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ON A SHELL FORMULA OF CLOSED CURVES IN

RIEMANNIAN MANIFOLDS

ABSTRACT :

In 1974 Brickell and Hsiung [1l, p.184] obtained an
extension of the theorem of Fenchel {21, Milnor [3] and
Fary [4] on the total absolute curvature of closed curves
in Euclidian space. In order to develop the above
mentioned theorem Brickell and Hsiung worked on closed
curves in a complete simply conmnected Riemannian n-
manifold with nonpositive sectional curvature. Due te the
theorem of Hadamard-Cartan such a manifold is
diffeomorphic to RN,

Let O be a point on a closed c” curve C embedded
in a Riemannian n - manifold M, and suppose that C lies
in a normal neighborhood of 0. Construct the shell (Q,f)
on C with the vertex 0. Let K be the Gaussién curvature
of the induced metric on (Q,f) and use dA for its area
measure. Denote by & the geodesic curvature of C
considered as a curve in (Q,f), and let s be its arc

length. Then the main theorem in Brickell and Hsiung [11

is
L
I & (s) ds =wn + 1 - I I K dA
o Q
This study extends the above mentioned theory
to piecewise regular curves C embedded in n - dimensional

Riemannian manifolds, and aims to obtain a similar
formuila for them; moreoaver, it globalizes their results
for two dimensional manifolds and develops a global shell
formula depending on certain triangulations of the

enclosed area of C in M. Thus, the local theorem will



incorporate outer engles of £ at vertices C(si) = Gi for

i=ls.yp. The shell curve C has at the vertices same outer
angles as C, if and only if the indicatrix E has a

vanishing vertex angle at E(si} and E 1is one to one

in a neighborhood ot § tor i=1l,.,p.



KarPAL1l UzAY EGRILERININ KABUK FORMULO OZERINE

UZET:

Brickell ve Hsiung Li, s. 184]), 1974 yilinda
Fenchell {23y Milnor [3] ve Fary {43 nin Euclid
wzaylarindaki kapali uzay egrilerinin toplam mutlak
egriligi Uzerine olan teorilerini gelistirdiler. Yukarida
adyr gecen teoriyi gelistirmek icin, Brickell ve Hsiung
tam, basit baglantili, kesit efrilifi si1fir veya negalid olan
n boyutlu Riemannuzaylarinda calistilar. Hadamard — Cartan
tearisine gbre bu tir uzaylar RN uzayina difeomorfiktir,

O noktasiy n boyutlupRiemannuzayl M ye gomilmis,
kapal: bir C egrisinin Gzerinde olsun ve C, O noktasinin
normal komsulugunda ver alsin. C egrisinin Gzerine 0O baz
noktall (QyT) kabugu ovlusturulsun. K, {(Q,f) lzerine
tasinan Riemann uzakligl icin, Gauss egriligi, dA alan
Olcisid olsun. #, € egrisinin (Q,f) kabuk egrisi olarak
disinlildiginde, C nin jeodezik egriligi, s yvay uwuzunluk
parametresi olsun,

Brickell ve Hsiung’un ana te#premi asagida

gorilmektedir
L
f 2(s) ds =n+1-J'J'KdA )
0 Q

Bu calismada, Brickell ve Hsiung® un teorisi,

n - boyuthJRiemanﬁuzaylarzna gomiimis, parca parca
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regller uzay egrileri icin génisietilmekte ve bu egriler
icin benzer bir formil elde etmek amaglanmaktadir; ayraica
iki bnyutlu manifoldlar icin sonucler globalize edilip,

C nin cevreledigi alamn ﬁcéen agl ile kaplanmasina
bagimli olarak giobal bir kabuk teorisi

gelistirilmektedir.

Lokal teori, C uzay egrisinin C(si) = Qi’ i=1ls.sp>»

kose noktalarindaki dis acilarini binyesine almaktadar.

Kabttk egrisi C ? nin kibse noktalsrindaki dis acilari, uzay

egrisi C nin dis acilari ile aynidir, ancak bu sadece ve
sadece E indikatricginin E(si) noktalarinda saifir dis
agi1sina sahip olmas: ve s noktas:1 cevresinde 1-1 olmas:

ile mimkindiir.
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I. PRELIMINARIES FOR SHELLS

Let (M;g} be a c” Riemannian n-manifold with
the metric g. Let C be a pilecewise regular simply closed
curve embedded in M. We shall denote by Qi' i=ly.sp» the
vertices of C. Let O be a point on the curve C
different from Qi s i=l,.sp. Assume that C lies iﬁ a
convex normal neighborhood U €M of 0. Let s be the arc
length parameter and L the total length of C in M.
‘According to our assumption,there is a partition of the

interval [{0,1.] such that

0 = So < --lb--< Sp( 5p+1 = L C(Si ) = Di
for i=l,..,p .
We define piecewise C~ functions r , E in R and

the tangent space TD M respectively. The curve C is in

a normal neighborhood U of the point 0. Consequently,
Cis) = axpD( ris) E (s)) , s € (0O,L),

The function r is the radian function and E the
indicatrix function of the curve C with respect to the
bagse point 0. As the curve C is a topological embedding,
both functions are well defined and they are piecewise
differentiable on the interval (0O,L). We extend by
continuity both functions to the closed interval [0O,L1.

Let " ' “ denote the norm in the tangent space TO M.

LEMMA 1:

Both functions v and E <c¢an be continuously

extended at the points O and . The extended functions r
and E possess right-hand side and left-hand side

derivatives of all orders at s = 0 and = = L respectively.



At these points, they have the values

_ dr _ _ ar
F(O) = 0 = r(L) ; € o= 1 = g w
(1)
E(o) =—-E (L) = 9& (o) ¢ T M.
s n]

PROOF

Choose a system of normal coordinates determined

by an orthonormal frame Xl ,..,Xn at 0. Let Ei(s 1y

i =15..yn s be the components of E with respect to this

frame, and c'ts) the values of the components of Cyi.e.y

ct (s) = u'Cls)) for s € [0,L] (2)
and i
c (s) = ri(s) Eés) far 8 € (O,L)
i i .
C {0) = c (L) = Q » 1 = 1,..]“.

We can express c (s ) = s Ajts ) by (2), where A,

are C° functions near to 0, and they are different from

zero.
n mn
1 = gtE(s);E{(s})) = £ E, E_ &§.. . = I E2 (s) (3
PR | ij A 1
1,,)—1 i=1
n % n 2 %
(4) r(s) = ri(s} ( XL Ef (s) )) = ( £ c (s)) =
i=1 i=1
= s " Ai{s) " o®
We denote by " “e and < >e the standard euclidian

norm and metric on RM respectively.

Using the equation (4) we will calculate dr/ds|s=0

1
pt=rlig

dr dA .
by = " Als) " E+ S {s) e i

- M3

A
=1



noting that

1
g& = £ i(s) + 5 %2 i
gcl
it follows that CC_ (o) = A, (0) i.g.,
ds i
A (0) = 951 (0) = 1
i e = Ul as |l e
i.E-, 4
gg {0) = || A0 ||, =1

According to our definition,

ﬂi(S)
Ei (s) ="—A'(-;")-“ » 5 > 0O
_ e
A Q) i
i = 1 = =g£ ‘ '7=
é:a Ei (s) = "A(O)" ﬁi(O) pros {0) i 1ycesn
e
or
i
E.(o) = 25 (o)
i ds

In a neighborhood af s = L., for the analysis of the r

and E functions we will use similar techniques as above.

Knowing that c'(L) = O for all i = l,.yn sthere are C°

i

functions Bi near to L such that

c'i{s ) =8 B.1 {s) y s £ L.
Nows et w =L Bi(L) or B i_(L) = 0 for i = 1,.yn

DBifferentiating c? near L gives

i 3
dey =8 ) +L 9B Ly =L 98w
ds i ds . ds

and considering that s is an arc length parameter of C,

we obtain

dB .1
f == ‘B s T -



The above formula and c'(s) = r(s) E;(s) vyield

riL) = " c({L) “e= o .

According to the definition of the functions Ei for s £
i. and s sufficiently close to L. clts) =g Bi(s) =
r (s) E,(s)., Therefore, r{s) “E(E)“ = g5 "B(s)" « For

i e e

sufficiently small h > 0 , we have for the functions Bi

we have
B.(L-h) = B_(L) - h Eﬁi (L-8.h) = -h QEi {(L-6. h)
i i ds i . ds i

for &t = 1.1 and O < ei< l.

We calculate the expression

r{L-h) = (L—h} " B(L"h)“ e =

Tle
Tl

(L-h)) ¢

n
(L-h) ( Z Bg

dB %
—_ 2 — - i
(L—t) ( X h i (L eih }) i.e2.y

o B Lo

; rL - h ) dB
lim = | " a;—(L)“e

h>0

i-e-; dr

g.e.d.

DEFINITION :
Let @ denote the set points (y,s}? in R2 such
that O £y £ ris), 0 £ s £ L and define the function

f 1 Q0 — M by
Tlyss) = exp 0( y E(s)) .



i ' .
" = { (y,s) & R2 | Si-1 £ s £ 55 Y , i=mly.sp+l

We call (2,f) the shell on C with the base point O and

(Ql,f1 ) the ith shell pie with the base point 0.
Far € > 0, we define
n; = C(yss) €0 |y 2 €.

For sufficiently small € >0 the equation r(s)‘=
€ has only two solutions (1, p 1781, that is the line
vy = € will meet the boundary of @ and &P*laonly in twe
points. We denote by ' the restriction of f on @’ for
i =1ly.,p+l .

- We will induce on Qi a Riemannian metric via 'l".1 .
Howevers there are some difficulties because of the
singularities of the tunction fi « In the following
chapter we will see how these difficulties can be
handled.

The main theorem 1 provides us with sharper
inequalities about the total absolute curvature of closed

curves in Euclidean spaces.




II. LOCAL SHELL THEORY FOR N DIMENSIONAL
MANIFOLDS

We will make use of the structure equations for

a Riemannian n — manifold expressed in polar coordinates.
Choose an orthonormal frame Xl ...,Xn at 0. Extend the
frame to a moving frame Xl y...,Xn on the normal

neighborhood by parallel translation along the geodesic
rays through 0. We will denote the moving frame again by
xl,...xn. We denote by 01,....,9n the dual moving coframe,
i.e., e‘(xj) is a; for i,j =t,.,n , and let e;= - o]
be the components of the Levi-Civita connection with
respect to these frames.

For the rest of this study the maps are partially

defined, unless it ig explicitly stated otherwlse.

Define the mapping

F : Rn+1——*- M by
ult Fltyal, . 8™ =t a' . i =1,.,n.

It is shown Iin [S,p 271 that

. . . s .
bar o+ pt ’ F e; = ﬂ; v i= t,..9n
i i

where the forms @#° aj do not involve the form dt.

F*G1 = a

These 1 - forms are zero for .t = 0 . They satisfy the

differential equation

i < n . -
:g%— =dat + £ adapl | (S)
(] j=1 j
i n :
3%%5 = TR, ,0F) a® ol . (&)
ks 1=1
R;kl are the components of the curvature tensor R with

respect to the metric conmnection <7 .



LEMMA 2:

We denocte by 1; the components of the moving
coframe 6’ » i,i =ly.yn with respect to normal

coordinates. The functions 1; satisfy the equations

. n . . . n .
at= ¢t £ (1o Frda' and sl =z alc1taom
PROOF :
. n - . n s .
F* el = F*( 21t audry = 2 (1t o F ) dl uwio M
=t =t 7 -
n i . n i R
=L (1'%0F )»a'dt + Tt ¢1' o0 F ) dal
ji=t 7 i=1 I
,i.e.,
i n i
g =t (1* o F ) da’
i=1 '
and
D "k B
F*( 3t ) E a ,.Ct;-ak o F
k=1
and
L~ . n
* i O _ A =) I | k O
F" o' =% ) =00 ( F(==)) =0 (k§1a Sk @ F)
A i S
=T a (E{(1*a F du?d i%k o F)
k=1 j=1 7
n K . n i
=T a (1.0 F1ré&d= talt 1'o®m
A k k
jrk=1 j=1
Q.e.d.

. *
We would like to induce a metric fk g an & .
Therefore; we investigate the singularities of fk . The
mapping fk is expressed in terms of the normal

coordinates ul,..,un by



ul ¢ fk(y,s ) =y E:(s) » where E:

are the components of the indicatrix of € restricted

on tsk-l’sk 31 with respect to the frame at 0.

We obtain for the tangent vectors

n ~
kK, © C % o_.
f}( Sy ) {yss) = i§1Ei (s) atﬁl fk(y,s) 8
k ~
kK, O o gE o .
Tl T2 ) v = Vi:':_,! ds’ Toul | iy,e .
We know that “ E (=) “ = 1. It follows that the vectors
e
k 3 kK © . .
Ty (E;y ) and f*_(BS ) are linearly dependent iff
-
f: (%?g-) = 0. Therefore, * is an immersien except for
points on the line v = 0 or s = «y, where «o is any

k _ i
number such that f* (‘3 5}‘5=“- O i.e.»

the curve € is tangent at the point fk(y,a) to the

geodesic ray 7T which is emitted from the base point
0.

In order to calculate theinduced metric fk *g on
Qk we will make use of the structure eguations expressed

in polar coordinates ,

Define the function g“:R2 ——— R"*! by

{yss) = (y, E:(S)...,E:(s))
fDT‘ k=1'|,p+1a

Qk satisfies fks F o §k . Now, calculate the 1-forms
. . ‘ ~
@k*al and Qk*ﬁ; on R2 . Because Qt( 7%; ) = §%¥

and BI s B ; do not involve dt, we can describe
ik*ﬂl and ﬁk*ﬁ; by functions wt and w?i on R2,
. n N .
g*at = g"(z ¢ tl; o F ) da’d (9)



n T, ' .
= F (t o & )(1; o F o 8f dialo 8%)

i=1
n . K
= £y 1to £ 9 4s = wkds
. ds i
i=1
n . n
alo 8% = EX = g i od (1o ) =ze¥1io
i = i .
i=1 i=1
PR k
3 { ﬁ; } = Wji ds s is§j =lyonn y k =ls..,p+1

Calculate the components of fr (i§;-) with respect to

the moving frame xl,..,xn

(10}

n
fm(;é—)(y,s) = £ E” (s)( X0 f™) (y,s)
* 0oy §=1 J
. n . n m
i .m ‘0 _ i m i dE 3 m
O (flizZz ) = (T (1o ™ duy € Zy Gl =Zml o )
ji=1 1=1
n . R .
=Ty ¢ 1la 351 8
1, j=1 !
n A m
=yz 1o % =y
. J ds i
i=1
P no_ ' (11)
f* (-,—é'—; } ly,s) =j§1wj (yss) Xj fm(y’s) sm=1,y.9p+1.
We obtain from (8) and (11) that the functions wTj ,w?

are zero on the line vy = 0. The impact of the structure

m

equations on the functions w? and wij are
cToom m n
O w, dE . m m
—t—— = m— = .= +
ayl as? + 2 Ei wji sy M 1, P+l (12)



?’”mji -t R gm m
P = .2 (%]
oY k,1=1J1k1 k 1
n n m n m n
2§y ¢ L E] wh=3zE "] Qul _ tE™( ] + 2™
i=1 i=1 Y o=y P88 5oy 4 R
n m n n
=z €} ggl +2 ETETW= £ e} "7 .
i=1 iyj=1 J 4 iy =1 : J i
Since the indicatrix Em is normalized ,i.e., "Em(s)" =

isthe derivative of E"is perpendicular te E™. On the other

hand since w?j = - w?i the last equality of the

above formula is zero.

Thuss we obtain the equation
<e™ W = o0, (13)
e

which will be crucial for the globalization of the shell
method in the two dimensional case. The Riemannian metric
g on M induces a metric fk*g on the k- th shell pie
for k = 1,..,:p+1

* * n . n * *

o=z ola o'y =z r¥e'a *o!
i=1 j=1
»* . +* N . . n . .
el = foerxaitaudiy = & ¢1le N g we
.- J . J
j=1 i=1
n . n K . K
- (1to O EXagy +yzx %5 (1o ffas
5=1 Jj j j=1 ds

Therefore,

n . . n
£ (f**el @ f¥el) = =&
i=1 i

€ dy + wi ds )®( Efdy + wids)

I0



1I

n

2 .
= XtElfdy@dy-!- E'.‘w'.(dy@ds-t-
. i i i
i=1
k 2
+ wi E: ds ® dy + (wt Yds @ ds
Since (13}, we obtain
k* n -, 2
T g = dy © dy + E(w':) ds ® ds

That is to say, unless the vector wks ( wt,..,w:) is
zero, the form fk*g is non singular on the k-th shell
pie. Thus, it is a Riemarnnian metric.

At the vertices Qi = C (si) » 1 =ly,.yp we extend wi
with the right-hand side and left-hand side derivatives of
the indicatrix function Ei to the closed interval
[si_l,si];

Now, we will compute the Gaussian curvature k'on the

i-th shell pie - @' at nonsingular points.
K T N K
Let h = (E w, ) = “ w “ y K =1,.,p+l,
i=t ¢

If hkis nonzeros then [&, p.1103,[7, p.7] Kk satisfTies

K- o= - —K . (14)
vt h

.. kK .
The area element dAk on the k—th shell pie Q is

dA® =( det(( G';j 3%: isj=1,.,m) dy A ds

dﬂk = hk dy /A ds
- - kK 2
with the metric du ® du = dy B dy + {(h ) ds B ds.

< . k k
Consequently, we obtain for the expression K" dA

&
ok
K Kaak = _ g h2

dy /\ ds (15

The objective is to extend this expression to the points



k . .
where Ff is singular. Let K; denote the sectional

curvature of the plane section ¢ in M, spanned by

k 3 k

the vectors f* (5;—) and f*(%%g),i.e.,

k kS kD kB k7
Km(f ya) = (1/det ((g )) g{R(Tf ?’f*ﬁs f*av—,f*—ﬁ )

. Kk 2 n K n n K n K
= (1/ h') g(R( T EX_ »Z wlx YT E1 Xl 'z W é),
j=1 3 3 i=y 1=1 s=1
k.2 1 i kK Kk _k k
= {1/ h) z R_51 E. W, E1 W, (146)
iyjrspl=l Y J
and by (12),
CED) = ——/a ( 9'—E‘i(-i-glik wk ) gEk@l‘l‘;
% oy dst .y i i oY
therefore n
K:(fk ,o) =-1% EX Ry E: “kl
j!5|1=13 4
(17)
n k ) [
Kk k k kO2w., K k 2y
= —(1/ h )2 E S i m—= (1/h )24 Wy —=m—2
KM( f ,a). {1 i=§'w1ﬂ9y2 » Byre
LEMMA 3:
‘ k k fined b
The function FM : Q R define ¥
K
k2 k 02w .k
- < —_— > if h is nonzero
r; (y,s) ={ {1/ D ) W 53
0 otherwise
. k
is continuous on the k—th shell pie 2 .
PROOF
i j k is continuous where hkis
Obviously, the functiaon FM is



I3

nonzero, and at these points

k
Kk & (a?w
. (yss) o —— < w — £
| Tm | K » Ayt el
< L wk ?éiﬂf = Qiiﬂt
SRl H SyE b WS e
K n
I k ok K .
But, %gv?l . 2‘ Rjiml Ej Em " y i.e., the
jml=1
. 'azwk L. k
functions 15—;? are continuous therefore, FM is zero
where hk is zero.
q.e.d.
LEMMA 413
D n¥
The function =Sy is continuous on the k-th shell
pie for k=l,.,p+l.
de™
i1t is equal to “ b " o on the line y = 0, and is
zero at other points where hk = Q.

PROOF =

Let hk nonzero, then hk is Cm and its partial derivative

is
ok . 3K
on® 79 Kk % K K w
-~ —_— = — “ 8

Let h* be zero. This is the case iff y = 0 or ——=(a)
= 0-

We will use the equality

n . k
k i K dE’,
w. = y T (10 fo o} agd
i jmg
K k

For y 2 0, we obtain h =y || K "e with the functions

A



Ke =T (1t o % GE, K = 1,..,p+l.

‘QB.
Observe that Xi {0} =G¥;1 y i=l,.5n0 i.e., the

transformation matrix (1; | iyj=1l.ym) for the
covectors 6%, has the value 6% at the point D..
J
The value of H: on line y =0 is
A de®  _ de®
L 1.(0)y = = —i .
j=1 j ds ds

Consequently, the derivative of hk is on line y = 0

be 3k - K
2h k =y 9EC
Sy T hriesry =5l e

Other singularities of h* lie on the lines s = o with

aek

~Ge (x) = O .

We obtain from the formula hkﬂ Y " Hk “e the continuity

Dk
of 3y

Other singularities of hk are (ays) such that the

for points (0,s}) where Hk is nonzero.

derivative dEk/ ds {x) of the indicatrix Ek is zero.

tlsing the inequality (19)
D nk 1 k Duwk 1k 3w K
L3y d S gy el 2 R el Yy lle

k 9 p¥
which is valid everywhere on  , we obtain that —a;—

is continuous at (oss ).
q.e.d.

I4
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LEMMA S:
. Benk \
The function Cg;?_ is continuous on QE » k = 1y.yp+1 and
€ > 0.
PROGF =

We obtain from the lemma 4 for hk nonzero

D ,%9n" Q 1 k Bw ¥
=L (T ) = = — .
Ay Sy ray( hk<w B -av > ) = (20)
-3 k
K Bw K
=h Chay Na b v g
K
k Ow k
——— % 2 -
< w ’%Yé) FN
swhere F; is defined as in the lemma 3 and
- K k
k_ Kk _ K k Qw k D
FEly- Ciwilla gy e - <vw » 572 e
K
wi th r‘"=-(%;-;‘—z @1)
K

(x) = 0 for s = «o then, Fk

k -
Let h = 0 .i.e., ds
(yrad= 0 , for € 2 y £ rix). From (20) and lemma 3,
it is obvious that at the points hk is nonzero the
function Fk is continuous. For singular points we will
k

show the continuity of FH - Fk .

By o H:j>|i,j =1l,..:n) we define the inverse matrix of
i k .. . @
(¢ 17 o )|1.J=1,.,n) with C - functions
]

B, 2 R —==» R .
1)

Observe that y 2 € > 0 and

k n 43 . k
- PR k. dE i k. dEX
ol cE. 4 T = (1'c %) EE
CT AN L LA - TR R D
, N



. K n i-
=2 + y I (451 o % 9
Y L m d
jam=1{ u

EX
S m

Therefore, for y > O the matrix form of the abaove

formula, with

k k k r k
W = { W,9.093 W) 3 M= :
1? oW o) (¢ ljD T r,j=1,.,n) H
og" _  gE' T
ds ds” *"""' ds ’
or
(w9t oy M (95E y t
Y ds °
Thus, we cbtain
Dk k n 2 BE!

w. W 1 k k k k
1 = i+ XA —_— o T ) K w E
24 4 My jrl=1 u 1 my 1 1

n fa i
Define A, (y,s) =T ( =tm o f*) ES nk
*d 1,m=1 ('au. m 3
and E. = ( 1/y)y &, .
13 1)

We can describe the last equation in operator form

Dt

QBV ) = (E + A )¢ wk) t

(

i.e., there exists Dk= D|< (€) such that
Dk " k K
h 55 te s PHW flg =D b
tleing (20
-3 k k
k k., _ k k Ow _ kK Ow
PP T =0 v NIt ey e ™ S 33927 <
¢ p** nk .
Consequently » F; - Fk is continuous at points where

hk is zero.
Together with this statement, lemma 3 implies the

continuity of Fk at zeros of h .
g.e.d.

16
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We will calculate the geodesic curvature of the

shell curve C : [0,L] -—-> R? with respect to the

induced metric at the nonsingular points. Let Ek be the

restriction of C on [5k“1,5k 1. The tangent vector Ek is

K ar® 9 L

€ (s) -
) = {39 ’ay+@5)|clfs}’

where s is again arc length parameter of Ck.

Therefore, we get

o . (22)
daz ¢ cRs) » Cfs) > =1 = ¢ ST'-.;— 12 + (h*} (r*(s),s)
We define kis) = n* r¥isr,8) si.e.,
drk 2 K2
B RN M TR (23)

We will show that the geodesic curvature aak of the curve

Ek is
k k
2
BURPIIN- L S - L (24)
DY f k ds?
k* .
The metric components of T g satisfy
a g a G .= (K
U= 1o U= 0= Ug s UppS
k K
1 1 1.2 1 k Oh 2_1 On
= = = = = = B i r e r— B
F11® T12= Tat M1 %% Tea Bdy ' e [k Qv ’
2 _ 2. _1onk
12 21° | kQy
This is clear from the formula (8, p-84]
2 da I da
= 1 J, U, . o,
L u r.. = (1/82) ( ——jk + —ki - —=—ij )
1=1 lk "1 Ox} @x" (axé

risjok = 1,2)



where ui‘j are the metric components, and F% are the
J

k
components of the metric connection. We obtain for

—k
‘7D cls =

gzr_ Lk Q¢ | S L g ar O
ds? y Y |E%s) K s y

=

K
. . 2
Now R (rkis),s) + ¢ S e =1 implies
Lk Ok ark ark are®  Qnk ko
Sy ds ds ds? oS
Consequently,
On % ar® n" 1 dzrfar”
as ds 9vVY k ds2 ds

The normal vector of Ekat the point E%s) is
L7, p.80B1

Kk k Q; + dr 1 qa

n {(s) = - h -
DY ds hk o5 | C(s)

'herefore,

K k
kK .k * kK k 2 _dr Oh
@ = f (:U DC sy n )Y = (h + (E;;) 2 Eg;- +
K k
(- k1 ar’® Ca s dzr® _ @Qn 1 d2r
_ 1 '
hk ds ds? DY hk ds

. k
Because #; is an isometry at the points h #;0/

it is a a well known fact that (7, p.1351

18
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the square of the

K2 Kk 2
20 = 2 + Jlength of the second fundamental (25)
form of (Qk,fk ) restricted on Ck
k . . K
» where an is the geodesic curvature of C" .
k K
Therefore , ‘ EN I 2 | &2 |.

We will extend the geodesic curvature of C k with respect
ta the induced metric dy @8 dy + hk(y.s) ds & ds to

a function, defined almost everywhere an Esk_ 1S, 1.

1"k

LEMMA &:@

a) k'(s) = hltrl(s),s) is absolutely continuous on

[Si_ nSi]p i = 1'.',p+ 1-

1
b) k' is differentiable at the points where it is
nanzero. It is differentiable at a zero s = o« iff
da’

cde ls=a

=0

with #ls) = w' (r'(s),s) € RN.
PROOF 1

a) Because @i is a € - differentiable on (s, _y»S; 1y

1
there exists Bi >0 Tfor i = ly..sp+l such that

i
dé
s le* By -

We obtain, using the mean value theorem,
TGS I IR I L M
|85¢by - 8@ ¢ By |b-a]

where S5 15 a,b & si for i=1,..:p+1 .

i sy . i,
k' is Lipschitz bounded, thus it implies that k' is
absolutely continuous.

b) ki is differentiable at points where it is nonzero.



This is clear because hl(rl(s).s) has no singularity
there.
i dﬁi
1f & {ax) = 0 and ds () is nonzero, then we can
factorize the function Ql-(s} = {5 - a) v{(s) such that
. @ . .
7 is U - differentiable and v(a) is nonzero. Therefore,

klis) = | s - o | " T "e is nondifferentiable at the

point s = a, Un the other hand, if dii/ ds |s=q = 0

then
i o

g (s) = {58 -« )2 3{s) where f is C . Consequently,
i

k'{s} = (g - a)2" Ais) "e has at this point a zero

derivative.

Define the angular function « on Esi—l' s, ]l by
i dri i

sin o' (s) = ~—— , - w/2 ¢ & & we, (26)
i = 1y..,p+1
The formula (23) implies «' is well defined.
The formula (26) implies

i i
cos a (s8) = k (s) , (27)

We compute the angle 7' between C (s ) and'algs
i .

i *
in ot equipped with the induced metric " 'g

-2 dr '3 a3 9

d ( + ) 2
i - ds Qv s’ Ds I(y;s) ki ;
Ceos 17 = -— = —/—=005 o
=i :a i
s i =e i k(=)
Geometrically, the function ot is the angle between

=i
the tangent vector C (s } and 5=

20



LEMMA 7

‘ . i,
The function « is absolutely continuous

an Esi_l,sil. It is differentiable at a zero point

ift k1 is differentiable at o for i =1,...sp +1.

PRUOUF :

The function Sin—l is uniformly continuous on the
campact interval {-1,1]). Consequently, there exists

ﬁumber o > 0 such that

| sin-la - siﬁlb | < w/2 where, | a-=b |< a and
~1$a,b.<.l

The function r is C on [si-l’si J. There exists
d2ri
number B, such that | | < B, on s, .5, J. Let
i ds? i i-1771
i £ £
So be with 5,13 815, & 5, such that
| 8y = = EI < o/ B i

s

a

21

The following equality is obvious from the definition and the

tti = al (s ) dr . = dr!
setting %; T2 B > Tds? ds | s =s,
i = 9r _ gr dr, _ dr -
sin (u?- ] 1) = dsa k1 ds1 kE = kl( dsa dsl)

dr
a;i (ke k1)
i
where k. = ki(s, ).
J J

fherefaore, d
dr r -
| sin | aE - ul) | LY l EEE - E;l | + ] ka kll .

The mean value theorem implies, that

. dr dr d?r -
|sin &, - sin o« f=| gl = 528 |¥] g37 | | %273

Therefore,

| GE - “1 | = | sin_lt sin L y - sin“* sin al) | < u/2.

|$ T



Furtheremore,
s b4 —2— sin s is on s 4 —=— wvalid.
| = | 2 | I i s | id

We obtain,

|a

- ‘ ; _ C9r, _ dr
2 q1| L n/2 ‘ sin (qe ul) | £ /2 (|d = asl| +

] kT Kyl )
The function dr'/ ds is C ° and accerding to the

lemma S, k' is absolutely continuous. This means that

the function o' is absolutely continuous.

For the points s where k! is nonzero y the

equation

‘sin o« = ‘drll ds
implies

do* _ axel 1

ds ds2 ki

i s . i

In a neighborhood of a zero of kl. the function sin «
i i

is nonzero. Therefore, the formula cos o = k gives

-

: dk
dot _ ds
ds drt
ds
iff dk'/ ds exists.
g.e.d.
Consequently, the formula
i i (29
al = iiﬂ_ - g on Is. 3S5. 1 » i=1,.,p+l,
Y ds i-1 i
i
extends the domain of & to Esi-IsiJ except for a set
‘ . i
of Lebesgue measure zero. Furthermore, if k™ = 0, then

22



the extended function on [51-1’5'1 ] has a zero at that

point. Finally,

k k
| 2 | 2 | = |
holds almost everywhere on Is i-1? s J.

Now we can formulate the main local theorem.

THEOREM 1 o

Let O be a point on a closed piecewise regular
curve € embedded in a n-dimensional Riemannian manifold
M; Suppose that C lies in & convex normal neighborhood of
the base point 0. L.Let s be the arc length parameter of U
such that C(0) = 0 = C{L), where L is the length of C.
Let Gm = C(sm) _for m = 1,.,p be the vertices nf_the
curve C. Let K' be the Gaussian curvature and dA’ be the
area measure of the induced metric fi*g on the i-th
shell pie Qi for i=1,..,p+l. ai denotes the extended
geodesic curvature of the curve Eisuch that ¢ 51(5)) =

C'(s) on Csi_l,si]. We denote by o the angle between

24 )
C {s) and 3% ° Then,
p+l e i p+1 p+i i i
z ® ds = @w + I 1 -z I I K™ dA™ +
j=1 51_1 i=} i=1 QI
P .
+ oz it s, ) - « (s

where 1'1 is the length of the indicatrix

function E1 .
PROUF =

i i i ;
First we will integrate K dA on Q for i =

23
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2y..1p. According to the equation. (15), we obtain

[ [ «* e = 1im i1 IR ds =

€40 " Dy?
ot ol
€

si‘(a i si 1

h i X Bh

= | -2 ¢ (s) ) AL

£ ks rits),s ds + lim | S ¢ € =) s .
O Si-1

Using the extended geodesic curvature al, due to (29), we
evaluate the first term . Since o is absolutely

continucus L9y p.2071

S . s,

i i . -

J _fon” (r{s),s) ds = - I 23(s) ds + ( a'(s. )

o oy < i-t
i-1 i-1

i

Lemma 4 implies that

s . . S . .
i i i .
. d i
1im B e,e) ds = f | 55- | 85 =1
€20 s oY S. s
i-1 i-1

: ' ;
sie, the second term converges to the euclidean length 1

vf the indicatrix on the interval tsi-l’ S, 1 i.e.y

s,
S U by i i i
[ kiaal = - [2iter das v 17 = Calts o= alisy .
Q! o Si-
Let 51 s L — 8 be the well defined values of s such
P

that the line y = € meets the curve y = r(s) once



25

,i.e., : _
)

p
Therefore,
1 -
S B | . “on! ’a 1
K™ d - AL
J J A = L%S I Dy (ri(s),g) ds + j —-; (€,8) ds
0O ‘50
s ,
1
= - j #& {(5) ds - u1(5 y - al(s ) o+ 11
5 1 (&)
(4]
gnd
- s p+1
‘ +1 +1 ‘B
-J f kPl gpP = lig f P*ls),s ) ds -
Qp+1 p
- P - up+{sp)) + 1P*!
Consequently ,
p+1 i p+l i p+l i. p+l
T f f k' dad =2 1'- = [ 2'(s) ds - & ¢ at(s) -
j= i=1 ®  i=1 i-1 j=1
i
a (s, _,)) =
p+il i p+t 5 i ' 4
=3 1" - X f ®# {s) ds - a (51 ) + o (so) -~
i=1 i=1 8" _,

+ .. - up+1(L) + p+1(sp)

Lemma 1 shows that ap+1(L) - dI(O) = -1,

Therefore, the above expression is

BOGATI UNIVERSITESH KimipHats



p+l i p+l pe! i p , .
=r 1! -z f 2'(s) ds +w+ T (s - atis. )
i=1 i=1 5. _, = i

q.e.d.

The requirements of the above theorem are satisfied,
e.g.» for n—-manifolds M such that M is a complete simply
connected riemarmian manifold with nonpositive sectional

curvature K 1t is well known that such a manifold M is

M -
a mormal neighborhood of each of its points so that the
shell (4, f) is well defined [10, p.74]. Therefore,
theorem 1 could be applied on simply closed regular

space curves in n—dimensional Euclidian spaces.

THEOREM2 :

et M be a complete simply connected Riemannian
manifold with a nonpositive sectional curvature function
.KM . Then the geodesic curvature &y af any closed
piecewise regular C embedded in M satisfies the

inequality

p+1 ' : p+l i
T ] | =l ds 2 2w - I f f k! da
. M . M
i=1 i=1 1
5. Q
i=1 p )
+ 2 tts, ) - ot (s 1y
i=1

where (Q,f) is any shell on C.

PROOF 3
it is well known that such a manifold is a normal

neighborhood of each of its points so that the shell (Q,f)

and the i- th shell pies are defined. According to Lemma 1

the indicatrix of the shell joins a pair of antipodal

26
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points on a unit sphere and therefore its length 1 2 w.

. i i
pnnsequently &8s l aN| 2 | a1| we obtain, using Theorem 1
p+l Si ; p+l  2i ; p+r1 %i
£ I | 8y | ds 2% I | @'| ds 2z 2 ds =
i=1 8,4 =18, 1=l s,
P . p : p+l
=w+zl o+ roattsn -al s -5 [[ kol
i=t  i=1 Y=t Y
o
p i+ . ptl
=27 + £ (atfls) -altis.y -% [[ x' ant.
. 1 1 . .
i=1 i=1 Q1

fhe proof is campleted by (« Kk} - k') dal 2 o

{14, p.2501].
g.e.d.

We will compute the outer angle +' of the curve C

at the vertex C(si) and assume that s, is a nonsingular

. . . . ix
point of the induced metric f g .
cos T = 9 (C_IH(Ei ),Cltsi )) =

( dri+%fi+i Rttt arl et L rf?
9 'Tds 5y s ' ds By Qs

i i i i i+l i+t i
at*!_of = @rttiQrt | erlf 0 Tar ),
Dy ' QY

= ds ds 9 ds 9 dy ' s
i+} 1
+ dr1 ( @1'*1&1) ‘g f-gi' , ‘af ) =
ds Ry’ 5 oS os
ivl i on i R
dr dr i+1 i dr
E mm— = ¥ E (s,) E. (s.) & + — L Ep(s.) w &
ds ds k,1=¥ 1 1 71 kl S ky1=1 1kl



r.:|r'i n i .+é‘ n i+1
+ T— I E (s;) w + £ Wt
ds kyl=] koot 1 ki kyl=1 k 1 k1

As a result of (10), (11),(13) and E'*ls ) = El(s »,

this expression is equal to

i+ i n
dr. gr_ itl i+l i, i
ds 5=5i ds 5=s: kil “k (r (si),si) wk(r ( si),si)

We denote by & ' the angle between w1+1(si)

and wltsi). Then we obtain

(H40)
i+l i _ i+} i i
< v » v ’e =W | & | W || g0 ¢
cos 71! = (31)

) . . . . . .
= sin qi }51) sin altsi) + Ccos 61 cos qltlsi cos ul(si)

We have calculated (31) under the assumption that
k? ‘Ei’ and k1+%5i) are nognzero. We will show that we

can distort the base point 0 € C({O,L1]1) slightly and

{4 .
maintain that both magnitudes k1 151), kltsi) are

different from zero.

Consider the case where kltsi) is zero. This means the
tangent vector C (si) at the vertex point C (si) is also
tangent to the geodesic ray # through C (0O)

and C (si). In this case,

either
a) For every & > 0 there exists s such that

0O (s < & and C(s) is nonelement of H,

or
b} There exists & > 0 such that for all s
with QO < g < &, Ci(s) € H.
We will show below that both cases " a) " and " B} "

could be avoided by a simple modification of C with the

base point 0.

28
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Let psq € M,
qu = { 7:00,10-+= M | T(0)=p, T({1)=q, T is piecewise
‘ differentiable}

and L{7) denote the length of the curve =~. It is well
known that the map

m: Mx M __;*; R
{pyryg ) ====3 inf { L(T} | T € Q }
P»q
is a metric and (Mym) is a metric space ({8, p.15S&).
We denote by B €(p) the open ball around the point
p € M with the radius € > O.

Let R dencte the two point compactification of R,
and M be a complete manifold equipped with the distance
function m. We will define a function s on the unit sphere
bundle of M

S: T1 M ---» R

siv) = sup { t & R | mim(v),exp tv) = t }.

7 is the canonical map of the sphere bundle. The function

s is continuous (B8, p.1691. Moreover, let us define

CP = f s{v)v l v £ TP MmN T1 M 3

and
C(Py = ( expptw) | wE C P } .

The set C(FP) is the cut locus of M with respect to the

paoint P € M.

First, we introduce a technical lemma.

LEMMA B8

Let A : La,b]l —-—-—» M be & path and trace A lie in a

normal neighborhood of @ € M. Then, there is € > 0 such

that trace A lies in a normal neighborhood of v ¢ M for

all y € B Q).
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PROOF :

Since we deal with a compact set, trace A, we can
assume that M is a compact manifold. Therefore,the
distance function m is bounded and ciisequently the
function s is bounded. According to the assumption, there

is a linear isometry i from RM anto the tangent space T_M,

Q
and there is a o > 0O such that
. ' -1
(
X = exp, © 1.| B cr(0))

is a Riemannian coordinate function on U = x Y8 F L0

Since trace A C U, there is a ¢l with 0 < gl { o with

trace A €  x X« B, ,(0)) C u .

We define

K=xY((r¢ern | Tl e~ 9t 2

which is ditfeomorphic to S "1 and @ ¥ K.

1

Q (P} €M I P &€ K 2> does not

Therefore, fhe set exp_

contain the zero vector 0Q . We denote by w(P}) the

normalized vector

wi(P) = N S e T.M N T M .
" EXp o (P) "
Now, we introduce a map

g : 1, M e——% R x M

w Fe=—p ( s(w), exp (s(wW) w)).
Since the components are continuous, § is continuous and
defined on an open set of the unit sphere bundle.

We chouse faor P € K, O < E(P) < (1/3) l siw(P}) —m(P,Q)l.

v = w ( QPIC ( stw(P))= £(P), + @) X BE(P) (P} ) is

an open neighborhood of @ . Note that the projection map w



is open. Let P1 € B Q(P)(P) N K and Z € V, then

miPLl,2) £ m(PL,P) + m(P,Q) + m(B,2) < 8 €(P) + m (P,Q)
<2 E€F) + sS(WIP)) -~ 3 E€E(P) = s(Ww(P)) - €(P},
Theretfore, there is a v ¢ T1 M n Tz M and
Pl = expz‘( miPl,2) v ) ,

Let { BE(P)‘P) | P €K?3 be acollection of open balls,

Since K is compact,; there are finitely many balls B H

ctpgei

such that KC 1 B8 (P. y .
We define an open set

k .
0 = n wia ‘s (WP ))=€ (P)y+ @) x B (P .

(P,
i

{his open set contains @. Choose an € > 0 such that

@ € BE(Q)C{J.

According to the above calculation for all 2 € B €(Q).

the trace A lies on an open normal neighborhoed of 2.
G.E.D.

In the case " a)" we can distort the base point @ on the
trace of Cy, and find a new base point @ such that the
geodesic ray T which emitted from @ to the vertex
point € (si) is not tangent to the vector C (5i) at this
vertex point,

In the case " b) " we will modify the embedding C itself
lacally and correlate the geodesic curvature of the

modified embedding to the geodesic curvature of the
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previous one. According to the lemma 8 we chogse an
€ > 0 such that there exists & > 0 with

C(LO,& J U (L - &,L)) B€ (ay ,
and the condition " b) " implies that the curve C
restricted on L0, 1 U EL - &1 1is a local geodesic.
Therefare, in Riemanniaﬁ normal coordinates (aV); we
can represent C without restriction of the generality in
the form a (s ))r=1(8,30,,..13 0) .

Choose a c® function gl such that
supp gl € ([0,8 ) U (L-&,L)) and gl(0) = gl(L) are

nonzero.fFor a small Iﬂ| 2 O define

H.: LO,L] ~—-p» n
i yL1J R

(S -91(5},0,5..50) 5 € (L0, &) U (L-=&L.)

Hﬁ (s) =

al(Cis)) ptherwise
and a ! (H Q0 € B O M , €>0 as in lemma 8.
Ubserve that a *(H o(s)) = C(s) for all s LO,LI.

tonsider the parameter transformation

a~! : to,L1 ————> 1[0,L1]

where L is the length of the curve H‘3 y 1.4

~ =1
= { .
Hﬂ( d” (s)} Hﬂ s}
" -1
Since H“ (s) = a{C(s)) on (& » L~ § ) and d | (&,L-&)
is a translation,
-1

H“ (s) (Hﬁ )*(D5 ) = (H“ od )*(Ds )

ﬁﬂ ( d"tsy) for & <s <L -¢

and



o

= K - = -
| ¢ H) Dy, ) He 1

where K is the connection

map of the Levi - Civita

conmection from TTM into the tangent bundle THM.

Thus, we obtain for the

~ -1

geodesic curvature a“(d (s))

= ® (s) on the interval s € (& , L —-&).

M

As a result, we calculate
: ’ -~

of the modified curve Hﬁ

L a~tsy
I a&s) ds = I amts) ds
s} 0
d~ s L
= I ® (s) ds + I
QO d*l

the total absolute curvature

z (s5) ds

+
e
& 2
n
a
n
+
— 2

—

d s d T(L-§)

d (L - &

LY

; (s) ds + I & (s) ds

= A + f ® (s) ds .

)

where A is the sum of the first two integrals.

Since C is a geodesic on

o, § J UIL - &,L]we
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finally obtain

L
(s) ds = A + f 2 (s) ds .
0

C — T
a2

Thus, we can correlate the total absolute curvature of C
to the modified curve up to a translation factor.

Let Hﬁ be the c” deformation as above. The
components of the main formula of theorem | depends
on # continuously (7, p.301. We will demonstrate this
situation in a simple example at the end of this study.

According to the above results, we can assume
that for two dimensional cases < w' '; w' > different
from zero s 1 = i,.9p. As a simple consequence of the

formula (13) and E'Ti(s ;) = E's) , we know that the

. . . .
vectors w' land w' are at the point (rltsil.si) colinear.

Considering the linear relation of the vectors w' and

the indicatrix E 1due ta

n ‘ Zi

i , .M i dk . i i+
W (yys) = ijllj (F (yss)) prim |5 = d W iy,s)
i = 1,.sp H m= 1ly.sm1
where z = (1" fi)A =1 ol ———> GR(R,n) is defined
3} s J=

as in lemma 2.
The last equation expressed in operator form is

g§1+1_ dEl )t)

ds ds =0

Z2(¢d
where (:I'1 is a proportionality coefficient .

Since the vertex points Qm are not on the line y=0, the

above definition of 2 = Z{y,s) is well defined.
We will formulate in this context the behavior

of the indicatrix function E at the vertex point um.



LEMMA 9 :

With the sbove notation for two dimensional cases,
k

d > 0 if and only jf the indicatrix E is 1 -1 near
to S, K = lye.yps
PROOF :

Since the above claim is a purely local matter, we assume,

for the sake of simplicity, that s = 0 and furthermore,
there are Cm functions a and b such that

al0O) = b (0) and

78
"

I~
o

ial(s ) - €
E I L-€,€] =
i b(s)
e

C
I~
n
(78
m
.

The right hand side and left hand side derivatives of the
functions a,b vyield
1 a0, (1,45 i b0y e P19

( elb(O) ye.

e * @9, o aro) e

Therefore, dka’(O) = b?’{0), and the Taylor expansions

of both functions for QO £ 8 £ & s &§ is suitable,

alQ) — a’(0) s + O(s?)
b(O) + b°(0) s + 0O(s2) .

ai-s)
b{ s’

Theretore
sgn ( bis)-b(0)) = sgn b"(Q)

sgn ( a(-s)-a(0)) = -sgn a’(0) = - sgn b’(0) .
Since d"> 0
sgn (b(s) -b(0)) = - sgn (al{-s) - a(0}) .

Define a new function

Als) = 4 268 for - & £ 8 0
8) =1 p(s) for .0 s .

[ L3 2N
1~

A
Oy ¢

L]

We claim there is a small & & 2 &1 2 0 such that the

35



function A on the interval (- &1, &1 1 is injective.

Let us assume that the function A is not 1 ~t on [~ 1,811
for each &1. Then, there are zero sequences

(¢
5 X den

'f‘sn)%EN

such that

-8 ¢ s < 0 < s ¢ & and

1]
]

3
"

b (s ).
n

We have ~ * ~
- sgn (a (-sn ) - a(0)) = sgn (b(sn) - blG)}

= ggn (a(sn) - a{0)).
Since the function a on L*E 301 iz 1-1 and ats )
_ n

not equal a{0) there is a S, such that either

-85 < g < s or 5 < g < -
n n n n s n sn and

a (s ) = a (0),

which is obvious since a is continuous. ((s_)) is a

n n €N
zero sequence which clearly contradicts to the fact that
a is 1 -1 near to zero.

Lonversely, let us assume that the indicatrix function E

is 1 -1 in a neighborhood of s = 0, We claim

dk= a’{0¥/b’{0) > O
or sgn{a’(Q)) = sgn (b’(0)).
Let us assume that sgn{a’(0)) = -~ sgn (b’(0})
then, define dt : = min ( max (a(s)) , max {(b(s)))
sel-&,01] sEL0,81

such that both functions a,b on [-&,01 and (0,8]) are

respectively monotonic.

For each O < d" ¢ d1, the line y = d" intersects both

36
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functions a,b in a vicinity of zero only once. Choose a

zero sequence (tdn))n €N

such that 0 { d; < dl

Thus we obtain two zero sequences

-8 < s <0 < Sk < &
with a(s; ) = d; = p (5*3 )
fherefore, the indicatrix E is not 1-1 in a neighborhood

of O.

g.e.d.

DEFINITIUN t
The indicatrix E intersects Qi'i =1y.3ps transversally

if and only if € is 1-1 in a neighborhood of S -



I1. GLOBALIZATION OF THE SHELL THEORY

FOR TWO DIMENSIONAL MANIFOLDS

7o formulate a global version of the thearem 1, we
will introduce some notations from combinatorical
topology. Let M be a Riemannian manitold with baundafy
M and J a simplicial complex; and t : J ——+ OM
be a C triangulatidn of the boundary.

An extension of t is a Cr trianqulation G: L -——» M
of M such that G_lo t is a linear isomorphism of J

with a subcomplex of L. It is well known that [11,p.1011],

when M is a manifold having a boundary, any Cr

triangulation of the boundary may be extended tc a cr
triangulation of M.

Let 8 be a two dimensional manifold, i.e.,a
surface. A region R C S is said to be reqular if R s
compact and its boundary ‘R is the finite union of
simple closed piecewise regular curves which do not
intersect. Let & be an oriented surfaces and ( %o ] o
€A ) be a family ot parametrizations compatible with
the orientation of S. Let R C 5 be a regular region
of S. Then,there is a triangulation & of R such that
every triangle Tj ¢ £ is contained in some coordinate
neighborhood of the family ( X o | % € A ». Furthermore,
if the boundary of every triangle © Tj of €& |is
positively oriented, adjacent triangles determine

opposite orientations in the common edge (18, Chp.11,
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13, p-1271.

Let Gk’ k =1,..,p be the vertices of the
houndary @ R. We denote by T the outer angles of

BR. Let & =4 T j =15..,F } be an extension of

i |
a triangulation ft of the bﬁundary ‘D R. Moreover,
let each triangle Tj lie in a coordinate neighborhood

of the family ( X o | & €& A ¥} such that each’ET}

be positively oriented.

To clarify the relationship between the outer

angles Ty —oW L1 1i£ w » of the space curve C at the
vertices Qi and the shell angles qi, ai+1 ’

i i+t . . . .
-nw/2 £ a, o £ w/2 » we investigate the orientation

ot the function
fk(y,s) = exp0 (y Ek(s})

at a vertex point Qi . Let M be an oriented two
dimensional manifold. Let C be parametrized such that the
normal vector of C shows inside of C. We choose X1 = &o)

and XE = the normal vector of C at the point C(0},

Using the normal coordinates, with the help of the

formulas (8), we can identify the tangent map

£ K with  the matrix

*‘ (r (Si)ssi)

k k (32)
El(s) Eats)
k k
951 (s) ¥ gga {s)
ds | (yss) = (r %si).si)

1= l'til'p and k= 1,---’p+1-

Since rk(si) 5> Oy

39
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Kk k
san ( det £% K ) = sgn (det ( EX¢ dE
®| tr (si).si) 5i'* &= (s

< k . X
We detine f  is at Qi orientation preserving iff

k
s (d ( = j,1
gn Et 'f* l(rk(sl)psl) ) > O [y k = i,i+1,
Let us assume that E intersects the embedding

Cc at the point Qi nontransverseally [p.37] in the sense

of previous definition. This means

i . i+1
sgn (det ( f i - .
9 ®|(r (5,),s.)) = = sgn (det ( f*l (rits d,s.)’°
1 1 i i
For the transversal case, with fi,fi+1 ’
both orientation preserving we obtain by (31)
Tyt ottt iy 20 . (33)
1¥ both functions are orientation reversing then
T, = u;+1 - al =0 .
i
THEOREM 3 :
Let ﬁ'C.S be a regular region of an oriented
surface and let C1 Yeeny Cq be simple closed
piecewise regular curves which form the boundary ’B‘ﬁ

such that Gk y k=1,..»p be the vertices of Cl,1=1,.,q.

Let &1 = { Tj | j =ly..»F 3} be a triangulation of the

region R such that every triangle Tj is contairned in a
normal neighborhood of Bj, which is a nonvertex boundary
point of Tj and let the boundaries be positively oriented.
Construct ¢ Qj M fj Y for every triangle j = 1,..,F

with the base points Bj. We shall denocte by Q? the

a-th shell pie of 0, with the vertices Q? .

a
Let K_a be the Bsussian curvature and dAj be the
J
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area measure of the shell pie (ﬂa,fé) sa = ly.st. We
3
denote by lj the length of the indicatrix function Ej
of ( Qj.fj ) where every Ej intersects 0°
J

transversally. Let ,f?+} f? be orientation preserving

tor each vertex point, then

L

q 1 F 4 S
a a

by I alts) ds + I z II I<j dAj_ + v F + ‘E Ty
1=1 =1 a=1 g k=1

(o} 113

J
~ F
=2 7w X(R) + & 1, "
j=1 7

X(R) denotes the Euler-Characteristic of the enclosed
region ﬁ; and ®) is the extended geodesic curvature

of C and 7 sk = l,.,py are the external angles of

1 k
the curves Cl'

PROOF :

We willt apply the local shell theory to every triangle

T, and add up the results. Let T, € €1 be a triangle
with Bj € Tj. a nonvertex base point. Since Tj lies

in a normal neighbarhood of Bj. we can apply local shell
theory on  the boundary of Tj . We choose a realizatign
of Qa‘fj and again denote it by ﬁaTj, i.e.,irTj : EO,LjJ
—= 1& .G§T3=QE§5) where s is the arc length

parameter.Thus,

a
S
4 j 4 4
g [ 22 ras + = f f K* aa® =w+ ¢ 1% -
j j j j
a=1 g2 a=1 o a=1
J



G? y d =1|.13

denote the exterﬁal angles of T .,
J

We shall now introduce the interior angles of Tj y given
by
d _ d
°‘j = “_“j s d = 1,,,3
Thus ,
F 3 d F 3 F 3
T X aj = L Z w - T £ g = 3n F -
j=1 d=t j=1 d=1 ji=1 d=i
F 3
-z £ g9 .
j=t d=1 9
Let Ee = the number of external edges of ®&1
Ei = the number of internal edges of #1
Ve = the number of external vertices of &1
Vi = the rnumber of internal vertices of &1
E = E + E. 3 ¥V = V_+ y.
e i e i
Since the curves Ck are closed Ee Ve. We obtain by
induction
3F=2E, + E_ .
i e
1hu5, F 3 d F 3 d
£ T «a, = 2 v Ei + TE~-Z I @8 .
j=1 d=1 Y j=1 a=1 J

We observe that
vertices K1 in two groups,

vertices introduced by the triangulation,

W = V) + v

e ec et’

where Veu
and Vetthe number of external vertices of

vertices of some curve uk

we can collect the numbers aof external

and

i.e.

is the number of vertices of the curves C

£l, which are

42



not vertices of some curves Ck' Notice that the sum of

angles around each internal vertex is 2w, thus we get

F 3 g
z I o, = 8w E. .+ - - -
j E1 u Ee 2n Vi n Vet
j=1 d=1
p
-ZZd{m - T ) .
k=1 k
Since Ee = Ve » we conclude that
F 3 K
z T o é 2n E. +am E - em Vv, -wvV ~ Vet ™ Ve
j=1 k=1
p p
+ L Ty =PnE~-~-2nuV+ZI T *
k=1 k=1
This implies, with the theorem 1,
<3
4 j F
a \ a a
(s) ds + X KT dA® + ( o+ o + o )
b M I aJ s J f ; ;
a=1 s a—-1 a=1 Qa
J J
4 a
= 11mn + 1
a=1 1
' 0 1 4 —
i = { +0 & s, =1L
with Q sj < sj i j
a ,
F 4 5j o4 F 4
a d4a® - & o =
z z I aj(s) de + L I I.I I<j dAj i
j=1 a=1 a-1 j=1 a=1 a =1 a=1
=3 14

i 3
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v, DEMONSTRATION

al
Consider the standard embedding of g! into R?

plane
C: 10,201 ——=> R2
g F=——-p eis,
We ChPPSE @ triangulation as below
Let o mx = Zn,
Then,
en
| # @5 ¢+ @aw = En+ 1401 .
1 m
Q

Because of the convexity of the almost triangle shaped

shells we obtain

en
I 2ds = 2u, as expected,
0

b) In the second example we take as manifold the &2
sphere and as Cy, a great circle’ through north- and scuth-

pole. 1In contrast to the first example the embedding C

has no point such that C lies in a normal neighborhoond of

it. We choose a triangulation of the left hemisphere of

S2 by two intersecting great semi circles as below .,
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The triangles of this triangulation are made of minimal
gendesics. In order to apply the theorem 2 on this
triangulation, choose a nonvertex base point B on a

geodesic. Since B is on a geodesic, we make, according

chapter two, a small deformation inwards of the triangle.
We can reach every vertex point of the triangle from the
"top" of thﬁs deformation. Since the bump is inwards, the
intersection of the geodesicsy which are emitted from the
top ot the deformation, to the vertices, are transversal.
Therefore, we can apply the theorem B on the shells with
the base point B which is the top of the hill. If we

let the deformation parameter i converge to zero,

the outer angles of the triangle are not affected by this

L.
. B
limitiny process, and J j Kﬂ dAﬁ. 1rs ’ J ® 4 ds
¢
‘l“
L
converge to I I K da » 1 , J ® ds L7, p.301

fQ 0



s )
x I 2 ds + w/2 + 3-(n/2) =w + W
5

or for the global formula

L

C 4 "

J 2ds + T f f_ dal +am = 2ome (1 w10,
0 i=1 @

i.E-,

LC ‘
I & ds =-27 =~ 47 + 2w + 4w = O as expected.
0
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EPILOG

This study shows that, épplying essentially
Gauss - Bonnet theorem, we can find a2 globhal shell
formula for simply closed curves embedded in two
dimensional manifolds. The global foermula of theorem 2
relates purely differential geometrical magnitudes of
curve C with a pure topological invariant which is the

Euler characteristic of the area enclosed by C.

As usual;in the applications of the Gauss~Bonnet
theorem, we can play topology and geometry one against
the other to gain more information about curve C.

As we have shown, the formula in theorem 2 dependes on
certain triangulations. For an arbitrary triangulation,
the relationship between the shell angle and curve
angle is more complicated thaen it is in Formuls 33.
Although it is easy to find a general formula, it is
impractical and difficult in use. However in view of
the above mentioned dualitys one could probably use
thies formula to prove the existence of convex
triangulatiohs of the area enclosed by C.

iIf the manifold M is n - dimensional and the
curve C lies in a two dimensional submanifold S, we
can agéin use the globalization theorem. Taking the
cecond fundamental form of S into consideration, we
obtain more information about the total absolute

curvature of C in M, especially when S is a totally

geodesic manifold.
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