any imprimitive character x mod ¢, there exist a primitive character y mod

d|q such that

from which it follows that the zeros of L(s,x) and L(s,X) lying on the critical line

coincide. So we drop the restriction that y and v are primitive.

In the above pair correlation result if we take an arbitrary non-real character

loglog T’

x and ¥ = Y, then the first part of the main term vanishes, and for a > A

the secondary main term is dominated by the error term. In light of the functional
equation of L(s,v) we know that the zeros of L(s,) lying in the upper half-plane
coincide precisely with the zeros of L(s,x) lying in the lower half-plane. We thus
arrive at the interesting conclusion that the zeros of L(s,x) with positive imaginary

part are not correlated to the zeros of L(s, x) with negative imaginary part.
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13. SOME SUMS INVOLVING COEFFICIENTS
RELATED TO VON MANGOLDT FUNCTION

In this part we deal with the sum

§k7£7bl,b2 ([E) = Z A(kv l1, TL)A(€7 L2, TL),

n<x

where k, £ € N, 11, 15 € {0,1}, and

S8 (L) (Ye).

n=1

This sum will be crucial in estimating the pair correlation of Z;(s). We also note that
Farmer and Gonek treated the case 11 = 15 = 0 in [11], but they did not make the
k, (-dependence of the error terms explicit in their calculations so that their result is

not sufficient for our purpose.

Lemma 13.1. For prime p and j € 7",

j(ogp)A(j —1,u5n) + (logp)[r = 1] if (p,n)=1,
A(f,t;pn) = { x (2A(5 4 1,0;n) + (log p)A(5,0; 1))
| O (i(log p)(log pn)” 1) if pln.

Proof. The case ¢« = 0 can be found in the proof of Proposition 5.1 of [11]. So assume

t=1. For (p,n) =1, we have

A(j,spn) = > A9 (pn/d)Ay(d)

d|(pn)

— Z A9 (pn/d) Ay (d) + Z A (n/d)As(pd)

dln din
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Applying the case ¢ = 0 to the above j-fold convolution of A we obtain

A, 5on) = j(logp) Y AUV (n/d)As(d)

dln

+2(logp) > A" (n/d)A(d) + (log p)*A*) (n),
dln
d>1

which is the desired result. Here we have evaluated the values of Ay by means of the

formula

As(n) = logn—i—ZA A(n/d). (13.1)

dln

Assume now (p,n) > 1. Let n = p™n/, (n',p) =1, r € ZT. First observe that

A(j,ipn) = > A9 (pn/d)Ay(d)

d|(pn)
. ZA*(] pn/d AQ ‘|‘ ZA*U /d/ d/ r+1) —I—A* ])( )Ag(pr—H).
d'|n
i

By (13.1), Ay(p™™') = (2r + 1)log®p and Ay(d'p™™') = 2(logp)A(d') for d > 1 and
(d',p) = 1. Employing the bound A*U)(n) < log’ n and the case ¢ = 0, we obtain

A(j,1;pn) < j(log p)(logpn)’™ > Ay(d)

dln

+ 2(log p)(log n')’ Z A(d') + (2r + 1)(log p)*(log n')’.
d'|n’

Then the identity, 3, Ao(d) = (logn)? for o =1 or 2, completes the case (p,n) > 1.
Lemma 13.2. For k € N we have
)k—l—l

S (e ) = SR 40 s,

n<lz
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Proof. If k = 0, then the assertion is exactly the well-known fact:

Z# =logz + O(1). (13.2)

n<x

Assume k > 0. By partial summation we convert the sum considered into an integral

and then using the above formula, the result follows.

Z Aln) <log %)k = k‘/lw(logu +0(1)) <log g)kl du

n u
~ g (ln 2) [+ [ (o) %0 (5 [ (1os ) )
(logx)kH

- k——l-l + @) ((log [B)k) .

n<x

We state Lemma 6.3 of [11]:

Lemma 13.3. If k> 2 and { > 1 then

(logp)* ([, «\"  (k—1)! bt (k — 1)1 b1
Z — (log E) = m(log )"+ 0 (m(log x) ) :

p<w

It is easy to check that the Lemma also holds for ¢ = 0. Further, if k4 ¢ < log z,
then

oz p)E 2\ ¢ -
Z—(l ip) <log2—9) <(]Z]€T12;!€|(10g$)k+z' (13.3)

p<w

Lemma 13.4. Let a be 1 or any prime number. Suppose that j € N, 1 =0 or 1 and
1 <35+ Then

(

log x ifi=1,1=0,a#1,

Y AGsan) <8 Alogz)? + A28 i =0 =1, a £ 1,
n<z/a ) )
Alg(logx)it2—1

(+2—1)a otherwise.

\



70

Proof. Assume a < x, otherwise there is nothing to prove. We first treat the case « = 0,
and then aim at reducing the remaining to the treated one. Since ¢t 4+ j > 1, 57 > 1.
Here j = 1 is the exceptional case. If a = 1, then by Chebyshev’s estimate, we have

ZA(n) < z. If a # 1, then n must be a power of a. So

n<x

> Afan) = (loga) > 1<logz. (13.4)

n<w/a 0<r< log
— — loga

The proof of the rest of the considered case is based on mathematical induction on

J > 2. Observe that

D OAG0an) = > Y A - 1,0;an/d)A(d)

n<z/a n<z/ad|(an)
= > Ad)D A -10;ae)+ Y A(d) Y A(j—1,0;¢) (13.5)
d<z/a egf—d d<z e<z/d
(d,a)=1 (d,a)>1

For j = 2, the induction basis, by the exceptional case above, Chebyshev’s estimate

and Lemma 13.2, the right-hand side of (13.5) becomes

A(d
<<JJZ% <L xlogx
d<z

if a=1;

A(ad’ x xloga 1 x
<<ZA logd Z ( )<<alogx+ p ZE<<alogm

d<z/a d’<£ r>0

if a is prime. Assume j > 2 and the related part in our assertion holds for j — 1, then

using the induction hypothesis in (13.5) gives that

A1z (log z)7—2 A(ad')

T \J2
ZAJ’OC‘RS _212 (10g@> i (j—2)la d

n<z/a <2
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The sum over d’, as before, is < loga. Then, combining the above bound with Lemma

13.2 provides a confirmation for our assertion for j > 2 and this finishes the case ¢« = 0.

Assume ¢ = 1. From (13.1), it follows that for j € N

A(, 1n) =Y A, 0;n/d)A(d) log d + A(j +2,0; ),

din

from which it is seen that

Z A(j,1;an) = Z A(d)(logd) Z A(7,0; ae)

n<z/a d<z/a e<o
(d,a)=1

(13.7)

+ > Ad)(logd) > A(j,0e) + Y A(j+2,0ian). (13.8)

d<z e<z/d n<z/a
(d,a)>1
We examine the rest in five cases:
Case 1: j=0and a=1
By (13.8), the ¢ = 0-case and Chebyshev’s estimate,

Z A(0,1;n) :ZA(d)(logd) + ZA(?, 0;n) < zlogx.

n<lx d<z n<lx

Case 2: j=0and a # 1
By (13.8) and the ¢ = 0-case,

Z A(0,1;an) = Z A(d)logd + Z A(2,0; an)

n<z/a d<z n<z/a
(d,a)>1
1
= Y Ad)logd+0 (I ng)
d<z a
(d,a)>1

1
= (log a)? Z r+0 (aj (;g:c) < (logz)? +

1<T<logz
— —loga

which is the second exceptional case of the Lemma.

(13.9)
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Case 3: j=a=1
By (13.8), the ¢ = 0-case, Chebyshev’s estimate and Lemma 13.2,

S AL Ln) =Y A(d)(logd) Y A(L,05e) + > A(3,0;n) < z(logx)®.  (13.10)

n<lx d<z e§% n<lx

Case 4: j=1and a # 1
By (13.8), the ¢ = 0-case and Chebyshev’s estimate,

Z Al 1;an) < Z A(d)(logd) <log§>

n<z/a d<z/a
(d,m)=1
log d z(log z)?
+x Z ; (13.11)
d<z
(dya)>1

(log )2 Z A(d) + x Z A(ad') log ad’ N z(log z)* - $(10g$)2'

d’ a a
d<z/a d'<z/a

Case 5: j > 2
By (13.8) and the ¢ = 0-case,

A lrlogw A(d) r\i-1
2 AU Lien) < T {ZT(IO%)

n<z/a d<z
A(ad) x \J-1 AT (log z)/
log — . (13.12
+d,<§a 7 oz ) }+ G+ - 1312

Since A(ad’) < A(d'), Lemma 13.2 is applicable to both of the sums on the right

so that the result follows.
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Theorem 13.1. Let 11, t9 =0 or 1. For k,{ € N with k + 11, £ + 15 > 1, we have

~ P(k, 0 1,0 42
Sutinl®) = G g lloga)t el
+ O Ak-ﬁ-fx(leg x)k+£+2b1+21,2—2 7
(max{k, £})!
where
)
k! if t1=12=0 and k=1,
2(max{k, (})! if 11—te==x1 and k—{=F1,
max{k, /(})! if t1—te==+1 and k—/{=7F2,
Pkl 11, 00) = ( ) L
(k+2+4k+ 1) +2k if t1=13=1 and k=1{,
2(max{k, (} + 1)! if n=1te=1 and k—{=7F1,
0 otherwise.

\

Proof. We divide our theorem into three parts:

(1) L1:L2:O, k,KZL
(11) L1:0,L2:17k21,620,
(111) L1 = lg = ]_, k’,g Z 0.

We start with the first part. We will prove that for k, ¢ € Z, x > 1,

P(k,,0,0)

Skeoo®) = G371

z(log )1 + O* (H(k, 0)z(log z)*72) (13.13)

by induction on k4 ¢ > 2. Here * in the O-term indicates that the implicit constant
of the error term is 1, and H(k,¢) will be determined later.
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The basis step, k 4+ ¢ = 2, contains only one sum:

> Am)A(n)

n<x

which equals zlog x + O (z). This can be obtained by partial summation and using the
prime number theorem, and is agree with the assertion if one choose H (1, 1) sufficiently
large. Take any pair (k,¢) with k,¢ € Z* and k + ¢ > 2. Assume that for all (k, /)
satisfying k,0 € Zt and 2 < k + 0 < k + ¢, (13.13) holds, which is the induction
hypothesis. Since k + ¢ > 3, we can assume without loss of generality 2 < ¢ and

1 <k < /(. By means of Lemma 13.1, we obtain

Skggo Zlogp Z A(k,0;ep)A(¢ —1,0;¢)

p<z e<z/p
(pe)=1

+ Zlogp Z A(k,0;ep)A(¢ — 1,05 e)
p<z e<z/p
(p,e)>1

+Zlogp Z A(k,0;ep®)A(¢ —1,0;¢)

e
=k Z(logp)ngfl,Zfl,O,O(I/p)
p<w
— kY (logp)® S Ak —1,0;)A(( —1,05¢)
p<z e<z/p
(e,p)>1
+) logp Y A(k,0;ep)A(¢ —1,0;¢)
p<z e<z/p
(p,e)>1
+Zlogp Z AkOep (6—1,0;6)
=

= Uy + Uy + O3z + Uy,

say. The first box constitutes the main term. If £ = 1, then e must be 1, otherwise
A(k — 1,0; e) vanishes, but if this is the case, then A(¢ — 1,0;¢) vanishes since ¢ > 2.
So, in the case kK = 1 and ¢ > 2, the main term disappears, as P(k,{,t1,12) suggests.

Assume k,¢ > 2. This ensures the applicability of the induction hypothesis and we
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have

kxP(k—1,{—1,0,0) (logp)? A
0, = log —
! (k+(—3)! 2 °8

~ p p
1 2 k+4—4
+0" kH(k:—l,E—l)xZM(logz> .
~ p p

The remaining part of the inductive step is examined in two cases. First assume

k + ¢ < logx. It then follows from Lemma 13.3 and (13.3) that

k+£4—1 kp(k — 176_ 17070)
(k+¢—1)!

) ool KH(k—1,6-1)  kP(k—1,0—1,0,0)
O (Ax(logx) e ((k:+é—2)(k+€—3)+ (kt(—2) ))

0, = x (log )

From the definition of P(k, ¢, t1,t2) we have
P(k,,0,0) = kP(k — 1,0 — 1,0,0).

If we choose temporarily

Ak"'gk!

H0 =G

(13.14)

then the contribution of O0; becomes

Pk, ¢,0,0)
(k+¢—1)!

1=

z (log z) 1 + 0 <H(k:, )z (log x)k“—?) .

All the remaining parts, Oy, O3, Oy, can be estimated in a similar manner; we
remove A-factor involving the variable k by using Lemma 13.1, and then calculate the
remaining sum by Lemma 13.4. We only treat Oy. If k =1, then O, =0. If k = /¢ = 2,

then p must be < /x, otherwise the inner sum is void, then by Lemma 13.1 and the
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first exceptional case of the Lemma, we obtain

O, < Z (log p)? Z A(1,0;pe) < Z (log p)? (log %) < Vz(logx)*.

P<Vz e'<z/p? p<Vz

If £k > 2 and ¢ > 2, then together with the substitution e = €'p, using Lemma 13.1, we

obtain

Oy < k(k —1) (logz)*? z:(logp)3 Z A0 —1,0;pe).

p<z e'<xz/p?
Applying Lemma 13.4 to the above inner sum, we see that

0, < Alk(k — 1)z (log2)"™* = (log p)?

(¢ —2)! ~ p?
< Alz (log z)" 2
(¢ —2)!

provided that k < logz. This bound also leads to the new choice of H(k,():

Ak+é
0!

H(k,0) = (13.15)

In the second case, k+¢ > log x, (13.13) also holds, since the sum dealt with van-

ishes and the main term is already absorbed in the error term with the choice in (13.15).

Reducing (2) to (1)
For the second part assume ¢; = 0, 15 = 1, k > 1, £ > 0. By means of (13.7) and
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Lemma 13.1 we can relate (2) to (1) so that

Skml —k:ZIng ZA —1,0;e)A(¢,0;€)

p<z e<z/p

—kZ(logp Z A(k —1,0;e)A(L,0;e)
p<lz e<z/p
(e,p)>1

—i—Z(logp)2 Z A(k,0;ep)A(Z,0;e)

p<w e<z/p
(e;p)>1
+ Z a(log p)? Z A(k,0;ep®)A(L,0;€) + Skes00()
O‘<m a>2 eggj/pa

=01+ 03+ 03+ 04+ Sk,é+2,o,o(90)7

say. We handle oy, 03 and o4 by arguments exactly the same as in the estimation of
the error terms of (1). If k = 1(¢ = 0), then e must be 1, and then ¢ must be 0(k must
be 1) and by the prime number theorem and (1),

o1 + Sker200(x) = Z(logp)?’ + O(zlogz) = z(logz)? + O(xlog x), (13.16)

p<z

as expected. However, for any (k,¢) with £ = 1 or £ = 0, but not both of them, o,

vanishes. Assume k > 2, ¢ > 1, then (1) is applicable to o; and we have

o1 + gk,£+2,0,0(33) =

Pk —1 1 3 k+0—2
p

(k+¢—2)! — P
Akttg log p) 2\ Fre?
+O<<max{k—1,e}'; 1CH
P(k,0+2,0,0) X AFHer(log )kt
) ] 1 +04+1
Girornr tlos?) +O<(max{k,€+2})!

Employing Lemma 13.3 and (13.3), it follows that

2kP(k —1,£,0,0) + P(k,¢+2,0,0) (1
(k+ ¢+ 1)!

oy + gk,é,o,l(l’) _ og x)k+€+1
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k-+¢ k-+€ (k+£—3)!
+0 (A x(log x) ((k + 0)!(max{k — 1, £})!

1 P(k—1,£,0,0)
Tk er 20 T (k1 o) ))

Paying attention to the definition of P(k, ¥, t1,t3), the right-hand side confirms our
Theorem in the case considered.

Reducing (3) to (2)

For the third part assume ¢; = 1, 1o = 1, k, ¢ > 0. We first deal with the exceptional
case k = = 0. By (13.7), we see that

S'0,0,11 ZA2 logn+50210( ).

n<x

Only prime numbers contribute to the sum on the right and by the prime number

theorem,

Z As(n)A(n) logn = z(logz)® + O (z(logz)?) .

n<x

By (2), Sp21,0(z) ~ tz(logz)®. Comparing these results with our assertion, we are

done. Assume without loss of generality, £ > 1. From (13.7), it follows that

5’,@&1,1(:6) = Z log p)? Z Ak, 1 A(?,0;¢)

p<z e<z/p
(e;p)=1
+ (logp)* Y A(k, 1;ep) AL, 0se)
p<z e<z/p
(e;p)>1
+ Z a(log p)? Z Ak, 1;ep®)A(L, 05 €) + Spryo10(z).
pe<z,a>2 egx/pa

We only treat the first part, say <, which carries a part of the main term. If ¢ = 0,
then e must be 1. But then for any k£ > 1, A(k,1;p) = 0. So in the case of £ = 0

and k > 1, Sp01.1(x) ~ Spa1.0(r), which was already calculated in (2). Assume £ > 1.
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With the use of Lemma 13.1, it follows that

C=k Z(logp)?’gk—l,m,o(x/p) +2 Z(logp)ggkﬂ,z,o,o(x/p)

p<w p<z
—|—Zlogp Skeo0(z/p) — k:Zlogp Z A(k—1,1;e)A(¢,05e)
p<lx p<z e<r
(6p)>1
—QZlongAk—l—IOe (¢,0;e) — ZlongAk:Op (¢,0;€).
p<z e<“‘ p<lz e<“‘
(5p)>1 (ep)>1

For the first three parts, which make up the main term, we employ the previous two

cases and then Lemma 13.3. The estimation of the remaining parts is very similar to

those in (1) and (2).
Corollary 13.1.

P(ku 67 L1, 02)372 (log x>k+€+2Ll+2L2—1
20k + 0+ 20 + 209 — 1)!

+ O Ak+f$2<10g x)k+£+2b1+21,2—2 .
(max{k, (})! ’

if k+ 1 < logz,

Z A(k,t1,n)A 12,n) Pk, €, 11, 05)(log ) ttt2nt2e-l
n3 o 202(k 0+ 200 4 209 — 1)!

N O AkJrZ(lOg x)k+£+2L1+2L2*2
x?(max{k, (})!

n>x

We employ Theorem 13.1 in an easy application of partial summation in both

cases. However, the second result requires the additional condition, k + ¢ < logz. So
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in this case we give some details. By partial summation,

Ak, 11,m)A(l 19,m) Pk, €01, 1) (log )+t 221
Z n? T 22k L+ 20 + 205 — 1))
Lo <Ak+€(120g $>k+£+2L1+2L22>
x?(max{k, (})!
3P(k, 0,11, 19) © (log u)k+t+2u+2ie-1
(k+€+201+2L2—1)!/x i

Ak-‘r( 00 (10g u)k+€+2b1+2bz—2
o ((max{k,f})! / > d“) |

n>x

du

It is enough to deal with the integral in the main term. By integrating by parts,

/oo (log u)k+f+2b1+2b271 = (log u)k+€+2L1+2L271 -
T u’ Qu2 x
k+0+2 2o —1 (1 k442014202 —2
4 + 0+ 211 + 2o / (logu) "
2 - ud
(log x)k+€+2L1+2L2—1 k404204 +2—1 9] (log u)k+€+2tl+2bz—2
- + du.
2x2 92 i e

The sum of the first quantities on the right of the above two results forms the main
term of the assertion. The justification of the error term is provided by the fact that

under the condition m < log x,

/ Mdu < (Alogz)™ (13.17)

u3 x? ’

which can be shown by mathematical induction on m.
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14. PAIR CORRELATION OF THE ZEROS OF 7,

After going to the explicit formula for Z;(s) in Theorem 5.1, we allow ¢ to be
ordinates © of the zeros of Z; in (T'/2,T], we sum the both sides of the explicit formula
over ¥. As before, we neglect the terms with v > T and v < 0, which cause an error
term bounded by log® T, and take ¢ = 5/2. As a result of these steps, the explicit

formula becomes

41.1'(1;—17)
Z _ (14.1)
0<v<T 4+ (v—-0)
T/2<5<T
, —k
2 Z (—2)F Z/\*(’“Jrl)(m)m2 Z m~¢ <£(—3/2+i@))
k< log T m<x T/2<{)ST X
—loglog T @:1/2-’-7{1}
o, —k—1
bt S O Nt 3wt (Y(aizin))
< logT m<x T/2<0<T X
— loglog T @:1/2+l1§
A=) () Y K
2 k - ')
D IREED P S 9(;(5/2%—21}))
< togT m>x T/2<0o<T
=Toglog T @:1/2+iﬁ
D S yE L) e G )
< logT m>r m T/2<o<T X
—loglog T @:1/2-}-2’[)
-2 v 1/24€ Afe) log T 1
log — + O(1 O — =
+a Z <0g27r+ ( ))+ x eXp(loglogT Z 5
T/2<0<T T/2<0<T

It is obvious that } 7 »_scr 1 < log T by (3.5), so that the last error term in (14.1) is

A(e)logT
1/2+e ———. 14.2
< P ( loglog T ) ( )
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By (3.5) and the simple estimate that log .= = log 5~ 4+ O(1) for T/2 < © < T, we see
that

> (m% + 0(1)) = T(lz—iT)Q (1 +0 (IO;T» : (14.3)

T/2<6<T

Taking into account the restriction logm < log T in Theorem 10.1, we impose the con-
dition z < T?. In the first two parts of the right of (14.1), Theorem 10.1 is applicable.

However, the third and the fourth parts involve terms violating logm < logT". Define

#(k+1) () } / —k
T=—2 ) (=2F Y ATZ() >, me <X;<5/2+i@))

k< logT m>T2 T/2<0<T
—loglog T §:1/2+“.:)
)\*(k) m : / —k—1
d=a2 Y (o YA s (&@/uw)) |
k< o T m>T?2 m T/2<0<T X
— loglog T - ~:1/2-F’i’l~}
o

Firstly, by (2.8), the contribution of the innermost sum in J is an amount < m~Y2T
(log T)'~*. After employing the bound A®+1(m) < (logm)**+!, the sum over m > T2

in J can be transformed to

/°° (log u)*+! i

w2
via the integral test. Under the condition k£ < log T,

> (logu)* (2log T)*
/T2 i du < s

similar to (13.17). Combining these we obtain

AlogT
3 2T2(log T AF 272 o 14.4
<PToT) AT e (P ) 4
k—lo;igT
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which also holds for J. However, in calculation of the right of (14.1), together with the

application of Theorem 10.1, the last error term in Theorem 10.1 produces

o (x e (A(log T)(log log log T') )) |

loglog T

which will be seen in (14.5). This amount dominates (14.4) provided that = < T2

On the other hand, using Theorem 10.1 to calculate the innermost sum in J and
J despite of the restriction logm < logT, and then repeating all other steps in the

above discussion, we see that

| 1 1 1
3,5 < 22T 3 exp (A( og T")(log log log T)) < zexp (A( og T')(loglog log T)) |

loglog T loglog T

provided that z < T°. Comparing the error terms occuring in our three observations,
we conclude that the misuse carried out is harmless, and so we ignore the restriction

logm < logT.

Together with (14.2), (14.3) and the above remarks, (14.1) takes the following

form:

Z 4$i(v*ﬁ)~ _ T(0(0,0;z;2) —20(0,1;2;2) + O(1, 1; x; 2)) (14.5)
0<v<T 4+ (v—-0) Ama?
T/2<6<T
Tz <(:)(0,0;x; 2) —20(0,1;2;2) + O(1, 1; 25 2)> Tlog®>T 1
+ A A ( 0 (logT))

(T (0(0,0;x; A) + ©(0, 1;2; A) + O(1, 1; x; A)))
+0 5
x?logT

+0 (Tx2 <(:)(0, 0; 23 A) + ©(0, 1; 25 A) + O(1, 1; x5 A>)>

A(log T')(log loglog T')
0 (x P ( loglog T ’
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where ¢; and ¢9 are 0 or 1, and

k+0+11+e2
¢
O (i1, La; T3 €) 1= E <—T )

log T
k’eg log log T'

Z Ak + [t1 = 0], 01; M)A+ [1a = 0], to; m)m,

m<x

k+l+11+e2
~ ¢
@(01702;$§ e) = E ( )

T
kA log T log 21
" —loglogT

Alk+ 11 =0],01;m)Al + |10 =0],10;m
3 (k| ] JA(C+ | ] )

m3

)

m>x

¢ < 1 and A(+, ;) was introduced at the beginning §13. From Corollary 13.1 it follows
that

log %

1 k4+-Ll+11+12
O(u1,10;23¢) = w*(logz) ) (eogx>

log T
k< loglog T

P(k + [Ll = 0],€+ [LQ = O],Ll,bg)

X
2k +0+ 11+ 12+ 1)!

Al k+l+i1+e2 1
0| 42 0g T
Al Z < log - (max{k, (})!

log T
k’ZS loglog T

If logx < logT, then the above error term is

L

2 AK k 2 A 2
<zt ) WZA <2® ) <t

log T k<t log T
€< loglog T - < loglog T
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Similarly,

k+0411+e2
~ log x elogx
O(t1,L2;7;5¢) = —5— § T
2
x log T log g
k’eg loglog T

P(k+ [l’l :O]7£+[L2 :O]aLlal/Q) —9
: 2k + €41 + g+ 1) +0 (7).

From the definition of P, it follows that

2%
2
4~ o . xlogw elogx (k+1)! 9
z0(0,0;z;¢) = ©(0,0; z;¢) = 5 E <log2T7r) <2k+1)!+0(x),

k log T
—loglog T

2k+1
: 21 k+1)!
#'0(0, 1;z;¢) = (0, I z;¢) = a’(logz) > ( Ong) (< +1)

log L 2% +2)!
ey \ 2T +2)
2 2togz\ " (k+2)!
r?logx ogx ! )
+ WAL o),
2 %:T <1og§> (2k + 3)! (z%)
k—logigT

2k+3
: |
7'0(1,1;2;¢) = O(1, 1; 25 ¢) = 22*(log 2) Z (elogx> ((ki

I 2k + 4)!
ety \ 8 o
2 logz ) (k +2)! + 4(k + 1)! + 2!
z*logx ¢logx ! ! ! 9
+ + O(x%).
2 ZT <log%> (2k + 3)! (=)
kglogolgogT

From the Taylor series we see that replacing the above partial sums by their power

1+4e

series produces an error term < T 7€, provided that log x < logT. Combining these
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results with (14.5) gives

. - 2k+2
4?0 =0) T1 41 21 2k!
Z 4 — 2 4Og96 (1 - Ong + Z ( Ong) 2k : 2 l) (14.6)
ot + (v — 1) 7r log == log o~ (2k +2)!
T(logT)* 1
—— (1 — T
* 4 a? +0 log T +0(T)

T/2<o<T
under the restriction x < T'7¢. As for the pair correlation of the zeros of ((s) and
Z1(s), we can extend the range [1'/2,T] for © to (0,7] within the above error terms.

Take x = T and define

T -1 4Tio¢(v—f1)
F =(—logT —_— 14.7
z.2:(®) <27r o8 ) O<;<T 4+ (v — D) (14.7)

The above sum is symmetric in the variables v and 0, so that Fy, z () is even. We
also note that, as in the Montgomery’s case, Fyz, z () has an integral representation,
namely

(14.8)

Y

Tiow
——|dt
Z 1+ (v—t)?

0<v<T

Z 4Tioc(v—f1) B ) /oo
44 (v—0)2 T J_

0<v,5<T

which gives the positivity of F, z (). As a consequence we obtain

Theorem 14.1. Assume RH. For real oo, T > 2, let Fy, 7z (a) be defined by (14.7).

Then Fz, z,(a) is positive real, even and

Fz,2/(a)=(1+ 0(1))T’2|a‘ log T + |a| — 4|a)?

=\ 2k!
+ o Z W(QWD%J’2 +o(1),
k=0 ’

as T tends to infinity; this holds uniformly for |a| <1 —e.
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15. SOME CLASSICAL APPLICATION OF PAIR
CORRELATION RESULTS

In [1] Montgomery used the asymptotic formula for the pair correlation function
for (-function to examine differences between zeta zeros and obtained some important
corollaries on simple zeros and small gaps between zeros of (-function. Firstly, we

apply the Fourier theoretic machinery to Fy, z («). Analogous to (3) in [1],

o (M) wio— o) = TlogT /Z ) (o .

- 2m 2m
0<v, 0T
where 7, # € L'(R) and
o) = / r(u)e(—au)du, e(u) = ™™, (15.2)

From (14.7) and (15.2), (15.1) is immediately seen. Using Theorem 14.1 and the Fourier

pair

in A\ 1
r(u) = <sm7r u) ) o) = Xmax(l — %,0), e<A<1—e, (15.3)

TAU

in (15.1) yields that

. (v=D)AlogT 2
> male)= >, 1< ) (W) w(v =)

0<v<T O<U ’U<T 0<v,0<T 2

_ TlogT A logT k!(2a))%k+3
T (HO(I))/O (1_X>(T2a ~da +Z ek+o) )%

k>0

TlogT (1 A K1(2X)2k+3
_ A 1
o7 ()\ 37 S Z 2k +4) 2k+5)(2k+2)!+0() !
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where my, (p) is the multiplicity of ¢. Letting A — 17, we have

TlogT
2r

> mz (o) < (114161 - + o(1))

O0<v<T

Hence,

TlogT
2

> 1> Y (2= mz(e) > (0.85838 - +o(1))

0<v<T}; pis simple 0<v<T

(15.4)

In small gaps problem, differently from Montgomery’s case, consider the Fourier

pair

r(u):<smu)2( ! ) #a) = max(1 — | + S22 o) (155

U 1 —wu? s

Employing the pair (r(u/A), |A|7(Aa)) in (15.1) gives that

Z mz, (0) + 2 Z 1= Z 1

0<v<T O<v—D< 27X 0<v,0<T
—logT ~le 2T

l[v—2|<y
—logT

. 2
N Z sin % w(v —0)
= (v—0)log T (v—3) log T 2
RN
MNTlogT [ in 2mw|A
= HTOg /_OO max(1 — [Aa| + Slrl2—7;|a|,0)FZth(a)da.

Assume € < A < 1 —e. It is easy to check that

in 27\
1 - o+ T 5 (15.6)
2T
for a € [0,1/A]. Together with this, taking into consideration the positivity of Fz, 7 (a),

we can reduce the range of the integration to [—1,1].(In fact decrease first to [—1 +

d,1—0] in which the asymptotic formula for F, z («) is valid, then expand it to [—1, 1]
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by letting § — 0.) Thus, by Theorem 14.1,

S omz+2 Y 1> AoeT oy

T
O<v=T O<v—D< 225
1 . 2%k+3
sin 27\« logT E!(2c)*+
1—A — 4o
X/o( Ty )(Tm +}; 2k + 2)! )O‘
AT log T 1 ! sin 2\
_ —g(1+o(1))<—+/ (1= Ao+ 29
T 2 0 27(
k' 92 2k+3
< —4a® + Z @) > doz)
k>0

Either we have infinitely many multiple zeros which provides the smallest gaps one can

obtain, or we can assume

TlogT
Z le(Q) ~ :

2
0<v<T

So

dYooo1z —OO‘)TlOgT(l +0(1)),

~ o 27T
O<v—o0< Tog T

where

A 1 sin 271'/\04 K!(2a)%+3
A) ==+ A 1—A — 4o da —1/2.
CO) =5+ /0( R = ( +Z (2k + 2)! > a—1/

k>0

We then have C'(0.89661) > 0. These two results together constitute

Corollary 15.1. Assuming RH, more than 85.838% of the zeros of Z1(s) are simple,
and a positive proportion of the gaps between consecutive zeros of Zi(s) are smaller

than 0.89661 times the average spacing. Thus,

— 1
lim inf (Unt1 = tn) log Un
n—o0 2

< 0.89661,
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where 0 < vy < vy < --- denotes the imaginary parts of the zeros of Z1(s) in the upper

half plane.

The same results as Corollary 15.1 were proved for ¢ by Farmer, Gonek and
Lee [18] (which is a corrected version of [11]). They also expressed that the results of
Corollary 15.1 should hold by way of upon proving these for £’ they gave an explanation
as to why the leading orders of pair correlation functions for the zeros of & and of Z;

are equal.

We next question whether the application of the same process to F¢ z («), the
pair correlation function of the zeta zeros and zeta maximas on the critical line, gives
rise to some valuable results. We cannot benefit from Montgomery’s Fourier pair in
capturing small gaps between successive zeta zeros and maximas on the critical line,
due to the loss of positivity of F¢ z (), which is essential in the case of F;(a). On
the other hand, similar to (15.1), we have

r(0) Z 1< Z r (%) w(y—v) = T12O§T /OO 7(a)G(a)da

0<y,v<T 0<y,v<T o0
=0

(15.7)

if r € L'(R) is chosen to satisfy the conditions r(u) > 0 and r(0) > 0. Observe that
~v = v implies that m(p) > 2 and m(9) = m(p) — 1. Thus, by the definition of the

Fourier transform,

(15.8)

S (m, - 1) < 08T 22 #(a)G(a)da

ot 27 7 fa)da

from which it follows that

TlogT [ () Gla)da
> 1> ) (2-m,) > o (1— T #a)da ) (15.9)

0<y<T; pis simple 0<~<T
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So one can beat the current record on simple zeros of zeta function by finding a Fourier
pair satisfying the above positivity criterion and making the above quotient of the

integrals as small as possible.

So far we have evaluated several pair correlation functions, some of which can
be derived from Montgomery’s approach, namely F¢(a), Fz, 7z (o), while the others
cannot be. In the remaining part of this section we apply our new technique to a
product of at least two Dirichlet series, for example (- Z; and L(s, x)- L(s, ). This

sort of applications are again impossible for Montgomery’s method.

Consider the pair correlation function

T ! ,
FC'ZLC'ZI (04) = (; log T) Z Tla(tlfm)w(tl _ tz), (15'10)

0<ty,to<T

where ¢; and ty denote the ordinates of the non-real zeros of (- Z;(s). The number of
these zeros of (- Z; up to T' is ~ Tl‘:r—gT. On assuming RH, on the upper-critical line it

is possible to enumerate these zeros as
O<m <<,

So the gaps between consecutive zeta zeros and Z; zeros fill the critical line. The

average spacing is ~ ﬁ, half the average of zeta(or Z) zeros. Observe that

1
Feg ¢z (a) = 5 (Feela) + Fez (@) + Fz c(a) + Fz, 7, (a)) . (15.11)

From the previous pair correlation theorems we have

—2|a 2 1 S k!(Q‘O‘D%H
Fegcm(@) = (24 o(1)T 2 log T + 2|a| — 4]af +—Z—(2k+2), +

5 2 o(1).

(15.12)
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In the left of (14.8) we also take any sequence of points instead of Z;—zeros, so this

brings the positivity of Fr.z, ¢z, ().

In the beginning of this section we have two applications of small gaps and simple
zeros of Z1(s). We here repeat the same steps with the sole difference that we use

(% log T)_1 as a normalizer instead of (% log T)_l. Thus,

Z mC.Zl(1/2—i—it1)+ Z 12

< 27
0<t1<T 0<ti—t2<$5%

AT'log T in 27|\
AL 08T / max(1 — ol + S22 g g (@), (15.13)
s oo 2w
where € < A < 1— € and m¢.z, is the multiplicity of zeros of (- Z;. Similar to Z;—case,
assume
TlogT
N mes (124 ity) ~ e (15.14)
i

0<t1 <T

otherwise we easily conclude that

i inf (Yn+1 — Yn) log 1

n—o00 2T

— 0. (15.15)
Following Z;—case, by (15.12) and (15.14), (15.13) becomes

(NT log T
Yooz C()—Og(pro(l))?
0<t;— t2<lig/}, T

where

~ ! sin 2T\« K!(2a) 2+ +3
= 1—A 2 4o — 1.
C(\) 2/\+2)\/0( ot )(a 24— Z 2% 1 2 > a

We then have C (0.39421) > 0. So a positive proportion of the gaps between consecutive

zeros of (- Z;(s) are smaller than 0.78842 times the average spacing, which implies three
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possible cases:

e A positive proportion of the gaps between consecutive zeros of ( are smaller than
0.39421 times the average spacing of the zeta zeros.

e A positive proportion of the gaps between consecutive zeros of Z; are smaller
than 0.39421 times the average spacing of the Z; zeros.

e A positive proportion of the gaps between consecutive zeros of ¢ and Z; (of the
form (7, vp) Or (U, Yns1) for n € Z7T) are smaller than 0.78842 times the average

spacing of the (- Z; zeros.

Considering the small gap result on Z; in this section and the result in [19] that

lim inf (%H—l - /Yn) IOg Tn

n—00 27

< 0.5172, (15.16)

although the first two possibilities represent remarkable improvements, the third one

is weaker than the result suggested by (15.16).

As for the simplicity problem of (- Z;, keeping the normalizer issue in mind,

Z—case can be adapted as follows.

é(A)TlogT

> mez(1/2+it) < (14 0(1)), (15.17)

0<t1 <T
where
2 2 A a k!(20r)?k+3
A =21 1—2) (20— 4
¢ A<+/O( A)(O‘ O‘+;2k+2)0‘>’

which tends to 2.2375--- as A — 17. If ¢; is a zero of (- Z;, there are only three
possible cases: 1/2+ ity is a simple zero of ((s) or Z;(s), or a common zero of ((s) and

Z1(s). In the last case we have

me.z, (1)2 4 it) = 2me(1/2 +ity) — 1,
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which can be seen from the definition of Z;(s). In view of these, using Corollory 15.1,

we see that the left-hand side of (15.17) is

= Y 1+ Y @m12+it)-D+ Y, 1

0<~<T 0<~<T 0<v<T
me(1/2+iv)=1 me(1/2+iv)>1 mz, (1/2+iv)=1
TlogT
> (1.8538 1 2 1.
> ( +0(1)) 5+ E
0<y<T
me(1/2+iy)>1

Combining this with (15.17), we obtain

TlogT
Y 1< (13107 +o(1)) 2°g ,
0<y<T &
me(1/2+iy)>1

which is worse than trivial.

Finally, we deal with the product L(s, x)-L(s, ), where x and v are two primitive
characters. Assume GRH for L(s, x) and L(s,v). By Theorem 12.1,

T ! .
FL (500 Lis),Lso)-Lis) (@) 1 = (;10%77) Y TeOTRw(t —ty)

0<ty,to<T
1
= (Fx7x(a) + wa(a) + Ft/),x(a) + Fw,w(a))

T2
= (24 o(1)T 2 og T + || + o(1). (15.18)

Employing the pair (r(u/\), |A\|[7(Aa)), where (r,7) comes from (15.5), and employing
(15.18), we obtain

> mperen/2+it)+2 0 Y 1>

0<t1 <T _ 27
<1< 0<ti—ta< o7

NllogT [ in 27| A
A8 / max(1 — [Aa| + 81“2—”’04 0)((2 + o(1) T2 log T + |a| + 0(1))da,
m oo m

(15.19)



95

s ™

! in 27\
> M(l +0(1)) <1 —i—/ (1—Xa+ szﬁ)ada) :
0

So,

lim inf (ts1 — tn) logts -

n—oo e

0,

where (t,)nen is an increasing sequence of the imaginary parts of the zeros of

L(s,x)- L(s,), or

. TlogT
Z mL(37X)'L(5’w)(1/2 + Ztl) ~ T ;

0<t1: <T

which gives that

1 .
3 1> 2ol o) <>\+>\/ (1—)\a+811122—7r>\a)ozda—1/2).
0 m

™

27\
0<t;—t2< Tog T

A simple Mathematica calculation gives that the smallest A making the above coefficient

positive is > 0.343705, so that

—tn)l

n—00 T

< 0.68741 (15.20)

If we take y = 1, which reduces L(s, x) to ((s), and ¢ (n) = xa(n) := (£) ., where d is
the discriminant of a quadratic number field K and yx4(n) is defined by the Kronecker
symbol, then L(s, x)- L(s,1) returns to the Dedekind zeta function (x(s) of the K. So

the formula (15.20) is also valid for the non-trivial zeros of (x(s).
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16. EXTENSIONS OF SOME LEMMAS IN [2] AND [6]

We start with a technical result in [2]:

Lemma 16.1. Suppose that A(s) = Za(n)n_s for o > 1, where

a(n) < i, (n)(logn)"

for some non-negative integers ki and {y. Let B(s Z b(n)n™*, where

n<y
b(n) < Tr,(n)(logn)*
for non-negative integers ko and f5 and where
T"<yxT

for some € > 0. Also, let

1 c+iT
I= 5 X(1—s)B(1 —s)A(s)ds, (16.1)
c+i

where ¢ =1+ 1/logT. Then we have

1= S amge (S 4 0, (108 T)?)

n<y m<2L
for some B. The admissible value for B is {1 + o + ki + ko.
A similar integral of the kind in (16.1) will occur in our work. Before introducing

it we remark upon two aspects of Lemma 16.1. This lemma is used in [2] finitely many

times. So the kq, ko, ¢1, {s—dependencies of the implicit constant of the error term is
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negligible. But in our case ¢; will be forced to be o(logT) and it can go to +oo as
T — +00. So these dependencies, at least ¢;—dependency, must be made explicit in

our calculations. One other concern emerging from this distinction is about how near

o = 1 the line of integration is. Is —nearness still possible or does it lead some

log
troubles? We here work on the line 0 =1 + €.

This section is devoted to estimating of the integral

I R X(1—35)B(1—s)A(s) (log i>w ds, (16.2)

210 J1terity2 2m

where w € Z and |w| = o(log T). I, differs mainly from I by the power of log 5= in its
integrand. Since w can be negative, it is more convenient to work on [1 +€+i7/2,1+
e+4T) than on [1 + €+ i,1 4 € + iT|. We follow closely the proof of Lemma 16.1 in [2]
with small changes. After the interchange of the integral and the sums in the integrand,

together with the use of (2.7), I is reduced to the integral of Lemma 3 in [6]:

Lemma 16.2. For m =0,1,2,..., A large, and A <r < B < 2A,

B £/ t\"2 £\ N
/A exp {z’tlog E} <§) <log %) dt =(2m) e Y (log §>

+ E(r, A, B) (log A)™,

while forr < A orr > B,

B ANEA t\"
itlog —| | — log — = A log A)™
/A exp {zt og re] <27r) <og 27r) dt = E(r, A, B) (log A)™,

where

, Avts Bats
E(r,A,B):O(A“‘5> ol —2 2 Jyol—2" ). (163
|A—r|+ Az |B —r|+ Bz
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The same step suggests us to extend this lemma to negative values of m. In
[6] the m—dependence of E(r, A, B) is skipped, since it is presumably an unnecessary

detail. Here our extension is m—uniform.

Lemma 16.3. Let a be a fized number such that 1 < a < 1/2+ 1/log2, A large, and
m € Z with |m| = o(log A). We have, for A <r < B < 2A,

B £/ t\"2 £\
/ exp [z’t log —} (—) (log —> dt
A re| \ 2w 27
= (2#)1’“7““6’”*% <log 2L>m + E(r, A, B)(log A)™,
™

while forr < A orr > B,

B a—1 m
/A exp [it log %] (%) (log %) dt = E(r, A, B)(log A)™.

Here, E(r, A, B) is as in (16.3), further the constants implied by its O-terms do not

depend on m.

[20] includes a slightly different version of this result.

Proof. Case 1: m <0 and A<r < B<2A

In the range A <t < B, we can write

t 17t r log -1 -l e . logt "
[mg%} - {(103;%) (1+log#)] _(log%) (=1) (1ogL) '

The above power series is absolutely and uniformly convergent for ¢ € [A, B]. Then

t m r m o0 . logf nl]—m
{loggl :<10g%) [;<_1) (log%)

2T

) {r S () ()
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by (9.3). Using the above expansion, we have

B £/t \" 2 t\"
/ exp [@'tlog—} (—) (log—> dt
A re| \ 2w 2
m (B ANEASE:
= <10g L) / exp {itlog —] (—) dt
27 A re| \ 2w
= —m4n—1 y\mon [P YN SN
-1 log — itlog — || — log— ) dt
+;( ) ( -m —1 ><0g27r> /Aexp [Z Ogre}<27r) (Ogr)

Taking m = 0 in Lemma 16.2, we have
So = (27r)1_“r“6_"+ﬂ7i + E(r, A, B).
For n = 1, applying integration by parts with

1
t\"2 t t
u = (—) , dv = (log —) exp [z’t log —] dt
2 r re

gives

t1/ e\ i(a—1) (B AVEAE:
Sy = —texp |itlog—| | — + —2/ exp |itlog —| [ — dt,
re| \ 2w N 2m A re| \ 2w

and then, trivial estimation gives S; < Av 2, Similarly, for n > 2, we have

£1 /7t \“2 N
S, = —1exp {it log —} (—) <log —)
re 27 r
A
i [P AV EAE: A 1 t
+ — exp |itlog —| | — log — a——=)log—+n—1;dt.
21 J4 re| \ 2w r 2 r

Since A <r < B <2A and t € [A, B], we have ‘log%

<log2 < 1. So we can say that

S, < n(log2)"A*~1/? <« " A*1/2 for any fixed number ¢ > log2. Then the last sum
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n (16.4) is

i~ /-m+n—1 ¢ \"
<y
—m —1 log o~

n=1 2w

1
= A% 2

L] o mla
1—@ lOgA ’

as long as |m| = o(log A). Combining these results completes the first case.

Case 2: m>0and A<r < B<2A
This case is already done in Lemma 16.2. Here the m-dependence of the error terms

is made explicit. Firstly,

[oofaent] () ()"
_ Z( ) (log—)mj /ABeXp {ztlog t} (;;)H (log;)jdt. (16.5)

j<m

Returning to the first case, we realize that the integral above matches the already

calculated S;, 0 < 7 < m, and so the result follows.

By the way, (16.5) is included in (16.4), which can be seen by taking into con-
sideration the most general definition of the binomial coefficients; if we let m of the
binomial expression in (16.4) be positive, then the infinite series turns to a finite sum.

So we could in fact handle A < r < B in one case.

Case 3: A—VA<r<A
We will use the following well-known result ([16], Lemma 4.5):

Let F(t) and G(t) be real functions, F(t) twice differentiable, G(t)/F’(t) mono-
tonic, |G(t)] < M, and let F"(t) > > 0, or F"(t) < —§ < 0, throughout an interval
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[A, B]. Then

/ G(t) exp {iF(t)}dt‘ <o (16.6)

We let

F(t)=tlog - and G(t)z(iy; (log%)m,

re

and see that

F"(t) > and IG(t)] < A Y2(log A)™ (16.7)

L
2A

for t € [A, B] and m = o(log A). Since

(G(t))’:%)“‘g(log%)m ot o

F'(t) 2mlog & 2 " logL logt]’

we see that, with our restrictions on a and |m| = o(logA), G/F'(t) is monotone

decreasing if A is sufficiently large. Hence applying (16.6), we obtain

BT 41/t t\" ] -
exp |itlog —| | — log— ) dt < A%(log A)™,
A re| \ 2w 2

which completes the proof for the cases A — VA< < A. The case B<r < B+ VB

is similarly handled.

Case J: r < A—+A
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Now logt/r # 0 for t € [A, B]. Integrating by parts, we have

B t £\ z t\"
itlog—| [ — log— ) dt= 16.8
fo oo () () Hes
- - ¢ " a—% ¢ m ¢ -1 B
—iexp |itlog —| | — log — log —
re| \ 2w 2m r A
i(a—1/2) B £/t 0\ AT
+ —— / exp |itlog —| | — log — log — dt
2 A re| \ 2w 2 r
| im B e L] (L a3 o - met g . -
— exp |itlog —| | — og — og —
21 J 4 P & re| \ 2w & 27 & r
. B a—3 m -2
t t 2 t t
_ exp |itlog —| | — log — log — dt.
21 Ja re| \ 2w 2m r

The first three terms of the right-hand side of (16.8) are trivially

Aa—l/Z(log A)m Aat1/2 (10g A)m

<
| log % | |A—r|

since |logr/A| > (A—r)/A and (log A/27)™™ < (log A)~™ under |m| = o(log A). The
three real-valued functions in the integrand of the last integral in the right-hand side
of (16.8) are monotone, and so applying the second mean value theorem of integral

calculus three times gives

B t t a_% t m t -2
/ exp {z’t log —] (—) (108; —) (10g ‘) dt
" re| \ 2w 2m r
A*32(log A)™ [P t t
o ( Og3 ) / exp [it log _] <10g —> dt (for some Ay, By € [A7 B])
o5 Ja el
A2 (Jog A)™
|A—r|

<

since |A —r| > /A and |logr/A| > (r — A)/A.

Combining the cases A — VA <7 < A and r < A — /A gives the definition of
E(r, A, B). The remaining 7 > B 4+ v/B case can be done similarly. O
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With the use of Lemma 16.2 the main term of Lemma 16.1 can be derived. For
the error term calculations the result of Shiu on the generalized divisor function is

needed. We quote from [21]:

> m(n) <ex y(logz)*! (16.9)

r—y<n<zx

for y > z°. Further, before stating the fundamental result of this section, we continue

with the following simple result.

Lemma 16.4. Suppose k € Z*, ¢ € N. We have

iTk logn < AkFEQ

16.10
s — 1[F+ ( )

n=1
for|s—1| < 1 and Rs > 1.

Proof. By (2.13), for |s — 1| < 1,

(C(s))ké( 4 >k (16.11)

By Cauchy’s integral formula we obtain

ns dst 271 (w—s)+1’

n=1

where the integral is over the circle |w — s| < |s — 1|. Employing (16.11), the result
follows trivially. m

Lemma 16.5. Let w € Z, ky, ko, 01,02 € N satisfying |w|, ¢, = o(logT) for large T,
and ki, ky, 0 = O(1). Suppose that A(s) =3 -, anf) and B(s) =3 _ ") foro > 1,

nsy nf

where

a(n) < 1, (n)(logn)®

b(n) < 7y (n)(log n)”,
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and T < y < T. Then

L=) @ > a(m)e (ﬂ) <10g %)“ + 0 (yTH**<(log T)~ 1) .

n
TLSy nT <m< nT

— 27

Proof. The boundedness of k1, ko and ¢5 will be repeatedly used. Inserting (2.7) into
the integrand of I; gives that

et a(m) [T [t \V* , tn

I, = E b ¢ E — t1
YT or = (n)n £ mlte /T/2 (27r) FP8 o rme
D_blnjn 3 a(m)m™*

n<y m2>1

+0 (Tl/2+€ log T')*

By the definition of b(n) and the fact that 7(m) < m* for bounded values of k,

> " b(n)

n<y

n‘| <yt (16.12)
It then follows from Lemma 16.4 that the above O-term is
< AL YT (log T < yTV**<(log )=+, (16.13)

by the Stirling formula and the condition on ¢;. From Lemma 16.3,

Li=) &:) >, alme (ﬂ) (log %)w + O (yT"*™(log T)~*)

n
Sy gfemsyl
+O<Z|b )n® Y~ la(m)m =~ (log T)* (27rm/n,T/2,T)). (16.14)
n<y m>1

We divide the second error term into three parts, say S;, Sy and S3, corresponding
to the three parts forming F (2rm/n,T/2,T) in (16.3). From (16.12) and Lemma
16.4, S; is dominated by the bound in (16.13). To deal with S; we consider the terms



nT nT

n 3nT
m< —, — < m < — and m > —— separately:
8 8T

8t 8 T

Sy < Y [b(n)|n

n<y

> o+

nT
m<87

Ifm<£orm23Lthen
8 8

|a(m) |m—1—eT3/2+e(log T)w

2. T2

nT 3nT 3nT
8T §m< m2 87

T/2 -

T/2 — 2rm/n| +\/T)2 > T,

omm/n| + /T/2
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so the contribution from these terms can be absorbed by the bound in (16.13) similarly

to Sl.

The remaining terms are the pairs (n,m) with 7/4 < 27wm/n < 3T /4, and

for these m™17¢ < (nT)~'7¢. We see that the interval [T'/4,3T/4] is covered by the

subintervals of the form [T'/2 + (2" —

v L logT. We have

> Ib(n)ln

n<y

< T6<10g T>w+é1 Z |b<773)| Z - 1

X

T v i
FE(@2v-1)T2<

By (16.9), the inner-most sum is

nT 3nT
81 <m< 81

DNTY2,T/2 4 (2v+! —

|CL( )|m7176T3/2+6(10g T)w

Z T/2 —2mm/n|+ /T/

ov 1 4. 1
MR

n<y

>

0<vlogT

Tk (m)

1
<ZL(2v+1-1)T?2

< 2T *n(log T)M 1.

1)TY?], where v € N and

The v—sum is < 1 and the n—sum is estimated as in (16.12) so that the bound in

(16.13) is still dominant. S5 can be handled similarly and we’re done.

]
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17. A SUM OF DIRICHLET COEFFICIENTS RELATED
TO THE VON MANGOLDT FUNCTION AND ITS
GENERALIZATIONS

Let v € N, for vy, € {0,1}, we set

. L = Oé(m;lj,ljl,ljz)
Ly (siv) =)y ——22

ms
1

- (-S0) (S0) cor sor,

Ly, ., (s;d;vin, ) = Z a(md; v, vy, v3)1h(m)

mS

m

m=1

for o > 1, where d,n € Z™", v is any Dirichlet character modulo 7, and the Dirichlet

polynomial B(s) is defined by

B(s) =) bfg), (17.1)

Y
where b(n) = p(n)P <%) and P(-) is a polynomial with real coefficients. We omit
the P—dependence of the errors in our estimations. In addition to these, assume that d
is square-free, d < y, and (n,d) = 1. Without mentioning we will use these conditions

on d and 7 frequently. The main aim of this section is to estimate the average

Z a(md; v, vy, v)(m), w > 1. (17.2)

w/2<m<w

To do this we first examine the analytic properties of L,, ., (s;d;v;n,¢). We start this

part by determining the size of the Dirichlet coefficients a(m; v, vy, 1).

Lemma 17.1. |a(m; v, vy, 15)| < Top,2(m)(logm) 21,

Proof. Disregarding the restrictions on v, and vy, we define &(m;v, vy, v, v3) by the
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relation

> i) (L80) (S0) o @),

m=1

where v, vy, 19,73 € N. We first prove that
a(m;v, v, v,0) < 7 1(m)(logm)” 21 (17.3)

by induction on v 4 v; 4+ 5. The case v + v; + v = 0 is trivial. It is enough to show
that if the assertion is true for a triple (v, 11, 14), then it is also true for (v + 1,14, 1),

(v, + 1,112) and (v, v, + 1). Consider the first case. We see that

a(m;v+1,1v1,1,,0) = Zd(m/d; v,v1, 9, 0)A(d)
dlm

< Ty 41(m)(logm)’ T2 Z A(d) = 7,41 (m) (log m)” T+

dlm

!

The last equality is a direct consequence of the product —%(s)( (s) =—¢'(s). Similarly,

the case (v, 14 + 1, 112) follows from the identity Z Ay (d) = log? m. We derive the final
din
case by observing that

&(mu v, V17V2+ 170) = Zd(dv v, V17V270)

dlm

< (1Og m)y+2yl Z Tug+1 (d) = Tvo+2 (m) (1Og m)y+2yl )

dlm

which finishes the proof of (17.3). Here the identity we have employed in the last line
can be derived from ({(s))*2T1((s) = (¢(s))*2*2. Tt is clear that the m—th coefficient



of (B(s))” is < A”1,,(m). So by (17.3),

~ Vs 14 141 m
a(m; v, I/l,VQ,I/g) <A d(log m) +2 ;Tyﬁl(d)ng) <E>

= ATy tvy41(m)(logm

which contains the assertion of the lemma as a special case.

17.1. The left of the line 0 =1

108

>V+2V1

)

We next show that L,, ,,(s;d;v;n,1) possesses an analytic continuation out-

side the region ¢ > 1, where the series converges.

By means of Lemma 3 in [2]

Ly, .,(s;d;v;m,1) can be represented in terms of Dirichlet L-functions and some ele-

mentary parts. We have

Ly, (s3dsvim, o) = (17.4)
Y (m) Ay >> ’ Y(m)A(md;)
(m,edy...dj_1)=1
Top1(fm)b(m)
(5,0, h, eg) mz;l o
(m,heg)
where

B(s. v heg) = ) AIalimlbim), (17.5)

m<y/h
(m,eg)=1
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and

(
1 ifu=1,

L(0):=¢1 ifu=0andl=1, (17.6)

0 ifu=0and/? > 1.
\

Clearly, I, is totally multiplicative. To avoid any vagueness we emphasize that the sum
over v—tuples comprised of positive divisors of ¢, in the case of v = 0,1is 1 if g = 1;

and is 0 for any value of g > 1. Observe that

=0 (17.7)

m>1
(m,edl...dj,l)zl

if w(d;) > 2, and we can write in general

n; W = _I(dj)%<8> wwﬂ,edl...dj,l)

(m,edl...dj_l)zl

+ A(d)) (1 - ngﬁ))l . a78)

J

where 1, is the principal character modulo ¢, and

=ttt (17.9)

0 otherwise.

Here 91)g cq;...q;_, is a character modulo ned; . ..d;_1. We now try to find a formula for
the first sum over m in (17.4). We see that the sum is 0 when w(e) > 2; 1 when 14 = 0

and e = 1; 0 when v; = 0 and e > 1. Assume v; = 1. First recall the identity

As(m) = A(m)logm + Y A(d)A(m/d). (17.10)

dlm
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If w(e) = 2, say e = pq for some primes p, g, then by (17.10),

m) Ao (me > © o, B a+1,8+1 -1
3 dlmdAatme) _ $* §5 90700y >:A2(6)H<1_M) |

as s s
If w(e) = 1, then e is prime and
P(m A2 (me) = ¥(e*)Ag(e*™) P(eq”) Ay (e qP)
Z Z eas + Z Z Z easqﬁs ’
m>1 a=0 a=0 B=1 q¢:prime

qFe

From (17.10), we have Ay(e®™) = (2a+ 1)(log €)? and Ay(e+1¢?) = 2(loge)(log q). Tt
then follows that

> . 2“0“;2) (w<>)§ (o q)ﬁi (¢(§g))ﬁ
e e)d% g‘;g (zﬂe(f))a (loge) (1 _ @/’e(f))l
+ 2(l0ge) (1 B we(se)) Z (g 1ogq

= (loge) (1 — @)4 <loge — 2%(3,1/1)) :

If w(e) = 0, then clearly 3 LmA2(me) _ L

m>1

(3 ¥). If we try to put all these into

one form, we find that

5 Y(m)A;" (me)

m>1
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For the last Dirichlet series of the right-hand side of (17.4), consider the Euler product

representation

Tuor1(fm)Y(m) _
2w
(m,heg)=1

s Tva+1 m,¢ " = Tya+1 m ¢ "
H Z (I;m)s (™) HZ (ppms) (™)

pfefgh m=0 plf m=0

Using the identity

<m§:o Zm) - - i <V2:zm> & (17.12)

Vo +m

and the fact that 7,41 (p™) = (
m

) , we obtain

> w1 (fm)y(m) L= (s, 0) I (1 - M) |

mS S
m>1 plheg b

(m,heg)=1
11 o, v\
A (1 (1 P ) ) (17.13)

which is the same as the result (1.4.2) in [16] when v = 1 and nheg = 1. Here vy

could be taken as an arbitrary positive integer. However, we need it for v, = 0,1, and

in these cases, the last product in (17.13) is

~11 (2 - w(p)>y2 . (17.14)

S
plf p
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In view of (17.8), (17.11), (17.13) and (17.14) we can organize (17.4) as follows.

me(s;d;u;n,w:L”2+1<s,w>2ij(§) ((—1)“%3,@)” S Aoale) (17.15)

efgh=d
¢<p) ( w<p>)”2 ( w(p))”“
A _ A
e)g v pleg( 7 plf 4 g 1 P
s, ¥, h,eq) Z H ( % ¢¢o,ed1...dj_1))-
dy...d,=g 1<5<v

dj=1

Here Z/ is over v—tuples (dy,...,d,) satisfying w(d;) < 1 for all i« = 1,...,v. This
restrictions follows from (17.7) and (17.8). The right-hand side of (17.15) defines an
analytic function in the half-plane ¢ < 1, except possibly at the zeros of L-functions
above and s = 1. If ¢ is the principal character modulo 7, then L,, ,,(s;d;v;n, 1) has

a pole at s = 1 of order v + 2v; + 15 + 1, otherwise, it’s analytic at s = 1.
17.2. Order Estimates

This part is devoted to obtaining an upper bound for L,, ,,(s;d;v;n,1). Here we
restrict ourselves to primitive characters ¢, and accept that the character modulo 1 is

primitive.

Assume GRH. From (2.18), we know that

/

L
7 (8:9) <lognr (17.16)

foro >3 +e |s—1]> To estimate %(3,1/1) first consider

1
lognt*

%’(s,qp) = dii%(s,w) + (%@,w)) : (17.17)

Via Cauchy’s integral along a disc with center s and radius € and (2.18), we can deal
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with the above derivative, and then

"

7 (5,9) < (lognr)* (17.18)

for o > % +e|s—1 > loglnr' The second of the conditions shaping the region on

which the above estimates hold is required only when n = 1. To extend these results

to %(s, V0.eds...d;_, ), We firstly note that

!/

f(s,wwo,edl...dj1):%(s,w)+ > V(p)logp (17.19)

p* —(p)

p|ed1...dj_1

We treat the divisor sum on the right by following almost the same lines of the proof

of Lemma 7 in [2]. For 0 > 1/2 +¢,

] ] ]
Y(p) logp < Z 08p Z ogp

s __ 1/2+¢ 1/24€
pledy...dj—1 p w(p) p<log(eds...d; 1) p p>log(eds...dj—1) p
pledy...dj_1 pledy...dj_1
< (log(ed; ... d;_1))"*, (17.20)

where we have used Zp‘nlog p = logn for squarefree n and Chebyshev’s estimates.

Combining (17.16), (17.19) and (17.20), we obtain

/

Z(S, 'l/)'ll)(),edl...dj,l) < IOg nedl e dj_lT (1721)

foro>1+e |s—1]> @. Trivially,

11 (1 - %)w 11 (2 — My 11 (1 - M)_l < 73(d) < df (17.22)

S S
ple plf p plg p

foraZ%jLe.
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We next show that

IVQ (m) 77D¢0,egh (m) H (m) P (%)

mS

< yllze’

By (5,9, hyeg) = Ly (B)u(h) )

m<y/h

which is clear when v, = 0. In order to arrive at this, in the case of vy, = 1, we apply

Perron’s formula (See [22], A.3):

Let A(s) = >_,,5; amm™* converge absolutely for ¢ > 1 and |a,,| < C®(m),

where C' > 0 and for « > zy, ®(z) is monotonically increasing. Let further

Z lamm™ < (60— 1)

m>1

as 0 — 17 for some @ > 0. If w = u+iv (u,v real) is arbitrary, b > 0, T > 0, u+b > 1,

then

b+iT
Z amm™" = (2mi) " / A(s+w)a’s 'ds + O ("7 (u+b—1)"%)
b

+ O (T7'0(2z)z' “log 2z) + O (®(2z)z™"), (17.23)

and the estimate is uniform in z, T, b and u provided that b and u are bounded. Instead

of (u+b—1)"% in the first error term, it is possible to write g |Gy M ™7, which is
m>1
more convenient in some cases.

If we choose a,, = p(m)Ygegn(m), b =1+ € — o and w = s, then for x > 1

Z p(m ?/1% egh(m) — (2i)! /HE_JHT x*dz
le—o—ir L(8+ 2,910 egn)2

m<x
giteme =9 log2z 1
O — . (17.24
+ ( 7t T +xa) ( )

Consider the region determined by the line segments [1 +¢ — o —iT,1 +€ — o +iT],
[1/24e—o+iT,14+e—0+iT), [1/2+e—0+tie/2,1/24+€e—0+iT], and the semi-circle
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D, 1/2+¢—o0+ee?/2, —m/2 < 0 < 7/2. Under GRH the region contains only one

pole, which is at z = 0, so by the residue theorem, we obtain

Z p(m W/)(Jegh (m) .

1 Lo (xHE_" N 2177 log 2z N 1 >
L(Sa w¢0,egh> T T i

1 %+ef¢7+iT %+efcr+ie/2 2+€ o—iT 1+e—c—iT
o/ +f + [+ / +f (17.25)
2m1 1+e—o+iT %—&-e—a—i—iT +e—o—ie/2 %—i—e—a—iT

m<x

" rédz
L(S + Z, ¢¢0,egh)2 ‘

We then employ (2.20) and choose T = y/x so that under GRH we have

(17.26)

Z p(m ¢¢0 egh (M) Alogneghx )

<< €
v <log log neghx

m<zx

for 0 > 1/2 + €. Together with this result, via partial summation it follows that

. , (log £\ d
o e =0+ 101 [~ W)l )

m<u

= O(y")
for 0 > 1/2 + € and log neg < log 2y.

Finally, together with our all findings, we conclude that if we assume the truth
of GRH and have log nd < log 2y, then in the region ¢ > 1/2+ ¢ and |s — 1| > —— logm"

if necessary, Ly, ,,(s;d;v;n, ) has no pole and

)V—w(g)

[[Aw). (7.27)

plg

Alognt v! (log ndr
I S A ——— e S

Grouping the terms having the same number of distinct prime factors, then putting
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j=w(g), 0 <j < w(d), the divisor sum becomes

- 3 (s w00,

0<j<w(d gld
w(g)=j

Since the number of divisors of d formed by j—distinct primes is (”jd)) and

A (g) < (logd)’, the above quantity is

< (logndr)” > )(D (W(jd))

0<j<w(d

v+w(d)

Here, by Vandermonde’s convolution, the j—sum is ( w(d)

). As a result of Stirling’s

formula and the inequality (1 + u)" < exp(uv) for u,v > 0,

Coming back to (17.27), if we keep the restrictions valid, we arrive at

Alognt .
Ly s (s3d5v;m, 1) < A” exp (ﬁ) y (logndr)” . (17.28)

17.3. The Calculation of the Average

We are now in a position to estimate (17.2). Assume w > 1. Applying (17.23) to
a(md; v, v, v2)(m), using Lemma 17.1, if log d < log 2w, we obtain

1+e+iT ws
S almd v vyotm) = @ri) [ Ly (s 0) s
S

m<w 1+e—T

1+e d: Au 1+e
L0 (’UJT Z |Oé(m U, V1,1/2)| + w (log 2w)l/ —|—U}€(A10g 211))”) . (1729)

m1+e T
m>1
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To estimate the sum in the error term, we again use Lemma 17.1, then expand

(logmd)” ™+ by the binomial theorem, and then from Lemma 16.4, it follows that

a(md; v, vy, v vor2(md)(log md)V+2
5= Il 10| 5~ ol oo

m
m>1 m>1

<d ) (V +r2,,1) (logd)"™" > Towyt2(m)(log m)"

ml—l—e
r<v42v1 m>1

U o y v+2v)-- (v + 20 —r+1
< AVd(log 2w) Z ( ) (10( G ! )
r<v+42v; &)

< A”d(log 2w)”

mlJre

provided that v < log2w. If we continue with these conditions, we have

1+e+iT ws
Z Q’(md, v, l, VQ)w(m) = (27Ti)71 / LV1,V2 (57 da vin, w>_d5
m<w 1+e—iT S
I+e( Alog 2w)
+0 (w ( Tog W) L e (Alog 2w)”) . (17.30)

Under the truth of GRH, inside and on the rectangular contour I' connecting the
points 1 +e+4iT, 1/2+e+iT, 1/2+ ¢ —iT and 1+ € — iT, there may be at most one
pole, which is at s = 1 and of order v + 2v; + 5 + 1, depending on whether n = 1, so

that the residue theorem implies that

Za(md; v, v1, vo)P(m) =

m<w

[7] — 1] du+2u1+ug W

-1 V+2V1+V2+1LV 5 -d: v _S
e s {5 tsdvin )|

1/24€+iT 1/24e—iT I4e—iT wids
- / +/ +/ Lyl,ug(s;d; Vﬂ?ﬂ/})
1+e+iT 1/2+e+iT 1/2+e—iT s

1+e v
Lo (w (A%og2w)

+ w(Alog 2w)”) :

In addition to lognd < log 2w and v < log 2w, we impose the condition w* < y < w,
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and choose T = w'/2, then by (17.28), we have

AlognT

/1/2+e+iT /1+eiT A" exp <10glognT> yew't¢(logndT)”
1 1

K

+e+iT /2+€e—iT T

< AYw'?*(log 2w)”

and

1/2+e—iT Alo T 1/24e—iT d
/ s AV exp (i) y€w1/2+€(log ndT)”/ ‘_Sl
1/24€+iT log log nT’ 1/2+e+iT ]

< AYw? < (log 2w)Y,
so that

Z a(md; v, vy, v2)h(m) = (17.31)

m<w

[77 — 1] dz/+21/1+112
(v 4 2u1 + o)l dsvt2vity:

+0 (A”w1/2+6(10g 2w)"),

w
S

{(8 — 1yt L (sidyvin, ) }
s=1

under the assumption of GRH. By means of w® < y < w, the first restriction, log nd <
log 2w, implies that of (17.28).
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18. SUMS INVOLVING p—FUNCTION AND
GENERALIZED A—-FUNCTION

We begin with the sum

ZH nFl()

n<y

where j € N and Fi(n) =[], (1 + f(p)/p) with f(p) < 1 for all p. We'll prove that

n)A*0) (n)Fy(n —1)/(logy)? —k k
Z/l( )A n( JFi(n) _ (=1) (1 gY) + O ( Z a;,(log y)’ " (log log 3y) >,

[
n<y J: 1<k<j

(18.1)

* notation has the same

where y > 1 and o will be suitably chosen later. Here
meaning as in Theorem 13.1 of §13. For j = 0, there is nothing to prove. The case of
j = 1 also holds by Mertens’ formula. We now show that if (18.1) is true for j > 1,
then it also holds for j + 1. Assume the validity of the case j > 1. Writing A*UFY ag

a product of A*Y) and A, we have

A* (G+1) F F |
Z H ( Z l/a ” 1( ) Z 1(29) ng' (18.2)
n<y n<y p<y/n p
(p,n)=1

We quote Lemma 3.9 of [23]: for large square-free j,

1
> in = O(loglog j),

plj
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from which, together with one of Mertens’ theorem, it follows that

3 Fi(p)logp _ 3 logp Zlogp+1 (18.3)
p p

p<y/n p<y/n pln

(pn)=1

= log Yo (A;loglog 3n)
n

for some absolute constant A; > 0. Inserting this into (18.2), we have

say. From (18.1), it follows immediately,

1 J .
Py < A (loglog 3y)<0§vy) + A1 ) ayullogy)’ " (loglog 3y)“*.

1<k<j

By (18.1) and partial summation, we see that

/ ZM ) A0 ( nFl( Jdu _ (~1p* /y (log u)idu

7’L<u ]'
Yl j—kd
1K< . "

_logy Jj+1 . Oé',k .
_ ﬁ +0" | D = (loglog3y)* (logy) ™"

1<z T
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Combining the results of P; and Ps, it is not hard to see that

SCAR( — A j
5 p(r) AU () Fi(n) _ (—logy) 1O ((é 4 %> (log y)’ loglog 3y
J

n<ly (] + 1)' j'
+ Z (A1Oéj k-1t %) (loglog 3y)*(log y) ¥ + A,q; ;(log log 3y)j+1> '
k=2

J

(7 —k)!

Choosing a; i, := for 1 < k < j, the whole error term becomes

> ajar(loglog 3y)*(logy) T,
1<k<j+1

So, by mathematical induction, we complete the proof of (18.1).

Proposition 18.1. For j € N, y > 1 and Fy as defined in the beginning of the section,

we have

Zu n)A* ) (n)Fy(n) (—1)j(logy)j <1+O (M)),

J! log 2y

If j > logy/loglog3y then the sum is void, because the number of distinct
prime divisors of n is < logn/loglog3n. In the remaining cases of j, namely j <

log y/ log log 3y, the error term of (18.1) is

_ A (log )’ log log 3y Z (7 — log log 3y\ "
(j k

T 1<k<j logy
Al (logy)’~tloglog 3y M log log 3y ot
_ 10 |
(1) > 116 gy
1<k<j t=1

Since j — 1 —/{ K logk;fgysy for each ¢ = 1,...,k —1, the above summand is < A*~! and
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so the sum is bounded by A’. Finally, the whole error term above becomes

< Al(logy)’loglog 3y
J— j! .

We complete this section by the following Proposition.

Proposition 18.2. For k € Z*, 1 =1 or 2, y > 1 and F; as defined in the previous

Proposition, we have

5 A 300y 4 0 (loglog 3K)

n
n<y
(n,k)=1
“(n)As(n)F:
S pn) 272'“) 1) _ [t = 2](log y)? + O ((log log 3yk)(log y + log log 3k)) .
(e
Clearly,

Z p'(n)A(n)Fi(n) (—1)" Z Fl(p)logp’

p

n<y P<y
(n,k)=1 (p,k)=1

which is almost the same as (18.3), and hence we are done. In the second sum to be

estimated we recall the formula As(n) = A(n)logn +3°,, A(d)A(n/d) to write

pAs(m)Fi(n) _ g~ e (m)A(m)Fi(n) logn
2 2

n<y n<y
(n,k)=1 (n,k)=1

YHd)A(d)Fi(d te)A(e)F](e
+ZM()(d) () 3 M()(€) (e)

d<y e<y/d
(d;k)=1 (e,dk)=1

(—1) Z Fl(p)(logp)2+ Z Fi(p1)logpy Z F1(p2)10gp2.

p<y p p1<y P p2<y/p1 P2
(p,k)=1 (p1,k)=1 (p2,p1k)=1

Here p; and py run through prime numbers. Based on (18.3), by partial summation,
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we obtain
Fi(p)(logp)?  (logy)?
3 1(p)(logp)? _ (Og;/) + 0 ((log y) (log log 3k))
p<y P
(p,k)=1
and

Fi(p1) log p1 Z Fi(p2) log po Z Fi(pi)logpr, ¥y
Z JIVL) e w2/ el S P pg £

p1<y p1 p2<y/p1 P p1<y p1 p1
(p1,k)=1 (p2,p1k)=1 (p1,k)=1
F 1
10| (loglogayk) 3 Fi(p1)logpy
> b1
n<y
(p1,k)=1
(logy)*

= + O ((loglog 3yk)(log y + loglog 3k)) .

Putting the last three results into one form gives the second part of the proposition.
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19. SOME GENERAL LEMMAS

Lemma 19.1. Let k, ¢ € N, then fory > 1

Y k
I= / (logu)* <log y) du = Bt + 1,k + 1)(logy) T+,
1 u/ u

where B(-, -) denotes the Beta-function, which is a special function defined by

B(z,w) = /01 11— ) tat (19.1)

for Rz, Rw > 0.

However, the Beta-function can be expressed in various ways. By the formula

B = 19.2
it can be represented in terms of the Gamma function. If z, w € Z", then
['(z)=(z—1)L (19.3)

Proof. Substituting u = e¥ gives that

logy
I= / v (logy — v)*dv.
0

It follows from the second change of variable v = slog y and the integral representation

of the Beta function that

1
I = (log?/)k+£+1/ 54(1 — s)kdv =Bl +1,k+ 1)(10gy)k+£+1_
0
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Lemma 19.2. Let k, ¢ € N, m € Z and (a,)nen € C. Assume

Aly) = an=allogy)™ + E(y), E(y) < f(y)(logy)™ ", (19.4)

n<y

where f(y) is positive and increasing on (0,00|. Then for x,y > 1,

¢
Y k o Z 'L i+m-+k
g an <10g ﬁ) (log nz)" = am g ( ) log z)"*(log y) B(i+m,k+1)

n<ly =0
l

+0 ((6 +k+m)f(y) (f) (log z)* " (logy) ™™ ™* 1 B(i +m, k + 1)) .

=0

Proof. We write the sum as a Stieltjes integral:

; an <log %)k (log nz)" = izi; <f) (log )~ ; an (log %)k (logn)’
= g (f) (log z)*™ /l(log u)’ (log y> dA(u)
= Ag (f) (log 2) I 1 (y), (19.5)

y y
where / = linq . Using (19.4) and some standart properties of Stieltjes integration,
1- a—

a<1l V@
we obtain

Tialy) = allog )™ (log L) |1 + B(loguy (1o L)' |1

_ /ly Alu )d[(logu) (log )k} _ [£7k(y) +[£fk(y) _ If,/;c(y)a

say. Firstly,

a(log y)m T if k=0,
]z{,k:(y) =
0 otherwise.

It immediately follows from the definition of E(y) that E(17) = —a(log1™)™. So
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Il (y) =0 for k > 1. If k = 0, then trivially

Il (y) < f(y)(logy) ™1

For the last part, first assume 4,k € Z*. Then

1

du

Ii(y) = o / v (ilog £ — klogu) (logu)™™ " (log )"
7, L U

u

By Lemma 19.1, (19.2) and (19.3) we see that

1! (y) = —amB(i + m, k + 1)(logy) +"+*

+O (f(y)(i + m+k)B(i + m,k + 1)(log y)" 1) . (19.6)

Similarly, we have

Lin(y) = m(iof—‘ﬁm +0 (f(y)(i +m)B(i +m,1)(logy) ™) (19.7)

for i > 0, and

I§5(y) = —amB(m, k +1)(log y)™** + O (f(y)(m + k) B(m, k + 1)(log y)**"™)
(19.8)

for £ > 0. Then it is easy to check that for i,k € N

Ii,k(y) = OémB(i +m, k+ 1)(10g y)i+m+k

+O (f(y)(i+m+k)B(i +m,k+1)(log y) T L (19.9)

Combining this with (19.5), the result is apparent.
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20. THE CALCULATIONS OF Y B('(9) AND

0<So<T

> 1B (o))

0<So<T

Counsider the sums

Ay = Z B{' (o) and A= Z | B¢ (o).

T/2<So<T T/2<So<T

0, S0 > 0, run through the zeros of Z;(s). The Dirichlet polynomial B(s) is defined
by

B(s) =) bln) (20.1)

where b(n) = u(n)P (11(; gj). Here P(-) is a polynomial with real coefficients which
satisfies P(0) = 0 and P(1) = 1, y = (T/(2n))’, € < 0 < 1 for an arbitrarily small
number € > 0. The implicit constants of the error terms may depend on P and this

will not stated explicitly.

Assume RH. By the work of Hall, mentioned in §3, we know that all non-real

zeros of Z;(s) lie on the critical line so that

|B¢'(0)|* = B¢'(0)BC'(1 - o),

which is necessary to transform the second sum into the contour integral for an ap-
plication of Cauchy’s residue theorem. Before the residue theorem application and

estimating the contour integrals, we note the following estimate: For —2 < o < 2,

max{ylf‘ﬂl}

o] if |o — 1] = (logy) ™",

B(s) < (20.2)

logy if [0 — 1| < (logy)™".
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It follows from the residue theorem that

A= [0 Zws o, =1y g

where the integral is taken over the positively oriented rectangle with vertices 1 + ¢ +

T, 1+ e+1T, —e+ 115 and —e 4+ 17,
A(s):=B)C((s)  and  fos) = Bs)(()BA—s)(L—s).  (20.4)
Here T7 and Ty are obtained by varying T'/2 and T by a bounded amount, i.e.,
Ty =T/2+0(1), and Tp =T+ O(1);
so that the condition (3.19) is satisfied. These changes on 7'/2 and T" mean adding or
deleting O(log T) terms each of size < yT"/>*¢. Hence this variation leads to the error

term in (20.3).

We examine the contour integrals in (20.3) by dividing them into four parts:

1 1+4+e+iTs Z/ 1 —e+iTs Z/
AW = = (s)=L(s)ds, AP = _— [(s) =2 (s)ds,
s T S TS
1 —e+iTy Z/ 1 14+e+iTh Z/
RO (2L (5)d AW — () =L (s)ds.
J 27TZ T fj(s) Zl (S) S, ] 271—2 Ty f]<8) Zl (S) S

By the choices of T; and T, (3.20) holds on the horizontal sides of the contour. Em-
ploying (2.16), (3.20) and (20.2), we estimate the integrals along horizontal sides the

contour trivially, and we have

A§2)7 A§4)7 Aé?)’ Aé4) <<yT1/2+6. (205)
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We next show that

(20.6)

AD < exp (A(log T)(log log log T))
1

loglog T

as follows. Using (3.27), A () takes the following form:

A (m)(logn) dt
1 _ ¢ gn
A = — Z 2 Z lte Z (mn) 1+e /Tl (k)

it (log £)"

£<1 lolgTT k<y m,n>1
S ony ) g Gos) 2 b () MO
1 kl—f—e (mn)l—‘re
—logofgogT k<y mn=l

T dt A(log T)(logloglog T
X/ €+1+0(exp( (log T')(log log log )))
7 (nmk)" (log =) loglog T

Applying the second mean-value theorem gives that

T dt "
/ - s <K (log —1> (log nmk)™*
7 (nmk)* (log 5=) 2

!/

Together with this, since B(1 + € +it), (1 + € + it), %(1 + € +it),

CII

C( + €+ it) < 1, we have

A\’ A(log T')(log loglog T')
AWY — :
P> (bgT) *O(exp( loglog T ))

The sum can be trivially absorbed in the error term, so this completes the case.

We are now come to the integrals Af”), Agl) and A(g) that constitute the main
terms of Aj;and Ay. Contrary to Al , A % produces a part of the main term of the
asymptotic formula for Ay. By the change of variable s — 1 — s and then taking the
complex conjugates of the integrals we have

I 1 14+e+iTs /

W= — fil—s)

1 - s)ds 20.7
27 v, Zl( ) (20.7)
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for j = 1,2. Using (2.8) and (3.3) in (20.7) gives that

W 1 1+e+iTo , Z{ t
AY = — B(1 - 1—s) (2L log — | d 20.
T on [ B¢ -0 (G oy ) as (208)
1+e+iTn ds
vo(1[ " su-saca-99]),
1+e+2Ty 13
and
F A(l) 1 1+E+’L'T2 B , B , l t d
= — 1— 1 — —
> 2 T o o (1= 5)C'(1 = 5)B(s)¢(s) log o —ds
14-e+iT> ds
+ 0 (\ / B(1 = s)('(1 — 5)B(s)('(s)— ) : (20.9)
14+e+iTy t

since fo(s) = fo(1 —s). In the above integrals replacing ¢’(1 — s) by the right-hand

side of the formula

C=5) === (conog ) o () gz,

27 |t]
(20.10)

which can be easily derived from the first derivative of the functional equation (2.1) of
((s) and (2.8), the integrals in (20.8) and (20.9) take a form which is more appropriate
for an application of Lemma 16.5. The error terms in (20.8) and (20.9), and the error
term stemming from the change in the range of integrals from [1 + € + iT3, 1 + € + i T3]
to [l +e+iT/2,1+ €+ iT] are dominated by O (yTl/ 2+E), which follows trivially from
(2.16), (3.11) and (20.2). For the last estimate € should be chosen so that the 1+ ¢ line

does not pass through any real zero or pole of Z;. As a summary of all our findings we
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write
__ 1 14e+iT 1 ;
Ar=—o— 1—5)B(1— 21V 1o ——d
! 27T/L 1+6+i% X( S> ( S)C(S) Z1 (8) Og 27T S
1 I+etiT oz
~ o 1—-s)B(1— ZLis)d
2m 1+e+iD X s)B( s)¢ (S)ZI (5)ds
1 1+etiT N
~— 5 1—3s)B(1— loc — | d
2m 1+e+iT X s)B( 8)C(s) (og 27r> 5
1 ItetiT / .
~ os 1—s)B(1— log —d
2m 1+e+iD xt il 8)¢'(s) log 2 5
+0 /T|B<— —it)¢(—e —it)] |£(1+ +it)| +1 Ly dt
r €—1 €—1 Z, e+1 og ool
+0 (yTl/”E)
and

2mi +etril A 2

A —— 2R {i / = 9B - 9BE) ()¢ E ) 1ogiwds}

— 2% {L/l - X(1 = $)B(1 = $)B(s) (¢(s))’ ﬁ(S)dS}

270 JiperiZ Z
1 [flreHT £\ 2
~ 5 . x(1—3s)B(1—s)B(s)('(s)¢(s) (log %) ds
l4etil

1 1+e+iT "
T om X(1 = $)B(1 = 5)B(s) (¢'(s))" log 5—~ds
2mi 1etil 2
T /
+0 (/T |BC(—€ —it)BC' (1 + € 4 it)| (}%(1 + e+ it)| + log %) %)

1

-0 (y1'2+)

Using (2.7), (2.16), (3.11), (3.27) and (20.2), the integrals in O—terms above and the

error term occuring when we replace Z;/Z; by its Dirichlet series approximation in
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(3.27) are bounded by O (yT"/*™). So

A= ) 2(Foolv+1) = 2F0(v) — Foo(v +2) + 2F0(v + 1)) (20.11)

log T
—loglogT

- FO,O(O) + Fo’g(l) + O (yT1/2+E)

and
A_Q = F()’l(l) — F071(2) + O (yT1/2+6) (2012)
y Fo1(v+2 Foa(v+3
- R Z 2+ (%_Fl,l(V—i-l)—%—i-Fl,l(V—FQ))
Vglolg(;)ligT
where
1 1+e+iT ¢ —v—2v1+v2+2
F, . = — 1—s5)B(1—5s)L,,,,(s; log — ds,
)= g [ MU= )50 = (i) (1on 5 ;
(20.13)
logT
and v, =0o0r 1, v < L%—&
loglog T’

Now our calculations are reduced to one general form. From Lemma 17.1 we see
that an application of Lemma 16.5 causes an error term bounded by O (yTl/ 2+E). So

we have

Frn) =Y b(nnll) S altmivmme (—nﬁ) (1ogm

—v—2v1+1v2+2
1 nl)

(20.14)

10 (yT1/2+e> 7
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For Y € (X/2, X] and |r| = o(log X),

(logY)" = (log X)" (1 +0 (10;)()) :

which can be easily deduced from the mean-value theorem. Employing this we remove

the above logarithm factor from the inner-most sum over m, so that

T\ Vet v+1 b(ny)
Fp(v) = (log — 1
m=(oeg) (v (7)) X0

n1<y

Z a(m;v, vy, n)e <_nﬁ> +0 (yT1/2+€) . (20.15)
n1T 1

mT mT
4m mg 27

To convert the additive character e(-) above into a character sum we use the formula

(5.11) in [2]:

where the * indicates that the sum is over all primitive characters mod ¢. (The character

mod 1 which induces all other principal characters will be included as a primitive

(g) , (20.16)

which is (5.12) of [2]. Together with this, some simple changes of variables give that

T —v—2v1+vo+2 V—l—l
F, . log — 1
e (o) (o)) X
n1 <1/ L n<y/mi

Z* T (E) Z 0(n, nan, d, ) Z o (dm; v, v, 1) (m) + O (yT%“) .

Y modn dinin

character.) Here for a character ¢) mod g,

st =3 5757 (2)  (6)
/e) eq e

6|k/q

=
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While the part comprised of the terms with n = 1 will give the main term, the rest
will be a part of the error term, as in [2]. However, we differ from [24] and |[2]
in estimating the contribution of the terms with n > 1. Unfortunately we are able
to adapt neither the techniques, such as large sieve inequalities, higher moments of
Dirichlet-L functions, in various proofs of Bombieri-Vinogradov theorem, which can
be found in [2], [25] and [26], nor the powerful method seen in [24] to deal with
the terms n > (logT)#. Without seperating the terms with > 1 into two parts, by
assuming the much stronger assumption GRH, we handle these terms constituting the

error term.
20.1. Error-term calculations

In F,, ,,(v), since dlnin, y > T¢ and nyn < y < T, we have "217:’5 > T and so

I
lognd < log 4 dTa > 1og0fgo§T

< log % ”WT and ("21775)6 Ly <K "217?5, so that we can

apply (17.31) to the inner-most sum to get

(10g 1)7V72V1+1/2+2 U —I— 1
F, ., = n 1
1 (V) (v +2v1 + )] ( +O(logT)) Z

25 ]_ nl,d 77[)01>

n1<y dlny
(20.17)
dy+2y1+y2 1% 1% 1% (%)S (1 - 278)
X —dSV+2V1+V2 {(S _ 1) 421+ 2+1Ly17y2(8;d; v 17¢071) 27d -
s=1
‘ILL 77”1 | ’5(777n1777d7w>’ 1

+ O(AVT 2 te + T2+e>'

> bl 5y 37 Plnan kol

n1n<y wmodn djnin

Since nyn must be square-free, otherwise u(nn,) = 0, by (5.13) of [2],

(d, Tll)

’6077 nimn, d7 ¢)\ S (b(nl’)?) .
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Also using the facts that |7 (@) | = /1 and that the number of primitive characters

modulo 71 is < ¢(n), the error term becomes

< AT () 6 (n) 3 ) puzee (20.18)

1/2 1/2
nin<y nl/ ¢<nn1) dlnin d/

Since (n,n1) = 1, due to the factor |u(nny)|, we can write any divisor of nn; as a

product of a divisor of n; and a divisor of 7 uniquely so that the innermost sum is

1
_ 1/2 1/24€ e
= g e E _f1/2 <ny'Toon.

eln1 fln

Then the bound in (20.18) is < AYT'~¢, provided that y = (T/(27))? < T'/?~<.
20.2. Main-term Calculations

Continuing from (20.17), by the last result of the preceding subsection and
(20.16), we have

_ (log ) e v+1 b(n1) x~ 1 (2) 1 ()
FI/l,VQ(V)_ (V+21/1+V2)! (1+O(10gT>)T§<:y n % gb(%)
a eld

e [ (s = )L, (sdiv o) (55)° (1 5)
dSV+2V1+I/2 S
s=1

+0 (AT



136

We first substitute dnj = n; and then relabel n} by ny so that

(log %)*V*2V1+V2+2 (1 L0 <1u+1

Fy0,(v) = OgT>> Z () Fi(d) F1

(v +2v1 + 1y)! = nlgb ni) =
(dn1)=1
(20.20)
P (bg d—i@) drrantr {(S — D)Ly, b (sidi v 1Y) (%)8}
v+2v1 4 —1
logy ) dsvt2vitve s (1 _ QL) .
+ O(A”TH),
where
A =T[0+Am) ad  AG) =1/p-1). (20.21)
pld

In view of (17.5) and (17.15), we make the change of variable d = efgh and re-organize
(20.20) as follows.

(log £)™7 ™ (140 (&

Foimlv) = (v + 201 + 1) ) 22:( )ZM DA T ag)

a=0 9=y plg

(20.22)
Ao Lj F 2 dl/-‘r21/1+l/2
>, — oM L) i) P — {Gum(S; e, g;v;a)
= e e nip(ny) dsvr2vitre
(e,9)=1 (n1,e9)=1
an ® /L F1 1 v MQ(h)]Vz(h)Fl(h>
el 9_ -
(57) ¥ “AOM(-5) xR
f<n1y69 p‘f h— fnlieg
(fin1eg)=1 (h,fnieg)=1
H (1 - 1)1/2—1-1 . (108; hf72111€9> Z M(ng)ly2 (']7,2)P (lOg ngh) }
ol 3 logy ! ns; log y o1
(n2,heg)=1

+o (A”TH),
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where

Gum(sie,givia) = (s — 1)”+2”1+”2+1w ((—1)“@(5)) 1 (1 — i) (20.23)

S ¢ 28
H (1 — Z%) Z H ( @ZJO ed... ))
pleg dv=g 1d<J_<1V

Let P(x) = ayx + -+ - + apa®, where ay,...,ary € Rand a; +---+a, = P(1) = 1. We

evaluate the above derivative by the generalized Leibniz rule. Then F,, ,,(v) becomes

T (lOg l)_y_2V1+V2+2 vl k @ 2 9
Fu v — 21 2T 1 O 11 ?2 :
)= 2 (0 (157)) 2 e 2 ()

7,1,7,221 a=0

(20.24)
> (”“”1”2)2“ AT A
G1+jatisztiatis=v+2v1+va J15J25,73, 745 J5 vl
J1,J2,33:J4,J5 €N
AQ,a(€>I ( ,LL Tll F1 Tll) an 72

2 D log =

e<? n<k
(e.9)=1 (n1,e9)=1

(1) u(f)F(f) d* _i ”
GV1 V2(1 €9V Cl Z f dsi3 H 2 s

f<aie plf =1
(fmieg)=1
2(h) 1, (R)Fi(h) & 1\
Z p=(h) 2]5)1()d3j4 H(l__s) <loghfge>

hsFares Pl Y s=1 Y

(h,fnieg)=1
I, —1 s
Z #’(n2> 2(”2)( 0g n2) <10g L) + O(AVT17€>‘
%) ngh

na<¥
(n2,heg)=1

Considering (2.13), (2.15) and (17.19), we see the order of the zero of

Guim(sie,givia) at s =11s (2 — a)vy + w(g), and so
GI (e, g;v;a) =0 (20.25)



138

for j; < (2 — a)vy + w(g); moreover,

gt
G0 (1, givia) = (2 - ooy -+ w(g)1

I(-2)" (o w0

pleg

We pay attention to the case v = 0. Due to the binomial coefficient (wzlg))’ w(g) must
be 0, otherwise (wzlg)) = 0, so, in the case v = 0 the only non-zero contribution can

come from g = 1, which reminds us of the notice coming after (17.6).

In the case of j; > (2 — a)vy +w(g) we estimate the j; —th derivative of G,, ,, at
s = 1 by means of Cauchy’s integral formula. To estimate G,, ,, around =< (loglogy)~*
neighborhood of s = 1 we deal with the product over prime divisors appearing in (20.23)

in a general setting. We’ll prove that for any square-free positive integer @),

(loglog3Q) ™" « H (I —tp~*) < (loglog 3Q)* (20.27)
rlQ

uniformly for |0 — 1| < (loglog3Q)~! and |t| < 1. For the first inequality, we need

the assumption that

H <1 + %) < 1 for |o—1] < (loglog3Q)™".
ps_

p<kl

We first deal with the upper bound. If @) < 1, the product over primes p|Q is finite.
Assume @ > 1. Observe that

H (1—1tp*) < exp Z log (1 + |t|p_§R5) < exp | |t| Zp_%s

pl@Q plQ p|Q

<Lexp | A Z p 4 logAQQ Z 1

1<p<(log 2Q)? p|Q, p>(log 2Q)?

From Mertens’ theorem and the fact that the number of distinct prime divisors of @)
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is trivially < log2@Q), we reach the one side of (20.27). The lower bound side reduces

))'

to the already proven part by seeing

[Ma-w" :H(1+pst_t) < 1] (1+0p(01

p|l@Q plQ p|Q,p>1

Similarly, we obtain for any square-free positive integer @)

1
3 EP < loglog @ (20.28)
plQ p

uniformly for |0 — 1] < (loglog 3Q)~*. When s = 1, the result reduces to Lemma 3.9
in [23]. In addition to the last two estimates we use (2.13), (2.15) and (17.19) to get

1%
Gum(sie givia) < A”(
( <A )

)w(g)!(log logy)*™9, |5 — 1] < (loglogy) ™",

and then

. 1! Guim(sie,9;v50)d
G(]l) (1’ e’g; v; a) — L/ 1, 2(8 e, gV Cl) S (2029)
|s—1|=<(loglogy)~1!

V1,2 271 (s — 1)+l

. 14
< ijl‘(

w(g)) w(g)!(loglog y)~19*4

for j3 > (2 — a)vy + w(yg).

We now have some arrangements on the g—sum in (20.24). As indicated above,
for having a nonzero value of the derivatives of Gy, ,,, w(g) < j1 — (2 — a)vy. We split
the sum into pieces by collecting the terms according to number of their distinct prime

divisors. Also, with the formula that for square-free g € Z™*

[[ae) = X200

oo w(g)!
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we have

T (log l)*l/*Qlll‘i’llZ*FQ v+ 1 k s 2
FV 5 — 27 2T O e e R
V) (v + 211 + 1) ( " <10gT>) Z (logy)irt Z ( )

a=0

(20.30)

> (””’””2) > AT
: j17j27j37j47j5 . é'
J1+J2+33+J4+35 v+2v1+v2 0<e<j1—(2—a)y 9<y

Z AQ,u(e)I ( Z 12 (ny) F1 )<logn;7TT)j2

e<? <t
(e,9)=1 (n1,eg)=1
u(f)Fu(f) d® 1"
G (L6, g;v3a) Z o dsis H 2-—
f< nlyeg ° plf b s=1
(finieg)=1
Z ,UZ(h)Iug(h)Fl(h) i H (1 1 )1/2+1 <1 . y >i1
- - — O
h< fnqieg h d8]4 p|h p s=1 hfnleg
(h,fnieg)=1
N —1 Js i2
Z fi(n2)1y, (n2) (= log no) <1Og L) + O(A”Tl*).
n2<y (%) ngh
(na2, heg)

To avoid some possible difficulties arising when v > loglog T, we separately handle

this part in the estimation of F,, ,,(v). By (20.27) and plain Cauchy integral formula

applications, we see that

dj?: 1 1] . »
dsis H (2 - _s) <K ]3!71+V2 (f) (log log y) 2(]3+A)’

p
plf =1
dia 1\ 2t . A
T H (1 - 2;) < jal(loglogy)?++4,
plh

Together with these, we employ the fact that Ay 4(e) < (loge)*™, (20.27) and (20.29)
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to get

2 L
log T)J2+is+2—a
Fy17u2(7/) < A”T(log T)_V_2V1+V2+2 E E ( 0g )

NP
a=0 ji+- +J5 V+2V1+V2 J2:J5:

(g)| A (
(€> (loglogy 1 €+J3+J4+A§ : ‘ | § : § : o
0<<j1—(2—a)y

gy e<y n1< -’/

L 28 ¥ o)

f<

Y
nleg anleg —h

The e, ny, h, no—sums are all bounded by O(logy), while in the case of the f—sum,

by the well-known result

> nlf) =ylogy+O(y),

<y
we have the bound O ((logy)***1). Applying Proposition 18.1, the g—sum is

A(log y)*
» (Zgy).

From all these results, it follows that

log T2 +3s
Fypun(v) < AT (log )~ > (log Tyt

NN
it tiitjs=vt 2 e I2T5

> (V) (log y)*(log log y )i ~Histia+A
0<0<j1

. +0 (A”Tl‘E).

Observe that

v\ (logy)*(loglog y)*~*
> (7))

0<4<j1
(log y)7* Y\ (loglogy\?"~ A¥(log T
— =y G (6 1) € ———— (20.31)
J1: 0<t<js gy Ji:
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since j; < logT'/loglogT, whence

E, ) < A"T(log T) ™4

loc T Ji1+j2+7is log1 j3+ja+A
Z ( og ) : '(' (|)g 'Og y) + O(AI/Tl*G)
J1t+j2+js+jatis=v+2v1+uva J1-J2:]5:
J1,32,93,J4,35EN
< AT ((log T')(loglog T'))* Z ( V42 + 1y )j !
(v +2v1 + 1)! Ji, gas g dasgs)

J1+i2+gs+jatis=v+2v1+12

J1,J2,73,J4,J5 EN

J3+ja
(Y ol

 AT((log T)(loglog 7))

20.32
(v + 2v1 + )] ( )

since js, js < logT/loglog T, which signifies that F,, ,,(v) with v > loglogT does

not contribute to the main term of A; and A, as will be explicitly seen later.

Assume henceforth v < loglogT and we continue from (20.30). We call S,,(z)
the finite sequence formed by the above successive sums starting with the one whose
variable is x and extending to the last sum, including the ns—sum. We now express
the three sums in S,,(f) as contour integrals in order. Let (¢) denote the contour

s=c+it, —oo <t < co. Applying the well-known inversion formula

1 27dz 0 if0 <z <1,
i | = (20.33)
(©) Qosm)™ jf g > 1,

!
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for ¢ > 0 and s € Z*, we obtain

S, (na) = d’s Z M(m)?f;z(m) <log Yy )h (20.34)

dvis el noh
(n2,heg)=1 =1
_ 22‘ dj5 Vo 1 - (%)w
= o /(1) Z%(v+w,egq) H 1-— prae de ,

plh

where
Zi(u,d) = 1 1T (1 — i) _1. (20.35)

Inserting the last result into S,,(f) and exchanging the order of the finite sums, the

derivatives and the integral suitably, we obtain

ol s 4 5 w r
S,,(f) il d3 dr {/(DZTQ(U‘FUJ,@Q)# Z M (20.36)

= 2ri dsis dudt dois [
f<i
—mnjeg
(finieg)=1
1\" (2(h) L, (h)Fy(h) 1\ 1\
H 2_1; Z h1+w H 1_E l_pv+w
plf h< e plh
(h,fnieg)=1

y \"
<log hfnleg) dw}

Substituting d = fh, we have

s,u,v=1

. . . y i1

il dP b db - HOR@ (1o %)
12 - - - - ZVz ,

S z(f) 271 dsI3 dui4 dvIs { /(1) 1 (U +w 6g) & p

—nieg

(dvnl eg):1

(20.37)
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wu(h)I,,(h) 1\ 1\ " 1\” y¥dw
P2 T (1~ = 1— 2~ ) L .
Z hw H pu pU+w H ps w12+1 R

h|d plh p\%

We notice that the above summand is composed of multiplicative functions apart from
the power of the logarithm so that we can translate its generating Dirichlet series into

Euler’s product form. Again consulting (20.33), we derive that

igliy! 73 s dos / y"
S, = . . . Z? , .
z(f) (27].2)2 dsi3 duit dpis { ) 1 (U +w eg) wiz+1

“dzd
/ Zz(z,w,u,s,v;meg;z/z)( Y ) Z—qf . (20.38)
(1) neg) zat ot

where

d)F;(d
ZQ(Zaw7u7$>U;€;V2): Z %

d>1

(d,0)=1
n)I,. (h 1\ 1\ 1\"”
}:M(2J(>II(1_TJ O__vﬂ) II("?) (20.39)
hld plh b b pli P

Ltwg (1= p = p (1= p )P (1= pe) )
p(p—1)

When z and w lie on the line (1), and |s — 1], |v — 1|, |[u — 1| < ¢, we have

ZP2(v+w,eq)Zy(z,w, u, s,v;n1€g;v2) <K 1. (20.40)

Since 41,495 > 1, both of the contour integrals in (20.38) are uniformly convergent so
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that we can exchange the order of derivatives and the integrals:

S (F) = ilig) dis i s / y \* 1
A (2mi)2 dstE duds duds 1y \nieg/ 2t
y*Ydwdz

/(1) Z2(v 4w, eq) Z9(z,w, u, s,v;n1€9; VQ)W} 71. (20.41)

The infinite contours we will encounter in the rest of the paper are uniformly conver-
gent. Although (20.40) may vary on these contours, that i;,i5 > 1 ensures the uniform

convergence, and we do not need to truncate these infinite contours.

At this point we recall some standard information of the Riemann zeta-function
concerning the horizontal distribution of its complex zeros. The classical zero-free

region theorems state that there exists a constant c¢; > 0 such that

C1

o+t 0 for c>1— ————, —00 < 1 < o0. 20.42
Further, in the same region, we know that
‘ 1
C(o +it) — < log([t| +4). (20.43)

o+it—1" ((o+1it)

Returning to the w—integral, to avoid the complex zeros of (, we must have

C1
R >1- 20.44
(vFw) 2 log(|¥(v 4+ w)| +4) ( )
in the case of v, = 1. Let L£(v) be the contour described by
a +iSw — v, —00 < Sw < o0. (20.45)

1—
3log(|Sw]| + 4)

Given that Rz = 1, |s — 1|, |u — 1], |v — 1| < ¢, from the product representation in
(20.39), it follows that Z5(z,w,u, s,v;nieg; 2) is an analytic function of w on L(v)

and to the right of £(v). Here € is sufficiently small so that 0 in the w—plane lies in the
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region whose borders are (1) and L£(v). Further, the factor of the product in (20.39)

reads

at w = 0, which tends to 1 — ﬁ # 0 as s,u,v = 1. So Z9(z,w,u, s, v;nieg; vy)

P*(
does not vanish at w = 0. According to (20.42), Z;(v + w, eg) does not produce any
singularity between (1) and L£(v). Assume v # 1 for a while. With the aid of (2.13),
we conclude that the order of the pole at w = 0 of the w—integral in (20.41) is iy + 1.
Thus, the residue theorem implies that

iz! 272 (v 4w, eq) Zy(z,w, u, $,v;n1€9; V2)y“’dw

% (1) wi2+1

= i3!Res,—o {Zf2 (v+w,eq)Zs(z,w,u, s,v;n1€9; Vg)#}

ig! Y dw
+— Z2(w+w,eq)Za(z,w,u, $,v;n1€q; Vy) ——
27TZ L£(v) 1 ( g) 2( 1€9 2)w12+1

' vy "2
= Z ( ?2 )(Zl(n)(v,eg)> 2 {Za2(z,w,u, 5,v;n1e9;19) },,_ (20.46)

o\, ro, T dw"
ri+ra+r3=iz 1,%2,%3
vo=0=1r1 ,T2 =0

is! YV dw
X (logy)™ + — Z2(w,eq)Zs(z,w — v, u, 8, V;N1€G; Vy) —————.
(logy)"™ + 5 — o) (w, e9)Zs( 19 2)(w—v)’2+1
The last change is due to the substitution w — w — v. Now the three factors in the
summand above are continuous, actually differentiable, function of v in a neighborhood
of v = 1, including v = 1, so we no more need the exclusion v # 1. If v, = 0 then the

w—integral does not depend on v, s and wu, so its j5—th order derivative at v =11is 0
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unless j; = 0. Taking derivatives with respect to v gives that

iy! d%

271 dvis

i9+1

: Js i2 (ri+ra) ve
=0=j5=0 ( z 1 )
v ” | Z (7’4) (7’1,7”2, 7“3) ! (1,e9)

ritro+rz=is
0<r4<js
V2:0:>’r‘1,7“2:0

“d
{ Z{’2(v—I—w,eg)Zg(z,w,u,s,v;nleg;VQ)u} _
1 w -

di5—re g2
- . . r3
duvis—r4 dyr2 {ZQ(Zﬂ w,u,s,v;n1eg, VQ)}I:)’E? (10g y)

vo=0=75=0 ' ‘
+ 2 5 .35 ] Z ( Js )y_l(_logy)rﬁ(ZQJrr?)!
m - \T5,76, 77
rs+re+rr=7js5
5 dv yYdw
X /ﬁ(o) 2 (w, €g)dvr5 {Z2(2,w —v,u, 5,v;n1e9; VQ)}Uzl m

Here we note that if v, = 1, then r; 4+ r4 must be > 1, otherwise Zl(“*’"“)(l, eg) = 0,

which is seen from (2.13). Returning to (20.41), the last result gives rise to
Su(f) =T +Ta, (20.47)

where

i [va = 0 = Js, ju, j5 = 0] Js5 19 ( (r14r4) >V2
= Z 1
7-1 21 Z T4 1,79, T3 1 ( 769)

r1+ro4ry=io
0<ra<js
vo=1=r14+ry>1
vo=0=1r1,r2=0

(20.48)

- )Zdz

nieg

dis it @is—re Jr2 (
(logy)””/ {22(27107“787'0;”169; VQ)} w=0
(

1) ds73 dui+ dvis—"+ dwr suwo=1  zi1tl
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and

vy = 0= s da. ds = 0 . B -
T = i1! [ J35J45 J5 ] Z ( Js )y L(—log y)™® (i + 77)!

271)2 Ts5,Tg, T
( ) rs+re+r7=Js5 5,76, 17

dis  dir drs
X / Zi’Q(w,eg)/ —A{Z5(z,w — v,u, s,v;n1€9; Vg)}w’v:l (20.49)
£(0) (

1) ds?s duds dv's

y \~ y¥dzdw
X - - .
nleg (w — 1)22+T7+1Z21+1

Before handling 7; and 73, we examine Z5(z,w,u, s,v;{;v5) in detail. Assume
Rz, Rw > e and |s — 1|, |u — 1|, |v — 1| < ¢, which are enough for Z5(z, w, u, s,v;{; vs)
to be well-defined. However, we want to find out an analytic continuation Zs(z,w, u,
s,v; 0; v9) whose domain of analyticity extends the w and z variables to larger regions,

while we keep the ranges of s, u and v the same. Continuing from (20.39), we have

1-1)? -1
1+y2(1—$—( 2 (1- k) )

p(p—1)

ZQ(Z,U},U,S,’U;K;VQ) :H 1 -

p
(p** —1—vo+uvop~™) (p—1)

1+, — —) (1 L+uvy — 22 —pppt= — wpl“’ﬂu,v,w,p))

H (1 14+ —p T —ep™ —ap " f(us v, w,p))l

“(p—1
" p(p—1)
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L+va—vep~ % —vopt ~—vop ¥ f(u,v,w,p)
C(l +z+ ’U)) Hp (1 — (pT T2 —1—va+rap— ) (p—1) >

UL+ w2)(1+ 2 +w)) (1 + 2)

va f(u,v,w, -1
1+2p"g(p, z,w)\"” Loy - — g — el
Ht-—C——) 1{1- — 7
(p ) p*(p—1)

P ple
where
flu,v,w,p) = (1 — p‘“)2 (1 - p‘”‘“’)f1 -1 (20.51)
g(p.zw) = (L+p7 7)1 (20.52)
It is easy to see that for Rw, Rz > —e,
flu,v,w,p), g(p, z,w) < p~ ', (20.53)

and both of the infinite products above are bounded and analytic. We should determine

whether the finite product

—1
1 _|_ U2 _ V_g _ V_12U _ VZf(uv’;)vva)
11 (1 B ppz(pp— 1) } (20.54)

has any singularity or not. Observe that

pz(p - 1) =1+ Vo — VQp—S - VQp_w - Vgp_wf(u,v,w,p)

Spp—1)=p+vep —vop' " —vep' ™ — vop' T f(u, v, w, p)

z V2 V2 —s —w
<:>(p” —1—V2+p—w) (p—1)=1+V2—ﬁ—V2p1 — vop' ™" fu, v, w, p),
which means that there occur cancellations between the zeros coming from

(20.55)

H (1 Ly —vap = ap' T = ap" U f(u, v, wap))

. (1% =1 = vy +1p™) (p = 1)
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and the poles from (20.54). To see what remains after cancellations, we work out the
following limit. For any (p,w, z,u, s,v,{,vy) satisfying p|¢ and the above equivalent

cases,

(1 B 1+V27;J%7V2p1—s,V2p1—wf(u,v,w7p)> (1 B 1+2p1+“g(p,a,w))l’2

lim (pt+a—1—votvop=*)(p—1) (ptFe—1)2
a—z I4ug—r2_r2 _vaf(wvwp)
1— pS _ p¥ pW
p*(p—1)

1 —1—u9 1 )
- (1 - p1+z) <1 + p1+z+w> )

which is neither 0 nor oo in the new extended half-plane for z and w. In view of (2.13)

and (20.42), we impose the restriction z > on z so that the only possible

___4a
log(|S2|+4)

singularity of Z5(z,w, u, s,v;l;15) is at w + z = 0.

With these findings, we return to the estimations of 7; and 75. Let L(Z, ¢) be the

contour consisting of five parts:

Li(z,¢): 141t — Z, logy <t < oo,

Lo(2,8): 1+ 0 +ilogy — 2, T <<,
log log y

Ls(2,¢6): 1 — ——— +it — Z, —logy <t <logy,

log log y

Ly(2,¢): 140 —ilogy — Z, _—CSJSO,
log log y

Ls(2,¢): 14t — 2, —o0 <t < —logy,

where ¢ > 0 and Z € C. Considering the integral in 77, between the contours (1) and

L(1,¢,/3) we encounter just one pole, which is located at z = 0. So, by the residue

theorem,
1 dis dis qis—re Jre y o dz
— : . : Zo(z,w,u, 8,v;n1€9; V2) } w= 4
2mi )1y ds?® dudt dvls—m dw' {2 1ed 2)}5,1071121 (nmg) Za+l
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z
i3 dir dismre T2 ( myeg )
= Res,— A . : Zo(z,w,u, s,v;n1eq; v :
“=0Y dsis dudt dpis—ra duwr {Za(, T 1695 2)}5 151;01 i+l
. . . z
I3 dia dis—T4  dr2 . . y
1 dsI3 dul4a dvis—T4 dw™2 {22(27 w,u,s,v;,nieg; VZ)}S,ZU,?gl <nleg> dz
271 L(L%l) Ziitl
1,1 + 7-1,2, say. (2056)

We treat 7T; o in the following lemma. If v, = 0, then 7y = j;5 = js = j5 = 0, and
by (20.27), (20.43) and (20.50),

iz Jia Jismra (Jr2
. . . Zo(z,w,u, s,v;n1€q; Vs 0
dsis dus dvis—rs dwr2 {Z(, 95 >}s =1

< (log(|S2] + 4))(loglogy)*

for z € L(1,¢1/3). In the case of v, = 1 it follows from (20.27), (20.43), (20.50) and

the successive applications of Cauchy’s integral formula that for z € L(1, ¢;/3),

a7’ din @5 d J3ljal (s — ra)'ro!
d8j3 d/U/M dvj5,7»4 dw” {ZQ(Z,M,U,S,U,nleg, VQ)}&Z)’?gl - (27T/L)4

Z5(z,w,u, 8,v;nyeg; ve)dwdudsdv
Jw|=<(log( |\yz\+4)+log10gy) L (5 — 1)j3+1(u — 1)j4+1(v — 1)j5—T4+1wT2+1

ls—1]= =[v—1|=e

€ AT o1l (G — 1)l (log(|S2] + 4))"** (log log y) .

Here we’ve chosen the circle around w = 0 so that we can avoid the pole of (1 +z+w)
at z 4+ w = 0, and that we can make use of (20.43). With these estimates, the integral

in 712 can be reduced to
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Lemma 20.1. Forz > 1, kkm e N, k> 2, ¢ > 0, m < loglog 3y,

/ / (log(|w| + 4))™ z*dw
lc) (1,¢) ’w’k

< (Aloglogy) ™ (xloglcogy +

1

W) . (20.57)

where L,(1,¢), z € C, is described as follows. If z ¢ Li(1,¢) and z ¢ Ls(1,c), then
L.(1,¢) = L(1,c). Otherwise, we paste a semicircle around z of radius =< (log(|Sz| +
4) +loglogy)~! to the part on which z is and then delete the line segment between the
intersection points of the semicircle and L(1,c), so that z lies to the right of the new

contour.

The difference between two cases is negligible. We only deal with L(1,¢). Similar
o (13.17), by integration by parts,

[ [ [Ty Cos U
Li(1,c) 7 Ls(1,c) logy u* (logy)k_l,

which, trivially, dominates the contribution of the ranges Ls(1,¢) and Ly(1,¢). For

the last domain, L3(1,c), we divide into two parts: [— + i] and the

_c

loglog y » " loglogy log Y
' B k

remainder. On the first part, |w]| k< (—loglcogy) . S0

c logy (] md
/ “e << ‘ri@ (Ak+m(log log y)k + / M)
Lg(l,c) 1

uk

& 1 Toglogy (Aloglog y)k+m,
Combining the contributions of the five parts, we arrive at the assertion.

Employing Lemma 20.1 in 77 2, we easily deduce that

. . . " 3loglogy 1
AJ3tiatis |4 — log1 y - . 20.
T2 < Jalja!(js — r4)!(loglog y)* ((nleg) + (10gy)zl> (20.58)
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We now work out 7;; as much as our final goals require. In view of (2.13) and
(20.50), the ro—th derivative with respect to w of ((1 + z + w) at w = 0 increases the
order of the pole at z = 0 by 75 in the case v, = 1, but this factor is cancelled out
in the case v, = 0. However, ("172(1 + z2) reduces the order of the pole by 1 + vs.
If we denote the order of the pole at z = 0 in (20.56) by K, then we can say that
K < (i1+ 1)+ wva(rg +1) — (1 + v2) = i1 + o1y in general. Hence,

1 K—1 y \*
Tl’l_(K—l)' 2 ( b )(lognleg)

T <K-1
01 j3  Jja j5—T4 ro
d { s dP i d d

dzt dsis duis dvis—r4 dwr2

{22(27107“787@;”169; VQ)}Swzo } .
2=0

u,v=1

We represent the above sequence of derivatives by consecutive Cauchy integrals, and

then employing (2.14), (20.27) and (20.50) gives that

d“ @i i qismra g2
dzt { o {Za(z,w,u, 8,v;m€9; 1)} w0

ds?3 dult dvis—rs dwr? s,uv=1 }2:0

dI3  di4 dis—T4  qr2

f1! dsi3 duld dvi5—"4 dw"2 {22(27 w, U, s,V;N1€g; VZ)} w=0 dz

s,u,v=1

274 J|21=(log log )1 Fhtin-K+2

011531541 (js — 74)!7o!
- (271'2)5 / o / |z]=<(loglog y)~* ZQ(Za w,u,S,v;nijeq; VQ)

[s—1|=|lu—1|=|v—1|=€
lwl=|z|/2

dwdsdudvdz
X Zhitin=K+2(g — 1)ist1(y — 1)datl(y — 1)s—ratiqra+l

& ABHIHT a1 (s — ) (log log ), (20.59)
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from which 77 ; simplifies substantially to

K—ii—1 dj3 dj4 dj577'4 dar2 . .
Z dsI3 dul4 dvIis—T4 dw"2 {ZQ(Z’ w,u, 8,V meg; VQ)}S Zuvgl}

b (K —1)!

2=0

K—-1
X (log nlyeg) (20.60)

K—2
+0 ([K > 2] ATt iV (s — 1y)! (log nyeg) (loglog y)A> )
1

If j3 = jy = js — ry = 0, then we must check whether there are factors in (20.50)
reducing the order of the pole at z = 0 to determine the exact value of K. Observe

that

L+ 2p*g(p, 2, w)\ ™ _ 1 \"
H (1 o (pi+s — 1)2 |z,w:0 - H 1+ »?—1 70

p p

H (1 _ L+vo—1pp™™ — 1/2])1_5 - V2p1_wf(uv mw,p))
: (P —1—1n +1op~) (p— 1) s

(- 521) -

In the second observation the zero at z,w = 0 is due to the factor p = 2. Recalling the

cancellations between the poles of (20.54) and the zeros of (20.55), we must have 2|njeg
to avoid any loss in the order of the pole at z = 0. As aresult, K = i1 +19r3—[2 1 nyeg).

With the aid of (2.14) and (20.50) we can calculate the coefficient of the highest order
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term in (20.60). Hence,

A L ] ()

p>2 plnieg
p>2
i14+verg—1
X <log Y )
nieg
y i1+1v2re—2
+O | i1 + vory > 2] (log ) (loglogy)™ | . (20.61)
nieg

If j3+ js+ js —ra > 1, then v, must be 1, because, otherwise j3 = jy, = j5 = 0 as was
indicated in (20.48). However, we do not need to know the exact order of the pole and
to specify the coefficient of the main term in this case. Based on the facts K < iy 41519

and (20.59), (20.60) becomes

11+vore—1
Ti1 < AFFIET o5 (G5 — 1) (log nig) (loglog y)™. (20.62)

We remark that this upper bound also holds when js + j4 + j5 — r4 = 0.

Together with the results on 771 and 772, we return to 7; and naturally divide

into two parts:
Ti = TMy +TE, (20.63)

where the first new component is produced by 7;; while the second one is related to
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T12. It then follows from (20.48), (20.56) and (20.58) that

nieg (logy)n

c1
o ~SToglogy 1
TE, <« AITItTs4a15, (( > R - ) (loglogy)*

. . . j . T T, 12 T
[ =0=j3,jajs =0 (:) (G5 — ra) |21 (L, ) (log )™ (20.64)
r1+ra+r3=iz 4
0<rs<js
vo=1l=ri1+rs>1
vo=0=r1,72=0

By Cauchy’s integral formula along the circle around 1 of radius (loglogy)™",

2 (1, eg) < (r1 + 1) (loglog y) ! < A7y (loglog ). (20.65)

Inserting this result into (20.64) we get

c]
) ) ) ~ 3loglo 1
7'51 < A]3+J4+]5j3!j4!j5! Yy ey + .
nieg (log )™

x (log y)2~"25=%(log log y)*. (20.66)

We examine T M in two cases:

Case 1. j3=7,=0

Corresponding to the case-analysis in the estimation of 77, we separate 7.M; into
two parts according to r4 = j5 or not when vy = 1 and j; = 1. This separation is not
in question for the case v, = 0 or j; > 2. Applying (20.61) and (20.62) to the relevant

parts, we have

. Z2 T j va T
TMi=[s<w] > (Zf (g, eg)) (logy)™ (20.67)
. T1,7T2,73
r1+r2+r3=iz
va=1=r1+j5>1
vo=0=r1,72=0
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(e ) I ()

p>2 plnieg
p>2

11+rvore—1
Yy ' 11+vare—
X (log nleg> +0 ((log y)*t *(loglog y)A) )

+O<[VQ=1andj5=1]Aj5<log10gy>A 2. ( . )

r,To, T
r1+r2+r3=ia 172,73
r1>1

i1+ro—1
2(1, eg)|(log )™ ( log —2
|2, (1, eg)|(log y) <ognleg

Ol vy = 1and i- > 2] 4% (log log 1) Js ‘2
" <[V2 e ] (Og Ogy) Z <T4> (7"1,7”2,7'3

r1+r2+r3=ia
0<r4<js
ri4ra>1

i1+re—1
. T T T y !
(s — r)!| 27 (1, e9) | (log )™ (log meg) )

The sum above is a one-term sum if v5 = 0, while in the case of v, = 1, whose highest
order terms are those having the smallest possible value for the index r;. By (2.13)

and (20.35), we see that

zM(1eg) =] (1 - 1) B . (20.68)

p
pleg

With (20.65) and (20.68), (20.67) takes a simpler form:

TMy = 22|nseglis!(ix))?[js < wo] [ | (1 - ﬁ) I (1 B %) -

p>2 pleg

10 (1+ ]% ) 5 (=1)"2(log y)" <lognf’eg

. ) i1+V2T2—1!T3! v2
plnieg ro+rz=iz—v2[j5=0] ( )
p>2 v2=0=1r2=0

) i1+varg—1
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+0 (Aj5j5!(log y)h +iz—2—v2[j5=0]+v2[j5>2] (loglog y)A> )

Case 2. js+ jys >1
Since vy = 0 = js, ja, Jjs = 0, vo must be 1. Applying (20.62) we similarly obtain

T My < A5 5yl (log )+~ log log ). (20.69)

Unifying the cases, we arrive at

T My =2i1!(i!)"?[2|n1eg and js, j4 = 0 and j5 < 5] (20.70)
( : ) ( 1)_V2 ( : )
(o) (2 I (e
—1)2 _
p>2 (p—1) pleg b plnieg P2
p>2

Z (—1)"2"2(logy)" (log Yy )iﬁym_l
(11 + vore — 1)!(rg!)¥2 nieg

ro+rz=ia—va[j5=0]
v2=0=r2=0

—|—O (Aj3+j4+j5j3!j4 '35'(10g y)i1+i272fl/2 [15=0]+r2[j5>2 or jz+js>1] (log log y)A> .

Comparing the error terms in (20.66) and (20.70), we conclude that

Ti =2i1!(32!)[2|n1eg and j3, j4, = O and j5 < vy (20.71)
1 1\ ™ ( 1 )
- 1-= 1+ ——
T, (R I V(R
pleg plnieg
p>2

—1)r2v2(] T3 i1trere—l
Z ‘( )"22(log y) (log Y )
(11 + vore — 1)!(rg!)¥2 nieg

ro+r3=ig—vo []5 20]
vo=0=1r9=0
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—c1/ loglog 3y
log 1)i1—2+valis>2or ja+ja>1] y .
(( gy) A

We finally end this part, the estimation of the S,,(f), by dealing with 7. Firstly,

consider the z—integral in (20.49), which possesses at most 2 singularities located at

z=0and z =1 — w in the region determined by (1) and L(1,¢;/3). We don’t bother

to determine the exact orders of the possible poles. We call K; and K, the order of

the poles at z = 0 and z = 1 —w, respectively. For the first pole we have K, < i — vs.

The second one exists if o = 1 and K» < 75 + 1. Then by the residue theorem,

A dis  dis drs “d
2 e {ZQ(Z’U} - v,U,S,V;N1€g; V2>}s,u,v:1 ( 4 ) -

2mi Jqy ds?® duit dv's nieg

_ 7/1‘ Z (Kl - 1) (log y )f(llrg
(K, — 1) rs nieg

T‘sgf(l—l
drs dj3 dj4 drs
dz"s dsI3 duds dors

{ZKI?llilZZ(Za w—v,u,S$,v;N1€g; VQ)}

) 1-w o ) 710
(=1)" [y =1] (nlyeg> (79{5?0,:11)(,&1 +rn)! (log n1yeg>

(w — 1)i1+7”11+1

ro+rio+rii=Ka—1
_di3 it s
2
ds3 duis dvs

271 L(1,c1/3) ds’s duis dors

{ZQ(Z,’UJ —U,U,S,’U;nleg;l/2)}s7u7v:1 i1+l

Zi1+1

i &z dis s <nf’eg) dz

s,u,v=1

ZQ(Z, w—=v,u,S,V;N1€g; l/2>}s,u,v=l}
z=1-w
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Inserting this into (20.49), we have

i35 v = 0 = Js, Ja, Js = 0] Z (i2 +17)!(—logy)™
2Ty

2 = =
lralpes e ! —1 = |

7’5+7"6‘i‘7'7:j5 T5.T6.T7.T’8.(K1 1 TS).
re<Ki—1

f( —1—r 12 w
« (108 Y ' 8/ Z%(w, eq)y
nieg L(0,cp) (W — 1)+l

drs djs dj4 drs
dzrs dsi3 dus du's

Ki—ip—1 . .
{Z Z(z,w — v, u, 8,v;n1€g; VQ)}suvzl dw
z=0

1)y =1 i51(i1 + 7m11)!(i2 + 7)1 (= log y)"® o
_< )QET; ] Z = ( : 7‘5:71“215"72'7’917‘170)'7511' gy) (log nfeg)

r5+re+rr=Js R

rotrio+rii=Ka—1

Vo wol 1 ~
x / 2 (w, eg) (meg)" ™ d T
L(0,c2) (w — 1)11+22+r7+r11+2 d

dis dis s
% dsis duis durs

Zy(2,w —v,u,s,v0m0eg; 1) 0 } X dw
z=1—w

n i1!j5! e = 0 = Js, ja, j5 = 0] Z (—logy)"(ia +r7)!

2 lrales|
(2mi)%y T r5lrelry!
[ 2 (w,eq) (7)) v"
X . .
Ler/3) JLi (o) (W — 1)trrtlzitl
dis dis s
X {Za2(z,w — v, u, 8,v;01€0; 12) }, 0y dwdz.

dsis duts du's

For sufficiently small 0 < ¢ < ¢1/3, L(0,¢3) and Ly—,(0, ¢2) lie in the right of £(0), via
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Cauchy’s theorem, we’ve replaced the last contour by the first and the second one. By

(20.27), (20.35) and (20.43),

Zi(w, eq) < (loglogy)™ log(|Sw| + 4) (20.72)

for won L(0, ¢2) or Ly_.(0, cz). Together with this, we use the following Cauchy integral

applications,

drs dj3 dj4 drs
dz™ dsi3 duis dvTs

K1—i1—1 . .
{z Zg(z,w—v,u,s,v,nleg,())}suvzl
z=0

am |z[=(log log y) Srsti+2—Ki

< [j3aj47j5 = O]UOg logy)Av

ds dis qgir drs

o rg!y3lialrs!
Ri—ii—1 _ , _ _ T8 J3'J4'Ts
dz"s dsis duis dvrs {Z Za(2,w = v, u, 5, v;meg; 1)}S’u’”():1 (2mi)4
=
Z5(z,w — v,u, s,v;n1eg; 1)dvdzduds
o=1];|= |”log(\$w|+4 Froglory 282K (g — )it (y — 1)datl(y — 1)rs+1
1|=lu—1|=€

< Aj3+j4+r5j3!j4!7“5!(loglogy)A(log(]%w] +4) _i_loglogy)rﬁrsﬂlffﬁ,

dro s @
— 1)k Z 1
{(z—i—w )2 T duis g {Z5(z,w — v, u, s,v;n1€4; )}w’v_l}z:l_w

IENEA
7"933]47"5
Z5(z,w —v,u, s,v;n1eq; 1
(2mi)* ////Z+w 1\ 10%(|Jw|+4)+10g10gy) L 22(2, ,u, s, v;n1€eg; 1)
=lu—1|=e¢

—1l=[s—1

dvdzduds

>< r )
(Z + w — 1)T9+1—K2<S — 1)]3+1<u — 1)j4+1 (U — 1)T5+1
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& ATy g s (log (| Sw| + 4) + log log )™+~ 2 (log log ),

i3 dir drs

dsis duis dus

{Zg(z, w—v,Uu,s,V;nieg,; 0)}s,u,v=1

< [.j37.j47j5 = O] 10g<‘%2| + 4)(10g log y>A7

djs dj4 drs j3!j4!7”5!
T s g {Za2(2,w —v,u,5,v;n0e9; 1)}, 0y = )

" /// Zy(z,w — v, u, s,v;n1eg; 1)dudsdv
[v—1]=(log(|Sw|+|Sz[+4)+loglogy) ™! (s — 1)73F1(y — 1)Jatl (v — 1)rs+l

s—1|=|u—1|=e

< AT g Irs ) (log (|S2] 4 |Sw| + 4) + loglog y) > (log log ),

where z € L(1,¢,/3) and w € L(0,¢q) in all applications except the last one in which
w € Li_,(0,¢3), we have appealed to (2.13), (20.27), (20.43) and (20.50), so that
the first two integrals immediately and the double integral after the use of the trivial
inequality, log(|Sz| + |Sw| +4) < (log(|Sz| +4))(log(|Sw| + 4)), take the general form

in Lemma 20.1. As a result,

(log y>r6+K1—1—r8 (log IOg y)uzr5+r7+A

TG!

Ty < Aj3+j4+j5j3!j4!j5! Z

rs+re+rr=7s

rg<Kj;—1
1
« —c2/loglogy __
(y " log y)””?)
log 17)761710 (1o log 1/)77 T4 _—cp
N ) (log y) 7”657"1?' 3y) (<nleg)1oglogy

rs+re+r7r=J5
ro+rio+rii=Ka—1
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1 ) Py (logy)™ (log log y)22rs 74
(]Ogy>i1+i2+r7+7‘11+1 re!

rs+r6+T7=Js5
x nyQ/loglogy + 1 . (y/(nleg))fq/@loglogy) + 1 : ]
(log y)2trr (log )™

In the above, we ignore the quantity y~°/°81°8¥ gince it decays more rapidly than

(logy)~%27"7. The first sum in the bound for 75 can be considered as the product of
two independent sums since K 1 < i1 — vy, while the second sum depends on r5 because

f(Q < rs5+ 1. With the same way seen in (20.31) we treat the above sums, for example,

3 (log y)"e (log log y) >+ <<Aj5(1ogy)j5

)

r5+re+r7=75 TG! 35!
Z (logy)ret™0(log log y)' _ Z (logy)"e(loglogy)'
. 76!710! » re!
r5+r6+T7=75 r5+re+r7=Js

ro+rio+ri1=Ko—1

1 710 A5 (] Js
" Z (logy) < (9g y)

10! Js! 7

ro+riotrii=Ko—1

7> then becomes

To << ABHIHE jo1 ) (log log y) ((log y)rine

+ (nieg) e

o7 (log )7 + (y/ (nyeg))~/Gleslosy) (log y)j“) - (20.73)

Combining the above error term with that of (20.71), we deduce that

Sl,2 (f) :2“'(22')1/2 [2’71169 andjg,j4 = Oandj5 S 1/2] (2074)
( : ) ( 1>_V2 ( : >
M-t I(-2) 7 I (1
—1)2 —
p>2 (p=1) pleg b plnieg p=2
p>2

—1)r2v2(1 r3 i1trara—1
3 . (=1)""(logy) log
(11 + vorg — 1)!(rg!)v2

; 4 n.e
rotr3=is—va2[js=0] 9
vo=0=r2=0
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+0 (Aj3+j4+j5j3!j4!(10g log y)A <j5!(10g y)i1+i271/2 [75=0]+v2[js>2or j3+ja>1]—-2

+ (logy) 17272 4 (jsl(log y) 2725~ 4 (log y)”» ) (L

—c1/(3loglog 3y)
n1€g>

+(n1eg) = (log y)j"’>> :

After this lengthy calculation, we return to our main task £, ,,(v) and continue
with Sy, (ny). Firstly, the components comprising S,,(f) naturally divides S,,(n;) into
four parts. Further, [2|njeg| suggests dividing some n;—sums into two parts according

to 2|n; or not. So,
Suy (1) = SV (ng) + 52 (n1) + S (n1) + S (n1) + S (),

where

S (ny) = 2iy1(2!)* [js, ja = 0and js < vpand 2 4 eg]

1 —1)72%2(log y)"®
H(-gomp) rom ¥ G iy o

p>2 ro+r3=iz—v2[j5=0]
vo=0=1r2=0

2 I 1 T J2 i14vare—1
Z lu (nl) 2(“1, ) <log nl_) <log y ) R
ny s 2nieq

Y
nlg 2eg

(n1,2eg9)=1

S (ny) = 272011 (i3!)"2[js, js = Oand j5 < 15 and 2|eg]

1 —1)72%2(log y)"®
(1 Goge) Al ¥ i om0

p>2 ro+r3=iz—v2[js=0]
vo=0=1r2=0
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Z ,u n1 F2 TLI,].) (lgg ﬂ) <log y )i1+1/27"2—1
2 nieg ’

n1 <L
Seg

(n1,2eg)=1

SS;’) (nl) < Aj2+j3+j4+j5j3!j4!(j5!(10g T)j2+i1+iz—l/2[j5:0]+vz[j5220rj3+j421]—2

T (log T)j2+j5+i171/272) log logT Z ,U,

Y
n<gy

(n1,eg)=1

S) (nl) < Aj2+j3+j4+j5j3!j4! (j5!(10g T)jz+i2—V2[j5:0] + (log T)jz+j5—1)

V2
—c1/(3log log 3y)
H (1) '
(loglog T)4 E —
(loglog (nleg) 7

7L1<y
>eg

(n1,e9)=1

S5 (m) << AP oL (log T2 (log log T)

v2

2 _
« Z I (nl) (nleg)iloglsgw ’
ny
meg
(n1,e9)=1

1
where Fy(n;v,) = H (1 + i V;) and we've used (20.27) in the removal of the
p _
pln, p>2
F}—function from some n;—sums. Employing the well-known estimate

1
Z prm) _ Glogy oy (20.77)

we have

Sg’) (77/1) < Aj2+j3+j4+j5j3 !j4! (j5!(10g T)j2+i1+i2—l/2 [j5=0]+v2[js>20r j3+ja>1]—1

+ (log T)jﬁjﬁ“*"?*l) (loglog T)™.
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Sl(,;l)(nl) and S,Sg)(nl) are of the same type. We only deal with S,S;l)(nl). Split-
ting the range of n; into O(logy) intervals, [y/(2° eg), y/(2"eg)], where 0 < v <
logy, in which it holds that 2* < y/(njeg) < 27! and then (y/(nleg))3lo;?igy <

exp (—cjv/loglogy) for some ¢ > 0. Thus, by (20.77)

5'5421) (nl) < Aj2+j3+j4+jsj'3!j4! (j5!(10g T)j2+i2*l/2[j5=0] + (log T)J'zﬂ's*l)

(loglog T)* 3" eXp< —c’lv) 3 MT(:l)

0<vklogy lOg IOg Yy

v+

< Aj2+j3+j4+j5j3!j4! (j5!(log T)j2+i2—1/2[j5=0} + (log T)j2+j5—1)

A —cjv
(loglogT) Z exp| ——— .
log logy

0<vklogy

If we consider the v—sum as a geometric series, then we see that

—chv c -
Z exp 1 < (1l—exp 1 < loglogy.
log log y log log y

0<vlogy

As a result,

S (ny) < AP+t o)

v2

(45! (log T)72 2 7+20s=0 1 (1og T)72 4571 (loglog T)*.  (20.78)
Performing the similar dyadic argument introduced above, we obtain

SO (ny) « AF2FIs+Iatds 151 (log T)72%5 (log log T)A.

V2

From [27] we use the results we need in the estimations of S\ (n;) and S (n,):



167

for 1 = 0,1,
2
p*(n1) Fo(na; 1) 1 (

= log + O (loglog 3eg

mg;}’ ny B4 (2eg) 2teg ( )
(n1,2eg)=1

oo ~1/2
+ 0 [ exp GV1082e9) (Y . (20.79)
log log 3eg eg

which follows from Lemma 2.2, (2.16), (2.17) and (2.19) in [27]. Here

2 Hp>2 (1 - (p - 1)_2) Hp|n,p>2 Ip% if 2|n7 n 7é 07

0 if nis odd.

Ba(n) = (20.80)

2c3+/log 2eg

then by (20.2 d (20.
10g10g3€g>’ en by (20.27) and (20.77),

If y/(eg) < exp (

2 E i1
Z a (nl)TLQ(nl’ ) < (loglogy)*+/log 2eg,
1

Y
n1< 2leg

(n1,2e9)=1

from which (20.79) simplifies to

2
p?(n1) Fy(ng; 1) 1 Yy A
_ 1 O(l 1 og 2 ) 20.81
<§ y o 2 (2e0) B 2eg (loglogy)”+/log 2eg (20.81)
nl_QLeg
(n1,2e9)21

Based on this result, with the help of Lemma 19.2, we settle the n;—sums in Sl(,?(nl)

and Sl(,z)(nl);

Z 12 (n1) Fy(ny; 1) (logﬂ)h (log y )i1+uzr21
m m 2n,eg

y
n<ge;

(n1,2eg)=1

(20.82)
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1 . T Jo—K 11+1vere+kK
= Z /2 log — log = B(k +1,iy + vary)
&5 (2eg) NG T 2eg
<1 Lo ((loglogy)A\/log 26g>>

log ﬁ

and
(2 (n1) Fy(na; 1) n T\ y et
ny 2 nieg
méﬁ
(n1,2eg)=1

1 o T J2—K y i1tveratr .
— log — log 2 B(k +1
@2@@9);(%) (°g27r> % g (5 + Lyt var)
log log y)4+/Tog 2
<1+O ((Og ogy)"v/log 69)) ‘

v
log p

Here we ignore the factor js + i1 + 979 + 1 in the error term coming from Lemma 19.2
since Jo + 11 + 1ors + 1 K jo < v+ 21 + 15 K loglogT. From the mean value theorem

of elementary calculus we see that

y 11+vore—1 y i1+1vore—1 1
log — = | log = 1+0 20.84
( o 269) ( o eg) T log = (2084)

and

T\”>" T\">™" loglog T’
log — = | log — 1 —_— . 20.
(Og7T> (OgQﬂ') ( +O( log T )) (20.85)

Combining (20.75), (20.76), (20.82), (20.83), (20.84) and (20.85), we have

SV (ny) + S (1) = i11(i2])" (Fi(eg))™ [js, ja = Oand j5 < vs]

—1)"2"2(]o T3
Z (=1)"(logy)

(il + Uorg — 1)!(7"3!)V2

ro+r3=io—v2[js=0]
vo=0=12=0
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: T J2—kK i1+vere+K
Z (j2> <log —) (log l) B(k + 1,11 + vor3)
“ \ K 2m eg
Kk<Jj2
(1 L0 ((loglogy)“‘\/log 269)) |

Summing up the all results regarding the n; —sum, we deduce that

Suo(n1) = i11(22)" (Fi(eg))™ [Js, ja = 0 and j5 < vy

—1)"22(1o T3
3 (=1)"(logy)

(’il + Uorg — 1)!(7”3!)1’2

ro+r3=iz—v2[j5=0]
v2=0=712=0

. T J2—kK i1+varat+K
Z (‘Zj) (1og %> (log %) B(k 4 1,11 4 vor)
(1 L0 ((log log 3y)4/Iog 269))

v
log p

+0 (Aj2+j3+j4+j5j3!j4! (]’5!(10g T)j2+i1+i2—1/2 [75=0]+v2[j5>20r j3+ja>1]—1

+ (log T)72Histin—vatre [“:1}_1) (loglog T)A> :

Together with this result on S,,(n;), we come back to (20.30) and then

Fl/l,l/z (V> ==+ 527 (2086)
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where
T (log 1)71/72l/1+l/2+2 v+ 1 k P Z 2
—_ 2 27 2 1
! (v + 201 + 1) ( <1OgT>) i1zz'2:1 logy ”“2 az:%( >

Z (V + 21 + 1/2) Z (_ )T2ll2 (lOg y)
L - — v
htiatismrt vy N TV I (i1 + vory — 1)l(rs!)2

ro+ra=iz—va[j5=0]
Js<va

vo=0=r2=0

Z (Jj) <10g %)P”B(/H L+ vers) ; Z p(g F1 A0 (g)

k<j2 (<ji—(2-a)r1 g<y
Z A2—a(e>‘[1/1< ) ( )G(jl)

. a0, (L e, givia)Fi(e) (Fi(eg))”
e<¥
(e,9)=1
log i 11+vere+k . N O (log log y)A /lo—g 269
9 log £
and
k 1 2
By AT+ AT (log T) ™21+ (log log T')" Z log T)i2 Z
11,52=1 a=0
Z (log T)j2+i2_”2 [75=0]+v2[j5>2 or j3+ja>1]
1,1
J1tietistiatis=v+2v1+ro J1:J2-
N (10g T)j2+j5—u2+u2[i1=1]> Z Z |M |A )
J1!g2!s! e 0
<n—2-a)y1 9y
Ao—a(e) Ly, (€)|p(e)]
>, — G, (15 e, g5 v5a)].
eﬁ%
(679):1

We separate =, into two parts according to ¢ values: ¢ = j; — (2 — a)v; and £ <

J1— (2—a)r;. While in the first part we appeal to (20.26) for G,,Jll,),z(l; e, g;v;a), in the

remaining case we employ (20.29). Thus,

[
I
8]

|+ E (20.88)
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where

T T\ VAt v+1 b oaga zl 2
E/ = — ]_ _ 1 O 21 12
(o) (ro(g)) X e ()

11,i2=1 a=0
(a!)yl Z Z (jl—(?—'a)lq) Z : (_ >T2y2(10gy)7?;
o< j1+j2]»:>l/{;2”;)+y2_j5 J2! ra-trsmia—valis=0] (11 4 vorg — 1)!(r3!)»2
12(2—a)1y

v2=0=12=0

. T Jj2—kK ‘ F A*(j1—(2—a)V1)
> (j/:) (log %) Blr+ 1i) +y2r2)2“<9) 1(9) (9)

k<2 9<y g
Z Ay—a(e) ]y, (e)pue) Fi(e) (log i)zl"”’ﬂé—‘rn

e< € eg

(679):1

(1 L0 ((loglogy)A\/log 26g>>

and

H//<<Au (10gT —v—2v1+v2+2 Z Z Z Z (logT)j.Q*Z/Q[]s:O]

|
i1,i2=1 a=0 j5<v2 j1+jo=v+2v1+v2—J5 ]2'

v 4 (0
Z (6) (log log T)7 ~4+4 Z |1(g)|A* O (g)

0<4<j1—(2—a)11 9<y g
T Ao—a(e)L (e)lule)l (1, (log log y)*v/Tog 2¢eg
e log £ ’
e<t eg
(6,g)=1

=1 and =, are similarly handled, but the contribution of =] dominates that of =,

We only treat Z/. The last error term is trivially < (loglog T)*v/logT. Employing

Propositions 18.1 and 18.2 we obtain

2—va[js=0)
—\// v —v—2v1+v2+5/2 (10g7—1)]2 2
L AT (ogTy Y S Y
ol
a=0 j5<va j1+jo=v+2v1+r2—7s J2:

Z (1/) (loglog T =4 (log T') 29w+t
¢ 0 '

0<0<j1—(2—a)i

The maximum value of the power of log T in /—sum is j; — 1. Proceeding very similarly
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to (20.31) we see that the amount A¥(logT)"*~!(loglogT)"/j,! absorbs the {—sum.

Hence,

= < AT (log T)_Z'_2”1+1/2+3/2 (loglog T)"

Z Z (]Og T)j1+j2*1/2 [75=0]

1
s <wa 1+ja=v+ 2 +va—Jjs J12)2

Y log T') 21
— AT (log T) "V ~2117%243/2 (1g0 100 T)A (
2 g — A"T(log T)"213/2(log log T4
y Z (V V1' 'V2 J5) < (og ) ' (og og ) ‘
J1, 72 v

J1+je=v+2v1+re—js

We're come to the foremost part =} of F,, ,,(v) which carries the main term. If
we pay attention to how the changes in the values of v; and a affect the contributions
of the e and ¢ sums in view of Propositions 18.1 and 18.2, we realize that v, = 0
implies that a = 2, and in the case of v; = 1, considering =) as a union of three parts
corresponding to the three possible values of a, the sector a = 0 cannot reach the order
of magnitude the other two sectors produce. If »; = 1 and a = 0, then by partial

summation and the second assertion of Proposition 18.2,

5 AR (10g g) (1 o (aog logwﬁmgzey))

log £

e<¥ eg
=y

(e,9)=1

< (logy)+2r 4432 (Jog log y) ™.

Apart from the exceptional case in which 141 = 1 and a = 0, by Proposition 18.2 and

Lemma 19.2, we have

Z Az_a(e)[,,l(e)u(e)Fle(e) <log %> o 140 ((log log y)"v/log 269))

v
log p

e<¥
-9
(e,9)=1
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[ =0=a=2] <log £>i1+l’m+ﬁ+(2_a)yl A
_ g L+0 (loglog y)"v/log y
log £ '

a (=(i1 + vory + K+ 1))

Relying on this distinction, we separate =) into two parts and then apply the results

on the e—sum to the relevant parts so that

T T\ TVt v+l b aiin(ia])2
b2%g (Og 27T> ( * (logT)> .Zl (log y)'1+2
i1,i0=

(o) (—1)"22(log )™
Z Z R Z (i1 + vorg — 1)!(r3!)»2

2—11<a<2 ji+je=v+2v1+rv2—js ro+r3=io—v2[j5=0]
JSSVQ j12(2—a)1/1 vo=0=1r9=0
. T\ 27F (g A*Gr—(2=a)m)
Z (Jlj) (log %> B(li—i— 1,4 +1/2r2)2 M(Q) 1(9) (9)
Kk<j2 9<y g
1 y i1+u2r2+n+(27a)u1
( 8 5) 1+ o [ oslog y)*Vlogy
—(i1 + varg + £+ 1)) -0 log ¥
(—( p
+0 ([l/l = 1)A"T(log T) "2 +2%7/2(log log T)* Z
Jjs<ve
3 (log T)72~2le=0] ( v > 5 |u(g) A1) (9)>
i | S
Jitje=v+2v1+v2—js J2° =2 9=y g
Jj1>2
= :/1,1 + Ell,Qa say.

It follows from Proposition 18.1 that

El, < [ = 1A T (log T) ™ 2147232 (log log T')

3 3 (log T/t +72~v21is=0) ( v )
J5<ve j1+ja=v+2v1+ve—js (1 = 2)1j2! =2
J122
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Here j; + jo — v2[j5 = 0] cannot exceed v + 2v4. So,

=/

=1,2

» AT (log T)*2+3/2(loglog T)*

V!
Z Z < 1% )(V+21/1—|—V2—j5—2)
J1—2 J1—2 '

J5<va j1+jo=v+2v1+rv2—j5
Jj122

By (5.23) of [28], the inner-most sum is

_ (21/+2V1+V2—j5—2) <A
v
so that

» AT (log T)"2*3/%(log log T)4
!

—/

=12

, (20.89)

which is the same as the bound for =7.

By Propositions 18.1 and Lemma 19.2 we have

11(g) Fi (g)Ar0r=@=em)(g) g\ et (2ma
. (1og _)
g

g
(1 L0 ((log log y)*1/log y))

log %

9<y

(=D ury + K+ (2 — a)iy)!

Jiti1+vere+k
(J1 +i1 + vora + K)! )

(oo (Hma)

Here the bound in (20.89) also works for the part of = ; produced by the error term

(logy

in the formula for the g—sum and occurring when inserting the above into = ;.

Summing up all the results above, with the replacement of y by (%)9 and some
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plain simplifications of expressions of factorial, we have

T T va+2 v+1
qu,l/z(y) — A(]j’ vy, Vo, P, 9)—2271/171_ <10g %) (1 + O (lOgT))

v v2+3/2 A
+O<A T(logT) (loglogT) ) (20.90)

vl
where

k
Av, v, P0) = > agayinl(ix))> Y Y 6700

i1,02=1 2—11<a<2 j5<v2
Ppea

> (e an)

_ |
J1+je=v+2v1+v2—7J5 K<J2 ‘72 Ii)
j12(27a)y1
)3 e
(r3!)2(j1 + i1 + vors + &)

ro+r3=iz—v2[j5=0]
vo=0=1r2=0

By (5.16) in [28] we see that

2 : (_1)T2V2
Nve (4 : |
rotr3=is—va[js=0] (TS') 2(]1 + 21 + Varg + /{/)_
vo=0=r2=0

_ 1 <j1+i1+l€+yg(i2—[j5=0])—1)
(J1 + i1+ £+ 1a(ia — [J5 = 0]))! va(ig — [j5 = 0]) ’

from which, together with the substitution ' = j; + &, A(v, v1, 19, P, 0) becomes

A(v,v1, 19, P,0) = Z ai, Qi1 (io!) Z Z g~ v2lis=0]

i1,02=1 2—11<aL2 j5<vy
(i1+N/+V2(2'2 [75=0])— )Qn
va(i2—[j5=0])

> RN (0 = S A
H'Sl’-‘r%w-l-)l/z—js (V4 2v1 +v9 — j5 — K0 + K + 1a(ia — [J5 = 0]))!
HIZ 2—a)vy

S (o)

1<K
J1>(2—a)y
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Again consulting (5.16) in [28] we have

2 <j1 - (QV— a)y1> (1 = (-pem (JZ) (—1)%

J1<K’ J1<K'—(2—a)y

n2(2-a)r
’ I/—l
—(—1)"
=1 (H'—(Q—a)’ﬂ)’

from which it follows that

A(v,v1,19, P,0) = Z @i, iyt (i2!) Z Z g —v2lis=0]

i1,i2=1 2—11<aL2 j5<r9
v—1 114K +v2(i2—[j5=0])—1 K
(n’—(2—a)v1) ( ' 1/2(1'22—2[j5j:50]) ) (_‘9)

A — N\ / i I
K,SV+Z%V1+)Z,2_].5 (v +2v1 +vo — J5 — K01 + K + 1a(ia — [J5 = 0]))!
H,Z 2—a V1

We can drop the constraint & > (2 — a)v; because, otherwise, the first binomial

coefficient in the numerator is 0. After this notice without hesitation we make the sum

over a the inner-most and then use

(;):<t;1>+<;:1)’ (v, 5 € Z),

so that

A(v, v, 19, P,0) Z @iy iyt (i2!) Z g—v2lis=0l (20.91)

i1,i2=1 J5<v2
() O ) (o)

3 e A (s o oy ey 1

K <v42v14+12—j5

for which we need an upper bound. Since

<z’1 + K 4 va(ia — [js = 0]) — 1) - ((il + K+ valiy — [j5 = 0]) — 1)€)y2(il+ﬂ,1)

V2(i2-[j5:()]) i1+/€/—1
< 141/2,‘6’7
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Al/
(v =+ 2vy + v9 — j5 + i1 + 1a(ia — [j5 = 0]))!
Z V42 vy —gst+ii+wm(ia—[js=0])\ [v—1+1
21 + K —|—l/2<22 - [j5 = 0]) K/ .

K <v42v14v2—75

A(V,l/l,VQ,P,Q) <

By (5.23) of [28] we see that
A(v, 1,19, P 0) < A (zy Tty o - “.Jr V2(.Z2 s = O]) ) (20.92)
V+uv+1+ VQ(ZQ — [j5 = 0])

V!
B ﬁ 6(21/ N 3V1 by j5 it Vz(ig B [j5 _ 0]) _ 1))V+V1+i1+u2(i2—[j5:0])—1
! v+ i+ a(is —[js =0]) — 1

v

< )
V!

which holds for any v > 0. Using this bound, (20.90) becomes

T T vo+2
F”LV?(V) = A<V7 V17V27P7 9)— (1 g_)

22-vigr 2

Lo (A”T(log T)2+3/2(log log T)4

v!

) (20.93)

for v < loglogT.

Returning to (20.11) and (20.12), we apply (20.93) when v < loglog T and (20.32)

when loglogT < v < log’igT, so that

Av=( Y 2(AW+1,0,0,P.0) — 4A4(, 1,0, P.0) — A(v +2,0,0, P,0)

v<loglogT

2
FAAW 4L L0 P.0)) — A0.0.0.P.6) + A(1,0,0, P.0)) <log 1)

+0 T(lOg T)3/2<log log T)A Z A_'> +0 (yT1/2+e)
V.

v<loglogT

+0 | T ((log T)(loglog T))" > %

log T
log log T'

loglog T'<v<
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and

A= Y 2”“(—A(u+2,0,1,P,9)+4A(u+1,1,1,P,9)

v<loglogT

T T\*
+A(y+3,0,1,P,0)—4A(y+2,1,1,P,9)>— log —

3
+ (A(l, 0,1,P,6) — A(2,0,1, P, e)) % (log 1)

+ 0 T(lOgT)5/2(log10gT)A Z A—'>+O(yT1/2+6)
V.

v<loglogT

+0 | T((log T)(loglog T))" > %

log T

loglog T'<v< Toglog T

We recall y = (T/(27))? and 6 < 1/2 — € for the second error terms in A; and A,. The

v—sums in the first error terms are < e?. By Stirling’s formula,

AY ALloglogTJ
- s 1 T —logloglogT—s—A‘
Z V! < |loglog T'|! < (logT)

log T
loglog T<vr< Toglog T

The next step is to extend the range of y—sums in the main terms to co within an

error term

AV
< T(log T)V2+2 Z 7 < T(lOg T)A—logloglogT

v>loglog T

by (20.92). So,

Ay = ( 3 QV(A(V+ 1,0,0, P,6) — 4A(r,1,0, P,0) — A(v + 2,0,0, P, 0)

v<loglogT
T T\?
F4A(r +1,1,0, P, 9)) — A(0,0,0, P,§) + A(1,0,0, P, 9)) — (1og-
T

+0 (T(log T)**(log log T)A)



179

and

A= Y 2”“(—A(u+2,0,1,P,9)+4A(u+1,1,1,P,9)

v<loglogT
T T\*
+ AW +3,0,1,P,0) — 4A(v +2,1,1, P, 9))— <10g —)
47 27
T T\?
1.0.1,P.6) — A(2.0,1, P )-1 -
+ (A(1,0,1,P,0) - A(2,0,1, P,0) 47T(0g27r)

+ O (T(log T)*/%(log log T)4).
In some v—sums making the change of variable v — v + 1 we obtain

Ay = (Z 2 (A(v +2,0,0, P,0) — 4A(r + 1,1,0, P,6)) + 2A(1,0,0, P,6)  (20.94)

v>0
T T\’ 3/2 A
— A(0,0,0, P,H)—4A(O,1,O,P,9)>4— log — ) + 0 (T(logT)*'*(l0g log T)")
T T

and

Ay = (Z 2t (— A(v +3,0,1, P,0) + 4A(v +2,1,1, P,6)) — 3A(2,0,1, P, 6)
v>0

(20.95)

3
+8A(1,1,1, P,0) + A(1,0,1, P, 9)) % (log %) + 0 (T(log T)*?*(loglog T)*) .

It’s easy to see that the general form,

L[V17V2 — Z 2u+2u1+V2A<V +2— vy + Vo, V1, Vo, P, (9)’ (2096)

v>0
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covers the four infinite sums in A; and A,. Adapting (20.91) to our case, we have

A(v +2 — v + vy, 01,10, P 0) = Z @i, iyt (i2!) Z g~ v2lis=0)

i1,i2=1 Js<va2
v+14v2) (114K +r2(i2—[j5=0])—1 K
( K 2) ( ' vy (i22(—2[j5[]:50}) )<_0)

2 (V+2+ v+ 2v5 — js — )i + K+ vo(ia — [J5 = 0]))!

K <v424v1 4202 —j5

Inserting this into i1, ,, and exchanging the order of the v— and x'—sums, we have

(i1+n’+vz(i2—[j5:0})—1) (—9)”,

1/ ve — i1 U 9_V2[j5=0] valiz—[js=0])
= 3 il ¥ 2 U 0+ 12012 — s = 0D

i1,i2=1 Jjs<va K'>0

Z (l/ + 14+ y2)!21’+21/1+1/2
vk —1—vg (V +1+ Vo — K/,)!(V + 2+ V] + 2y2 _ j5 _ K/)! .
=0

To eliminate the second condition on the r-index we split the x’—sum into two parts

so that

Llyl s — u/ Ll//

V1,2 V1,027

(20.97)

where

k o
Z _1)1/2[3570]
5.1; y 22V1+V2 ;G ill(igl)y2 E ( :
o 11,i9=1 s G5 <va (V2(22 - []5 = O]))'

2 )
0<K/<14vs (i1 + K + va(ia — [js = 0])) (i1 + " — 1)!
(v+1+uwy)02”

;(V+1+V2—I€/)!(V+2+V1+2V2—j5—/<d/)!
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and

k j5=
_1)1/2[35—0]
Ll” — 22V1+l/2 ; i N ] . | v2 (
oy Z A, Ay (22 ) Z (1/2(2'2 _ [j5 — 0]))!

i1,42=1 Js<va

(_e)ml—ug[jsi()]
Z /‘il!(il—i-/i/—l-l/g(ig— [j5:()]))(21—|—/ﬁ)/—1)'

K/'>1419

Z (l/ +1+ V2)!2V

+14+m—m)v+24+v + 20— g5 — )

vk —1—19

We deal with LI/ L, I tWO cases.

V1,2

Case 1. 15, =0
ﬂ/

1,0 sSimplifies to

v+2uv1
, 2

””:§:@+2+mﬂ

v>0

From the MacLaurin expansion of the exponential function, we see that

1 QutZtn e -3 -2
80,0 = = 20.98
v1,0 922-11 VZ>0 (l/ + 92+ Vl)! 92— ( )
Case 2. 1, =1

It is more appropriate to write the sums with 2 terms explicitly. Then,

§f . — 9+l zk: Uy Uy T T2 Z 2v (20.99)
vl L G(iy+in—1) L~ (v +4+ 1) '
11,i9=1 v>0
k . k .
_ Z Ay Q12 Z 2"(v +2) n Z @iy Qi1 Z 2Y
oty 1t g (v+3+um)! o i g (v+3+1)!

B Zk: Oa;, a;, Z 2" (v + 2)
i1+i2+1y>0(y+2+yl)! ’

i1,ia=1
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It is straightforward to verify that

k

1
P(t)2dt = _dndh .
|| o= >0 e (20,100

11,52

1 k .
/0 (P(0)de= Y St (20.101)

i1,49=1

1 ! i i Aty Qi Qi1
—= [ PP (t)dt= S - A b 20.102
5= [ POP@ P Z e (20.102)

The first equality in the third identity follows from the condition P(1) = 1 and inte-

gration by parts. Similar to (20.98),

Qrtdtin 62 _ 19421y

S Ty T -
= wtHdtw) 28 e (v + 44 24+

Z 2V(V + 2) . 1 Z 2”+2+V1 1 + 1%} Z 2V+3+V1
= (v+3+1) 22 = (v+2+u) 23 = (v+3+1)!

e?—3—211 (1+uvy)(e* —5—411/3)

22—‘,—1/1 23+V1
(€1 1=
=6 5 ,
3 2v 1 gvtdtn 25— 4y 3
v=>0 (V+3+V1)! 230 v=>0 (V+3+V1)! 2%4m 7

21/+1+1/1 21/+2+1/1

P D >
= (v+24+1) 21m = (v+1+uv)! 220 = (v+2+u1)!

e2—1-2v; v (e?—3—2u)
= 21+V1 - 22+y1

e —1
= olvau
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Inserting all of these into (20.99) we have

1 2 1
3es —19 -2
L= 1) / GO —— / (P()2dt (20.103)
0 0
(9 — )"
o 21-|—l/1
As regards U7, we substitute v/ = v — £’ + 1+ 13 and then write the inner-most

sum in hypergeometric notation so that

k voliee
o — 92n-1 Z ;. il!(iZ!)VQ Z (-2) 2[75=0]
o i1,i2=1 s Js<v2 (VQ(i2 o [-75 = 0]))'(1 TVt — .75)‘

(20.104)

Z (—29>H,_V2[j5:0]F171(/f, + 17 2 + l/l + 1/2 - j57 2)

5, (s va(iz =[5 = 0]))(ia + # — 1)!

As a result of (20.97), (20.98), (20.103) and (20.104), we can list the following four

results:
62 _3 1 k <_20)I{IF11(/{/+1'2' 2)
= — V| 5 ) <y
LlO,O - 4 + 2 Z allll- Z (7'1 + fil)! ) (20105)
11=1 K/>1
¢’ =5 - (_29)H/F1 (K +1;3;2)
- 1! : Ry 20.106
ﬂl,ﬂ 9 + ;CL Al R/ZN (il 4 /i/)! ( )
! 2 3¢ —19 [* 9 1
toy = —0(e* - 1>/ (P(t))"dt + —/ (P'(t))"dt — 5 (20.107)
’ 0 240 J, 9
k o
. (—2)bs=01-1
- @y Wiy o] , : :
il,;l s jZ§1 (12 = [J5 = O)U2 — J5)!
(—20)%' ~lis=0) / |
~ - ~ . F +1;3 —j5:2),

K/'>2
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! e?—7 [* 2 e2—9
o =-0 1) [ (PO dt+ / (Pt + (20.108)
7 0 46 0 4
[Js 0]+1
- (111(1122 22 -
Z Y D G =G

(—29) ~'=[j5=0] / .
F 1;4 — j35;2).
Z (i1 + K +idg — [j5 = 0]) (4 + K+ — 1)! (e + 1 j3:2)

K'>2

From (20.91), (20.100), (20.101) and (20.102) it follows that

A(1,0,0,P,0) = A(0,0,0,P,0) =1,  .A(0,1,0,P,0) = 1/2, (20.109)

A10,1,P0) = 3 aia (29(_ L E ) (20.110)
1

Q;, A;,1119 a;, a; (11 — ’Lg) Qai a;
1,1,1, P 0) = — o — — 20.111
A, L1, B9) h;l(%w(il—l—ig—l)—i_ 6(i1 + i) 2(¢1+¢2+1)> (20.111)

240/ (P'(t t—g/l(P(t))th,

Q;, A;,1119 a;, A;, 12 Q;, Wi, 71 Hai a;
2.0.1.P.0) = 112 . 112 112 . 1712
A2.0,1,56) ng;l <66’(@'1 +is—1)  2(iy +i2) - 2(i1 +12) (i1 +io+ 1)>

(20.112)

6% (P’(t))th—O/o (P(t))?dt.

Together with (20.94), (20.95), (20.96), (20.105), (20.106), (20.107), (20.108),
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(20.109), (20.110), (20.111) and (20.112), A; and Ay becomes

T T\
Ay =R (P, Q)E <log %) +0 (T(log T)*?(loglog T)*) (20.113)
and
T T\’ 5/2 A
Ay = Ry (P, Q)E log py + O (T(log T)**(loglog T)*) (20.114)

where R, (P, 0) and Ry (P, 0) are as defined in (1.15) and (1.16).

In A; and A, the averages calculated are over o with T/2 < v < T. We now
extend these ranges to (0,7]. We only deal with A;. Note that (20.113) holds for
sufficiently large T" and the contribution of the zeros with 0 < v < 1 to A; is obviously
bounded. Writing (20.113) for 7'/2, T'/4, ..., and adding these up we have

ZBC'(l/Z—l—iv):S‘{l(P,H)%(10g%) 3 ;(1 mog2>

o T
0<v<T 0<r<log T log 5
+0 [ T(log T (loglog T)* S L () _rlog2)*" (20.115)
(0] og 10 — — . .
& 5708 2K log T
0<klog T

The second xk—sum is

< > 2%«2%:2.

0<kklog T k>0

Since kK < log T,

2
klog 2 K

1— =140 )

( log%) (logT)



186

Then the first k—sum becomes

1 » 1
- Z 27+O<(logT) Z (2—6)“)

0<klogT r<LlogT

:2+O< Z %%—(logT)_l).

k>logT

By the integral test the above tail is < fﬁZT 27%du < 27187 Collecting these error

estimates in (20.115) we have the conclusion (1.13).
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21. NUMERICAL CALCULATIONS ON Ny(T)

Re-define
3—¢? b
Ru(P,0) = ——+ > aigi(in,0) (21.1)
i1=1
and
5 k
9%2(P, 9) = + Z ailaiQQQ(il,ig,Q),
i1,d0=1
where
w [ Fra(s'+1;2; . 9.
Z . ‘Z 29) ( 1,1( ;122) _ F171(/-{,/ + 1,3, 2)) (21 2)
17 1 Z (Zl + K,/)! .
>1
and
. (62 — 5)2122 0
i1,02,0) == - — 21.3
92(1 2 ) 89(?/1+22—1) Z1+22—|—1 ( )
Z —[5=0]
- —21'12' ;
Pamret 22— ]5 —0]) (3—]5)!
« Z — ((B—=1Js)Fia(K +1;3—j5;2) —4F 1 1(K + 1,4 — j5;2))
o2 (’i1+/€/+i2— []5 :O])(i1+/€/— 1)' '

We try to find an optimal P maximizing the quantity

(%4(P,6))°
Ro(P,0)

subject to the constraints P(0) =0, P(1) = 1 and ¢ < 0 < 1/2—e. Take 6§ = 0.499999,
k = 3, and we abbreviate g;(i1,6) and g¢2(i1,2,60) by g1(i1) and ga(iy,i2). So, P(x) =
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a1 + ax?® + asz® and a; + as + as = 1. Using this estimate we eliminate as so that

%1(P, 9) == 9‘{1(a1, CLQ) = Lo + L1a1 + LQ(IQ

and
%Q(P, Q) = fﬁg(al, CLQ) = L3 + L4CL% + L5a§ + L6a1 + L7CL1(12 + LgCLQ.
where
3—e?
Ly := TR 91(3), Ly =g (1) = 0:(3), Ly == g1(2) — 0:(3),
e? -5
L3 = 1 —|—g2(3,3), L4 = 92(1,1) —92(173) _92(371)+92(3a3)7

Ls = 92(2,2) — 92(2,3) — 92(3,2) + 92(3,3), L¢ := g2(1,3) + g2(3,1) — 292(3, 3),
L? = 92(17 2) + 92(27 1) - 92(17 3) - 92(37 1) - 92(27 3) - 92<37 2) + 292(3’ 3)’

92(2,3) + g2(3,2) — 2¢2(3, 3).

™~
%
|

Let r € R. We first search for the extreme values of Ra(aq,az) subject to the
constraint Ry (ay, as) = r. By the method of Lagrange multiplier, the extremum points

we're looking for must satisfy the following 3 linear equations:

2L4CL1 + L7CL2 + L6 = )\Ll
2L5CL2 + L7CL1 + Lg = )\LQ

Lo+ Liay + Leags =1
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for some A € R. We have 3 linear equations and 3 variables ay, as, A, so the unique

solution:
o La(LiLs — LoLg) + (Lo — 7)(LaLy — 2L L) (21.4)
! 2(L3Ly — Ly LyL7 + LiLs) |
oo — (2LeLa = LiL7)(Lo — 1) + Li(LaLs — Lo Ls) (21.5)
? 2(L1LyLy — LiLs — L3L4) |
A= (Lo = r)(L7 = 4LaLs) + 2Ly LsLg — LoL Ly + 2Ly Lylis — LaLrLg (21.6)

2(L2L, — L1 LyLy + L3Ls) ’

provided that the denominators are non-zero, which will be seen later. To decide Ry
attains its maximum or minimum at (aj,as), we must check the bordered Hessian

determinant for Rz := Ry — AR, at (a1, as):

R O o _
0 B D 0 Ly Lo
Al — |9 9%Rs PRy | — |
|§j| Oaq da3 da10as Ll 2L4 L7
2 2
OR1 0“NR3 0“R3 _I/2 L7 2L5

" Bas Oay0as 8a2§

= 2(LyLoLy — LiLs — L3L,) = —0.000267532--- < 0, (21.7)

the negativity of which implies that R, attains its minimum at (a;, as). So at the same

point R? /R, attains its maximum value,

2

r
(e — . .
LO + Ll(LO — T) + LQ(LO — T)
where
o= Ly (L1Ls — LyLg)?

A(L3L4 + L3Ls — L1 LyLy)’
P Ly(L¢Ly — 2L4Ls) — L1(2LsLg — L7Ls)
! 2(L2L, + L2L5 — Ly Lo L7) ’
- ALyLs — L2
Ly = 2 2 -
A(L2L4+ L?Ls — LyLyLy)
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In the final step we determine r making f(r) maximum. The first derivative of

f(r),
() = r(2Lo + 2031y + 2LoLy — (L1 + 2LoLy))
(Lo + Li(Lo — ) + Lo(Lo — )22’
has zeros at
2Lo + 2L2 Ly + 2L L
r=20 and r= 0+~ 02—{: 01
Ly +2LoLo
Since
1 2
f0) = =——= = 0.061215--- > 0
Lo+ LiLo+ Ly L3
and
- - B - - 4
% <2L0 +2L5L, + 2L0L1> B —2 (L1 + 2L2L0>
_ ~ = — B e !
Ly +2LoL, (L3~ 4LoLa) (Lo + LiLo+ L2L3)

= —61.8010--- < 0,

by the second derivative test for local extremas, f attains its maximum at

2Lo + 202 Ly + 2L Ly
r = = = .
Ly +2Lo L,

(21.8)

This maximum value is

B (220 + 2121 + 2L0i1> _ Mot Loby 4 L3La) g

Ly +2LoL, L2 —4LyL,
Combining (21.4), (21.5) and (21.8), we calculate

a; = 0.75816 - - - and az = 0.267977 - .
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The last three numerical values constitute our main results on Ny(T).



192

REFERENCES

. Montgomery, H. L., “The Pair Correlation of Zeros of the Zeta Function”, Analytic
Number Theory (Proceedings of Symposia in Pure Mathematics), Vol. 24, pp. 181-
193, American Mathematical Society, Providence R.I., 1973.

. Conrey, J. B., A. Ghosh and S. M. Gonek, “Simple Zeros of the Riemann Zeta-
Function”, Proceedings of the London Mathematical Society, Vol. 76, No. 3, pp.
497-522, 1998.

. Conrey, J. B. and H. Iwaniec, “Spacing of Zeros of Hecke L-Functions and the
Class Number Problem”, Acta Arithmetica, Vol. 103, No. 3, pp. 259-312, 2002.

. Iwaniec, H., Conversations on the Exceptional Character, Analytic Number Theory,

pp- 97-132, Lecture Notes in Mathematics 1891, Springer, Berlin, 2006.

. Yildirim, C. Y., Some Observations on the Zeros of the Riemann Zeta-Function,

Mathematisches Forschungsinstitut Oberwolfach Report, No. 14, pp. 71-73, 2008.

. Gonek, S. M., “Mean Values of the Riemann Zeta-Function and Its Derivatives”,

Inventiones Mathematicae, Vol. 75, pp. 123-141, 1984.

. Montgomery, H. L. and R. C. Vaughan, Multiplicative Number Theory I. Classical
Theory, Cambridge University Press, Cambridge, 2007.

. Conrey, J. B. and A. Ghosh, “A Mean Value Theorem for the Riemann Zeta-
Function at Its Relative Extrema on the Critical Line”, Journal of the London

Mathematical Society, Vol. 32, No. 2, pp. 193-202, 1985.

. Hall, R. R., “On the Stationary Points of Hardy’s Function Z(t)”, Acta Arith-
metica, Vol. 111, No. 2, pp. 125-140, 2004.



10.

11.

12.

13.

14.

15.

16.

17.

18.

193

Davenport, H., Multiplicative Number Theory, 3rd edition, Revised and with a
preface by H. L. Montgomery, Graduate Texts in Mathematics 74, Springer, New
York, N.Y., 2000.

Farmer, D. W. and S. M. Gonek, Pair Correlation of the Zeros of the Derivative
of the Riemann &-Function, http://arxiv.org/abs/0803.0425, 2014.

Landau, E., Handbuch der Lehre von der Primzahlen, Teubner, Leipzig, 1909.
Reprinted by AMS Chelsea Publishing, Providence R.I., 2000.

Montgomery, H. L. and R. C. Vaughan, “Hilbert’s Inequality”, Journal of the
London Mathematical Society, Vol. 8, No. 2, pp. 73-82, 1974.

Gonek, S. M., An Ezplicit Formula of Landau and Its Applications to the Theory
of the Zeta-Function, A Tribute to Emil Grosswald: Number Theory and Related
Analysis, Contemporary Mathematics 143, pp. 395-413, AMS, Providence R.I.,
1993.

Tudesq, C., “Etudede la Loi Locale de w(n) Dans de Petits Intervalles”, Ramanugjan
Journal, Vol. 4, No. 3, pp. 277-290, 2000.

Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, 2nd edition, Edited
and with a preface by D. R. Heath-Brown, The Clarendon Press, Oxford University
Press, New York, 1986.

Yildirim, C. Y., “The Pair Correlation of Zeros of Dirichlet L-Functions and Primes
in Arithmetic Progressions”, Manuscripta Mathematica, Vol. 72, No. 3, pp. 325-
334, 1991.

Farmer, D. W., S. M. Gonek and Y. Lee, “Pair Correlation of the Zeros of the
Derivative of the Riemann &-Function”, Journal of the London Mathematical So-

ciety, Vol. 90, No. 1, pp. 241-269, 2014.



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

194

Conrey, J. B., A. Ghosh and S. M. Gonek, “A Note on Gaps Between Zeros of the
Riemann Zeta-Function”, The Bulletin of the London Mathematical Society, Vol.
16, pp. 421-424, 1984.

Karabulut, Y. and C. Y. Yildirim, “On Some Averages at the Zeros of the Deriva-
tives of the Riemann Zeta-Function”, Journal of Number Theory, Vol. 131, No. 11,
pp. 1939-1961, 2011.

Shiu, P., “A Brun-Titchmarsh Theorem for Multiplicative Functions”, Journal fiir

die Reine und Angewandte Mathematik, Vol. 313, pp. 161-170, 1980.

Ivié, A., The Riemann Zeta-Function, Theory and Applications, Dover Publica-
tions, Mineola, NY, 2003.

Levinson, N., “More Than One Third of the Zeros of Riemann’s Zeta-Function are

o =1/2", Advances in Mathematics, Vol. 13, pp. 383-436, 1974.

Bui, H. M. and D. R. Heath-Brown, “On Simple Zeros of the Riemann Zeta-
Function”, The Bulletin of the London Mathematical Society, Vol. 45, No. 5, pp.
953-961, 2013.

Gallagher, P. X., “Bombieri’s Mean Value Theorem”, Mathematika, Vol. 15, pp.
1-6, 1968.

Vaughan, R. C., “Mean Value Theorems in Prime Number Theory”, Journal of
the London Mathematical Society, No. 2, pp. 153-162, 1975.

Goldston, D. A. and C. Y. Yildirim, “Higher Correlations of Divisor Sums Related
to Primes: 1. Triple Correlations”, Integers 3, A5, 66 p. (electronic), 2003.

Knuth, D. E., O. Patashnik and R. L. Graham, Concrete Mathematics: A Foun-
dation for Computer Science, 2nd edition, Addison-Wesley Publishing Company,
Boston, MA, 1994.



