

39001100317463

Diplom Mathematiker, Technische Universitaet Berlin,1979

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of

Doctor
of
Philosophy
Bogazici Universitesi
1986

ACKNOWLEDGEMENTS

```
    I would like to thank Prof. Dr. A. Askar of
Bogazici University for his supervision of this thesis.
Furthermore, I would like to thank Prof. Dr. B. Wegner
of Technical University of Berlin for his inspiration
and all kinds of support.
```

ON A SHELL FORMULA OF CLOSED CURVES IN
RIEMANNIAN MANIFOLDS

ABSTRACT:

In 1974 Brickell and Hsiung [1, p. 184] obtained an extension of the theorem of Fenchel [2], Milnor [3] and Fary [4] on the total absolute curvature of closed curves in Euclidian space. In order to develop the above mentioned theorem Brickell and Hsiung worked on closed curves in a complete simply connected Riemannian nmanifold with nonpositive sectional curvature. Due to the theorem of Hadamard-Cartan such a manifold is diffeomorphic to Rn^{n}.

Let O be a point on a closed C^{∞} curve C embedded in a Riemannian n - manifold M, and suppose that C lies in a normal neightorhood of 0 . Construct the shell (Ω, f) on C with the vertex 0 . Let K be the Gaussian curvature of the induced metric on (Ω, f) and use $d A$ for its area measure. Denote by \dot{F} the geodesic curvature of C considered as a curve in (Ω, f), and let s be its arc length. Then the main theorem in Brickell and Hsiung [1] is

$$
\int_{0}^{L} x(s) d s=\pi+1-\iint_{\Omega} K d A
$$

This study extends the above mentioned theory to piecewise regular curves C embedded in n - dimensional Riemannian manifolds, and aims to obtain a similar formula for them; moreover, it globalizes their results for two dimensional manifolds and develops a global shell formula depending on certain triangulations of the enclosed area of C in M. Thus, the local theorem will

```
incorporate outer angles of \(C\) at vertices \(C\left(s_{i}\right)=Q_{i}\) for \(i=1, \ldots p\). The shell curve \(\overline{\mathrm{C}}\) has at the vertices same outer angles as \(C\), if and only if the indicatrix \(E\) has a vanishing vertex angle at \(E\left(s_{i}\right)\) and \(E\) is one to one in a neighborhood of \(s\) for \(i=1, \ldots, p\).
```


KAPALI UZAY EGRILERININ KABUK FORMŻLÖ UZZERINE

రZET:

Brickell ve Hsiung $[1,5.184], 1974$ yılinda
Fenchell [2], Milnor [3] ve Fary [4]' nin Euclid uzaylarindaki kapalı uzay egrilerinin toplam mutlak egriligi üzerine olan teorilerini gelistirdiler. Yukarida adı gecen teoriyi gelistirmek icin, Brickell ve Hsiung tam, basit baglantılı, kemit agriligi mifir veya regetif oian n boyutlu Riemannuzaylaranda çalistılar. Hadamard - Cartan teorisine göre bu tür uzaylar Rn uzayana difeomorfiktir. O noktası, n boyutluriemannuzayı M ye gömülmüs, Kapalı bir C egrisinin üzerinde olsun ve C, 0 noktasınan normal komsuluğunda yer alsan. C egrisinin üzerine O baz noktalı (Ω, f) kabuğu olusturulsun. $K,(\Omega, f)$ üzerine tasınan Riemann uzaklığ icin, Gauss egriligi, dA alan ölcüsü olsun. x, C eğrisinin (Ω, f) kabuk eḡrisi olarak düsünüldügünde, C nin jeodezik egriligi, s yay uzunluk parametresi olsun.

Brickell ve Hsiung'un ana teermid asagıda
görülmektedir

$$
\int_{0}^{L} x(5) d s=\pi+1-\iint_{\Omega} K d A
$$

Bu Calasmada, Brickell ve Hsiung' un teorisi,
n - boyutlu Riemannuzaylarına gömülmüs, parca parca
regüler uzay egrileri icin genisletilmekte ve bu egriler icin benzer bir formül elde etmek amaclanmaktadar; ayrıca iki boyutlu manifoldlar icin sonuclar globalize edilip, C nin cevrelediği alanın ücgen ağ ile kaplanmasına bağmlı olarak global bir kabuk teorisi gelistirilmektedir.

Lokal teori, C uzay egrisinin $C\left(s_{i}\right)=Q_{i}, i=1, \ldots, p$, köse noktalarındaki dis acilarını bünyesine almaktadir. Kabuk egrisi \bar{C}, nin köse noktalarındaki dıs açları, uzay egrisi C nin dis acilari ile aynadir, ancak bu sadece ve sadece E indikatrifinin $E\left(s_{i}\right)$ noktalarinda sifir dis acisina sahip olmasi ve s_{i} noktasi cevresinde $1-1$ olması ile mümkündïr.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS $i j j$
ABSTRACT iv
రZET $\vee i$
LIST OF SYMBOLS $i x$
I. PRELIMINARIES FOR SHELLS 1
11. LOCAL SHELL THEORY FOR N DIMENSIONAL MANIFOLDS. . 6
III.GLOBALIZATION OF THE SHELL THEORY 38
IV. DEMONSTRATIDN 45
V. EPILDG 48
BI BLIOGRAPHY 49

LIST OF SYMBOLS

\triangle	Tensor product
k	
r, r	Radian function and $\left.r\right\|_{k-1}$, $\mathrm{S}_{\mathrm{k}} \mathrm{j}$
R	Curvature tensar
$R_{i j 1 m}$	Components of the curvature tensor
\sim	
R	Regular region
5	Arc length parameter of C
$5{ }^{1}$	n - sphere in $\mathrm{R}^{\mathbf{n}}$
\langle,\rangle	Scalar product in Rn
T	Triangle in the triangulation fl
j	
TM	Tangent bundle
T_{U}^{M}	Tangent space at 0
r_{1}^{M}	Sphere bundle of M
TTM	Tangent bundle of TM
1	n
$u=(u, \ldots, u$) Normal coordinates
$x, i=1, \ldots n$	Orthonormal moving frame
i	
i	
$\boldsymbol{\alpha}$	Angle between $\mathrm{C}(\mathrm{s})$ and $\mathrm{O} / \partial \mathrm{s}$
$\mathfrak{t} 1$	Triangulation
- i	
$\delta_{i j}, \delta_{j}$	Kronecker symbol

```
r Extension of the sectional curvature K}\mp@subsup{K}{}{k
Components of the Levi-Civita connection
    k
※
    k
æ
    M
    k
\Omega{,\Omega{ Shell domain,{(y,5)\inR2|}|0\leqy\leqr(5),0\leqs\leqL
(\Omega,f) Shell
    i i th
(\Omega,f ) i - shell pie
    i
\Omega i - shell piewith y \geq f
    \epsilon
    i
0,i=1,.,n Moving coframe
    i
0 Components of the Levi-Civita connection form
j
w.r.t. the moving frame
N
Wedge product
```

Let (M, g) be a C^{∞} Riemannian n-manifold with the metric g. Let C be a piecewise regular simply closed curve embedded in M. We shall denote by $Q_{i}, i=1$, ip, the vertices of C Let 0 be a point on the curve C different from $Q_{i}, i=1, \ldots p$. Assume that C lies in a convex normal neighbormood $U \subset M$ of D. Let s be the arc length parameter and L the total length of C in M. According to our assumption, there is a partition of the interval $[0,1$.$] such that$

$$
\begin{aligned}
& 0=s_{0}<\ldots \ldots<s_{p}<s_{p+1}=L \quad C\left(s_{i}\right)=Q_{i} \\
& \text { for } i=1, \ldots, p \quad .
\end{aligned}
$$

We define piecewise C^{∞} functions r, E in R and the tangent space $T_{0} M$ respectively. The curve C is in a normal neighborhood U of the point 0 . Consequently,

$$
C(5)=e_{0}(r(5) E(5)), 5 E(0, L)
$$

The function r is the radian function and E the indicatrix function of the curve C with respect to the base point 0. As the curve C is a topological embedding, both functions are well defined and they are piecewise differentiable on the interval (O,L). We extend by continuity both functions to the closed interval [0,L]. let \| \| denote the norm in the tangent space T_{0} M.

LEMMA 1:

Both functions r and E can be continuously extended at the points 0 and L. The extended functions r and E possess $r i g h t-h a n d s i d e$ and left-hand side derivatives of all orders at $s=0$ and $s=L$ respectively.

At these points, they have the values

$$
\begin{array}{r}
r(0)=0=r(L) \quad ; \frac{d r}{d s}(0)=1=-\frac{d r}{d s} \\
E(0)=-E(L)=\frac{d C}{d s}(0) \in T_{0} M \tag{1}
\end{array}
$$

PROOF:

Choose a system of normal coordinates determined by an orthonormal frame X_{1}, \ldots, x_{n} at 0 . Let $E_{i}(s)$, $i=1, \ldots, n$, be the components of E with respect to this frame, and $c^{i}(s)$ the values of the components of $c, i . e .$,

$$
\begin{align*}
& c^{i}(5)=u^{i}(C(5)) \text { for } \quad s \in[0, L] \tag{2}\\
& c^{i}(5)=r(5) E_{i}(5) \text { for } \quad s \in(0, L) \\
& c^{i}(0)=c^{i}(L)=0, \quad i=1, \ldots, n .
\end{align*}
$$

and

We can express $c^{i}(s)=s A_{i}(s)$ by (2), where A_{i} are C^{∞} functions near to O, and they are different from zero.

$$
\begin{equation*}
1=g(E(5), E(5))=\sum_{i, j=1}^{n} E_{i} E_{j} \delta_{i j}=\sum_{i=1}^{n} E_{i}^{2} \quad \text { (5) } \tag{3}
\end{equation*}
$$

(4) $\left.\quad r(5)=r(5)\left(\sum_{i=1}^{n} E_{i}^{2}(5)\right)\right)^{1 / 2}=\left(\sum_{i=1}^{n} c^{i^{2}}(5)\right)^{1 / 2}=$ $=5\|A(5)\| e^{\circ}$

We denote by $\|\|$ lie and $\langle\rangle$,$e the standard euclidian$ norm and metric on R^{n} respectively.

Using the equation (4) we will calculate dr/ds|s=0

$$
\frac{d r}{d s}=\|A(s)\| e^{+} s \sum_{i=1}^{n} A_{i}(5) \frac{d A}{d s} i \frac{1}{\| A(5)} \|_{e}
$$

noting that

$$
\frac{d c^{i}}{d s}=A_{i}(s)+s \frac{d A}{d s} i
$$

it follows that $\frac{d c^{i}}{d s}(0)=A_{i}(0) i . e .$,
ie.:

$$
\|A(0)\|_{e}=\left\|\frac{d c^{i}}{d s}(0)\right\| e^{=} 1
$$

$$
\frac{d r}{d s}(0) \quad=\|A(0)\|_{e}=1
$$

According to our definition,

$$
E_{i}(5)=\frac{A_{i}(5)}{\|A(5)\|_{e}}, s>0
$$

$\lim _{50} \quad E_{i}(5)=\frac{A_{i}(0)}{\|A(0)\|_{e}}=A_{i}(0)=\frac{d c^{i}}{d s}(0)$, $i=1, \ldots, n$,
or

$$
E_{i}(0)=\frac{d c^{i}}{d s}(0)
$$

In a neighborhood of $s=L$ for the analysis of the r and E functions we will use similar techniques as above. Knowing that $c^{i}(L)=0$ for all $i=1$,,n, there are c^{∞} functions B_{i} near to L such that

$$
c^{i}(5)=5 B_{i}(5) \quad, 5 \leq L
$$

Now, $c^{i}(L)=L B_{i}(L)$ or $B_{i}(L)=0$ for $i=1, \ldots, n$ Differentiating c^{i} near L gives

$$
\frac{d c^{i}}{d s}(L)=B_{i}(L)+L \frac{d B}{d s} i \quad(L)=L \frac{d B}{d s} i \quad \text { (L) }
$$

and considering that s is an arc length parameter of C, we obtain

$$
\left\|\frac{d B}{d s}(L)\right\|=\frac{1}{L}
$$

The above formula and $c^{i}(5)=r(5) E_{i}(5)$ yield

$$
r(L)=\|c(L)\|_{e}=0
$$

According to the definition of the functions B_{i} for \leq i. and s sufficiently close to $L, C^{i}(s)=s B_{i}(s)=$ r (s) $E_{i}(s)$. Therefore, $r(5)\|E(s)\|_{e}=s\|B(s)\|_{e}$. For sufficiently small $h>0$, we have for the functions B_{i} we have

$$
B_{i}(L-h)=B_{i}(L)-h \frac{d B}{d s} i\left(L-\theta_{i} h\right)=-h \frac{d B}{d s} i\left(L-\theta_{i} h\right)
$$

for $i=1, \ldots, n$ and $0<\theta_{i}<1$.
We calculate the expression

$$
\text { i.e., } \quad \frac{d r}{d s}(L)=-1
$$

q.e.d.

DEFINITION:
Let Ω denote the set points ($y, 5$) in R^{2} such that $0 \leq y \leq r(s), 0 \leq s \leq L$ and define the function

$$
\begin{aligned}
f: \Omega & \mathrm{M} \text { by } \\
f(y, s) & \left.=\exp 0^{(y E(s)}\right)
\end{aligned} .
$$

$$
\begin{aligned}
& \frac{1}{h} r(L-h)=\frac{1}{h}(L-h)\|B(L-H)\| e^{=}= \\
& =\frac{1}{h}(L-h)\left(\sum_{i=1}^{n} B_{i}^{2}(L-h)\right)^{1 / 2} \\
& =\frac{1}{h}(L-h)\left(\sum_{i=1}^{n} h^{2} \quad \frac{d}{d} \frac{B_{s}}{} \quad\left(L-\theta_{i} h\right)\right)^{1 / 2} \quad i . e ., \\
& \lim _{h \rightarrow 0} \frac{r(L-h)}{h}=L\left\|\frac{d B}{d s}-(L)\right\|_{e}
\end{aligned}
$$

$$
\Omega^{i}=\left\{(y, 5) \in R^{2} \mid 5_{i-1} \leq 5 \leq 5_{i}\right\}, i=1, \ldots, p+1
$$

We call (Ω, f) the shell on C with the base point 0 and $\left(\Omega^{i}, f^{i}\right)$ the $i^{\text {th }}$ shell pie with the base point \quad. Fror $\epsilon>0$, we define

$$
\Omega_{\epsilon}^{i}=\left\{\left.(y, s) \in \Omega\right|^{\dot{1}} y \geq \in\right\}
$$

For sufficiently small $\epsilon>0$ the equation $r(s)=$ \in has only two solutions $[1, p 178]$, that is the line $y=\epsilon$ will meet the boundary of Ω^{1} and $\Omega^{p^{+1}}$ only in two points. We denote by t^{i} the restriction of f on Ω^{i} for $i=1, \ldots p+1$.

We will induce on Ω^{i} a Riemannian metric via f^{i}. However, there are some difficulties because of the singularities of the tunction f^{i}. In the following chapter we will see how these difticulties can be handled.

The main theorem 1 provides us with sharper inequalities about the total absolute curvature of closed curves in Euclidean spaces.

II.

LDCAL SHELL THEORY FOR N DIMENSIONAL
 MANIFOLDS

We will make use of the structure equations for a Riemannian n - manifold expressed in polar coordinates. Choose an orthonormal frame X_{1}, \ldots, X_{n} at 0 . Extend the frame to a moving frame x_{1}, \ldots, x_{n} on the normal neighborhood by parallel translation along the geodesic rays through 0. We will denote the moving frame again by $x_{1}, \ldots x_{n}$. We denote by $\theta^{\prime}, \ldots . . \theta^{n}$ the dual moving coframe, i.e., $\theta^{i}\left(x_{j}\right)$ is δ_{j}^{i} for $i, j=1, \ldots, n$, and let $\theta_{j}^{i}=-\theta_{i}^{j}$ be the components of the Levi-Civita connection with respect to these frames.

For the rest of this study the maps are partially

Define the mapping

$$
\begin{aligned}
& F: R^{n+1} \ldots M \\
& u^{i}\left(F\left(t, a^{1}, \ldots, a^{n}\right)\right)=t a^{i} \quad, \quad i=1, \ldots, n .
\end{aligned}
$$

It is shown in [5,p 27] that

$$
F^{*} \theta^{i}=a^{i} d t+\beta^{i}, \quad F^{*} \theta_{j}^{i}=\beta_{j}^{i}, i=1, \ldots, n,
$$

where the forms β^{i}, β_{j}^{i} do not involve the form dt. These 1 - forms are zero for. $t=0$. They satisfy the differential equation

$$
\begin{align*}
& \frac{\partial \beta^{i}}{\partial t}=d a^{i}+\sum_{j=1}^{n} a^{j} \beta_{j}^{i} \tag{5}\\
& \frac{\partial \beta^{i}}{\partial t}=\sum_{k, 1=1}^{n}\left(R_{j}^{i} k 1^{0} F\right) a^{k} \beta^{1} \tag{6}
\end{align*}
$$

$R_{j k 1}^{i}$ are the components of the curvature tensor R with respect to the metric connection ∇.

LEMMA $2:$

We denote by 1_{j}^{i} the components of the moving coframe $\theta^{i}, i, j=1, \ldots, n$ with respect to normal coordinates. The functions $\mathbf{l}_{\mathbf{j}}^{\mathbf{i}}$ satisfy the equations

$$
\beta^{i}=t \sum_{j=1}^{n}\left(1_{j}^{i} \circ F\right) d a^{j} \text { and } a^{i}=\sum_{j=1}^{n} a^{j}\left(1_{j}^{i} \circ F\right)
$$

PROOF:

$$
\begin{aligned}
F^{*} \theta^{i} & =F^{*}\left(\sum_{j=1}^{n} 1_{j}^{i} d u^{j}\right)=\sum_{j=1}^{n}\left(1_{j}^{i} \circ F\right) d\left(u^{j} O F\right) \\
& =\sum_{j=1}^{n}\left(1_{j}^{i} o F\right) a^{j} d t+\sum_{j=1}^{n} t\left(1_{j}^{i} O F\right) d a^{j}
\end{aligned}
$$

$$
\beta^{i}=t \sum_{j=1}^{n}\left(1_{j}^{i} \quad o F\right) d a^{j}
$$

and

$$
F_{*}\left(\frac{\partial}{\partial t}\right)=\sum_{k=1}^{n} a^{k} \quad \frac{\partial}{\partial u} k \quad o F
$$

and

$$
\begin{aligned}
& F^{*} \theta^{i}\left(\frac{\partial}{\partial t}\right)= \theta^{i}\left(F_{*}\left(\frac{\partial}{\partial t}\right)\right)=\theta^{i}\left(\sum_{k=1}^{n} a^{k} \frac{\partial}{\partial u^{k}} \text { of }\right) \\
&\left.=\sum_{k=1}^{n} a^{k} \sum_{j=1}^{n}\left(1_{j}^{i} 0 F\right) d^{j} \frac{\partial}{\partial u^{j}} 0 F\right) \\
&=\sum_{j, k=1}^{n} a^{k}\left(1_{j}^{i} 0 \quad F\right) \delta_{k}^{j}=\sum_{j=1}^{n} a^{j}\left(1_{k}^{i} o F\right) \\
& \text { q.e.d. }
\end{aligned}
$$

We would like to induce a metric $f^{k}{ }^{*} g$ on Ω^{k}. Therefore, we investigate the singularities of f^{k}. The mapping f^{k} is expressed in terms of the normal coordinates $u^{l}, \ldots u^{n}$ by

$$
u^{i}\left(f^{k}(y, 5)\right)=y E_{i}^{k}(5) \text {, where } E_{i}^{k}
$$

are the components of the indicatrix of C restricted on $\left[s_{k-1}, 5_{k}\right]$ with respect to the frame at 0.
We obtain for the tangent vectors

$$
\begin{equation*}
f_{*}^{k}\left(\frac{\partial}{\partial y}\right)(y, s)=\sum_{i=1}^{n} E_{i}^{k}(s) \quad \frac{\partial}{\partial u^{i} \mid f^{k}(y, s)} \tag{8}
\end{equation*}
$$

$$
f_{*}^{k}\left(\frac{\partial}{\partial s}\right)(y, s)=\left.y \sum_{i=1}^{n} \frac{d E^{k}}{d s} \quad \frac{\partial}{\partial u}\right|^{k}(y, s)
$$

We know that $\|E(s)\|=1$. It follows that the vectors $f_{*}^{k}\left(\frac{\partial}{\partial y}\right)$ and $f_{*}^{k}\left(\frac{\partial}{\partial s}\right)$ are linearly dependent iffy $f_{*}^{k}\left(\frac{\partial}{\partial s}\right)=0$. Therefore, f^{k} is an immersion except for points on the line $y=0$ or $s=\alpha$, where α is any number such that $f_{*}^{k}\left\{\left.\frac{\partial}{\partial s}\right|_{5=\alpha}=0 \quad\right.$ i.e.,
the curve C is tangent at the point $f^{k}(y, \alpha)$ to the geodesic ray T which is emitted from the base point 0.

In order to calculate theinducedmetric $f^{k}{ }^{*} g$ on Ω^{k} we will make use of the structure equations expressed in polar coordinates.

Define the function $\Phi^{k}: R^{2} \rightarrow-\infty R^{n+1}$ by
for $k=1, \ldots, p+1$.

$$
(y, 5) \mapsto \rightarrow\left(y, E_{1}^{k}(5), \ldots, E_{n}^{k}(5)\right)
$$

Φ^{k} Satisfies $f^{k}=F$ o Φ^{k}. Now, calculate the 1 -forms
 and $, \beta^{i}, \beta_{j}^{i}$ do not involve dy, we can describe $\Phi^{k *} \beta^{i}$ and $\Phi^{k *} \beta_{j}^{i}$ by functions w_{i}^{k} and $w_{j i}^{k}$ on R^{2}.

$$
\begin{equation*}
\Phi^{k{ }_{\beta}}{ }^{i}=\Phi^{k *}\left(\sum_{j=1}^{n} t\left(1_{j}^{i} \text { o } F\right) d a^{j}\right. \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left(t \circ \Phi^{k}\right)\left(1_{j}^{i} \circ F \circ \Phi^{k} d\left(a^{j} \circ \Phi^{k}\right)\right. \\
& =\sum_{j=1}^{n} y\left(1_{j}^{i} \circ f^{k}\right) \frac{d E^{k}}{d s} \quad d s=w_{i}^{k} d s
\end{aligned}
$$

$$
a^{i} \circ \Phi^{k}=E_{i}^{k}=\sum_{j=1}^{n}\left(a^{j} \circ \Phi^{k}\right)\left(1_{j}^{i} \circ f^{k}\right)=\sum_{j=1}^{n} E_{j}^{k}\left(1_{j}^{i} \circ f^{k}\right)
$$

$$
\Phi^{k^{*}}\left(\beta_{j}^{i}\right)=w_{j i}^{k} d s, i, j=1, \ldots, n, k=1, \ldots, p+1
$$ Calculate the components of $f_{*}^{m}\left(\frac{\partial}{\partial y}-\right)$ with respect to the moving frame x_{1}, \ldots, x_{n}

We obtain from (8) and (11) that the functions $w_{i j}^{m}, w_{i}^{m}$ are zero on the line $y=0$. The impact of the structure equations on the functions w_{i}^{m} and $w_{i j}^{m}$ are

$$
\begin{equation*}
\frac{\partial w_{i}^{m}}{\partial y^{m}}=\frac{\partial E_{i}^{m}}{d s}+\sum_{j=1}^{n} E_{i}^{m} w_{j i}^{m} \quad, \quad m=1, \ldots, p+1 \tag{12}
\end{equation*}
$$

$$
\begin{aligned}
& f_{*}^{m}\left(\frac{\partial}{\partial} \frac{\partial}{y}\right)(y, s)=\sum_{j=1}^{n} E_{j}^{m}(s)\left(x_{j} \circ f^{m}\right)(y, 5) \\
& \theta^{i}\left(f_{*}^{m}\left(\frac{\partial}{\partial s}\right)\right)=\left(\sum_{j=1}^{n}\left(1 j_{j}^{i} 0 f^{m}\right) d u^{j}\right)\left(\sum_{1=1}^{n} y \frac{d E^{m}}{d s} \frac{\partial}{\partial u^{1}} 0 f^{m}\right) \\
& =\sum_{1, j=1}^{n} y\left(1_{j}^{i} 0 f^{m}\right) \frac{d E}{d s}{ }_{1}^{m} \delta_{1}^{j} \\
& =y \sum_{j=1}^{n}\left(1_{j}^{i} 0 f^{m}\right) \frac{d E_{1}^{m}}{d s}=w_{i}^{m} \\
& \left.f_{*}^{m}\left(\frac{\partial}{\partial s}\right)(y, s)=\sum_{j=1}^{n} w_{j}^{m}(y, s) x_{j} \right\rvert\, f^{m}(y, s) \quad, m=1, \ldots, p+1 .
\end{aligned}
$$

$$
\frac{\partial w^{m}}{\partial y} j i=\sum_{k, l=1}^{n} R_{j i k l} \quad E_{k}^{m} \quad \dot{w}_{1}^{m}
$$

$\frac{\partial}{\partial y}\left(\sum_{i=1}^{n} E_{i}^{m} w_{i}^{m}\right)=\sum_{i=1}^{n} E_{i}^{m} \frac{\partial w_{i}^{m}}{\partial y_{i}}=\sum_{i=1}^{n} E_{i}^{m}\left(\frac{\partial E_{i}^{m}}{d s}+\sum_{j=1}^{n} E_{j}^{m} w_{j i}^{m}\right)$

$$
=\sum_{i=1}^{n} E_{i}^{m} \frac{d E_{i}^{m}}{d s}+\sum_{i, j=1}^{n} E_{i}^{m} E_{j}^{m} w_{j i}^{m}=\sum_{i, j=1}^{n} E_{i}^{m} E_{j}^{m} w_{j i}^{m}
$$

Since the indicatrix E^{m} is normalized, ie., $\left\|E^{m}(s)\right\|=$ 1 , the derivative of $E^{m}{ }^{m}$ perpendicular to E^{m}. On the other hand since $w_{i j}^{m}=-w_{j i}^{m}$ the last equality of the above formula is zero:

Thus, we obtain the equation

$$
\begin{equation*}
\left\langle E^{m}, w^{m}\right\rangle=0 \tag{13}
\end{equation*}
$$

which will be crucial for the globalization of the shell method in the two dimensional case. The Riemannian metric g on M induces a metric $f^{k}{ }_{g}$ on the k - th shell pie for $k=1, \ldots, p+1$

$$
\left.f^{k^{*}} g=f^{k^{*}} \underset{i=1}{n} \theta^{i} \otimes \quad \theta^{i}\right)=\sum_{i=1}^{n} f^{k^{*}} \theta^{i} \theta f^{k^{*}} \theta^{i}
$$

$f^{k^{*}} \theta^{i}=f^{k^{*}}\left(\sum_{j=1}^{n} 1_{j}^{i} d u^{j}\right)=\sum_{j=1}^{n}\left(1_{j}^{i} \circ f^{k}\right) d\left(u^{j} 0 f^{k}\right)$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left(1_{j}^{i} o f^{k}\right) E_{j}^{k} d y+y \sum_{j=1}^{n} \frac{d E_{j}^{k}}{d s}, 1_{j}^{i} o f^{k} d s \\
& =E_{i}^{k} d y+w_{i}^{k} d s .
\end{aligned}
$$

Therefore,
$\sum_{i=1}^{n}\left(f^{k *} \theta^{i} \otimes f^{k *} \theta^{i}\right)=\sum_{i=1}^{n}\left(E_{i}^{k} d y+w_{i}^{k} d s\right) \otimes\left(E_{i}^{k} d y+w_{i}^{k} d s\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} E_{i}^{k^{2}} d y \otimes d y+E_{i}^{k} w_{i}^{k} d y \otimes d s+ \\
& +w_{i}^{k} E_{i}^{k} d s \otimes d y+\left(w_{i}^{k}\right)_{d s}^{2} \otimes d s
\end{aligned}
$$

Since (13), we obtain

$$
f^{k *} g=d y \quad d y+\sum_{i=1}^{n}\left(w_{i}^{k}\right)^{2} d s \theta d s
$$

That is to say, unless the vector $w^{k}=\left(w_{1}^{k}, \ldots, w_{n}^{k}\right.$ is zero, the form $f^{k *} g$ is non singular on the k-th shell pie. Thus, it is a Riemannian metric.
At the vertices $Q_{i}=C\left(s_{i}\right), i=1, \ldots p$ we extend w^{i} with the right-hand side and lefthand side derivatives of the indicatrix function E^{i} to the closed interval $\left.\left[s_{i-1}\right)^{5_{i}}\right]$.
Now, we will compute the Gaussian curvature K^{i} on the $i-t h$ shell pie Ω^{i} at nonsingular points.

Let $n^{k}=\left(\sum_{i=1}^{n} w_{i}^{k^{2}}\right)^{1 / 2}=\left\|w^{k}\right\| e \quad, k=1, \ldots p+1$.
If h^{k} is nonzero, then [6, P.110],[7, p.9] K^{k} satisfies

$$
\begin{equation*}
k^{k}=-\frac{\partial 2 n^{k}}{\partial y^{2}} \quad \frac{1}{h} k \tag{14}
\end{equation*}
$$

The area element $d A^{k}$ on the k-th shell pie Ω^{k} is

$$
\begin{gathered}
d A^{k}=\left(\operatorname{det}\left(\left(\bar{u}_{i j}^{k}\right)\right)^{1 / 3}: i, j=1, \ldots, n\right) d y \wedge d s \\
d A^{k}=h^{k} d y \wedge d s
\end{gathered}
$$

with the metric $d \bar{u} \otimes d \bar{u}=d y \otimes d y+\left(h^{k}\right)^{2} d s \otimes d s$. Consequently, we obtain for the expression $K^{k} d A^{k}$

$$
\begin{equation*}
k^{k_{d A}}=-\frac{\partial^{2} h^{k}}{\partial y^{2}} d y \wedge d s \tag{15}
\end{equation*}
$$

The objective is to extend this expression to the points
where f^{k} is singular. Let K_{M}^{k} denote the sectional curvature of the plane section σ in M, spanned by the vectors $f_{*}^{k}\left(\frac{\partial}{\partial y}\right)$ and $f_{*}^{k}\left(\frac{\partial}{\partial s}\right), i . e .$.
and by (12),

$$
\frac{\partial 2 w_{i}^{k}}{\partial y^{i}}=\frac{\partial}{\partial y}\left(\frac{d E_{i}^{k}}{d s}+\sum_{j=1}^{n} E_{j}^{k} w_{j i}^{k}\right)=\sum_{j=1}^{n} E_{j}^{k} \frac{\partial w_{j i}^{k}}{\partial y}
$$

therefore

$$
K_{M}^{k}\left(f^{k}, \sigma\right)=-\sum_{j, 5, l=1}^{n} E_{j}^{k} R_{i j 5 l} \quad E_{s}^{k} w_{1}^{k}
$$

$$
K_{M}^{k}\left(f^{k}, \sigma\right)=-\left(1 / h^{k}\right)^{2} \sum_{i=1}^{n} w_{i}^{k} \frac{\partial 2 w^{k}}{\partial y^{\frac{2}{2}}}=-\left(1 / h^{k}\right) 2\left\langle w^{k} \frac{\partial w^{k}}{\partial y^{2}}\right\rangle
$$

LEMMA 3:

The function

$$
\Gamma_{M}^{k}: \Omega^{k} \quad R \text { defined by }
$$

$\Gamma_{M}^{k}(y, 5)=\left\{\begin{array}{c}-\left(1 / n^{k}\right)^{2}\left\langle w^{k}, \frac{\partial 2 w^{k}}{\partial y^{2}}\right\rangle \text { if } n^{k} \text { is nonzero } \\ 0 \quad \text { otherwise }\end{array}\right.$
is continuous on the k-th shell pie Ω^{k}.

PROOF:
Obviously, the function Γ_{M}^{k} is continuous where h^{k} is

$$
\begin{aligned}
& K_{M}^{k}\left(f^{k}, \sigma\right)=\left(1 / \operatorname{det}\left(\left(g_{i}\right)\right) g\left(R\left(f_{*}^{k} \frac{\partial}{\partial y}, f_{*}^{k} \frac{\partial}{\partial s}\right) f_{*}^{k} \frac{\partial}{\partial y}, f_{*}^{k} \frac{\partial}{\partial s}\right)\right. \\
& =\left(1 / n^{k}\right)^{2} g\left(R\left(\sum_{j=1}^{n} E_{j}^{k} x_{j}, \sum_{i=1}^{n} w_{i}^{k} x_{i} \sum_{i=1}^{n} E_{1}^{k} x_{1} \sum_{s=1}^{n} w_{s}^{k} x_{s}\right)\right. \\
& =\left(1 / h^{k}\right)_{i, j, 5, l=1}^{2} R_{j 5 l}^{i} \quad E_{j}^{k} w_{i}^{k} E_{1}^{k} w_{5}^{k} \text {, (16) }
\end{aligned}
$$

nonzero, and at these points

$$
\begin{aligned}
\left|\Gamma_{M}^{k}(y, s)\right| & =\frac{1}{n^{k}}\left|\left\langle w^{k}, \frac{\partial w^{k} w^{k}}{\partial y^{2}}\right\rangle_{e}\right| \leq \\
& \leq \frac{1}{n^{k}}\left\|w^{k}\right\|_{e}\left\|\frac{\partial_{2} w^{k}}{\partial y^{2}}\right\|_{e}=\left\|\frac{\partial_{2} w^{k}}{\partial y^{2}}\right\|_{e}
\end{aligned}
$$

But, $\quad \frac{\partial 2^{k}}{\partial y^{2}} i=\sum_{j m l=1}^{n} R_{j i m l} \quad E_{j}^{k} \quad E_{m}^{k} w_{1}^{k} \quad$,ie.. the functions $\frac{\partial w^{k}}{\partial y^{2}}$ are continuous therefore, Γ_{M}^{k} is zero where n^{k} is zero.
q.e.d.

IEEMMA 4:

The function $\frac{\partial n^{k}}{\partial y}$ is continuous on the k-th shell pie for $k=1, \ldots p+1$.
It is equal to $\left\|\frac{d E^{k}}{d s}\right\| e$ on the line $y=0$, and is zero at other points where $n^{k}=0$.

PROOF:

Let h^{k} nonzero, then h^{k} is C^{∞} and its partial derivative is

$$
\frac{\partial n^{k}}{\partial y}=\frac{\partial}{\partial y}\left\langle w^{k}, w^{k}\right\rangle_{e}^{1 / 2}=\left(1 / n^{k}\right)\left\langle w^{k}, \frac{\partial w^{k}}{\partial y}\right\rangle_{e} \cdot(18)
$$

Let h^{k} be zero. This is the case iffy $y=0$ or $\frac{d E^{k}}{d s}(\alpha)$ $=0$.

We will use the equality

$$
w_{i}^{k}=y \sum_{j=1}^{n}\left(1_{j}^{i} o f^{k}, \frac{d E^{k}}{d s}\right.
$$

For $y \geq 0$, we obtain $h^{k}=y\left\|H^{k}\right\|_{e}$ with the functions

$$
\mu_{i}^{k}=\sum_{j=1}^{n}\left(1_{j}^{i} 0 \quad f^{k}\right) \quad \frac{d E^{k}}{d s} j \quad k=1, \ldots, p+1
$$

Observe that $x_{i}(0)=\frac{\partial}{\partial u} i, i=1, \ldots, n \quad i . e .$, the transformation matrix $\left(1 \sum_{j}^{i} \mid i, j=1, \ldots, n\right)$ for the covectors θ^{i}, has the value δ_{j}^{i} at the point 0 . The value of

$$
\mu_{i}^{k} \quad \text { on line } \quad y=0 \quad \text { is }
$$

$$
\sum_{j=1}^{n} i_{j}^{i}(0) \quad \frac{d E^{k}}{d s} j=\frac{d E^{k}}{d s}
$$

Consequently, the derivative of h^{k} is on line $y=0$ is

$$
\frac{\partial h^{k}}{\partial y}=\left\|\mu^{k}(0,5)\right\|=\left\|\frac{d E^{k}}{d s}\right\| e
$$

Other singularities of h^{k} lie on the lines $s=\alpha$ with $\frac{d E^{k}}{d s}(\alpha)=0$.

We obtain from the formula $h^{k}=y \| \mu^{k}$ \|e the continuity of $\frac{\partial n^{k}}{\partial y}$ for points (0,s) where μ^{k} is nonzero. Other singularities of h^{k} are (α, s) such that the derivative $d E^{k} / d s \quad\{\alpha)$ of the indicatrix E^{k} is zero. Using the inequality (19)
$\left|\frac{\partial n^{k}}{\partial y}\right| \leq-\frac{1}{n k}\left|\left\langle w^{k}, \frac{\partial w^{k}}{\partial y}\right\rangle_{e}\right| \leq \frac{1}{n^{k}\left\|w^{k}\right\|_{e}\left\|^{\partial} \frac{\partial}{\partial y}\right\|_{e}^{k}, ~ ; ~}$ which is valid everywhere on Ω^{k}, we obtain that $\frac{\partial h^{k}}{\partial y}$ is continuous at $(\alpha, 5)$.

LEMMA 5:

The function $\frac{\partial 2 n^{k}}{\partial y^{2}}$ is continuous on $\Omega_{E}^{k}, k=1, \therefore, p+1$ and $\epsilon>0$.

PROOF:
We obtain from the lemma 4 for h^{k} nonzero

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(\frac{\partial n^{k}}{\partial y}\right)= & \frac{\partial}{\partial y}\left(\frac{1}{n^{k}}\left\langle w^{k}, \frac{\partial w^{k}}{\partial y}\right\rangle e^{\prime}=\right. \\
= & n^{k}\left(\left\|\frac{\partial w^{k}}{\partial y}\right\|_{e}^{2}\left\|w^{k}\right\|_{e}^{2-}\right. \\
& \left.-\left\langle w^{k}, \frac{\partial w^{k}}{\partial y}\right\rangle^{2}\right)-r_{M}^{k}
\end{aligned}
$$

, where Γ_{M}^{k} is defined as in the lemma 3 and

$$
\Gamma^{k}=\Gamma_{M}^{k}-h^{k^{-3}}\left(\left.\left\|w^{k}\right\|_{e}^{2}\left\|\frac{\partial w^{k}}{\partial y}\right\|_{e}^{2}-\left\langle w^{k}, \frac{\partial w^{k}}{\partial y}\right\rangle e \right\rvert\,\right.
$$

with

$$
\begin{equation*}
\Gamma^{k}=-\frac{\partial 2 n^{k}}{\partial y^{2}} \tag{21}
\end{equation*}
$$

Let $h^{k}=0$. i.e., $\frac{d E^{k}}{d s}(\alpha)=0$ for $s=\alpha$ then, Γ^{k} $(y, \alpha)=0$, for $\epsilon \leq y \leq r(\alpha)$. From (20) and lemma 3 , it is obvious that at the points h^{k} is nonzero the function r^{k} is continuous. For singular points we will show the continuity of $\Gamma_{M}^{k}-\Gamma^{k}$.
By ($\left.\left(\mu_{i j}^{k}\right) \|^{i}, j=1, \ldots, n\right)$ we define the inverse matrix of

$$
\begin{gathered}
\left(1_{j}^{i} \circ f^{k}\right)_{i, j=1, \ldots, n)} \text { with } C^{\infty} \text { - functions } \\
H_{i j}^{k}: R^{2} \rightarrow \ldots \text {. }
\end{gathered}
$$

Observe that $y \geq E>0$ and

$$
\begin{aligned}
\frac{\partial w_{i}^{k}}{\partial y} & =\sum_{j=1}^{n}\left(1_{j}^{i} 0 f^{k}\right) \frac{d E_{j}^{k}}{d s}+y \sum_{j=1}^{n} \frac{\partial}{\partial y}\left(1_{j}^{i} 0 f^{k}\right) \frac{d E_{j}^{k}}{d s} \\
& =\frac{w^{k}}{y}+y \sum_{j=1}^{n} \frac{\partial}{\partial y}\left(1_{j}^{i} \circ f^{k}\right) \frac{d E}{d s} j
\end{aligned}
$$

$$
=\frac{w_{i}}{y^{i}}+\sum_{j, m=1}^{n}\left(\frac{\partial 1_{1}^{i}}{\partial u^{m}} \circ f^{k}\right) \frac{d E^{k}}{d s} E_{m}^{k}
$$

Therefore, for $y>0$ the matrix form of the above formula, with
$w^{k}=\left(w_{1}^{k}, \ldots, w_{n}^{k}\right) ; M=\left(11_{j}^{r} 0 f^{k}\right)_{r, j=1, \ldots, n^{\prime}}$;
$\frac{d E^{k}}{d s}=\left(\frac{d E_{1}^{k}}{d s}, \ldots, \frac{d E_{5}^{k}}{d s}{ }^{k}\right)$,
or

$$
\left(w^{k}\right)^{t}=y M\left(\frac{d E^{k}}{d s}\right)^{t} .
$$

Thus, we obtain

Define $A_{i, j}(y, 5)=\sum_{1, m=1}^{n}\left(\frac{\partial_{1}^{i}}{\partial u^{i}} \quad\right.$ o $\left.f^{k}\right) \quad E_{1}^{k} \mu_{m}^{k} j$
and $\quad E_{i j}=(1 / y) \delta_{i j}$.
We can describe the last equation in operator form

$$
\left(\frac{\partial w^{k}}{\partial y}\right)^{t}=(E+A)\left(w^{k}\right)^{t}
$$

ie., there exists $D^{k}=D^{k}(\epsilon)$ such that

$$
\left\|\frac{\partial w^{k}}{\partial y}\right\|_{e} \leq D^{k}\left\|w^{k}\right\|_{e}=D^{k} n^{k}
$$

Using (20)
$\left|\Gamma_{M}^{k}-\Gamma^{k}\right|=\left|n^{k^{-3}}\left(\left\|w^{k}\right\|^{2}\left\|_{e} \frac{\partial w^{k}}{\partial y}\right\|_{e}^{2}-\left\langle w^{k}, \frac{\partial w^{k}}{\partial y}\right\rangle^{2}\right)\right| \leq$

$$
\leq D^{k^{2}} n^{k} .
$$

Consequently, $\Gamma_{M}^{k}-r^{k}$ is continuous at points where h^{k} is zero.

Together with this statement, lemma 3 implies the continuity of Γ^{k} at zeros of n^{k}.

We will calculate the geodesic curvature of the shell curve $\bar{C}:[0, L] \rightarrow R^{2}$ with respect to the induced metric at the nonsingular points. Let \bar{C}^{k} be the restriction of $\overline{\mathrm{C}}$ on $\left[5_{k-1}, s_{k}\right]$. The tangent vector $\dot{\bar{C}}^{k}$ is

$$
\left.\dot{\bar{c}}^{k}(s)=\left(\frac{d r^{k}}{d s} \frac{\partial}{\partial y}+\frac{\partial}{\partial s}\right) \right\rvert\, \bar{c}^{-k}(s),
$$

where s is again arc length parameter of c^{k}.

Therefore, we get
(22)
$d \bar{u} 2\left(\bar{c}^{-k}(s), \dot{C} \bar{c}_{s}(5)\right)=1=\left(\frac{d r^{k}}{d s}\right) 2+\left(h^{k}\right)\left(r^{k}(5), 5\right)$
We define

$$
\begin{align*}
& k^{k}(5)=n^{k}\left(r^{k}(5), 5\right), i . e ., \\
& \left(\frac{d r^{k}}{d s}\right)^{2}+\left(k^{k}\right)^{2}(5)=1 \tag{23}
\end{align*}
$$

We will show that the geodesic curvature e^{k} of the curve \bar{c}^{k} is

$$
\begin{equation*}
x^{k}(5)=\frac{\partial h^{k}}{\partial y}-\frac{1}{h^{k}} \frac{d^{2} r^{k}}{d s^{2}} . \tag{24}
\end{equation*}
$$

The metric components of $f^{k *} g$ satisfy

$$
\begin{aligned}
& \bar{u}_{11}=1, \bar{u}_{12}=0=\bar{u}_{21}, \bar{u}_{22}=\left(n^{k}\right)^{2} \\
& \Gamma_{11}^{1}=\Gamma_{12}^{1}=\Gamma_{2 \overline{1}}^{1} \overline{=} \Gamma_{1 \overline{1}}^{2} 0 ; \Gamma_{22}^{1}=-n^{k} \frac{\partial n^{k}}{\partial y}, \Gamma_{22}^{2}=\frac{1}{n^{k}} \frac{\partial n^{k}}{\partial y} ; \\
& \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{n^{k}} \frac{\partial h^{k}}{\partial y} .
\end{aligned}
$$

This is clear from the formula [8, p.84]

$$
\sum_{1=1}^{2} \bar{u}_{1 k} r_{i, j}^{1}=(1 / 2)\left(\frac{\partial \bar{u}}{\partial x^{i} j k}+\frac{\partial \bar{u}_{k i}}{\partial x_{j}}-\frac{\partial \bar{u}_{i j}}{\partial x^{j}}\right)
$$

$$
, i, j, k=1,2,
$$

where $\bar{u}_{i j}$ are the metric components, and $\Gamma_{j k}^{i}$ are the components of the metric connection. We obtain for
$\nabla_{D} \dot{\bar{C}}_{15}^{k}=$
$=\left.\left(\frac{d^{2} r^{k}}{d s^{2}}-n^{k} \frac{\partial h^{k}}{\partial y}\right) \frac{\partial}{\partial y}\right|_{E(s)}+\left(\frac{1}{h^{k}}\left(2 \frac{d r^{k}}{d s} \frac{\partial h^{k}}{\partial y}+\right.\right.$

$$
\left.+\frac{\partial_{H_{1}}^{k}}{\partial{ }_{5}}\right), \left.\frac{\partial}{\partial s} \right\rvert\, \bar{c}^{k}(5)
$$

Now,

$$
\left.n^{k} 2^{2} r^{k}(s), s\right)+\left(\frac{d r^{k}}{d s}\right)^{2}=1 \text { implies }
$$

$$
n^{k} \frac{\partial n^{k}}{\partial y} \frac{d r^{k}}{d s}+\frac{d r^{k}}{d s} \frac{d^{2} r^{k}}{d s^{2}}+\frac{\partial h^{k}}{\partial s} \quad n^{k}=0
$$

Consequently,

$$
\frac{\partial h^{k}}{\partial s}=-\frac{d r^{k}}{d s} \frac{\partial h^{k}}{\partial y}-\frac{1}{h^{k}} \frac{d^{2} r^{k}}{d s^{2}} \frac{d r^{k}}{d s}
$$

The normal vector of \bar{c}^{-k} at the point $\bar{C}(s)$ is
[7, p.208]

$$
\left.n^{k}(s)=-n^{k} \frac{\partial}{\partial r}+\frac{d r}{d s} \frac{1}{n^{k}} \frac{\partial}{\partial s} \right\rvert\, c^{k}(s)
$$

therefore,
$x^{k}=f^{k}{ }_{g}^{*}\left(\nabla_{D^{2}} \dot{\bar{C}}^{k}, n^{k}\right)=\left(n^{k}{ }^{2}+\left(\frac{d r^{k}}{d s^{2}}\right)=\frac{\partial n^{k}}{\partial y}+\right.$
$\left(-h^{k}-\frac{1}{h^{k}}\left(\frac{d r^{k}}{d s}\right) 2\right) \frac{d^{2} r^{k}}{d s^{2}}=\frac{\partial h^{k}}{\partial y}-\frac{1}{h^{k}}-\frac{d^{2} r^{k}}{d s^{2}}$

Because $f^{\sqrt{k}}$ is an isometry at the points $h^{k} \neq 0$, it is a a well known fact that [7, p.15]

$$
{\underset{M}{k}}_{k^{2}}^{M^{k}} a^{k}+\left[\begin{array}{c}
\text { the square of the } \\
\text { length of the second fundamental } \\
\text { form of }\left(\Omega^{k}, f^{k}, \text { restricted on } c^{k}\right.
\end{array}\right] \text { (25) }
$$

, where ${ }_{M}^{k}$ is the geodesic curvature of c^{k}.
Therefore, $\quad\left|x_{M}^{k}\right| \geq|\underbrace{k}|=$
We will extend the geodesic curvature of $\overline{\mathrm{c}} k$ with respect to the induced metric dy $0 \quad d y+h^{k}(y, 5) d s d d s$ to a function, defined almost everywhere on $\left[5_{k-1} ; 5_{k}\right]$.

LEMMA 6:
a) $k^{i}(5)=h^{i}\left(r^{i}(5), 5\right)$ is absolutely continuous on $\left[s_{i-1}, s_{i}\right], i=1, \ldots, p+1$.
b) k^{i} is differentiable at the points where it is nonzero. It is differentiable at a zero $s=\alpha$ of

$$
\left.\frac{d \Phi^{i}}{d s} \right\rvert\, s=\alpha=0
$$

$$
\Phi(s)=w^{i}\left(r^{i}(5), 5\right) \quad E R^{n}
$$

PROOF:

a) Because Φ^{i} is a C^{∞}-differentiable on $\left[s_{i-1}, s_{i}\right]$, there exists $B_{i}>0$ for $i=1, \ldots p+1$ such that

$$
\left\|\frac{d \Phi^{i}}{d s}\right\|_{e^{\leq}} H_{i}
$$

We obtain, using the mean value theorem,

$$
\begin{aligned}
& \left|k^{i}(b)-k^{i}(a)\right|^{i}=\left|\left\|\Phi^{i}(b)\right\|_{e}-\left\|\Phi^{i}(a)\right\|_{e}\right| \leq \\
& \left\|\Phi^{i}(b)-\Phi^{i}(a)\right\|_{e^{\leq}} B_{i}|b-a|
\end{aligned}
$$

where $s_{i-1} \leq a, b \leq s_{i}$ for $i=1, \ldots p+1$. k^{i} is Lipschitz bounded, thus it implies that $k^{i} i s$ absolutely continuous.
b) k^{i} is differentiable at points where it is nonzero.

This is clear because $h^{i}\left(r^{i}(5), 5\right)$ has no singularity there.

If $\Phi^{i}(\alpha)=0$ and $\frac{d \Phi^{i}}{d s}(\alpha)$ is nonzero, then we can factorize the function $\Phi^{i}(s)=(5-\alpha) T(s)$ such that τ is C^{∞}-differentiable and $\tau(\alpha)$ is nonzero. Therefore, $k^{i}(5)=|s-\alpha|\|r\|_{e}$ is nondifferentiable at the point $s=\alpha$. Un the other hand, if $d \Phi^{i} / d s \mid s=\alpha=0$ then,
$\Phi^{i}(5)=(5-\alpha) 2 \beta(5)$ where β is C^{∞}. Consequently, $k^{i}(5)=(5-\alpha)^{2}\|\beta(5)\|_{e}$ has at this point a zero derivative.

$$
\begin{align*}
& \text { Define the angular function } \alpha^{i} \text { on }\left[s_{i-1}, s_{i}\right] \text { by } \\
& \quad \sin \alpha^{i}(5)=\frac{d r^{i}}{d s},-\pi / 2 \leq \alpha^{i} \leq \pi / 2, \\
& i=1, \ldots, p+1 \\
& \text { The formula (23) implies } \alpha^{i} \text { is well defined. } \\
& \text { The formula (26) implies } \\
& \cos \alpha^{i}(5)=k^{i}(5) \text {. }
\end{align*}
$$

We compute the angle τ^{i} between $\dot{\bar{C}}^{i}(s)$ and $\partial / \partial s$ in Ω^{i} equipped with the induced metric $f^{i *} g$
$\cos \tau^{i}=\frac{\left.d u^{2}\left(\frac{d r}{d s} \frac{\partial}{\partial y}+\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right) \right\rvert\,(y, s)}{\left\|\dot{\bar{c}}^{i}(s)\right\|\left\|\frac{\partial}{\partial s}\right\|}=\frac{k^{i^{2}(s)}}{k^{i}(s)}=\cos \alpha^{i}$
Geometrically, the function α^{i} is the angle between the tangent vector $\dot{\bar{C}} i(s)$ and $\frac{\partial}{\partial s}$

LEMMA 7

> The function α is absolutely continuous on $\left[5_{i-1}, s_{i}\right]$ It is differentiable at a zero point $s=\alpha$ if $\quad k^{i} \quad i s$ differentiable at α for $i=1, \ldots, p+1$.

PRUUUF:

The function $\sin ^{-1}$ is uniformly continuous on the compact interval $[-1,1]$. Consequently, there exists a number $\sigma>0$ such that
$\left|\sin ^{-1} a-\sin ^{-1} b\right|<\pi / 2$ where, $|a-b|<\sigma$ and $-1 \leq a, b \leq 1$

The function r is C^{∞} on $\left[s_{i-1}, s_{i}\right]$. There exists a number H_{i} such that $\left|\frac{d^{2} r^{i}}{d s^{2}}\right|<B_{i}$ on $\left[s_{i-1} ; s_{i}\right]$. Let s_{1}, $s_{\text {Le be with }} s_{i-1} \leq s_{1}, s_{2} \leq s_{i}$ such that
$\left|5_{1}-s_{2}\right|<\sigma / B_{i}$
The following equality is obvious from the definition and the
setting

$$
\alpha_{j}=\alpha^{i}\left(s_{j}\right), \left.\frac{d r}{d s} j=\frac{d r^{i}}{d s} \right\rvert\, s=s_{j}
$$

$\sin \left(\alpha_{2}-\alpha_{1}\right)=\frac{d r}{d s} 2 k_{1}-\frac{d r}{d s} 1 k_{2}=k_{1}\left(\frac{d r}{d s} 2-\frac{d r}{d s} 1\right)-$

$$
\begin{aligned}
& \frac{d r}{d s} 1 \\
& \left.k_{j}=k_{2}-k_{1}\right) \\
& \left(s_{j}\right)
\end{aligned}
$$

Therefore,
$\left|\sin \left(\alpha_{2}-\alpha_{1}\right)\right| \leq\left|\frac{d r}{d s} 2-\frac{d r}{d s} 1\right|+\left|k_{2}-k_{1}\right|$.
The mean value theorem implies, that
$\left|\sin \quad \alpha_{2}-\sin \alpha_{1}\right|=\left|\frac{d r}{d s} 1-\frac{d r}{d s} 2\right| \leq\left|\frac{d^{2} r}{d s^{2}}\right|\left|\sin _{2}\right| \leq \sigma$

Therefore,
$\left|\alpha_{2}-\alpha_{1}\right|=\left|\sin ^{-1}\left(\sin \alpha_{2}\right)-\sin \left(\sin \alpha_{1}\right)\right|<\pi / 2$.

Furtheremore,

$$
|s| \leq \frac{\pi}{2}|\sin s| \text { is on }|s| \leq \frac{\pi}{2} \text { valid. }
$$

We obtain,

$$
\left|\alpha_{2}-\alpha_{1}\right| \leq \pi / 2\left|\sin \left(\alpha_{2}-\alpha_{1}\right)\right| \leq \pi / 2 \quad\left|\frac{d r}{d s} 2-\frac{d r}{d s} 1\right|+
$$

$$
\left.+\left|k_{2}-k_{1}\right|\right)
$$

The function $d r^{i} / d s \quad i s C^{\infty}$ and according to the lemma 5, k^{i} is absolutely continuous. This means that
the function α^{i} is absolutely continuous.
For the points s where k^{i} is nonzero, the
equation

$$
\sin \alpha^{i}=d r^{\mathfrak{i}} / d s
$$

implies

$$
\frac{d \alpha^{i}}{d s}=\frac{d^{2} r^{i}}{d s^{2}} \frac{1}{k^{i}}
$$

In a neighborhood of a zero of k^{i}, the function $\sin \alpha^{i}$ is nonzero. Therefore, the formula $\cos \alpha^{i}=k^{i}$ gives

$$
\frac{d \alpha^{i}}{d s}=-\frac{\frac{d k^{i}}{d s}}{\frac{d r^{i}}{d s}}
$$

iff dk $/ d s$ exists.
q.e.d.

Consequently, the formula

$$
x^{i}=\frac{\partial n^{i}}{\partial y}-\frac{d \alpha^{i}}{d s} \quad \text { on }\left[s_{i-1}, s_{i}\right], i=1, \ldots, p+1
$$

extends the domain of x^{i} to $\left[s_{i-1} s_{i}\right]$ except for a set of Lebesgue measure zero. Furthermore, if $k^{i}=0$, then
the extended function on $\left.\left[5_{i-1}, 5\right]_{i}\right]$ has a zero at that point. Finally,

$$
\left|x_{M}^{k}\right| \geq\left|x^{k}\right|
$$

holds almost everywhere on $\left[5_{i-1}, s_{i}\right]$.

Now we can formulate the main local theorem.

THEOREM 1 :
Let 0 be a point on a closed piecewise regular curve C embedded in a n-dimensional Riemannian manifold M. Suppose that C lies in a convex normal neighborhood of the base point 0 . let s be the arc length parameter of c such that $C(O)=0=C(L)$, where L is the length of C.

Let $Q_{m}=C\left(s_{m}\right)$ for $m=1, \ldots p$ be the vertices of the curve C. Let K^{j} be the Gaussian curvature and $d A^{i}$ be the area measure of the induced metric $f^{i *} g$ on the $i-t h$ shell pie Ω^{i} for $i=1, \ldots, p+1$. x^{i} denotes the extended geodesic curvature of the curve $\overline{\mathrm{C}}^{\mathbf{i}}$ such that $\mathrm{f}\left(\overline{\mathrm{C}}^{\mathrm{j}}(\mathrm{s})\right)=$ $C^{i}(5)$ on $\left[s_{i-1}, s_{i}\right]$. We denote by α^{i} the angle between $\dot{\bar{C}}^{i}(s)$ and $\frac{\partial{ }^{i-1}}{\partial s}$. Then,

$$
\sum_{i=1}^{p+1} \int_{5_{i-1}}^{5_{i}} x^{i} d s=\pi+\sum_{i=1}^{p+1} 1^{i} \quad-\sum_{i=1}^{p+1} \int_{\Omega^{i}} \int_{i}^{i} d A^{i}+
$$

$$
+\sum_{i=1}^{p}\left(\alpha^{i+1}\left(s_{i}\right)-\alpha^{i}\left(s_{i}\right)\right)
$$

where l^{i} is the length of the indicatrix function E^{i}.

PRIJUF :

First we will integrate $K^{i} d A^{i}$ on Ω^{i} for $i=$

2,..,p. According to the equation (15), we obtain

$$
\iint_{\Omega^{i}} K^{i} d A^{i}=\lim _{\epsilon \rightarrow 0} \iint_{\Omega_{\epsilon}^{i}}-\frac{\partial^{2} h^{i}}{\partial y^{2}} d y d s=
$$

$=\int_{s_{i-1}}^{s_{i}}-\frac{\partial h^{i}}{\partial y}\left(r^{i}(5), 5\right) d s+\lim _{\epsilon \rightarrow 0} \int_{5_{i-1}}^{s_{i}} \frac{\partial h^{i}}{\partial y}(\epsilon, 5) d s$.

Using the extended geodesic curvature ${ }^{i}$, due to (29), we evaluate the first term. Since α is absolutely continuous [9, p.207]

$$
\begin{aligned}
\int_{s_{i-1}}^{s_{i}}-\frac{\partial h^{i}}{\partial y}(r(s), 5) d s & =-\int_{s_{i-1}}^{s_{i}}{ }_{X^{i}}(5) d s+\left(\alpha^{i}\left(s_{i-1}\right)\right. \\
& \left.-\alpha^{i}\left(s_{i}\right)\right) .
\end{aligned}
$$

Lemma 4 implies that

$$
\lim _{\epsilon \rightarrow 0} \int_{s_{i-1}}^{s} \frac{i}{\partial h^{i}}(E, s) d s=\int_{s_{i-1}}^{s}\left\|\frac{d E^{i}}{d s}\right\| e^{d s}=1^{i}
$$

, ie, the second term converges to the euclidean length 1^{i} of the indicatrix on the interval $\left[5_{i-1}, s_{i}\right]$ i.e..

$$
\iint_{\Omega} K^{i} d A^{i}=-\int_{i-1}^{s_{i}^{i}} x^{i}(5) d s+1^{i}-\left(\alpha^{i}\left(s_{i}\right)-\alpha^{i}\left(s_{i-1}\right)\right)
$$

Let $\overline{\mathbf{S}}_{1}, L-\bar{S}_{p}$ be the well defined values of s such that the line $y=\epsilon$ meets the curve $y=r(s)$ once
, i. ㄹ․

$$
r\left\{\bar{S}_{1}\right)=\epsilon=r\left(L-\overline{5}_{p}\right)
$$

Therefore,
$\iint_{\Omega^{1}} K^{1} d A^{1}=-\lim _{s_{0}}^{s_{0}} \int_{s_{0}}^{\frac{s^{\prime}}{\partial y}}{ }^{1}(r(5), 5) d s+\int^{s} \frac{\partial h^{1}}{\partial y}(\epsilon, 5) d s$
$=-\int_{5_{0}}^{5} x^{1}(5) d s-\left(\alpha^{1}\left(5_{1}\right)-\alpha^{1}\left(5_{0}\right)+1^{1}\right.$
and

$$
\begin{aligned}
& \Omega^{p+1} \\
& { }^{5} \text { p } \\
& \left.-\left(\alpha^{p+1}(L)-\alpha^{p+1} S_{p}\right)\right)+1^{p+1}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \sum_{i=1}^{p+1} \int_{\Omega} K^{i} d A^{i}=\sum_{i=1}^{p+1} i^{i}-\sum_{i=1}^{p+1} \int_{i-1}^{s} x^{i}(5) d s-\sum_{i=1}^{p+1}\left(\alpha^{i}\left(s_{i}\right)-\right. \\
& \left.-\alpha^{i}\left(5_{i-1}\right)\right)= \\
& =\sum_{i=1}^{p+1} 1^{i}-\sum_{i=1}^{p+1} \int_{i-1}^{5} e^{i}(5) d s-\alpha^{1}\left(s_{1}\right)+\alpha^{1}\left(5_{0}\right)- \\
& +\ldots-\alpha^{p+1}(L)+\alpha^{p+1}\left(S_{p}\right)
\end{aligned}
$$

Lemma 1 shows that $\alpha^{\rho+1}(L)-\alpha^{1}(0)=-\pi$.
Therefore, the above expression is
$=\sum_{i=1}^{p+1} 1^{i}-\sum_{i=1}^{p+1} \int_{S_{i-1}}^{s_{i}} x^{i}(5) d s+\pi+\sum_{i=1}^{p}\left(\alpha^{i+1}\left(s_{i}\right)-\alpha^{i}\left(s_{i}\right)\right)$
q.e.d.

The requirements of the above theorem are satisfied, e.g., for n-manifolds M such that M is a complete simply connected riemannian manifold with nonpositive sectional curvature K_{M}. lt is well known that such a manifold M is a normal neighborhood of each of its points so that the shell (Ω, f) is well defined $[10, p .74]$. Therefore, theorem 1 could be applied on simply closed regular space curves in n-dimensional Euclidian spaces.

THEOREM2:
Let M be a complete simply connected Riemannian manifold with a nonpositive sectional curvature function K_{M}. Then the geodesic curvature ${ }_{M}$ of any closed piecewise regular C embedded in M satisfies the inequality

where (Ω, f) is any shell on C.

PROCF :

It is well known that such a manifold is a normal neighborhood of each of its points so that the shell (Ω, f) and the i - th shell pies are defined. According to Lemma 1 the indicatrix of the shell joins a pair of antipodal
points on a unit sphere and therefore its length $1 \geq \pi$. Consequently as $\left|x_{M}^{i}\right| \geq\left|x^{i}\right|$ we obtain, using Theorem 1

$$
\begin{aligned}
& \sum_{i=1}^{p+1} \int_{S_{i-1}}^{S_{i}}\left|x_{M}^{i}\right| d s \quad \geq \sum_{i=1}^{p+1} \int_{S_{i-1}}^{5_{i}}\left|x^{i}\right| \text { db } \geq \sum_{i=1}^{p+1} \int_{5_{i-1}}^{S_{i}} x^{i} d s= \\
& \left.=\pi+\sum_{i=1}^{p} 1^{i}+\sum_{i=1}^{p}\left(\alpha^{i+} t_{s_{i}}\right)-\alpha^{i}\left(s_{i}\right)\right)-\sum_{i=1}^{p+1} \iint_{\Omega^{i}} K^{i} d A^{i} \\
& \left.=2 \pi+\sum_{i=1}^{p}\left(\alpha^{i+} t_{s_{i}}\right)-\alpha^{i}\left(s_{i}\right)\right)-\sum_{i=1}^{p+1} \iint_{\Omega^{i}} K^{i} d A^{i} .
\end{aligned}
$$

The proof is completed by $\left(K_{M}^{i}-K^{i}\right) d A^{i} \geq 0$ [14, p.250].

We will compute the outer angle r^{i} of the curve C at the vertex $\mathrm{C}\left(\mathrm{s}_{\mathrm{i}}\right)$ and assume that s_{i} is a nonsingular point of the induced metric $f^{i *} g$.

$$
\begin{aligned}
& \cos t^{i}=g\left(\dot{C}^{i+1}\left(s_{i}\right), \dot{C}^{i}\left(s_{i}\right)\right)= \\
& =g\left(\frac{\left.d r^{i}+\frac{1}{d s} \frac{\partial f^{i+1}}{\partial y}+\frac{\partial f^{i+1}}{\partial s}, \frac{d r^{i}}{d s} \frac{\partial f^{i}}{\partial y}+\frac{\partial f^{i}}{\partial s}\right), ~(, ~}{\partial s}\right. \\
& =\frac{d r^{i+1}}{d s}-\frac{d r^{i}}{d s} g\left(\frac{\partial f^{i+1}}{\partial y}, \frac{\partial f^{i}}{\partial y}\right)+\frac{\partial r^{i+1}}{d s} g\left(\frac{\partial f^{i+1}}{\partial y}, \frac{\partial f}{\partial s}\right)^{i}+ \\
& +\frac{d r^{i}}{d s} g\left(\frac{\partial f^{i+1}}{\partial y}, \frac{\partial f^{i}}{\partial s}\right)+g\left(\frac{\partial f^{i+1}}{\partial s}, \frac{\partial f^{i}}{\partial s}\right)= \\
& =\frac{d r^{i+1}}{d s} \frac{d r^{i}}{d s} \sum_{k, 1=1}^{n} E_{k}^{i+1}\left(s_{i}\right) E_{1}^{i}\left(s_{i}\right) \delta_{k 1}+\frac{d d^{i+1}}{d s} \sum_{k, 1=1}^{n} E_{k}^{i+1}\left(s_{i}\right) w_{1}^{i} \delta_{k 1}
\end{aligned}
$$

$$
+\frac{d r^{i}}{d s} \sum_{k, l=1}^{n} E_{k}^{i}\left(s_{i}\right) w_{1}^{i+1} \delta_{k 1}+\sum_{k, l=1}^{n} w_{k}^{i+1} w_{1}^{i} \delta_{k 1}
$$

As a result of (10), (11), (13) and $\left.\left.E^{i+}\right\}_{5}\right)=E^{i}(5)$, this expression is equal to
$\left.\left.\frac{d r}{d s}\right|_{s=s} ^{i+1} \frac{d r^{i}}{d s} \right\rvert\, s=s_{i}^{+} \quad \sum_{k=1}^{n} w_{k}^{i+1}\left(r^{i+1}\left(s_{i}\right), s_{i}\right) w_{k}^{i}\left(r^{i}\left(s_{i}\right), s_{i}\right)$

We denote by $s i$ the angle between $w^{i+1}\left(s_{i}\right)$ and $w^{i}\left(s_{i}\right)$. Then we obtain

$$
\begin{equation*}
\left.\left\langle w^{i+1}, w^{i}\right\rangle\right\rangle_{e}\left\|w^{i+1}\right\| e\left\|w^{i}\right\| e^{\cos \delta^{i}} \tag{30}
\end{equation*}
$$

$\cos t^{i}=$
$=\sin \alpha^{i+\left(s_{i}\right)} \sin \alpha^{i}\left(s_{i}\right)+\cos \delta^{i} \cos \alpha^{i+1} s_{i} \cos \alpha^{i}\left(s_{i}\right)$

We have calculated (31) under the assumption that $k^{i}\left(5_{i}\right)$ and $k^{i+}\left(5_{i}\right)$ are nonzero. We will show that we can distort the base point $0 \in C([0, L])$ slightly and maintain that both magnitudes $k^{i+}\left(s_{i}\right), k^{i}\left(s_{i}\right)$ are different from zero.

Consider the case where $k^{i}\left(s_{j}\right)$ is zero. This means the tangent vector $\dot{C}\left(s_{i}\right)$ at the vertex point $C\left(s_{i}\right)$ is also tangent to the geodesic ray μ through C (0)
and $C\left(s_{i}\right)$. In this case,
either
a) For every $\delta>0$ there exists s such that

$$
0<s<\delta \text { and } C(s) \text { is nonelement of } \mu,
$$

or
b) There exists $\delta>0$ such that for alls with $\quad 0<s<\delta, \quad E(s) \in \mu$.
We will show below that both cases " a) "and " b) " could be avoided by a simple modification of C with the base point 0.

> Let $p, q \in M$,
> $\Omega_{p q}=\{\tau:[0,1] \rightarrow M \mid \tau(0)=p, \tau(1)=q, \tau$ ispiecewise
and $L(\tau)$ denote the length of the curve τ. It is well known that the map

$$
\begin{aligned}
& m: M \times M \rightarrow R \\
& \text { (} p, q \text {) } \rightarrow-\inf \left\{L(t) \mid \tau \in \Omega_{p, q}\right\}
\end{aligned}
$$

is a metric and (M, m) is a metric space $[8, p .156]$.
We denote by $\mathrm{B}_{\epsilon}(p)$ the open ball around the point $p \in M$ with the radius $\in>0$.

Let \bar{R} denote the two point compactification of R, and M be a complete manifold equipped with the distance function m. We will define a function s on the unit sphere bundle of M

$$
\begin{aligned}
& s: T_{1} M \longrightarrow \bar{R} \\
& s(v)=\sup \{t \in R \mid m(\pi(v), \exp t v)=t 3 .
\end{aligned}
$$

π is the canonical map of the sphere bundle. The function 5 is continuous [8, P.169]. Moreover, let us define

$$
C_{p}=\left\{s(v) \vee \mid v \in T_{p} M \cap T_{1} M\right\}
$$

and

$$
C(P)=\left\{\exp _{p}(w) \mid w \in C C_{p}\right\}
$$

The set $C(P)$ is the cut locus of M with respect to the point $P \in M$.

> First, we introduce a technical lemma.

LEMMA $8:$
Let A : $[a, b] \cdots M$ be a path and trace A lie in a normal neighborhood of $Q \in M$. Then, there is $\in>0$ such that trace A lies in a normal neighborhood of $y \in M$ for all y $\in B_{\epsilon}(Q)$.

$$
\text { Since we deal with a compact set, trace } A \text { s we can }
$$ assume that M is a compact manifold．Therefore，the distance function m is bounded and consequently the function s is bounded．According to the assumption，there is a linear isometry i from R^{n} onto the tangent space $T_{Q} M$ ， and there is a $\sigma>0$ such that

$$
x=\left(\exp _{Q} 0 \quad i \quad \mid B{ }_{\sigma}(0)\right)^{-1}
$$

is a Riemannian coordinate function on $u=x^{-1}\left(B{ }_{\mathrm{G}}(0)\right)$ ． since trace $A \subset U$ ，there is a $\sigma 1$ with $0<\sigma 1<\sigma$ with

$$
\operatorname{trace} A \subset x^{-1}\left(B_{\sigma 1}(0)\right) \subset u
$$

We define

$$
K=x^{-1}\left\{\left\langle r \in R^{n}\right|\|r\| e^{=} \| 1\right\}
$$

which is difteomorphic to 5^{n-1} and $Q f^{K}$ ． Iherefore，the set $\left\{\exp ^{-1}(P) \in M \mid P \in K\right\}$ does not contain the zero vector O_{Q} ．We denote by w（P）the normalized vector

Now，we introduce a map

$$
\begin{aligned}
& \Phi: T_{1} M \times-\quad R \quad \times \quad M \\
& w \quad \text {-ーーーか (s(w), exp (s(w)w)). }
\end{aligned}
$$

since the components are continuouss Φ is continuous and defined on an open set of the unit sphere bundle． We chouse for $P \in K, O<E(P)<(1 / 3)|s(W(P))-m(P, Q)|$ ． $V=\pi\left(\Phi^{-1}\left((S(W(P))-\epsilon(P),+\infty) \times B_{E(P)}(P)\right)\right.$ is an open neighborhood of Q ．Note that the projection map π

$$
\begin{aligned}
& \text { is open. Let } P i \in B \in(P)(P) \cap K \text { and } Z \in V, \text { then } \\
& m(P 1, Z) \leq m(P 1, P)+m(P, Q)+m(Q, Z)<Q \in(P)+m(P, Q) \\
&<2 \in(P)+s(w(P))-3 \in(P)=s(w(P))-\in(P) .
\end{aligned}
$$

Therefore, there is a $v \in T_{1} M \cap r_{Z} M$ and

$$
P_{1}=\exp _{z}\left(m\left(P_{1}, \angle\right) \vee\right) .
$$

Let \{ $\left.B_{\in(P)}(P) \mid P \in K\right\}$ be a collection of open balls. Since K is compact, there are finitely many balls $E_{E\left(P_{i}\right)}\left(P_{i}\right)$

$$
\text { such that } \quad k \subset \bigcup_{i=1}^{k} B_{\in\left(P_{i}\right)}\left(P_{i}\right)
$$

We define an open set
$\left.0=\prod_{i=1}^{k} \pi\left(\Phi^{-1}\left(\left(5\left(W\left(P_{i}\right)\right)-\epsilon\left(P_{i}\right),+\infty\right) \times B^{\left(S\left(P_{i}\right.\right.}\right\}_{i}\right)\right)$.

This open set contains Q. Choose an $\epsilon>0$ such that

$$
Q \in B_{\in}(Q) \subset 0 .
$$

According to the above calculation for all $Z \in B \epsilon^{(Q)}$, the trace A lies on an open normal neighborhood of z. Q.E.D.

In the case " a)" we can distort the base point Q on the trace of C, and find a new base point Q such that the. geodesic ray T which emitted from Q to the vertex point $C\left(s_{i}\right)$ is not tangent to the vector $C\left(s_{i}\right)$ at this vertex point.

In the case " b) " we will modify the embedding C itself locally and correlate the geodesic curvature of the moditied embedding to the geodesic curvature of the
previous one. According to the lemma 8 we choose an $\epsilon>0$ such that there exists $\delta>0$ with

$$
C([0, \delta] U[L-\delta, L]) C B_{\in}(Q),
$$

and the condition " b) " implies that the curve C restricted on $[0, \delta] U[L-\delta]$ is a local geodesic. Therefore, in Riemannian normal coordinates (av), we can represent C without restriction of the generality in the form a $\quad \mathrm{C}(\mathrm{s}))=(\mathrm{s}, 0, \ldots, 0)$.

Choose a C^{∞} function $g 1$ such that
supp $g 1 \subset([0, \delta) U(L-\delta, L J)$ and $g 1(0)=g 1(L)$ are nonzero. for a small $|\beta| \geq 0$ define
$H_{\beta}(5)= \begin{cases}(5, \beta \cdot g I(5), 0, \ldots, 0) & 5 \in(L 0, \delta) \cup(L-\delta, L]) \\ a(C(5)) & \text { otherwise }\end{cases}$
and $a^{-1}\left(H_{\beta}(0)\right) \in E^{(0)} M, E>0$ as in lemma θ. Utiserve that $a^{-1}\left(H_{o}(s)\right)=C(s)$ for all $s[0, L]$.
Consider the parameter transformation

$$
d^{-1}:[0, L] \cdots[0,[]
$$

where \bar{L} is the length of the curve H_{β}, ie.,

$$
\tilde{H}_{\beta}\left(d^{-1}(s)\right)=H_{\beta}(s)
$$

Since $\tilde{H}_{\beta}(5)=a(C(5))$ on $(\delta, L-\delta)$ and $d^{-1} \mid(\delta, L-\delta)$ is a translation,

$$
\begin{aligned}
& \dot{H}_{\beta}(s)=\left(H_{\beta}\right)_{*}\left(D_{s}\right)=\left(\tilde{H}_{\beta} \circ d^{-1}\right)_{*}\left(D_{s}\right) \\
& =\dot{H}_{\beta}\left(d^{-1}(s)\right) \text { for } \delta<s<L-\delta
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{D} H_{\beta} \mid s & =K\left(H_{\beta}\right)_{*}\left(D_{s}\right)=K\left(\tilde{H}_{\beta} \circ d^{-1}\right)_{*}\left(D_{s}\right) \\
& \left.=K\left(\tilde{H}_{\beta}\right)_{*}\left(D_{d}-\eta_{s}\right)\right)=\nabla_{D} \dot{\tilde{H}}_{\beta} \mid d^{-1}(s)
\end{aligned}
$$

where K is the connection map of the Levi - Civita connection from TTM into the tangent bundle TM.

Thus, we obtain for the geodesic curvature $\tilde{F}_{M}\left(d^{-1}(s)\right)$

$$
=x_{M}(5) \text { on the interval } s \in(\delta, L-\delta) .
$$

As a result, we calculate the total absolute curvature of the modified curve \tilde{H}_{β}

$$
\begin{aligned}
& \left.\int_{0}^{\tilde{L}} \tilde{x}_{M} s\right) d s=\int_{0}^{d^{-}(\delta)} \tilde{x}_{M}(s) d s+\int_{d^{-1}(\delta)}^{d^{-1}(L-\delta)} \tilde{x}_{M}(s) d s+\int_{d^{-1}(L-\delta)}^{\tilde{L}} \tilde{x}_{M}(s) d s \\
& =\int_{0}^{d^{-1}(\delta)} \tilde{\sim}(5) d s+\int_{d}^{-1} \tilde{x}(L-\delta)(s) d s+\int_{d^{-1}(\delta)}^{\tilde{L}} \tilde{\sim}(5) d s \\
& =A+\int_{\delta}^{L-\delta} x(s) d s .
\end{aligned}
$$

where A is the sum of the first two integrals.
C is a geodesic on
$[0, \delta] \cup[L-\delta, L]$ we
finally obtain

$$
\int_{0}^{\Gamma} \tilde{x}(5) d s=A+\int_{0}^{L} \neq(5) d s .
$$

Thus, we can correlate the total absolute curvature of C to the modified curve up to a translation factor.

Let H_{β} be the C^{∞} deformation as above. The components of the main formula of theorem 1 depends on β continuously [7, p.30]. We will demonstrate this situation in a simple example at the end of this study. According to the above results, we can assume that for two dimensional cases $\left\langle w^{j+1} w^{i}\right\rangle$ different from zero, $i=i, ., p$. As a simple consequence of the formula (13) and $E^{i+1}\left(s_{i}\right)=E^{i}\left(s_{i}\right)$, we know that the vectors w^{i+1} and w^{i} are at the point $\left(r^{i}\left(s_{i}\right), s_{i}\right)$ collinear. Considering the linear relation of the vectors w^{i} and the indicatrix $E{ }^{i}$ due to

$$
\begin{array}{r}
\left.w_{m}^{i}(y, s)=y \sum_{j=1}^{n} 1_{j}^{m}\left(f^{i}(y, 5)\right) \frac{d E_{j}^{i}}{d s} \right\rvert\, s=d^{i} w_{m}^{i+1}(y, s) \\
i=1, \ldots, p \quad ; m=1, \ldots n,
\end{array}
$$

where $z:=\left(\left(1_{j}^{m} \circ f^{i}\right)\right)_{m, j=i} \Omega^{i} \longrightarrow G R(R, n)$ is defined as in lemma 2 .

The last equation expressed in operator form is

$$
z\left(\left(d^{i} \frac{d E^{i+1}}{d s}-\frac{d E^{i}}{d s}, t\right)=0,\right.
$$

where d^{i} is a proportionality coefficient.
Since the vertex points Q_{m} are not on the line $y=0$, the above definition of $Z=Z(y, 5)$ is well defined.

We will formulate in this context the behavior of the indicatrix function E at the vertex point \mathbb{Q}_{m}.

LEMMA 9 :
With the above notation for two dimensional cases,
$d^{k}>0$ if and only if the indicatrix E is $1-1$ near to $5_{k}, k=1, \ldots, p$.

PROOF:

Since the above claim is a purely local matter, we assume, for the sake of simplicity, that $s=0$ and furthermore there are C^{∞} functions a and b such that $a(0)=b(0)$ and
$E \left\lvert\,[-\epsilon, E]=\left\{\begin{array}{ll}e^{i a(5)} & -\epsilon \leq 5 \leq 0 \\ e^{i b(5)} & 0 \leq 5 \leq E\end{array}\right.\right.$.

The right hand side and left hand side derivatives of the functions apb yield
$\left(e^{i a(0)}=i a^{\prime}(0) e^{i} a(0)=\left(1 / d^{k}\right)\right.$ i $b^{\prime}(0) e^{i b(0)}$

$$
=\left(e^{i b(0)}\right) \cdot
$$

Therefore, $d^{k} a^{\prime}(0)=b^{\prime}(0)$, and the Taylor expansions of both functions for $0 \leq s \leq \tilde{\mathcal{S}}, \tilde{\mathcal{S}}$ is suitable,

$$
\begin{aligned}
& a(-s)=a(0)-a^{\prime}(0) s+0\left(s^{2}\right) \\
& b(s)=b(0)+b^{\prime}(0) s+0\left(s^{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \operatorname{sgn}(b(5)-b(0))=\operatorname{sgn} b^{\prime}(0) \\
& \operatorname{sgn}(a(-5)-a(0))=-\operatorname{sgn} a^{\prime}(0)=-\operatorname{sgn} b^{\prime}(0)
\end{aligned}
$$

since $d^{k}>0$,

$$
\operatorname{sgn}(b(5)-b(0))=-\operatorname{sgn}(a(-5)-a(0))
$$

Define a new function

$$
A(5)= \begin{cases}a(5) & \text { for }-\delta \leq 5 \leq 0_{n} \\ b(5) & \text { for }, 0 \leq 5 \leq\end{cases}
$$

We claim there is a small $\delta, \tilde{\delta} \geq \delta 1 \geq 0$ such that the
function A on the interval $[-\delta 1, \delta 1]$ is infective.

Let us assume that the function A is not $1-1$ on $[-\delta 1, \delta 1]$ for each S1. Then, there are zero sequences

$$
\text { ((} 5 \text {) })_{n \in N}\left(\left(\tilde{5}_{n}\right)\right)_{n \in N}
$$

such that

$$
\begin{gathered}
-\delta \leq s_{n}<0<5_{n} \leq \delta \quad \text { and } \\
\quad a\left(s_{n}\right)=b\left(s_{n}\right)
\end{gathered}
$$

We have

$$
\begin{aligned}
& -\operatorname{sgn}\left(a\left(-\tilde{s}_{n}\right)-a(0)\right)=\operatorname{sgn}\left(b\left(\tilde{s}_{n}\right)-b(0)\right) \\
& =\operatorname{sgn}\left(a\left(5_{n}\right)-a(0)\right)
\end{aligned}
$$

since the function a on $[-\tilde{\delta}, 0]$ is $1-1$ and ass, not equal $a(0)$ there $i s a{ }_{5}$ such that either

$$
\begin{gathered}
-5_{n}<\bar{s}_{n}<5_{n} \text { or } 5_{n}<5_{n}<-5_{n} \text { and } \\
\quad a\left(\bar{s}_{n}\right\rangle=a(0)
\end{gathered}
$$

which is obvious since a is continuous. ($\left.\left(s_{n}\right)\right)_{n \in N}$ is a zero sequence which clearly contradicts to the fact that a is 1 - 1 near to zero.

Conversely, let us assume that the indicatrix function E is 1 - 1 in a neighborhood of $s=0$. We claim

$$
\begin{gathered}
d^{k}=a^{\prime}(0) / b^{\prime}(0)>0 \\
\operatorname{sgn}\left(a^{\prime}(0)\right)=\operatorname{sgn}\left(b^{\prime}(0)\right) .
\end{gathered}
$$

or

$$
\text { Let us assume that } \operatorname{sgn}\left(a^{\prime}(0)\right)=-\operatorname{sgn}\left(0^{\prime}(0)\right)
$$

then, define $d t:=\min (\max (a(5)), \max (b(5)))$ $s \in[-\delta, 0] \quad 5 \in[0, \delta]$
such that both functions a, b on $[-\delta, 0]$ and $[0, \delta]$ are respectively monotonic. For each $0<d "<d i$, the line $y=d "$ intersects both

```
functions a,b in a vicinity of zero only once. Choose a
zero sequence ((d"))}n|N
such that 0 < d"n<di.
```

Thus we obtain two zero sequences
with $\quad a\left(s_{n}^{*}\right)=d_{n}^{\prime \prime}=b\left(s_{n}^{*}\right)$
lherefore, the indicatrix ε is not $1-1$ in a neighborhood
of 0 .
4.e.d.
DEFINITIUN :
The indicatrix E intersects $Q_{i} ; i=1, \ldots p$, transversally
if and only if E is $1-1$ in a neighborthood of s_{i}.
II. GLOBALIZATION OF THE SHELL THEORY FOR TWO DIMENSIONAL MANIFOLDS

To formulate a global version of the theorem 1 , we will introduce some notations from combinatorical topology. Let M be a Riemannian manitold with boundary ∂M and J a simplicial complex, and $t: J \rightarrow \partial M$ be a c^{r} triangulation of the boundary. An extension of t is a C^{r} triangulation $G: L \rightarrow M$ of M such that $G^{-1} O t$ is a linear isomorphism of J with a subcomplex of L. It is well known that [11,p.101], when M is a manifold having a boundary, any c^{r} triangulation of the boundary may be extended to a C^{r} triangulation of M.

Let S be a two dimensional manifold, i.e.,a surface. A region $R \subset S$ is said to be regular if R is compact and its boundary ∂R is the finite union of simple closed piecewise reqular curves which do not intersect. Let S be an oriented surface, and $<x_{\alpha} \mid \alpha$ E A be a family of parametrizations compatible with the orientation of S. Let $R C S$ be a regular region of S. Then, there is a triangulation \in of R such that every triangle $T_{j} \in \mathbb{G}$ is contained in some coordinate neighborhood of the family $\left\{x_{\alpha} \mid \alpha \in A\right\}$. Furthermore, if the boundary of every triangle ∂T_{j} of $f\left(\begin{array}{l}\text { is }\end{array}\right.$ positively oriented, adjacent triangles determine opposite orientations in the common edge [12, Chp.1],
[13, p.127].
Let Q_{k}, $k=1, \ldots, p$ be the vertices of the troundary ∂R. We denote by T_{k} the outer angles of วR. Let $\boldsymbol{f}=\{T, j \mid j=1, \ldots, F\}$ be an extension of a triangulation f of the boundary O R. Moreover, let each triangle T_{j} lie in a coordinate neighborhood of the family $\left\{x_{\alpha} \mid \alpha \in A\right\}$ such that each ∂T_{j} be positively oriented.

To clarify the relationship between the outer angles $T_{i},-\pi \leq T_{i} \leq \pi$, of the space curve C at the vertices Q_{i} and the shell angles α^{i}, α^{i+1}, $-\pi / 2 \leq \alpha^{i}, \alpha^{i+1} \leq \pi / 2$, we investigate the orientation of the function

$$
f^{k}(y, s)=\exp _{0}\left(y E^{k}(s)\right)
$$

at a vertex point Q_{i}. Let M be an oriented two dimensional manifold. Let C be parametrized such that the normal vector of C shows inside of C. We choose $X_{1}=\dot{C}(0)$ and $x_{2}=$ the normal vector of C at the point $C(0)$. Using the normal coordinates, with the help of the formulas (8), we can identify the tangent map $f_{*}^{k} \mid\left(r^{k}\left(s_{i}\right), s_{i}\right)$ with the matrix

$$
\left(\begin{array}{ll}
E_{1}^{k}(5) & E_{2}^{k}(5) \tag{32}\\
y \frac{d E_{1}^{k}}{d s}(5) & y \frac{d E_{2}^{k}}{d s}(5)
\end{array}\right)
$$

$i=1, \ldots, p$ and $k=1, \ldots, p+1$.
since $r^{k}\left(s_{i}\right)>0$,
$\operatorname{san}\left(\operatorname{det} f^{k}\left(\left(r^{k}\left(5_{i}\right), s_{i}\right)\right)=\operatorname{sgn}\left(\operatorname{det}\left(E^{k}\left(5_{i}\right), \frac{d E^{k}}{d s}\left(s_{i}\right)\right)\right)\right.$
We define f^{k} is at \mathbb{Q}_{i} orientation preserving if $\operatorname{sgn}\left(\operatorname{det}\left(f_{*}^{k} \mid\left(r^{k}\left(s_{i}\right), s_{i}\right)\right)>0, k=i, i+1\right.$.

Let us assume that E intersects the embedding
C at the point Q_{i} nontransversally $[p . \operatorname{sid}$ in the sense
of previous definition. This means
$\operatorname{sgn}\left(\operatorname{det}\left(f_{*}^{i} \mid\left(r^{i}\left(s_{i}\right), s_{i}\right)\right)=-\operatorname{sgn}\left(\operatorname{det}\left(f_{* \mid}^{i+1}\left(r^{i}\left(s_{i}\right), s_{i}\right)\right)\right.\right.$.
For the transversal case, with f^{i}, f^{i+1},
both orientation preserving we obtain by (31)

$$
\begin{equation*}
\tau_{i}+\left(\alpha^{i+1}-\alpha^{i}\right)=0 . \tag{33}
\end{equation*}
$$

If both functions are orientation reversing then

$$
T_{i}-\left(\alpha^{i+1}-\alpha^{i}\right)=0
$$

THEOREM 3 :

Let $\tilde{R} \subset s$ be a regular region of an oriented surface and let C_{1}, \ldots, C_{q} be simple closed piecewise regular curves which form the boundary $\partial \tilde{R}$ such that $Q_{k}, k=1, \ldots, P$ be the vertices of $C_{1}, 1=1, \ldots$, . Let $\mathrm{Al}^{1}=\left\{\mathrm{T}_{\mathrm{j}} \mid \mathrm{j}_{\mathrm{j}}=1, \ldots, \mathrm{~F}\right\}$ be a triangulation of the region R such that every triangle T_{j} is contained in a normal neighborhood of B_{j}, which is a nonvertex boundary point of T_{j} and let the boundaries be positively oriented. Construct $\left(\Omega_{j}, f{ }_{j}\right)$ for every triangle $j=1, \ldots, F$ with the base points B_{j}. We shall denote by Ω_{j}^{a} the a-th shell pie of Ω_{j} with the vertices Q_{j}^{a}.

Let $K_{j}{ }_{j}$ be the Gaussian curvature and $d A_{j}{ }^{a}$ be the
area measure of the shell pie $\left(\Omega^{a}, f_{j}^{a}\right), a=1, \ldots 4$. We denote by 1_{j} the length of the indicatrix function E_{j} of $\left(\Omega_{j}, f_{j}^{j}\right.$) where every E_{j} intersects Q_{j}^{a} transversally. Let $f_{j}^{a+1} f_{j}^{a}$ be orientation preserving for each vertex point, then

$$
\begin{aligned}
& \sum_{1=1}^{q} \int_{0}^{L_{1}} x_{1}(s) d s+\sum_{j=1}^{F} \quad \sum_{j=1}^{4} \iint_{\Omega_{j}}^{a} K_{j}^{a} d A_{j}^{a}+\pi F+\sum_{k=1}^{p} T_{k} \\
& =2 \pi X(\tilde{R})+\sum_{j=1}^{F} 1_{j}
\end{aligned}
$$

$x(\widetilde{R})$ denotes the Euler-Characteristic of the enclosed region \tilde{R}, and x_{1} is the extended geodesic curvature of C_{1} and $T_{k}, k=1, \ldots p$, are the external angles of the curves C_{1}.

PROOF :

We will apply the local shell theory to every triangle T_{j} and add up the results. Let $T_{j} \in f i l$ be a triangle with $B_{j} \in T_{j}$, a nonvertex base point. Since T_{j} lies in a normal neighborhood of B_{j}, we can apply local shell theory on the boundary of T_{j}. We choose a realization of ∂T_{j} and again denote it by $\partial T_{j}, i . e ., \partial T_{j}:\left[0, \bar{L}_{j}\right]$ $\longrightarrow \quad T_{j}, \partial T_{j}=\partial T_{j}(s)$ where s is the arc length parameter. Thus,

$$
\begin{aligned}
\sum_{a=1}^{4} \int_{s_{j}^{a-1}}^{s_{j}^{a}} \alpha_{j}^{a}(s) d s & +\sum_{a=1}^{4} \iint_{\Omega_{j}^{a}} K_{j}^{a} d A_{j}^{a}=\pi+\sum_{a=1}^{4} 1_{j}^{a}- \\
& -\left(\alpha_{j}^{1}+\alpha_{j}^{2}+\alpha_{j}^{3}\right)
\end{aligned}
$$

$\alpha_{j}^{d}, d=1, \ldots 3$ denote the external angles of T_{j}. We shall now introduce the interior angles of T_{j}, given by

$$
\alpha_{j}^{d}=\pi-\beta_{j}^{d} \quad, d=1, \ldots, \dot{j}
$$

Thus:
$\sum_{j=1}^{F} \underset{d=1}{3} \alpha_{j}^{d}=\underset{j=1}{\sum} \underset{d=1}{\sum} \pi \quad-\sum_{j=1}^{\sum} \underset{d=1}{\sum} \beta_{j}^{d}=3 \pi F-$

$$
-\sum_{j=1}^{F} \sum_{d=1}^{3} \beta_{j}^{d}
$$

Let $E_{e}=$ the number of external edges of $f 1$

$$
\begin{aligned}
& E_{i}=\text { the number of internal edges of } A 1 \\
& V_{e}=\text { the number of external vertices of } f_{1} \\
& V_{i}=\text { the number of internal vertices of fit } \\
& E \quad=E_{e}+E_{i} ; V=V_{e}+V_{i}
\end{aligned}
$$

Since the curves C_{k} are closed $E_{e}=V_{e}$ * We obtain by induction

$$
3 F=2 E_{i}+E_{e}
$$

I hus.

$$
\sum_{j=1}^{F} \sum_{d=1}^{3} \alpha_{j}^{d}=2 \pi E_{i}+\pi E_{e}^{-} \sum_{j=1}^{F} \sum_{d=1}^{3} \beta{ }_{j}^{d}
$$

We observe that we can collect the numbers of external vertices $\mathbb{E} 1$ in two groups, vertices of some curve \mathcal{C}_{k} and vertices introduced by the triangulation, ie.,

$$
v_{e}=v_{e c}+v_{e t} \text {, }
$$

where V ec $i s$ the number of vertices of the curves C and $V_{e t}$ the number of external vertices of $f 1$, which are
not vertices of some curves C_{k}. Notice that the sum of angles around each internal vertex is 2π, thus we get

$$
\underset{j=1}{F} \quad \underset{d=1}{3} \alpha_{j}^{d}=2 \pi E_{i}+\pi E_{e}-2 \pi V_{i}-\pi V_{e t}-
$$

$$
-\sum_{k=1}^{p}\left(\pi-\tau_{k}\right)
$$

since $E_{e}=V_{e}$, we conclude that

$$
\begin{array}{r}
\underset{\sum_{j=1}^{F} \sum_{k=1}^{3} \alpha_{j}^{k}=2 \pi E_{i}+2 \pi E}{ }=-2 \pi V_{i}-\pi V_{e}-\pi V_{e t}-\pi V_{e c}- \\
+\underset{k=1}{p} \tau_{k}=2 \pi E-2 \pi V+\sum_{k=1}^{p} \tau_{k} .
\end{array}
$$

This implies, with the theorem 1 ,

$$
=\pi+\sum_{a=1}^{4} 1_{j}^{a},
$$

with

$$
0=s_{j}^{0}<s_{j}^{1}<\ldots<s_{j}^{4}=L_{j}
$$

IV. DEMONSTRATION
a)

Consider the standard embedding of S^{1} into R^{2} Plane

We choose a triangulation as below

Let α be an angle such that $m \alpha=2 \pi$.
Then,
2π
$\int x+m+m=2 \pi+\left(1_{1}+\ldots+1_{m}\right)$.
0
Because of the convexity of the almost triangle shaped shells we obtain

$$
\int_{0}^{2 \pi} x d s=2 \pi, \text { as expected. }
$$

b) In the second example we take as manifold the si z sphere and as C, a great circle' through north- and southpole. In contrast to the first example the embedding C has no point such that C lies in a normal neighborhood of it. We choose a triangulation of the left hemisphere of S^{2} by two intersecting great semi circles as below.

The triangles of this triangulation are made of minimal geodesics. In order to apply the theorem 2 on this triangulation, choose a nonvertex base point B on a geodesic. Since B is on a geodesic, we make, according chapter two, a small deformation inwards of the triangle. We can reach every vertex point ot the triangle from the "top" of this deformation. Since the bump is inwards, the intersection of the geodesics, which are emitted from the top of the deformation, to the vertices, are transversal. Therefore, we can apply the theorem 2 on the shells with the base point B which is the top of the hill. If we let the deformation parameter β converge to zero, the outer angles of the triangle are not affected by this limiting process, and $\iint_{\Omega^{\beta}}^{1} K_{\beta} d A_{\beta}, l_{\beta}, \int_{0}^{L \beta} \pi \beta d s$ L converge to

$$
\int_{\Omega} \int_{0}^{1} k d A, 1, \int_{0} \neq d s[7, p .30]
$$

or for the global formula
$\int_{0}^{L} \mathrm{C} d s+\sum_{i=1}^{4} \int_{\Omega i} d A^{i}+4 \pi=2 \pi+\left(I_{1}+\cdots+1_{4}\right)$,
ie.,
$\int_{0}^{1} \mathrm{C} x \mathrm{ds}=-2 \pi-4 \pi+2 \pi+4 \pi=0 \quad$ as expected.

Abstract

This study shows that, applying essentially Gauss - Bonnet theorem, we can find a global shell formula for simply closed curves embedded in two dimensional manifolds. The global formula of theorem 2 relates purely differential geometrical magnitudes of curve C with a pure topological invariant which is the Euler characteristic of the area enclosed by C.

As usual, in the applications of the Gauss-Bonnet theorem, we can play topology and geometry one against the other to gain more information about curve C. As we have shown, the formula in theorem 2 depends on certain triangulations. For an arbitrary triangulation, the relationship between the shell angle and curve angle is more complicated than it is in Formula 33. Although it is easy to find a general formula, it is impractical and difficult in use. However in view of the above mentioned duality, one could probably use this formula to prove the existence of convex triangulations of the area enclosed by C.

If the manifold M is n - dimensional and the curve C lies in a two dimensional submanifold 5 , we can again use the globalization theorem. Taking the second fundamental form of S into consideration, we obtain more information about the total absolute curvature of C in M, especially when S is a totally geodesic manifold.

BIBLIOGRAPHY

[1] Brickel, F.F., Hsiung, C.C., "The Total Absolute Curvature of Closed Curves in Riemannian Manifolds," Journal of Differential Geometry, Vol. 9 , No. 1, pp. 177-193, 1974.
[2] Fenchel, W., " Ueber Krummung und Windung geschlossener Raumkurven," Mathemat._Ann., Vol. 101, pp. 238-252, 1929.
[3] Milnor, J., "On the Total Curvature of Knots," Ann-_of_Mathュ, Vol 52, pp. 248-257, 1950. Vol. 52, pp. 248-257, 1950.
[4] Fary,]., "Sur la courbure totale d'une courbe gauche faisant un noeud," Bull. Soc. Math. France, Vol. 77, pp. 128-138, 1949.
[5] Wolf, A.J. Seaces of Constant Curvature. New York: Mac Graw - Hill, 1976.
[6] Blaschke, L., Leichtweiss, K. Elementare_Differential Geometrie. Berlin, Heidelberg: Springer Verlag: 1973
[7] Simsek, A., "Totalkrummung von geschlossenen Kurven in Riemannschen Mannigfaltigkeiten," M.S. Thesis, Technische Universitaet Berlin, 1978.
[8] Klingenberg, W. Riemannsche Geometrie im_Grossen. Lecture notes in Mathematics. Bonn, Heidelberg: Springer Verlag, 1968.
[9] Graves, L. M. The Theory of Functions_of_real Variables. New York : MacGraw - Hill, 1956.
[10] Helgason, S. Differential Geometry, Lie Groups: and Symmetric Seaces. New York,London: Academic Pres5, 1978.
[11] Munkres, J.R. Elementary Differential Topology: Princeton, N.J. :Princeton University Press,1963.
[12] Ahlfors, L., Sario, L. Riemann_Surfaces. N.J. Princeton: Princeton University Press, 1960.
[13] Do Carmo, P.M. Differentia] Geometry of Curves and Surfaces. New Jersey: Prentice - Hall, Inc. 1976.
[14] Synge, G. L.," The first and second Variations of the length in Riemannian Space," Pros. London Math. Soc., Vol. 25, pp. 247-264, 1926.

