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ABSTRACT

ASYMPTOTICALLY ANTI-DE SITTER SPACETIMES IN
THREE DIMENSIONS

In this thesis, we reviewed several aspects of asymptotically anti-de Sitter (AAdS)
spacetimes in three dimensional Einstein gravity by following some important historical
work. Starting with a brief introduction to anti-de Sitter (AdS) spacetimes where also
the BT Z black hole solution is given we defined Noether-Wald charges using Noether
theorems. Next, we compared different definitions of AAdS spacetimes. Here, we
adopted the Fefferman-Graham coordinates and solved Einstein equations order by or-
der to prove that the Fefferman-Graham expansion of AAdS spacetimes terminates at
second order in three dimensions, as first shown by Skenderis and Solodukhin. Lastly,
we considered two sets of boundary conditions and presented their asymptotic symme-
try algebras and charge algebras. Imposing Brown-Henneaux boundary conditions we
arrived at Banados metric, which is the most general metric for AAdS spacetimes under
these conditions. Then we showed that the asymptotic symmetry algebra is two copies
of the Virasoro algebra. Under the Compere-Song-Strominger boundary conditions, we
calculated the most general metric and showed the charge algebra is a semidirect sum
of Virasoro and Kac-Moody algebras. We concluded with some comments and future

research directions.



OZET

UC BOYUTLU ASIMPTOTIK ANTI-DE SITTER
UZAYZAMANLAR

Bu tezde, tarihe ge¢mis baz1 onemli ¢aligmalarin izinden giderek ii¢ boyutlu
Einstein kiitlegekiminde kullanilan asimptotik anti-de Sitter (AAdS) uzayzamanlarin
gesitli 6zellikleri gézden gegirildi. Anti-de Sitter (AdS) uzayzamanlarina girig ve BT Z
kara delik ¢oztimiinden sonra Noether teoremleri kullanilarak Noether-Wald yiikleri
tamimlandi. Ardindan farkli AAdS uzayzaman tanimlar karsilagtinldi. AAdS ge-
ometrisini incelemek amaciyla Fefferman-Graham koordinatlari benimsenerek Skenderis
ile Solodukhin tarafindan gosterilmis oldugu tizere, Einstein alan denklemlerini sirayla
¢oziildii ve ii¢ boyut i¢in Fefferman-Graham agiliminin ikinci mertebede bittigi gosterildi.
Tezin son kisminda iki siir kosulu kiimesi i¢in asimptotik simetri cebirleri ile yiik ce-
birleri sunuldu. Brown-Henneaux simir kosullar1 kullanilarak, bu kosullar altindaki
AAdS uzayzamanlar igin en genel metrik olarak Banados metrigine ulagildigi hesa-
plandi. Sonrasinda asimptotik simetri cebirinin Virasoro cebirinin iki kopyasindan
olustugu gosterildi. Ayrica Compere-Song-Strominger sinir kosullar: incelenerek, on-
lar i¢in en genel metrik bulunup yiik cebirinin Virasoro ve Kac-Moody cebirlerinin
yarl dogrudan toplami oldugunu gosterildi. Yorumlar ve gelecek aragtirmalar iizerine

fikirler ile sonlandirild:.
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1. INTRODUCTION

The anti-de Sitter spacetime (AdS) is a maximally symmetric smooth manifold
endowed with a Lorentz signature metric whose scalar curvature is constant and neg-
ative. The maximally symmetric spaces are the most basic objects that give insights
about more complicated geometries, and therefore have their own value. As in the Rie-
mannian case, the maximally symmetric spacetimes have constant scalar curvature,
and they are classified by the sign of their curvature: The AdS spacetime has negative
curvature, the de-Sitter (dS) spacetime is positively curved and the flat spacetime has
zero curvature. They are the Lorentzian analogues of the hyperbolic space, the sphere
and the Euclidean space, respectively, and they have similar roles in the Lorentzian
geometry. The dS spacetime was found in 1917 by Willem de Sitter as a cosmolog-
ical solution for vacuum FEinstein gravity with a positive cosmological constant, and
similarly AdS spacetime solves them for negative cosmological constant. Since dS
spacetime is an interesting solution that matches our observations about the universe,

it attracted attention along with the Minkowski spacetimes.

The interest in physics community to anti-de Sitter (AdS) spacetime increased
in eighties when they were shown to be supersymmetric solutions of supergravity theo-
ries. In those years, both physicist [1,2] and mathematicians |3] studied AdS spacetime
with different motivations. They became popular again after the AdS/CFT correspon-
dence was proposed by Maldacena [4] and it is still widely studied. According to the
AdS/CFT duality, string theory in d + 1 dimensions is equivalent to conformal field
theory on its conformal boundary. The focus on AdS3 spacetimes is due to the fact
that their duals give C'F'Ty theories which are well known by physicists. Studying the
three dimensional case is easier since there is less freedom, but we also hope to find

some insight on difficult problems encountered in four dimensional gravity.

We aim to understand and compare two approaches in the literature used to define

asymptotically (locally) AdS (A(l)AdS) spacetimes. We show that the Fefferman-



Graham expansion stops at the second order under a simplifying assumption and study
the charge and symmetry algebras of AAdS spacetimes. That was first studied by
Henneaux et al. in the eighties [1,[2] influenced by relevant work for asymptotically
flat spacetimes [5,6]. Similar to the discovery of BMS algebra, which extended the
Poincaré algebra, the algebra of three dimensional AAdS spacetimes was surprisingly
larger than what they expected [1]. This discovery opened the way to the AdS/CFT
correspondence, as this algebra contained two copies of Virasoro algebra; therefore, it
was closely related to the conformal field theories in two dimensions. We want to study
the charge algebra of this seminal work [1] and a recent work [7] published in 2013, to

see how the algebra changes when different initial conditions are chosen.

In this thesis, Einstein gravity is reviewed very briefly and it is discussed how
it fully determines the local properties of spacetime in three dimensions. After an
introduction to anti-de Sitter spacetimes, we focus on the three dimensional case. In
relation to the Noether theorems, which relate symmetries and charges of spacetimes,
the conserved charges for gravity theories are defined. In the last chapter, we compare
two approaches used in the literature to define asymptotically AdS spacetimes. After
introducing the Fefferman-Graham expansion [3] we show that it takes a special form
in three dimensions. In the end, we follow two important works in this area [1}/7], and

present their charge algebras.

We assume the reader is familiar with the Riemannian geometry [8,9] and has

basic knowledge of Einstein gravity [10-12]. Our conventions are given in the appendix.



2. EINSTEIN GRAVITY

2.1. Einstein Field Equations

General relativity in n dimensions is described by the Finstein-Hilbert action (up

to a boundary term)

B 1
- 16wG

Senly | vz~ 2n) (2.)
M

where G stands for the Newtonian constant of gravitation and the cosmological constant

is denoted by A € R. The integral is taken over an n-dimensional smooth manifold M

endowed with a metric g, of Lorentz signature (— + ... +) and R is the corresponding

scalar curvature.

By varying the action with respect to the metric gives the vacuum Einstein field

equations
1
G = R — ég,ﬂ,R + Ag =0, (2.2)
where G, is called the Einstein tensor. These equations can be contracted with the

inverse metric g"” to get

2n
= A 2.
R n—2 (23)

by assuming n > 3. Combining this result with the field equations (2.2]) we see the

Ricci tensor R, is pointwise proportional to the metric g,

2
RMV == m Aguy. (24)



A metric g, obeying (2.4)) is called an Einstein metric and a manifold (M, g)
endowed with an Einstein metric is called an Einstein manifold. The following propo-

sition follows directly from ([2.3]).

Proposition 2.1. Any Einstein metric has constant scalar curvature.

2.2. Weyl Tensor

For n > 3, the Riemann tensor can be decomposed as a sum [10]

2
R,w/pa :Cuupa + HT

2gupRW + GuoRyp — GuoRup — GupRyuo

_ 2
(n—1)(n—2

)R(g,upgllo - g,u,ogzzp>7 (25)

which is called the Ricci decomposition of the Riemann curvature tensor. Here, C,, 0

is called the Weyl tensor and it denotes the “trace free part” of R It has the

uvpo -
same symmetry properties with the Riemann tensor and plays an important role when

investigating the conformal flatness of spacetimes for n > 4, which is explained below.

A conformal transformation is a map from a manifold (M, g) to a manifold (N g)

such that

g,ul/ = QQQ;W; (26)

where Q? is a positive function, called the conformal factor [10,/13,[14]. If the metric
of a spacetime can be mapped to a metric of flat spacetime via a conformal map, it is

called conformally flat.

The Weyl tensor is also called the “conformal tensor” since it has nice properties

under conformal maps:

Theorem 2.2. Under any conformal transformation, the Weyl tensor with one index



raised remains invariant (10,

C° = Cfo

pvp T M uvp:

(2.7)

Since the Weyl tensor vanishes for flat metric the next theorem follows directly

from Theorem [2.2]

Theorem 2.3. For n > 4, the Weyl tensor vanishes if and only if the spacetime is

conformally flat.

In n dimensions, the Riemann tensor has n* components, but only -5n?(n*—1) are
independent due to its symmetries and the first Bianchi identity [15]. The Ricci tensor,

on the other hand, is a symmetric tensor and therefore has %n(n + 1) independent

components. When n = 3, both numbers coincide and do not leave any degree of
freedom for the Weyl tensor to carry [16]. Therefore the Riemann tensor is encoded

only by the Ricci tensor in three dimensions.

Theorem 2.4. For n = 3, the Weyl tensor always vanishes.

The conformally flat spacetimes are characterized by the vanishing of the Cotton

tensor in three dimensions.
2.3. Einstein Gravity in Three Dimensions

Since the Weyl tensor vanishes identically when n = 3, the equation ({2.5) becomes
1
R;U/po' = g,upRl/a + gVO'R,up - guURVp - gupR,ua - §R(gupgl/a - guagup)a (28)

which can be rewritten by using (2.4) and ({2.3])

Ruvpe = MYupGvo = GuoGup)- (2.9)



A manifold (M, g) satisfying (2.9)) is said to be of constant curvature [16], i.e. it

has constant sectional curvature.

Proposition 2.5. Any manifold of constant curvature is an Einstein manifold.

It follows directly from (2.9). The converse is not true, in general, however for
n = 3 it was shown above that for any Einstein metric (2.9)) holds.

Proposition 2.6. Three dimensional Einstein manifolds are of constant curvature.

Constant curvature spacetimes have the following useful property. In any di-
mension, there are three special spacetimes of constant curvature which are complete,
simply connected and mazimally symmetric, i.e. they admit the maximum number of
Killing vectors, which is 3n(n + 1) in n dimensions. These are de Sitter (dS), flat and
anti-de Sitter (AdS) spacetimes, with positive, zero and negative constant curvature,
respectively. They are the Lorentzian analogues of S, R™ and H". As in Riemannian
geometry, it is possible to find a local isometry between constant curvature spacetimes
and the maximally symmetric ones. We present the Lorentzian analogue of a theorem

from Riemannian geometry [§].

Corollary 2.7. Any spacetime with constant curvature is locally isometric to a de
Sitter, flat or anti-de Sitter spacetime, if it has positive, zero or negative constant

curvature, respectively.

From now on, we will focus on the spacetimes of negative curvature. These are
the solutions of Einstein field equations with A < 0, therefore they are locally
isometric to an AdS spacetime. Nevertheless, one can obtain interesting spacetimes
that differ in topological and asymptotic properties from AdS. A three dimensional
example, the BT'Z black hole, will be explored in Section [3.6]



3. AdS,.; SPACETIMES

In this chapter we define the anti-de Sitter spacetimes and study their proper-
ties, show that they are exact solutions of vacuum Einstein field equations with
negative cosmological constant and that they are maximally symmetric spacetimes of
negative constant curvature. In the end, after reviewing some special properties of

AdSj5 such as its symmetry algebra we present the BT Z black hole.
3.1. The Hyperboloid and AdS;.,

To give a definition for AdS,y1 spacetimes one needs to study a closely related
object. Let (T%,T2,X%),i=1,...,d be the standard coordinates of R*% and consider
the following hyperboloid embedded in R

d
DX (T (17 = -0 (3.1)

i=1
with [ # 0. Without loss of generality, take [ > 0. The equation reveals that this set of
points is sent to itself under the rotations and reflections about the origin in R% ¢, i.e.
by the group O(2,d), hence it admits the maximum number of Killing vectors in d + 1
dimensions. We will elaborate on that in Section [3.3] This is also a space of negative
constant curvature, which is to be shown in Section but it lacks the property of

being a spacetime or being simply connected.

The hyperboloid given by does not admit a causal structure since it allows
closed timelike curves to exist. To get rid of them, one chooses to work with a universal
cover of the hyperboloid instead, obtained by unrolling the hyperboloid so that the
closed timelike circles, (T1)% + (T%)? = const. and X' = const., are unwrapped to
straight lines. This covering space is called d + 1-dimensional anti-de Sitter spacetime,
AdSyi1, and [ in (3.1)) is called the AdS radius. Note that AdSgy, is described as an

immersion in R%%, not as an embedding.



3.1.1. Global Coordinate Systems

3.1.1.1. Global coordinates. A set of coordinates compatible with (3.1)) is

T' =lcoshpcosT,
T? =l cosh psin T,

Xt =lsinhp Q' fori=1,...,d, (3.2)

where p > 0 is the radial coordinate, 7 € [0,27) and §); is the spherical coordinates of
S in R satisfying >, Q? = 1. The coordinate 7 parametrizes the timelike circles
we want to unwrap. Therefore, one needs unidentify the points 7 ¢ 7+ 27 and expand
the range of 7 from [0,27) to R to get the coordinates for AdS;,;. These coordinates

are called the global coordinates and the induced metric becomes

d
ds® = I?(— cosh? pd7? 4 dp* + sinh® p Z(dQZ)Q) (3.3)

i=1

3.1.1.2. Conformal coordinates. A similar coordinate chart can be obtained by re-

placing p with conformal radial coordinate ¢ € [0, 7) such that tanf = sinh p. These

coordinates are related to the embedding coordinates as follows

T = lsecHcosT,
T? = IsecfsinT,

X' =1tanf Q' fori=1,...,d, (3.4)

so that the induced metric is

ds® =

(—d7” + d6” + sin® 0 Y (d)?). (3.5)

i=1

cos2 0

These coordinates are referred as the conformal coordinates.



3.1.1.3. Static coordinates. Another set of global coordinates for AdSyy1 can be cre-

ated using timelike coordinate ¢t = [7, and the luminosity distance r = [sinh p. The

)
)

X'=1rQ fori=1,...,d, (3.6)

embedding coordinates are written in (r, ¢, )

T = V12 + 12 cos (
T? = V12 + 12 sin(

~| T+ e~

and the metric becomes

2 2\ 1 d
ds? = — (1 + T_) dt? + (1 + T_) dr? + r? Z(dﬂi)g. (3.7)

2 2
i=1

These are the coordinates used by Brown and Henneaux in their famous paper on

Brown-Henneaux boundary conditions [1].
3.1.2. Poincaré Patches

Let us first introduce light cone coordinates using 7" and X4

T — X4 T + X4
U= — and V= (3.8)
and define
T2 ) Xz
t=— and '=— fori=1,...,d -1, (3.9)
lu lu

with u # 0. The coordinate v can be expressed in terms of other coordinates by using

B as

1
v = %(1 —u*t? + utE?), (3.10)
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then one half of the hyperboloid is parametrized by

1
T = %(1 +u? (P + 72 — 7)),

T? = lut,
X' =lux® fori=1,...,d—1,

1
X = £(1+u2(—l2—|—f2—t2)), (3.11)

— d—1 ) 3 :
where 2 = > '(2%)?. The induced metric becomes

1
ds® = I? <— du® + u?(—dt* + de)) : (3.12)

u2

Here we assumed that u # 0 for well-defined coordinates, hence the points having
T' = X? are not covered by this parametrization. This hyperplane is called the
Poincaré Killing horizon, and corresponds to the hyperplane cos 7 = Q%sin § in global

coordinates. u < 0 gives cos 7 < Q9sin 6 and vice versa.

One can not use Poincaré patches to parametrize the entire hyperboloid, and
thus AdSzy1, while global coordinates can be used in this fashion, giving them the
name. Note that u = 0 region is left out in either patch; the hyperboloid is cut into
two disconnected pieces and each half is parametrized by one of the patches. To move
along closed timelike circles, (T)? + (T%)* = const. with X* = const., one must keep
passing from one patch to the other, which makes it impossible to modify the Poincaré
charts to parametrize AdSy.1, as we did in global coordinates. Nevertheless, Poincaré

coordinates can be used to investigate local properties of AdSy,1.

Sometimes the coordinate r = u/I? is used instead. Then the embedding coordi-
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nates are given by

1 I? r’ 2 | =2 2
T :Z(1+l_4(l + 7 —t)),
Tt
T? = —
I’
Xi:“f fori=1,...,d—1,
l2 7,2
X = 2_74(1 + l—4(—z2 + 72— 1)), (3.13)

so that the intrinsic metric is written as

T2

7 (—dt* + di?). (3.14)

12
ds* = — dr® +
r

Using the transformation z = 1/u one can obtain another set of Poincaré patches

1
Tl _ —(22+l2+f2 —t2),

2z
et
=
) It
xi=" fori=1,...,d—1,
z
1
Xd:2—(22—l2+£’2—t2), (3.15)
z
and the metric
l2
ds® = —(dz* — di* + di?). (3.16)
z

Before moving on to the properties of AdS;,; let us make some comments on the
boundary of AdS;y1. AdS4y1 does not have a boundary, but its asymptotic boundary
corresponds to the limits p — oo, § — & and r — oo in global coordinates, u — 0o
oru — —oo, r — oo or r — —oo, and z — 0 in Poincaré coordinates. In order

to analyze the behavior of the given metrics near this asymptotic limit, one needs
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conformal structures. For a review on conformal properties of AdSy,; we refer the

reader to Section [3.4]
3.2. Local Properties

Using the global coordinates (p, 7, Q") for AdSg,; the nonzero Christoffel symbols
of metric (3.2)) are listed as

[7,=17, =tanhp
I'” = sinh pcoshp
I'?, = —sinh pcosh p gy
I’ﬁp = F’;k = cothp

k Mk
Iy =T (3.17)

where the hatted symbols denote the corresponding quantities for S4~!. The contribut-

ing components of the Riemann curvature tensor are then

T _ k _
Rmp - Rpkp =1
Rim’ = RikT = COSh2 P
ok = Rzpk = Ry = — sinh” Pk (3.18)

implying the Ricci tensor to be proportional to the metric with

d
RH,V = _l_quV (319)

and the Ricci scalar to be a negative constant

d(d+1)

R=-=

(3.20)
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From ([2.3)) it is seen that AdSg; solves the vacuum Einstein field equations ([2.2)) when

d(d—1)

AdS radius is taken as [ = y/ — o

3.3. Global Properties

The hyperboloid has the topology of a cylinder, S* x R?, but due to the modifi-
cation in 7 and t coordinates it is seen that AdSyy; is topologically equivalent to R4+,
Also note that the map that sends (p,7,) to (X% T%) is not injective globally but
locally, hence AdS;.1 can be represented by an immersion in R*>¢. This map wraps

AdSy.1 around the hyperboloid countably many times in 7 direction.

Any Killing field of the embedded hyperboloid lifts naturally to its universal cov-
ering AdSy,1, therefore the symmetries of AdSy,; give a covering of O(2,d). Consid-
ering the continuous symmetries, i.e. after removing reflections, this symmetry group
reduces to SNO(Q, 2), a covering of SO(2,d). The reason lies behind the modification
of timelike global coordinates 7 and ¢: In SO(2,d), i.e. considering the hyperboloid, a
rotation in the direction of 7 with 27k, k € Z, reproduces the identity transformation

while on AdSy., it gives a translation in 7 direction.

SO(2,d) and its covering §é(2, d) differ only globally, hence infinitesimally they
look the same and have the same Lie algebra so(2, d) whose generators are the infinites-

imal transformations in the form
Jw = X0, — X,,0,, (3.21)
where X# = (T%, X7),i=1,2,j=1,...,d, for convenience.
It is worth noting that the number of generators in so0(2,d), or equivalently
ng(Q, d), coincides with the maximum number of symmetries a (d 4+ 1)-dimensional

space can have, which is equal to 3(d + 1)(d + 2). This shows us that the AdSgy; is

maximally symmetric, hence the Riemann curvature tensor of AdSy,; can be written
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as [16]

1
R,u,ya)\ - _l_z(g,uogu)\ - gu)\gl/o)' (322)

3.4. Conformal Properties

The asymptotic structure of a spacetime is an important ingredient to construct
conserved charges. Here we will investigate the structure at the boundaries of AdS as
an example, however, infinity itself stands as an obstacle. To talk about the asymptotic
region at infinity one needs to bring that region to a finite distance, and that is achieved

by conformal compactification.
3.4.1. Conformal Compactification and Conformal Structure

Conformal compactification of a spacetime is used to bring infinite distances to a
finite distance, namely to represent the spacetime at hand on a bounded set and then
adding a boundary to it so that it is possible to work on or near the boundary of the
spacetime, without losing the causal structure. To preserve the causal structure one
needs to use a conformal transformation to send the original spacetime to a bounded
one. The next proposition follows directly from the definition of the conformal map

we gave in Section [2.2]

Proposition 3.1. The causal structure is then preserved under any conformal map,

i.e. all spacelike/timelike /null vectors are sent to a vector with the same property.

The conformal compactification was introduced by Penrose in [17] as a tool to
study the asymptotic regions of spacetimes and described in [1§] in detail. Let us

introduce the definition following [13]/14}/18,/19].

Let (M, g) be a smooth manifold which we call “physical spacetime”. We wish

to extend it to an “unphysical spacetime”, a smooth manifold M with boundary B
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and the interior M. The boundary B and the physical spacetime M are related by a
smooth function € defined on M which can be extended smoothly to M satisfying

e O>0in M
e 1=0,d2#0on B

e the metric § = Q%¢ extends smoothly on M and is non-degenerate.

The function €2 is called the boundary defining function. If such a function exists
the metric ¢ is said to be conformally compact and the manifold (M, §) is called a
conformal compactification of (M, g). Note that if g is conformally compact it must
have a second order pole at the boundary so that it becomes well-defined on B after

being multiplied by Q2.

The word “compactification” may be misleading as the manifold (M, §) is not
necessarily compact, rather it is contained in a compact set and therefore called a

compactification.

Many boundary defining functions can be derived from an existing one. If {2 is a
boundary defining function then so is Q = Qe¥, where w is a function with no zeroes or
poles on B. Each boundary defining function €2 gives a different metric on the boundary
B which are related to the each other by a smooth positive factor. Such metrics
define an equivalence class with the relation g ~ e“g, and such equivalence classes
of metrics are called conformal structures [3]. Hence if a conformal compactification

(M, §) defines a conformal structure [j] on B.
3.4.2. Conformal Boundary of AdSy1

Among the metrics given in Section there are two obvious candidates to use
for a conformal compactification of AdS,,1. The first one is already called ”conformal
coordinates” because the factor % in (3.5) can be eliminated by a conformal trans-

formation. This would allow 6 to take the value § where the conformal boundary B of
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AdSg.1 lies in these coordinates. The metric g is then given by
d
ds® = —dr® + d6” +sin® 0 Y _ (). (3.23)
i=1
The conformal boundary at 6 = 7 has the topology R x Sd=1,

The other metric we would choose to consider is (3.16)) of Poincaré patches. This
time the conformal boundary is at z = 0 and the metric after the transformation is

then given by
ds* = dz* — dt* + di® (3.24)

as the d + 1-dimensional Minkowski metric. Because each patch has z > 0 or z < 0,
this transformation maps the AdS to one half of the Minkowski spacetime. This also

shows that AdS is conformally flat.
3.5. Symmetries of AdS;

In the last chapter, we will focus on the 3 dimensional case. AdS5 is given by the

universal covering space of the embedded hyperboloid
2?4y —u? -0t = 2 (3.25)
whose continuous symmetries give a covering of the SO(2,2) group. (A detailed ex-

planation can be found later in this section and in Section ) These symmetries
are generated by 6 infinitesimal transformations given in (3.21)) with X* = (u, v, z,y).
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They satisty J,, = —J,, and written in detail as

Jup = —00, + u0, Jyw = 10y + V0, (3.26)
Jyz = 0y + U0, oy = Y0, + 00,
Juy = YO, + ud, oy = Y0y — x0,,.

The intrinsic picture is much more illuminating when dealing with symmetries,

let us pass to the global coordinates (p, 7, ¢) in (3.2))

u = lcoshpcost
v =1[coshpsint
x = [sinh pcos ¢

y = [sinh psin ¢ (3.27)

and the intrinsic metric given by (3.3)) in three dimensions as

ds® = I?(— cosh? pd7? 4 dp* + sinh® pd¢?) (3.28)

where p > 0, 7 € R and ¢ € [0,27). The pullbacks of the generators (3.21)) can be

calculated using

oxk
ox?

JH = g‘“’ nlil (329)

where latin indices denote the flat metric in R*? and greek indices are used for global
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coordinates (p, 7, ¢). These generators are then given by

wo = Or (3.30a)
Juz = — tanh psin 7 cos ¢0; + cos T cos $0, — coth p cos 7 sin ¢p9, (3.30b)
Juy = — tanh psin 7 sin ¢0, + cos 7 sin g0, + coth p cos T cos ¢, (3.30¢)
Jyz = tanh psin 7 cos ¢0; + sin 7 cos 0, — coth psin 7 sin ¢, (3.30d)
Juy = tanh psin 7sin ¢0; + sin 7 sin ¢0, + coth psin 7 cos ¢, (3.30e)
Joy = —0s. (3.30f)

These vector fields satisfy the Killing equation £ = V,§, +V,§, = 0. It is easily seen
using the Levi-Civita connection for the metric (3.28)) whose contributing components

can be found from (3.17)) as

[7,=1, =tanhp I'? = sinh pcosh p (3.31)
ng = I’];k = cothp I}, = —sinh p cosh p.

A generic Killing vector of AdS3 can be written as %wj *J;x using an antisymmetric
tensor w’* in R%2. We deduce that AdSs is stationary because 9, is given in (3.30al)
as one of the Killing vector fields. This vector field is orthogonal to 0, and J,, and

spacelike hypersurfaces with constant 7, hence AdSs is also static.

As mentioned in Section , the continuous symmetries of AdS3 give §é(2, 2),
a covering of SO(2,2), and its Lie algebra is s0(2,2) generated by the infinitesimal

transformations in (3.30). To construct another basis for so(2,2) one can use the



following combinations

1 _ 1

L+ = §<<]vu + Jyx + Jvm + Jyu)7 L+ - 5(‘]”“ + me + Jvm + Juy);
1 - 1

L= 5oty + Jow + )y Lo = 5 (Tt oy & Tow + )
1 _ 1

Ly = §(<]ux + va)’ Ly = i(Jux + Jy'u)‘

The barred and unbarred elements commute

[Li, L] =0 fori,j=-1,0,1,

and both generate sl(2, R) algebra obeying

(L, L] = +L, (L., L_] = 2L

Hence we may use the decomposition s0(2,2) = sl(2,R) @ sl(2, R).
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(3.32)

(3.33)

(3.34)

50(2,2) can also be represented as the direct sum of two so(2,1) algebras by

rearranging the set of generators as

1 1 1
J0+ = §<Jyaz + Jvu) J1+ = §<Jyu + va) J2+ = i(un + Jyv)

1 1 1
Jo = §(Jyw + Juv) Jy = §<Jyu + Jow) Jy = Q(Ja?u + va)
with the following commutation relations

[‘]c:zta‘]ljt] :Eabct]:l:C [J+ Jb_]:O

a )

(3.35)

(3.36)
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3.6. BTZ Black Hole

In three dimensions, all solutions of the Einstein field equations are of constant
curvature, therefore locally dS, AdS or flat, i.e. locally isometric to dS, AdS or flat
spacetimes, however their global properties may differ. One of the most important
exact solutions of the Einstein field equations is the BTZ black hole, found by
Baniados, Teitelboim and Zanelli in 1992 [20]. It exhibits properties similar to a black
hole, such as having event horizons, however, it is a locally AdS5 spacetime and has no

curvature singularity.

The metric of the BT Z black hole is given by

ds® = —N2dt* + N72dr? + r*(N®dt + d¢)? (3.37)

with t,¢ € R, ¢ € [0,27) and r > 0. It solves the Einstein field equations (2.2]) with
A = —1/I?. Here, N and N are functions of r given by

2 J2
N*=_M+ % +5 (3.38)
J
N = ~53 (3.39)

where we took 8G = 1. The constants M, J € R are linked r_ and r in (3.46) with

5 1/2
M J
== |1+4/1—-|— . .

as ry are defined as the positive roots of the function N2 = 0. Then

i S 2

M
2 [

(3.41)
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r4 are real if and only if
|J| < Ml and M > 0. (3.42)

ry and r_ correspond to the radii of the inner and outer horizon of the black hole.

When 74 = r_ the black hole is said to be extremal. In that case, |J| = M [20-22].

As all components of the metric depend only on r we see J; and 0, are Killing
vectors of BT'Z black hole. One may find the proof that these are the only two Killing
vectors of BT'Z in the Section 3.2.6 of [22]. M and J are interpreted as conserved
charges associated with 0, and 0y, respectively, in Chapter i} To understand why this

solution has black hole like properties we will study it as an identification of AdS.
3.6.1. Identification Subgroup and the Quotient Space

It is possible to express the BT Z black hole as an identification of AdS3. As
pointed out at the end of [20], “such a spacetime must arise from identifications of points
in anti-de Sitter space through a discrete subgroup of its symmetry group O(2,2)” [20].
The geometry of this quotient space was investigated in a follow-up paper [22]. Here,
the non-extremal case is presented; the extremal case can be considered as the limit

r_ — r4 and the details can be found in [22].

While making identifications it is important to preserve the continuity and the
smoothness of the metric, therefore we consider isometries of AdSs, identify the points
that are mapped to each other under this map and create a quotient space.

Consider the one-parameter subgroup generated by some Killing vector &

v:R = SO(2,2) y(t) = et (3.43)

The curve 7(t) living in 57(3(2, 2) contains all isometries of AdS; generated by ¢ and
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its scalar multiples. This subgroup of isometries acts on the points in AdSs

©: R x AdS; — AdSs O(t,p) = *p. (3.44)

Using any element of () we can define an identification of AdSs. Let us proceed
with v(27) = e?™. The factor 27 of our choice is conventional and it is used to

emphasize the cyclic shape after the identification.

A point p would then be identified with e>™¢p, k € Z, namely to all points which

p is sent to under the discrete subgroup I'

=< e?™ > ={e* | c 7}, (3.45)

hence it is called the identification subgroup associated with the Killing vector 2w€. As
long as the action of I' is properly discontinuous on AdS3 we get a quotient manifold
AdS3/T" given by the equivalence relation p ~ exp(27ké)p, k € Z. More information
on identifications of AdS may be found in [23].

For BTZ black hole this discrete subgroup is generated by the Killing vector
field [22]
Ty r

where 0 <7r_ <r,.

The inherited metric is well-defined and smooth on this quotient manifold be-
cause it remains unchanged along the orbits of © and these orbits are closed after the
identification. Therefore the quotient space is locally isometric to AdSs, i.e. locally
AdS3. Since the Riemann curvature tensor is same with AdSs, it also solves the Ein-

stein field equations. Nevertheless, the causality of this new space is to be questioned
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before we can call it a spacetime.

3.6.2. Causality

Gluing the points of AdSj creates closed curves along the orbits of the map ©
in . This will cause closed timelike or null curves to appear where £ is timelike or
null, respectively. In order to have a well-defined causal structure one needs to discard
such curves in the quotient space. Therefore the regions of AdSs where £, < 0 must
be removed before the identification. This, in general, does not guarantee that we end
up with a space that admits a causal structure, there may still be closed timelike or
null curves left, but at least the ones along the the orbits of © are eliminated this way.

In the case of BT'Z black hole it will be enough as shown in the Section 3.2.5 of [22].

At this point one may ask if we can take a quotient after cutting out some regions
from AdS3. For a well-defined identification we need to check that for each point p
in the remaining part of AdSs; the points e?™*¢p, k € Z, are not cut out. It is easy
to see that this is indeed true. Since the norm of the vector & does not change along
the orbits of ©, and p and €2 belong to the same orbit for each p € AdSs, they are
either in the remaining region or in the one we cut out. Thus the identification is still

well-defined.

3.6.3. The Quotient Space and its Singularities

The further properties of the BT'Z black hole are explained thoroughly in [22],
but for our purposes it will be enough to state the metric of the BT Z black hole. By
choosing a parametrization (¢, 7, ¢) on the remaining parts of AdS as given in Section
3.2.3 of [22], the AdS metric becomes the metric we gave in with ¢ € R. Then
the identification is made through identifying ¢ ~ ¢ + 2.
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Since the quotient space has same local properties with AdSs, there are no curva-
ture singularities in BT'Z black hole, even when » = 0. The region » = 0 corresponds
to a surface, not a point, and the Killing vector d, becomes timelike in the regions of

AdS3 which correspond to r < 0. This shows that » = 0 is only a causal singularity.

There are many papers written about the properties of the BT Z black hole. In
addition to the ones we mentioned in this chapter, Carlip’s works [24-28] can be used

for further study.
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4. CONSERVED GLOBAL CHARGES AND THEIR
ALGEBRA

Symmetries are related to conserved quantities which in general are called charges.
In physics, charges play important role such as energy, mass and angular momentum.
Historically, it was Emmy Noether who established the relation between the symmetries
of a spacetime and the charges that are conserved as time changes in 1915. In this
thesis, we are interested in conserved charges at spatial infinity. We will first define
a structure called the variational bicomplex and introduce notations and conventions
used in the so-called covariant phase space formalism [29-32]. Here, we will follow
the lecture notes by Compere and Fiorucci [21]. The Noether’s Theorems will come
next. Then we will define the Noether-Wald surface charge density and calculate it for
Einstein gravity. At the end of this chapter, we will apply this formalism to the BTZ
solution and show that the constant M that appears in the definition corresponds

to a conserved charge.

4.1. Variational Bicomplex

The Lagrangian theories we will consider are the ones where the Lagrangian
density L depends on the derivatives of the fields involved to all orders. We aim
to generalize the notion of cotangent space so that we can additionally include the
variations of the fields as differential forms (so that later we can integrate between two
fields). To this end, we are going to define a structure called the variational bicomplex
which combines the spacetime manifold and the field space. The construction of the
variational bicomplex and more details on its properties are thoroughly given in [33}34],

here we will present the information necessary for our use in this thesis.

The spacetime is given by an n-dimensional manifold M, we will denote its
coordinates by {z*, u =1,...,n}. Let p € M. The cotangent space, the dual of the
tangent space, at the point p is the set of all 1-forms with basis {dz*, p = 1,...,n}.
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The interior product of a 1-form w by an element of the tangent space £ is defined as

o = &+ 85xuw. We may generalize the definition of the interior product by £ as an
operator that sends k-forms to (k — 1)-forms and denote it by i¢. Its inverse operation,

the exterior derivative of forms, is given by the d operator, d = dz*0,,, as usual.

Now let us define the field space. The field space, or jet space, is the space of
smooth fields and their derivatives of all orders with respect to the spacetime coordi-
nates. The fields and their derivatives, however, are considered in an abstract manner
independently of their values on the spacetime manifold. They are used as a coor-
dinate system to locate fields in the field space. To have a well-defined coordinate
system, one needs to identify some of the derivatives with each other, for example,
0,0, = 0,0,® but they should be used as a single coordinate variable. Therefore we

define the symmetrized derivatives ®,,, as follows

9 o V) si
5oL, Oy = 545500, (4.1)
Using this construction, a point (®,®,,®,,,...) in the field space corresponds to a

specific field and the differential forms at that point can be written using the basis

(60,50, 5D

..} where the operator § is defined as § = §®% -2 where [ is a multi-

ps - a7

index that denotes any symmetrized derivative and Einstein summation runs over all
© and I. Noting the similarity between the cotangent space of the field space and
the spacetime manifold, we follow the conventional choice in [21] by defining all basis

elements {6, 0P,,, 0P .} as Grassmann odd variables, i.e. they anticommute with

s -
each other, as in the usual exterior algebras. An interior product can also be defined
via
.0
i5, = 0,PY ——, 4.2
da a Ia(sq)z] ( )
for the transformation generated by an element ”a” in some group of transformations,

under which the variations in the field space are given by §,®%. The variations 6,9’ are

not basis elements anymore, hence they are Grassmann even, i.e. they commute with
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everything. Note that this inner product maps an arbitrary variation to a variation

under a specific transformation denoted by a.

The jet bundle or the wvariational bicomplex is a combination of both spaces
mentioned above, with coordinates (z*,®%). This space contains the field space as a
fiber at each point of the spacetime manifold M. Now we should adapt the derivative
operators d and ¢ to the variational bicomplex. We will not change the way the exterior
derivative d = dz*0, is defined, but the partial derivative 9, will be calculated like a
total derivative with respect to x* where all fields are taken as dependent variables

0 0

9, =2 1o % L 9 L 43
T T T T YA (43)

which we will call the horizontal derivative. The definition of the wvertical derivative
0 stays the same. These differential operators anticommute and with them involved
we define this space as a wvariational bicomplex. A differential form on variational
bicomplex is an element of cotangent spaces of the spacetime manifold and the field
space, hence uses {dz*,0®%} as its basis. A form which has p many dz* factors and ¢

many 6P terms is called a (p, q)-form.

The Lagrangian density L and the Lagrangian form L = Ld"z are natural objects
that live on this structure. They depend on the fields and their higher derivatives. We
can now observe that arbitrary variations are also naturally defined on variational
bicomplex. For example, L is an (n,0)-form and its variation JL. becomes an (n,1)-

form in this formalism.
4.2. Noether Theorems
Let us consider a theory described by some Lagrangian density L[®‘, %] which

depends on the fields ®° and their derivatives ®%, and introduce the new notations

while showing that its equations of motion are given by the Euler-Lagrange derivative.
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Theorem 4.1. The equations of motion of this theory is given by the Euler-Lagrange

equations

oL oL oL oL

for all i, and the metric g,, may be included in the set of fields {P'}.

Proof. Consider an arbitrary variation of the Lagrangian density L

oL oL
oL oL oL
— 50 g, (56075 ) ~ 500, 4.
a5t~ O (5 aauqﬂ) VO gae
5L .
_ 7 . I i,
5B — 0,015, (4.5)

where the inverse Leibniz rule was applied with a minus sign because we conventionally
defined § and partial derivatives as anticommutative operators. The last term, the
divergence of the vector field ©#, contains the total derivative terms coming from the
inverse Leibniz operations. ©* is called the presymplectic potential. The same equation

can be written using differential forms as

0L = W% — dO[D"; ). (4.6)

One should note that when the above expression is contracted by some interior product

04 it gives

5L = 5ac1>i% + dO[5,P"; P]. (4.7)

where the minus sign is changed because ¢ and d anticommute.
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By applying the principle of the stationary action one gets

0=05 (4.8)
= /(5Ld”x (4.9)
oL )
= /5<I>ZW —0,0"09"; ®|d"x (4.10)
Since this equality must be true for any variation 6®° we conclude o 0. m

Now assume there is a group G of transformations of the fields ® such that the

action

S = / Ld"z (4.12)

is invariant under the elements in (G. Such a transformation a € G is called a global
symmetry of L and it necessarily preserves the Lagrangian form L up to a total deriva-

tive term, i.e. 9, L = da[0,P; ] for some (n — 1,0)-form a. Then the (n — 1, 0)-form
J[a] = ©[0,P; ?| — a[), P; D] (4.13)

is closed, dJ]a] = 0, when the equations of motion are satisfied. This (n — 1,0)-form is
the Hodge dual of a current J* which is called a conserved current, i.e. its divergence
vanishes when the equations of motion hold. That is the Noether current associated
with the symmetry generated by a € G. We can calculate the corresponding Noether
charge by taking its integral over a Cauchy surface ¥, a codimension 1 surface in M

which is intersected by every maximal causal curve exactly once [21].

There is a special type of global symmetries, called the gauge symmetry, which

is a global symmetry of L whose generator arbitrarily depends on the coordinates.
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Theorem 4.2 (Noether’s first theorem). If a physical theory described by a Lagrangian
L admits global symmetries, there exists a bijection between equivalence classes of con-
tinuous global symmetries of L and the equivalence classes of conserved currents JW".

J# are called the Noether currents. [21]

Here, two global symmetries are said to be equivalent if and only if their difference
is given by a gauge transformation and some symmetry whose generator vanishes on
shell, i.e. when equations of motion are satisfied. Similarly, two currents Ji', J} are

said to be equivalent if and only if they obey
JY = J' 4+ 0,k +t*, (4.14)

where k" is a skew symmetric tensor and t* vanishes on shell, hence the conservation
of one current implies the conservation of the other if they are equivalent. We would
like to emphasize that the equivalent currents do not necessarily give the same charge,

and that will be used later to define lower degree conserved quantities.

The Noether currents of gauge transformations have exact Hodge duals, i.e.
J[a] = dk, for some (n—2,0)-form k, = k*)(d"2z),,. Then dJ[a] = 0 even when the
equations of motions are not satisfied. Such quantities are said to be trivially conserved.
Then its integral, the associated Noether charge, reduces to the flux of k through the
boundary 9%

[ = . (4.15)

This shows why one can calculate the energy as an integral at the spatial infinity
in general relativity, for which we must discard two coordinates, time and a radial

spacelike coordinate and integrate over a codimension 2 surface, such as 0% in (4.15]).

Now consider a closed (n — 2,0)-form k. Then the surface charge [ s k is inde-

pendent of S, since we can write |, s k — fS2 k = fv dk = 0 where V is the volume
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between S; and S,. In this case, S can be deformed continuously, assuming we do not
cross over some singularity of k. We would expect this charge to be associated to some
symmetry of the theory. This correspondence was stated in the following theorem by

Barnich, Brandt and Henneaux [35].

Theorem 4.3 (Generalized Noether theorem). For any physical theory described by
a Lagrangian density L defined on a spacetime manifold (M, g) which admits global
symmetries, some of which might be gauge transformations, there exists a bijection

between:

e The equivalence class of gauge parameters \(x*) that are field symmetries, i.e.
the variations of all fields ®° under the transformation generated by X vanish on

shell, and
e The equivalence class of (n — 2,0)-forms k that are closed on shell. [21]

Here, two gauge parameters are considered to be equivalent if they are equal
on shell and two (n — 2,0)-forms are equivalent if they differ on shell by an exact
(n — 2)-form. In contrast to the Noether’s first theorem, Theorem [4.2] an equivalence
class of (n — 2, 0)-forms corresponds to a single charge now, because the integral of the
exact (n —2,0)-form would become in an integral over 9(9%) via Stokes” Theorem and
thus vanish. The (n — 2,0)-forms mentioned in the theorem are called surface charge

densities and the charges associated with them are surface charges.

In general relativity, gauge transformations are diffeomorphisms due to the gen-
eral covariance. A field symmetry is a transformation under which the variations of
fields vanish on shell. A diffeomorphism which is also a field symmetry of the metric
must be an isometry of the spacetime manifold. These diffeomorphisms are generated
by the Killing vectors, but in general, a metric does not have to admit any isometries.
Therefore it is not possible to use this theorem directly, instead we are going to look
at the symmetries of a set of metrics that share a common feature, and that feature

will be being asymptotically AdS. We will elaborate on that in Section [1.4.1]
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To explain what we aim in this chapter, let us introduce the variation of the
presymplectic potential mentioned in Section The presymplectic potential @[6P; D]

is an (n — 1, 1)-form, therefore its variation d@ is an (n — 1,2)-form
w[dP,0P; ] = §O[0D; D], (4.16)
which is called the presymplectic form. We are going to link this form with the surface

charge densities, but we need Noether’s second theorem to do that.

Theorem 4.4 (Noether’s second theorem). Let L = Ld"x be a generally covariant

Lagrangian form and " an arbitrary diffeomorphism. Then

oL
dP?

5@ = dS¢ [;(;;qﬂ] : (4.17)

where S¢ is an (n — 1,0)-form proportional to the equations of motion and its deriva-
tives. The equality also holds for other types of gauge transformations where £ is then

replaced by an arbitrary gauge parameter of the other type. [21]

We show this theorem holds for the Einstein-Hilbert Lagrangian density L =

g Rv/—g in ([4.31).
4.3. Noether-Wald Surface Charge

Now we are ready to define Noether-Wald surface charges. Take the variation of

L along any infinitesimal diffeomorphism &

5L = LeL
= d(i¢L) + i¢dL
— (e L@ 2),)
= 0,(6"L)d"z. (4.18)
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Here, we used Cartan’s magic formula Lew = d(iew) + i¢(dw), where d and i, stand for
the exterior derivative and the interior product, respectively. The second term in the

second line vanishes as Lagrangian L is a top form and therefore dL. = 0.

On the other hand, the same quantity can be written using the Second Noether
Theorem. For some (n — 1,0)-form S proportional to the equations of motion and its

derivatives one obtains

6L = %(qﬂ')dgw + dO[L:D; D]
= dS¢ + dO[LD; D]

= 0,5¢d"x + 0,0"[LcP; @|d" . (4.19)

Combining (4.18)) and (4.19) we get

d(icL) = dS¢ + dO|[LD; ]
(6" L) = 9,S! + 8,01 Lc®; D]
0 = 0,(6"L — SV — OF[LeD; ]) (4.20)

The Noether current is defined as J#, the Hodge dual of the conserved (n —1,0)-

form [306]

Jg = ZgL - @[EE(I), CI)] (421)

It is seen from (4.20]) that dJ¢ = dS¢ and it vanishes since S vanishes when equations

of motion hold.

Hence, d(J¢ — S¢) = 0. Then the vector Jg — Sg is trivially conserved, i.e.

conserved even without imposing the equations of motion. When equations of motion
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are imposed J' — S’ ~ J{.

Since Jg — Sg is trivially conserved, it can be written using an exact form, assum-
ing we can apply the Poincaré Lemma. Then J. = S¢ + dQ, for some (n — 2,0)-form
Q¢. A short proof which shows that the Poincaré Lemma can be used is given in [21].
Q: = Qg”(d(”_Q)x)W is called Noether potential or Noether-Wald surface charge, and
it satisfies that J¢' — S¢ = 0,Q¢".

We define the operator I¢ such that Q¢ = I¢(J¢ — S¢) as follows. For any (k,0)-

form w,

1 co 0 0
n—k> 00,£* Odx+

Tewe = we + (higher derivative terms) (4.22)

Then the Noether-Wald charge can be written as

Qe = Ic(Je — S¢)
= [gigL - 156[‘6&(1); CI)] - ]gSg

since S¢ and i¢L do not contain any derivatives of .

Let us give the final result of this section as stated in [21].

Theorem 4.5 (Fundamental theorem of the covariant phase formalism). In the Grass-
mann odd convention for d, contracting the presymplectic form with a gauge transfor-

mation 0¢®", it exists an (n — 2,1)-form k¢[0®; @] that satisfies the identity
w[0eD, 0P; | ~ dk¢[0D; D], (4.24)
where ®° solves the equations of motion, and 6®° solves the linearized equations of

motion around the solution ®'. The infinitesimal surface charge ke[0®; ®] is unique,

up to a total derivative that does not affect the equality above, and it is given in terms
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of the Noether-Wald surface charge and the presymplectic potential by the following

relation

ke = —0Q¢[0D; ] +iO[0D; P] + total derivative. (4.25)

We would like to emphasize that the above mentioned k¢ is not equal to the
surface charge density k in (4.15)), which is an (n — 2, 0)-form and does not contain 6®

terms.
4.3.1. Noether-Wald Surface Charge of the Einstein Gravity

Now, let’s consider the Einstein-Hilbert Lagrangian in n dimensions

1

Llgw] = W\/—_QR (4.26)

To calculate an arbitrary variation of the Lagrangian density one needs the fol-

lowing. Denoting h,, = 09,.,

1
0N/ —g = 5\/—99“”5%”,
59°% = —g*"g"7 59,
6Rocﬂ = V)\((;Fiﬁ) - V5<5F§a),

1
5F())\lﬁ = 59/\p(v,3hpa + Vahp,ﬁ - vphaﬁ)- (427)
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6 VIR V90 P ™)

1
= 267G |37 B9 + [VA(T30) = Va(0T3,)]g"" + Rap(=9"" 9™ dg)

(/1 1
= <§guvR _ Ruu) 59/“, + 5 (V/\vﬁh)\ﬂ + V)\Vah)\a - V)\V)\hg

—VVahM — VsVPhy 4+ VaV 0]

A(Vh — V2h). (4.28)

Now the variation is written in the form of (4.19). Under an infinitesimal diffeomor-
phism & the equation (4.28)) becomes

5L = L V_Iy

——0¢G,y + ——= W — Vrh 4.2
5o €9 +167rG A(V3 V*h), (4.29)

and in this case, h = d0¢g is given by

hp,y = 659;111 = ['fg/w = 2v(u§u)a
B — 2v(u£v)7

h = h* =2V,¢". (4.30)

Since £ is a diffeomorphism we can apply the Noether’s second theorem, Theo-
rem (4.4)), and write the first part of the equation (4.29)) as a total derivative term. Its

derivation is given below, where we use the symmetry of the Einstein tensor G and
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the Bianchi identity V,G* = 0.

oL V=g

—0¢G, = — " h

Sgm €9 = TgaG Y e
/_g NV

= 0,(— g/;ewgu) (4.31)

Thus, in this case S¢ in Noether’s second theorem is given by S¢ = —SW—‘/TC‘?G“”EV(dnfl)M.

The second term in the equation (4.29)) is already in the form 0,0#, yet we can

make some modifications and introduce the Riemann tensor using (V.V, — V,V,)¢, =

@g = fé;;(v hH — NHhY)
_ V=9 wev _ glugrly _ v
= VI, (vre — Vi) - VH(T,6))
= E/Z(Rv N v v[vgu])
_ \S/Z(RWS 1V, V[Vf“]) (4.32)

Hence

5eL = 9,(S! + OL)

— V=9 pv £ v [lwt])
_au< .~ GG &t oo G(R &, + V, Ve

=0, {g ( R4+ V v@)} (4.33)

or equivalently, as seen in (4.19))

6L =0, {g/:( R&* + vV, VI gﬂ1>} . (4.34)
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One can also compute the same quantity as in (4.18)) to get

5L = d(icL) = 9,(¢"L)d"x = 8, (@Ré“) d"z. (4.35)

Then the standard Noether current described in (4.21]) is

= V5 per(@ta), - VI (Rvg, + 0,V @),
I, + 9,V @ ), (4.36)

Either from (4.34)) and (4.35)) or from the result d(J —S) = 0 in the previous

section it is seen

9,0, ( ‘8/; [”gﬂ) d"z = 0. (4.37)

Applying the Poincaré Lemma, the Noether-Wald surface charge with (J—S)* = 9,Q""

is calculated as

Vg VN d" )2 . (4.38)

Q¢ = e

To compute the Noether-Wald surface charge density ke = —0Q¢ +i¢® two more

derivations are needed:

ie® = (€O — 1O (d" 1) 1

\/_ Ho BRHY _ ch vao oV n—2
= LD (Valt™ = V) = € (Voh™ = V)| (" %2) (4:39)
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—0Qe = ( wvagu) (d"%2)
= [5\/_ VI + V=90 Vol + /=g (Vo) (d" )
:LG[ V=997"095, V" E" + NV =g(—9%7 9" 09op) Vul"
V99" 808" + Thy&M)] (d"2)

—g [1 . . o .
"~ 8nG éhZV =RV g 5(FZA)§>\:| (d"2)
= e |2V Ve (VR VA V“h"’\)fk} (@ 22),
o ECR R R VR U T IO W TR

We use the antisymmetry of (d"~?x),, at the beginning and the symmetry of A*” in the
last step. Again by using the antisymmetry of (d"~2z),,, the surface charge density

can be written as

ke = —0Q¢ + ic®

VI [RVVer — 2007V 68 + (VPR — VFRA)E,

167G
+ & (Vo™ — VFR) — EH(V o h"* — V)] (d" 7).,
= VI (gren — opevy et 1 2V, — 26RV 00 4 2B (@),
167G “ “ !
V=0

~ 8xG (%WV&H — Vo + VG, — Vb + f“V”h) (d"22),. (4.41)

4.4. Conserved charges

By integrating the (n — 2, 1)-form k[0®; ®] over a closed surface of codimension
2, for example on an (n — 2)-sphere where the coordinates ¢ and r are fixed, we obtain

the surface charge

FH[5D; B] = j[S ke [6D; ®]. (4.42)
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FH; is a (0,1)-form, which corresponds to the local variation of some charge between
the two solutions ® and ®* 4 §®?. This means that are now on shell, i.e. ®* solves the

equations of motion and d®* solves the linearized equations of motion around ®°.

By using § we underline that we do not know if this expression is a variation of
some charge. If §H, is an exact 1-form in the space of fields then a surface charge He

can be defined. A necessary condition is

OFH =4 (%9 kg[(SCD;(I)]) =6 ]{Skg[(g@;@] — 52]£k5[51q>;q>] =0, (4.43)

for all 61P,0,P € THF,for all ® € F, and it is called the integrability condition. If
this holds and the use the Poincaré Lemma is allowed in the fields space, which we

will assume from now on, we say the charge is integrable, i.e. H, exists such that

(5H§ = ;5]—[5[5(1), CI)]

To define H, explicitly let P’ be a reference field configuration, for example a

background metric g, if we consider gravity. Define H at the point @' as

where v is some path between ®¢ and ®°, and N¢[®] depends only on the reference field
configuration. The integrability condition guarantees that the integral is independent

of the path 7.

If such an H, exists and remains invariant under any continuous deformation of .S,
it is said to be conserved. H is conserved if and only if w[0:®, 0®; @] ~ dk¢[6P; P] =~ 0
so that

H£|sl—H§|52=/}{ kg—/% kgz//dkgz//w. (4.45)
v /51 v/ S2 yJC yJC
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4.4.1. Constructing Charges in Gravity and Asymptotic Symmetry Group

In this section we aim to construct charges for gravitational theories and follow
closely the lecture notes [21]. Since general relativity is non-linear and hard to handle,
we will prefer to use an infinitesimal linearization about a known solution, a background
metric, which preferably admits some number of symmetries. Then, thanks to the
variational bicomplex structure, we take an integral of this infinitesimal charge in the
field space as given in to calculate charges for another metric. A more detailed
explanation can be found in [21]. There are three types of symmetries that are used

to define conserved charges of the gravity theory:

(i) Exact symmetries, symmetries generated by Killing vectors, which imply directly

w[de P, 0P; @] = 0 and give conserved surface charges in the bulk of the spacetime.

(ii) Asymptotic symmetries generated by asymptotically Killing vectors, which imply

w([0eP,dP; P] — 0 as » — oo and give surface charges conserved at the spatial
infinity r — oo.

(iii) Symplectic symmetries, transformations generated by vector fields under which

the presymplectic form w vanishes but are not isometries or asymptotic isometries

of the metric. They give surface charges conserved in the bulk.

We want to make use of the generalized Noether theorem, Theorem , to
define these surface charges. Start with a Lagrangian density L defined on (M, g,.)
and consider the gauge transformations. Gauge transformations are given by diffeo-
morphisms, since the theory is assumed to be generally covariant. To apply the gen-
eralized Noether theorem we need to select the field symmetries. A field symmetry,
defined in Section 1.2 of g,, is a transformation generated by a vector field &* such
that 0¢g, = Leguw ~ 0, by definition. This is satisfied by the Killing vectors of g,,,
however, g, is just a generic metric, hence we can not specify any set of Killing vectors

in general and construct charges.

Instead considering a single metric g,,,, we may restrict ourselves to a set of field
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configurations, i.e. a family of metrics, that have some common property. Consider a
metric g, close enough to a background metric g, such that we can linearize the the-
ory. Assume g, solves the equations of motion and h,,, solves the linearized equations
of motion. The Lagrangian density of the metric ¢, = g + hy is gauge invariant
under any diffeomorphism &* that satisfies d¢hy = Leg,, [37]. If € is also a Killing
vector of g,, then it is a global symmetry of the linearized theory for ¢, = g, + hu
where d¢hy,,, = 0. Such metrics g, give a family of metrics that share an exact symme-
try &, and the corresponding (n — 2) surface charge given by the generalized Noether
theorem, Theorem [4.3]

What we are interested in is using the asymptotic symmetries and the generalized
Noether theorem. Similar to the case above, we start by defining a set G of field
configurations, i.e. metrics, by restricting them to a specific set of conditions, the so-
called boundary conditions. We will explain how these boundary conditions are chosen
and which metrics to be included in GG in the Section 5.2l The allowed diffeomorphisms
in G are the vector fields £# that sends a metric in G to some metric in GG, or equivalently
its action is tangential to G. This way it is guaranteed that when acting on the metrics
in G with £ we preserve the chosen boundary conditions, hence they preserve G. The

allowed diffeomorphisms will form a Lie algebra, as we will see in Sections [5.2] and [5.3]

If we assume that we define G such that its allowed diffeomorphisms are asymp-
totic Killing vectors, defined in , a conserved charge H can be defined. If H,
integrable and gives a finite charge, either it is zero for all g, € G, and in this case the
corresponding diffeomorphism ¢ is called a gauge transformation and it does not change
the physical state but merely defines a coordinate transformation, or it is nonzero for
some ¢, € G and therefore it corresponds to a change in the physical state. The
asymptotic symmetry group is then defined as the following quotient group that gives

the “state-changing transformations”.

Allowed diffeomorphisms

Asymptotic symmetry group = (4.46)

Gauge transformations
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Until now, we developed a systematic approach to define conserved charges, but
let us mention some ambiguities our definitions suffer from. Our definition of charges
depend on the vanishing of the presymplectic form w[d®,0P; ®]. One is allowed to
add an exact n-form K to the Lagrangian n-form L[®], but this would correspond
to total variation to the presymlectic potential ® — O + JK, so it does not change
the presymplectic form w = §O. Similarly, an exact n — 1-form B can be added to
the presymplectic potential form ©, but the corresponding term 6dB added to the
presymplectic form w vanishes when k¢ is calculated for an exact symmetry £. Notice
that the Noether-Wald charge Q is also ambiguous, one can add a closed n — 2-form
so the surface charge densities k¢ are defined uniquely up to a total derivative, though
this does not affect the charges H¢. They change if we change the representative field
® and hence the part N¢[®] in the (4.44). For a more detailed discussion the reader
may check the works [21],36].

4.4.2. Charge Algebra and the Representation Theorem

There is a similar concept, an algebra that contains the corresponding charges.

The set of charges form an algebra under the Poisson bracket defined by
(Hy, He) = 6eH,, = i 6H, = is, ]{ K, [60; @] = ]{ K [5c0; P, (4.47)
S S

where y and £ are arbitrary infinitesimal diffeomorphisms. Note the use of the operator
is, given in (4.2)). Yet, one needs to check if this gives a conserved charge and show
that the algebra is closed under this Poisson bracket. We refer the reader for details

to [21] and state the following theorem without proving.

Theorem 4.6 (Charge representation theorem). Assuming integrability (4.43), the
conserved charges associated to a Lie algebra of diffeomorphisms also form an algebra
under the Poisson bracket {H,, H¢} == 0¢H,,, which is isomorphic to the Lie algebra of
diffeomorphisms up to a central extension, a term commutes with all the elements in

the algebra. It gives a Lie algebra only when this term s zero.



44

4.4.3. A Conserved Charge for BT Z Black Hole

We will give an examples now to demonstrate the calculation of the conserved
charges. Let us show that the conserved charge corresponding to the Killing vector 0,
is M for BT Z black hole, which is interpreted as its mass. Here J is taken to be zero

to simplify the calculations.

If J =0 and 8G =1, the BT'Z black hole in (3.37)) is given by the metric

2

1

d32 = (M — 7;—2) dt2 + —TQdT'Q + T’2d¢2. (448)
M+

Some necessary quantities are the following

1 r? 1
t _ €M — oo — —q = 4.49
g T g + 75 g L V—g=r, (4.49)
. r? . r? s 1
=t rt,=—L1 (4.50)

Now, let h,, = dg,, be an arbitrary variation of the metric. Here, we can only

vary M, then using ¢g"” to raise indices we write

—oM

hy = M, hpp = ———s, s = 0
' (M + )’
M
h'r"r‘ = —5M7 htt = 5—7227 h¢¢ = O, (451)
(M~ %)
SM SM 26 M
h=ht+h +hi= = . (4.52)

r2 r2 r2
M-% —M+% M-=
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With h as given above and & = 0;, we calculate the Noether-Wald surface charge
density (4.41)), taking 8G = 1 and including only the nonvanishing terms, as follows

V=9 (1
ke =¥ (§WV§“ — WOV " + Ve, — ERV R + §“V”h) (d"22),.,

J=a /1
=5 Kihv%t —WTVLE VTR — € (VBT VA V) + th) el
1
+ (§hvt£t — W'V + Vth”&) (dx%t}

:_V,/T_g |:2 TT’I‘ttSt hrrl-\ttgt +grr(arhtt + Fithtt i anthtt)gtgtt

o gt( hrr + Fr BT F:thtt + F;¢h¢¢ + F:rhrr + Firhrr + F¢Thrr)
+£'g"" 0 h — éhgttl—‘:tgt +RTRE — g " (TR + TR gu) | (d)er
v—g (1
—yJ (—5M) (dz)yr
T r

:5_Md¢ (4.53)

where we directly calculated using the previous results (4.49)), (4.50)), (4.51)), (4.52) and

used our convention for (dz), = ——d¢ taking the orientation as €;4 = 1 in the last

2111
step. Then the corresponding Noether charge

SH — / v %dqb oM (4.54)

is integrable and H = M.
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5. ASYMPTOTICALLY AdS; SPACETIMES

In this chapter we introduce the notion of asymptotically anti-de Sitter spacetimes
for which there are two basic approaches in literature. We will briefly review some
historical works and end the chapter with a glimpse at the recent work of Compere,

Song and Strominger [7].

Asymptotically locally AdS spacetimes (AlAdS) are solutions of the vacuum Ein-
stein equation (2.2)) with A < 0 that can be conformally compactified as explained in
Section . This approach is used in [13}14,16]. Here, the conformal structure is not
restricted, hence the boundary metric and the boundary topology are free. It gives the

most general definition of such spacetimes.

The second approach defines asymptotically AdS spacetimes by setting boundary
conditions for the metrics. These conditions should satisfy a list of properties we will
see in Section They may give specific restrictions on the topology of the boundary
as in [38,/39] or choose specific boundary coordinates and boundary metric |1,2,7].
Also by giving a set of allowed variations they determine the behavior of the metric
components at infinity, and hence they are called the boundary conditions. Note that
such boundary conditions fix the boundary topology as a result. As seen in Section
the conformal boundary of AdSz,; has the topology R x S9!, and the definitions we
consider in this thesis include this as a boundary condition. The metrics then approach
to this topology. The difference between these two approaches is emphasized by adding
“locally” in the first definition, since it does not restrict the topology of the boundary.

Note that AAdS spacetimes are AIAdS, but the converse is not always true.

We will start with AlAdS spacetimes and present a result proven in eighties by
Fefferman and Graham [3|, which is a very useful tool in studying AlAdS and AAdS
spacetimes. We will give a simplified version of the proof that Fefferman-Graham

expansion terminates in three dimensions. In the next sections, we will review the
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properties of the AAdS metrics that obey Brown-Henneaux [1] and Compere-Song-
Strominger boundary conditions [7], find the most general metric that obeys these
conditions, their asymptotic symmetry groups and corresponding conserved charge

algebras.
5.1. Fefferman-Graham Expansion

In 1985 [3|, Fefferman and Graham asked if one can find a Poincaré metric on a

manifold, given a conformal structure. Their set up is as follows.

Let N be an d-dimensional manifold with conformal structure [g] of arbitrary
signature. Create a new manifold M = N x [0, 1] by adding a new coordinate r such
that » = 0 gives N = 0M. The problem is to find a Poincaré metric g on M such that

1) [g] is the conformal structure on the boundary for the metric g,

2) Ry = —A

)i

v

They concluded such a metric can be always written in a suitable coordinate

system (21, ..., 2% 1) as

§= 1 [dr + gy, r)da'da] (5.1)

and wanted to find the explicit form of g;;(z,r) as an expansion in r.
Note that if any diffeomorphism f of M that fixes N and g is a solution then so
is f*g, the pushforward of g under f. They added a new condition to narrow the scope

of their search:

3) For all 1 < 4,5 < d, g;j(z,r) is an even function of r, when written in the

form ((5.1]).
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We refer the reader to Theorem 2.3 in [3] and write it following [14,21]:

Theorem 5.1. Any asymptotically locally AdSqy.1 metric can be brought into the fol-
lowing form mear the asymptotic boundary

2o, R o
ds® = —dr® + ﬁg(o)ijdxldxj + O(r), (5.2)

r2
where r is a spacelike coordinate and the asymptotic boundary of this spacetime is at
r = 0. The metric goa %5 a representative of the chosen conformal structure and

determines the behavior of the metric at the boundary.
The expansion of g;;(x,r) in (5.1]) is given explicitly in [40] for an arbitrary d.
Letting p = r2, the metric ((5.1)) becomes

dp* 1 D
ds* = [? (4_p2 + ;gij(a:, p)dx d:zcj) : (5.3)

They showed by imposing the Einstein field equations to (5.3]) one gets

gz, p) = gy + P92y + -+ + gy + hayp™*logp+ . .., (5.4)
where g(), - . -, 9(), ") depend only on 2 and the logarithmic term appears when d is
even. Given a metric g one can determine g(a), ..., g—2) and h(g) in terms of gq by

solving Einstein field equations order by order in p [40]. Here the boundary metric g
is free and when the boundary metric and the set of boundary coordinates are chosen

they determine the topology of the boundary.

The Fefferman-Graham metric (5.3 takes the form

ds* = ﬁdTQ + r_2 it ﬁ it da'da? (5.5)
- r2 12 9(0)ij r2 9(2)ij cee ) .

4
if we use p = —. The spacelike boundary of this metric is now at r — oc.
r
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In three dimensions the Weyl tensor vanishes, as we showed in Section Sk-
enderis and Solodukhin showed in [41] the following theorem, which we will use for

AlAdS3 case.

Theorem 5.2. If the Weyl tensor is identically zero, the Fefferman-Graham expan-
sion (5.3) of an AlAdS4.1 metric terminates at the second order

9(x,p) = g0 + P9 + P9 (5.6)
or
_ P ~1 P 1
9= (1 + 59(2)9@) 9(0) (1 + 59(0)9(2)> (5.7)
with
12 1
95 = 75 Ry — mR(O)Q(O)ij) (5.8)
if d # 2 and
1 l2
Tr(90)92) = 5 o),
%1
925 = 5 (GRo 90 — Boy), (5.9)

when d = 2. Here, R denotes the curvature of the metric goy and Tr(M) denotes
the trace of the matriz M.

Proof. This result is given in [41] with only few computational details. We demonstrate
this result in detail using their method for d = 2 and a boundary metric g which is

Ricci-flat, i.e. Ry = 0.

Start by picking a specific representative g of the boundary conformal structure.

Since the examples we will consider in this chapter are Ricci-flat, that will be enough
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for our purposes. We choose to work with » = |/p coordinate in (5.2). Let [ = 1 for
simplicity, which corresponds to taking A = —1 in (2.2) and it can be brought back
through dimensional analysis. Using (5.4)) we start with the metric below.

12 . .
ds® = ﬁ(d’r’2 + gij(x, r)dx'da’), (5.10)

9= g0 + gayr + g(g)r2 + hr?logr + g(g)r3 + g(4)7"4 4. (5.11)

Christoffel symbols, Riemann curvature tensor and Ricci tensor of metric (5.10) can
be calculated in terms of the g;; and r. In the following, prime denotes 9/0r, V¥ is the

covariant derivative with respect to g for r fixed.

1 A
F:r:__ FZZZOZFZTT
T
s 1 1 / i 1 7 1 ik 1
Lij = i 59 L= —;5j + 99 Ik
i = Li(9) (5.12)
) 1 1 1 1
R;.; = 29 + 2—rg§j - §9§} + Zg}kgklgfi

. 1
ijk = _§(V?9§k - Vig;j)

%

= jkz(g)—p(ékgﬂ—@gjk)JrZ(%g}z— 195k + 9" 9t — 9" G 9ir)

= 109" Gl = 97 G 9)
n 1 1 1 1
Rij = =305+ 5-((n = 1)gi; + 6" ing:5) + Rij(9) = 5955 + 599" 91; = 79" 9l
n 1 . 1, 1,
Ry = =5+ 52979 = 597955 + 79" 99" dl,

1,
R = 59" (Vg — Vi) (5.13)



o1

The Einstein field equations ([2.2]) then becomes

1 1, 1
5979 = 59795 + 797 9519" 91 =0,
1 7
§gj(vggm ngw) =0,
1 kl 1 1 1 kl 1 1 kL 1
—(9i; + 9" g9i5) + Rij(9) — 595 + 599" 915 — < 9" 9mdi; =0. (5.14)

2r 2 2 4

We will solve these equations order by order in r. This is done by differentiating
the equations with respect to r and then setting r = 0. To do this (5.14]) can be written

in the following form for convenience

1
g gm +r(=g' gzg + 29w9]k9kl922) =0, (5.15a)
(vggzk vkgz]) Oa (515b)
1
Gis + 9" gigis + v (2Ri5(9) — g + 9ing"™ 91y — 59" 9n9l;) =0 (5.15¢)

We can replace V¢ by V(| the covariant derivative of 9(0), since VI — V© vanish when
r = 0 and does not affect our calculations. The inverse metric can also be taken to be

equal to the inverse of the boundary metric, g" = g%), for the same reason.

We will eliminate a term in the expansion and move on with the new form of the
metric, then eliminate another term and repeat this process until reaching (5.6)). It is

easy to see that gq) = 0. With r = 0 the above equations give

gijg(l)ij =0,
i 0 0
g ](Vé )g(l)ik - V/(f )g(l)ij) =0,

9yij + gklg(l)lkg(O)ij =0. (5.16)

The first and the last line lines together show g(1);; = 0, so g is in form

9= g+ 9or* + hr*logr + gar® + gayrt + ..., (5.17)
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/

g = 2r(g@) + h) + 2hrlogr + 37’2g(3) + 4r3g(4) +...,
q" = 2(g(2) + 2h) + 2hlogr + 6rges) + 127“29(4) +...,

2
J" = ;h + 6g(3) + 24rguy + . ..

Differentiating we get
—%Tr(g‘lg’g‘lg’)JrT[QTT(g‘lg’g‘lg”)—Tr(g‘lg”’)—TT(g‘lg’g‘lg’g‘lg’)] =0, (5.18)
which gives for r =0
g7hi; = 0. (5.19)

Thus, h is traceless, which will be useful in the following calculation. We differentiate

(5.15d)
g5 —=Tr(g g 97 9)gi; + Tr(97 9" )gi; + Tr(g'9)gi;
1.
+2Ri5 — i + ging™ 91, — 5Tr(979)dl;
2Ry — 917 + 959" 91 + 99" G ™" 90
1 1. 1.
—5Tr(97 997 9)gl; = 51979 )gi; = 5Tr(97 9 )giy] = 0. (5.20)
Then for r =0
d"g i+ Royij — hij = 0 (5.21)
(2)k19(0)ij (0)ij ij : .

The last term vanishes when contracted with the inverse metric, hence we get

1
" 9o = —53(0), (5.22)
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Now we write ((5.22)) back in (5.21]) to get
1
Roi — 5090 = hij- (5.23)

This shows h;; is the traceless Ricci tensor in two dimensions, but that is identically

zero. Note that we did not use our condition R = 0 yet.

Until now, gy and the logarithmic part h are eliminated from the metric ([5.10])

for any boundary metric g, then g can be written as
9= 9o+ 9(2)7“2 + 9(3)7’3 + 9(4)7“4 +.... (5.24)
Taking the derivative of ((5.15b|) at » = 0 we obtain
g7V 2g0pn — Vi 2902)5) = 0. (5.25)
By using and Ry = 0 condition, the second term vanishes and we have
g7V (2902))k = 0. (5.26)
Hence, the covariant divergence of g2y with respect to g() is zero. Note that for

Ry # 0 there would be a nonzero term containing the covariant derivative of R on

the right hand side.
Differentiating twice we get
Tr(g~'g'gg") = Tr(g~'g") = Tr(g~'g'g " g'g"g) +r[...] =0, (5.27)
and by evaluating it at r = 0 we see

97 93115 = 0, (5.28)



thus g(s) is traceless. We take the second derivative of (5.15¢])

2Tr(g7 g9 d'g7g") = 3Tr(g7 g'97'g") + Tr(g~"9")]g

3 B o 1
+5[Tr(g g = Tr(g'g'g 19’)]9£j+5T7“(9 s

2R — g + 959" 915 + 9" Gimd ™" G + 9ing™ gl + [ ] =0,

and plug in » = 0 to have
9" 9@mgi; — 93y = 0.
But the first part is zero by , therefore g3y = 0.
So far, we eliminated g(;), h and g(3). Now g is in the form
9= 90+ 92 +gar'+...
Third derivative of evaluated at r = 0 gives
g(Z)jkgklg@)li - 49(4)]'1‘ =0,

which implies gy = %g(z)ikgklg@)lj-

o4

(5.29)

(5.30)

(5.31)

To see that the terms after g are zero, we will switch to another coordinate

system. But we could have keep on calculating using r, and we would get gi) = 0
from the fourth derivatives of ([5.15al) and ([5.15¢)), and the rest would also vanish after

continuing this process. However, it is easier to see that this expansion stops at g4 if

the radial coordinate p = r? is used. From now on, prime will denote derivative with

respect to p. In the analogue of the equations ([5.15)) for p, (5.15a]) becomes [41]

/

L,
g/_§g/g 1gI:O.

(5.32)
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By differentiating it and using (¢7!) = —g~1¢'g"! it is obtained

g" =0. (5.33)

This shows the last term in the expansion is p?, which is the main result shown by

Skenderis and Solodukhin in [41] for an arbitrary boundary metric g(). O

Summing it up, for a boundary metric g with Ry = 0, the expansion (5.10)

stops at the second order and

1
9(4yij = 19(2)ik9klg(2)lj, (5.34a)
gklg(2)kl =0, (5.34b)
gijvg‘O)g(Q)ik =0, (5.34c)

must hold for any choice of boundary coordinates z‘. We will use this result in the

following chapters.

5.2. Brown-Henneaux Boundary Conditions

In this section we want to present how Brown and Henneaux [1] defined asymp-
totically AdS3 spacetimes, similar to the four dimensional case studied in Henneaux
and Teitelboim’s paper in 1985 [2]. In this approach AAdS; geometry is defined by

setting a set of boundary conditions that satisfy the following:

(i) The boundary conditions must be invariant under the symmetry group of AdS,
i.,e. AdS Killing vectors should send an allowed metric, a metric that obeys the
boundary conditions, to another allowed metric.

(ii)) The symmetries of this set of metrics (the asymptotic symmetries) must give

well defined conserved charges, and their generators should obey the symmetry

algebra of AdS.



26

(iii) Interesting solutions must be included in the set of metrics, such as BT'Z black

hole (3.37) in three dimensional case.

By setting boundary conditions we define a set GG of allowed metrics. In the set

G, Brown and Henneaux wanted to include the metrics of the form

r2 — A?

l2

2 -1
ds® = — <a2 + %) dt* + 2Aadtdd + <a2 + ) dr® + (r* — A%)d¢*. (5.35)
Here, A and « are arbitrary contants parametrizing this family of metrics. Note that

these metrics behave like the static AdSs metric (3.7) as r — oo.

Starting with ([5.35)) in GG, we want to find a set of boundary conditions. For them
to satisfy condition we should get a metric in G when we act on the metrics ([5.35))

with symmetry transformations of AdSs, which are generated by so(2,2) elements

in (3.21). In static coordinates (3.6) these are

l

VRL P2\t It
lsinicos¢8r+r(1+—) cos—cos¢8t——sinzsin¢8¢ ,
r
[ t It
cosismgédg—i——smzcos $0p |
r

t
[ cos i sin 0, — r

2\ 1/2 2
t
Juy:(l—l—%) lsinzsin@%—i—r(l—i—r—

VR P2\t It
lcosicos¢8r—r 1+—) sinZCOS(b@t——cosZsinqﬁ% ,
r

ot It
sin 1 sin ¢0; + — cos 7 €08 ¢8¢] ,
r

oy = . (5.36)

Juy and Jy, are the Killing vectors of any metric in this family, so the met-

rics (5.35) remain invariant. When we calculate the Lie derivatives of the metric
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components of (5.35) under & = Jyu, Juy, Juz, Juy We see they change as follows

Lfgtt = (’)(1),
Leger = O(r™?),
Legry = O(1),

Legos = O(1). (5.37)

where the big-oh notation O(r*) represents terms up to order r*.

Then any metric in the form (5.35)) is sent to a metric with components

r
Git B +0O(1),
Gir = O(T_S)a
Jtp = 0(1)7

[? _4

Grr = T_g + O<T )7
9re = O<T_3)7
Gop = 1>+ O(1), (5.38)

and note that the metrics (5.35]) already obey these conditions. These are called the
Brown-Henneauz boundary conditions, and the set GG of allowed metrics contains all

metrics that satisfy 5.38 which actually can be explicitly parametrized as we do in the
next section.

5.2.1. Banados Metric

Here, we will derive the most general metric that obeys the Brown-Henneaux

boundary conditions (5.38). Let g,, be such a metric and write it using Fefferman-
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Graham expansion ([5.5)) with boundary coordinates ¢ and ¢ we used above. The

Brown-Henneaux boundary conditions then imply
gy = diag(—1, 1), 390y = 0, 0g(2) = arbitrary. (5.39)

The boundary coordinates are t € R and 0 < ¢ < 27, so these conditions also restrict

the boundary in the shape of a cylinder.

t
Let us introduce the light cone coordinates on the boundary z* = ] + ¢ such
that g();da’de’ = —dt* + 1*d¢ = —1>dz"da~. Using Theorem [5.2] the metric (5.9)) is

written in the form

ds2—£dr2+r—2 .,+E "—i-ﬁ N detda? (5.40)
T2 2 \ 9O T 59 T 194 ) .

where g(2),; and g(ay;; satisfy (5.34)).

We already know gy and we only need to solve for gy since g4 will then be

given by (p.34al). The equation ([5.34b|) gives 0 = 2g™~g(2)4— and implies g()4— = 0.
The Christoffel symbols of g are all zero, so by (5.34c|) we write

_ 0 — 0
g" V(_)g(2)++ =0, g +V5r)g(2)—— =0,

0-g@)++ =0, 0+ 9@2)—— =0, (5.41)

and see that g(p)+s must be a function of 2*. We can then define go)14 = I*Ly(27F)

and after calculating g in (5.34al) we prove the following theorem.

Theorem 5.3. A three dimensional asymptotically AdS metric defined by Brown-
Henneauz boundary conditions (5.38) can be written as

o s 2, 72 2 , I
ds® = T—er +PL_(dz™)* + PLy(dz*)* + (—r* — ﬁL_L+)dx_dx+, (5.42)

using Fefferman-Graham coordinates (5.5)) with x* = % + ¢. In a more compact form
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we can write

2 1o, + el e
ds® = —dr® — | rdz" — I"—dx rde” —l"—dx" |, (5.43)
r r r
where r is the radial coordinate, 0 < ¢ < 2w, t € R and Ly and L_ are functions of

' and x~, respectively. This metric is called the Banados metric.

It is worth mentioning that the BT Z black hole ([3.37)) is represented here when L.
are taken to be constants. So the Brown-Henneaux boundary conditions (5.38)) satisfy
condition It is again seen here that each metric in this form has a cylindrical

boundary at infinity, therefore they approach globally to the AdS;3 spacetime.
5.2.2. Asymptotic Symmetry Algebra

Recall that a Killing vector £ of a spacetime is defined by L¢g,, = 0. They
generate the continuous symmetries of the spacetime. Similarly we can define vector
fields which does not preserve a specific metric as a Killing vector does, but preserves
our set of metrics G, or equivalently the boundary conditions. A vector field ¢ is said

to be an asymptotic Killing vector if it satisfies

Leguw = O(0gum), (5.44)

Note that this is what was defined as an "allowed diffeomorphism” in Section [4.4.1]|
Under the flow created by an asymptotic vector field the metric does not remain the
same as in standard Killing vectors but it may move to another metric within the set
G. Hence the number of asymptotic Killing vectors is much more as compared to the
Killing vectors whose maximum number are limited by %n(n +1). Our aim here is to
find the set of asymptotic Killing vectors of the set G, the set of metrics obeying the
Brown-Henneaux boundary conditions .

Using Gaussian normal coordinates at the boundary we can write the Fefferman-
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Graham expansion ((5.5)) using p = llog 7 as
d82 = dp2 + (e2p/lg(0),~j + 9(2)ij + 6_2p/lg(4)ij) dxzdxj (545)
The boundary is now reached when p — oo.

In these coordinates Brown-Henneaux boundary conditions ({5.38]) are given by

90++ = 90— =0, go+- = 90—+ =—1/2, g0 =0, gy = arbitrary,

(5.46)

+

where the light cone coordinates x* in (5.43)) are used. An asymptotic Killing vector

¢ should satisfy

Legpp =0, (5.47a)
Legos =0, (5.47h)
Legis = O1), (5.47c)
Legio = O(1). (5.47d)

Note that the equations (5.47al) and (5.47b|) preserve the Fefferman-Graham form
of the metric, the components g,, and g,. are kept unchanged. By ([5.47c) and (5.47d]),

the other Brown-Henneaux boundary conditions in ([5.46)) remain invariant.

Now we solve for £&. From ([5.47a)) it is seen £” does not depend on p coor-
dinate, hence it can be written as a function of z*, then ¢# = f(z",27) for some
function f(x*,27). Write (5.47b)) by denoting the boundary coordinates x* and =~
with 4,5,k . ..

0= 0;8” + g;;0,& = 9" 0,8" + apfk- (5.48)

Then we can write ¥ = — [ ¢*0,6 dp+ €* (2", 2 for some functions e*(z*,27). The
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0;£P term in the integral is of order p°, and the inverse metric is in the form

gt =0 =g, and g' =0(e "), (5.49)

therefore £ = ¢ (at,27) + O(e~2/").

Until now we found the most general diffeomorphism that preserves the Fefferman-

Graham coordinates and that satisfies

gp - £p<x+7 x_),

¢ =t a) + 0¥/, (5.50)

Writing (5.47¢]) explicitly

£, 94s + €101 gan + € 0_gan + 2922006 + 2g,0.6F = O(1), (5.51)

we see the middle terms on the left hand side are of order p°. We have g;; = O(e?/!)

easily seen from ([5.45)), where ¢, j denote boundary coordinates. Hence we write

0LET = O(e 2, (5.52)

Combined with ([5.50) this means O+ (2", 27) = 0 and therefore

¢t = E(2%)o + O(e7 /). (5.53)

The equation ((5.47d)) gives

§'0ug - + 941 0-E +9- 0.6 + g1 (0467 +0-67) = 0(1), (5.54)
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Here, we see the second and third terms does not contribute by (5.52)). Recalling
¢ =0(1) = ¢ and g, = /' ¢'? + O(e2/Y), the contributing terms in (5.54) are

fp%‘ﬂg”” L e, et 1 0.67) = O(1)

= fp — _é(8+€+ + 8_6_) + O(G_Zp/l)~ (555)

From (5.53)) and (5.55) we derive that the asymptotic Killing vectors of asymp-
totically AdS spacetimes that obey Brown-Henneaux boundary conditions are given in

Gaussian normal coordinates ([5.45)) as

et e ) =€ (aM)0y + e (7)) — é(@+e+ +0_€7)0, + O(e ). (5.56)

We can calculate the Lie brackets of these asymptotic Killing vectors ignoring the

O(e~2¢/") terms

l
Elet ) &6 )] = [ 0s + €0 = 5(0:6] +0-€1)0,, (1 = 2)]

l [ -
=60+, €304] - §[€Ta+’ 013 0,) — §[€f3+7 0-€; 0]
l [
+ [61_8_, 62_8_] - 5[61_6_7 a.;.E;ap] — 5
l

- 5 {[a-i-e-li_aﬂ) 6;8-1—] + [8—61_807 6;6.1_] + [a-‘rei—apv 62_8—]

10—, D_€; 0]

+0-€1 0y, 0]}
= (e 0ye5 —€30,€/)0 + (670_€; — €3 0_€7 )0
{
— (a0 — e + e 02e; — € 02€1)0,

=&((6/ 0163 — €3 04€f), (€706, — €30-¢7)). (5.57)
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This shows that these generators form an algebra as p — oo and it is called the

asymptotic symmetry algebra.

Notice that £t = &(et,0) and £~ = £(0,e") commute with each other. This
means they give two infinite families of independent generators. As the functions e
and €~ live on the cylindrical boundary of AdSs, if ¥ ~ z* 4 27, we may introduce
their Fourier modes

ct(at) ~ e =i o,

e (z7) ~ e, =ie™ 0_, (5.58)
and use them to write two families of vector fields

5+ _ €(€+ _ iemaz*) _ ieznx+a+ + §neznx+ap + O(€_2p/l),

o L . .
£, =&(e, =1e™ ) =ie™ 0_ + §nem‘r 0, + O(e=2/), (5.59)
Since £t and £~ commute for any €™ and ¢~ their Fourier modes will commute, too,

(6> &l = 0. (5.60)

n?

Thus with O(e~2//!) terms omitted, there are two algebras each satisfying

, I .
8:|:7 iezmmiaﬂ:] + é[ieznziai, me'me
[ ——
_[neznm ap’ meme ap]

4
= (n — m)ie "™, (5.61)

+ +

3]

[ &l = lie™

4 [neinmi ap) ieimzi a:t] 4

DO | =~

This is called the Witt algebra. Thus the families of vector fields in ((5.59) form a Lie

algebra which is a direct sum of two subalgebras isomorphic to the Witt algebra. By
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investigating the subsets {¢%, &, &5} it is seen each subalgebra contains the sl(2, R)

thus their union forms an algebra isomorphic to
sl(2,R) @ sl(2,R) ~s0(2,1) ®s0(2,1) ~ s0(2,2), (5.63)

and it contains the exact symmetry group of AdSs, so it satisfies condition | (ii)| par-
tially. The conserved charges should also be calculated to show their algebra satisfies

condition We will use (4.42)). For that, the Noether-Wald charge density (4.41))
is needed. An arbitrary variation of the Banados metric (5.43) is given by

Oguu
oL_

0w
uy — 6guy - m

h 0L, + OL_. (5.64)
Using coordinates in metric ([5.43)), the asymptotic Killing vectors {* and £~ are given

by

1
{F=e"(2)0; - £3+€+5r + —|—ﬁ8ie+8, +0(r™, (5.65)

1
£ = e (z7)0. — ga_e—ar 455020+ 007, (5.66)

and we get

5§igrr = 0, (567)
5E:tgr:|: = O, (568)
OS¢+ iy = Lergry = 1*0e+ Ly + (subleading), (5.69)
Se-g— = Le—g_ = 1?5 L_ + (subleading), (5.70)
d¢xg4— = (subleading). (5.71)
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When we calculate charges densities that correspond to these vectors and inte-
grate them over a codimension 2 surface with r and ¢ coordinates fixed, i.e. on a circle

St at fixed ¢ and r, we get the following infinitesimal charges (4.42)

2

SH* = %g 1 K¢+ [h; g] = # i SLietdo, (5.72)

which are clearly integrable. We can introduce their Fourier modes as we did for the
asymptotic vectors. But here we need to make a decision. We need to choose a reference

metric and assign some charges to it. The Fourier modes of the charges are given by

[ 2m N
T=—— [ Lie™d 5.73
m 8'/TG 0 :te QS’ ( )
when the charges of the Banados metric with L, = L_ = 0 are taken to be to zero.

Their Poisson bracket can be calculated using (4.47)) as

l 27 ]
{HE H} = (5&%[—[% = f ke [0, 9] = %/ 5£$Liezmwid¢, (5.74)
0

Sl

but we need 0.+ Ly to calculate them. We can check how the metric components g,,,
vary under ¢* in (5.65) and deduce §,;+ L. from there. This way we find out that the

variations are

1
SexLy = €0y Ly + 2040164 — 581% (5.75)

Ses L+ = 0, (5.76)
hence we have, as explicitly calculated in [21],

{H* H7} =0, (5.77)

I
H{HE HEy = (m—n)HE,, + @m%mmo, (5.78)

for all n,m € Z. This is a direct sum of two copies of Virasoro algebras. Note that as
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mentioned in the charge representation theorem, Theorem [4.6] this is a central exten-
l
sion of the Witt algebra(5.61)) with the additional term @m?’émmo. Conventionally
c

the coefficient is taken as ﬁm35m+n’0 where ¢ is called the Brown-Henneaux central
charge

3l

c=—. 5.79

50 (5.79)

So we see our boundary conditions give nontrivial integrable finite charges, so they

satisfy condition | (ii)} too.

This result is a precursor of the AdS/CFT duality [4] since the algebra of the
Fourier modes of the conserved currents on the 2-dimensional C'FT defined on the

worldsheet of strings is also given by the Virasoro algebra (5.77]).
5.3. Compere-Song-Strominger Boundary Conditions

Now we will study the boundary conditions for AdS3 that was considered by

Compere, Song and Strominger |7] in 2013, using their notations.

Let M be a three dimensional manifold with coordinates (r, ¢, ¢) with ¢ ~ ¢+ 2,
and switch to the light cone coordinates t*¥ = t & ¢. The Compére-Song-Strominger
(CSS) boundary conditions are given by

l2

gr =5+ o@r ™), (5.80a)

gre = O(r™?), (5.80D)
1?r?

Gr-=-—+ o), (5.80c)

g++ = (9+P(t+)l27"2 + O(TO), (580d)

g =4GIA +O(r 1), (5.80e)

where A denotes an arbitrary constant and the function 9, P(¢") is periodic. These
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conditions can be relaxed by allowing A to vary, and this case is explained in Appendix

B of [7]. Tt is easily noted how CSS boundary conditions (5.80) differ from the Brown-
Henneaux boundary conditions (5.38]), considering (5.80d)) and ([5.80¢]). We also notice

that they both have a flat boundary metric g, the Christoffel symbols for g are all

. 0)— = .
zero in Brown-Henneaux case, whereas Fil = —9% P in CSS.

5.3.1. The General Solution

For pure gravity in three dimensions, one can choose the following Fefferman-

Graham coordinates to work with
2 I? 2 2 2 1 1
ds” = —dr* + P { goa + —39@a0 + 9@ | » (5.81)

then the boundary conditions ([5.80)) fix

4G - 1
Jo--=0, go--=78  go++=0:L  Jo+- =3 (5.82)

Recalling the relations given in (5.34)), we can calculate each term in the metric (5.81]).

Using ((5.34c]) and ([5.80€) it is seen

8,g(2)+_ = 0, (5.83&)
4G

a_g(g)++ + (9+g(2)+_ + 3_2FPTA = 0. (583b)
We conclude that g(o)+— must be a function of t* by (5.83a]). Since g is traceless
by (5.34b), g@2)+- = —%A&FP. Plugging this result in (5.83b)) we get 0_g(2)++ = 0,
hence it is also a function depending only on ¢*. This function is conventionally given as
924+ = 2E(L(t*) + A(8+P)?) in [7]. The remaining terms are computed from (5.34a)
as

16G% - - _
9H++ = 12 AL, P, Jay+— = —5AL, (5.84)
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and the metric (5.81]) becomes

12 _ _ _
ds? = —dr® = Prdtt(de” — 0. Pdt") + AGUL(dE™ ) + A(dt™ — 0, Pdt*)
164>
-

ALdtt(dt~ — 0, Pdt™). (5.85)

This family of metrics contain the BT'Z black hole with M = AT“:“ and J = A — L,
when O, P vanishes and L is constant. The interpretation of this metric as a BTZ
black hole and the physical meaning of P and L is explained in [7] for the interested

reader.
5.3.2. Asymptotic Symmetry Algebra

We calculate the asymptotic Killing vectors using ([5.44) as follows:

L —QZ2 Ler 9, =04
¢Grr = T—Q[—;g + 0, =0(r7)
= —%5’” + 0,6 = O(r ?). (5.86)

Then ¢ = rf(t*) + O(r~1), for some function f of t*. Let a,b,c € {+,—}.

l2
Legea = 9a0:" + 50 (nf () = O(~)

l2
= 050"+ ?g“caaf =0(r?). (5.87)
where the first line is contracted with ¢g*. Then & = h°(t*) — [ Lg2d, fdr + O(r?)

for some 2-vector h¢ whose components depend only on t*. We will investigate the

following equation for each order with respect to r

/:f.ggab = Srargab + gcacgab + gacabfc + gbcaaéc = O(TO)' (588)
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Then the r? terms must cancel each other, hence

0 =70, (r’goyas) + h°0c(r’goya) + 7°9(0)acOsh" + 72 g(0)pc0ah
= 2fg©0yab + h°0cg(0)ab + 9(0)acOph” + g0)pcOah”
= 2f90)ab + Ln9(0)ab
= 2f g + (VO + Vi ha). (5.89)

After contracting the last line with g%’) we get f = —%Vgo)ha. It can be plugged it

in (5.89) again to see
VOh, + V7 h, = VORI g0 (5.90)

(0)+

Hence for a,b = —, recalling I' = 0 we have

0=08_h_—T19%,

= 0-(gio)-+h"), (5.91)
so that h™ = T (¢t1).
Let us look at the r° terms in (5.88)) for a, b = —. Only the last two terms in (5.88))
contribute:
0= 29708750
= g@)--0-h", (5.92)
hence h™ = h™(tT). We can now calculate f in terms of h* as

1 1
f= _éng)ha — —§8+h+. (5.93)
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Then the components of an asymptotic Killing vector are

£ = —£8+h+ +O>r 1), (5.94a)
l2

Er=n"(t") - / —g"" Ou fdr, (5.94b)

E=h(th) — gg“(?afdr. (5.94c)

We can calculate the subleading terms of ¢+ and £~ using the inverse metric g%

a 1 al 1 ac
g b= W(g(é’) - 59(0)9(2)cd9?g) + ). (5.95)

Then we see

=hT+ 00", (5.96)

as g and 0-9;h* vanish.

Pl 1 1
f_ =h" — / ? {Wg&_) + O(T_4):| 8a <—§8+h+) dr

_ I - _
=h" + / Tﬁ[g(ojaih+ + gy 0-04 1T Jdr + O(r™)

_ 1 _
since g, = —2 and 0-0:h* = 0.

In [7], the functions A and h~ are denoted by € and o, respectively. The asymp-

totic symmetries are then generated by

£(€) = ()0, — L (1), + 2—;6"(1&)6_ +OrY, (5.98)

(o) = o(t)o_ + 0. (5.99)
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These vector fields give a Virasoro algebra and a U(1) current algebra [7].

Using (4.41) and (4.44)) we calculate the corresponding charges given in [7]

Q=5 [ L) ~ M@)o,
Q, = % /27r o(tT) (A + 240, P(t1))de. (5.100)

We can use the Fourier modes for the functions € and o to write two families of vector

fields and charges

intt T, intt 1 intt -
& =e™ 8+—§ze ! ar—Q—ﬂe Po_+00™ (5.101)
M = e O_ + O (5.102)
_ 1 [ _ _
w=go [ €"TLEET) — AQLP()))do, (5.103)
T
2
p, — % (A + 200, P(t1))do (5.104)

and calculate the charge algebra using the variations

Se. L =0 E+2mi+@ (5.105)
&n — U+ 8G .
J¢, (0, P) = ™" [0 P + ind, P), (5.106)

that we derived from the variation of metric components as we did for Brown-Henneaux

case. We see the charges obey

H{Lm: L} = (m = 1) Ly + 5 S (5.107)

{£ } = _an+n7 (5108)
k

{P } = KM m5m+n 0, (5109)

where ¢ is the Brown-Henneaux central charge (5.79)) and kx s is the Kac-Moody level
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kxm = —4A. The relation (5.107) shows that £,, form a Virasoro algebra as in ((5.77)
and ([5.109) gives a Kac-Moody algebra. For a review see . Hence we get a semidirect

sum of these algebras as the charge algebra for C'S'S boundary conditions, and showed

that C'SS boundary conditions also satisfy conditions| (i)l (ii)| and | (iii)|
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6. CONCLUSION

Two fundamental ways are used in literature to define asymptotically AdS space-
times. It is common to use the Fefferman-Graham expansion to derive the form of the
metric of the spacetime near the boundary. In this method, one starts at the boundary
and extends it smoothly into the interior. However, there is no guarantee that it closes
to a smooth interior, in general. It might also expand to another boundary at the infin-
ity. In three dimensions, it is much easier to find the explicit form of the metrics since
the expansion stops at the second order. We have shown the most general metrics for
Brown-Henneaux and Compere-Song-Strominger boundary conditions. On the other
hand, this question remains to be investigated for other sets of boundary conditions

and dimensions, as a recent example see [43].

By setting the boundary conditions one puts restrictions on the metrics, hence
it creates an obstacle against the search for the most general metric for AAdS space-
times. Some works aim to relax the conditions on the metrics [44,45] or investigate the

relations between the possible coordinate systems and how they affect the results [46].

Instead of the pure gravity case, one can investigate the asymptotic properties of
spacetimes in other theories like Topological Massive Gravity (TMG) to find the most
general metric family. These theories differ from pure gravity in the asymptotic region.
For example, in TMG one demands the spacetimes to get close to a warped AdS
spacetime [47-49]. Another direction of research could be handling supersymmetric

theories of gravity.

The study of AAdS spacetimes has a side benefit regarding their role in the
investigation of the asymptotically flat spacetimes since they approach asymptotically
flat spacetimes as A — 0. There is ongoing research [50] on this subject that we know
of. This approach has the advantage of offering a new point of view to flat spacetimes

and it can reveal some properties that are missed in the usual approach.
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APPENDIX A: Conventions

In this thesis, all manifolds, fields and functions are assumed to be smooth unless
mentioned otherwise. We take ¢ = 1. There are some proofs where we take 8G' =1 or
[ =1, and these are noted at the beginning of that part. We use Einstein summation
convention throughout the thesis, which means whenever the same index appears as

an upper and lower index, the summation is understood as

A'B; =) A'B. (A.1)

The dimensions are denoted by n or d. The Greek indices denote the indices for
a generic spacetime, whereas the Latin indices are used for flat spacetime or denote
the coordinates of some subspace, such as spacelike coordinates or coordinates on the
boundary. We us mostly plus convention, that is the metric signature is (— + ... +).

The Christoffel symbols and Riemann curvature tensors are calculated using

1 K
F:\w = ég)\ (augwf» + al/g;m - angw), (AZ)

R%,, =005, +T5,T%, — (> v). (A.3)
We use the normalized symmetrization and antisymmetrization of tensors as in

1 1
T = (T T T = (T T (A4)

When we use differential forms we write them in bold letters. We use the following

to denote the differential forms in short

1

(") oo = m%l...ukuk“...undw”’““ Ao Adatr. (A.5)
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