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ABSTRACT

NEGATIVE DEPENDENCE IN DISCRETE PROBABILITY
: NOTIONS, MODELS AND CONSEQUENCES

In this thesis we study the negative dependence properties of random cluster
measure. First, we introduce the notions of negative correlation and how they relate to
each other. We observe that this important notion is difficult to confirm. The uniform
spanning tree measure and the uniform spanning forest measure is the measures that
we mainly focus as the crucial examples that shows negative dependence properties.
Later, we focus on the properties of the random cluster measure which generalizes the
uniform spanning tree and uniform spanning forest measures. We prove negative edge
dependence of the random cluster measure on the complete graph, giving a partial
solution to a well known conjecture of Grimmett, Winkler and Wagner. We than
consider a natural problem concerning correlations between collection of connectivity
events in graphs with respect to the random cluster measure and relate this natural

problem to the Grimmett, Winkler and Wagner conjecture.



OZET

AYRIK OLASILIKTA NEGATIF BAGIMLILIK:
KAVRAMLAR, MODELLER VE SONUCLAR

Bu tezde rasgele yiginti olciilerinin negatif bagimlhilik 6zellikleri incelenmekte-
dir. Oncelikle negatif korelasyon kavramlarim tanitip aralarindaki iligskilere bakacagiz.
Bu kavramlarin modellerde kanitlanmasinin ne kadar zor olacagini gozlemleyecegiz.
Diizgiin agag ve orman olgiileri bu konudaki en 6nemli 6rneklerimiz olacak. Son-
rasinda rasgele y1ginti olgiilerinin diizgiin aga¢ ve orman olgiilerini nasil genellestirdigini
gorecegiz. Tam ¢izgelerdeki rasgele yigint1 6lgiilerinin negatif bagimli oldugunu kanitlaya-
caglz. Bu kanit, Grimmett, Winkler ve Wagner’in bir savina kismi bir ¢6ziim vermek-

tedir.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

OZET

LIST OF FIGURES

1. INTRODUCTION

2. PRELIMINARIES

2.1. DISCRETE MEASURES AND SETS . .. .. ... ... ... ....
2.2. GRAPH THEORY . . . . . . .. .. .
2.2.1.  Operations on Graphs . . . . . ... .. ... ... ... ....
2.2.2. Trees and Forests . . . . . . . .. ... ... 0.
2.2.3. Examples of Graphs . . . . . . ... ... ... .. ... .. ..
2.2.3.1.  Complete Graphs . . . . ... ... ... ... ....

2.2.3.2.  Complete Bipartite Graphs . . . . . . ... ... ...

2.2.3.3. Hypercube . . . . .. ...

2.2.4.  Electrical Networks . . . . .. .. ... ...
2.2.4.1.  Harmonic Functions . . . . . . . . ... .. ... ...

2.3. MATROID THEORY . .. . . . . . ... ..
2.3.1.  Examples of Matroids . . . . .. .. ... ... ... ... ...
2.3.1.1. Representable Matroids . . . . . ... ... ... ...

2.3.1.2.  Graphic Matroids . . . . ... ... ... ...

2.3.1.3.  Uniform Matroids . . . . . .. ... ... ... ...

2.3.1.4.  Some Interesting Matroid Examples . . . . . . .. ..

2.4. MARKOV CHAINS AND RANDOM WALKS .. ... ... .....

3. POSITIVE ASSOCIATION

vi

iii

iv

ix

10
11
12
12
12
13
13
14
15
17
17
18
18
18
19

23



vii

3.1.  Monotonic Measures and Inequalities . . . . . . . .. ... ... .. .. 23
3.2. Positive Association . . . . ... Lo L Lo 27
4. NOTIONS OF NEGATIVE DEPENDENCE 30
4.1. Operations on Measures . . . . . . . . . . . . . . 30
4.1.0.1.  Polynomial Conversion . . .. . ... ... ...... 31
4.2. Notions of Negative Dependence . . . . . . . .. ... ... ... ... 33
421, NLC. . .o 33
42.1.1. h-NLC . ... . . 34
4212, h-NLCH+ . .. .o 34
422, p-NC . . . 34
4.2.3. NA 35
4231, CNA . . .. 35
4232, CNA+ . .. 35
4.2.4. RAYLEIGH MEASURES . . . . ... ... ... ... . .... 36
4241, PHR .. ... . 37
4.2.4.2. STRONGLY RAYLEIGH . . . ... ... ... .. .. 37
4.2.5. LORENTZIANITY . . .. .. ... ... ... .. .... 38
4.2.6. LOG CONCAVITY . .. . ... .. 39
4.2.7. STOCHASTIC COVERING PROPERTY . . . ... ... ... 39

4.3.  RELATIONS AMONG THE NOTIONS OF NEGATIVE DEPEN-
DENCE . . . . 40
4.3.1. Implications . . . . . . . . . .. ... 40
4.3.2. Counter Examples . . . . . . . . .. . ... ... ... ... 47
5. MODELS 48
5.1. URN MODELS. . . . . . . 48
5.2. UST, USF AND UCS MEASURES . . . . ... ... ... ... . ... 50
5.2.1. UST . . . o 51
5.2.1.1.  Random Walks on the Graph . . . . . ... ... ... 51
5.2.2. USF . . . o 56

5.23. UCS . . . . e o8



viil

5.3. RANDOM CLUSTER MODEL . . . . ... ... ... ... ...... 58
5.3.1. Basic Properties of Random Cluster Measure . . . . . . . . .. 60

5.3.1.1.  Ising/Potts Model . . . . . .. ... ... ... .... 60

5.3.1.2.  UST,USF and UCS as limits of RCM . . . ... ... 65

5.3.2.  Positive Association . . . ... ..o oL 67

6. NEGATIVE EDGE DEPENDENCE IN RCM 69
6.1. Connected Subgraphs of the Complete Graph . . . . .. ... ... .. 70
6.1.1.  Asymptotics . . . . . . . ... 72

6.2. The General Random cluster model for the Complete Graph at 1 . . . 73
6.3. Approaches . . . . . .. L 74
6.4. Adjacent Edges . . . . . . . ... 75
6.5. Using bridges . . . . . . . . . 80
6.5.1. Inequality for Non-adjacent Edgesin K,, . . . . . .. .. .. .. 83

6.5.2.  Inequality for Adjacent Edges in K,, . . . .. .. .. ... ... 86

6.6. Connection probabilities . . . . . . . . . . .. ... L. 87

7. CONCLUSION 91

REFERENCES 93



Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 3.1

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

LIST OF FIGURES

A graph and one of its subgraphs. . . . . .. ... .. ...

Gle, G+ f,and Gee. . . . . ... ..

A spanning tree and a spanning forest of the graph in Figure 2.1.

Complete Graphs K3, Ky and K5. . . . . . . ... ... .. ...
Complete Bipartite Graphs Kyo, K33 and Kp3. . . . . . . . ..
The Hypercube Q? and Q. . . . . . . . . ... ... ... ...
An Electrical Network with a Battery on the Edge e = zy. . . .
Configuration of the Column Matroid A. . . . . ... ... ...
The Fano Configuration. . . . . . . . .. .. .. ... ... ...

The lattice of Example 3.2.1.. . . . . . . .. ... ... .....

X

10

11

11

14

18

18

29



Figure 5.7

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Conditional Measures of p. . . . . . . .. .. Lo 65
Both edges are bridges without a common component. . . . . . 83
Both edges are bridges with a common component. . . . . . .. 84
Connected graph with two bridges. . . . . . . ... . ... ... 84
Joint bridges. . . . . . ... 8H



1. INTRODUCTION

A large part of classical probability theory deals with the properties of collections
of independent random variables. Examples include central limit theorems, empirical
process theory, stochastic processes with independent increments and point processes
with trivial covariance matrices, the so called Poisson Point Processes and what will

be most relevant for us, percolation theory.

There are of course several natural models which incorporate interaction between
random variables that arise in mathematics, physics and computer science. Models such
as ferromagnetic Ising and Potts models, Cox processes and several natural Markov
Chains leads to ensembles of random variables that are positively correlated : If one of
the random variables exceeds its mean, then the others exceed their mean as well. Pos-
itive correlation can be formalized in a number of different ways and significantly, these
different formalisms often turn out to be closely related. One important and influential
result in this area is the famous Fortuin-Kasteleyn-Ginibre (FKG) inequality, a local
to global transfer theorem, that is of fundamental importance in the study of positive
correlated (or in statistical physics language, ferromagnetic systems). Coupled with
the FKG and related inequalities and intuitions from physics, the study of positively
correlated ensembles of variables has been developed into a systematic and coherent

theory.

Negatively correlated ensembles are widely encountered as well in a range of dis-
ciplines. Notable examples include Exclusion processes, Determinantal point processes
and a large number of urn models. Another important and fundamental example arises
from the study of electrical networks on graphs, an example that is closely related to
Spanning Tree measures on graphs. In this regard, a famous theorem of Rayleigh from
the 1850’s says that conditioning on an edge being in a random spanning tree, any
other edge is less likely to occur in the tree. This result has been extremely influential

and has led to important results in combinatorics, probability, statistical physics and



theoretical computer science. In probability, this is the foundation of the important
theory of Loop Erased random walk, that was developed by Gregory Lawler in the
1980’s following a suggestion of Peter Nelson. In Statistical physics, this leads to the
celebrated result of Robin Pemantle that establishes a unique Gibbs measure for span-
ning trees in lattices. In theoretical computer science, this leads to the two famous
algorithms for sampling random spanning trees, the first due to David Aldous and
Andrei Broder that uses non backtracking walks and the second due to David Bruce
Wilson that uses Loop Erased random walk. Further, Rayleigh’s result on negative
correlation was fundamental to recent advances on the Travelling Salesman Problem

due to Shayan Oveis Gharan and co-authors.

However, when one seeks to generalize this result of Rayleigh, one encounters a
major problem : Analogues of the FKG inequality fail and there are no useful local to
global theorems. Indeed, for a number of reasons we will touch upon in this thesis, it is
expected that there are no such theorems. Owing to this unfortunate fact, there is no
overarching theory of negative correlation or dependence and instead, there are a large
number of competing definitions, many of which are difficult to relate to others. It is
intuitively clear that for any notion of negative correlation, a sum of a large number of
negatively correlated random variables should exhibit central limit behaviour, but the
correct level of generality where this can be proven is still open. Even more frustat-
ingly, while showing that a system is positively correlated is usually routine, doing the
same for negative correlation is non-trivial and indeed, there are a number of models
where negative correlation is expected to hold, but for which these remain conjectures.
Around 2000, Robin Pemantle laid out this problem in an influential article and called
for a theory of negative dependence. A major advance on this was made in work by
Julius Borcea, Petter Branden and Thomas Liggett in 2008, who introduced the class
of Strongly Rayleigh measures. However, as we will see that there are several natural
models that do not fit inside this framework and for which a number of basic questions
remain open. This thesis deals with one of these models, the famous Random Cluster

model of Cees Fortuin and Peter Kasteleyn.



Negative dependence is a property of a probability measure that arises naturally
in many models, physical and mathematical, but that does not have a good theoretical
background. The notion of negative dependence arises naturally as a counterpart of
positive dependence. A probability measure is positively associated, if for any increas-
ing functions, the expected value of the product of the functions is greater than or
equal to the product of the individual expected values, and if they are always equal
we say that the measure is independent, or a product measure. Intuitively, this may
be thought as the functions supporting each other positively. The product under the
probability measure is bigger than the individual ones. For instance, an increasing
random variable is always positively associated with itself, since once we know one
value the other goes according to the first one. If one increases so does the other and
so forth. The beautiful part of the theory of positive association is that it is relatively
straight-forward to prove that a probability measure is positively associated. This is
due to Fortuin-Kasteleyn-Ginibre theorem, which states that upon proving an inequal-
ity, the FKG inequality, on the space which ties the levels of the lattice space, the
probability measure is positively associated. This fact is really surprising and easy, for

it discards any computation on functions.

On the other hand, the concept of negative association is not so straight-forward
to show. First, we see that a random variable can not be negatively associated with
itself. Hence, a need arises to define these concepts on disjoint subsets of coordinates
which complicates things. Most importantly, the reverse inequality of FKG does not
imply negative association. Thus, if a probability measure is negatively associated, the

proof must be intricate involving functions and their expectations.

In this thesis, our main motivation is to study the concepts of negative dependence
and their relations and the random cluster measure which is defined on the subgraphs of
a graph and prove a negative dependence result for some classes of graphs. Throughout
the years, different concepts of negative dependence has been developed, but there is
no big framework like the positive counterpart. The notions arise from the models for

which some kind of negative dependence is expected.



In Chapter Two, we define preliminary concepts: Probability measures and con-
cepts, graph theoretic concepts and matroid theory. Graph theoretic concepts are used
as a general framework for negative dependence notions. For instance, a natural frame-
work is the spanning trees and spanning forests of a graph. It was proved that the
edges e and f in a uniformly chosen spanning tree are negatively dependent. Since
the spanning trees do not contain any cycles, it is reasonable to expect that the in-
clusion of an edge would drop the probability of the inclusion of another edge. This
has been rigourously proven, which we follow, yet the same concept is still open for
uniform spanning forests, which we mention as well. Matroids are introduced as a
generalization of spanning trees and graphs, and due to the interesting examples and

counter-examples they bring forth to the table.

In Chapter Three, we study basic properties of positive association in the spirit
of showing the theoretical differences between two concepts that are very similar at the

beginning, yet differ very much in their properties.

In Chapter Four, we get into different notions of negative dependence introduced
in [1] and [2]. There are many generalizations of negative edge dependence and negative
association concepts which arises both from definitions and from models. A natural
approach here is to work with the properties of polynomials, in our case the polynomials
will be the partition functions and generating polynomials of a discrete probability
measure. We introduce in this section Rayleigh and Strongly Rayleigh polynomials
and Lorentzian polynomials. Rayleigh and Strongly Rayleigh polynomials arises from
electrical networks and their properties and are one of the strongest notions which we
will mention. Lorentzian polynomials on the other hand have arised from algebraic
geometry and have nice ties to discrete objects and what we study. After this relations
among distinct notions of negative dependence, we explore some consequences: what
kind of concentration inequalities exists when the random variables are negatively

associated and so forth.



In Chapter Five, we delve into the world of models. We introduce two models
in actuality in three sections. The first model is one where the theory flourished from
almost, called Urn models. We follow the 1994 paper of Dubhashi and Ranjan [3], and
prove negative association when the random variables involved are Bernoulli and have
sum 1 all the time. As we will see, this is one of the most intuitive notion of negative
dependence. The sum being constant, we expect that the probability of a urn being
occupied falls lower whenever another urn is occupied. This is established using the
existing theory and actually the FKG inequality which is intriguing. Later, we describe
the models on graphs and their subgraphs. As mentioned above, spanning trees are
an important class of objects in the theory of negative dependence. We prove that
they satisfy negative edge dependence and also consider natural generalizations of this
which are spanning forests and connected subgraphs. Grimmett asked the following

conjecture in his book [4]:

Conjecture 1.0.1. For any finite graph G = (V, E), the uniform spanning forest
measure USF and the uniform connected subgraph measure UCS are negative-edge

dependent.

We follow the spirit of this conjecture and actually work with another conjecture

of Grimmett:

Conjecture 1.0.2. Prove some notion of negative dependence in the Random cluster

measure when q < 1.

The foremost model we introduce and examine is Random cluster measure on the
graphs. The exciting attribution of the random cluster measure is its generality and
concreteness. Even though, it is relatively easy to define, it generalizes many models
that are prominent in Statistical physics and at the same time, it is not easy so easy
to explore due to the nature of its partition function and complexity. It is a natural
extension of Ising/Potts models that are extensively studied, and the only difference

between the random cluster measure and the well understood Erdos-Renyi measure



is the introduction of a new parameter ¢ which adds the connected components of a

graph into consideration and changes everything.

It is proved, for instance in [4], that when ¢ > 1, the random cluster measure
is positively associated. We will see that the proof is relatively straight forward once
we establish FKG inequality and the characterization of positive association with this
simple inequality. However, there is almost nothing known when ¢ < 1. It is expected as
stated above in Grimmett’s conjecture that the random cluster model will be negatively

associated, yet there is no proof or partial proof of it.

In Chapter Six, we work towards proving negative edge dependence in random
cluster measure when ¢ < 1 on some classes of graphs. We define a parametric version
of random cluster measure, and prove that it satisfies p-NC when A > 1 and ¢ < 1
when the underlying graph is a complete graph K, or a complete bipartite graph K
and multipartite graph. We discuss the scope of our technique which is to study the

partition function and translate the question into a counting problem.



2. PRELIMINARIES

2.1. DISCRETE MEASURES AND SETS

First, let us start by defining our sets. Let E be a finite set, and denote by 2%,
the power set of E and by {0,1}¥, we mean the 0 — 1 sequences with the elements

labeled from the set E. We write [n] to denote the set {1,...,n}

We will use {0, 1}* and 2” interchangeably, so let us mention the correspondence
between those sets. First, we observe that any element a € {0,1}¥ defines an element

of S € 2F via the natural mapping e € S if and only if a(e) = 1.

Example 2.1.1. Let E = {1,2,3}, then the elements of the set {0,1}F and the corre-

sponding sets are the following:

The first entry corresponds to the set element 1, and so forth.

We observe that the set {0, 1}F or 2F is a partially ordered set, with entry-wise
comparison. That is, we say © < y if z(e) < y(e) for all e € E. Let (A, <) be a
partially ordered set and S C A. An element z is said to be an upper bound of S, if

we have s < z for all s € S. = € A is said to be the least upper bound if it is an



upper bound and for all ¥ which is an upper bound of S we have x < y. We denote
the least upper bound of two elements x,y by = V y, i.e. =V y(e) = max{z(e),y(e)}.
An element x is said to be an lower bound of S, if we have s > x foralls € S. x € A
is said to be the greatest lower bound if it is a lower bound and for all ¥ which is a
lower bound of S we have z > y. We denote the greatest lower bound of two elements
r,y by x Ay, i.e. z Ay(e) = min{z(e),y(e)}. A partially ordered set A where each
pair of elements (z,y) has a greatest lower bound and a least upper bound is called a

lattice. With the above order, {0,1}¥ is a lattice.

The operations of switching on and switching off for an element z € {0, 1}

and e € FE is respectively defined as follows:

if
“(f) = z(f), iff#e @)
\1, iff =e.
x(f), iff#e
ze(f) = g (2.2)
\0, iff =e.

Remark 2.1.1. The term "switching on e” denoted by x° and "switching off e” comes
from graphs. We think of the configuration and adding or deleting, respectively, the

edge e to the configuration.

We define a metric on {0, 1}¥ which is called the Hamming distance by d(z,y) :
{i: x; # y;}|. We say that p is a probability measure if it is a measure on the finite

set F and u(F) = 1. Note that for any finite measure ¢’ on E, we can define a proba-

w4
w(E)?

p on ¥ strictly positive if u(x) > 0 for all x € ¥.

bility measure by setting p(A) = for any A C E. We call a probability measure

An event A is said to be an increasing event if it is upward-closed. That is, if
x € A, then y € Aif z <. In terms of subsets, this becomes, if S € A, then for any
ScT,TeA



We define the total variation distance between two measures u, v on (3, A).

Definition 2.1.1. Let u, v be two discrete measures on (3, .4). Then the total vari-

ation distance, denoted by drv(p, ) is defined as

drv (i, v) = sup e [(A) = v(A)]. (2.3)

Remark 2.1.2. The total variation distance on a discrete set ¥ is equal to

drvlpev) = 5 3 (@) = (o)) (2.4)

reX

2.2. GRAPH THEORY

A graph is a pair of sets (V, E), where E C V2. We call V the vertex set of
the graph, and F the edge set of the graph. Let x,y € V be vertices, then e = (x,y)
is the edge that connects x and y. If there is no confusion, we will denote the edge e
by zy as well. Vertices z,y are called adjacent if (x,y) € E. This defines a relation
which we denote by x ~ y. If x,y are not adjacent, then we write x 4 y. Since we
are not considering ordered pairs, (x,y) mean the same edge. We can draw a graph
G = (V, E) by putting points in place of the vertices and draw the corresponding lines

between the vertices for the edges of the graph.

A graph G’ = (V') E') with V' C V, and E' C E is called a subgraph of the
graph G = (V, E).

If G’ contains all the edges in £/ among the vertices of V’, G’ is called the induced
subgraph of G by V', and is denoted by G[V']. If V/ =V, then the subgraph is called

spanning.
A path is graph of the form

V ={vo, ..., vn} E = {vovy,v1v9, ..., 0510, }.
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(% € Vo (o (%)

U3 V3

Us Uy Us Vg

Figure 2.1. A graph and one of its subgraphs.

A path which starts and ends at the same vertex is called a cycle. We will say that a
graph a path exists between x and y in a graph G, if there is a path graph P so that
P is a subgraph of G. A graph is called connected if there is a path between any of
its vertices. A connected component or simply component of a graph is one of its

maximally connected subgraphs.

2.2.1. Operations on Graphs

We define three basic operations on the edges of a graph: deletion, addition and

contraction.

Let G = (V, E) be a finite graph with e = 2y € E. We define the graph G/{e}
(G /e when there is no confusion) to be the graph obtained when we delete the edge

e =Y.

Let G = (V, E) be a finite graph with e = zy ¢ E. We define the graph G + ¢ or
G + zy to be the graph obtained when we add the edge e to the graph G.

Let G = (V, E) be a finite graph with e = xy € E. We define the graph G.e as
the multi-graph obtained when we identify the incident vertices x and y of the edge ¢

as one vertex.

Example 2.2.1. Let G = (V, E) and e = vivy be the graph and the edge which is in
Figure 1. Also, let f = vyvs be another edge. Then the following figure shows G /e,
G + f and G.e in order.
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U1 Vo U1 e Vg V1o

U3 U3 U3

Vs V4 Us V4

Figure 2.2. G/e, G+ f, and G.e.

2.2.2. Trees and Forests

A graph which contains no cycles is called a forest. A connected forest is called
a tree. We will generally denote a forest by F, and a tree by 7. Let us see some

properties of a tree.

Proposition 2.2.1. The following are equivalent.
(1)T is a tree.
(11 )Any two vertices x,y of the graph T is connected by a single path P.
(113)T is connected and has n — 1 edges.
()T doesn’t contain a cycle and has n — 1 edges.
(v)T is connected and for any edge e € E(T), T /{e} is disconnected.
(vi)T doesn’t contain any cycle, and for any x + y, the graph T + (x,y) contains

a cycle.

y v
U1 () U1 2

U3 U3

U o Vs Vg

Figure 2.3. A spanning tree and a spanning forest of the graph in Figure 2.1.
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These give some characterizations for the trees which we will use. We say that
a subgraph T of G = (V| E) is called a spanning tree if it is a tree and V(7) = V.
We will see that spanning trees will be an important example of a model for negative
dependence.

2.2.3. Examples of Graphs

We give some classes of graphs that we will be working with.

2.2.3.1. Complete Graphs. Let n be the number of vertices that we will construct our

graph on. The complete graph on n vertices is the one where every possible edge is

n

2) edges. We denote the complete graph on n vertices by

present. Therefore, we have (

K,

Kg K4 K5

Figure 2.4. Complete Graphs K3, K; and Kj.

Theorem 2.2.1 (Cayley’s Theorem). The complete graph K,, has n"~2 spanning trees.

2.2.3.2. Complete Bipartite Graphs. Another class of graphs is the bipartite graphs.

A bipartite graph G = (V, E) is a graph whose vertices can be partitioned into two
sets V; and V5 with ViUV, = V and the edge set E C V; x V5. The complete bipartite
graph is the one where each edge exists between the vertex set V; and V5. We denote

the complete bipartite graphs with |Vi| = r and |V3| = s by K, ;.

Remark 2.2.1. If the vertex set is partitioned into m parts (V;)™,, with U~ V; =V,
and the edges are between the distinct sets Vi, V; for i # j, we call it a multi-partite

graph. The complete multi-partite graph where all possible edges exist with |V;| = r; is
denoted by K,

1y-5Tm *
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Ky K33 K3

) )

Figure 2.5. Complete Bipartite Graphs Ky, K33 and K, 3.

2.2.3.3. Hypercube. Let V' = {0,1}". Also let the edge set E be defined according to

the hamming distance being one or not, i.e. if dy(z,y) = 1, x ~ y, otherwise = % y.

We call the graph G = (V, E') n-hypercube (or n Boolean cube), and denote it as Q"

(or B").

Q° Q’

Figure 2.6. The Hypercube Q? and Q3.

2.2.4. Electrical Networks

Electrical networks in general are physical objects that is formed by a voltage
source and resistors. We will think of it as a weighted graph. Let w : & — R be a

function, and R : E — R* be the resistance.

An electrical network is graph with a function attached to its edges. The
reciprocal of the resistance is called conductance. We think of the weight function w

as the conductance that is attached to the edge.

For a specific edge e = zy, we consider a battery that is connected to its terminals,

which makes the current flow.
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Figure 2.7. An Electrical Network with a Battery on the Edge e = xy.

The electrical properties of such a graph is governed by Kirchoft’s laws which we
state. The first Kirchoff law is that to each vertex, there is a real number attached
which is its voltage. We will think of it as a function v : V' — R. The second Kirchoff
law is that to each oriented edge, there is a real number attached which is its current.
We think of it as a function i : E — RT. Since we are working on oriented edges,
we have anti-symmetry for the function 7, that is i(zy) = —i(yx). The third Kirchoff
law is the one concerning the current flows. For any vertex, the sum of the currents

incoming should equal to the sum of the current outgoing from the vertex, i.e.

> i(vx) = 0. (2.5)

v~x

Let u,v € V, and e = uv. Then the second Kirchoff law states the following

Combining the second law and the third law, we have that

0=> i(vz)=> [V(v) = V(@)w(zy) = V(v)d(v) = > _V(x)w(zy). (2.7)

v~ v~ v~vT

The above equation leads us to define harmonic functions.

2.2.4.1. Harmonic Functions. Let f be a function on the vertex set V' of a weighted

graph G = (V, E, w).
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Definition 2.2.1. The excess of a function f at a vertex v € Vis the defined as

0= ilox) = 3[V(e) = V(a)uey) = V@) = Y Vizhuley). (28

(Ui T v~

Definition 2.2.2. A function f : V — R is said to be harmonic at the vertex v if

the excess of f at v is 0.

We state some theorems apropos to harmonic functions, which we do not prove.

Theorem 2.2.2 (Maximum Principle). Let f : V — R be a function on a connected
finite graph G = (V, E) that is harmonic except possibly on a finite set of vertices
S = {vy,...,vx}. Then, [ attains its mazimum and minimum on the set S. If f is

harmonic on all of V', then it is constant.

Theorem 2.2.3. Let f,g: V — R be two functions on a finite, connected, weighted
graph G = (V, E,w). Suppose f(v;) = g(v;) = ¢; on a set of vertices S = {vy, ..., v},
and that f and g are harmonic on the set V/S. Then f =g.

We will use harmonic functions to tie electrical networks and spanning trees which

gives us a good relation among distinct subjects.

Remark 2.2.2. Note that the equation

V(v)d(v) =) V(x)w(zy), (2.9)

v~x

from the previous section actually shows that the Voltage function V is harmonic.

2.3. MATROID THEORY

Matroids are objects that generalize finite matrices and finite graphs in a way.
We define what a matroid is and some basic properties and basic examples of matroids.

Since, they naturally generalize graphs and spanning trees, matroids and their bases
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will provide us with a good background for negative dependence properties and no-
tions. Some counter-examples will be given in the next sections for some conjectural

implications among negative dependence notions.

Definition 2.3.1. A Matroid is M = (E,Z) consisting of a finite set E, called the
ground sct, and a collection Z of subsets of E called the independent sets of the

matroids satisfying the following:
()0 e T,
(i)If T € Z,and I' C I, then I' € Z,

(ii)If I, I, € Z, and || < |I5], then there is an element e € I, \ I; so that
.[1 U {6} cl.

A subset that is not in 7 is called dependent. We will call a minimal dependent

subset, that is a dependent subset of F whose subsets are all independent, a circuit.

Remark 2.3.1. Circuits determine the independent sets of a matroid and independent

sets determane the circuits of a matroid. Thus, they are somewhat exchangeable.

Definition 2.3.2. A maximal independent subset of F is called a basis of the matroid

M = (E,Z). The set of basis of a matroid is called the base set and is denoted by B.

Theorem 2.3.1. (i)Let By, By € B for a matroid M. Suppose e € By \ By. Then
there exists an element f € By \ By such that (B \ e) U f € B.

(it)Let By, By € B for a matroid M. Then |B,| = |Bs|. That is all the members

of the base set have the same cardinality.

Remark 2.3.2. The first part of the theorem can be thought as the basis exchange
lemma. We can remove an element from one basis, and add another one from another
basis to get a new basis. This all become clear when we think of the basis elements of

a vector space.

We now define two important notions for matroids: the restriction and the rank

of a matroid.
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Definition 2.3.3. Let A C E. Consider the set Z|A := {I C A: I € Z}. Together
with A, the pair (A,Z|A) becomes a matroid denoted by M|A, and is called the
restriction of M to A. We define the rank of a subset A, denoted by rk(A), to be
the cardinality of the basis of the matroid M|A.

Remark 2.3.3. Note that rank can be thought of as a function rk : 28 — Z%. Thus,
we can attach the rank for an element in {0, 1}F naturally. It will be scen that rank is

almost the same as the number of connected components of a subgraph.

2.3.1. Examples of Matroids

2.3.1.1. Representable Matroids. A natural class to consider is vectors. The defini-

tions of independent sets and basis is derived from the theory of linear matroids. A
representable matroid is a matroid M = (F,Z) where the independent sets are the
independent sets of a vector space over a field IF, and the ground set is the vector space.
We denote the matroid by writing a matrix and considering its column vectors. Let us

see an example.

Example 2.3.1. Consider the matrix

00011
A=1011 0 0
11010

We think of its column vector over a field. Say R. We can represent this matroid as a

configuration in the following way:

e Fach column of the matriz is a point in our Matroid, i.e. a column vector x € F,
o [f three vectors x,y and z are linearly dependent, then they will be collinear in

our configuration.

Considering this we have the following configuration for the matroid A:
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Figure 2.8. Configuration of the Column Matroid A.

2.3.1.2. Graphic Matroids. Another natural class to consider is graphic matroids. A

graphic matroid is a matroid M = (E,Z), with the ground set being the edges of a
graph and the independent sets are the spanning forests of the given graph. We state

a known theorem:

Theorem 2.3.2. FEvery graphic matroid is representable.

2.3.1.3. Uniform Matroids. Let E be a finite set with |E| =n, and let Z ={I C E:
|I] < m}. Note that m < n. Then we call the matroid U,,,, = (E,Z), the uniform

matroid of size m over a set of size n.

2.3.1.4. Some Interesting Matroid Examples. 1)Fano Matroid. The Fano configura-

tion of projective geometry gives us a matroid. It is denoted by F7.

Fay
A Y

AR
ik
j

)
.-'f""-__ ;
S}
v || » |
/ X S\

.-"--‘

¢ e e

Figure 2.9. The Fano Configuration.
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The Fano configuration can be represented as the following matrix:

1001110
0101101
0011011

2) Sg. This matroid will be an important one for some of the counter-examples. We

give its matrix form:

0111
1 011
1 101
1 111

We state some of its properties:

Remark 2.3.4. o [t is IF representable, if and only if the characteristic of the field
[F is two.
e [t is not graphic.
e [t has a unique element x and a unique element y # x such that Sg \ © = Frx

and Ss \ y = Fr.

2.4. MARKOV CHAINS AND RANDOM WALKS

We define the basics of Markov chains and random walks on a graph G = (V, E).
A markov chain is a process that satisfies a memoryless property called the Markov
property on a finite set S with transition probabilities p(z,y). We call S as the state

space, and the elements s € S as states. More precisely we have

Definition 2.4.1. Let P be a k x k matrix with elements {p; ; : 4, j € [k]}. A random
process X = (Xo, X1,...) with the finite state space S = {s1,..., s} is said to be a

(homogeneous) Markov chain with transition matrix P, if for all n and 7, j € [k]

?
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and all 4g,...,i,_1 € [k], we have the Markov property,

P(Xn+1 = Sj|X0 = SioaXl =5i1 e Xn—l = Sin—l? Xn = Si)
:P(Xn-‘rl = Slen = Sz')

=Pij-

A random walk on a graph G = (V, E) is a Markov chain with the vertex set as
state space and transition probabilities defining the walk of a particle on the vertices

of the graph.

Theorem 2.4.1. For a Markov chain X = (X, ...) with state space S = {s1,..., sk},
transition matriz P, and a given initial distribution po, we have for any time n, the

distribution u, of X, as follows: p, = u,P".

Now, we define some basic properties of a Markov chain.

Definition 2.4.2. A Markov chain X with transition matrix P is called irreducible

if for any two state s;, s; € S, there is an integer m € Z such that P} > 0.

Definition 2.4.3. Let 7(s;) = {t > 1 : P/; > 0}. The period of the state s; of
the Markov chain is defined as the greatest common divisor of the elements in T (s;),

denoted as ged T (s;).

Proposition 2.4.1. If the Markov chain X is irreducible, then ged T (s;) = ged T (s;)

for any s;,s; € S.

Definition 2.4.4. A Markov chain X is said to aperiodic if the period of any state

is 1.

Example 2.4.1. We define a Markov chain on the graph which is in Figure 1. A natu-

ral way to define a simple random walk on a graph is to give the following probabilities:
1 ‘
. if v~
pij = 4 deg(vi) (2.10)

0, otherwise.
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Then for our example, the transition matrix becomes:

03044
3 0330
P=10 3010
1110
00 350

We observe that since our graph is connected, the corresponding simple random

walk is irreducible.

Definition 2.4.5. We call a distribution 7, a stationary distribution for the Markov
chain X with transition matrix P, if n is a probability measure on the state space S,

and it satisfies nP = n.

We state one of the main theorems of finite state Markov chains.

Theorem 2.4.2. For an irreducible, aperiodic Markov chain X, there exists at least

one stationary distribution.

Another important theorem in finite state Markov chain is the convergence to the

stationary distribution under suitable conditions.

Theorem 2.4.3. Let X be an irreducible, aperiodic Markov chain with transition ma-
trix P and an initial distribution pg. Then, for any distribution n which is stationary

we have as n — 00, [y —>7y 1.

Remark 2.4.1. This also shows the uniqueness of the stationary distribution under

suitable assumptions for the Markov chain, i.c. aperiodicity and irreducibility.

Definition 2.4.6. Let a Markov chain X with transition matriz P be given. A distri-
bution n on the state space of the Markov chain is said to be reversible if il satisfies

the detailed balance equations: n;P,; = n,;P;;, for all i, j € [k].
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Remark 2.4.2. We call a Markov chain reversible, if such a distribution exists.

Theorem 2.4.4. If a Markov chain X s reversible, say with the distribution n, then

n 1s a stationary distribution for X.
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3. POSITIVE ASSOCIATION

3.1. Monotonic Measures and Inequalities

We prove some inequalities concerning the ordering of measures and some corre-

lation inequalities which will be used in the following sections.

Theorem 3.1.1 (Holley Inequality). Let py and po be strictly positive measures on the
finite space (£, A) such that

po(x1 V xo)pr (1 A x9) > pa (1) po(wa), 21,20 € 3. (3.1)

Then,

Elﬁ [X] S E#z [X]v (32)

for increasing functions X : % — R.

Proof. We will prove the inequality using Markov chains. The main idea is to construct
a coupling of p; and us which is supported on the sub-diagonal regime, that is on the

set {(z,y) e Ex Y2 <y}

First, let us see how to construct a Markov chain with a given measure u as
its stationary distribution. Let ¥ = {0,1}”, and p be a strictly positive probability

measure on (X, A). Define a Markov chain X : 2 — R on the state space ¥, as follows:

X (e, 2%) =1,
X(2,z,) = M%)
p(x)

X(z,y) =0, for any other(x,y) € X2

The diagonal entries X (z, x) is chosen so that }_ .y X(z,y) =0 for all x € X.
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Remark 3.1.1. Let us observe how the Markov chain operates between states. Suppose
we are on a state where the edge e is closed. Then we switch on the edge with rate 1.
Suppose we are on a state where the edge e is open, then we switch off the edge with

rate M.

w(ze)

We first observe that the Markov chain defined is irreducible and aperiodic. Since,
we are working with switching on and off operators, we can always reach 1, all ones
state by switching on the appropriate elements of x with positive probability. Then,
again with positive probability, we can switch off the appropriate edges of 1 to reach
another desired state y. Hence, there exists a t so that Pa’;y > 0. Actually, with a little
deliberation, we can see that ¢ can be taken as ¢t = dy(z,y). Since, P, , is positive, we

see that X is aperiodic as well. Hence, there exists a stationary distribution.

To prove that p is the stationary distribution, we show that p satisfies the detailed

balance equations. That is, we need to show that

u(z) X (2,y) = w(y) X (y, ). (3.3)

We only need to focus on terms of the form (z.,z¢). Thus,

p(ze) X (7, 2°) = p(ze),

p() X (2, 2) = p(z°)

) = :U/(Ic)

Thus p is the stationary distribution of the given Markov chain.

Now, we will perform this procedure for two measures p; and po that satisty the

hypotheses of the theorem. Let S be the set of all ordered pairs (z,y) of configurations
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in ¥ = {0, 1}” satisfying x < y. Define the function H : ¥ x ¥ — R by

H(aje7 y; xe7 ye) = 17

12(Ye)
H e =
(2, 9% Te, Ye) (")
H(me,ye;xe,ye) _ Ml(fL’e) i :U"Z(ye),
p(xe)  pa(y©)

for all (z,y) € S and e € E. Also, set H = 0 for all other off-diagonal entries.

The diagonal terms H(x,y;x,y) are chosen so that we have

Z H(z,y;t,s) =0, (z,y) €S. (3.4)

(t,s)esS
Remark 3.1.2. Let us observe how H operates. We see from the first equation that,
if e is not in x, we add the edge e, switch on e with rate 1, and add it to y as well if e
is not present in y. The second equation gives the rate of switching off the edge e from
x and y where e is present in y. The third equation gives the rate for an edge e which

is present in both x and y and we switch off e in x but not from y. Note that

po(xy V xo)pr (1 A xg) > py(x)pe(za), 21,19 € 2. (3.5)

by the inequality given in the theorem, this rate is positive as well.

Let (Y;, Zi)i>0 be a Markov chain on S with generator H,, and set (Yy, Zy) =
(0,1). We write P for the appropriate probability measure. The transitions preserve
the ordering of the components of the states, hence we may assume that the chain

satisfies
P(Y; < Z, for all t) = 1. (3.6)

Observe that by the definition of the generator H, (Y, : t > 0) is a Markov chain with

generator p; and (Z; : t > 0) is a Markov chain with generator ps.
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Let 7 be a stationary distribution for the paired chain (Y}, Z;)¢>o. Since Y and
Z have unique stationary distributions p; and us respectively by the first part of the
proof, we see that n has marginal measures p; and po. Since P(Y; < Z; for allt) = 1,

we have

n(S) =n({(z,y) :x <y}) =1, (3.7)

and 7 is the coupling of the measures p; and po that is desired.

Now, let (x,y) € S be chosen according to the measure 7. Then we have

B [fT=n(f(x)) <n(f(y) = Eulf], (3.8)

for any increasing function f on X. Therefore, we have the desired result, i.e. po = py.

Theorem 3.1.2. A pair pi, pe of strictly positive probability measures on (2, A) sat-
isfies 3.1 if and only if it satisfies the following two inequalities:

po () pr (we) > p1 (%) pa(xe), = € B,e € E,

pa(x) iy (wep) = pa(25)pa(al), z€Xe, f € E.

Remark 3.1.3. The Holley inequality 3.1 is equivalent to a monotonicity condition in

one point conditional distributions. We state it as a theorem below.

Theorem 3.1.3. Let py and po be two strictly positive probability measures on (X, A).
They satisfy the Holley inequality 3.1 if and only if the one point conditional distribu-

tions satisfies

s (w(e) = 1a(f) = () for all f € B\ )
> a1 (2(e) = 1a(f) = (f) for all f € B\ ¢),

forall e € E, and all pairs &, € X satisying ¢ < €.
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3.2. Positive Association

We start with defining the notion of Positive association. Let E be a finite set,
and ¥ = {0, 1}¥. We say that a measure p is positively associated if for all increasing

functions f, g, we have

Eu [fq] > Eu[.f]Eu [(1] (3-9)

We can write this as
[ toan= [ gau [ gin. (3.10)

The beauty and completeness of positive association comes from the fact that
one can check if a measure is positively associated by only checking a lattice condition

on the space ¥, which is called the positive lattice condition.

Definition 3.2.1. A measure p is said to satisfy the Positive Lattice Condition if we

have

p(x vV y)u(z Ay) > p(z)u(y) Yo,y € . (3.11)

Theorem 3.2.1 (FKG). If a strictly positive measure p on 3 satisfies the positive

lattice condition, it 1s positively associated.

Proof. We will prove the theorem using Holley’s inequality. Now, assume that p sat-
isfies the positive lattice condition, and let f and g be increasing functions. Define a

new function § = g + a where a > 0. We observe that

Eu[fg] - Eu[f]Eu[g] = Eu[fg] - Eu[f]Eu[g]' (3.12)

Hence, by choosing a > 0 sufficiently large, we can assume that ¢ is a strictly positive

function on Y. To use Holley’s inequality, we need to have two measures on the space
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(3, F). We define p; := p, and

g(o)u(o)
sex 9(o) (o)’

pa(o) = 5 (3.13)

for all o € ¥. By Holley’s inequality, we have E, [f] < E,,[f] for all increasing

functions f. Thus,

S B
which is exactly
Eu[fg] > EulfE[g]. (3.15)
]
Remark 3.2.1. e For a strictly positive measure p, it is sufficient that p satisfies

the positive lattice condition, but it is not necessary.
o We will see that negative lattice condition which will be defined analogously is not

sufficient. This is what makes negative dependence more tricky.

An example is proposed by J. Steif is the following:

Example 3.2.1. Let a,b € (0,1), and let p, pt; be the probability measure on {0, 1}3
given by

1o(010) = pp(001) = a, pe(000) =1 — 2a;
1

pu(111) = u (100) = 5.

Set = bpuo + (1 — b)py. We have

1(010) = p(001) = ab, ©(000) = (1 —2a)b

1(100) = p(111) = 17_6 1(011) = p(101) = u(110) = 0.

1 does not satisfy the positive lattice condition, but is positively associated.
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We can visualize the lattice as follows:

111

110 011 ot

10 010 001
000

Figure 3.1. The lattice of Example 3.2.1.

The measure g in the example 3.0.1 is not strictly positive, but taking a convex
combination of u, and a new measure, we can make it strictly positive as well. Lastly,

we state a theorem which makes it even easier to check the FKG inequalities.

Theorem 3.2.2. Let u be a strictly positive measure on (X, A). p satisfies the positive
lattice condition if and only if the inequality in the positive lattice condition holds for

all incomparable pairs xy,xe € X with dy(x1,z9) = 2.
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4. NOTIONS OF NEGATIVE DEPENDENCE

We now start defining several notions of negative dependence. We mainly follow
[1] and [2] in this chapter. The reason there are several notions of negative dependence
is that we do not have the corresponding FKG theorem in the negative dependence
case. First, we define some operations that gives us new measures which are natural

in the way that we want the negative dependence notions we define to satisfy them.

4.1. Operations on Measures

1) Projection. Given a subset E’ of our original set F, let i’ be the projection of
ponto {0, 1}, This corresponds to forgetting the variables in £/E'. It is reasonable
to expect the new measure to satisfy negative dependence property the original measure
satisfies as well. An example would be to define a measure on the subgraph of a graph.

In this case E/E’ would be the edges that we deleted to obtain the subgraph.

2) Conditioning. Given a subset A of our original subset E, we may fix the
states of the elements in A. That is for a given ¢ € {0, 1}*, we consider the conditional
distribution p/ = (u|X. = 9¥(e) for all e € A). It is reasonable for the conditioned
measure to satisfy the negative dependence properties the original measure satisfies as
well. An example would be to fix some edge set and assign them values before hand,
and condition on the states given to get the new measure. For instance, we may want
to construct a measure on the set of subgraphs where the edge e is present always and
f is not present. Here A = {e, f} and v € {0,1}* = (1,0). Several examples such as
spanning trees, random cluster measure and the Ising model which we will consider,

are all closed under conditioning.

3) Products. If the measure p; and the measure py are negatively dependent,
then it is reasonable to expect that the measure p; X s to be negatively dependent as

well.
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4) Relabeling. Let 7 € S, be a permutation. Define p/(z) = p(m(x)). It is
reasonable to expect that the new measure obtained by relabeling satisfies the negative
dependence properties that the original measure satisfies. An example would be to just

renaming the edges of a graph.

5) External Fields. Let w : E — R be a weight function. Then we consider

the weighted measure y’ obtained in the following way:
!
W(Xe=1(e):e€ k) ocHw =1(e):e€ E). (4.1)

We make this a probability measure by multiplying each value with the normalizing

constant, which is

S (X = (). (4.2)

$e{0,1}F
The name external field is taken from Ising model.

4.1.0.1. Polynomial Conversion. We will convert all of the above into a language of

polynomials. Suppose we have a measure u € {0, 1}, where E is a finite set. We write
the generating polynomial for the given measure p by the values it takes on each subset
of ££. To a subset S C F, assign the monomial xs = [], g %. Then the generating

polynomial that corresponds to p denoted by g,(z1,...2,) is

(21, 20) = D p(S) (4.3)

SCE

Observe that there is a one-to-one correspondence between the measures on {0, 1}
and the polynomials g(z1, ..., 25 = D g p asXxs With the property ||g|[,1 = 1. We have
ag = u(9).

Let us look at the operations under this perspective.



32

1) Projection. Let p be a measure on the set F, and E' C E. Suppose the
generating polynomial of y is g,, then the projection of 1 onto the subset £’ gives a
new measure i/ whose generating polynomial is related to the generating polynomial

of p as below:

g,/(ze; ec El) = gu(ze; ec E)|ze=1 for eeE/E’ - (44)

2) Conditioning. Let p be the measure on the set E with the generating
polynomial g, and A C E. Given ¢ € {0, 134, if we condition on g with ¢ fixed, we

get a new measure i’ = u(X.| X, = ¢(e) for e € A) with the generating polynomial

g,u(zlw"azn)lzg:OforeEA (45)

G (21, 2n) = .
H( T gu(zla'--7zn)|ze=0fore€A;ze=1 for eeE/A

3) Products. Suppose the measure p; on {0,1}*! has generating polynomial
9uy (21, .., 25, ) and the measure o on {0, 1}72 has generating polynomial g,, (21, .., 2, ),
where |E;| = ny and |Ey| = ny. Then the product gy x g on {0, 1}£1°E2 is the measure

with generating polynomial
Guixps (217 L) Zn1+n2) = 9w (Zla cey Zm)guz(2n1+17 L) Zn1+n2)' (46)
4) Relabeling. Suppose the measure i has the generating polynomial g, (21, ..., ).

Then for a permutation m € S,,, the relabeled measure y is the measure with generating

polynomial

gu'(zlv'”azn) - gp(zﬂ'(l)»---azﬂ'(n))- (47)

5) External Fields. Let w : E — R™ be a weight function. If u on {0,1}¥

is a measure with generating polynomial g,(z1, ..., z,), then the measure y/ with the
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external field (w(e))ecr is the measure with the generating polynomial

_ gu(w(l)z, ..., w(n)z,)
gu(w(l),...;w(n))

G (21, s 2n) (4.8)

which is well-defined if g, (w(1),...,w(n)) # 0.

4.2. Notions of Negative Dependence

4.2.1. NLC

We define negative lattice condition naturally as the reverse of positive lattice

condition.

Definition 4.2.1. A measure ;v on 3 is said to satisfy the Negative Lattice Con-

dition if we have

p(xVy)p(e Ay) < p(z)u(y) Yo,y € X (4.9)

Considering this condition in terms of polynomials, we see that a measure y satis-
fies the negative lattice condition if and only if the corresponding generating polynomial

g,, satisfies

9°9,(0,...,000"g,(0, ...,0) > 9°°"g,(0, ..., 0)0° (0, ..., 0), (4.10)

oISl

Ze

where S, 7 C E and 0° means

b

|e€S

Remark 4.2.1. We see that NLC' is closed under the operations defined above except

projection.

We will give an example to show that negative lattice condition does not imply

negative association in the following sections.
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4.2.1.1. h-NLC.

Definition 4.2.2. A measure i is said to satisfy the hereditary negative lattice condi-

tion, h-NLC, if every projection of n satisfies NLC.

This is a stronger property than NLC and is needed since we saw that negative

lattice condition is not closed under projection.

4.2.1.2. h-NLC+.

Definition 4.2.3. A measure i is said to satisfy the strong hereditary negative lattice

condition if all measures obtained by imposing an external field on u satisfies h-NLC.

4.2.2. p-NC

The notion of pairwise negative correlation is the weakest among all the notions

we will define. We will prove that the other notions all imply p-NC.

Definition 4.2.4. A measure pu € {0,1}F is said to be pairwise negatively corre-

lated, p-NC, if we have
E [ XJEL[X /] > E, [ X X/, (4.11)

foralle# f € F.

In terms of the polynomials this corresponds to the inequality

0e9u(1)07gu(1) > 0:05g, (1) for all e # f, (4.12)

where g, is the generating polynomial for the measure ;, and 1 denotes the all ones

vector (1, ..., 1) in the corresponding space.



35

4.2.3. NA

The notion of negative association is the most basic one, and in a way is the
corresponding notion of positive association. We define it in the same way, with just
the inequality reversed. However, there is a distinction since a random variable X is
always positively associated with itself, i.e. E[X?] — E[X]?> = Var(X) > 0. Therefore,
we need to make an adjustment, which we make with adjusting the coordinates the

functions depend on.

Definition 4.2.5. A measure p on {0, 1}” is called negatively associated, NA, if

Eu[f]Eu[g] > Eu[fg]v (4.13)

for any increasing functions f, g on {0, 1}¥ that depend on disjoint sets of coordinates.

We state a proposition for negative association that yields calculation free proofs

in some cases.

Proposition 4.2.1. (i) If X,Y satisfy NA and are mutually independent, then the
vector (X,Y') satisfies NA.

(ii) Suppose X = (Xi,...,X,) satisfy NA. Let (A;)icy be disjoint index sets, and,

for i € [K], let ¢; : R4 — R be either all non-increasing or all non-decreasing

functions. Set Y; = ¢;(X;,i € A;). Then Y = (Y1,...,Y,) satisfies NA.

4.2.3.1. CNA.

Definition 4.2.6. A measure p is said to be conditionally negatively associated,

CNA, if each measure i/ obtained from g by conditioning is negatively associated.

4.2.3.2. CNA+.

Definition 4.2.7. A measure p is said to be strongly conditionally negatively associated,

CNA+ if each measure p/ obtained from p by imposing an external field and projection

is CNA.
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Remark 4.2.2. [t can be seen from the definitions that the measures satisfying h-

NLC,h-NLC+,NA,CNA,CNA+ are all p-NC.

4.2.4. RAYLEIGH MEASURES

Let g be a polynomial with g(1) = 1, where 1 = (1, ..., 1) is the all ones vector.
We say that the polynomial ¢ is Rayleigh if

dg . . Og 9%g
0% . 0zy (z) 2 0z.0z¢ () f(z),

(4.14)

for all x € R%, and for all e, f € [n]. We say that a multi-affine polynomial with

non-negative coefficients in Rz, ..., z,,| is Rayleigh if it satisfies the above condition.

Remark 4.2.3. We call a polynomial c-Rayleigh if the same inequality holds with a

constant c, 1.e.

99 (129
0z "z,

0%g
> G (@) f(a).

(z) (4.15)

Definition 4.2.8. A measure p is called Rayleigh (c-Rayleigh) if the corresponding
generating polynomial g, is Rayleigh (c-Rayleigh respectively).

Remark 4.2.4. The name Rayleigh comes from the similarity to the Rayleigh mono-

tonicity property of the effective conductance in electrical networks.

We state some basic results concerning Rayleigh polynomials.

Proposition 4.2.2. If g(z1, ..., z,) is Rayleigh then the following polynomials are also
Rayleigh:

(1) 9%g(21, ..., 2z,) for any S C [n],
(2) g(z1 +ay, ..., 2, + ay) for any a; > 0,
(3) g(zh ooy Zn)'zz:ai for any 1€ [Tl] and a; > 07

(4) glaiz1, ..., anz,) for any a; > 0,
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(5) The polynomial g, called the inversion of ¢, g(=, ..., i) |

21

. L . k k
(6) The polynomial in nk variables g (% D iy Plis ey % iy zm->.

4.2.4.1. PHR.

Definition 4.2.9. A measure whose generating polynomial is homogeneous and Rayleigh
is called a homogeneous Rayleigh measure. We denote by PHR, the set of all mea-

sures that are projections of homogeneous Rayleigh measures.

4.2.4.2. STRONGLY RAYLEIGH.

Definition 4.2.10. A polynomial g € C[zy, ..., z,] is called stable if g(z1,...,2,) # 0
whenever I'm(z;) > 0 for 1 < j < n. If the polynomial has real coefficients, we call it

real stable.

Remark 4.2.5. Multivariable stable polynomials are related to many other important

notions. We do not dwell on them too much.

Now, we define Strongly Rayleigh measures which will have another equivalent

definition in the way Rayleigh measures was defined.

Definition 4.2.11. A measure p is called strongly Rayleigh if the corresponding

generating polynomial g, is real stable.

Branden proved in his paper Polynomials with the half-plane property and ma-

troid theory, that the real stability is equivalent to the following property.

Proposition 4.2.3. A polynomial g € C[zy, ..., z,] is real stable if and only if it has

non-negative coefficients and it satisfies

dg dg 0%
S (@) 2 5o A (@ale),

(4.16)

forallz e R" and 1 <i# 5 < n.
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This is the same as the definition of Rayleigh measure with the only difference
being is that we want the inequality to be satisfied not only on the positive reals, but
on all of them. Hence, it is easily seen that being strongly Rayleigh implies being

Rayleigh.

4.2.5. LORENTZIANITY

Definition 4.2.12. We define H? to be the set of degree d homogeneous polynomials

of in Rz, ..., 2], and P9 to be the set of polynomials with positive coefficients in H¢.

Recall that the hessian of a function is defined as the matrix

Hy = (0:9;f); (4.17)

ij=17

where 0; is the partial derivative with respect to the it variable z;.

Definition 4.2.13 (Lorentzian Polynomials). We define L2 C H? to be the open
subset of quadratic forms with Lorentzian signature (+, —, ..., —), i.e. the Hessian has

only one positive eigenvalue. For d > 2, we define the open subset L C H? by setting
LE={fec H':0;f € L' for all i}.

The polynomials in L? are called strictly Lorentzian. The limits of the strictly
Lorentzian polynomials are called Lorentzian, since this is a closure, we can denote

the Lorentzian polynomials by L_ﬁ.

Remark 4.2.6. This polynomials not only show up in the context of negative depen-
dence but actually they are the volume polynomials of convexr bodies and projective

varieties. They connect the discrete and continuous notions of convexity.
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4.2.6. LOG CONCAVITY

Now, we define log concavity for sequences and we will see how it relates to neg-
ative dependence notions in the following sections. Suppose we have a finite sequence

of non-negative real numbers, {a;}" ;.

Definition 4.2.14. We say that a sequence of non-negative real numbers {a;}; is

log concave if
a? > a;_1Gi.1, (4.18)

forall 1 <i<n.

Definition 4.2.15. We say that the sequence {a;}?_; has no internal zeroes if the

indices of the non-zero terms forms an interval.

Example 4.2.1. A natural example of a log concave sequence is the binomial numbers.

Fizing n, we have that the sequence {(Z) Ir_o is log concave.

Definition 4.2.16. We say that a sequence {a;}!', is strongly log concave if

{ila;}, is log concave and it has no internal zeroes. We say that the sequence is

ultra log concave if { (‘ff) }7, is log concave and it has no internal zeroes.

Remark 4.2.7. We have that ULC = SLC = LC.

4.2.7. STOCHASTIC COVERING PROPERTY

We first define the notion of stochastic domination and covering.

Definition 4.2.17. Let pu,v be measures on {0,1}¥. We say that the measure pu

stochastically dominates the measure v if we have
H(A) > v(A), (4.19)

for every upwardly closed event A. We denote stochastic domination by p > v.
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Proposition 4.2.4. Let p,v be measures on {0,1}". p = v if and only if there is a
coupling, a measure p on {0,1}" x {0, 1}" with marginals p and v which is supported

on the set {(x,y) : x > y}.

Definition 4.2.18. We say that x covers y in a partially ordered set if > y and there

is no z such that z > z > y. We denote this relation by x>y.

Definition 4.2.19. Let u, v be measures on {0,1}". The measure u stochastically
covers the measure p, if there is a coupling, that is a measure p on {0,1}" x {0,1}"
with marginals p and v, so that p is supported on the set {z,y} where either x = y,

or x covers y. We denote this relation by pp v.

Remark 4.2.8. Stochasting covering is the same as stochastic domination except we

want the coupling to be on the elements that differ by one in hamming distance.

Definition 4.2.20. A measure g on {0, 1} is said to have the stochastic covering
property if for every S C [n] and z,y € {0,1}F with 2>y, the conditional measure
(1| X; = z; for j € S) stochastically covers the conditional measure (p|X; = y; for j €
S).

Remark 4.2.9. Suppose x >y, and we compare the measures ji, = (| X; = x; forj €
S), and p, = (u|X; = y; for j € S) on {0,1}5°. If the measure u and its conditional-

izations are negatively associated, then it follows that pi, = p,.

4.3. RELATIONS AMONG THE NOTIONS OF NEGATIVE
DEPENDENCE

4.3.1. Implications
Now, we prove some relations among the notions we defined above. There are
many open conjectures that needs proving in this part and we state them in order as

well.

First of all, let us observe the basic relations.
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Proposition 4.3.1. We have the following implications: CNA+ — CNA — NA.

Proof. These implications follow from the definitions. |

Proposition 4.3.2. We have the following implication: h-NLC = NLC.

Proof. Since h-NLC is just NLC with an extra hereditary condition, the implication

follows. ]

Proposition 4.3.3. We have the following implication: NA = p-NC.

Proof. By definition, negative association gives us for any increasing functions that

depend on a disjoint set of coordinates f, g

E[f(X)g(X)] < E[f(X)]E[g(X)]. (4.20)

Note that f(X) = X, and g(X) = X, are increasing functions and depend on disjoint

set of variables, therefore we have

E[X.X;] < E[X JE[X/], (4.21)

which is pairwise negative dependence. [ ]
Proposition 4.3.4. We have the following implication: h-NLC = p-NC.

Proposition 4.3.5. We see that if a measure is strongly Rayleigh, then it is also

Rayleigh.

Proof. This follows from the definitions of the respective notions. ]

The above implications are trivial via the definitions. We state some non-trivial

implications:
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Proposition 4.3.6. h-NLC' < Rayleigh.

Proof. Wagner proved the left implication in his paper [11], Theorem 4.4. For the right

implication, we follow the proof in [1]. Let i # j € [n] and set

9(zi,25) = f(21,- - 20) | ze=1,kem)\ fig)}- (4.22)

The quadratic polynomial we get is real stable by NLC properties. Now, using external

fields and properties of the Rayleigh polynomials together with the fact that
0i(1)0;(1) = 0;0;(1),

we see that the inequality also holds for f(xz1,...,2,2,) whenever x; > 0 for i € [n]

?

which means that f is Rayleigh. |

Remark 4.3.1. We also have a similar condition for h-NIC and Rayleigh polynomials.
A polynomial f is h-NLC if and only if it satisfies the Rayleigh inequality for all z =
(21, ..., 2n) with z; € {0,1, 00} for alli € [n].

We give the celebrated result of Feder and Mihail:

Theorem 4.3.1 (Feder-Mihail). Let A be a set of measures closed under conditioning
and projections. Suppose all of the measures in A is p-NC, i.e. satisfy pairwise negative
correlation for X., Xy¢. If for each p € A and an increasing event @), there is an edge

e so that we have the following correlation

n(Xelg) = p(Xe)u(Q),

then each measure in A is negatively associated.

Proof. We follow the proof given in [2] Theorem 1.3, which is the same as the original
proof of Feder and Mihail. We will use induction on the rank of the lattice measures

are supported on. Suppose the negative association property holds for all measures
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that are supported on the lattice of rank n and fewer. Note that when n = 1, this is
vacuously true. We show that the two events X, and an arbitrary increasing event ()

not depending on X, satisfies negative dependence. The other cases are similar.

If P(X, = Xy =1) =0, with f # 0 we do not have anything to do in the
induction step. Assume this is not the case. By the assumption given in the theorem,

for (ule) there is some f # e for which we have
wQXe =Xy =1) > p(Q|Xe = 1). (4.23)
Now we write the following

wQIXe =1) = p(QXe = Xy = Du(Xy = 1| X = 1)
mQIXe =1, Xy = 0)u(X; = 0[X. =1)

_|_

N(Q|Xe = O) = N(Q‘Xe = O7Xf = 1)N(Xf = 1|Xe = 0)

+ [L(QlXe = Xf = O)M(Xf = OlXe = 0)

Now, we can compare the terms on the right-hand sides of the two equations:

o u(X;=1|X.=1) < pu(X; =1|X, = 0) by the assumption that the measures in
A are p-NC,

e WQIX. = Xy = 1) < p(QIX. = 0,X; = 1) and p(QIX. = 1,X; = 0) <
p(Q|Xe = Xy = 0)due to the fact that (u|X; = 1) and (u|X; = 0) respectively
is assumed to be negatively associated by induction hypothesis,

o 1(Q|Xe=X;=1)>pu(Q|X. =1,X; =0) by the choice of f.

With this four inequalities, we observe that u(Q|X. = 1) < u(Q|X, = 0) which proves
the NA in this special case. The general increasing events follows in a similar manner.

Remark 4.3.2. Feder and Mihail proved this in the case of a class of matroids which
is called Balanced Matroids in their paper [12].
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Proposition 4.3.7. A Strongly Rayleigh measure (and also a PHR measure) is CNA+.

This implications are strict.

Proof. Let A be the class of probability measures satisfying the following conditions:

e cach p € A is a measure on {0, 1}¥ for some finite set £ C {1,2,...}, and

e 4 has a stable homogeneous generating polynomial.

Stable homogeneous polynomials are p-NC and are closed under conditioning. Hence
they satisfy the hypothesis of Feder and Mihail’s theorem 4.3.1. Thus, all the mea-
sures in A are in NA. Now, we let A be the class of measures satisfying the following

conditions:

e cach p € A is a measure on {0, 1}” for some finite set £ C {1,2,...}, and

e ;1 has a stable generating polynomial.

We have that 77 € A is a projection of a measure p € A, and since NA is preserved
under projection is itself in NA. Since the Strongly Rayleigh measures are preserved
under projections and external fields, this class contains Strongly Rayleigh measures

and we are done. ]

Remark 4.3.3. Since homogeneous Rayleigh polynomials need not be stable, we see
that the strongly Rayleigh implying PHR is also strict. We will see that PHR= CNA+

is also strict. Hence, strongly Rayleigh = CNA+ is also strict.

Proposition 4.3.8. A strongly Rayleigh measure is Lorentzian.

Proof. We prove the proposition by induction on d. Strongly Rayleigh polynomials
are stable polynomials S? and note that the derivative as an operator is an open
map sending S¢ — S971 ie. sending the interior of S¢ into the interior of S¢!.
Hence, we prove that S? is in L2. For quadratic forms, we prove that the Hessian

has Lorentzian signature (+,—,...,—) if and only if for any non-zero u € R%, the
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univariate polynomial f(zu — v) in x has two distinct real zeroes not parallel to u for

any v € R". We note that the polynomial { f(zu — v) has discriminant
(u'Hpv)? — (u"Hpu)(v" Hyv), (4.24)

where H; is the Hessian of f. Supposing f € L2, we know that the entries of H; are
all positive and u'Hpu > 0 for all non-zero u. Now, by Cauchy’s interlacing theorem,
we have that for any v € R", the restriction of the Hessian to the plane spanned by

u, v has signature (4, —), hence

u'Hpu u'Hjpv . ) . .
det = —[(vHv)" — (v Hpu)(v'Hv)| <0, (4.25)
u'Hp v'Hpv

hence we have the desired result. ]

1t o2y 7019 y maq > . Y2l &2)>) &2} — l - y g
Proposition 4.3.9. Lorentzian polynomials of degree d are 2 (1 d) Rayleigh.

Proof. Euler’s formula for homogeneous polynomials gives us the following:
u'Hy(u)u=d(d—1)f(u), and u'H;(u)e; = (d —1)0; f(u), (4.26)

for any fixed u € R%,.

We consider the restriction of H; to the plane spanned by u and v, = e; + te;
for some real parameter ¢t.By Cauchy’s interlacing theorem, this new restricted Hessian

also has one positive eigenvalue, i.e. we have
(u'Hpv,)* — (u'Hpu)(viHpvg) > 0, (4.27)
for all t € R. Now applying Euler’s formula for homogeneous polynomials we get:

(d— 12D f () +10,f (w))? — d(d — 1) f(@f + 200, f +22f) > 0. (4.28)
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Hence, for all t € R, we have
(d—1)*(0if +t0;f)* — 2td(d — 1) f8;0;f > 0, (4.29)
which means that the discriminant should be non-positive, which turns out as
1
f0,0,f —2 (1 — 3) 0;0; < 0. (4.30)

This inequality shows that f is 2 (1 — é)—Rayleigh. ]

We have the following figure for the implications:

Strongly Rayleigh

\L \ Lorentzian

PHR N
/ ULC

CNA+—— JNRD+4——> Rayleigh

\L \L (b-NLC+) ™= c-Rayleigh [¢ > 2]
CNA — JNRD l/
h—NLC
| / NLC
p-NC

Figure 4.1. Relations among notions of negative dependence.
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4.3.2. Counter Examples

We start with stating a simple counter example to the inverse FKG theorem, i.e.

NLC # NA.

Example 4.3.1 ( [1]). Consider the measure on {0,1}* whose generaling polynomial

s given as below:
1
g’u(Z) = 1—5(3 + 221 + 222 + 223 + 2212’2 + 22123 -+ 22’223), (43].)

i.e. the measure is concentrated on the I1-element and 2-element subsets. Recall the
NLC inequality p(x V y)u(x Ay) < p(x)u(y). Let x = (1,0,0) and y = (0,1,0), then
v Vy = (1,1,0) and x Ay = (0,0,0). Thus we have L2 > ZZ which shows that
the measure p does not satisfy the NLC inequality. However, the measure is negatively

associated.

Remark 4.3.4. Another beautiful example is due to T. M. Liggett in his paper [13]
Theorem 3.5.

Example 4.3.2 ( [2]). Consider the measure on {0,1}® whose generating polynomial

s given as below:

(21 4+ 29 + 23 + 10€21 29 + 2125 + 10€2923 + €212923). (4.32)
€

When 0 < € < 8, this measure satisfies the CNA conditions and all its implications.
However, when € > 0, with the external field (A, 1,1) for any A < 7= gives us a measure
where zo and z3 are positively correlated. Hence the external fields violate the negative
association. This shows that the implications from CNA+, JNRD+ and h-NLC+ to
CNA, JNRD, h-NLC' are strict respectively.
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5. MODELS

5.1. URN MODELS

One model where negative dependence is prominent is Urn models. Suppose we
have n balls and m bins to distribute these balls into. Let O; denote the number of

balls inside bin j for 1 < j < m.

Intuitively, we see that if some balls are in some bins, then since the number of
balls decreases, the probability of a bin being filled decreases. Somehow, there should
be a negative dependence amongst the distribution laws of O;’s. We will call these

numbers occupancy numbers.

Suppose the balls and the bins are identical and the probability that the ball will
be put into bin j is p;, with Z;nzl p; = 1 then the distribution will be the multinomial
distribution. That is, if we have the vector (x1, ..., z,,) where x; is the number of balls

in the bin 7, we have

m! . .
]P)[OZX] = mpll...pmm, (5].)

if Y z; = n. Otherwise, the probability is zero.

We will prove a proposition first.

Proposition 5.1.1 (0-1 Law). If the 0-1 random variables, (X;)1<i<n Satisfy

zn: X, =1, (5.2)
=1

then they satisfy the negative association property.
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Proof. Suppose X; = 1, and the others are 0. Suppose I and J are the disjoint subsets
that the functions in NA depend on. That is, f : R" — R and g : R — R are actually
functions of the form f : RII| — R and g : RlJ| — R. We can write this as f(a;.i € I)
and g(aj,j € J). Suppose also that f and g are non-decreasing. We can arrange the
coordinates so that I is the first I of coordinates and J is last |.J| many coordinates.

Now, we have

This inequalities follows from the choice of the set of coordinates that the functions

depend on.
Define a new random variable X taking values in [n] as follows: X; = 1 =
X =i.

We also define two new functions

. f0,...,1,...,0), ifie
1) =
f(0,...,0,...,0), ife & [
_ g(0,...,1,...,0), ifieJ
g'(i) = ,
|9(0,....0....,0), ifi ¢ J

where the 1 is in position . We observe that E[f'(X)] = E[f(X;,: € I)], E[¢'(X)] =
Elg(X;,i € J)], and E[f"(X)¢'(X)] = E[f(X;,i € I)g(X;,i € J)]. We have by FKG
inequality E[f"(X)g (X)] < E[f'(X)]E[¢'(X)], since f" and ¢' are non-increasing func-

tions. This proves the desired inequality. [
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Remark 5.1.1. We defined the NA for probability measures. Here the probability

measure is the measure that comes naturally with the given random variables X;.

Now, let us work with Urn models. Instead of working with identical balls, let us

name the balls as well. We define the following random variables:

1, if ball &k falls into urn 7
Oip = (5.3)

0, otherwise.

Proposition 5.1.2. For any fized k, we have that (O;,i € [m]), satisfies NA.

Proof. Note that the ball k can only fall into 1 urn. Hence, >.7" O;, = 1. The

proposition follows from the 0-1 law 5.1.1. [ ]

Remark 5.1.2. Since the balls are independent, we can take in the above proposition

5.1.2 (Oik,i € [m], k € [n]).

Proposition 5.1.3. The vector O = (O, ...,0y,) satisfies NA.

Proof. Observe that O; = > ;_, O, and the sum is a non-decreasing function for all
i € [m]. Now, using the above proposition 5.1.2 with the remark 5.1.2 and the second

part of proposition 4.2.1, we get the desired result. [ ]

5.2. UST, USF AND UCS MEASURES

We define two measures on the set of subgraphs of a graph. The first one is
the measure called the uniform spanning tree measure,UST, which is supported on
the spanning trees of a graph, and the second one is the measure called the uniform

spanning forest measure, USF, which is supported on the spanning forests of a graph.
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5.2.1. UST

We prove in this section that the uniform spanning tree measure is negative edge
dependent. Let G = (V, E) be a finite, connected graph. The uniform spanning
tree measure denoted by p is the measure on the subgraphs of G' concentrated on
the spanning trees. Let Z%' denote the number of spanning trees of the graph G.
Note that if there are no confusions, we suppress the graph G. Then we have for a

subgraph o € {0,1}F,

1
——, if o is a spanning tree
TG ERE (5.4)

0, otherwise.

Let us look at an example. First, let us restate p-NC in terms of probabilities.
Observe the following E[X,] = P(e € T), where T is chosen according to UST measure.
Hence, p-NC becomes P(e, f € T) <P(e € T)P(f € T).

Example 5.2.1. Suppose our graph G = (V, E) is K,. Let us look at its spanning
trees which are given in 5.1. We count the number of spanning trees that contain e,
that contain f, and that contain e, f. Let us denote the spanning trees that contain
a set of edges ey,... e, by T(er,...,ex). Now, we have |TE+(e)| = 8, |[TH4(f)] =
8, and |T"4(e, f) = 3|. Therefore, we have

Ple, f € T) = _ 538 _peempfen (5.5)

5.2.1.1. Random Walks on the Graph. We state a Markov chain that generates UST

measure as its stationary distribution. We will generate a simple random walk on a
finite, connected, d-regular graph G. The assumption of d-regularity can be bypassed

with some work.



Figure 5.1. K, and its Spanning Trees.

The process starts by picking a vertex, vg. Consider this as time ¢ = 0. Then, at

time t = 1, the walk will move along an edge to another vertex v; which is adjacent to

vp, denoted v; ~ vp, with probability 5.

Remark 5.2.1. We can define a similar random walk on a finite, connected graph G,

1
by assigning the probabilities as ———— for each vertex.
deg(v)

The given random walk is a Markov chain with state space V' (G), and probabilities

1 it
- ifx ~y,

p(z,y) =< d (5.6)
0 otherwise.

52
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Observe that since the graph is connected, the Markov chain which we denote
by SRW is irreducible. We can arrive from any vertex z to any other vertex y via
moving on a path. The existence of such a path is guaranteed by the connectedness of
the graph. Since the Markov chain is irreducible, we know that there is a stationary

distribution.

We denote the simple random walk started at the vertex x by SRW?. We begin
by a construction that will give us a directed spanning tree with a root. However, we
can simply forget the root and the orientations of the edges and the directed spanning

tree becomes a spanning tree.

Suppose we perform a simple random walk on the graph G, but only take the
edge that arrives at the vertex x if the edge is the first one that touches x, and we put
the direction as x — y, where y is the vertex from which we arrived at x. In this way;,
we obviously get a directed graph, and since we put the directions backwards, the root
becomes the first vertex we started the process. Since we do not include the edges that

overlap an already reached vertex, the process ends with a tree.

Remark 5.2.2. [t is important to note that the process will terminate with probability

1.

Let us give an example. Suppose we perform the simple random walk on the

following graph starting from A.

A B

Figure 5.2. A graph.
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Assume that the simple random walk SRW , generate ABFBCDAE. Since we
only take the edges that hit the vertices first, this gives the directed tree rooted at A:

A B A

Figure 5.3. SRW 4 on the graph in Figure 5.2.

Theorem 5.2.1. The resulting measure is the uniform spanning tree measure.

Let us return to the question of finding the probability that a given edge e € V' is
in a Spanning tree. We will formulate this problem in the setting of random walks. Let
e = (r,y), that is e is the edge with vertices x and y. Consider the simple random walk
that has been discussed above. It generates a uniform spanning tree. The question
now becomes, what is the probability that the given edge e is in the uniform spanning
tree generated by SRWS. [Any vertex is fine, but for a given edge e we pick one of
its vertices.] Considering the algorithm, we see that the only way, the edge will be
in the resulting configuration is that the first time SRW hits the vertex y, is from
the vertex z. Since otherwise, we would not add the edge (x,y). Hence, we have
P(e € T) = P(SRWE hits the vertex y first from the vertex x). We’'ll see that this is a

much more tractable probability. We define the following function
hay(7) = P(SRWE from the state x hits the vertex b before a). (5.7)

Remark 5.2.3. e Note that hg(a) =0, and hg(b) = 1.
e Observe that due to the nature of the simple random walk SRW, from a vertex,
we can only pass to its neighbours, hence we can write a recursive formula of

hap(x), which involves the neighbours of z.
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Suppose the time the random walk is at the vertex x is k — 1, then at time x, it

will be on one of the neighbours of x. Hence we have
hay() =Y P(te = ylteor = 2)ha(y). (5.8)
Yy~

If we let the weights of the edges to be the transition probabilities, we see that

hap(@) = Y hao(y)w((z,9)). (5.9)

Yy~

Hence, besides from the terminal vertices T' = {a, b}, the function h, is a harmonic

function and the terminal vertices satisfy hgy(a) = 0, hap(b) = 1

Remark 5.2.4. Observe that the same properties hold for the Voltage function V :

V = RT as well.

The theorems we stated in the Harmonic function section 2.2.4.1 together with
?? yield that there is only one function that satisfies the required properties. Thus, we

get, the following:

Theorem 5.2.2. Let G be a finite, connected weighted graph. Let a,b be vertices of G.
For any vertex x, the probability of SRWE reaching a before b is equal to the voltage

at x in G when the voltages at a and b are fixed to 0 and 1 respectively.

Now, let us look at the currents in terms of the random walks and spanning trees.

Theorem 5.2.3 (Main Theorem of UST). The uniform spanning tree measure UST
is negative edge dependent, or satisfies p-NC.

Before proving the theorem, we state a physical principle:

Proposition 5.2.1 (Rayleigh Monotonicity Principle). The effective resistance of a

circuit cannot increase when a new resistor is added.
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Proof of 5.2.3. Let us look at %, where T (s, zy, t) is the number of spanning trees
whose unique path from s to t passes through the edge e = xy in the direction x — v,
and |7 is the number of all spanning trees of G. From what we have done in this
section we observe that this quantity is the same as the current flowing through the

edge e = xy in the direction x — y when a unit current flows from s to t.

Now, let e = zy, and i be the UST measure on G. 1 (X,) equals the current
flowing along e when a unit current flows through G from source = to sink y. By
Ohm'’s Law, this equals the potential difference between x and y, which in turn equals
the effective resistance R(e) of the network between z and y. Let f # e € E, and
look at G.f, the graph obtained from G via the contraction of f. There is a one—one
correspondence between spanning trees of G.f and spanning trees of G' containing f.
Therefore, 15 (X.|Xt) equals the effective resistance R/ (e) of the electrical network

G.f between x and y.

The Rayleigh principle states that the effective resistance of a network is a non-
decreasing function of the individual edge-resistances. It follows that R%/(e) < R%(e),

and thus (X, |Xy) < p**(X,) which is P(e, f € T) <Plee T)P(f € T). n

5.2.2. USF

We define the uniform spanning forest measure denoted as pf to be the

measure defined on the subgraphs o € {0, 1} of a graph G = (V, E) as follows.:

! if o is a forest
. Zaai i ois aforest,
[ f(g) . A (5.10)

0, otherwise.

Here Z% denotes the number of spanning forests of the graph G. In general, almost
nothing is known about this model. We prove it is p-NC for some classes of graphs
in the last section. Grimmett and Winkler proved the following using an algorithmic

approach:
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Theorem 5.2.4. If a graph G = (V, E) has eight or fewer vertices, or has nine vertices

with eighteen and fewer edges, then the USF measure on G is negative edge dependent.

Stark proved the following for USF in 2008:

Theorem 5.2.5. Let F be a spanning forest of K, chosen accordingly from USF. Then

for sufficiently large n we have
ptmd(e, f € F) < pfvd(e € F)p*9(f € F), (5.11)
or for lesser confusion

Ple, f € F) <P(e € F)P(f € F), (5.12)

Knp,s

i.e the measure =% is p-NC for large enough n.

Remark 5.2.5. Stark proves some asymptotics for the above results which is as follows:

P(ee}')]P’(fe]—")=%—%—§+O<%), (5.13)
and for adjacent edges e, f,
Pe.f€F)= > 10 (ig) , (5.14)
n n
and for non-adjacent edges e, f,
P(e,fe]-"):%—%—i—ZJr()(%). (5.15)

Note that we need the analysis upto order O(n ") due to non-adjacent edges.

A natural question to ask at this point is conditioning. What happens when we

condition on the connected component size of the forest?
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5.2.3. UCS

We define the uniform connected subgraph measure denoted as p® to be

the measure defined on the subgraphs o € {0,1}¥ of a graph G = (V, F) as follows:

1
——, ifk(o) =1,
(o) =S 29 (5.16)

0, otherwise.

Here Z% denotes the number of spanning forests of the graph G.
5.3. RANDOM CLUSTER MODEL

Let G = (V,E) be a graph with |V| = m, and |E| = n. A random cluster
measure on the graph G is a measure on the subgraphs of G. By a subgraph of G,
we mean a graph which has the same vertex set V, and an edge set £/ C E. As
the state space, we take the set ¥ = {0,1}¥, where the vector o = (0(€))ecr will
be defined according to the edge being present or not. That is o(e) = 1 if the edge
is present in the subgraph and o(e) = 0 if the edge is not present in the subgraph.
Define o(c) = |e : o(e) = 1|. We will mainly work on finite graphs, hence we can
order them. We define the parameter s to the element o so that k(o) is the number
of connected components of the subgraph. We assign the probability to a subgraph o
with the parameters p € [0, 1] and ¢ € (0, 00) proportional to

pog(o) o< [ 71 =p)" g, (5.17)

eck

Define the partition function

Z6, = Z 1S (o). (5.18)

oeY
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The partition function is the normalizing constant for the probability measure, i.e.

1 oo n—olo K(O
Hing(0) = Z—GHP @1 —p)" g (5.19)

b4 ecE

We observe that the insertion of the term ¢" differentiates the measure from the

usual product. When ¢ = 1, the measure becomes the product measure.

Note that the behaviour of the measure is very different in the cases ¢ < 1 and
q > 1. When ¢ > 1 the measure concentrates on the subgraphs with more connected
components, whereas when ¢ < 1 the measure concentrates on the subgraphs with
fewer connected components. The strength of the random cluster model is that it

generalizes many other models.

Figure 5.4. Random Cluster Model with ¢ = 2 on a 2048 x 2048 box.
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5.3.1. Basic Properties of Random Cluster Measure

Many properties of the random cluster measure is determined and can be ob-
served through the partition function. We state some properties of the random cluster
measure. We focus on comparison inequalities and how UST, USF, UCS measures

arises as a limit of the random cluster model.

5.3.1.1. Ising/Potts Model. Ising/Potts models first arises in statistical physics. It

is used to model particle interactions. We suppose that the particles (particles of a
magnetized iron or electrons interacting with each other) are positioned on the vertices
of a lattice such as Z%. In general, they may be positioned on the vertices of any graph.

The lattice Z? is of importance from a physical perspective.

Let G = (V,E) be a finite graph. We think of the vertices as being occupied
by a particle with a random spin. In the Ising model, the spin space has 2 elements
which we denote by {—1,1}, and in the Potts model which is a slight generalization
of the Ising model, the spin space has ¢ € Z* elements which we denote by {1,...,¢}.
Hence, our sample space is ¥ = {—1,1}" in the Ising model and {1,...,¢}" in the

Potts model.

The probability measure ps 5, on ¥ has three parameters with /3, J € [0, 00) and

h € R is given by

1 - o
pg.sn(0) = 7€ PO g e, (5.20)

where the hamiltonian H : ¥ — R is the following energy function

H(o)=—=J Y o@)oly) —h> o (5.21)

e=xycklk eV
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Figure 5.5. Ising Model at 7" = 0.000611.

Here, Z; is the partition function for the Ising model, which is

Zp=>Y e M), (5.22)
oey
In physical terms [ denotes the inverse temperature of the system %, and J is the

bonding energy of the particles.

Remark 5.3.1. e If we look at the Hamiltonian, we observe that there are two
parts to it. The first one is the interaction part, that is for any edge the vertices
incident to the edge interacts with each other which is seen in o(z)o(y) for e = zy.
The second one is the part that shows the energy of the vertex in and of itself in
a manner of putting.

e Since the interaction J in this basic model does not depend on edges, we can

think of 8 and J as a single parameter. They occur only as (.J.
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Figure 5.6. Ising Model at T' = 2.333625.

For the Potts model, we have ¢ states {1,...q}. Let d,, denote the Kronecker

delta symbol, i.e.
Opy = (5.23)

The Potts measure is

1
Hoalo) =z 00, o€, (5.24)

where the hamiltonian H” : ¥ — R is given by

H"(0) =~ Y 640), (5.25)

e=zyck

with 0¢(0) = do(z)o(y)- The partition function for the Potts model then becomes

Zp = e M), (5.26)

oceEY
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We will see that Ising and Potts models are special cases of the random cluster
model when we fix ¢. To see this, we state a coupling in the edge and vertex space
of a graph where the marginal on the edge space is the random cluster model and the

marginal on the vertex space is the Ising/Potts model.

Let g € {2,3,...} and p € [0,1] and let G = (V, E) be a finite graph. Consider the
product space ¥ x 2 where ¥ = {1,2,...¢}" and Q = {0, 1}¥*. We define a probability

measure proportional to the following quantity,

p(o,w) o JTI(L = p)duiero + Pouienide(@)], (o,w) € £ x Q. (5.27)

eel

The exact probability is again by multiplying with the normalizing constant which is
1

Z(mw)EEXQ /J”(O_7 (.4.)) ‘

Now, we look at the marginal probability measures.

Theorem 5.3.1 (Marginals of p.). Let ¢ € {2,3,...} andp=1—¢7 €0,1].

(a)Marginal on X. The marginal measure ps(0) = Y .o (0, w) on X is the Potts

measure

ps(o) = Zip exp (ﬁz 56(0)>, ogeX. (5.28)

eck

(b)Marginal on 2. The marginal measure po(w) = Y s p(o,w) on € is the

random cluster measure

]' —o(e R(W
po(w) =~ <Hp0<e><1 —p)' )> ¢, weq. (5.29)
p,q

ecE
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(¢)Partition Functions. We have that

> (H P91 - p)l-"(e)) ¢" = "] exp (B(3e(o) = 1)), (5.30)

weN \ecFE geY eeF

which is the same as

Z8 = e Zp(8,q). (5.31)

P

We also look at the conditional measures of .

Theorem 5.3.2 (Conditional Measures of u.). Let  and p be as in the above Theorem
5.8.1.

(a)For w € Q, the conditional measure u(-|w) on 3 is the measure we get when
we put random spins on the clusters determined by w of which there are k(w) many.

FEach cluster gets one of the spins {1,...,q} at uniformly random and independently.

(b)For o € X, the conditional measure p(-|o) on ¥ is the measure we get as
follows. If e = xy is such that the spins are not the same, i.e. o(x) # o(y), do not
include the edge, i.e. o(e) = 0. If the spins are the same, i.e. o(x) = o(y), we will

include the edge with probability p, i.e.

1, with probability p
o(e) = (5.32)
0, otherwise,

with the values of distinct e being independent (conditionally) random variables.
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Remark 5.3.2. The conditioning in 5.3.2 is called the Edward-Sokal coupling. We

give below a visual explanation.

- E ] ] e ‘s Iy Iy
g I! 2- %- :i

1 “» - “n
1 4 z 1

& & — . M - - i

"Il‘ ei "11 ] ow 'S ]

l- J. 'é-l “ » [ S

] 2 2 ?

[ L] L] e i

1 4 ] 2 l ‘ ‘

* l . w -

Figure 5.7. Conditional Measures of p.

5.3.1.2. UST.USF and UCS as limits of RCM. We look at the limits of the random

cluster model as ¢ — 0. The behaviour of % will change the limiting measure as we

will see. We will look at the weak limits and focus on the partition function qu. Let

G = (V, E) with |E| = n.

First, consider the weak limit as ¢ — 0 when p € (0, 1) is fixed. We have the

following for the partition function

qu = Z po(")(l — p)"_o(")q“(”). (5.33)

oe{0,1} &
Since we take the limit ¢ — 0, observe that the dominant terms of the qu are those
with minimal k(o). Therefore, the dominant terms are those with x(c) = 1, which are

the connected subgraphs of G. Hence limg g 1, 4 is the product measure i, ; conditioned
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on the resulting graph being connected, i.e. 1, , = p°, where r = l%p, and
1
——ro) if k(o) =1
pe (o) = { Des (5.34)

0, otherwise.

Here, Z. is the appropriate normalizing constant. Now, if we take p = %, we see that

pp,q = UCS.

Now, we look at the weak limit when we send both p and ¢ to 0. First, let us

rearrange the partition function as

26 =(1—py ¥ (L)O(UW(U) (Q) " (5.35)

ce{0,1} & 1= p

Note that % — 0 since p — 0. If we also let ;—77 — 0, that is if p tends to 0 slower
than ¢, we see that @ — 0. Thus, the dominant terms will be the ones when both
o(0) + k(o) and k(o) is minimized. We know that k(o) > 1 and o(o) + k(o) > |V].
These two are satisfied as equality when the subgraph is a spanning tree. Therefore, the

limiting measure will be concentrated around the spanning trees. We have 1, , = UST.

Now, suppose that % = a, that is ¢ and p tends to 0 at the same rate. We can

plug in p = aq into the partition function and upon rearranging we have

o(o)

G _ (1 _ . \n a o(0)+k()

Z8 =1 —ag" > (1 — &q) q . (5.36)
ce{0,1}F

Note that in this case we only need to minimize o(o) + k(o) > |V| which happens if

and only if o is a forest, i.e. o(o)+ k(o) = |V| if o is a forest. Therefore, we have that

g = 5. where 150 is the measure on forest with edge weight a, i.e.

—a°9),  if ois a forest
pil(o) = § e (5.37)
0, otherwise.



67

Here Z is the appropriate normalizing constant. Now, when a = 1, we get that

pp,q = USF.

Now, we summarize what we have done as follows:

Theorem 5.3.3. As q | 0, we have that

(

ucs, ifp=1>
ftpg = 4 UST, ifp—0and? — 0 (5.38)
USF, ifp=q.

\

5.3.2. Positive Association

When ¢ = 1, we know that the random cluster measure is just the Erdos-Renyi

measure with edge probability p. The edges are independent in this case.

In this section, we prove that when ¢ > 1 the random cluster measure ,ugq is
positively associated. To prove positive association, we show that the random cluster

measure satisfies the positive lattice condition.

Theorem 5.3.4. Let p € (0,1), and g € [1,00).

(i) The random cluster measure p,, is strictly positive and satisfies the positive

lattice condition.

1) The random cluster measure 15 strongly positively associated, and in par-
Hp,q gty Y
ticular we have that

E,, XY]>E, [X]E, [Y] forincreasing X,Y : ¥ — R,

D,q »q

pp (AN B) > iy o (A)ppq(B) forincreasing A, B € F.
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Proof. We only need to prove part (i), since the second one follows. Now, we check the
positive lattice condition. We observe that o(z V y) 4+ o(z A y) = o(x) + o(y). Taking
logarithms we see that it is okay to prove k(zVy)+r(zAy) > k(z)+~r(y). We can focus
on the states that differ by two edges exactly, which means that there is a configuration
z and two edges e, f such that z = 2} and y = z/. Now, we can omit the other edges
and write x = 10 and y = 01 indicating the edges e, f being open or not. Let Cf
be the indicator function of connection of the endvertices of f being connected by no
open path of E'\ f. We observe that Cf is a decreasing random variable, and hence
Ct(10) < C4(00). Hence, we have x(10) — x(11) = Cf(10) < C¢(00) = £(00) — x(01),

which is the desired inequality. ]
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6. NEGATIVE EDGE DEPENDENCE IN RCM

The following are our work joint with Mohan Ravichandran is in preparation.
We can redefine the random-cluster model by suppressing the probability p of an edge
being open and adding a new complex variable z, to each edge. One can think of it as
putting the probability p into the variable z.. In this way, the multivariate partition

function of the random cluster model becomes

Za({zha) = Y "9 ] % (6.1)

SCE eeS

We fix two edges e, f. We will prove the negative edge dependence, p-NC when ¢ < 1
and the underlying graph is a graph of our choice which will be mentioned later on.
Since, we work with the fixed edges, we are interested in the polynomial that we
get by setting z. = = and zy = y and the other variables to z. We may write this
polynomial as p(z,y,z) = poo(2) + pro(2)z + por(2)y + pu1(z)xy, where poo(z) is the
sum over the configurations not containing the edges e, f and pj1(z) is the sum over
all configurations containing both ¢ and f and pio(z) and pgi(z) is the sum over all

configurations containing e and not f, and containing f but not e respectively.

With the polynomials we wrote above, the negative edge dependence is equivalent

to P10 Po1 = Poo P11-

Remark 6.0.1. Note that this expression is an equality when ¢ = 1 since

Zo({z},1) = [ (1 + =), (6.2)

geE

and the Rayleigh polynomial is zero. This is reasonable and expected since when ¢ = 1,

we have independence among each edge.
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The inequality also holds for ¢ sufficiently close to 1 : Letting ¢ = 1 — ¢,

Za({zeh 1 =€) = [J(L+2) — €Y K(8)z" +0(e). (6.3)

geFE SCF

The Rayleigh expression can be written as follows.

anG({Ze}’Q) :1 T - _Z’f
€ S
1
OrZa({z}, @) =157 1+zg —Zzn
Sof

OusZo(L2e}0) = T [T(+2)-

S S
(42 +2) L1 7 S;f"( )2
The desired inequality reduces to showing
KT Ufe}) + (T U{f}) = w(T U {e, f}) = w(T)] 2" >0, (6.4)

T

where the sum is over all subsets of E'\ {e, f}. The expression is term by term non-
negative by the submodularity of the rank function. Note that this works just as well

for matroids.
6.1. Connected Subgraphs of the Complete Graph

Let G(n) = 2() be the number of graphs on n labeled vertices and let C'(n) be
the number of connected subgraphs on n vertices. Letting A and B be the exponential

generating functions of the sequences G(n) and C(n), as follows
B(z)=z+Y C(n)—. (6.5)

The exponential formula says that e?® = A(z). Consequently, B(z) = log (EZOZO 2(3):6—'
n!

The coefficients C'(n) have been well studied and the first few numbers are as follows :
1,1,1,4,38,728,26704, 1866256, 251548592, 66296291072, 34496488594816. This is the
sequence A001187 in the OEIS.
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Lemma 6.1.1. Let U(n) be the number of connected subgraphs of K, containing the
edge (1,2). Then

|_|

n—

~ C(n) 1 C(k) C(n—k)
Uln) == +2k:1 k—Dln—k—1) (6.6)
Consequently, we have that
" 2

Lemma 6.1.2. Let V(n) be the number of connected subgraphs of K, containing the
edges (1,2) and (2,3). Then

UR)C(n — k) (” B 3). (6.8)

Consequently,

V(3) _ C®) +3C"C! + (C/)B
= 1 .

(6.9)

Lemma 6.1.3. Let W(n) be the number of connected subgraphs of K, containing the
edges (1,2) and (3,4). Then

n n—4
W (n + Z Uk (k 3>
CcW + 4C JC' +2(C")2 4 4C"(C')?
1 )

W@ —

We may rewrite the results as follows.

Proposition 6.1.1. Let G, C, U, V and W be the exponential generating functions

of all graphs, connected graphs, connected graphs containing (1,2), connected graphs



containing (1,2) U (2,3) and connected graphs containing (1,2) U (3,4).

o=

6.1.1. Asymptotics

72

Then

Proposition 6.1.2. The exponential generating function for connected subgraphs of

K, satisfies

We have the asymptotics

2n 128n(n —1)(n —2)

O(n) = 200 {1 18

on 3 27Tn/2

Lemma 6.1.4. The coefficients satisfy the asymptotics

2n

C(n) = 205) [1 ~2 40 (—

For connected subgraphs containing a particular edge

For connected subgraphs containing two disjoint edges, we have

1 n-—4 6
1 ot o

27n/2

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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Consequently,

U(n)? — C(n)W(n) = 4(2) 2.0 (lﬂ (6.15)

Oy =2 [y -2 _nln=1) ”39}7

Uy =@ [Lon=2 L

where 6,0 < 0.1 whenever n > 10.

6.2. The General Random cluster model for the Complete Graph at 1

Let C) be the exponential generating function for subgraphs with £ connected
components and with . Then C}, = k! C*. If U}, is the exponential generating function

for subgraphs with connected components and containing a fixed edge e, we have that

Ui(n) = Z_: UK)C(n — k) (Z - ;) , (6.16)

k=2
yielding that

U//(Ckfl)

U=

(6.17)

Moreover, if W; is the exponential generating function for subgraphs with connected

components and containing two fixed non-adjacent edges e and f, we have that

Wi(n) = :222 Wa(m)Cy—z(n —m) (Z:i)

m—4

+n§1W(m)Ck_1(n _ m)<n — 4)7

m=4
yielding

W(4)Ck—1 N (U//)2Ck—2)
(k—1)! (k —2)!

Wi = (6.18)
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6.3. Approaches

Let G = (V, E) be a graph and let e, f € F and let 0 < ¢ < 1. Let Zg be the

partition function of the random cluster model,

Za({ze}0) = Y " [ ] 2 (6.19)

SCE eeS

and let A, s be the Rayleigh difference

Aci({ze},q) = (0. 26) (05 Za) — Za(0:.07 Za). (6.20)

Let us consider this as a polynomial in ¢, i.e. let us treat the {z.} as fixed but arbitrary.

Note that this polynomial vanishes when ¢ = 1 by the independence of the edges.

Conjecture 6.3.1. The polynomial [ defined as

Ac ({2} q)

fla) = — (6.21)

has positive coefficients.

Remark 6.3.1. Observe that this will be more than showing negative edge dependence
actually. Since, in the end we only want the positivity of the whole function not coeffi-

cient by coefficient positivity.

The following will prove that the random cluster model on K, is negatively cor-

related at 1.

Conjecture 6.3.2. Let

A={(S,T),S>e,Z [, T> f,Fel|r(S)+r(T)=Fk} (6.22)
B={(S,T),S>e,f,T e, f|r(S)+r(T) =k} (6.23)

Then for any k > 2, |A| > |B].
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6.4. Adjacent Edges

Let us fix some notation.

Definition 6.4.1. Given n,k € N and collections of edges eq,...,e, and fi,..., f;
and collections of vertices V = (V,...,V;), we will use Cy(ey, ..., ek, fi,..., f1, V), to

represent the number of all subgraphs S on n labeled vertices such that

The graphs have exactly k connected components.

The vertices in V; for each ¢ € [j] lie in the same connected component.

The vertices in V; and Vi for ¢ 2 4 lie in different connected components.

The graphs contain the edges ey, ..., ex.

The graphs do not contains the edges fi, ..., fi.

We will use the usual economies, writing Cy(---) as C(--+) and C;() as C;. Note that

in this notation,

e The number of connected graphs may be written as C'.
e The number of connected graphs containing a given edge e is C(e).
e Suppose the edge e = (1,2). Then the number of connected graphs containing e

which become disconnected when we remove this edge is Cs(€, [{1}, {2}]).

Conjecture 6.4.1. Consider the complete graph K,. Then for any k > 2,

Z [Ci(€7 .]F)CJ (fa é) - Oi(ea f)Oj(éa f_)] > 0. (624)

i+ji<k

We further conjecture that the analogous statement holds for all graphs.

Let e =(1,2) and f = (2,3). Let us consider the general expression

Ik = Z 03(67 f)Ct(fv é) - 05(6, f)Ct(é> f) (625)

s+t<k



We have that

Ci(e, ) = Cu(e, f, {1, 2}]) + Coa(f, [{1},{2}])
= Cu(e. f) = Co(f, {1} {2}]) + G (F. {1}, {23]).

We also have that

Cile, [) = Cs(f, 8 {1, 2}]) + Coga (f, {11, {2, 3}])
= Cs(f7 é) - Os(f) 17 2) + Cs-i—l(fv [{1}7 {27 3}])

We now compute
Ik = Z 03(6, f) Ct(é7 f) - 08(67 f) Ct(év f_)

= [Co(8, £) = Cu(f. {1} A2} + Cona(f, {11, {23])] Cu(Ef)

- Sg; [C(f,8) = Cu(f,1,2) + Copa (f {1}, {2, 3}])] Cule, f)
=S+t;k[ Cont(f, {11 {2}) = C(F. {1} A{2}])] Cile, f)

- ;k s (F {11 A2H) = Co(f. {11 A23D] Cile, f)

= HZ;HOS(J? 1,2)Cy(E, f) — HZ;HCS(f, 1,2)C, (e, f)

= Y C(F L) [CE F.23) + Ca(6.2,3)] = Y Culf.1,2)C(E,

s+t=k+1 s+t=k+1

This means that I, equals

Z Cs(f_7172)ct(évf7 12) - Z Cs(f71>2)ct(év f? 12)

s+t=k+1 s+t=k+1

76

(6.26)
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Similarly we have,

Ci(f,@) = Cul@, £, [{2,3}]) + Cea (& [{2}, {3}])
= Cy(e f,[{2,3}]) + Cipa (&, [{1. 2}, {3}])+
Cona ({1} (23 {3}) + G ({1, 3}, {23)-

Note that

Os(f) 1, 2) = Cs(fv L, 23) + Cs+1(17 2, 3)
Co(f,1,2) = C4(1,2,3) + Cs(f, 1,23) + C4(13,2).

Remark 6.4.1. We see that

= Z C’s(e, f)C't(f, é) - Os(ev f)ot(é7 f)

s+t<k

Z Z [Cs(éa _)+Cs+1([{173}:{2}])} Ot(fa é)_

s+t<k

[Co(f.€) + Corn([{1},{2.3}])] Ci(e, f)
- Z Cs—i—l([{lv 3}7 {2}]) Ct(f7 é) - Cs—i—l([{l}? {2’ 3}]) C’t(év f)

s+t<k
=Y Call{131 2D Y [ 8) - e ]
> 0.

Remark 6.4.2. Given two connected subgraphs S,7T such that S contains e but not
f and T contains f but not e, we could consider the map (S,7) — (SU{f},T\{f}).

This is a bijection between

e Pairs (S,7) of connected subgraphs such that S contains e but not f and T’
contains f but not e and additionally such that f is a not a cut edge in T.
Consider the complements of these sets. There are two configurations of 1" that
we will analyze separately.

— T\ {f} is a union of two connected graphs such that {1,2} lies in one
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component and {3} in another.

— T\ {f} is a union of two connected graphs such that {1,3} lies in one
component and {2} in another.

e Pairs (5, T) of connected subgraphs such that S contains e and f and 7" contains

neither e nor f and such that e is not a cut edge in S.

Remark 6.4.3. The set of connected graphs on [n] contains as a subset graphs formed

from

e Taking a connected graph on [n — 1] and connecting the vertex n to one or more
of the vertices in [n — 1] : Note that these are graphs G such that G\ {n} is
connected.

e Taking a connected graph on [n— 1]\ {¢}, for some ¢ € [n — 1] and connecting the
vertex n to one or more vertices in [n— 1]\ {¢} as well as to {i}. These graphs are
disconnected when we remove the vertex n and are thus distinct from the ones

above.

Thus, C,, > (2" = 1)Cp,1 + (n — 1)C,,_2(2"72 — 1). We rewrite this as

Cn_ o 2" 1+ (n—1)(2" %+ 1)0”‘2

. .2
C'nfl o Cnfl (6 7)

n—2

Using the facts that C,,_1 < G,,_1,Cp_2 >

, the first by simple inclusion and the

second from our induction, we see that

2n—2 _|_ 1
on—2 ’

Cn_ o 2" 14+ (n—-1)2" 2 +1) Cns

=1 _1 -1
Cn—l o 2Gn—1 - (n )

(6.28)

This last expression is at least 2"~! for n > 3.

Another Proof. We know that there is an injection from G, /C,, — C,, via complement
map. Any disconnected graph has connected complement. Moreover, |G,,/C,|+|C,| =
|Gr|. We also know that there exist graphs R € C,, such that R € C,,, hence |C,| >
|G,/Cy|. Hence, 2C,, > G, which proves that C,, > 2(3)-1 ]
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Lemma 6.4.1. For any n > 2, we have that

#{S €C(G)|(1,2) € S and is a cut edge in S} <

Cy
-5 (6.29)

Proof. Denoting the quantity on the left by I, we have that

Fao i)

—2
=2C, 1+2(n—202 2+ZO]<; nk:( 1)

<20, 1+Z2 F)+n—2

< 202" 4 2(n = 2)2("7) 4 (n - 5)2("2)
< 3n2(n51)

When n > 6, this is less than 2(3) — 1 < (), and this proves the assertion in this case.

For smaller n, we can verify this directly. ]

Lemma 6.4.2. We have that

Co([{1,2},{3.,4}]) > 2C, 2 +8(n —4)C,_35. (6.30)

Proof. The first quantity on the right counts graphs with 2 connected components, one
being either the single edge (1,2) or (3,4) and the other being an arbitrary connected
graph on the remaining n — 2 vertices. The second quantity counts a graph which is
the union of a connected graph on 3 vertices, with these three vertices being one of
{1,2,2}, or {3,4,x}, where x is any vertex in [5 : n] and the other being a graph
on the remaining n — 3 vertices. There are 4 connected graphs on 3 vertices and there

are n — 4 choices for z, giving us the coefficient 8(n — 4) for C,,_3. [
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6.5. Using bridges

Recall that we need to show the following.
D CuE NCle, ) = Y Cule, CUE T). (6.31)
s+t<k s+t<k

Let us use the notation

Ay ={(S,T) | S €Cue. f), T €Cule. f), s+t <k}, (6.32)

By ={(S,T)| S €Cef) TECEJ]),s+t<k} (6.33)

Given two configurations S, T such that S € Cy(, f) and T’ € Cy(e, f), we consider the
new pair, S = SU{e}, T =T\ {e}. This is a bijection between the following two

sets,

o Ay \ Ck, where Cy = {(S,T) | S € Cs((e), f), T € Ci({e), f), s+t =k}.
e By \ Dy, where Dy, = {(S,T) | S € Cs({e), f), T € Ci((e), f), s+t =k}

We thus need to show that

Y Clle). F)Culle), fy < Y- Culle). NCul{e) - (6.34)
s+t=k s+t=~k
We observe that the following will yield our desired negative correlation.

> Clle), f)C <> Clle ({e), F)- (6.35)

s+t<k s+t<k
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Let us now switch the f from left to right. We will then need to show that

Y Gller (M [Culle), () = Cule. /)] <

> G () + Colle, P [Celle), (f)) + Cille, )]
+ Y Culle), (1) Cille, f)).

This can be written as

Y Clle) (M Cille), (1) < D Culle). () Cille)s () + Y Cules f) Cilles f)).

st+i=k s+t=k stt=k

Once again, we see that it is actually enough to show that

Y Gl (M) Cille), () < Y Culle). () Cille)s () + D Cile, f) Cille, f))-

s+t<k s+t<k s+t<k

We will show the above by showing that for n large enough (n = 10 will do) and for

every k <n,

D Cille). (1) < Cille 1)) (6.36)

t<k t<k

Definition 6.5.1. The expression Cs({e), (f)) will denote the number of sugraphs with
s components containing both e and f and such that removing e (without removing f)

increases Kk by 1 but removing f (without removing e) does not affect k.

Similarly, The expression Cy((e), (f)) will denote the number of sugraphs with
s components containing e but not f and such that removing e (without adding f)

increases k by 1 but adding f (without removing e) does not affect k.

Recall that we need to show the following.

Z Cs(<€>7f)0t((e)7 f_) S Z CS((e)7f)Ct(<e>7 f_) (637)

s+t<k s+t<k



Let us denote the left and right hand sides by L and R respectively. We have that

R= ) Cd (e}, F)
= Z )+ Calle) (M) [Culle). (7)) + Culle). ()]

For the left hand side we have that

pret
= 2 [Csra({e), (F) (f) ]

[0;1(( ): <f>)+0f(( ). (f)) — Cil({e, f))]
= ;k e), (f))] [C F) =+ Cil(e), ()]
+s+;+108(<6> (fHcC ;kc ), (£)) Cel(e), ()
—S;k(] ((e). f) + Cul{e). f) = Cil{e. )]
=R+ ;k Cs({e), () Cil(e), (f)) — ;k Cs({e), (f)) Cul(e). ()
—S;ko ((e), ) + Cule). /) + Culle, )]
=R+ ;k Cs((e), () Cil(e), () — ;k Cs({e), (f)) Cil(e). (f))
—S;k Cs({e, f)) [Culle), (f)) + Cial(e). (f)) + Cel{e), f)]
<R+ ;k Cs(({e) (f>)—§0j(<e | Cl(e), (f))

82
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We will be done if we can prove that for all s,

Culle) 1) = Y2 Clles 1) (6:39)

6.5.1. Inequality for Non-adjacent Edges in K,

Proposition 6.5.1. Proving the inequality
Co((e). () <) Cille. 1)) (6.39)

for s = 1 is enough.

Proof. We will prove that Cs((e), (f)) is monotone decreasing. Let us write a recursion
on the number of vertices for Cs((e), (f)). First, suppose e and f are non-adjacent,
say e = 12 and f = 34. Let s > 2 be fixed. We will denote by C?, the number of
connected subgraphs on i vertices, and by C?, the number of subgraphs on i vertices
with s connected components. The edges e and f can both be bridges in the following

two ways:

lol! O O O Clis

Figure 6.1. Both edges are bridges without a common component.

In the first case, only the first four component is important. We can arrange the
edges among themselves in four ways. For the first one, we need to choose i; —1 vertices
out of n—4. For the second one, we need to choose i — 1 vertices out of n —4 — (i1 — 1)
vertices and so forth. The remaining s — 4 components have no condition on them,

hence we can write them as CI 1 "7 7",
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cin Ci2 ° -
1 i 2
3 4
f

Figure 6.2. Both edges are bridges with a common component.

Hence, overall we have

D DI Gy [ iy

11,82,13,14>1

n—iy—iy—2 n—1 —iy—1i3—1 OOz (s (ria (n—in—iz—iz—is
iz — 1 iy —1 s—4
The second case’s analysis is similar and yields the following:

n—4\/n—i1—3\[/n—11—ix—1 i it —io—i
2 11 (Y12 VL3 I ‘11 12—13 4

11,i3>1
i2>2

Now, we know that Cj is itself decreasing. Hence, Cs({e), (f)) is also decreasing. =

Figure 6.3. Connected graph with two bridges.

Let us look at C({e), (f)). Since both e = 12 and f = 34 are bridges, we observe
that there should be three connected components which are tied by e and f as in the

figure below:

There are 4 different ways the vertices can be put into this pieces. Say, there
arc ¢ vertices in the component that contains the vertex 1, 7 vertices that contains the

vertices 2,3 and k vertices that contain the vertex 4. For the first component, out of
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n — 4 vertices we need to choose ¢ — 1 vertex, for the second component, out of the

remaining n — ¢ — 3 vertices we should choose j — 2 vertices. Hence, in total we have

cllen () =1 Y (?_‘f) <”;$3>oiojck. (6.41)

i+j+k=n
i,k>1,7>2

Now, a similar argument shows for e and f to be joint bridge we should have two

components which are tied by e and f together as in the figure below:

CTE

Figure 6.4. Joint bridges.

The vertices can be grouped in 2 possible ways. Say the component containing
the vertices 1,3 has ¢ vertices and the component containing 2,4 has j vertices. Then

we choose 7 — 2 vertices out of n — 4 and we are done. Hence we have

Clle, ) = QEn (7;_‘;) ;. (6.42)

At this point, actually above, we need to distinguish our graphs since at some points we

are using the properties of the complete graph K,,. Let us write a few of the dominant

terms of C'({e), (f)). We have

C({e), (f)) =4C™ 2 + (8n — 28)C™ 3 +20(n — 3)(n — 4)O™ * + ... (6.43)
Now, let us write a few of the dominant terms of C'({e, f)). We have

C(le, f)) = 4C" 2 + (16n — 32)C™ 3 + 76(n — 4)(n — 5)C"* + . .. (6.44)

Hence, we observe that the result is correct in the case of s = 1 for big enough n in

K,.
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6.5.2. Inequality for Adjacent Edges in K,
The reasoning that proving the inequality for s = 1 holds in this case as well.

Say e = 12 and f = 23 are the adjacent edges. On one hand we have the following
C'({e, f)) which can only happen in the following way:

On the other hand, we have C'({e), (f)) which can only happen in the following way:

In the case of the complete graph, note that we have the edge 13. Let A be a sample
subgraph from C'({e), (f)), and note that AU 13 € C({e, f)) as shown in the following
figure:
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Hence we have an injection from C'({e), (f)) into C((e, f)). This proves the inequality

in the case of adjacent edges in K.

6.6. Connection probabilities

We give another perspective for the negative dependence of random cluster mea-
sures. Let G = (V, E) be a graph and let u, v be vertices and let e be an edge in G. We
will use the notation Pglu ~ v] to denote the probability that there is an open path
from u to v in a random subset drawn with respect to the random cluster measure with

parameters {\;} jep and g.

Proposition 6.6.1. For any graph G and vertices u,v such that the edge f = uv is in

G, we have that

A 1—g¢q
?f — A <T> Peisylu ~ 0]
Pelf] y = . (6.45)
1+— =X (—) P U~V
;M ) Pl
Let e be another edge in G. We have that
A 1—g¢q
?f — /\f (T) Pg\{f}[u ~ U | 6]
Pelf | e] = (6.46)

A 1—gq '
1+ 25— (T) Peoviylu~ el



We also have that

Po[f] =

as well as

Polf | el =

1+/\f

/\f |:]Pc;[’u/741}]
q

1+ A

As [PG[U%U | €]
q

Proof. For the first part, we note that

Pl 1.

A
Za = [u~vlasy (14 Xp) + [u o v]ayp <1 + gf)

A
= [u~vlavy T+ XA) + (Zavyy — [u~ v]evs) (1 + f)

A
= Za\{f} (1 + ﬁ) — [u ~ vl Ay <

Dividing out by Zg\ (s}, we see that

Za
Ze\{f}

Next, we note that

[fla = [u~vlavy Ar + [u# vlevn ?f

= [u ~ vleniy Ar + (Zavgyy

:<1

A
q

1

+ —f) Po\(ylu ~ v] A (

A

<)

1—q

q

Af 1—gq
= ZG\{f} = —[u ~ Ve A < ; ) :

Again, dividing out by Zq\ (5}, we see that

[f]e

Ze\{f}

s
; — Pov{pylu ~v] Af

(=

1—g¢q
q

)

+Pg[u~v|e]}.

)

A

— [u~v]enisy) ;f
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(6.47)

(6.48)

(6.49)

(6.50)
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We rewrite this as

As (1 — q) fle Za
_—[P) u~v /\ =
. v BY; p Ze Zov,

=Pq[f] [(1 + %) — Pay(pylu ~ vl Ay (ﬂ” :

q

Simplifying, this yields

A 1—
A - )\f (—q> Pg\{f} [U ~ 1)]
Polf] = —5 = - (6.51)
1+ ?f — Ay <T> Pg\{f}[u ~ 1)]

The second part follows from applying the previous result to the graph G/{e}, the

contraction of GG with respect to the edge e. [ ]

The conjectured edge negative correlation in the random cluster model can be

translated to a statement about connection probabilities.

Theorem 6.6.1. Let GG be a graph and let f = uv and e be edges in G and let 0 < g < 1

Then the following are equivalent.

o The vertices e, f are negatively correlated with respect to the random cluster mea-
sure u& MY e PIf | ¢] < PIS).

o The events {u ~ v} and {e} are positively correlated in G\ {f}, i.c. Po\gplu ~
v el >Paplu~v]

o The events {u ~ v} and {e} are positively correlated in G.

Proof. The equivalence of the first two follows from the fact that the function

1 —
Ny, <_Q> .
a a (6.52)

is monotone decreasing for ¢ < 1.
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As for the equivalence of the first and the third, this follows from the monotonicity

of

)\f 1—2
oy [ . —i—l:] (6.53)

We note that for ¢ > 1, we have the implication that edgewise positive correlation
is equivalent to positive correlation in the second statement above and both statements

are known to be true thanks to an application of the FKG inequality.

Conjecture 6.6.1 (Another Formulation). For every graph and every q, the probability
with respect to the random cluster measure that there is an open path between two

vertices increases when we add an edge to the graph.
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7. CONCLUSION

We end the thesis with some final remarks and open conjectures and paths for

subsequent works that we plan to pursue.

The main motivation of this thesis was to investigate the notions of negative
dependence and prove negative dependence for the random cluster measure. We
have studied several notions of negative dependence with the strongest being strongly
Rayleigh measures and the weakest being pairwise negative correlation or negative edge
dependence. The implications among these classes are intricate and we have proved
some of them and ended up with the general picture that is depicted in Figure 4.1.

There is however still not a complete picture.

Among the problems we were unable to solve is the followings:

(i) Isthere a notion of negative dependence not strong as strongly Rayleigh measures
but is preserved under symmetric exclusion processes?

(ii) Is there an easy way to verify NA?

In the case of random cluster measures, much more is unknown. We have proved
p-NC in the case of the complete graph, but the main conjecture is still open and we

state it again.

Conjecture 7.0.1 (Main Problem). Let G = (V, E) be a graph and p, , be the random

cluster measure on G. Prove that the edges are negatively correlated, i.e. pu,4(e, f) <

p.qa(€)pipq(f), whenever ¢ < 1.

We think that it would be remarkable to prove the conjecture above even in the
case of lattice graphs Z". This case seems to be the prominent one for physicists as
well. Since our proof worked with the symmetry of the complete graphs, it does not

seem to work with Z", some of the inequalities involved in the proof need the extra
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edges for injection. Another idea to work with in the future is to use the limits of the

random cluster measure to give proofs for USF and UCS measures.

We also have very basic correlation inequalities which are still open for the random

cluster measure.

Conjecture 7.0.2. Let G = (V, E) be a graph and p,, be the random cluster measure
on G. The random variables X., where e € E and k, which is the number of connected

components is negatively correlated.

There are many more open and important conjectures in this area. In the future,
I plan on following the results of this thesis and study Random cluster measure and

the general conjecture.
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