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ABSTRACT

ASYMPTOTICALLY ANTI-DE SITTER SPACETIMES IN

THREE DIMENSIONS

In this thesis, we reviewed several aspects of asymptotically anti-de Sitter (AAdS)

spacetimes in three dimensional Einstein gravity by following some important historical

work. Starting with a brief introduction to anti-de Sitter (AdS) spacetimes where also

the BTZ black hole solution is given we defined Noether-Wald charges using Noether

theorems. Next, we compared different definitions of AAdS spacetimes. Here, we

adopted the Fefferman-Graham coordinates and solved Einstein equations order by or-

der to prove that the Fefferman-Graham expansion of AAdS spacetimes terminates at

second order in three dimensions, as first shown by Skenderis and Solodukhin. Lastly,

we considered two sets of boundary conditions and presented their asymptotic symme-

try algebras and charge algebras. Imposing Brown-Henneaux boundary conditions we

arrived at Bañados metric, which is the most general metric for AAdS spacetimes under

these conditions. Then we showed that the asymptotic symmetry algebra is two copies

of the Virasoro algebra. Under the Compère-Song-Strominger boundary conditions, we

calculated the most general metric and showed the charge algebra is a semidirect sum

of Virasoro and Kac-Moody algebras. We concluded with some comments and future

research directions.
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ÖZET

ÜÇ BOYUTLU ASİMPTOTİK ANTİ-DE SİTTER

UZAYZAMANLAR

Bu tezde, tarihe geçmiş bazı önemli çalışmaların izinden giderek üç boyutlu

Einstein kütleçekiminde kullanılan asimptotik anti-de Sitter (AAdS) uzayzamanların

çeşitli özellikleri gözden geçirildi. Anti-de Sitter (AdS) uzayzamanlarına giriş ve BTZ

kara delik çözümünden sonra Noether teoremleri kullanılarak Noether-Wald yükleri

tanımlandı. Ardından farklı AAdS uzayzaman tanımları karşılaştırıldı. AAdS ge-

ometrisini incelemek amacıyla Fefferman-Graham koordinatları benimsenerek Skenderis

ile Solodukhin tarafından gösterilmiş olduğu üzere, Einstein alan denklemlerini sırayla

çözüldü ve üç boyut için Fefferman-Graham açılımının ikinci mertebede bittiği gösterildi.

Tezin son kısmında iki sınır koşulu kümesi için asimptotik simetri cebirleri ile yük ce-

birleri sunuldu. Brown-Henneaux sınır koşulları kullanılarak, bu koşullar altındaki

AAdS uzayzamanlar için en genel metrik olarak Bañados metriğine ulaşıldığı hesa-

plandı. Sonrasında asimptotik simetri cebirinin Virasoro cebirinin iki kopyasından

oluştuğu gösterildi. Ayrıca Compère-Song-Strominger sınır koşulları incelenerek, on-

lar için en genel metrik bulunup yük cebirinin Virasoro ve Kac-Moody cebirlerinin

yarı doğrudan toplamı olduğunu gösterildi. Yorumlar ve gelecek araştırmalar üzerine

fikirler ile sonlandırıldı.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

The anti-de Sitter spacetime (AdS) is a maximally symmetric smooth manifold

endowed with a Lorentz signature metric whose scalar curvature is constant and neg-

ative. The maximally symmetric spaces are the most basic objects that give insights

about more complicated geometries, and therefore have their own value. As in the Rie-

mannian case, the maximally symmetric spacetimes have constant scalar curvature,

and they are classified by the sign of their curvature: The AdS spacetime has negative

curvature, the de-Sitter (dS) spacetime is positively curved and the flat spacetime has

zero curvature. They are the Lorentzian analogues of the hyperbolic space, the sphere

and the Euclidean space, respectively, and they have similar roles in the Lorentzian

geometry. The dS spacetime was found in 1917 by Willem de Sitter as a cosmolog-

ical solution for vacuum Einstein gravity with a positive cosmological constant, and

similarly AdS spacetime solves them for negative cosmological constant. Since dS

spacetime is an interesting solution that matches our observations about the universe,

it attracted attention along with the Minkowski spacetimes.

The interest in physics community to anti-de Sitter (AdS) spacetime increased

in eighties when they were shown to be supersymmetric solutions of supergravity theo-

ries. In those years, both physicist [1,2] and mathematicians [3] studied AdS spacetime

with different motivations. They became popular again after the AdS/CFT correspon-

dence was proposed by Maldacena [4] and it is still widely studied. According to the

AdS/CFT duality, string theory in d + 1 dimensions is equivalent to conformal field

theory on its conformal boundary. The focus on AdS3 spacetimes is due to the fact

that their duals give CFT2 theories which are well known by physicists. Studying the

three dimensional case is easier since there is less freedom, but we also hope to find

some insight on difficult problems encountered in four dimensional gravity.

We aim to understand and compare two approaches in the literature used to define

asymptotically (locally) AdS (A(l)AdS) spacetimes. We show that the Fefferman-
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Graham expansion stops at the second order under a simplifying assumption and study

the charge and symmetry algebras of AAdS spacetimes. That was first studied by

Henneaux et al. in the eighties [1, 2] influenced by relevant work for asymptotically

flat spacetimes [5, 6]. Similar to the discovery of BMS algebra, which extended the

Poincaré algebra, the algebra of three dimensional AAdS spacetimes was surprisingly

larger than what they expected [1]. This discovery opened the way to the AdS/CFT

correspondence, as this algebra contained two copies of Virasoro algebra; therefore, it

was closely related to the conformal field theories in two dimensions. We want to study

the charge algebra of this seminal work [1] and a recent work [7] published in 2013, to

see how the algebra changes when different initial conditions are chosen.

In this thesis, Einstein gravity is reviewed very briefly and it is discussed how

it fully determines the local properties of spacetime in three dimensions. After an

introduction to anti-de Sitter spacetimes, we focus on the three dimensional case. In

relation to the Noether theorems, which relate symmetries and charges of spacetimes,

the conserved charges for gravity theories are defined. In the last chapter, we compare

two approaches used in the literature to define asymptotically AdS spacetimes. After

introducing the Fefferman-Graham expansion [3] we show that it takes a special form

in three dimensions. In the end, we follow two important works in this area [1,7], and

present their charge algebras.

We assume the reader is familiar with the Riemannian geometry [8, 9] and has

basic knowledge of Einstein gravity [10–12]. Our conventions are given in the appendix.
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2. EINSTEIN GRAVITY

2.1. Einstein Field Equations

General relativity in n dimensions is described by the Einstein-Hilbert action (up

to a boundary term)

SEH [g] =
1

16πG

∫
M
dnx
√
−g(R− 2Λ), (2.1)

whereG stands for the Newtonian constant of gravitation and the cosmological constant

is denoted by Λ ∈ R. The integral is taken over an n-dimensional smooth manifoldM

endowed with a metric gµν of Lorentz signature (− + . . . +) and R is the corresponding

scalar curvature.

By varying the action with respect to the metric gives the vacuum Einstein field

equations

Gµν := Rµν −
1

2
gµνR + Λgµν = 0, (2.2)

where Gµν is called the Einstein tensor. These equations can be contracted with the

inverse metric gµν to get

R =
2n

n− 2
Λ (2.3)

by assuming n ≥ 3. Combining this result with the field equations (2.2) we see the

Ricci tensor Rµν is pointwise proportional to the metric gµν

Rµν =
2

n− 2
Λ gµν . (2.4)
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A metric gµν obeying (2.4) is called an Einstein metric and a manifold (M, g)

endowed with an Einstein metric is called an Einstein manifold. The following propo-

sition follows directly from (2.3).

Proposition 2.1. Any Einstein metric has constant scalar curvature.

2.2. Weyl Tensor

For n ≥ 3, the Riemann tensor can be decomposed as a sum [10]

Rµνρσ =Cµνρσ +
2

n− 2
gµρRνσ + gνσRµρ − gµσRνρ − gνρRµσ

− 2

(n− 1)(n− 2)
R(gµρgνσ − gµσgνρ), (2.5)

which is called the Ricci decomposition of the Riemann curvature tensor. Here, Cµνρσ

is called the Weyl tensor and it denotes the “trace free part” of Rµνρσ. It has the

same symmetry properties with the Riemann tensor and plays an important role when

investigating the conformal flatness of spacetimes for n ≥ 4, which is explained below.

A conformal transformation is a map from a manifold (M, g) to a manifold (N , g̃)

such that

g̃µν = Ω2gµν , (2.6)

where Ω2 is a positive function, called the conformal factor [10, 13, 14]. If the metric

of a spacetime can be mapped to a metric of flat spacetime via a conformal map, it is

called conformally flat.

The Weyl tensor is also called the “conformal tensor” since it has nice properties

under conformal maps:

Theorem 2.2. Under any conformal transformation, the Weyl tensor with one index
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raised remains invariant [10],

Cσ
µνρ = C̃σ

µνρ. (2.7)

Since the Weyl tensor vanishes for flat metric the next theorem follows directly

from Theorem 2.2.

Theorem 2.3. For n ≥ 4, the Weyl tensor vanishes if and only if the spacetime is

conformally flat.

In n dimensions, the Riemann tensor has n4 components, but only 1
12
n2(n2−1) are

independent due to its symmetries and the first Bianchi identity [15]. The Ricci tensor,

on the other hand, is a symmetric tensor and therefore has 1
2
n(n + 1) independent

components. When n = 3, both numbers coincide and do not leave any degree of

freedom for the Weyl tensor to carry [16]. Therefore the Riemann tensor is encoded

only by the Ricci tensor in three dimensions.

Theorem 2.4. For n = 3, the Weyl tensor always vanishes.

The conformally flat spacetimes are characterized by the vanishing of the Cotton

tensor in three dimensions.

2.3. Einstein Gravity in Three Dimensions

Since the Weyl tensor vanishes identically when n = 3, the equation (2.5) becomes

Rµνρσ = gµρRνσ + gνσRµρ − gµσRνρ − gνρRµσ −
1

2
R(gµρgνσ − gµσgνρ), (2.8)

which can be rewritten by using (2.4) and (2.3)

Rµνρσ = Λ(gµρgνσ − gµσgνρ). (2.9)
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A manifold (M, g) satisfying (2.9) is said to be of constant curvature [16], i.e. it

has constant sectional curvature.

Proposition 2.5. Any manifold of constant curvature is an Einstein manifold.

It follows directly from (2.9). The converse is not true, in general, however for

n = 3 it was shown above that for any Einstein metric (2.9) holds.

Proposition 2.6. Three dimensional Einstein manifolds are of constant curvature.

Constant curvature spacetimes have the following useful property. In any di-

mension, there are three special spacetimes of constant curvature which are complete,

simply connected and maximally symmetric, i.e. they admit the maximum number of

Killing vectors, which is 1
2
n(n+ 1) in n dimensions. These are de Sitter (dS), flat and

anti-de Sitter (AdS) spacetimes, with positive, zero and negative constant curvature,

respectively. They are the Lorentzian analogues of Sn, Rn and Hn. As in Riemannian

geometry, it is possible to find a local isometry between constant curvature spacetimes

and the maximally symmetric ones. We present the Lorentzian analogue of a theorem

from Riemannian geometry [8].

Corollary 2.7. Any spacetime with constant curvature is locally isometric to a de

Sitter, flat or anti-de Sitter spacetime, if it has positive, zero or negative constant

curvature, respectively.

From now on, we will focus on the spacetimes of negative curvature. These are

the solutions of Einstein field equations (2.2) with Λ < 0, therefore they are locally

isometric to an AdS spacetime. Nevertheless, one can obtain interesting spacetimes

that differ in topological and asymptotic properties from AdS. A three dimensional

example, the BTZ black hole, will be explored in Section 3.6.
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3. AdSd+1 SPACETIMES

In this chapter we define the anti-de Sitter spacetimes and study their proper-

ties, show that they are exact solutions of vacuum Einstein field equations (2.2) with

negative cosmological constant and that they are maximally symmetric spacetimes of

negative constant curvature. In the end, after reviewing some special properties of

AdS3 such as its symmetry algebra we present the BTZ black hole.

3.1. The Hyperboloid and AdSd+1

To give a definition for AdSd+1 spacetimes one needs to study a closely related

object. Let (T 1, T 2, X i), i = 1, . . . , d be the standard coordinates of R2, d and consider

the following hyperboloid embedded in R2,d

d∑
i=1

(X i)2 − (T 1)2 − (T 2)2 = −l2 (3.1)

with l 6= 0. Without loss of generality, take l > 0. The equation reveals that this set of

points is sent to itself under the rotations and reflections about the origin in R2, d, i.e.

by the group O(2, d), hence it admits the maximum number of Killing vectors in d+ 1

dimensions. We will elaborate on that in Section 3.3. This is also a space of negative

constant curvature, which is to be shown in Section 3.2, but it lacks the property of

being a spacetime or being simply connected.

The hyperboloid given by (3.1) does not admit a causal structure since it allows

closed timelike curves to exist. To get rid of them, one chooses to work with a universal

cover of the hyperboloid instead, obtained by unrolling the hyperboloid so that the

closed timelike circles, (T 1)2 + (T 2)2 = const. and X i = const., are unwrapped to

straight lines. This covering space is called d+ 1-dimensional anti-de Sitter spacetime,

AdSd+1, and l in (3.1) is called the AdS radius. Note that AdSd+1 is described as an

immersion in R2, d, not as an embedding.
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3.1.1. Global Coordinate Systems

3.1.1.1. Global coordinates. A set of coordinates compatible with (3.1) is

T 1 = l cosh ρ cos τ,

T 2 = l cosh ρ sin τ,

X i = l sinh ρ Ωi for i = 1, . . . , d, (3.2)

where ρ > 0 is the radial coordinate, τ ∈ [0, 2π) and Ωi is the spherical coordinates of

Sd−1 in Rd satisfying
∑

i Ω
2
i = 1. The coordinate τ parametrizes the timelike circles

we want to unwrap. Therefore, one needs unidentify the points τ 6∼ τ + 2π and expand

the range of τ from [0, 2π) to R to get the coordinates for AdSd+1. These coordinates

are called the global coordinates and the induced metric becomes

ds2 = l2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρ
d∑
i=1

(dΩi)2). (3.3)

3.1.1.2. Conformal coordinates. A similar coordinate chart can be obtained by re-

placing ρ with conformal radial coordinate θ ∈ [0, π
2
) such that tan θ = sinh ρ. These

coordinates are related to the embedding coordinates as follows

T 1 = l sec θ cos τ,

T 2 = l sec θ sin τ,

X i = l tan θ Ωi for i = 1, . . . , d, (3.4)

so that the induced metric is

ds2 =
l2

cos2 θ
(−dτ 2 + dθ2 + sin2 θ

d∑
i=1

(dΩi)2). (3.5)

These coordinates are referred as the conformal coordinates.
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3.1.1.3. Static coordinates. Another set of global coordinates for AdSd+1 can be cre-

ated using timelike coordinate t = lτ, and the luminosity distance r = l sinh ρ. The

embedding coordinates are written in (r, t,Ωi)

T 1 =
√
r2 + l2 cos

(
t

l

)
,

T 2 =
√
r2 + l2 sin

(
t

l

)
,

X i = l rΩi for i = 1, . . . , d, (3.6)

and the metric becomes

ds2 = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2

d∑
i=1

(dΩi)2. (3.7)

These are the coordinates used by Brown and Henneaux in their famous paper on

Brown-Henneaux boundary conditions [1].

3.1.2. Poincaré Patches

Let us first introduce light cone coordinates using T 1 and Xd

u =
T 1 −Xd

l2
and v =

T 1 +Xd

l2
, (3.8)

and define

t =
T 2

lu
and xi =

X i

lu
for i = 1, . . . , d− 1, (3.9)

with u 6= 0. The coordinate v can be expressed in terms of other coordinates by using

(3.1) as

v =
1

l2u
(1− u2t2 + u2~x 2), (3.10)
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then one half of the hyperboloid is parametrized by

T 1 =
1

2u
(1 + u2(l2 + ~x 2 − t2)),

T 2 = lut,

X i = luxi for i = 1, . . . , d− 1,

Xd =
1

2u
(1 + u2(−l2 + ~x 2 − t2)), (3.11)

where ~x 2 =
∑d−1

i=1 (xi)2. The induced metric becomes

ds2 = l2
(

1

u2
du2 + u2(−dt2 + d~x 2)

)
. (3.12)

Here we assumed that u 6= 0 for well-defined coordinates, hence the points having

T 1 = Xd are not covered by this parametrization. This hyperplane is called the

Poincaré Killing horizon, and corresponds to the hyperplane cos τ = Ωd sin θ in global

coordinates. u < 0 gives cos τ < Ωd sin θ and vice versa.

One can not use Poincaré patches to parametrize the entire hyperboloid, and

thus AdSd+1, while global coordinates can be used in this fashion, giving them the

name. Note that u = 0 region is left out in either patch; the hyperboloid is cut into

two disconnected pieces and each half is parametrized by one of the patches. To move

along closed timelike circles, (T 1)2 + (T 2)2 = const. with X i = const., one must keep

passing from one patch to the other, which makes it impossible to modify the Poincaré

charts to parametrize AdSd+1, as we did in global coordinates. Nevertheless, Poincaré

coordinates can be used to investigate local properties of AdSd+1.

Sometimes the coordinate r = u/l2 is used instead. Then the embedding coordi-
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nates are given by

T 1 =
l2

2r
(1 +

r2

l4
(l2 + ~x 2 − t2)),

T 2 =
rt

l
,

X i =
rxi

l
for i = 1, . . . , d− 1,

Xd =
l2

2r
(1 +

r2

l4
(−l2 + ~x 2 − t2)), (3.13)

so that the intrinsic metric is written as

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + d~x 2). (3.14)

Using the transformation z = 1/u one can obtain another set of Poincaré patches

T 1 =
1

2z
(z2 + l2 + ~x 2 − t2),

T 2 =
lt

z
,

X i =
lxi

z
for i = 1, . . . , d− 1,

Xd =
1

2z
(z2 − l2 + ~x 2 − t2), (3.15)

and the metric

ds2 =
l2

z2
(dz2 − dt2 + d~x 2). (3.16)

Before moving on to the properties of AdSd+1 let us make some comments on the

boundary of AdSd+1. AdSd+1 does not have a boundary, but its asymptotic boundary

corresponds to the limits ρ → ∞, θ → π
2

and r → ∞ in global coordinates, u → ∞

or u → −∞, r → ∞ or r → −∞, and z → 0 in Poincaré coordinates. In order

to analyze the behavior of the given metrics near this asymptotic limit, one needs
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conformal structures. For a review on conformal properties of AdSd+1 we refer the

reader to Section 3.4.

3.2. Local Properties

Using the global coordinates (ρ, τ,Ωi) for AdSd+1 the nonzero Christoffel symbols

of metric (3.2) are listed as

Γττρ = Γτρτ = tanh ρ

Γρττ = sinh ρ cosh ρ

Γρkk = − sinh ρ cosh ρ ĝkk

Γkkρ = Γkρk = coth ρ

Γkij = Γ̂kij (3.17)

where the hatted symbols denote the corresponding quantities for Sd−1. The contribut-

ing components of the Riemann curvature tensor are then

Rτ
ρτρ = Rk

ρkρ = −1

Rρ
τρτ = Rk

τkτ = cosh2 ρ

Rτ
kτk = Rρ

kρk = Rn
knk = − sinh2 ρĝkk (3.18)

implying the Ricci tensor to be proportional to the metric with

Rµν = − d
l2
gµν (3.19)

and the Ricci scalar to be a negative constant

R = −d(d+ 1)

l2
. (3.20)
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From (2.3) it is seen that AdSd+1 solves the vacuum Einstein field equations (2.2) when

AdS radius is taken as l =
√
−d(d−1)

2Λ
.

3.3. Global Properties

The hyperboloid has the topology of a cylinder, S1 × Rd, but due to the modifi-

cation in τ and t coordinates it is seen that AdSd+1 is topologically equivalent to Rd+1.

Also note that the map that sends (ρ, τ,Ωi) to (X i, T i) is not injective globally but

locally, hence AdSd+1 can be represented by an immersion in R2,d. This map wraps

AdSd+1 around the hyperboloid countably many times in τ direction.

Any Killing field of the embedded hyperboloid lifts naturally to its universal cov-

ering AdSd+1, therefore the symmetries of AdSd+1 give a covering of O(2, d). Consid-

ering the continuous symmetries, i.e. after removing reflections, this symmetry group

reduces to S̃O(2, 2), a covering of SO(2, d). The reason lies behind the modification

of timelike global coordinates τ and t: In SO(2, d), i.e. considering the hyperboloid, a

rotation in the direction of τ with 2πk, k ∈ Z, reproduces the identity transformation

while on AdSd+1 it gives a translation in τ direction.

SO(2, d) and its covering S̃O(2, d) differ only globally, hence infinitesimally they

look the same and have the same Lie algebra so(2, d) whose generators are the infinites-

imal transformations in the form

Jµν = Xν∂µ −Xµ∂ν , (3.21)

where Xµ = (T i, Xj), i = 1, 2, j = 1, . . . , d, for convenience.

It is worth noting that the number of generators in so(2, d), or equivalently

S̃O(2, d), coincides with the maximum number of symmetries a (d + 1)-dimensional

space can have, which is equal to 1
2
(d + 1)(d + 2). This shows us that the AdSd+1 is

maximally symmetric, hence the Riemann curvature tensor of AdSd+1 can be written
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as [16]

Rµνσλ = − 1

l2
(gµσgνλ − gµλgνσ). (3.22)

3.4. Conformal Properties

The asymptotic structure of a spacetime is an important ingredient to construct

conserved charges. Here we will investigate the structure at the boundaries of AdS as

an example, however, infinity itself stands as an obstacle. To talk about the asymptotic

region at infinity one needs to bring that region to a finite distance, and that is achieved

by conformal compactification.

3.4.1. Conformal Compactification and Conformal Structure

Conformal compactification of a spacetime is used to bring infinite distances to a

finite distance, namely to represent the spacetime at hand on a bounded set and then

adding a boundary to it so that it is possible to work on or near the boundary of the

spacetime, without losing the causal structure. To preserve the causal structure one

needs to use a conformal transformation to send the original spacetime to a bounded

one. The next proposition follows directly from the definition of the conformal map

we gave in Section 2.2.

Proposition 3.1. The causal structure is then preserved under any conformal map,

i.e. all spacelike/timelike/null vectors are sent to a vector with the same property.

The conformal compactification was introduced by Penrose in [17] as a tool to

study the asymptotic regions of spacetimes and described in [18] in detail. Let us

introduce the definition following [13,14,18,19].

Let (M, g) be a smooth manifold which we call “physical spacetime”. We wish

to extend it to an “unphysical spacetime”, a smooth manifold M with boundary B



15

and the interior M. The boundary B and the physical spacetime M are related by a

smooth function Ω defined on M which can be extended smoothly to M satisfying

• Ω > 0 in M

• Ω = 0, dΩ 6= 0 on B

• the metric g̃ = Ω2g extends smoothly on M and is non-degenerate.

The function Ω is called the boundary defining function. If such a function exists

the metric g is said to be conformally compact and the manifold (M, g̃) is called a

conformal compactification of (M, g). Note that if g is conformally compact it must

have a second order pole at the boundary so that it becomes well-defined on B after

being multiplied by Ω2.

The word “compactification” may be misleading as the manifold (M, g̃) is not

necessarily compact, rather it is contained in a compact set and therefore called a

compactification.

Many boundary defining functions can be derived from an existing one. If Ω is a

boundary defining function then so is Ω̃ = Ωeω, where ω is a function with no zeroes or

poles on B. Each boundary defining function Ω gives a different metric on the boundary

B which are related to the each other by a smooth positive factor. Such metrics

define an equivalence class with the relation g ∼ eωg, and such equivalence classes

of metrics are called conformal structures [3]. Hence if a conformal compactification

(M, g̃) defines a conformal structure [g̃] on B.

3.4.2. Conformal Boundary of AdSd+1

Among the metrics given in Section 3.1 there are two obvious candidates to use

for a conformal compactification of AdSd+1. The first one is already called ”conformal

coordinates” because the factor l2

cos2 θ
in (3.5) can be eliminated by a conformal trans-

formation. This would allow θ to take the value π
2

where the conformal boundary B of
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AdSd+1 lies in these coordinates. The metric g̃ is then given by

ds2 = −dτ 2 + dθ2 + sin2 θ

d∑
i=1

(dΩi)2. (3.23)

The conformal boundary at θ = π
2

has the topology R× Sd−1.

The other metric we would choose to consider is (3.16) of Poincaré patches. This

time the conformal boundary is at z = 0 and the metric after the transformation is

then given by

ds2 = dz2 − dt2 + d~x2 (3.24)

as the d + 1-dimensional Minkowski metric. Because each patch has z > 0 or z < 0,

this transformation maps the AdS to one half of the Minkowski spacetime. This also

shows that AdS is conformally flat.

3.5. Symmetries of AdS3

In the last chapter, we will focus on the 3 dimensional case. AdS3 is given by the

universal covering space of the embedded hyperboloid

x2 + y2 − u2 − v2 = −l2. (3.25)

whose continuous symmetries give a covering of the SO(2, 2) group. (A detailed ex-

planation can be found later in this section and in Section 3.3.) These symmetries

are generated by 6 infinitesimal transformations given in (3.21) with Xµ = (u, v, x, y).
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They satisfy Jµν = −Jνµ and written in detail as

Juv = −v∂u + u∂v Jvx = x∂v + v∂x (3.26)

Jux = x∂u + u∂x Jvy = y∂v + v∂y

Juy = y∂u + u∂y Jxy = y∂x − x∂y.

The intrinsic picture is much more illuminating when dealing with symmetries,

let us pass to the global coordinates (ρ, τ, φ) in (3.2)

u = l cosh ρ cos τ

v = l cosh ρ sin τ

x = l sinh ρ cosφ

y = l sinh ρ sinφ (3.27)

and the intrinsic metric given by (3.3) in three dimensions as

ds2 = l2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρdφ2) (3.28)

where ρ > 0, τ ∈ R and φ ∈ [0, 2π). The pullbacks of the generators (3.21) can be

calculated using

Jµ = gµν
∂xk

∂xν
ηklJ

l (3.29)

where latin indices denote the flat metric in R2,2 and greek indices are used for global
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coordinates (ρ, τ, φ). These generators are then given by

Juv = ∂τ (3.30a)

Jux = − tanh ρ sin τ cosφ∂τ + cos τ cosφ∂ρ − coth ρ cos τ sinφ∂φ (3.30b)

Juy = − tanh ρ sin τ sinφ∂τ + cos τ sinφ∂ρ + coth ρ cos τ cosφ∂φ (3.30c)

Jvx = tanh ρ sin τ cosφ∂τ + sin τ cosφ∂ρ − coth ρ sin τ sinφ∂φ (3.30d)

Jvy = tanh ρ sin τ sinφ∂τ + sin τ sinφ∂ρ + coth ρ sin τ cosφ∂φ (3.30e)

Jxy = −∂φ. (3.30f)

These vector fields satisfy the Killing equation Lξ = ∇µξν +∇νξµ = 0. It is easily seen

using the Levi-Civita connection for the metric (3.28) whose contributing components

can be found from (3.17) as

Γττρ = Γτρτ = tanh ρ Γρττ = sinh ρ cosh ρ (3.31)

Γφφρ = Γkρk = coth ρ Γρφφ = − sinh ρ cosh ρ.

A generic Killing vector of AdS3 can be written as 1
2
ωjkJjk using an antisymmetric

tensor ωjk in R2,2. We deduce that AdS3 is stationary because ∂τ is given in (3.30a)

as one of the Killing vector fields. This vector field is orthogonal to ∂ρ and ∂φ, and

spacelike hypersurfaces with constant τ , hence AdS3 is also static.

As mentioned in Section 3.3, the continuous symmetries of AdS3 give S̃O(2, 2),

a covering of SO(2, 2), and its Lie algebra is so(2, 2) generated by the infinitesimal

transformations in (3.30). To construct another basis for so(2, 2) one can use the
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following combinations

L+ =
1

2
(Jvu + Jyx + Jvx + Jyu), L̄+ =

1

2
(Jvu + Jxy + Jvx + Juy),

L− =
1

2
(Jvu + Jyx + Jxv + Juy), L̄− =

1

2
(Jvu + Jxy + Jxv + Jyu),

L0 =
1

2
(Jux + Jvy), L̄0 =

1

2
(Jux + Jyv).

(3.32)

The barred and unbarred elements commute

[Li, L̄j] = 0 for i, j = −1, 0, 1, (3.33)

and both generate sl(2,R) algebra obeying

[L±, L0] = ±L±, [L+, L−] = 2L0. (3.34)

Hence we may use the decomposition so(2, 2) = sl(2,R)⊕ sl(2,R).

so(2, 2) can also be represented as the direct sum of two so(2, 1) algebras by

rearranging the set of generators as

J+
0 =

1

2
(Jyx + Jvu) J+

1 =
1

2
(Jyu + Jvx) J+

2 =
1

2
(Jxu + Jyv) (3.35)

J−0 =
1

2
(Jyx + Juv) J−1 =

1

2
(Jyu + Jxv) J−2 =

1

2
(Jxu + Jvy)

with the following commutation relations

[J±a , J
±
b ] = εabcJ

±c [J+
a , J

−
b ] = 0. (3.36)
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3.6. BTZ Black Hole

In three dimensions, all solutions of the Einstein field equations are of constant

curvature, therefore locally dS, AdS or flat, i.e. locally isometric to dS, AdS or flat

spacetimes, however their global properties may differ. One of the most important

exact solutions of the Einstein field equations (2.2) is the BTZ black hole, found by

Bañados, Teitelboim and Zanelli in 1992 [20]. It exhibits properties similar to a black

hole, such as having event horizons, however, it is a locally AdS3 spacetime and has no

curvature singularity.

The metric of the BTZ black hole is given by

ds2 = −N2dt2 +N−2dr2 + r2(Nφdt+ dφ)2 (3.37)

with t, φ ∈ R, φ ∈ [0, 2π) and r ≥ 0. It solves the Einstein field equations (2.2) with

Λ = −1/l2. Here, N and Nφ are functions of r given by

N2 = −M +
r2

l2
+
J2

4r2
(3.38)

Nφ = − J

2r2
(3.39)

where we took 8G = 1. The constants M,J ∈ R are linked r− and r+ in (3.46) with

r± = l

M
2

1±

√
1−

(
J

Ml

)2
1/2

. (3.40)

as r± are defined as the positive roots of the function N2 = 0. Then

M =
r2

+ + r2
−

l2
, J =

2r+r−
l

. (3.41)
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r± are real if and only if

|J | ≤Ml and M > 0. (3.42)

r+ and r− correspond to the radii of the inner and outer horizon of the black hole.

When r+ = r− the black hole is said to be extremal. In that case, |J | = Ml [20–22].

As all components of the metric depend only on r we see ∂t and ∂φ are Killing

vectors of BTZ black hole. One may find the proof that these are the only two Killing

vectors of BTZ in the Section 3.2.6 of [22]. M and J are interpreted as conserved

charges associated with ∂t and ∂φ, respectively, in Chapter 4. To understand why this

solution has black hole like properties we will study it as an identification of AdS.

3.6.1. Identification Subgroup and the Quotient Space

It is possible to express the BTZ black hole as an identification of AdS3. As

pointed out at the end of [20], “such a spacetime must arise from identifications of points

in anti-de Sitter space through a discrete subgroup of its symmetry group O(2, 2)” [20].

The geometry of this quotient space was investigated in a follow-up paper [22]. Here,

the non-extremal case is presented; the extremal case can be considered as the limit

r− → r+ and the details can be found in [22].

While making identifications it is important to preserve the continuity and the

smoothness of the metric, therefore we consider isometries of AdS3, identify the points

that are mapped to each other under this map and create a quotient space.

Consider the one-parameter subgroup generated by some Killing vector ξ

γ : R→ S̃O(2, 2) γ(t) = etξ. (3.43)

The curve γ(t) living in S̃O(2, 2) contains all isometries of AdS3 generated by ξ and
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its scalar multiples. This subgroup of isometries acts on the points in AdS3

Θ : R× AdS3 → AdS3 Θ(t, p) = etξp. (3.44)

Using any element of γ(t) we can define an identification of AdS3. Let us proceed

with γ(2π) = e2πξ. The factor 2π of our choice is conventional and it is used to

emphasize the cyclic shape after the identification.

A point p would then be identified with e2πkξp, k ∈ Z, namely to all points which

p is sent to under the discrete subgroup Γ

Γ = < e2πξ > = {e2πkξ, k ∈ Z}, (3.45)

hence it is called the identification subgroup associated with the Killing vector 2πξ. As

long as the action of Γ is properly discontinuous on AdS3 we get a quotient manifold

AdS3/Γ given by the equivalence relation p ∼ exp(2πkξ)p, k ∈ Z. More information

on identifications of AdS may be found in [23].

For BTZ black hole this discrete subgroup is generated by the Killing vector

field [22]

ξ =
r+

l
Jyx −

r−
l
Jvu − Juy + Jyx (3.46)

where 0 ≤ r− ≤ r+.

The inherited metric is well-defined and smooth on this quotient manifold be-

cause it remains unchanged along the orbits of Θ and these orbits are closed after the

identification. Therefore the quotient space is locally isometric to AdS3, i.e. locally

AdS3. Since the Riemann curvature tensor is same with AdS3, it also solves the Ein-

stein field equations. Nevertheless, the causality of this new space is to be questioned
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before we can call it a spacetime.

3.6.2. Causality

Gluing the points of AdS3 creates closed curves along the orbits of the map Θ

in (3.44). This will cause closed timelike or null curves to appear where ξ is timelike or

null, respectively. In order to have a well-defined causal structure one needs to discard

such curves in the quotient space. Therefore the regions of AdS3 where ξµξµ ≤ 0 must

be removed before the identification. This, in general, does not guarantee that we end

up with a space that admits a causal structure, there may still be closed timelike or

null curves left, but at least the ones along the the orbits of Θ are eliminated this way.

In the case of BTZ black hole it will be enough as shown in the Section 3.2.5 of [22].

At this point one may ask if we can take a quotient after cutting out some regions

from AdS3. For a well-defined identification we need to check that for each point p

in the remaining part of AdS3 the points e2πkξp, k ∈ Z, are not cut out. It is easy

to see that this is indeed true. Since the norm of the vector ξ does not change along

the orbits of Θ, and p and e2πkξ belong to the same orbit for each p ∈ AdS3, they are

either in the remaining region or in the one we cut out. Thus the identification is still

well-defined.

3.6.3. The Quotient Space and its Singularities

The further properties of the BTZ black hole are explained thoroughly in [22],

but for our purposes it will be enough to state the metric of the BTZ black hole. By

choosing a parametrization (t, r, φ) on the remaining parts of AdS as given in Section

3.2.3 of [22], the AdS metric becomes the metric we gave in (3.37) with φ ∈ R. Then

the identification is made through identifying φ ∼ φ+ 2π.
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Since the quotient space has same local properties with AdS3, there are no curva-

ture singularities in BTZ black hole, even when r = 0. The region r = 0 corresponds

to a surface, not a point, and the Killing vector ∂φ becomes timelike in the regions of

AdS3 which correspond to r < 0. This shows that r = 0 is only a causal singularity.

There are many papers written about the properties of the BTZ black hole. In

addition to the ones we mentioned in this chapter, Carlip’s works [24–28] can be used

for further study.



25

4. CONSERVED GLOBAL CHARGES AND THEIR

ALGEBRA

Symmetries are related to conserved quantities which in general are called charges.

In physics, charges play important role such as energy, mass and angular momentum.

Historically, it was Emmy Noether who established the relation between the symmetries

of a spacetime and the charges that are conserved as time changes in 1915. In this

thesis, we are interested in conserved charges at spatial infinity. We will first define

a structure called the variational bicomplex and introduce notations and conventions

used in the so-called covariant phase space formalism [29–32]. Here, we will follow

the lecture notes by Compère and Fiorucci [21]. The Noether’s Theorems will come

next. Then we will define the Noether-Wald surface charge density and calculate it for

Einstein gravity. At the end of this chapter, we will apply this formalism to the BTZ

solution (3.37) and show that the constant M that appears in the definition corresponds

to a conserved charge.

4.1. Variational Bicomplex

The Lagrangian theories we will consider are the ones where the Lagrangian

density L depends on the derivatives of the fields involved to all orders. We aim

to generalize the notion of cotangent space so that we can additionally include the

variations of the fields as differential forms (so that later we can integrate between two

fields). To this end, we are going to define a structure called the variational bicomplex

which combines the spacetime manifold and the field space. The construction of the

variational bicomplex and more details on its properties are thoroughly given in [33,34],

here we will present the information necessary for our use in this thesis.

The spacetime is given by an n-dimensional manifold M, we will denote its

coordinates by {xµ, µ = 1, . . . , n}. Let p ∈ M. The cotangent space, the dual of the

tangent space, at the point p is the set of all 1-forms with basis {dxµ, µ = 1, . . . , n}.
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The interior product of a 1-form ω by an element of the tangent space ξ is defined as

ξµ∂µω = ξµ ∂
∂ dxµ

ω. We may generalize the definition of the interior product by ξ as an

operator that sends k-forms to (k− 1)-forms and denote it by iξ. Its inverse operation,

the exterior derivative of forms, is given by the d operator, d = dxµ∂µ, as usual.

Now let us define the field space. The field space, or jet space, is the space of

smooth fields and their derivatives of all orders with respect to the spacetime coordi-

nates. The fields and their derivatives, however, are considered in an abstract manner

independently of their values on the spacetime manifold. They are used as a coor-

dinate system to locate fields in the field space. To have a well-defined coordinate

system, one needs to identify some of the derivatives with each other, for example,

∂µ∂νΦ = ∂ν∂µΦ but they should be used as a single coordinate variable. Therefore we

define the symmetrized derivatives Φµν as follows

∂

∂Φj
µν

Φi
αβ = δ(µ

α δ
ν)
β δ

i
j. (4.1)

Using this construction, a point (Φ,Φµ,Φµν , . . . ) in the field space corresponds to a

specific field and the differential forms at that point can be written using the basis

{δΦ, δΦµ, δΦµν , . . . } where the operator δ is defined as δ = δΦi
I

∂
∂ΦiI

where I is a multi-

index that denotes any symmetrized derivative and Einstein summation runs over all

i and I. Noting the similarity between the cotangent space of the field space and

the spacetime manifold, we follow the conventional choice in [21] by defining all basis

elements {δΦ, δΦµ, δΦµν , . . . } as Grassmann odd variables, i.e. they anticommute with

each other, as in the usual exterior algebras. An interior product can also be defined

via

iδa := δaΦ
i
I

∂

∂δΦi
I

, (4.2)

for the transformation generated by an element ”a” in some group of transformations,

under which the variations in the field space are given by δaΦ
i
I . The variations δaΦ

i
I are

not basis elements anymore, hence they are Grassmann even, i.e. they commute with
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everything. Note that this inner product maps an arbitrary variation to a variation

under a specific transformation denoted by a.

The jet bundle or the variational bicomplex is a combination of both spaces

mentioned above, with coordinates (xµ,Φi
I). This space contains the field space as a

fiber at each point of the spacetime manifoldM. Now we should adapt the derivative

operators d and δ to the variational bicomplex. We will not change the way the exterior

derivative d = dxµ∂µ is defined, but the partial derivative ∂µ will be calculated like a

total derivative with respect to xµ where all fields are taken as dependent variables

∂µ =
∂

∂xµ
+ Φi

µ

∂

∂Φi
+ Φi

µν

∂

∂Φi
ν

+ . . . , (4.3)

which we will call the horizontal derivative. The definition of the vertical derivative

δ stays the same. These differential operators anticommute and with them involved

we define this space as a variational bicomplex. A differential form on variational

bicomplex is an element of cotangent spaces of the spacetime manifold and the field

space, hence uses {dxµ, δΦi
I} as its basis. A form which has p many dxµ factors and q

many δΦi
I terms is called a (p, q)-form.

The Lagrangian density L and the Lagrangian form L = Ldnx are natural objects

that live on this structure. They depend on the fields and their higher derivatives. We

can now observe that arbitrary variations are also naturally defined on variational

bicomplex. For example, L is an (n, 0)-form and its variation δL becomes an (n, 1)-

form in this formalism.

4.2. Noether Theorems

Let us consider a theory described by some Lagrangian density L[Φi,Φi
I ] which

depends on the fields Φi and their derivatives Φi
I , and introduce the new notations

while showing that its equations of motion are given by the Euler-Lagrange derivative.
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Theorem 4.1. The equations of motion of this theory is given by the Euler-Lagrange

equations

δL

δΦi
:=

∂L

∂Φi
− ∂µ

(
∂L

∂∂µΦi

)
+ ∂µ∂ν

(
∂L

∂∂µ∂νΦi

)
− · · · = 0, (4.4)

for all i, and the metric gµν may be included in the set of fields {Φi}.

Proof. Consider an arbitrary variation of the Lagrangian density L

δL = δΦi ∂L

∂Φi
+ δ∂µΦi ∂L

∂∂µΦi
+ . . .

= δΦi ∂L

∂Φi
− ∂µ

(
δΦi ∂L

∂∂µΦi

)
− δΦi∂µ

∂L

∂∂µΦi
+ . . .

= δΦi δL

δΦi
− ∂µΘµ[δΦi; Φ]. (4.5)

where the inverse Leibniz rule was applied with a minus sign because we conventionally

defined δ and partial derivatives as anticommutative operators. The last term, the

divergence of the vector field Θµ, contains the total derivative terms coming from the

inverse Leibniz operations. Θµ is called the presymplectic potential. The same equation

can be written using differential forms as

δL = δΦi δL

δΦi
− dΘ[δΦi; Φ]. (4.6)

One should note that when the above expression is contracted by some interior product

δa it gives

δaL = δaΦ
i δL

δΦi
+ dΘ[δaΦ

i; Φ]. (4.7)

where the minus sign is changed because δ and d anticommute.
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By applying the principle of the stationary action one gets

0 = δS (4.8)

=

∫
δLdnx (4.9)

=

∫
δΦi δL

δΦi
− ∂µΘµ[δΦi; Φ]dnx (4.10)

=

∫
δΦi δL

δΦi
dnx. (4.11)

Since this equality must be true for any variation δΦi we conclude
δL

δΦi
= 0.

Now assume there is a group G of transformations of the fields Φi such that the

action

S =

∫
Ldnx (4.12)

is invariant under the elements in G. Such a transformation a ∈ G is called a global

symmetry of L and it necessarily preserves the Lagrangian form L up to a total deriva-

tive term, i.e. δaL = dααα[δaΦ; Φ] for some (n− 1, 0)-form ααα. Then the (n− 1, 0)-form

J[a] = Θ[δaΦ; Φ]−ααα[δaΦ; Φ] (4.13)

is closed, dJ[a] = 0, when the equations of motion are satisfied. This (n− 1, 0)-form is

the Hodge dual of a current Jµ which is called a conserved current, i.e. its divergence

vanishes when the equations of motion hold. That is the Noether current associated

with the symmetry generated by a ∈ G. We can calculate the corresponding Noether

charge by taking its integral over a Cauchy surface Σ, a codimension 1 surface in M

which is intersected by every maximal causal curve exactly once [21].

There is a special type of global symmetries, called the gauge symmetry, which

is a global symmetry of L whose generator arbitrarily depends on the coordinates.
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Theorem 4.2 (Noether’s first theorem). If a physical theory described by a Lagrangian

L admits global symmetries, there exists a bijection between equivalence classes of con-

tinuous global symmetries of L and the equivalence classes of conserved currents Jµ.

Jµ are called the Noether currents. [21]

Here, two global symmetries are said to be equivalent if and only if their difference

is given by a gauge transformation and some symmetry whose generator vanishes on

shell, i.e. when equations of motion are satisfied. Similarly, two currents Jµ1 , J
µ
2 are

said to be equivalent if and only if they obey

Jµ2 = Jµ1 + ∂νk
µν + tµ, (4.14)

where kµν is a skew symmetric tensor and tµ vanishes on shell, hence the conservation

of one current implies the conservation of the other if they are equivalent. We would

like to emphasize that the equivalent currents do not necessarily give the same charge,

and that will be used later to define lower degree conserved quantities.

The Noether currents of gauge transformations have exact Hodge duals, i.e.

J[a] = dka for some (n−2, 0)-form ka = k
[µν]
a (dn−2x)µν . Then dJ[a] = 0 even when the

equations of motions are not satisfied. Such quantities are said to be trivially conserved.

Then its integral, the associated Noether charge, reduces to the flux of k through the

boundary ∂Σ

∫
Σ

J[a] =

∫
∂Σ

ka. (4.15)

This shows why one can calculate the energy as an integral at the spatial infinity

in general relativity, for which we must discard two coordinates, time and a radial

spacelike coordinate and integrate over a codimension 2 surface, such as ∂Σ in (4.15).

Now consider a closed (n − 2, 0)-form k. Then the surface charge
∫
S

k is inde-

pendent of S, since we can write
∫
S1

k −
∫
S2

k =
∫
V
dk = 0 where V is the volume
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between S1 and S2. In this case, S can be deformed continuously, assuming we do not

cross over some singularity of k. We would expect this charge to be associated to some

symmetry of the theory. This correspondence was stated in the following theorem by

Barnich, Brandt and Henneaux [35].

Theorem 4.3 (Generalized Noether theorem). For any physical theory described by

a Lagrangian density L defined on a spacetime manifold (M, g) which admits global

symmetries, some of which might be gauge transformations, there exists a bijection

between:

• The equivalence class of gauge parameters λ(xµ) that are field symmetries, i.e.

the variations of all fields Φi under the transformation generated by λ vanish on

shell, and

• The equivalence class of (n− 2, 0)-forms k that are closed on shell. [21]

Here, two gauge parameters are considered to be equivalent if they are equal

on shell and two (n − 2, 0)-forms are equivalent if they differ on shell by an exact

(n− 2)-form. In contrast to the Noether’s first theorem, Theorem 4.2, an equivalence

class of (n− 2, 0)-forms corresponds to a single charge now, because the integral of the

exact (n− 2, 0)-form would become in an integral over ∂(∂Σ) via Stokes’ Theorem and

thus vanish. The (n − 2, 0)-forms mentioned in the theorem are called surface charge

densities and the charges associated with them are surface charges.

In general relativity, gauge transformations are diffeomorphisms due to the gen-

eral covariance. A field symmetry is a transformation under which the variations of

fields vanish on shell. A diffeomorphism which is also a field symmetry of the metric

must be an isometry of the spacetime manifold. These diffeomorphisms are generated

by the Killing vectors, but in general, a metric does not have to admit any isometries.

Therefore it is not possible to use this theorem directly, instead we are going to look

at the symmetries of a set of metrics that share a common feature, and that feature

will be being asymptotically AdS. We will elaborate on that in Section 4.4.1.
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To explain what we aim in this chapter, let us introduce the variation of the

presymplectic potential mentioned in Section 4.2. The presymplectic potential Θ[δΦ; Φ]

is an (n− 1, 1)-form, therefore its variation δΘ is an (n− 1, 2)-form

ω[δΦ, δΦ; Φ] = δΘ[δΦ; Φ], (4.16)

which is called the presymplectic form. We are going to link this form with the surface

charge densities, but we need Noether’s second theorem to do that.

Theorem 4.4 (Noether’s second theorem). Let L = Ldnx be a generally covariant

Lagrangian form and ξµ an arbitrary diffeomorphism. Then

δL

δΦi
δξΦ

i = dSξ

[
δL

δΦi
; Φi

]
, (4.17)

where Sξ is an (n− 1, 0)-form proportional to the equations of motion and its deriva-

tives. The equality also holds for other types of gauge transformations where ξµ is then

replaced by an arbitrary gauge parameter of the other type. [21]

We show this theorem holds for the Einstein-Hilbert Lagrangian density L =

1
16πG

R
√
−g in (4.31).

4.3. Noether-Wald Surface Charge

Now we are ready to define Noether-Wald surface charges. Take the variation of

L along any infinitesimal diffeomorphism ξµ

δξL = LξL

= d(iξL) + iξdL

= d(ξµL(dn−1x)µ)

= ∂µ(ξµL)dnx. (4.18)
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Here, we used Cartan’s magic formula Lξω = d(iξω) + iξ(dω), where d and iξ stand for

the exterior derivative and the interior product, respectively. The second term in the

second line vanishes as Lagrangian L is a top form and therefore dL = 0.

On the other hand, the same quantity can be written using the Second Noether

Theorem. For some (n− 1, 0)-form Sξ proportional to the equations of motion and its

derivatives one obtains

δξL =
δL

δΦi
(Φi)δξφ

i + dΘ[LξΦ; Φ]

= dSξ + dΘ[LξΦ; Φ]

= ∂µS
µ
ξ d

nx+ ∂µΘµ[LξΦ; Φ]dnx. (4.19)

Combining (4.18) and (4.19) we get

d(iξL) = dSξ + dΘ[LξΦ; Φ]

∂µ(ξµL) = ∂µS
µ
ξ + ∂µΘµ[LξΦ; Φ]

0 = ∂µ(ξµL− Sµξ −Θµ[LξΦ; Φ]) (4.20)

The Noether current is defined as Jµ, the Hodge dual of the conserved (n− 1, 0)-

form [36]

Jξ := iξL−Θ[LξΦ; Φ]. (4.21)

It is seen from (4.20) that dJξ = dSξ and it vanishes since S vanishes when equations

of motion hold.

Hence, d(Jξ − Sξ) = 0. Then the vector Jµξ − Sµξ is trivially conserved, i.e.

conserved even without imposing the equations of motion. When equations of motion
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are imposed Jµξ − S
µ
ξ ≈ Jµξ .

Since Jµξ −S
µ
ξ is trivially conserved, it can be written using an exact form, assum-

ing we can apply the Poincaré Lemma. Then Jξ = Sξ + dQξ for some (n− 2, 0)-form

Qξ. A short proof which shows that the Poincaré Lemma can be used is given in [21].

Qξ = Qµν
ξ (d(n−2)x)µν is called Noether potential or Noether-Wald surface charge, and

it satisfies that Jµξ − S
µ
ξ = ∂νQ

µν
ξ .

We define the operator Iξ such that Qξ = Iξ(Jξ − Sξ) as follows. For any (k, 0)-

form ω,

Iξωξ =
1

n− k
ξα

∂

∂∂µξα
∂

∂dxµ
ωξ + (higher derivative terms) (4.22)

Then the Noether-Wald charge can be written as

Qξ = Iξ(Jξ − Sξ)

= IξiξL− IξΘ[LξΦ; Φ]− IξSξ

= −IξΘ[LξΦ; Φ] (4.23)

since Sξ and iξL do not contain any derivatives of ξ.

Let us give the final result of this section as stated in [21].

Theorem 4.5 (Fundamental theorem of the covariant phase formalism). In the Grass-

mann odd convention for δ, contracting the presymplectic form with a gauge transfor-

mation δξΦ
i, it exists an (n− 2, 1)-form kξ[δΦ; Φ] that satisfies the identity

ωωω[δξΦ, δΦ; Φ] ≈ dkξ[δΦ; Φ], (4.24)

where Φi solves the equations of motion, and δΦi solves the linearized equations of

motion around the solution Φi. The infinitesimal surface charge kξ[δΦ; Φ] is unique,

up to a total derivative that does not affect the equality above, and it is given in terms
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of the Noether-Wald surface charge and the presymplectic potential by the following

relation

kξ = −δQξ[δΦ; Φ] + iξΘ[δΦ; Φ] + total derivative. (4.25)

We would like to emphasize that the above mentioned kξ is not equal to the

surface charge density k in (4.15), which is an (n− 2, 0)-form and does not contain δΦ

terms.

4.3.1. Noether-Wald Surface Charge of the Einstein Gravity

Now, let’s consider the Einstein-Hilbert Lagrangian in n dimensions

L[gµν ] =
1

16πG

√
−gR. (4.26)

To calculate an arbitrary variation of the Lagrangian density one needs the fol-

lowing. Denoting hµν := δgµν ,

δ
√
−g =

1

2

√
−ggµνδgµν ,

δgαβ = −gαµgβνδgµν ,

δRαβ = ∇λ(δΓ
λ
αβ)−∇β(δΓλλα),

δΓλαβ =
1

2
gλρ(∇βhρα +∇αhρβ −∇ρhαβ). (4.27)
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δL =
1

16πG
(δ
√
−gR +

√
−gδ(Rαβg

αβ))

=

√
−g

16πG

[
1

2
gµνRδgµν + [∇λ(δΓ

λ
βα)−∇β(δΓλλα)]gαβ +Rαβ(−gαµgβνδgµν)

]
=

√
−g

16πG

[(
1

2
gµνR−Rµν

)
δgµν +

1

2

(
∇λ∇βh

λβ +∇λ∇αh
λα −∇λ∇λhαα

−∇β∇λh
λβ −∇β∇βhλλ +∇β∇ρh

βρ
)]

=

√
−g

16πG

[
−Gµνδgµν +∇λ(∇βh

λβ −∇λhββ)
]

=
δL

δgµν
δgµν +

√
−g

16πG
∇λ(∇βh

λβ −∇λh). (4.28)

Now the variation is written in the form of (4.19). Under an infinitesimal diffeomor-

phism ξµ the equation (4.28) becomes

δξL =
δL

δgµν
δξgµν +

√
−g

16πG
∇λ(∇βh

λβ −∇λh), (4.29)

and in this case, h = δξg is given by

hµν = δξgµν = Lξgµν = 2∇(µξν),

hµν = 2∇(µξν),

h = hµµ = 2∇µξ
µ. (4.30)

Since ξ is a diffeomorphism we can apply the Noether’s second theorem, Theo-

rem (4.4), and write the first part of the equation (4.29) as a total derivative term. Its

derivation is given below, where we use the symmetry of the Einstein tensor Gµν and
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the Bianchi identity ∇µG
µν = 0.

δL

δgµν
δξgµν = −

√
−g

16πG
Gµνhµν

= −
√
−g

8πG
∇µ(Gµνξν)

= ∂µ(−
√
−g

8πG
Gµνξν). (4.31)

Thus, in this case Sξ in Noether’s second theorem is given by Sξ = −
√
−g

8πG
Gµνξν(d

n−1)µ.

The second term in the equation (4.29) is already in the form ∂µΘµ, yet we can

make some modifications and introduce the Riemann tensor using (∇c∇b−∇b∇c)ξa =

Rd
abcξd in.

Θµ
ξ =

√
−g

16πG
(∇νh

µν −∇µhνν)

=

√
−g

8πG
(∇ν(∇µξν −∇[µξν])−∇µ(∇νξ

ν))

=

√
−g

8πG
(Rν µ

αν ξ
α +∇ν∇[νξµ])

=

√
−g

8πG
(Rµνξν +∇ν∇[νξµ]). (4.32)

Hence

δξL = ∂µ(Sµξ + Θµ
ξ )

= ∂µ

(
−
√
−g

8πG
Gµνξν +

√
−g

8πG
(Rµνξν +∇ν∇[νξµ])

)
= ∂µ

{√
−g

8πG

(
1

2
Rξµ +∇ν∇[νξµ]

)}
, (4.33)

or equivalently, as seen in (4.19)

δξL = ∂µ

{√
−g

8πG

(
1

2
Rξµ +∇ν∇[νξµ]

)}
dnx. (4.34)



38

One can also compute the same quantity as in (4.18) to get

δξL = d(iξL) = ∂µ(ξµL)dnx = ∂µ

(√
−g

16πG
Rξµ

)
dnx. (4.35)

Then the standard Noether current described in (4.21) is

Jξ = iξL−Θξ

=

√
−g

16πG
Rξµ(dn−1x)µ −

√
−g

8πG
(Rµνξν +∇ν∇[νξµ])(dn−1x)µ

=

√
−g

8πG
(−Gµνξν +∇ν∇[νξµ])(dn−1x)µ. (4.36)

Either from (4.34) and (4.35) or from the result d(J − S) = 0 in the previous

section it is seen

∂ν∂µ

(√
−g

8πG
∇[νξµ]

)
dnx = 0. (4.37)

Applying the Poincaré Lemma, the Noether-Wald surface charge with (J−S)µ = ∂νQ
µν

is calculated as

Qξ =

√
−g

8πG
∇[µξν](d(n−2)x)µν . (4.38)

To compute the Noether-Wald surface charge density kξ = −δQξ + iξΘ two more

derivations are needed:

iξΘ = (ξνΘµ − ξµΘν)(dn−2x)µν

=

√
−g

16πG
[ξν(∇αh

µα −∇µh)− ξµ(∇αh
να −∇νh)](dn−2x)µν (4.39)
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−δQξ = δ

(√
−g

8πG
gαν∇αξ

µ

)
(dn−2x)µν

=
1

8πG
[δ
√
−g∇νξµ +

√
−gδgαν∇αξ

µ +
√
−ggανδ(∇αξ

µ)](dn−2x)µν

=
1

8πG

[
1

2

√
−ggσρδgσρ∇νξµ +

√
−g(−gασgνρδgσρ)∇αξ

µ

+
√
−ggανδ(∂αξµ + Γµαλξ

λ)
]

(dn−2x)µν

=

√
−g

8πG

[
1

2
hρρ∇νξµ − hαν∇αξ

µ + gανδ(Γµαλ)ξ
λ

]
(dn−2x)µν

=

√
−g

8πG

[
1

2
h∇νξµ − hαν∇αξ

µ +
1

2
(∇νhµλ +∇λhµν −∇µhνλ)ξλ

]
(dn−2x)µν

=

√
−g

8πG

[
1

2
h∇νξµ − hαν∇αξ

µ +
1

2
(∇νhµλ −∇µhνλ)ξλ

]
(dn−2x)µν (4.40)

We use the antisymmetry of (dn−2x)µν at the beginning and the symmetry of hµν in the

last step. Again by using the antisymmetry of (dn−2x)µν , the surface charge density

can be written as

kξ = −δQξ + iξΘ

=

√
−g

16πG
[h∇νξµ − 2hαν∇αξ

µ + (∇νhµλ −∇µhνλ)ξλ

+ ξν(∇αh
µα −∇µh)− ξµ(∇αh

να −∇νh)](dn−2x)µν

=

√
−g

16πG
(h∇νξµ − 2hαν∇αξ

µ + 2∇[νhµ]λξλ − 2ξ[µ∇αh
ν]α + 2ξ[µ∇ν]h)(dn−2x)µν

=

√
−g

8πG

(
1

2
h∇νξµ − hαν∇αξ

µ +∇νhµλξλ − ξµ∇αh
να + ξµ∇νh

)
(dn−2x)µν . (4.41)

4.4. Conserved charges

By integrating the (n− 2, 1)-form kξ[δΦ; Φ] over a closed surface of codimension

2, for example on an (n− 2)-sphere where the coordinates t and r are fixed, we obtain

the surface charge

��δHξ[δΦ; Φ] =

∮
S

kξ[δΦ; Φ]. (4.42)
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��δHξ is a (0, 1)-form, which corresponds to the local variation of some charge between

the two solutions Φi and Φi + δΦi. This means that are now on shell, i.e. Φi solves the

equations of motion and δΦi solves the linearized equations of motion around Φi.

By using ��δ we underline that we do not know if this expression is a variation of

some charge. If ��δHξ is an exact 1-form in the space of fields then a surface charge Hξ

can be defined. A necessary condition is

δ��δH = δ

(∮
S

kξ[δΦ; Φ]

)
= δ1

∮
S

kξ[δ2Φ; Φ]− δ2

∮
S

kξ[δ1Φ; Φ] = 0, (4.43)

for all δ1Φ, δ2Φ ∈ T ∗ΦF, for all Φ ∈ F , and it is called the integrability condition. If

this holds and the use the Poincaré Lemma is allowed in the fields space, which we

will assume from now on, we say the charge is integrable, i.e. Hξ exists such that

δHξ = ��δHξ[δΦ; Φ].

To define Hξ explicitly let Φ̄i be a reference field configuration, for example a

background metric ḡµν if we consider gravity. Define Hξ at the point Φi as

Hξ[Φ; Φ̄] =

∫
γ

∮
S

kξ[δΦ; Φ] +Nξ[Φ̄], (4.44)

where γ is some path between Φ̄i and Φi, and Nξ[Φ̄] depends only on the reference field

configuration. The integrability condition guarantees that the integral is independent

of the path γ.

If such an Hξ exists and remains invariant under any continuous deformation of S,

it is said to be conserved. Hξ is conserved if and only if ωωω[δξΦ, δΦ; Φ] ≈ dkξ[δΦ; Φ] ≈ 0

so that

Hξ|S1 −Hξ|S2 =

∫
γ

∮
S1

kξ −
∫
γ

∮
S2

kξ =

∫
γ

∫
C

dkξ ≈
∫
γ

∫
C

ωωω. (4.45)
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4.4.1. Constructing Charges in Gravity and Asymptotic Symmetry Group

In this section we aim to construct charges for gravitational theories and follow

closely the lecture notes [21]. Since general relativity is non-linear and hard to handle,

we will prefer to use an infinitesimal linearization about a known solution, a background

metric, which preferably admits some number of symmetries. Then, thanks to the

variational bicomplex structure, we take an integral of this infinitesimal charge in the

field space as given in (4.44) to calculate charges for another metric. A more detailed

explanation can be found in [21]. There are three types of symmetries that are used

to define conserved charges of the gravity theory:

(i) Exact symmetries, symmetries generated by Killing vectors, which imply directly

ωωω[δξΦ, δΦ; Φ] = 0 and give conserved surface charges in the bulk of the spacetime.

(ii) Asymptotic symmetries generated by asymptotically Killing vectors, which imply

ωωω[δξΦ, δΦ; Φ] → 0 as r → ∞ and give surface charges conserved at the spatial

infinity r →∞.

(iii) Symplectic symmetries, transformations generated by vector fields under which

the presymplectic form ωωω vanishes but are not isometries or asymptotic isometries

of the metric. They give surface charges conserved in the bulk.

We want to make use of the generalized Noether theorem, Theorem (4.3), to

define these surface charges. Start with a Lagrangian density L defined on (M, gµν)

and consider the gauge transformations. Gauge transformations are given by diffeo-

morphisms, since the theory is assumed to be generally covariant. To apply the gen-

eralized Noether theorem we need to select the field symmetries. A field symmetry,

defined in Section 4.2, of gµν is a transformation generated by a vector field ξµ such

that δξgµν = Lξgµν ≈ 0, by definition. This is satisfied by the Killing vectors of gµν ,

however, gµν is just a generic metric, hence we can not specify any set of Killing vectors

in general and construct charges.

Instead considering a single metric gµν , we may restrict ourselves to a set of field
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configurations, i.e. a family of metrics, that have some common property. Consider a

metric gµν close enough to a background metric ḡµν such that we can linearize the the-

ory. Assume ḡµν solves the equations of motion and hµν solves the linearized equations

of motion. The Lagrangian density of the metric gµν = ḡµν + hµν is gauge invariant

under any diffeomorphism ξµ that satisfies δξhµν = Lξḡµν [37]. If ξ is also a Killing

vector of ḡµν then it is a global symmetry of the linearized theory for gµν = ḡµν + hµν

where δξhµν = 0. Such metrics gµν give a family of metrics that share an exact symme-

try ξ, and the corresponding (n − 2) surface charge given by the generalized Noether

theorem, Theorem 4.3.

What we are interested in is using the asymptotic symmetries and the generalized

Noether theorem. Similar to the case above, we start by defining a set G of field

configurations, i.e. metrics, by restricting them to a specific set of conditions, the so-

called boundary conditions. We will explain how these boundary conditions are chosen

and which metrics to be included in G in the Section 5.2. The allowed diffeomorphisms

inG are the vector fields ξµ that sends a metric inG to some metric inG, or equivalently

its action is tangential to G. This way it is guaranteed that when acting on the metrics

in G with ξ we preserve the chosen boundary conditions, hence they preserve G. The

allowed diffeomorphisms will form a Lie algebra, as we will see in Sections 5.2 and 5.3.

If we assume that we define G such that its allowed diffeomorphisms are asymp-

totic Killing vectors, defined in (5.44), a conserved charge Hξ can be defined. If Hξ

integrable and gives a finite charge, either it is zero for all gµν ∈ G, and in this case the

corresponding diffeomorphism ξ is called a gauge transformation and it does not change

the physical state but merely defines a coordinate transformation, or it is nonzero for

some gµν ∈ G and therefore it corresponds to a change in the physical state. The

asymptotic symmetry group is then defined as the following quotient group that gives

the “state-changing transformations”.

Asymptotic symmetry group =
Allowed diffeomorphisms

Gauge transformations
(4.46)
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Until now, we developed a systematic approach to define conserved charges, but

let us mention some ambiguities our definitions suffer from. Our definition of charges

depend on the vanishing of the presymplectic form ωωω[δΦ, δΦ; Φ]. One is allowed to

add an exact n-form K to the Lagrangian n-form L[Φ], but this would correspond

to total variation to the presymlectic potential Θ → Θ + δK, so it does not change

the presymplectic form ωωω = δΘ. Similarly, an exact n − 1-form B can be added to

the presymplectic potential form Θ, but the corresponding term δdB added to the

presymplectic form ωωω vanishes when kξ is calculated for an exact symmetry ξ. Notice

that the Noether-Wald charge Q is also ambiguous, one can add a closed n − 2-form

so the surface charge densities kξ are defined uniquely up to a total derivative, though

this does not affect the charges Hξ. They change if we change the representative field

Φ̄ and hence the part Nξ[Φ̄] in the (4.44). For a more detailed discussion the reader

may check the works [21,36].

4.4.2. Charge Algebra and the Representation Theorem

There is a similar concept, an algebra that contains the corresponding charges.

The set of charges form an algebra under the Poisson bracket defined by

{Hχ, Hξ} := δξHχ = iδξδHχ = iδξ

∮
S

kχ[δΦ; Φ] =

∮
S

kχ[δξΦ; Φ], (4.47)

where χ and ξ are arbitrary infinitesimal diffeomorphisms. Note the use of the operator

iδa given in (4.2). Yet, one needs to check if this gives a conserved charge and show

that the algebra is closed under this Poisson bracket. We refer the reader for details

to [21] and state the following theorem without proving.

Theorem 4.6 (Charge representation theorem). Assuming integrability (4.43), the

conserved charges associated to a Lie algebra of diffeomorphisms also form an algebra

under the Poisson bracket {Hχ, Hξ} := δξHχ, which is isomorphic to the Lie algebra of

diffeomorphisms up to a central extension, a term commutes with all the elements in

the algebra. It gives a Lie algebra only when this term is zero.
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4.4.3. A Conserved Charge for BTZ Black Hole

We will give an examples now to demonstrate the calculation of the conserved

charges. Let us show that the conserved charge corresponding to the Killing vector ∂t

is M for BTZ black hole, which is interpreted as its mass. Here J is taken to be zero

to simplify the calculations.

If J = 0 and 8G = 1, the BTZ black hole in (3.37) is given by the metric

ds2 =

(
M − r2

l2

)
dt2 +

1

−M + r2

l2

dr2 + r2dφ2. (4.48)

Some necessary quantities are the following

gtt =
1

M − r2

l2

, grr = −M +
r2

l2
, gφφ =

1

r2
,

√
−g = r, (4.49)

Γrtt =
r

l2

(
−M +

r2

l2

)
, Γrφφ =

(
M − r2

l2

)
r, Γφrφ =

1

r
,

Γrrr =
r
l2

M − r2

l2

, Γtrt =
− r
l2

M − r2

l2

. (4.50)

Now, let hµν = δgµν be an arbitrary variation of the metric. Here, we can only

vary M , then using gµν to raise indices we write

htt = δM, hrr =
−δM(

−M + r2

l2

)2 , hφφ = 0,

hrr = −δM, htt =
δM(

M − r2

l2

)2 , hφφ = 0, (4.51)

h = htt + hrr + hφφ =
δM

M − r2

l2

− δM

−M + r2

l2

=
2δM

M − r2

l2

. (4.52)
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With h as given above and ξ = ∂t, we calculate the Noether-Wald surface charge

density (4.41), taking 8G = 1 and including only the nonvanishing terms, as follows

kξ =

√
−g
π

(
1

2
h∇νξµ − hαν∇αξ

µ +∇νhµλξλ − ξµ∇αh
να + ξµ∇νh

)
(dn−2x)µν

=

√
−g
π)

[(
1

2
h∇rξt − hrr∇rξ

t +∇rhttξt − ξt(∇rh
rr +∇th

rt +∇φh
rφ) + ξt∇rh

)
(dx)tr

+

(
1

2
h∇tξt − htt∇tξ

r +∇thrtξt

)
(dx)rt

]
=

√
−g
π)

[
1

2
hgrrΓtrtξ

t − hrrΓtrtξt + grr(∂rh
tt + Γtrth

tt + Γtrth
tt)ξtgtt

− ξt(∂rhrr + Γrrrh
rr + Γrtth

tt + Γrφφh
φφ + Γrrrh

rr + Γttrh
rr + Γφφrh

rr)

+ξtgrr∂rh−
1

2
hgttΓrttξ

t + httΓrttξ
t − gtt(Γrtthtt + Γttrh

rrξtgtt)

]
(dx)tr

=

√
−g
π

(
1

r
δM

)
(dx)tr

=
δM

2π
dφ. (4.53)

where we directly calculated using the previous results (4.49), (4.50), (4.51), (4.52) and

used our convention for (dx)tr =
1

2!1!
dφ taking the orientation as εtrφ = 1 in the last

step. Then the corresponding Noether charge

6 δH =

∫ 2π

0

δM

2π
dφ = δM (4.54)

is integrable and H = M .



46

5. ASYMPTOTICALLY AdS3 SPACETIMES

In this chapter we introduce the notion of asymptotically anti-de Sitter spacetimes

for which there are two basic approaches in literature. We will briefly review some

historical works and end the chapter with a glimpse at the recent work of Compere,

Song and Strominger [7].

Asymptotically locally AdS spacetimes (AlAdS) are solutions of the vacuum Ein-

stein equation (2.2) with Λ < 0 that can be conformally compactified as explained in

Section 3.4. This approach is used in [13, 14, 16]. Here, the conformal structure is not

restricted, hence the boundary metric and the boundary topology are free. It gives the

most general definition of such spacetimes.

The second approach defines asymptotically AdS spacetimes by setting boundary

conditions for the metrics. These conditions should satisfy a list of properties we will

see in Section 5.2. They may give specific restrictions on the topology of the boundary

as in [38, 39] or choose specific boundary coordinates and boundary metric [1, 2, 7].

Also by giving a set of allowed variations they determine the behavior of the metric

components at infinity, and hence they are called the boundary conditions. Note that

such boundary conditions fix the boundary topology as a result. As seen in Section 3.4

the conformal boundary of AdSd+1 has the topology R× Sd−1, and the definitions we

consider in this thesis include this as a boundary condition. The metrics then approach

to this topology. The difference between these two approaches is emphasized by adding

“locally” in the first definition, since it does not restrict the topology of the boundary.

Note that AAdS spacetimes are AlAdS, but the converse is not always true.

We will start with AlAdS spacetimes and present a result proven in eighties by

Fefferman and Graham [3], which is a very useful tool in studying AlAdS and AAdS

spacetimes. We will give a simplified version of the proof that Fefferman-Graham

expansion terminates in three dimensions. In the next sections, we will review the
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properties of the AAdS metrics that obey Brown-Henneaux [1] and Compere-Song-

Strominger boundary conditions [7], find the most general metric that obeys these

conditions, their asymptotic symmetry groups and corresponding conserved charge

algebras.

5.1. Fefferman-Graham Expansion

In 1985 [3], Fefferman and Graham asked if one can find a Poincaré metric on a

manifold, given a conformal structure. Their set up is as follows.

Let N be an d-dimensional manifold with conformal structure [g] of arbitrary

signature. Create a new manifold M = N × [0, 1] by adding a new coordinate r such

that r = 0 gives N = ∂M . The problem is to find a Poincaré metric g̃ on M such that

1) [g] is the conformal structure on the boundary for the metric g̃,

2) R̃µν = −λg̃µν .

They concluded such a metric can be always written in a suitable coordinate

system (x1, . . . , xd, r) as

g̃ = r−2
[
dr2 + gij(x, r)dx

idxj
]
, (5.1)

and wanted to find the explicit form of gij(x, r) as an expansion in r.

Note that if any diffeomorphism f of M that fixes N and g̃ is a solution then so

is f ∗g̃, the pushforward of g̃ under f . They added a new condition to narrow the scope

of their search:

3) For all 1 < i, j < d, gij(x, r) is an even function of r, when written in the

form (5.1).
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We refer the reader to Theorem 2.3 in [3] and write it following [14,21]:

Theorem 5.1. Any asymptotically locally AdSd+1 metric can be brought into the fol-

lowing form near the asymptotic boundary

ds2 =
l2

r2
dr2 +

l2

r2
g(0)ijdx

idxj +O(r), (5.2)

where r is a spacelike coordinate and the asymptotic boundary of this spacetime is at

r = 0. The metric g(0)ab is a representative of the chosen conformal structure and

determines the behavior of the metric at the boundary.

The expansion of gij(x, r) in (5.1) is given explicitly in [40] for an arbitrary d.

Letting ρ = r2, the metric (5.1) becomes

ds2 = l2
(
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj

)
. (5.3)

They showed by imposing the Einstein field equations to (5.3) one gets

g(x, ρ) = g(0) + ρg(2) + · · ·+ ρd/2g(d) + h(d)ρ
d/2 log ρ+ . . . , (5.4)

where g(0), . . . , g(d), h(d) depend only on xi and the logarithmic term appears when d is

even. Given a metric g(0) one can determine g(2), . . . , g(d−2) and h(d) in terms of g(0) by

solving Einstein field equations order by order in ρ [40]. Here the boundary metric g(0)

is free and when the boundary metric and the set of boundary coordinates are chosen

they determine the topology of the boundary.

The Fefferman-Graham metric (5.3) takes the form

ds2 =
l2

r2
dr2 +

r2

l2

(
g(0)ij +

l2

r2
g(2)ij + . . .

)
dxidxj, (5.5)

if we use ρ =
l4

r2
. The spacelike boundary of this metric is now at r →∞.
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In three dimensions the Weyl tensor vanishes, as we showed in Section 2.2. Sk-

enderis and Solodukhin showed in [41] the following theorem, which we will use for

AlAdS3 case.

Theorem 5.2. If the Weyl tensor is identically zero, the Fefferman-Graham expan-

sion (5.3) of an AlAdSd+1 metric terminates at the second order

g(x, p) = g(0) + ρg(2) + ρ2g(4) (5.6)

or

g =
(

1 +
ρ

2
g(2)g

−1
(0)

)
g(0)

(
1 +

ρ

2
g−1

(0)g(2)

)
(5.7)

with

g(2)ij =
l2

d− 2
(R(0)ij −

1

2(d− 1)
R(0)g(0)ij) (5.8)

if d 6= 2 and

Tr(g−1
(0)g(2)) =

l2

2
R(0),

g(2)ij =
l2

2
(
1

2
R(0)g(0)ij −R(0)ij), (5.9)

when d = 2. Here, R(0) denotes the curvature of the metric g(0) and Tr(M) denotes

the trace of the matrix M .

Proof. This result is given in [41] with only few computational details. We demonstrate

this result in detail using their method for d = 2 and a boundary metric g(0) which is

Ricci-flat, i.e. R(0) = 0.

Start by picking a specific representative g(0) of the boundary conformal structure.

Since the examples we will consider in this chapter are Ricci-flat, that will be enough



50

for our purposes. We choose to work with r =
√
ρ coordinate in (5.2). Let l = 1 for

simplicity, which corresponds to taking Λ = −1 in (2.2) and it can be brought back

through dimensional analysis. Using (5.4) we start with the metric below.

ds2 =
l2

r2
(dr2 + gij(x, r)dx

idxj), (5.10)

g = g(0) + g(1)r + g(2)r
2 + hr2 log r + g(3)r

3 + g(4)r
4 + . . . (5.11)

Christoffel symbols, Riemann curvature tensor and Ricci tensor of metric (5.10) can

be calculated in terms of the gij and r. In the following, prime denotes ∂/∂r, ∇g is the

covariant derivative with respect to g for r fixed.

Γrrr = −1

r
Γrri = 0 = Γirr

Γrij =
1

r
gij −

1

2
g′ij Γirj = −1

r
δij +

1

2
gikg′kj

Γijk = Γijk(g) (5.12)

Rr
irj = − 1

r2
gij +

1

2r
g′ij −

1

2
g′′ij +

1

4
g′jkg

klg′li

Rr
ijk = −1

2
(∇g

jg
′
ik −∇

g
kg
′
ij)

Ri
jkl = Ri

jkl(g)− 1

r2
(δikgjl − δilgjk) +

1

2r
(δikg

′
jl − δilg′jk + gimg′mkgjl − gimg′mlgjk)

− 1

4
(gimg′mkg

′
ij − gimg′mlg′jk)

Rij = − n
r2
gij +

1

2r
((n− 1)g′ij + gklg′lkgij) +Rij(g)− 1

2
g′′ij +

1

2
g′ikg

klg′lj −
1

4
gklg′klg

′
ij

Rrr = − n
r2

+
1

2r
gijg′ij −

1

2
gijg′′ij +

1

4
gijg′jkg

klg′li

Rrk =
1

2
gij(∇g

jg
′
ik −∇

g
kg
′
ij) (5.13)
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The Einstein field equations (2.2) then becomes

1

2r
gijg′ij −

1

2
gijg′′ij +

1

4
gijg′jkg

klg′li =0,

1

2
gij(∇g

jg
′
ik −∇

g
kg
′
ij) =0,

1

2r
(g′ij + gklg′lkgij) +Rij(g)− 1

2
g′′ij +

1

2
g′ikg

klg′lj −
1

4
gklg′klg

′
ij =0. (5.14)

We will solve these equations order by order in r. This is done by differentiating

the equations with respect to r and then setting r = 0. To do this (5.14) can be written

in the following form for convenience

gijg′ij + r(−gijg′′ij +
1

2
gijg′jkg

klg′li) =0, (5.15a)

gij(∇g
jg
′
ik −∇

g
kg
′
ij) =0, (5.15b)

g′ij + gklg′lkgij + r(2Rij(g)− g′′ij + g′ikg
klg′lj −

1

2
gklg′lkg

′
ij) =0. (5.15c)

We can replace ∇g by ∇(0), the covariant derivative of g(0), since ∇g−∇(0) vanish when

r = 0 and does not affect our calculations. The inverse metric can also be taken to be

equal to the inverse of the boundary metric, gkl = gkl(0), for the same reason.

We will eliminate a term in the expansion and move on with the new form of the

metric, then eliminate another term and repeat this process until reaching (5.6). It is

easy to see that g(1) = 0. With r = 0 the above equations give

gijg(1)ij =0,

gij(∇(0)
j g(1)ik −∇(0)

k g(1)ij) =0,

g(1)ij + gklg(1)lkg(0)ij =0. (5.16)

The first and the last line lines together show g(1)ij = 0, so g is in form

g = g(0) + g(2)r
2 + hr2 log r + g(3)r

3 + g(4)r
4 + . . . , (5.17)
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g′ = 2r(g(2) + h) + 2hr log r + 3r2g(3) + 4r3g(4) + . . . ,

g′′ = 2(g(2) + 2h) + 2h log r + 6rg(3) + 12r2g(4) + . . . ,

g′′′ =
2

r
h+ 6g(3) + 24rg(4) + . . .

Differentiating (5.15a) we get

−1

2
Tr(g−1g′g−1g′)+r[2Tr(g−1g′g−1g′′)−Tr(g−1g′′′)−Tr(g−1g′g−1g′g−1g′)] = 0, (5.18)

which gives for r = 0

gijhij = 0. (5.19)

Thus, h is traceless, which will be useful in the following calculation. We differentiate

(5.15c)

g′′ij − Tr(g−1g′g−1g′)gij + Tr(g−1g′′)gij + Tr(g−1g′)g′ij

+2Rij − g′′ij + g′ikg
klg′lj −

1

2
Tr(g−1g′)g′ij

+r[2R′ij − g′′′ij + g′′ikg
klg′lj + g′ikg

klg′lmg
mng′nj

−1

2
Tr(g−1g′g−1g′)g′ij −

1

2
Tr(g−1g′′)g′ij −

1

2
Tr(g−1g′)g′ij] = 0. (5.20)

Then for r = 0

gklg(2)klg(0)ij +R(0)ij − hij = 0. (5.21)

The last term vanishes when contracted with the inverse metric, hence we get

gklg(2)kl = −1

2
R(0), (5.22)



53

Now we write (5.22) back in (5.21) to get

R(0)ij −
1

2
R(0)g(0)ij = hij. (5.23)

This shows hij is the traceless Ricci tensor in two dimensions, but that is identically

zero. Note that we did not use our condition R(0) = 0 yet.

Until now, g(1) and the logarithmic part h are eliminated from the metric (5.10)

for any boundary metric g(0), then g can be written as

g = g(0) + g(2)r
2 + g(3)r

3 + g(4)r
4 + . . . . (5.24)

Taking the derivative of (5.15b) at r = 0 we obtain

gij(∇(0)
j 2g(2)ik −∇(0)

k 2g(2)ij) = 0. (5.25)

By using (5.22) and R(0) = 0 condition, the second term vanishes and we have

gij∇(0)
j (2g(2))ik = 0. (5.26)

Hence, the covariant divergence of g(2) with respect to g(0) is zero. Note that for

R(0) 6= 0 there would be a nonzero term containing the covariant derivative of R(0) on

the right hand side.

Differentiating (5.15a) twice we get

Tr(g−1g′g−1g′′)− Tr(g−1g′′′)− Tr(g−1g′g−1g′g−1g′) + r[. . . ] = 0, (5.27)

and by evaluating it at r = 0 we see

gijg(3)ij = 0, (5.28)
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thus g(3) is traceless. We take the second derivative of (5.15c)

[2Tr(g−1g′g−1g′g−1g′)− 3Tr(g−1g′g−1g′′) + Tr(g−1g′′′)]gij

+
3

2
[Tr(g−1g′′)− Tr(g−1g′g−1g′)]g′ij +

1

2
Tr(g−1g′)g′′ij

+2R′ij − g′′′ij + g′′ikg
klg′lj + g′ikg

klg′lmg
mng′nj + g′ikg

klg′′lj + r[. . . ] = 0,

and plug in r = 0 to have

gklg(3)klgij − g(3)ij = 0. (5.29)

But the first part is zero by (5.28), therefore g(3) = 0.

So far, we eliminated g(1), h and g(3). Now g is in the form

g = g(0) + g(2)r
2 + g(4)r

4 + . . . (5.30)

Third derivative of (5.15a) evaluated at r = 0 gives

g(2)jkg
klg(2)li − 4g(4)ji = 0, (5.31)

which implies g(4)ij = 1
4
g(2)ikg

klg(2)lj.

To see that the terms after g(4) are zero, we will switch to another coordinate

system. But we could have keep on calculating using r, and we would get g(5) = 0

from the fourth derivatives of (5.15a) and (5.15c), and the rest would also vanish after

continuing this process. However, it is easier to see that this expansion stops at g(4) if

the radial coordinate ρ = r2 is used. From now on, prime will denote derivative with

respect to ρ. In the analogue of the equations (5.15) for ρ, (5.15a) becomes [41]

g′′ − 1

2
g′g−1g′ = 0. (5.32)
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By differentiating it and using (g−1)′ = −g−1g′g−1 it is obtained

g′′′ = 0. (5.33)

This shows the last term in the expansion is ρ2, which is the main result shown by

Skenderis and Solodukhin in [41] for an arbitrary boundary metric g(0).

Summing it up, for a boundary metric g(0) with R(0) = 0, the expansion (5.10)

stops at the second order and

g(4)ij =
1

4
g(2)ikg

klg(2)lj, (5.34a)

gklg(2)kl = 0, (5.34b)

gij∇(0)
j g(2)ik = 0, (5.34c)

must hold for any choice of boundary coordinates xi. We will use this result in the

following chapters.

5.2. Brown-Henneaux Boundary Conditions

In this section we want to present how Brown and Henneaux [1] defined asymp-

totically AdS3 spacetimes, similar to the four dimensional case studied in Henneaux

and Teitelboim’s paper in 1985 [2]. In this approach AAdS3 geometry is defined by

setting a set of boundary conditions that satisfy the following:

(i) The boundary conditions must be invariant under the symmetry group of AdS,

i.e. AdS Killing vectors should send an allowed metric, a metric that obeys the

boundary conditions, to another allowed metric.

(ii) The symmetries of this set of metrics (the asymptotic symmetries) must give

well defined conserved charges, and their generators should obey the symmetry

algebra of AdS.
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(iii) Interesting solutions must be included in the set of metrics, such as BTZ black

hole (3.37) in three dimensional case.

By setting boundary conditions we define a set G of allowed metrics. In the set

G, Brown and Henneaux wanted to include the metrics of the form

ds2 = −
(
α2 +

r2

l2

)
dt2 + 2Aαdtdφ+

(
α2 +

r2 − A2

l2

)−1

dr2 + (r2 − A2)dφ2. (5.35)

Here, A and α are arbitrary contants parametrizing this family of metrics. Note that

these metrics behave like the static AdS3 metric (3.7) as r →∞.

Starting with (5.35) in G, we want to find a set of boundary conditions. For them

to satisfy condition (i) we should get a metric in G when we act on the metrics (5.35)

with symmetry transformations of AdS3, which are generated by so(2, 2) elements

in (3.21). In static coordinates (3.6) these are

Juv = −l∂t,

Jux =

(
1 +

r2

l2

)1/2
[
l sin

t

l
cosφ∂r + r

(
1 +

r2

l2

)−1

cos
t

l
cosφ∂t −

l

r
sin

t

l
sinφ∂φ

]
,

Juy =

(
1 +

r2

l2

)1/2
[
l sin

t

l
sinφ∂r + r

(
1 +

r2

l2

)−1

cos
t

l
sinφ∂t +

l

r
sin

t

l
cosφ∂φ

]
,

Jvx =

(
1 +

r2

l2

)1/2
[
l cos

t

l
cosφ∂r − r

(
1 +

r2

l2

)−1

sin
t

l
cosφ∂t −

l

r
cos

t

l
sinφ∂φ

]
,

Jvy =

(
1 +

r2

l2

)1/2
[
l cos

t

l
sinφ∂r − r

(
1 +

r2

l2

)−1

sin
t

l
sinφ∂t +

l

r
cos

t

l
cosφ∂φ

]
,

Jxy = ∂φ. (5.36)

Juv and Jxy are the Killing vectors of any metric in this family, so the met-

rics (5.35) remain invariant. When we calculate the Lie derivatives of the metric
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components of (5.35) under ξ = Jux, Juy, Jvx, Jvy we see they change as follows

Lξgtt = O(1),

Lξgtr = O(r−3),

Lξgtφ = O(1),

Lξgrr = O(r−4),

Lξgrφ = O(r−3),

Lξgφφ = O(1). (5.37)

where the big-oh notation O(rk) represents terms up to order rk.

Then any metric in the form (5.35) is sent to a metric with components

gtt = −r
2

l2
+O(1),

gtr = O(r−3),

gtφ = O(1),

grr =
l2

r2
+O(r−4),

grφ = O(r−3),

gφφ = r2 +O(1), (5.38)

and note that the metrics (5.35) already obey these conditions. These are called the

Brown-Henneaux boundary conditions, and the set G of allowed metrics contains all

metrics that satisfy 5.38 which actually can be explicitly parametrized as we do in the

next section.

5.2.1. Bañados Metric

Here, we will derive the most general metric that obeys the Brown-Henneaux

boundary conditions (5.38). Let gµν be such a metric and write it using Fefferman-
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Graham expansion (5.5) with boundary coordinates t and φ we used above. The

Brown-Henneaux boundary conditions then imply

g(0) = diag(−1, l2), δg(0)µν = 0, δg(2)µν = arbitrary. (5.39)

The boundary coordinates are t ∈ R and 0 ≤ φ < 2π, so these conditions also restrict

the boundary in the shape of a cylinder.

Let us introduce the light cone coordinates on the boundary x± =
t

l
± φ such

that g(0)ijdx
idxj = −dt2 + l2dφ = −l2dx+dx−. Using Theorem 5.2 the metric (5.5) is

written in the form

ds2 =
l2

r2
dr2 +

r2

l2

(
g(0)ij +

l2

r2
g(2)ij +

l4

r4
g(4)ij

)
dxidxj, (5.40)

where g(2)ij and g(4)ij satisfy (5.34).

We already know g(0) and we only need to solve for g(2) since g(4) will then be

given by (5.34a). The equation (5.34b) gives 0 = 2g+−g(2)+− and implies g(2)+− = 0.

The Christoffel symbols of g(0) are all zero, so by (5.34c) we write

g+−∇(0)
− g(2)++ = 0, g−+∇(0)

+ g(2)−− = 0,

∂−g(2)++ = 0, ∂+g(2)−− = 0, (5.41)

and see that g(2)±± must be a function of x±. We can then define g(2)±± := l2L±(x±)

and after calculating g(4) in (5.34a) we prove the following theorem.

Theorem 5.3. A three dimensional asymptotically AdS metric defined by Brown-

Henneaux boundary conditions (5.38) can be written as

ds2 =
l2

r2
dr2 + l2L−(dx−)2 + l2L+(dx+)2 + (−r2 − l4

r2
L−L+)dx−dx+, (5.42)

using Fefferman-Graham coordinates (5.5) with x± = t
l
± φ. In a more compact form
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we can write

ds2 =
l2

r2
dr2 −

(
rdx+ − l2L−

r
dx−

)(
rdx− − l2L+

r
dx+

)
, (5.43)

where r is the radial coordinate, 0 ≤ φ < 2π, t ∈ R and L+ and L− are functions of

x+ and x−, respectively. This metric is called the Bañados metric.

It is worth mentioning that theBTZ black hole (3.37) is represented here when L±

are taken to be constants. So the Brown-Henneaux boundary conditions (5.38) satisfy

condition (iii). It is again seen here that each metric in this form has a cylindrical

boundary at infinity, therefore they approach globally to the AdS3 spacetime.

5.2.2. Asymptotic Symmetry Algebra

Recall that a Killing vector ξ of a spacetime is defined by Lξgµν = 0. They

generate the continuous symmetries of the spacetime. Similarly we can define vector

fields which does not preserve a specific metric as a Killing vector does, but preserves

our set of metrics G, or equivalently the boundary conditions. A vector field ξ is said

to be an asymptotic Killing vector if it satisfies

Lξgµν = O(δgµν), (5.44)

Note that this is what was defined as an ”allowed diffeomorphism” in Section 4.4.1.

Under the flow created by an asymptotic vector field the metric does not remain the

same as in standard Killing vectors but it may move to another metric within the set

G. Hence the number of asymptotic Killing vectors is much more as compared to the

Killing vectors whose maximum number are limited by
1

2
n(n+ 1). Our aim here is to

find the set of asymptotic Killing vectors of the set G, the set of metrics obeying the

Brown-Henneaux boundary conditions (5.38).

Using Gaussian normal coordinates at the boundary we can write the Fefferman-
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Graham expansion (5.5) using ρ = l log r
l

as

ds2 = dρ2 +
(
e2ρ/lg(0)ij + g(2)ij + e−2ρ/lg(4)ij

)
dxidxj. (5.45)

The boundary is now reached when ρ→∞.

In these coordinates Brown-Henneaux boundary conditions (5.38) are given by

g(0)++ = g(0)−− = 0, g(0)+− = g(0)−+ = −1/2, δg(0)µν = 0, δg(2)µν = arbitrary,

(5.46)

where the light cone coordinates x± in (5.43) are used. An asymptotic Killing vector

ξ should satisfy

Lξgρρ = 0, (5.47a)

Lξgρ± = 0, (5.47b)

Lξg±± = O(1), (5.47c)

Lξg+− = O(1). (5.47d)

Note that the equations (5.47a) and (5.47b) preserve the Fefferman-Graham form

of the metric, the components gρρ and gρ± are kept unchanged. By (5.47c) and (5.47d),

the other Brown-Henneaux boundary conditions in (5.46) remain invariant.

Now we solve for ξ. From (5.47a) it is seen ξρ does not depend on ρ coor-

dinate, hence it can be written as a function of x±, then ξρ = f(x+, x−) for some

function f(x+, x−). Write (5.47b) by denoting the boundary coordinates x+ and x−

with i, j, k . . .

0 = ∂iξ
ρ + gij∂ρξ

j = gik∂iξ
ρ + ∂ρξ

k. (5.48)

Then we can write ξk = −
∫
gik∂iξ

ρ dρ+ εk(x+, x−) for some functions ε±(x+, x−). The
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∂iξ
ρ term in the integral is of order ρ0, and the inverse metric is in the form

g++ = O(e−4ρ/l) = g−−, and g+− = O(e−2ρ/l), (5.49)

therefore ξ± = ε±(x+, x−) +O(e−2ρ/l).

Until now we found the most general diffeomorphism that preserves the Fefferman-

Graham coordinates and that satisfies

ξρ = ξρ(x+, x−),

ξ± = ε±(x+, x−) +O(e−2ρ/l). (5.50)

Writing (5.47c) explicitly

ξρ∂ρg±± + ξ+∂+g±± + ξ−∂−g±± + 2g±±∂±ξ
± + 2g+−∂±ξ

∓ = O(1), (5.51)

we see the middle terms on the left hand side are of order ρ0. We have gij = O(e2ρ/l)

easily seen from (5.45), where i, j denote boundary coordinates. Hence we write

∂±ξ
∓ = O(e−2ρ/l), (5.52)

Combined with (5.50) this means ∂∓ε
±(x+, x−) = 0 and therefore

ξ± = ε±(x±)∂± +O(e−2ρ/l). (5.53)

The equation (5.47d) gives

ξµ∂µg+− + g++∂−ξ
+ + g−−∂+ξ

− + g+−(∂+ξ
+ + ∂−ξ

−) = O(1), (5.54)
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Here, we see the second and third terms does not contribute by (5.52). Recalling

ξρ = O(1) = ξ± and g+− = e2ρ/l +g
(2)
+−+O(e−2ρ/l), the contributing terms in (5.54) are

ξρ
2

l
e2ρ/l + e2ρ/l(∂+ξ

+ + ∂−ξ
−) = O(1)

⇒ ξρ = − l
2

(∂+ε
+ + ∂−ε

−) +O(e−2ρ/l). (5.55)

From (5.53) and (5.55) we derive that the asymptotic Killing vectors of asymp-

totically AdS spacetimes that obey Brown-Henneaux boundary conditions are given in

Gaussian normal coordinates (5.45) as

ξ(ε+, ε−) = ε+(x+)∂+ + ε−(x−)∂− −
l

2
(∂+ε

+ + ∂−ε
−)∂ρ +O(e−2ρ/l). (5.56)

We can calculate the Lie brackets of these asymptotic Killing vectors ignoring the

O(e−2ρ/l) terms

[ξ(ε+1 , ε
−
1 ), ξ(ε+2 , ε

−
2 )] = [ε+1 ∂+ + ε−1 ∂− −

l

2
(∂+ε

+
1 + ∂−ε

−
1 )∂ρ, (1→ 2)]

= [ε+1 ∂+, ε
+
2 ∂+]− l

2
[ε+1 ∂+, ∂+ε

+
2 ∂ρ]−

l

2
[ε+1 ∂+, ∂−ε

−
2 ∂ρ]

+ [ε−1 ∂−, ε
−
2 ∂−]− l

2
[ε−1 ∂−, ∂+ε

+
2 ∂ρ]−

l

2
[ε−1 ∂−, ∂−ε

−
2 ∂ρ]

− l

2

{
[∂+ε

+
1 ∂ρ, ε

+
2 ∂+] + [∂−ε

−
1 ∂ρ, ε

+
2 ∂+] + [∂+ε

+
1 ∂ρ, ε

−
2 ∂−]

+[∂−ε
−
1 ∂ρ, ε

−
2 ∂−]

}
= (ε+1 ∂+ε

+
2 − ε+2 ∂+ε

+
1 )∂+ + (ε−1 ∂−ε

−
2 − ε−2 ∂−ε−1 )∂−

− l

2
(ε+1 ∂

2
+ε

+
2 − ε+2 ∂2

+ε
+
1 + ε−1 ∂

2
−ε
−
2 − ε−2 ∂2

−ε
−
1 )∂ρ

= ξ((ε+1 ∂+ε
+
2 − ε+2 ∂+ε

+
1 ), (ε−1 ∂−ε

−
2 − ε−2 ∂−ε−1 )). (5.57)
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This shows that these generators form an algebra as ρ → ∞ and it is called the

asymptotic symmetry algebra.

Notice that ξ+ = ξ(ε+, 0) and ξ− = ξ(0, ε−) commute with each other. This

means they give two infinite families of independent generators. As the functions ε+

and ε− live on the cylindrical boundary of AdS3, if x± ∼ x± + 2π, we may introduce

their Fourier modes

ε+(x+) ε+n = ieinx
+

∂+,

ε−(x−) ε−n = ieinx
−
∂−, (5.58)

and use them to write two families of vector fields

ξ+
n = ξ(ε+n = ieinx

+

) = ieinx
+

∂+ +
l

2
neinx

+

∂ρ +O(e−2ρ/l),

ξ−n = ξ(ε−n = ieinx
−

) = ieinx
−
∂− +

l

2
neinx

−
∂ρ +O(e−2ρ/l). (5.59)

Since ξ+ and ξ− commute for any ε+ and ε− their Fourier modes will commute, too,

[ξ+
n , ξ

−
m] = 0. (5.60)

Thus with O(e−2ρ/l) terms omitted, there are two algebras each satisfying

[ξ±n , ξ
±
m] = [ieinx

±
∂±, ie

imx±∂±] +
l

2
[ieinx

±
∂±, me

imx±∂ρ]

+
l

2
[neinx

±
∂ρ, ie

imx±∂±] +
l2

4
[neinx

±
∂ρ, me

imx±∂ρ]

= (n−m)iei(n+m)x±∂±. (5.61)

This is called the Witt algebra. Thus the families of vector fields in (5.59) form a Lie

algebra which is a direct sum of two subalgebras isomorphic to the Witt algebra. By
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investigating the subsets {ξ±−1, ξ
±
0 , ξ

±
1 } it is seen each subalgebra contains the sl(2,R)

[ξ±−1, ξ
±
0 ] = −ξ±−1, [ξ±0 , ξ

±
1 ] = −ξ±1 , [ξ±1 , ξ

±
−1] = 2ξ±0 , (5.62)

thus their union forms an algebra isomorphic to

sl(2,R)⊕ sl(2,R) ' so(2, 1)⊕ so(2, 1) ' so(2, 2), (5.63)

and it contains the exact symmetry group of AdS3, so it satisfies condition (ii) par-

tially. The conserved charges should also be calculated to show their algebra satisfies

condition (ii). We will use (4.42). For that, the Noether-Wald charge density (4.41)

is needed. An arbitrary variation of the Bañados metric (5.43) is given by

hµν = δgµν =
∂gµν
∂L+

δL+ +
∂gµν
∂L−

δL−. (5.64)

Using coordinates in metric (5.43), the asymptotic Killing vectors ξ+ and ξ− are given

by

ξ+ = ε+(x+)∂+ −
r

2
∂+ε

+∂r + +
1

2r2
∂2

+ε
+∂− +O(r−4), (5.65)

ξ− = ε−(x−)∂− −
r

2
∂−ε

−∂r + +
1

2r2
∂2
−ε
−∂+ +O(r−4), (5.66)

and we get

δξ±grr = 0, (5.67)

δξ±gr± = 0, (5.68)

δξ+g++ = Lξ+g++ = l2δξ+L+ + (subleading), (5.69)

δξ−g−− = Lξ−g−− = l2δξ−L− + (subleading), (5.70)

δξ±g+− = (subleading). (5.71)
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When we calculate charges densities that correspond to these vectors and inte-

grate them over a codimension 2 surface with r and t coordinates fixed, i.e. on a circle

S1 at fixed t and r, we get the following infinitesimal charges (4.42)

δH± =

∮
S1

kξ± [h; g] =
l

8πG

∫ 2π

0

δL±ε
±dφ, (5.72)

which are clearly integrable. We can introduce their Fourier modes as we did for the

asymptotic vectors. But here we need to make a decision. We need to choose a reference

metric and assign some charges to it. The Fourier modes of the charges are given by

H±m =
l

8πG

∫ 2π

0

L±e
imx±dφ, (5.73)

when the charges of the Bañados metric with L+ = L− = 0 are taken to be to zero.

Their Poisson bracket can be calculated using (4.47) as

{H±m, H±n } = δξ±nH
±
m =

∮
S1

kξ±m [δxi±n ; g] =
l

8πG

∫ 2π

0

δξ±n L±e
imx±dφ, (5.74)

but we need δξ±n L± to calculate them. We can check how the metric components gµν

vary under ξ± in (5.65) and deduce δxi±L± from there. This way we find out that the

variations are

δξ±L± = ε±∂±L± + 2L±∂±ε± −
1

2
∂3
±ε±, (5.75)

δξ±L∓ = 0, (5.76)

hence we have, as explicitly calculated in [21],

{H+
m, H

−
n } = 0, (5.77)

i{H±m, H±n } = (m− n)H±m+n +
l

8G
m3δm+n,0, (5.78)

for all n,m ∈ Z. This is a direct sum of two copies of Virasoro algebras. Note that as
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mentioned in the charge representation theorem, Theorem 4.6, this is a central exten-

sion of the Witt algebra(5.61) with the additional term
l

8G
m3δm+n,0. Conventionally

the coefficient is taken as
c

12
m3δm+n,0 where c is called the Brown-Henneaux central

charge

c =
3l

2G
. (5.79)

So we see our boundary conditions give nontrivial integrable finite charges, so they

satisfy condition (ii), too.

This result is a precursor of the AdS/CFT duality [4] since the algebra of the

Fourier modes of the conserved currents on the 2-dimensional CFT defined on the

worldsheet of strings is also given by the Virasoro algebra (5.77).

5.3. Compère-Song-Strominger Boundary Conditions

Now we will study the boundary conditions for AdS3 that was considered by

Compère, Song and Strominger [7] in 2013, using their notations.

LetM be a three dimensional manifold with coordinates (r, t, φ) with φ ∼ φ+2π,

and switch to the light cone coordinates t± = t ± φ. The Compère-Song-Strominger

(CSS) boundary conditions are given by

grr =
l2

r2
+O(r−4), (5.80a)

gr± = O(r−3), (5.80b)

g+− = − l
2r2

2
+O(r0), (5.80c)

g++ = ∂+P̄ (t+)l2r2 +O(r0), (5.80d)

g−− = 4Gl∆ +O(r−1), (5.80e)

where ∆ denotes an arbitrary constant and the function ∂+P̄ (t+) is periodic. These



67

conditions can be relaxed by allowing ∆ to vary, and this case is explained in Appendix

B of [7]. It is easily noted how CSS boundary conditions (5.80) differ from the Brown-

Henneaux boundary conditions (5.38), considering (5.80d) and (5.80e). We also notice

that they both have a flat boundary metric g(0), the Christoffel symbols for g(0) are all

zero in Brown-Henneaux case, whereas Γ
(0)−
++ = −∂2

+P̄ in CSS.

5.3.1. The General Solution

For pure gravity in three dimensions, one can choose the following Fefferman-

Graham coordinates to work with

ds2 =
l2

r2
dr2 + l2r2

(
g(0)ab +

1

r2
g(2)ab +

1

r4
g(4)ab

)
, (5.81)

then the boundary conditions (5.80) fix

g(0)−− = 0, g(2)−− =
4G

l
∆, g(0)++ = ∂+P̄ , g(0)+− = −1

2
. (5.82)

Recalling the relations given in (5.34), we can calculate each term in the metric (5.81).

Using (5.34c) and (5.80e) it is seen

∂−g(2)+− = 0, (5.83a)

∂−g(2)++ + ∂+g(2)+− + ∂2
+P̄

4G

l
∆ = 0. (5.83b)

We conclude that g(2)+− must be a function of t+ by (5.83a). Since g(2) is traceless

by (5.34b), g(2)+− = −4G
l

∆∂+P̄ . Plugging this result in (5.83b) we get ∂−g(2)++ = 0,

hence it is also a function depending only on t+. This function is conventionally given as

g(2)++ = 4G
l

(L̄(t+) + ∆(∂+P̄ )2) in [7]. The remaining terms are computed from (5.34a)

as

g(4)++ =
16G2

l2
∆L̄∂+P̄ , g(4)+− = −1

2
∆L̄, (5.84)
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and the metric (5.81) becomes

ds2 =
l2

r2
dr2 − l2r2dt+(dt− − ∂+P̄ dt

+) + 4Gl[L̄(dt+)2 + ∆(dt− − ∂+P̄ dt
+)2]

− 16g2

r2
∆L̄dt+(dt− − ∂+P̄ dt

+). (5.85)

This family of metrics contain the BTZ black hole with M = ∆+L̄
l

and J = ∆ − L̄,

when ∂+P̄ vanishes and L̄ is constant. The interpretation of this metric as a BTZ

black hole and the physical meaning of P̄ and L̄ is explained in [7] for the interested

reader.

5.3.2. Asymptotic Symmetry Algebra

We calculate the asymptotic Killing vectors using (5.44) as follows:

Lξgrr = 2
l2

r2
[−1

r
ξr + ∂rξ

r] = O(r−4)

⇒ −1

r
ξr + ∂rξ

r = O(r−2). (5.86)

Then ξr = rf(t±) +O(r−1), for some function f of t±. Let a, b, c ∈ {+,−}.

Lξgra = gab∂rξ
b +

l2

r2
∂a(rf(t±)) = O(r−3)

⇒ δcb∂rξ
b +

l2

r
gac∂af = O(r−3). (5.87)

where the first line is contracted with gac. Then ξc = hc(t±) −
∫

l2

r
gac∂afdr +O(r−2)

for some 2-vector hc whose components depend only on t±. We will investigate the

following equation for each order with respect to r

Lξgab = ξr∂rgab + ξc∂cgab + gac∂bξ
c + gbc∂aξ

c = O(r0). (5.88)
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Then the r2 terms must cancel each other, hence

0 = rf∂r(r
2g(0)ab) + hc∂c(r

2g(0)ab) + r2g(0)ac∂bh
c + r2g(0)bc∂ah

c

= 2fg(0)ab + hc∂cg(0)ab + g(0)ac∂bh
c + g(0)bc∂ah

c

= 2fg(0)ab + Lhg(0)ab

= 2fg(0)ab + (∇(0)
a hb +∇(0)

b ha). (5.89)

After contracting the last line with gab(0) we get f = −1
2
∇(0)
a ha. It can be plugged it

in (5.89) again to see

∇(0)
a hb +∇(0)

b ha = ∇(0)
c hcg(0)ab. (5.90)

Hence for a, b = −, recalling Γ
(0)±
−− = 0 we have

0 = ∂−h− − Γ
(0)c
−−hc

= ∂−(g(0)−+h
+), (5.91)

so that h+ = h+(t+).

Let us look at the r0 terms in (5.88) for a, b = −. Only the last two terms in (5.88)

contribute:

0 = 2g−c∂−ξ
c

= g(2)−−∂−h
−, (5.92)

hence h− = h−(t+). We can now calculate f in terms of h± as

f = −1

2
∇(0)
a ha = −1

2
∂+h

+. (5.93)
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Then the components of an asymptotic Killing vector are

ξr = −r
2
∂+h

+ +O(r−1), (5.94a)

ξ+ = h+(t+)−
∫
l2

r
ga+∂afdr, (5.94b)

ξ− = h−(t+)−
∫
l2

r
ga−∂afdr. (5.94c)

We can calculate the subleading terms of ξ+ and ξ− using the inverse metric gab

gab =
1

l2r2
(gab(0) −

1

r2
gac(0)g(2)cdg

db
(0) + . . . ). (5.95)

Then we see

ξ+ = h+ −
∫
l2

r

[
1

l2r2
ga+

(0) +O(r−4)

]
∂a

(
−1

2
∂+h

+

)
dr

= h+ +O(r−4), (5.96)

as g++
(0) and ∂−∂+h

+ vanish.

ξ− = h− −
∫
l2

r

[
1

l2r2
ga−(0) +O(r−4)

]
∂a

(
−1

2
∂+h

+

)
dr

= h− +

∫
1

2r3
[g−+

(0) ∂
2
+h

+ + g−−(0) ∂−∂+h
+]dr +O(r−4)

= h− +
1

2r2
∂2

+h
+ +O(r−4), (5.97)

since g−+
(0) = −2 and ∂−∂+h

+ = 0.

In [7], the functions h+ and h− are denoted by ε and σ, respectively. The asymp-

totic symmetries are then generated by

ξ(ε) = ε(t+)∂+ −
r

2
ε′(t+)∂r +

1

2r2
ε′′(t+)∂− +O(r−4), (5.98)

η(σ) = σ(t+)∂− +O(r−4). (5.99)
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These vector fields give a Virasoro algebra and a U(1) current algebra [7].

Using (4.41) and (4.44) we calculate the corresponding charges given in [7]

Qξ =
1

2π

∫ 2π

0

ε(t+)(L̄(t+)−∆(∂+P̄ (t+))2)dφ,

Qη =
1

2π

∫ 2π

0

σ(t+)(∆ + 2∆∂+P̄ (t+))dφ. (5.100)

We can use the Fourier modes for the functions ε and σ to write two families of vector

fields and charges

ξn = eint
+

∂+ −
r

2
ieint

+

∂r −
1

2r2
eint

+

∂− +O(r−4) (5.101)

ηn = eint
+

∂− +O(r−4) (5.102)

L̄n =
1

2π

∫ 2π

0

eint
+

(L̄(t+)−∆(∂+P̄ (t+))2)dφ, (5.103)

P̄n =
1

2π

∫ 2π

0

eint
+

(∆ + 2∆∂+P̄ (t+))dφ (5.104)

and calculate the charge algebra using the variations

δξnL̄ = ∂+L̄+ 2inL̄+
in3l

8G
(5.105)

δξn(∂+P̄ ) = eint
+

[∂2
+P̄ + in∂+P̄ ], (5.106)

that we derived from the variation of metric components as we did for Brown-Henneaux

case. We see the charges obey

i{L̄m, L̄n} = (m− n)L̄m+n +
c

12
m3δm+n,0, (5.107)

i{L̄m, P̄n} = −nP̄m+n, (5.108)

i{P̄m, P̄n} =
kKM

2
mδm+n,0, (5.109)

where c is the Brown-Henneaux central charge (5.79) and kKM is the Kac-Moody level
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kKM = −4∆. The relation (5.107) shows that L̄m form a Virasoro algebra as in (5.77)

and (5.109) gives a Kac-Moody algebra. For a review see [42]. Hence we get a semidirect

sum of these algebras as the charge algebra for CSS boundary conditions, and showed

that CSS boundary conditions also satisfy conditions (i), (ii) and (iii).
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6. CONCLUSION

Two fundamental ways are used in literature to define asymptotically AdS space-

times. It is common to use the Fefferman-Graham expansion to derive the form of the

metric of the spacetime near the boundary. In this method, one starts at the boundary

and extends it smoothly into the interior. However, there is no guarantee that it closes

to a smooth interior, in general. It might also expand to another boundary at the infin-

ity. In three dimensions, it is much easier to find the explicit form of the metrics since

the expansion stops at the second order. We have shown the most general metrics for

Brown-Henneaux and Compère-Song-Strominger boundary conditions. On the other

hand, this question remains to be investigated for other sets of boundary conditions

and dimensions, as a recent example see [43].

By setting the boundary conditions one puts restrictions on the metrics, hence

it creates an obstacle against the search for the most general metric for AAdS space-

times. Some works aim to relax the conditions on the metrics [44,45] or investigate the

relations between the possible coordinate systems and how they affect the results [46].

Instead of the pure gravity case, one can investigate the asymptotic properties of

spacetimes in other theories like Topological Massive Gravity (TMG) to find the most

general metric family. These theories differ from pure gravity in the asymptotic region.

For example, in TMG one demands the spacetimes to get close to a warped AdS

spacetime [47–49]. Another direction of research could be handling supersymmetric

theories of gravity.

The study of AAdS spacetimes has a side benefit regarding their role in the

investigation of the asymptotically flat spacetimes since they approach asymptotically

flat spacetimes as Λ→ 0. There is ongoing research [50] on this subject that we know

of. This approach has the advantage of offering a new point of view to flat spacetimes

and it can reveal some properties that are missed in the usual approach.
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APPENDIX A: Conventions

In this thesis, all manifolds, fields and functions are assumed to be smooth unless

mentioned otherwise. We take c = 1. There are some proofs where we take 8G = 1 or

l = 1, and these are noted at the beginning of that part. We use Einstein summation

convention throughout the thesis, which means whenever the same index appears as

an upper and lower index, the summation is understood as

AiBi =
∑
i

AiBi. (A.1)

The dimensions are denoted by n or d. The Greek indices denote the indices for

a generic spacetime, whereas the Latin indices are used for flat spacetime or denote

the coordinates of some subspace, such as spacelike coordinates or coordinates on the

boundary. We us mostly plus convention, that is the metric signature is (− + . . . +).

The Christoffel symbols and Riemann curvature tensors are calculated using

Γλµν =
1

2
gλκ(∂µgνκ + ∂νgµκ − ∂κgµν), (A.2)

Rκ
λµν = ∂µΓκλν + ΓξλνΓ

κ
ξµ − (µ↔ ν). (A.3)

We use the normalized symmetrization and antisymmetrization of tensors as in

T (µν) =
1

2
(T µν + T νµ) T [µν] =

1

2
(T µν − T νµ) (A.4)

When we use differential forms we write them in bold letters. We use the following

to denote the differential forms in short

(dn−k)µ1...µk =
1

k!(n− k)!
εµ1...µkµk+1...µndx

µk+1 ∧ · · · ∧ dxµn . (A.5)
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