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Abstract 

SUPERSYMMETRIC NON-LINEAR SIGMA MODELS iN 

D=2+1 DIMENSIONAL SPACETIME 

In this thesis we study the theory of Supersymmetric Non-Linear a-Models. We 

first review the free scalar field theory which can be considered as a Linear a-model. 

We then discuss the Non-Linear a-model as well as the symmetries of the model with 

an emphasis on the role of Killing vector fields. After that we turn our attention to 

study the possible target spaces of these models; these being Kahler and homogeneous 

manifolds. Finally we introduce the 3-dimensional Non-Linear a-Model with N = 

1, 2 and 4 supersymmetries. We show that the D = 3 and N = 2 NLaM has to admit 

a Kahler target manifold while D = 3 and N = 4 model has to admit a HyperKahler 

target manifold. 



.. 

OZET 

.. . . 

vı 

D=2+1 BOYUTLU UZAY-ZAMANDA SUPERSIMETRIK 

. . 

NON-LINEER SIGMA MODEL 

Bu tezde Süpersimetrik Nan-Lineer O"-Modellerin teorisini konu alacağız. ilk 

olarak O"-modellerin temeli olacak Lineer bir model olan bağımsız skaler alan teorisini 

çalışacağız. Daha sonrasında Nan-Lineer O"-modelleri, modelin simetrilerini, ve bun­

ların Killing vektör alanları ile olan ilişkilerini inceleyeceğiz. Ardından dikkatimizi bu 

modellerin olası hedef uzaylarına çevireceğiz; bunlar Ki-ihler ve homojen manifoldlar 

olacak. Son kısımda 3-boyuttaki Nan-Lineer O"-modeli N = 1, 2, ve 4 süpersimetri 

altında tanıtacağız. D = 3 ve N = 2 NLO" M için görüntü uzayının Ki-ihler olması 

gerektiğini, ve D = 3 ve N = 4 modelde ise görüntü uzayının Hyper Ki-ihler olması 

gerektiğini ispatlayacağız. 
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1. INTRODUCTION

The Non-Linear a--Models have been remarkable mathematical models for use 

in physics in the past half century. These models provide a theory of bosonic scalar 

fields under a quantum field theory setting; this allows us to introduce interacting 

field theories. In NLa-M's, these scalar fields are maps from some base manifold to a 

number field, and hence they can be viewed as coordinates of some abstract manifold. 

Interestingly there are many possibilities for this abstract target manifold in a NLa-M. 

The target manifold could be compact, non-compact, Riemannian, or Kahler. The 

target manifold could represent the world in string theory or in the case of minimal 

surface problems; or could be an abstract construction. We can dassify the applications 

of NLa-M's by the dimension of the base manifold, 

• 1 -Dimensional base manifold:

(i) Action on a charged partide,

(ii) Curved motion/ patlı of a partide (possibly relativistic)

(iii) Quantum mechanics of a wave function.

• 2-Dimensional base manifold:

(i) Soap bubbles, i.e., minimal surface/ area problems,

(ii) Surfaces traced out by relativistic strings in String Theory.

For the list of applications, see [1, 2]. 

In supersymmetric a--models, a target manifold is introduced by the coupling 

of a metric tensor in the Lagrangian; the metric is then restricted by the conditions 

proposed by the SuperPoincare invariant theory. This allows us to understand the 

underlying mathematics hidden within the theory - which is dependent on the space­

time dimension, and the number of supersymmetries. The geometric consequences of 

introducing supersymmetry in a--models were first realized by the papers of [3], and 

described thoroughly in [4, 5]; this study later on grew massively as a field of research. 

Referencing [6], we can give the following table for the target manifolds of a--models 
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with arbitrary spacetime dimensions ( denoted by D) and rigid supersymmetries ( de­

noted by N), 

il D 14 3 & 2 
Geometry 

N 2 4 HyperKiihler 

N 1 2 Kiihler 

N 1 Riemannian 

Table 1.1: Target spaces of supersymmetric NLo-M's with D ::::; 4 . 

In addition to complex properties of the target space, these target manifolds can 

also carry the structure of a quotient manifold, or specifically a symmetric space. We 

will first introduce the free scalar field theory, and then introduce the possible target 

spaces. We then follow the D = 3 and N = l, 2 and 4 supersymmetric o--model of [5] 

with an emphasis on the geometric picture. We will show the results of the table 1.1. 

Some introductory information on complex manifolds and supersymmetry is given in 

the appendices. 

We will be using Einstein Summation Convention for the repeated subscript and su­

perscript indices throughout the thesis. 



2. FREE SCALAR FIELD THEORY: A LINEAR

(]'-MODEL 
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"Newton was right, we are really standing on the shoulders of giants." 

The o--model is an interacting field theory of scalar fields. But before talking 

about the complexities brought by such a model, we start by considering a simplified 

version; this is by eliminating the interactions. This system is the free scalar field 

theory of Minkowski spacetime. After understanding this system, we will move on to 

the generalization of it to N on-Linear o--Models. 

Definition 2.1. A scalar field is a real ar complex valued function with domain from 

the Minkowski spacetime. 

We start by considering fields q;i ( x), 1 ::::; i ::::; n, on a flat D-dimensional 

Minkowski spacetime. Flat Minkowski spacetime means that the metric is T/
µv := 

(-1, +1, .. , +1) on each point of the manifold. We assume that our fields satisfy the 
_______ 
D-l many 

massless Klein-Gordon equation which is a relativistic wave equation: 

□<j;i (x) = O (2.0.1) 

where the d' Alembertian is reduced to □ = rıµv Ö
µ
Öv since the metric is flat Minkowski. 

We will always consider field configurations that vanish at large spacetime distances, 

that is, as x -+ oo, q;i ( x) -+ O which will be used in partial integrations. 

Proposition 2.2. The Klein-Gordon equation can be derived by examining the varia­

tional derivative of the following action with respect ta <j;i ( x), 

(2.0.2) 



3 

where .C is the Lagrangian density. 

Proof. We distribute the Kronecker delta inside the integrand, so we contract the Latin 

indices. With that, taking the variation gives, 

ôS = -i J dDx {277µvöµ
(ô<ji)o,A>i}

= -i J dDx {-ôcpi27]µvÖµÖv(c/i)} + 277µvÖv(<Pi)�

= -J dv x { -□cpi(x)} ô<Pi 

here we used integration by parts in the second step. Thus the variation vanishes {=} 

the Klein-Gordon equation is satisfied. This proof is also equivalent to the following 

statement. □

Proposition 2.3. The action S = J .C(cpi , Öµ
</>)dD x is extremal when the Klein-Gordon 

equation is satisfied. This is a direct result of Euler-Lagrange equations; 

(2.0.3) 

2.1. Symmetries 

Definition 2.4. A transformation of the scalar field cpi(x) f-----t cp'i(x) that leaves the ac­

tion (2.0.2) invariant is called a symmetry of the system. A symmetry transformation 

must satisfy S[cpi ] = S[<,t/i ] so that ôS = O. 

If cpi is a solution to the Klein-Gordon equation, a symmetry is a mapping cp f-----t cp'i 

where cp'i is also a solution to the equation of motion.

There are two basic types of symmetries; an internal symmetry is a trans­

formation acting only on the fields themselves, and not transforming the spacetime 

variables. On the other hand external symmetries are global spacetime symmetries. 
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2.1.1. Internal Symmetries 

We now would like to show that the internal symmetry of the action (2.0.2) is 

given in terms of an O(n) transformation and constant translations of ıj}'s.

Let the matrix A E O(n) with ATA = AAT = ]nxn · Now consider n-many fields

{ cji ( x)} in vector form;

<pl (x)

qJ2 ( X)
<I>(x) = 

such a transformation acts on <I> by, A <I> ( x) = <I>' ( x). 

(2.1.1) 

Proposition 2.5. Any tmnsformation of the form <I> r-+ A<I> + lIB where A E O(n) and

lIB is an arbitmry (n x l)-constant matrix leaves the action (2.0.2) invariant.

Proof. The action (2.0.2) can be rewritten using (2.1.1) as .C = -½8
µ

<I>T8µ <I>. It is now

mapped to, 

Lnew ( <I>' a<I>) = -�a
µ ( c:p

T AT + IIBT)aµ ( A <I> + lIB)

= -�(a
µ

<I>T AT + �)(Aaµ<I> + �)

= _!a
µ

<I>T ATA aµ<I> = Lold·
2 ..__,, 

□ 

Remark. Note that the internal symmetry tmnsformation <I> r-+ A<I> + lIB is actually

the most general isometry tmnsformation on IRn if we think of <pi ta be coordinates of

IRn with metric Ôij. Since this symmetry tmnsformation is linear in fields, the model

defined by the action (2.0.2) is an example of a Linear fJ-Model.
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2.1.2. External Symmetries 

The external ( spacetime) symmetries of the O'-model defined by the action ( 2. O. 2) 

correspond to isometries of the Minkowski spacetime, namely Lorentz transformations 

and translations. 

Definition 2.6. Spacetime translations are transformations of the form c/i(x) f---t

</>'i(x) := </>i(x + a) where a = {aµ} are constants.

Definition 2.7. We define the Lorentz transformations in D-dimensions to be 

the set of matrices such that {A E GLn(IR)I ATrıA = rı} ) in index notation that is 

A�'T/
µvA� = 'T/

pu . The metric is the Minkowski metric. 

Remark. Notice that changing 'T/
µv f---t ô

µv gives us the orthogonal group O(D). We 

call the Minkowski rı case as a group called the pseudo-orthogonal group) denoted 

by O ( D - 1, 1) . 

Theorem 2.8. The action in (2.0.2) is left invariant under Lorentz transformations 

and translations. 

Proof. To show the Lorentz invariance, we start by noting that </>i ( x) are scalars and 

hence do not themselves transform under Lorentz transformations. Note that the 

transformations we need are as follows; 

Öxv Ö 
v 

Ö 
Partial derivatives: Öv f---t Ö

µ' = � � = A
µ
, � uxµ uxv uxv 

with this setup the new Lagrangian turns out; 

r_ µ
1
v

1
� ,.ı..ti( ')� ,.ı..ıj( ')s. _ µ'v'A,,,,� ,.ı..i( ')A>.� ,.ı..j( ')s. 

J.., - 'TJ U
µ''-!-' X Uv''-!-' X Uij - 'TJ 

µ
ıU,,,,'f' X vıU,\'f' X Uij 

(2.1.2) 

(2.1.3) 

For the proof of the invariance of (2.0.2) under translations, we refer to [7]. □
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3. NON-LINEAR o--MODEL

The main reference for this chapter is [7], a more rudimentary introduction to 

a--models and the derivation of harmonic maps can be found in [1]. The relation of 

the Lagrangian and actions of a--models and String theory are briefly covered in [8], 

and the types of a--models in physical theories are classified in [2]. 

The N on-Linear Sigma model ( shortened to NLa-M) is a physical theory of 

maps that work on dynamics of scalar fields in flat spacetime. It constructs a theory 

of interacting fields by bringing in a geometric approach to the study of field theory 

in a fundamental manner. This way it generalizes the free field theory described in 

the previous chapter. The rigor of NLa-M's lies under its mathematical framework 

for providing numerous applications of field theories. Mathematically NLa-M's are 

important for the study of Harmonic maps, as those are the maps that extremize the 

kinetic action of scalars. 

The N on-Linear o--Model considers the scalar fields as coordinates on a Rie­

mannian manifold M with a Levi-Civita connection and Euclidean signature. The 

a--model is specified by scalar fields { q>i (x)} where 1 :s; i :s; n; if we think of scalar 

fields as maps from some base space to reals, we can think of them as defining coor­

dinates. This way we consider an abstract target manifold formed by the scalar fields 

themselves, this allows us to study a target space geometry from a field theory setting. 

q>i : Minkowski Spacetime
171

.w ----+ Target manifold M
9ii

. (3.0.1) 

The target manifold is denoted by (M, g) throughout this thesis. We postulate that 

the dynamics of these maps is governed by the (kinetic) action, 

(3.0.2) 

the spacetime indices are raised and lowered via the flat Minkowski metric 'T/
µv · 
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Remark. The above is the standard definition of Non-Linear CJ-Models when gravita­

tion is neglected; however when gravity is present instead of the Minkowski metric one 

needs to consider a curved spacetime metric. Alsa note that the signature of the target 

manifold can be Lorentzian, as in the case of String Theory. 

Remark. In the action of (2.0.2), we are summing over the indices i,j E {1, 2, .. , n};

that is by through multiplying the whole expression by K ronecker delta Ôij . In fact 

by doing so we are introducing a ghost target manifold with K ronecker metric, and 

hence a baby CJ-model. This is why scalar field theories are simplistic CJ-models. The 

complexity and the beauty of CJ-models lies in the fact that the Kronecker delta could 

be an arbitrary metric and the scalar fields could interact with each other. 

Theorem 3.1. The equation of motion corresponding to the action (3.0.2) is given by 

(3.0.3) 

Proof. To obtain the field equations that follow from (3.0.2), we extremize the action

integral in (3.0.2). Note that the metric 9iJ(<P) depends on the target space coordinates

(i.e., the scalar fields), hence one should also consider its variations. The variation of 

the action is, 

6S[cp] = -1 J dvx {2gi1(cp)ô(8µ</> i)8µ cp1 + 8k gi1ôcpk 8µ</> i 8µ</>1}

= -1 J dvx {-2gi1(cp)ôcp i 8µ8µ cp1 - 28k gi1ôcp i 8µ</>k 8µ cp1 + 8i9kJ8µ</>k 8µcplôcp i }

l J D { · k · k '} i 
= 

-2
d X -28µ 8µ1} 9iJ(<P) - 28k9ij 8µ</> 8µ1} + 8i9kj 8µ</> 8µ1} ôcp 

where we used integration by parts and renamed the dummy indices. The extra terms 

proportional to scalar fields are thrown away since they vanish as fields approach to 

infinity. To evaluate 8k9iJ that appear, we use the metricity condition, i.e., V k9iJ = O.

(3.0.4) 
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Therefore the integrand vanishes if and only if we satisfy the condition that, 

(3.0.5) 

N ote that since we are summing k and j, the first three Christoffel coefficients add up 

to zero. Renaming the dummy indices in the remaining terms, we get: 

(3.0.6) 

Since the metric is invertible, we arrive at the field equation (3.0.3). □ 

Remark. Note that □ = T/
µ)3µav is the analogue of the Laplacian in Euclidean sig­

nature. Its solutions are generalized Harmonic maps {see /1/). Another important 

observation about (3.0.3) is that now the scalar fields are interacting unlike the Linear 

(]'-Model (2.0.1). 

Remark. When the spacetime {that is the base manifold) is 1-dimensional {i.e., D = 1) 

with a single time coordinate "t", the equation of motion (3.0.3) reduces to the Geodesic 

equation 

So this O'-model is describing a particle moving on a geodesic line, which shows that 

O'-model can be a very useful tool in studying dynamics of particles and extended objects 

{branes) such as strings {see /8/). Far applications of O'-models, see [2/. 

3.1. Symmetries of Non-Linear O'-Models 

As in the Linear O'-Model, the symmetries of the Non-Linear O'-Model can be 

divided as internal and external. The only difference between the two models, defined 

by the actions (2.0.2) and (3.0.2), is the appearance ofa general metric in the latter. 

Hence external ( spacetime) symmetries of both models are the same, namely Lorentz 

transformations and spatial translations. Therefore we will focus on the internal sym-
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metries of the N on-Linear o--Model which as we will see will be non-linear in fields in 

general. 

N ow let us consider a continuous coordinate transformation in the form; cp f---t cp', 

this changes the metric by, 

1 9ij M 9ij• (3.1.1) 

Because of the continuity requirement, we must have the coordinates cp'i(cp) depend 

continuously on constant parameters 0A with O < 0A 
« l. Because 0A is very small, 

in computations we will neglect terms of order higher than 1 in 0A. Here the index 

A is the Lie algebra index that corresponds to the vector fields { kA} which are the 

generators of the coordinate transformation. We can Tay lor expand cp' up to first order 

in 0A as, 

(3.1.2) 

which is in general a non-linear transformation. 

Proposition 3.2. Under the infinitesimal coordinate transformation (3.1.2), the met­

ric changes as, 

(3.1.3) 

where LkA is the Lie derivative corresponding ta the vector field kA. 

Proof. Under the transformation (3.1.2), to be able to find the change in the metric 

tensor, we have to expand the metric and use the Lorentz transformation as follows, 

g�i cp) 

9ij ( cp') 

- örf} ( ') örf) 

} 

- öq,i' 9ij <P öq,i'
_ A >.. Ögij - 9i1(<P) - 0 k

A öq,>- + �( .. ) + .. 
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therefore we examine the total difference in the metric, 

fıg := 9'mn ( <P) - 9mn ( <P) 

= (ı5� - eAam(k�)) (gij(cp) - 0Ak}a>ı9iJ) (ı5l - eAan(k�)) - 9mn(<P) 

= (ı5�ı5l - eAam(k�)ı5l - 0Aan(k�)6� + � (gij(cp) - 0Ak}a>ı9iJ) - 9mn(<P) 

= 1Jrnn( <P) - eA am ( k�) 9ij ( <P) ı5l - eA an ( k�) 9ij ( <P) ()� - eA k} 8»9mn ( <P) - 1Jrnn( <P) 

= -0A(8m(k�)9in(<P) + 8n(k�)9mJ(<P) + k}8»9mn(<P)) 

□ 

Note. By making use of (3.0.4), the Lie derivative of the metric tensor can alsa be 

gıven as, 

(3.1.4) 

Definition 3.3. When ,CkA9iJ = '\i\kJA + VJkiA = O, such kA is called a Killing vector 

field. An isometry map is a diffeomorphism on a manifold M ----+ M which preserves 

the metric on all points on the manifold. Killing vector fields are the generators of the 

isometry transformations. 

Remark. The isometries on a manifold form a group under composition which is called 

the isometry group of a manifold (M, g). This group can be identified by studying 

the Lie algebra of the linearly independent Killing vector fields: 

where ffs are the structure coefficients. We note that the Lie bracket of Killing vectors 

is alsa a Killing vector field itself; this can be shown as we are given that ,CkA9iJ =
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(3.1.5) 

hence Killing vectors form a proper Lie algebra, which is oftentimes non-abelian. 

Proposition 3.4. The transformation (3.1.2) leave the a-model action (3.0.2) invari­

ant when kA is a Killing vector field. 

Proof. We want to show that t:ıS = S[ef>'] - S[ef>] = O. The original action of the 

a-model is given by S[cp] = -½ f dDxrıµv9iJÖ
µ

c/>i&,/j), we are sending cp f-----+ cp' and

consequently 9iJ(ef>) f-----+ g�/ef>). We will apply Taylor expansion again,

Note that derivatives with respect to Greek indices &
µ 
= a�

ı, 
are with respect to 

spacetime coordinates, while we left the target space derivatives of coordinates cpm as 

is. From now on derivatives with respect to Latin indices will represent Öm = a$m 

derivatives with respect to the target space. We will also make use of the symmetry of 



the metrics 9ij = 9ji , & TJµv = rıvµ _

J:,(q/) = (9ij + 0Aam9ijk7;) (8µq}al/q} + 0Aaµq}8mk�8vc/>m 
+ 0Aal/q}8mk�8µc/>m ) rıµv

= {9ij8µc/>i8l/q} + 0A9ij8µc/>i8mk�8vc/>m 
+ 0Agijavq}8mk�8µc/>m

+ 0Aam9ijkA8µc/>i8l/q} + �}rıµv

=%�#�cf}+�%��#�cf}+%�����#+%�����q}
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we can rename the dummy indices in their respective contractions, namely that is to
replace m ++ j and m ++ i in 3rd and 4th terms. Also symmetry of rıµv implies that the
8µ ++ 8µ interchange is free. Hence,

L(cp') = 9ij8µcpi8vq} + k7;8m9ij8µcpi8µq} + 8ikA9mj (8µcpi8µq}) + 8jkA9im8µcpi8µq}
= 9ij8µc/>i8l/q} + 8µc/>i8µq} (k7;8m9ij + aikjA + ajkiA)

the right hand term on the final result is simply the Lie derivative of the metric in the
direction of the vector field kA, we assume that this vanishes as kA is chosen to be a
Killing vector field. In this case J:,(cp') = 9ij8µc/>i8µcpi = J:,(cp), and the action integral
is S[c/>'] = -½ J dDxJ:,(cp) = S[c/>], this proves that !::,,,S = O. □

Definition 3.5. Ta every differentiable cantinuaus symmetry genemted by lacal ac­

tians, there carrespands a conserved current. Far an actian integral S, if the vari­

atian 8S vanishes withaut impasing any canditians, S has a symmetry. 

Theorem 3.6. The current carrespanding ta an infinitesimal isametry tmnsfarmatian, 

(3.1.6)

is canserved, i.e., 8µJ� = O.

Proaf. We will make use of the equation of motion (3.0.3) of the Non-Linear a-Model



action where kiA is a Killing vector field. We have,

8µJ� = 8µ. [8µ</ikiA] = 8µ8µ</jkiA + 8µ</j8µkiA
= □ </ikiA + 8µ<ti8kkiA8µ</i
= 8µ</i ( - r;k8µc/J kiA + 8µ</i8kkiA)

k . ( i )= 8µ</> 8µ</J -r1kkiA + 8kkjA 
k= 8µ</> 8µ</J (V kk1A)

= 8µ</>k8µc/J (�(v kkjA + v1kkA) + �(v kkjA - V1kkA))

13 

The second portion vanishes as the coefficient of 8µ </>k8µ</>1 is symmetric under k +-+ j.

Hence this is conserved if and only if k1A satisfies (3.1.4), which is an implicit assump­
tion of the theorem. It is stated in [7] that this is the N oether current corresponding
to the Non-Linear er-Model action under an isometry transformation. □

The target space geometry is arbitrary, but it becomes restricted when we as­
sume supergravity theories. The field equations of the theory ( coming from conformal
invariance at quantum level) constrain the target space. Imposing integrability also
restricts the target space geometry. As of rigid supersymmetry, it turns out that
most of the time the target spaces have to be Kahler manifolds or homogeneous spaces;
that is why in the upcoming chapters we will be focusing on these cases.
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4. KAHLER MANIFOLDS AS TARGET SPACES

14 

We will first review some basic properties of Kiihler manifolds, then we consider 

c,pn as an example of a Kiihler manifold and build a o--model. For this section we 

will rely on the introduction of the complex manifolds which are presented in A.1. For 

some examples we refer to [7]. We then discuss the Kiihler potential which is fairly 

important for the essence of many papers like [5, 9-11], and [12] . 

As we are studying in a Kiihler manifold, which will be defined as a complex 

manifold in definition 4.2, the target manifold of such a theory should be even dimen­

sional. For this, we consider 2n-many scalar fields. We begin with the real coordinate 

patch provided by these fields; and switch to complex coordinates2 by defining, 

where 1 � a � n. We take the target space M to have Levi-Civita connection as 

before, and assume that its metric has Euclidean signature ( +, +, .. , + ).

The Riemannian positive-definite metric is ds2 = 9ijdc/yidq} and can be rewritten

in the complex basis by change of transform, 

2 
8q;i 8</} 

a b ds = 9ij aza 8z
b dz dz 

= 9afJdz
adz!3 + 2gai3dz

adzi3 + 9ai3dzadzi3 (4.0.1) 

where we used the symmetry of the metric. The connection coefficients transform 

{r}j } r-+ {r�fJ } analogously, which means r�, = ½gCTP (8fJ9,p + a,9fJp - ap9fJ,)-

2In this chapter the complex coordinates carry Greek { a, (3, 'Y, .. } indices, while real hasis coordi­
nates carry Latin { i, j, k, .. }. 
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4.1. Kahler Manifolds 

Definition 4.1. Far a Hermitian manifold (M, g), define a 2-form D called the Kahler

form, 

(4.1.1) 

The Kahler form is sometimes called the fundamental form. Notice that, 

D(X, Y) = g(.:TX, Y) = g(.:12 x, .:TY) = -g(.:TY, x) = -D(Y, x), (4.1.2) 

so anti-symmetric. Also D is invariant under the action by .:T 

D(.:TX, .:TY) = g(.:12 x, .:TY) = g(.:13 x, .:r2f) = D(X, Y). ( 4.1.3) 

By its definition, in local complex coordinates the Kahler form in tensorial notation 

is given by D := -2igµ,0dzµ, /\ dz0
. We will consider exterior derivative action on the 

Kahler 2-form D to define Kahler manifolds. 

Definition 4.2. Kahler manifolds are manifolds with the property that dD = O 

far the symplectic 2-form defined on them. We call the metric tensor making up the 

2-form as the Kahler metric.

Theorem 4.3. Kahler manifold axiom, i.e., dD = O, is equivalent to the the metric

relations 

8g
7
13 

& 
8gaj3 

aza 8z'Y 
( 4.1.4) 

Proof. Let g be a Kahler metric. Then dD = O implies ( 8 + 8) · ( iga13dz°' /\ dzf3) = O. 



ı.e., 

i8 g -dz' /\ dz°' /\ dz13 + ia-g -dz' /\ dz°' /\ dz13 = O ı af3 , af3 · 
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(4.1.5) 

Since the left part is a (2, 1)-form and right (1, 2)-form, they must vanish separately. 

This translates to, 

We require the coefficients to vanish and thus obtain the equations; Ö,9af = Öa9,f and 

also Ö19af = Öf9a"!· □

In the real basis { 8 / öqi } and the corresponding complex basis, the Kahler form 

can be written as in the following, 

D = -2igafdz°' /\ dzf (in complex basis)

= -.J/gkjdqi /\ dcjJ (in real basis). 

( 4.1.6) 

(4.1.7) 

Kahler manifolds can also be defineci as manifolds with covariantly constant complex 

structure defineci on them, i.e., V m:T} = O. This is shown in the theorem below. 

Theorem 4.4. ( /13/ Theorem 8.5) A Hermitian manifold (M, g) is a Kahler manifold 

if and only if the almost complex structure :T is covariantly constant. 

Proof. We start with a Hermitian manifold, we have an almost complex :Tand a Kahler 

form D := -Jijdc/i /\ dcjJ. We want to show that V m:T} = O if and only if D is closed, 

i.e., dD = O.

Fact. If w is any given r-form, then 
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Proof. We will show the fact for r = 2, 

= dD - X,µvdx1 /\ dxµ /\ dxv - X,vµdx1 /\ dxµ /\ dxv 

= dD-� +� = dD

where we renamed the dummy indices. □ 

( =}) Assume that the Hermitian manifold is a Kiihler manifold. Then drl, =

d(,J/gkj) = -BµJijdcpµ /\ dcpi /\ dcpi = O. By the fact, this sum becomes zero only when

V m:T = O is satisfied.

(-{:::) If V m:T = O, it is automatic that the Kiihler form 0, = -.:Tijdcpi /\ dcpi vanishes

under the action of the exterior derivative. Defining such a Kiihler form promotes M
to a Kiihler manifold. This finishes the proof. □

Together with theorem A.16, this theorem implies the following: 

Theorem 4.5. Any complex Riemannian manifold with a covariantly constant complex
structure is K iihler.

Definition 4.6. The Kahler potential is defined to be function K, such that,

(4.1.8) 

These potentials are not unique, they admit integration constants of holomorphic and
antiholomorphic functions. So a Kiihler potential lies in an equivalence class of poten­
tials such that,

K(z, z) ~ K(z, z) + f(z) + f(z). (4.1.9) 

far some holomorphic function f = f ( z).
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Remark. Far a Kahler manifold, due ta the Hermicitiy condition (i.e., 9af3 = O and

9afJ = O), the connection coefficients rı
1 

and the conjugates rı
,, 

all vanish. M oreover 

the Kahler condition (that is 2-form D being closed) sets Christoffel symbols rı
1

rj,, = O. Sa the only non-vanishing Christoffel coefficients turn aut ta be, 

r
°' - P°'8-
fl'Y -

g (39p"f· (4.1.10) 

Now we would like to look at some examples of Kahler manifolds. 

Example 4. 7. All complex manifolds M with dim"JRM = 2 are Kahler manifolds. This

is due ta the fact that complex manifolds are Hermitian manifolds and any 2-form D 

on a 2-manifold has a vanishing exterior derivative. Another very important example 

is the complex projective space which we work aut and study next. 

Definition 4.8. Far any A E (C - {O}, the complex projective space, denoted by 

(Cpn , is the set defined by: 

(Cpn := {points in cn+ı with equivalence relation (z 1 , ... , zn+ı) ~ (Az1 , ... , Azn+ı )}.

Theorem 4.9. Complex projective space is a complex manifold, moreover it is Kahler. 

Proof. On (Cpn we can define the following atlas that is given by the neighborhoods

U,,, := {zı.ı : µ = 1, 2, .. , n + 11 z,,, =J. O}. Now on these sets of U,,, 's we define the

non-homogeneous coordinates 

zı.ı 

(� := - Vµ E {1,2, ... ,n}
zı,, 

(4.1.11) 

these (� are well-defined since z,,, =J. O. Moreover these coordinates respect the equiva­

lence relation; if we divitle each coordinate by a fixed non-zero coordinate z,,, , then

(zı.ı

) =} [z 1 

: z
2 

: .. : z,,, 

= 1: .. z
n+ı] ~ [Az 1 

: 
AZ

2 

: .. : 
AZ

,,, 

= 1: .. 
Azn+ı

]
ZK, ZK, ZK, ZK, ZK, AZ/,, AZ/,, AZ/,, AZ/,, 

= t[z
ı . z

2 .. z,,, 

= 
. .  zn+ı

]. . .. . 1 . .. .  
Zı,, Zı,, Zı,, Zı,, 
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meaning that the ratios are still the same. For another coordinate chart we can define
new coordinates in a neighborhood again with a non-vanishing "'·/h coordinate by,

U'Y := {z1"; µ = 1, 2, ... , n + 11 z'Y =/- O}, ( 4.1.12)

For two patches (Uı,,, (f:) and (U
'Y
, (1) existence of intersection implies both zı,, =/- O

and z'Y =/- O. Also the transition function is (f: = z� z: = �! which is holomorphic.
z z 

�'Y This proves that c,pn is a complex manifold. Therefore defining a potential of the
following form is reasonable, we cite [14] for this particular choice of the potential,

n+l 

exp{K:ı,,} := L 1(�12 

µ=1 

(

n+l 

)⇒ K:ı,, := log � 1(�12 

2 n+l n+l 

i.e., (:ı,, ) L 1(�12 = L 1(�12 = exp{K:'Y }.
'Y 

µ=1 µ=1 

Therefore taking the logarithm of this expression gives,

( 4.1.13)

( 4.1.14)

( 4.1.15)

which meets the Kahler potential axiom ( 4.1. 9). Kahler potential for the neighbor hood
Uı,, is given by;

n+l

exp{K:ı,,} := L 1(�12 ⇒ K: = ln(l + lzl 2 ) = ln(l + ô
µvzµzv).

µ=1 

( 4.1.16)

Inside the logarithm we have + 1 appearing since when µ = v we get zµ / zµ = 1.
We obtain the metric tensor by taking the holomorphic and anti-holomorphic partial
derivatives of this Kahler potential.

ds = g -dzµdzv = --- <5 - - --- dzµdzv 2 - 1 ( Z
µ

Zv ) -
µv 1 + ZZ 

µv 1 + ZZ 

(4.1.17)

Hence we obtain a Hermitian metric as desired. It is also possible to construct the
Kahler 2-form corresponding to this particular coordinate chart. This metric is the
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Fubini-Study metric. □ 

The standard o--model on e,pn is completely determined by the metric tensor of 

(4.1.17) according to the action (3.0.2). The Non-Linear o--Model Lagrangian of c,pn 

is then given by, 

( 4.1.18) 

for some constant /"i, E R 

4.2. Symmetries of Kahler Manifolds 

In section 3.1, we found that for a Non-Linear o--Model on a general Riemannian 

manifold, the symmetries that leave the NLo-M action invariant are given by the Killing 

vector fields of the target space metric. Now we would like to analogously study the 

Killing symmetries of Kiihler manifolds. Let the change in complex coordinates be as 

follows, 

(4.2.1) 

Notice that this is an isometry transformation if the Killing equation, (3.1.4) ı:,kA 9iJ = 

'Ç\kJA + VjkiA, is satisfied. On a complex manifold (and hence on any Kiihler mani­

fold), Killing equation splits into two distinct conditions in terms of the complex basis 

coordinates, 

(4.2.2) 

The Kiihler metric is invariant under isometry transformations, yet this might not be 

the case for the Kiihler potential IC. It satisfies a weaker condition. Say we act on local 

coordinates by an isometry transformation as in ( 4.2.1), this leads to the following 



change in the Kahler potential, 

9cx/3 =: 8a8131C(z, z)

IC(z, z) r-+ IC(z + c5z, z + c5z) = IC(zcx 
+ 0AkA(z) , za 

+ 0Ak�(z))

IC(z'cx, z'a) r-+ IC(zcx, za) + 8a!C(zcx, za)0AkA + 8a!C(zcx, za)0Ak� +

21 

(4.2.3) 

( 4.2.4) 

(4.2.5) 

we applied first order expansion to a function of two variables in the last step, while 

assuming locality with O < 0 « l. 

We know that, IC(z, z) lies in an equivalence class of functions such that lC ~ lC +

f(z) + f (z), but now we see that f(z) is no longer arbitrary: 

(4.2.6) 

Actually we still have an extra freedom, namely we can shift F with a constant as 

follows; F(z) r-+ F(z) + iç, and hence F(z) r-+ F(z) - iç. So that F(z) + F(z) does not 

change. This gives a symmetry of the Kahler potential. 

Definition 4.10. A Killing vector satisfying, 

(4.2.7) 

where J is the complex structure on a complex manifold, is called a real-holomorphic 

K illing vector .

Proposition 4.11. (see /15} proposition 9.5) Far compact Kahler manifolds, all vector 

fields (in particular Killing vector fields) are real-holomorphic. 

Proof. Now the Lie derivative of the complex structure with respect to a vector field 

kA is, 

(4.2.8) 
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In the complex basis, we have (A.0.5) J!, = i<)�, using this in the above we immediately 

get that Ck
A

Jj = O. □

4.2.1. Non-Linear a--Model on <CP1 

Theorem 4.12. The smooth manifolds <CP1 and S2 are diffeomorphic, i.e., <CP1 
~ S2.

Proof. We take the non-homogeneous coordinates on <CP1 on the neighborhoods U1

and U2 • Notice that the following are differentiable invertible maps between <CP1 and 

C, 

Wı: Uı ➔ C: [zı: z2] f-----+ z1/z2 = (i

'112 : U2 ➔ C : [zı : z2] f-----+ z2/ zı = (i

(4.2.9) 

(4.2.10) 

the charts U1 and U2 cover the whole input of <CP1 as the origin Ö is not included in the 

domain. The inverses of the maps wi are between '111
1 

: C ➔ U1 given by z f-----+ [1 : z] 

and '112
1 

: C ➔ U2 with z f-----+ [z : 1]. As also discussed above, the transition between 

coordinate charts for the neighborhoods of U1 n U2 (this is when none of z1 =f. O and 

z2 =/- O) are given by the ratios of ('s which is a complex holomorphic function. 

We recall the stereographic projection of S2; call n := (O, O, 1) the north pole and 

s := (O, O, -1) the south pole. We have the following two charts to parametrize the 

sphere, 

With that, we daim the following map is a diffeomorphism, 

<I>: cpı --+ s2, 
if z2 =/- O, 

if z2 = O 

( 4.2.11) 

(4.2.12) 

( 4.2.13) 
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This map is onto as the points on the 2-sphere can be covered by the domain. If we
can show that the charts 7rn o <I> o '111 1 and 7r8 o <I> o '112 1 are differentiable maps with a
differentiable inverse, then we are done. It is easy to see that the first chart is nothing
but the identity mapping of <C ➔ JR.2, hence holds true. The second map for z -/:- O
is the conjugation map of <C ➔ <C by z f-----+ z which also fits our requirements. Notice
that z = O implies that 7r8 o <I> o '112 (0) = O. Thus we conclude that <CP1 and 82 are
diffeomorphic. □

Now since <CP1 and 82 are diffeomorphic, we would like to show that the Fubini­
Study metric is equivalent to the standard metric on 82

. We use the stereographic
projection to identify the points on the sphere by complex coordinates Z = X + iY,

those lie on the complex plane embedded in the ambient manifold IR.3
. The coordinates

are X := coscptan�, and Y := sincptan�. The standard metric on 82 parametrized
by spherical coordinates ( 0 , cp) is

ds2 = d0 2 + sin2 0dcp2. ( 4.2.14 )

From these relations, we obtain differential 1-forms dX and dY, and express the metric
under this transformation by,

ds2 = 4(dX2 + dY2 )
(1 + x2 + y2 ) 2 · (4.2.15)

Now we wish to express the metric in the complex basis {Z, Z}. This can be achieved
by switching from the real basis to the complex via the relations X = z!z , 

We apply these transformations to the metric;

2 

4 ( ( dZ!dz ) 2 + ( dZ;/z ) 2) 4dZdZ ds = ----------- = ---- ➔( ı+ ( ziz)
2 + ( z;;z)')' ( z,z + ı )'

l6dZdZ
(1 + ız1 2 ) 2 ·

Y= Z-Z

2i 

(4 .2 .16 )

where the last arrow denotes equality when we send Z f-----+ 2Z and Z f-----+ 2.Z. The final
result is exactly the Fubini-Study metric in 2-dimensions.
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In the light of previous results, we will search for Killing vectors of the Kahler
manifold <CP1 , they will prove to span the Lie algebra of the Lie group SU(2).3 

Elementary SU(2) transformations of coordinates (q} , q}) give a holomorphic global
symmetry of the <CP1 metric tensor. The Kahler potential is as ( 4.1.16); we copy the
metric in ( 4.1.17) for n = 1,

1 9zz = (1 + zz)2' (4.2.17)

for this metric the connection coefficients are evaluated by ( 4.1.10) which gives the only
remaining coefficients to be f!z = gzzÖz9zz = (1 +zz)2(-2)z(l +zz)-3 = -2z(l +zz)-1 

and similarly r�z = -2z(l + zz)-1
. The isometries of <CP1 with the Fubini-Study

metric ( 4. 1. 1 7) are generated by the vector fields, we cite [7] here for the derivation of
the Killing vector fields,

k1 = -ı </J - + </J - - = -- 1 - z -1 . ( ı öz 2 öz ) Ö i ( 2) Ö 
2 öcp2 öcp1 öz 2 öz '

1 ( 1 
öz 

2 
öz ) ö 1 

2 
ö k2 = -2 <P öcp2 - <P öcp1 öz

= 2(l + z ) öz' (4.2.18)
1 . ( 1 

Öz 
2 

Öz ) Ö . Ö k3 = -2ı <P öcpl - <P öcp2 öz 
= -ız öz

.

It is easy to very that these vector fields solve the Killing equation (4.2.2). Notice that
each of the vector fields in (4.2.18) are holomorphic as expected from theorem 4.11.
Observe that the vector field k3 corresponds to the generator for the Lie group U(l)
on the <CP1 target space. Let us show that it satisfies the Killing conditions of ( 4.2.2),

1 
kz3 = 9zzk; = (1 + zz)2 (-ız),

and we have that kz3 = O. As we have only the anti-holomorphic component of the
vector field, we only have to satisfy V zkz3 = O. This is equivalent to Öz ( kz3)-r�zkz3 = O.
Pl . . h � (k ) 2izz - (-iz) -2z - rz 

k H k 
. K·ıı· uggıng ın we ave Uz z3 = (ı+zz) 3 - (ı+zz) 2 ı+zz - zz z3· ence 3 ıs a ı ıng

vector.

3 SU(2) indeed gives an isometry of the 2-sphere, and hence of CP1 .
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Example 4.13. Let us examine the Lie brackets of these vector fields; this will help
understand the Lie algebra generated by { k1, k2, k3}. 

[ ( i z
2 ) ] (-1 - z

2 ) [k1,k3] = kı · k2 - k2 · kı = -i -
2 

+i
2 

- (-iz)(zi) az= 2 az= -k2,

[ i ( 2) ( 1 + z2 ) . ] . [kı, k2] = -

2 1 - z z - 2 ız az
= -ızaz = k3, 

[ . ( 1 + z2 ) . ] . ( 1 - z2 ) [k2, k3] = -ı 2 - (-ız)z az= -ı 2 az= kı,

It can be seen that the Lie brackets obey the structure equation [kA, kB]
which is exactly the structure of SU(2).

Remark. The NLa M on CP1 ıs gıven by the metric ( 4.1.17) which gives aut the
Lagrangian,

r - l a ap-ı.., - K,( _) 2 pZ Z.
1 + zz (4.2.19) 
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5. HOMOGENEOUS MANIFOLDS AS TARGET SPACES

In the previous chapters, we discussed the symmetries of NLo-M's, those are 

the isometries of the Target manifold. For homogeneous spaces, the manifold itself 

is characterized by isometries, and hence they are appropriate target spaces for Non­

Linear o--Models, and actually they appear frequently in supergravity theories. We 

will start by giving basic properties and constructions of homogeneous spaces, for more 

details see [16]. A very important example of homogeneous spaces is the n-dimensional 

sphere [17] which will also be discussed. Symmetric spaces are analyzed in rigor in 

the books [18, 19] while for the derivation of the homogeneous space connection we 

follow [20]. 

Through this section G will be a Lie group and M will denote a manifold 

endowed with a left G-action. In this case we put the following axioms; given 

e (identity element), g1, g2 E G, and p, q EM, 

91·(g2·p)=(g1·92)·p, ande-p=p.

We have such properties of group actions; 

• An action is continuous if the defining map 09 
: M ----+ g • M is continuous.

• For any element g and corresponding map 09 on M, we know the existence of

g- 1 E G and the map 09-ı, therefore group actions are invertible and smooth

group actions give autamarphisms of M.

• The isotropy group of an element p EM is defined by G
p 

:= {g E GI g·p = p}.

It is not hard to show that G
p 

forms a subgroup of G.

• The action is called transitive if for any two points p, q in M, there exists g E G

that connects them, i.e., g · p = q.

Definition 5.1. A smaath manifald endawed with a transitive smaath actian by a Lie 

group G is called a homogeneous G-space (ar a hamageneaus manifald if ta specify 
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the 9roup is not of importance). 

Note. Basically a homo9eneous space is a manifold in which any point can be reached 

from any other point on the manifold by a symmetry transformation. These operations 

are provided by Lie 9roups. Far the case of tar9et manifolds of NLa-M's, we showed that 

Killin9 vectors are the 9enerators of the isometry transformations. They form a Lie 

al9ebra. Far example far a manifold of dimension n, we would need n-many linearly 

independent Killin9 vectors far such symmetries. 

Definition 5.2. Far a Lie 9roup G and H < G a Lie sub9roup, define a subset of G of 

the form; 9H := {9hl h E H} ( left cosets of H ). This forms a partition of the 9roup 

G; these left cosets with the quotient topolo9y is called the left coset space of G modulo 

H. 

In the case that gıH and 92 H give the same partition, it must be that 91 ~ 92 

lying in the same class. Equivalently this can mean 91 = 92 (modH). This is the case 

when 91 H = 92 H, and that is if and only if 92
1 91 H = H, true only when 9:;191 E H. 

Theorem 5.3. (Homogeneous Space Construction Theorem) Say G is a Lie 

9roup, H a closed sub9roup of G. The left coset space G / H is a topolo9ical manifold 

of dimension dimG - dimH and has a unique smooth structure s. t. 1r : G ➔ G / H is 

a smooth submersion (i.e., onto). The action of G on G/ H is 9iven by 91 • (92 • H) = 

(91 92) · H, turnin9 G/ H into a homo9eneous G-space. 

Theorem 5.4. Every homo9eneous space is of the type described in the Homo9eneous 

Space Construction Theorem 5.3. 

If we have a manifold M which is homogeneous G-space, then we have a strong 

theorem to identify M equivalently with a coset space of the form G / H.

Corollary. A homo9eneous space M with a Lie 9roup G and an isotropy sub9roup H is 

di.ffeomorphic to the quotient manifold G / H. M oreover G / H admits a unique smooth 

structure provided by the smooth map G x G / H ➔ G / H with (9, 91 H) f-----+ 9 · 91 H. 
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5.1. Sphere as a Coset Space 

Our desire in this section is to derive the identification, 

sn-ı
~ O(n)/O(n -1) ~ SO(n)/SO(n -1). (5.1.1) 

This is done by the following method; when constructing a homogeneous manifold as a 

coset space of groups ( the quotient itself may not be a group) we consider the isometry 

group of the manifold M, call it G. Isometry group consists of automorphisms that 

preserve the metric; a subgroup of isometries is the isotropy group of a point, call it 

H. The manifold Mis then identifiable by the coset set G/ H. As an example, we will

apply the procedure on a good candidate; the sphere.

Theorem 5.5. The Lie group O(n) acts transitively on sn-ı far n � 2.

Proof. We want to work out the action of the orthogonal group O(n) on sn-ı_ The

choice of sn-ı is because we consider the sphere lying in the ambient manifold l.Rn, and

the coordinates are n-tuples, 

sn-ı = {(x1,x2, .. ,xn) E l.Rn s.t. llxll2 = L(xi)2 = 1}
i=ı 

Consider the simplest situation, that we want to map the north pole n = (l, O, O .. , O) 

to any other point on the sphere. Notice that under action of A E O(n), the image An

is the first column of the matrix A, 

aıı aı2 aın 1 aıı 

a2ı a22 a2n o a2ı
n f---+ An= (5.1.2) 

anı an2 ann o anı

For transitivity, take a destination x' E sn-ı, therefore the first column ( a11, a2ı, .. , anı?

is fixed. The column Ail has norm 1, and so can be a component of an orthonormal 
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basis. Find the rest of this basis by Gram-Schmidt orthogonalization process; and we 

obtain Aiı, v2, v3, .. , Vn n-many vectors corresponding to a basis for JRn
. A matrix that 

places this basis in columns give an orthogonal matrix 

n x n 

and it takes the north pole to the desired point. it is possible to generalize this to any 

x f-----+ x' rather than the north pole, as assured to us by the spherical symmetry of a 

sphere. Hence the action is transitive. □

Theorem 5.6. The isotropy group of the north pole is the subgroup O( n - l) of O( n). 

Proof. The restriction now is A · (1, O, O, .. , Of = (1, O, O, .. , Of, from this we have 

aıı = O, and a21 = a31 = .. = anı = O. We next apply orthogonality condition to this 

matrix, namely we must obtain, 

o *
, while also AT = 

IIB 

o * * 

1 O o 

a12 * * 

JIBT 

* 

The only solution is when the first row of A consists of all zero entries. Hence the 

isotropy group is simply the matrices of the form, 

1 O O 

o * * 

IIB 

o * * 

whereIIB E O(n - 1) 

n x n 
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As lIB is the unique matrix in this case, the isotropy group of n is O(n - 1). We can 

embed the subgroup O(n - 1) inside O(n) by the above prescription. And due to 

spherical symmetry, n could be taken as well as any other point; leading to the same 

concl usions. □

Remark. We could have shown the transitive isometry group to be SO(n). We would 

require a positive determinant as an additional property for the column matrix 

(Aiı, v2, .. , vn)- Say the determinant is -1, then send any Vj f----t -vj which brings a 

coefficient of ( -1) for the determinant. And orthonormality is preserved. And the 

isometry group turns out to be SO(n). 

Moreover while working on det= +1 matrices, the isotropy group alsa can be shown to 

be SO(n - 1). Hence (5.1.1) is a valid identification of spheres. 

Note. The spheres which are alsa Lie groups are S1 , and S3
. For these manifolds, the 

group SO(n-1) is normal in SO(n) (or similarly O(n-1) in O(n)), and consequently 

the coset space forms a well-defined group under coset multiplication (see [ 16/). 

5.2. Symmetric Spaces 

Say we have a connected Lie group G with corresponding Lie algebra g and a Lie 

subgroup H with Lie algebra Q. Define a complementary space to Q by m, then with 

this setup any g E g can be written in the form, 

g = h + m, h E Q, m Em. (5.2.1) 

This gives a direct sum decomposition on g as we can construct projection maps from g 

onto Q and m. Therefore g = Q EB m. in certain cases it happens that the commutations 

of Q and m satisfy the following relations, 

• [Q, Q] c Q, • [Q, m] cm, • [m, m] c Q

{ Generators of g} = { Generators of Q} EB { Generators of g - Q} 

(5.2.2) 

(5.2.3) 
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this looks very much like the structure of a graded Lie algebra.4 The spaces that satisfy 

such a particular structure are of importance in the study of homogeneous spaces. 

Remark. The first condition is a rudimentary criteria of fJ Ç g. The second condition 

implies that m is an (J-invariant complement ta fJ Ç g, however the third property is of 

interest as it is the defining property far the algebras which correspond ta the symmetric 

space. 

Definition 5.7. Any simply connected homogeneous space M = G/H far which the 

isomorphism and isotropy algebra admit the structure in (5.2.2) is called a symmetric 

space. One of the most important feature of these manifolds is that they inherit a 

covariantly constant curvature tensor. 

5.3. Connection ona Hom ogeneous Space 

We want to explore the geometrical quantities which we can make use of in 

coupling spinors in a NLa-M; especially when the target is taken to be a homoge­

neous space, it can be useful to examine the invariance of quantities under global 

G-transformations. For this, we again consider a homogeneous space G / H and tensor

fields we can define on this quotient. it will be important to analyze the Lie algebra 

valued differential forms. 

Definition 5.8. The left invariant l-forms are di.fferential forms on a manifold 

such that (.Ca )*w = w far alla E G. On a homogeneous space G/ H, the left invariant 

1 -forms under the actions of G are elements of the form 

where g E G corresponds ta a coset in G / H. 

The left invariant one-forms are differential forms which are left untouched by 

global constant transformations coming from G. Hence the defined object g- 1 dg in­

herits a rigid G-action invariance. However in this definition there is an implicit 

4 As in the case of examples towards the Super Poincare algebra. 
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statement implied; that such 1-forms are in fact invariant under left actions by G.

Let us show how this unfolds: 

Proof. The 1-forms g-1dg take their value in Lie algebra of the Lie group G. Say we 

act by h E G by sending g f-----+ h · g, then 

This proves the statement. Moreover, we can see that such a form satisfies the "torsion" 

Maurer-Cartan equation as well, 

The starred equality is derived by the following trick, 

gg- 1=]_::::} d(gg- 1 )=d(]_)=O 

⇒ dg /\ g-1 
+ g /\ dg-1 = O ⇒ g /\ dg-1 = -dg /\ g-1.

⇒ dg-1 = _9-ı /\ dg /\ 9-ı

These observations are mainly covered in [20] and [18]. 

(5.3.1) 

(5.3.2) 

(5.3.3) 

□ 

The differential form g-1dg lies inside the vector space g*; that is the dual space 

of the Lie algebra g of G. That is because by definition a Lie algebra consists of left 

invariant vector fields on the manifold, which is a subset of X( G / H) 

We can always decompose such an element to elements from the Lie algebra of H and 

the Lie algebra of the remaining G - H. This means that indeed we can find w, and e 

such that, 

g-1dg = w + e w E �' e Em (5.3.4) 

We have the desired algebraic properties when G / H satisfies the conditions for a sym-
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metric space. in this case we make use of the conditions g = [J EB m as in (5.2.2), 

• [[J, [J] c [J, • [[J, m] c m, • [m, m] c [J,

hence in a symmetric space we have, 

Rewriting the torsion equation using this decomposition gives, 

d( w + e) = -( w + e) /\ ( w + e). (5.3.5) 

Assume that we consider a right action on the left invariant forms on G / H. That 

is sending g f---+ gh, which gives a different parametrization of the coset space. This 

time we assume not a global constant action by members of G, yet possibly coordinate 

dependent (and therefore local) transformations from the subgroup H. How are the 

components w + e are affected by this transformation (note that now dh-/=- O)? 

g- 1dg M (gh)- 1d(gh) = h- 1

g- 1 (dg · h + g · dh) = h- 1

g- 1dgh + h- 1 ]_dh 

meaning that, 

= h- 1(g- 1dg)h + h- 1dh (5.3.6) 

(5.3.7) 

as the elements e, and w belong in non-intersecting sets, we can further decompose 

these relations into 

(5.3.8) 
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The objects Wµ 
and e

µ 
transform as covariant vectors under transformations, however

they are not proper tensors. We will uncover how they play a role in the quotient G / H,

first we state that we can define even Lie algebraic notions of curvatures. Put,

R
µv(H) := OµWv - OvWµ 

+ [wµ
, Wv]

Rµv(G/ H) := &µ
ev - Öve

µ + [wµ
, ev] - [wv, e

µ]

furthermore, the H-covariant derivatives can be defined to satisfy,

(5.3.9)
(5.3.10)

meaning that we indeed put D
µ
ev := &µ

ev + [wµ
, ev] on G/ H. We can express this

equations by decomposing w and e into their respective Lie algebra generators. This
will be used in proving the next proposition.

Proposition 5.9. Far w E fJ and e E m in a symmetric space, the curvatures reduce
dawn ta R

µv(H) = -[eµ
, ev], and R

µv(G/ H) = O.

Proaf. Let us elaborate on what happens to the Lie algebraic curvatures when G / H
is chosen to be a symmetric space. In equation (5.3.5) we can expand the terms and
separate the components into the sets they belong,

d( w + e) = -( w + e) /\ ( w + e)
dw + de = - ( w /\ w + w /\ e + e /\ w + e /\ e ) =} 
.._.,..,, .._.,..,, .._..,,.-, ..__..,, ..__..,, ..__., 

E[J Em E[J Em Em E[J 

(5.3.11)

the equations of fJ and m are split since these are completely disjoint sets. This way
we end up with two equations,

dw = -w /\ w - e /\ e
de = -w /\ e - e /\ w

(5.3.12)
(5.3.13)



• The first equation describes the following,

dwµ = -Wv /\ Wµ 
- ev /\ eµ, and, dwv = -Wµ 

/\ Wv - eµ 
/\ ev 

dwv - dwµ = [wv, wµ] + [ev, eµ] 

=} Oµ
Wv - OvW

µ + [wµ, Wv ] = Rµv (H) = -[eµ, ev]. 
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• The second equation tells us that the H-covariant derivative of the vielbein is

symmetric in two indices. 

and so that we have, 

=} deµ 
- dev

= -Wv /\ eµ + eµ 
/\ Wv - ev /\ Wµ + Wµ 

/\ev
= -[wv, eµ] + [wµ, ev] 

=} Öveµ 
- Öµev - [wµ, eµ] + [wv, eµ] = O 

=} Dveµ 
- D

µev = O. 

this completes the proof. □ 

The decomposition of the fields eµ 
in m give us a set of vielbein, it reduces the 

curved spacetime metric into flat Lorentzian metric at each point on the tangent space 

of the manifold. it helps diagonalize the metric and in a sense it is the "square root" 

of the metric. 

The third condition of a symmetric space, namely [m, m] C [J tells us that the 

generators of m of G - H give a representation of the group H. These elements rotate 

the tangent frames in G / H while giving an isometry of an induced metric on the target 

space. The members { wµ
} appearing here are called spin connection.
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5.4. NLo-M's with Homogeneous Target Space 

In this chapter we focus on the o--model survey of [20]. We again consider a field 

theory where the set { qi ( x)} are mappings from the spacetime "the world" to a target 

space; yet now the target manifold is a homogeneous space G/ H. The points on the 

target space are the fields ef>i ( x). In the quotient space, the points can be represented 

by elements g ( ef>i ( x)) as they correspond to coset representatives. That is we send 

g( </>) E G ---+ g( </>) · H lying inside G / H. 

Throughout this section, for the o--models; adopting the notation of [20], we will call 

V( </>) : = g( </>) as the target space coordinates. 

Just like we decomposed the left invariant forms by the Lie algebra g of G and f) of H, 

in the same manner we can further define the Lie algebraic quantities: 

(5.4.1) 

this equation is a direct analogue of g- 1 dg = w + e for the left invariant forms. 

Definition 5.10. The quantities Q
µ 

and P
µ 

satisfying (5.4.1) are the pull-backs of 

the target space connection coefficients { w
µ
} and vielbein { e

µ
} discussed in (5.3.4). 

Explicitly they are defined ta be
7 

Qµ(</>) := wi(</>)8µ
</>i 

P
µ(</>) := ei(</>)8µ

</>i

(5.4.2) 

(5.4.3) 

Suppose that we consider a right action as in (5.3.8), and we would like to find 

out the transformations of Q and P under such an action, in fact that is equivalent to 
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considering local H-transformations. Say that we consider V(x) f-----+ V(x )h(x) then, 

v-
1
a V f-----+ h- 1

v-
1 (8 V · h + V · a h) - h- 1

v-
1
a Vh + h- 1 ]_8 h ⇒

µ, µ, µ, - µ, µ, 

Qµ, f-----+ h- 1(x)Qµ,(x)h(x) + h- 1(x)8
µ,
h(x) 

P
µ, 

f-----+ h- 1(x)P
µ,(x)h(x) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

these equations are the analogues of (5.3.8). It can be observed that the components 

Qµ, 
transform as the gauge field associated with the local H transformation, whoever 

is under consideration. This will lead to a new covariant derivative for the terms 

fundamentally. This is because we are looking for a gauge invariant (gauge field here 

being Qµ,
) Lagrangian which consists of the important kinetic term, and hence we need 

a way of taking a derivative as the classical o--model Lagrangians include contractions 

of the derivative: 8
µ,

ı/}8µ,q} 9iJ · This way, the Lagrangian will be invariant under actions 

of Grigid X Hıacal· 

Definition 5.11. The H-covariant derivative D is a linear derivation acting on 

G/H by, 

(5.4.7) 

The H-covariant derivative is defined as such, the equation (5.4.1) now becomes, 

v-ı D
µ, 
V = P

µ,
, (5.4.8) 

This is a quite important relation, if the gauge field in the theory changes, then the 

covariant differentiation changes in respect, however we still have the validity of (5.4.8). 

There is also the analogue of the structure equations under the context of spin connec­

tion. The Cartan structure equations are analogues of the same equations in the Lie 

algebra theory, known as Maurer-Cartan equations. In a non-field theory context we 
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gave them in (5.3.9), here we adjust them accordingly, put 

(5.4.9) 

The first one is the analogue of the 1 st Cartan structure equation, while the second 

is the one regarding the curvature 2nd Cartan structure equation.

Definition 5.12. We define the class of Lagrangians far NLO' M's with homoge­

neous target space. The Lagrangian must be left fixed under the global actions of G and 

local H transformations, such a class is given by, 

where tr[.] stands far the trace over the Lie algebra. 

Remark. Actually this reduces ta the Non-Linear O'-Model action given in (3.0.2) 

when the target space is a Lie group. Ta see this, let H = { e}, and hence G / H � G be a 

Lie group. The corresponding Lagrangian will be invariant under linear transformations 

of Grigid· The gauge fields Qµ ~ 
Wµ will fall under the Lie algebra [J ~ {O} (the trivial 

Lie algebra) and therefore it will vanish, and the H-covariant derivative reduces ta 

D
µ

V 8
µ

V, 

Then we get, 

1 [ 1 ] 1 [ - - ] 1 - -
-tr av- aµv = --tr a ,+,ıaµ,!Je-e- = --a ,+,ıaµ,IJ g--

2 µ 
- 2 µ'f' 'f' ı J 2 µ'f' 'f' ı]. 

Proposition 5.13. The Lagrangian given in definition 5.12 can alsa be written as, 

(5.4.10) 
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Proof. We need an alternative way of writing D
µ 
v-

1 DµV, we will make use of equation
(5.4.8). Also notice that D

µ
(vv-ı) = D

µ
(]_) = O, expanding this in accordance with

Leibniz's theorem,

{::} D
µ
v-1v+v-1D

µ
V=O

{=} D
µ 
v-

1 = -v-1 (D
µ 
v)v-1

therefore the new Lagrangian turns out to be,

this finishes the proof.

(5.4.11)
(5.4.12)

(5.4.13)
(5.4.14)

□ 

Proposition 5.14. The Lagrangian in definition 5.12 is invariant under rigid G and 

local coordinate dependent H-transformations. Hence the equations of motion preserve 

Grigid X Hıocal symmetry. 

Proof. Say that we act on the Lagrangian by a constant U E G, this is a transformation
sending V f---t UV, then the new Lagrangian turns out,

Lnew = � [D
µ

(v-ıu-1)Dµ (UV)] = � [D
µ
V-1 -u-1U · DµV]

2 2 

= � [ D
µ 
v-ı DµV] = Latd

(5.4.15)
(5.4.16)

this shows the invariance of Lagrangian under G transformations. Moreover if we
were to map V(x) f---t V(x)h(x), i.e., consider a local H-transformation, using the
transformation (5.4.6) the new Lagrangian turns out to be,
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recall that the trace operator conserves cyclic permutations of the arguments. That is, 

tr(AJIB(C[})) = tr(JIB(C[})A) = ... = tr([})AJIBC), therefore we obtain, 

(5.4.17) 

When we do not impose any gauge to restrict the V to a coset representative, the 

Lagrangian (and hence the theory) is invariant under linear transformations of Grigid x 

Hıacal· □

5.5. The <Y-Model on 2-Sphere 

We will consider the parametrization for the ungauged <Y-model given in ref. 

[21, 22]; the sphere is modeled as a quotient manifold of the form 82 
~ 8U(2)/U(l).5

The target manifold is given by the parametrization, 

(5.5.1) 

the target manifold is a 2-manifold, therefore a single complex valued scalar field q> is 

sufficient. Yet keep in mind that it is not always possible to cover a whole manifold, 

example here being the 82
, with a single parametrization. We compute the left hand 

side of (5.4.1) with the parametrization of (5.5.1), 

(5.5.2) 

5The SU(2) gives isometries of S2 
� CP1 (see section 4.12), and the isotropy group corresponding 

is U(l). Hence likewise the example of (5.1.1), we can also identify the 2-sphere as the quotient 
manifold SU(2)/U(l). 
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Referring to [21], to compute the right hand side of (5.4.1) we need to use the SU(2) generators as follows: we compute the equation (3. 7) of [21], 

where the (Ti hx 2-matrices are represented through the Pauli o--matrices by, 
-ıTı := -o-ı =2 

which gives out, 
( o_ -/) , 

-ı 
o2 

( o .!)-;ı � ' 

v-ıaµ v = - 2 
+ Qµ 2 . . 

( o '!:.E.) ( i 0)
- P,, Ü Ü ! 

2 2 

And so we obtain that, 
(28

µ</>) Pµ = l + ll</>11 2
'

The Non-Linear o--Model Lagrangian is then given by plugging Pµ in (5.4.10), 

which is exactly the result of ( 4.2.19) with the proper K E R 

(5.5.3) 

(5.5.4) 

(5.5.5) 

(5.5.6) 

Remark. The Qµ is used in supersymmetric madels ta define a cavariant derivative far

the fermianic fields sa that they remain invariant under lacal-H transfarmatians when 

the target space is a hamageneaus space G/ H. Under Hıocal, a spinar field is mapped 

ta 'lj;(x) r--+ h- 1(x)'lj;(x). The carrespanding H-cavariant derivative far a spinar field 

is then given by, Dµ7/J := (öµ + Qµ)7/J. This allaws us ta incarparate lacal H-invariant

spinarial terms in the Lagrangian. 
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6. SUPERSYMMETRIC NON-LINEAR u-MODELS

Supersymmetric CT-models have been the keystone in the research for super­

symmetric field and supergravity theories for the past 50 years. The first geometric 

interpretations of the D = 2, and 3 model was given in [12]. Later on, the same 

model was studied in various dimensions in more detail in [3-5]. The more recent 

papers of [10, 11, 21-23] have all studied supergravity theories with this model to de­

termine the target manifolds. The classification of target manifolds in various models 

are provided in [24]. As of this chapter we will stick to the component approach of the 

Lagrangian formalism while following [5] and [9]. 

The NLCTM's we analyzed until the Supersymmetric CT-Model chapter were of the 

bosonic type of CT-models; this is because we had not yet included any fermionic fields. 

Bosonic is a term used to refer to the forces governing the nature, and the fermions 

are the constituents of matter in the nature. We give a short review of supersymmetry 

in the appendix B.1. Since we now wish to consider supersymmetric NLCTM's, we need 

to add fermionic partners to scalar fields; in this case the multiplet we need will be 

called the chiral multiplet. As of NLCTM's, we interested in the general structure of 

the target manifold when supersymmetry and fermion fields are existent in the theory. 

For this part we refer to [7, 25]. For a more comprehensive outlook on supersymmetry 

see [26-28]. 

6.1. The Chiral Model 

Supersymmetric multiplets contain bosons and fermions with equal number of 

degrees of freedom. Since we are interested in supersymmetric CT-models, we need 

a supermultiplet that contains a scalar field. This is achieved by adding a spin-1/2 

spinor field. 

Definition 6.1. The multiplet which consists ofa spinor field 1/J(x) and a scalar field 

</>(x) is called the chiral multiplet. In D = 3, the scalar field is complex far N > 1 
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and the fermionic field is a M ajomna spinor. 

The on-shell supersymmetric theory ofa chiral multiplet in D = 4 was constructed 

by Wess and Zumino in 1973 [29]. Adapting this to D = 3 with n-chiral multiplets 

(<Pi, ıj;i , 1 � i � n), we obtain the action, 

(6.1.1) 

It is straightforward to show that this action remains invariant under the following 

supersymmetry transformations, 

ôq>i = Eıj;i

ôı/Ji = q}q>i E,
(6.1.2) 

and moreover [<5Eı, <5E2 ]</>i = -2E2''tcıÖ
µ,
</>i and [<5Eı, <5E2 ]ıj;i = -2E2''tcıÖ

µ,
ı/Ji where field 

equations are used. For details, see [27]. 

6.2. D = 3, and N = 1 Supersymmetric a-Model 

There is even a greater class brought in by the inclusion of a non-generic met­

ne, and hence the inclusion of target geometry in the picture . The Non-Linear 

a-Model brings this significant upgrade; we couple the Lagrangian with a metric ten­

sor 9iJ = 9iJ(<P), and we modify the Wess-Zumino action (6.1.1) accordingly. By doing

so, we introduce the notion of an abstract target manifold formed by the scalar fields

{ </>i }. This target manifold has the dimension of the supersymmetric partners in the

theory. This will remark the true beauty of the a-Model, as now different fields are

in interaction non-trivially.

In this section we sketch the derivation of [5] for the construction of a super­

symmetric Lagrangian, and supersymmetry variations. The case of D = 3 Non-Linear 

a-Models is paralleling the D = 2 models; everything we prove for D = 3 in these sec­

tions will also valid for D = 2 N on-Linear a-Models as the properties of spinor in these
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two dimensions are similar. Note that in D = 2 scalar fields need to be real-valued. 

We take n-copies of the chiral multiplet, namely {<pi , �i } where 1 :S: i :S: n and 

consider generalization of the Wess-Zumino model (6.1.1) as follows, 

(6.2.1) 

we have to uncover the necessary extra terms of this action. To find out necessary 

modifications, we apply the Noether procedure; this requires minimal adjustments 

so that supersymmetry is retained up to all orders of fermionic fields. The details of 

the procedure depend on the spacetime dimension. 

N otice that the metric is a function of the the scalar fields, i.e., 9ij = 9ij ( <p). And 

hence under supersymmetry it changes as, 

(6.2.2) 

Moreover when we do partial integrations, the derivatives will also act on the metric. 

Hence the action is not going to remain invariant under (6.1.2). To get rid of the extra 

Christoffel symbols that appear from (6.2.2), we replace the ordinary derivative on the 

Majorana spinor �i in the action with the following covariant derivative, 

(6.2.3) 

It is remarkable that such a connection term is needed and works as a part of the 

Noether procedure. This is actually not a surprise as the fermions carry the index of 

the target space, and it is very natural that their derivative should be covariantized 

with respect to the target space connection. 

By introducing such a covariant derivative in the action, although this helps us 

get rid of the extra terms that come from the action of scalar fields, we end up with 

the spinorial terms of higher orders in the supersymmetry variation. Notice that under 
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(6.1.2), the terms 8E [1/ıiJ/>,ı,ui] contain connection coefficients coming from the covariant 

derivatives (6.2.3) according to 8Ertı = ömrt
z
ôEıpm. We recognize anırtı as part of the 

Riemann tensor since, 

(6.2.4) 

This results in adding a quadratic 4-spinor term contracted with the Riemann curva­

ture tensor Rjkl = Rjkl ( ıp) to the action. In summary we have the following additive 

terms in the action, 

Ôe rk Ôe 
R 9ij ------=--+ ij ------=--+ ij kl · (6.2.5) 

Moreover also the supersymmetry transformation of the spinor needs to be adjusted 

as, 

(6.2.6) 

It turns out that no further modifications are needed in the action. The final form of 

the action is given in [5], 

(6.2.7) 

where J/) : = "(' Dı,;, , It is remarkable that the Noether procedure finally terminates 

with the action (6.2.7), where the covariant derivatives are as in (6.2.3). This action 

is invariant under the supersymmetry transformations (6.2.6). 

Lastly for the N = l case, let us also verify that the supersymmetry algebra 

closes on the scalar fields of the NLa M. 

Proposition 6.2. The scalar fields { ıpi } close the on-shell supersymmetry algebra. 



Proof. For the scalar fields q} ,

[ôEl ı ÔE2l • <pi = Ôq [ı5E2 • </>il - ÔE2 [ôEl • </>il
= ôq [ôij c2'ıı0jl - ôE2 [ôij cı fjl
= Ôi

jf2Ôq(i{Jj) - ÔijflÔE2(i{Jj)
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= ı5ij f2 ( ( ı5-ı )j mf/J</Jmf ı - r{ı (Eı 1/l)i{J1) - ı5ij cı ( ( ı5-ı )j mf/J</Jmf2 + r{ı(E21/l)i{J1)
= E2q)<pmE1ô:n - E1q)<pmE2ô:n + ôi

j
f{l ( - c2(Eı'l/})i{J1 

+ c1(E21/}){;l)
= E2q)<piE1 - E1q)<piE2 + Ôi

j
f{1(-E2Eı'l/}ijJl 

+ E1E2'l/}i{Jl)
vanishes 

so the algebra also closes on the field <pi. This proves that the proposed variations in
(6.2.6) do provide valid supersymmetry transformations on <pi. □

As highlighted in ref. [12], this Lagrangian (6.2.7) has a purely geometric meaning
to it, which proves the motivation to study the Non-Linear a-Models from a geometric
point of view. Notice the target manifold of the NLaM with N = l supersymmetry
is simply a Riemannian manifold with Levi-Civita connection. However N = 2 case
brings stronger restrictions on the target manifold. This is what we unravel in the next
chapter.

6.3. D = 3, and N = 2 Supersymmetric a-Model

We wish to add more supersymmetry to our NLaM and to the transformations
of (6.2.6). The fundamental ideas must again be implemented. Having extended
supersymmetry means that we have more than a single spinor parameter; to achieve
this note that supersymmetry transformations ( 6.2.6) can be generalized as follows [5l:

ô<pi = J; E'lj),
(6.3.1)

ô7/i = (J-l)i
j
q)cpic - fkıô</Jk'lj; l.
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Here J is a (1, 1)-tensor field; when JJ = ö°J, we get back to (6.2.6) transformations. 

The square matrix [JE°]; acts as our new supersymmetry parameter on the target man­

ifold. Tensor J is globally defined as we assume the existence of rigid, i.e., global 

supersymmetry. The necessary and sufficient conditions for the supersymmetry invari­

ance of the action (6.2.7) under the new supersymmetry variations are (as outlined 

in [5]), 

(6.3.2) 

6.3.1. Extra Conditions raised by Extended Supersymmetry 

In (6.3.1) we have generalized our supersymmetry variations in accordance with 

the existence of exactly two supercharges. We now wish to further expand this discus­

sion without specifying N > l. The extended SuperPoincare relations are mentioned 

in (B.2.1), this too must be realized in the system. For this, we will generalize ( 6.3.1) 

to carry the supersymmetry index {A, B, .. } to denote the number of supersymmetries

N; so that J f-----+ JCA) and E f-----+ EA . 

In extended supersymmetry, the supersymmetry algebra becomes, 

(6.3.3) 

hence each supersymmetry brings its own tensor J(A)� , and these are covariantly

constant due to (6.3.2). 

Proposition 6.3. The supercharge algebra implies that the following relation holds 

true, 

(6.3.4) 
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Proof. To show the (6.3.4) relation, we again check the closure of the algebra, yet this 

time keep the supersymmetry indices A and B. So we evaluate, 

= ı5�t)[(._7(B))\E2'1/Jj] - (1 tt 2 and A tt B) 

= (..7(B))\E2ô�t) [�J] - (1 tt 2 and A tt B) 

= (..7(B))\E2 { (J(A) -l)j mf/}rjrE1 - r{ı(E1'1/Jk)�1 } - (1 tt 2 and A tt B) 

= (J(B))\(J(A) -l )j mE2f/J1rE1 - (..7(B))\r{ı(E1 'l/Jk)�l - (1 tt 2 and A tt B) 

= (J(B))\(J(A) -l )j mE2f/J</rE1 - (J(A))\(J(B) -l )j mE1 f/J</rE2 + (J)f(E'I/J)'I/J + ·· 

terms with '1/; 

referencing [5] we will just be focusing on the terms without 'ljJ of this calculation. The 

terms with 'ljJ should vanish. The left hand side of this calculation is postulated by the 

SuperPoincare relation of (6.3.3). For the infinitesimal transformations, (6.3.3) implies 

that we have [ı5t), 8��)] · <pi = 2E1 "tE28
µ
c/>iJAB which has no spinor terms. The non-zero 

remainders on the right hand side gives, 

(6.3.5) 

which implies that the tensors proposed in the infinitesimal supersymmetry variations 

of (6.3.1) obey ._7(A)._7(B) -1 
+ ._7(B)._7(A) -1 = 2<5AB _ This finishes the proof. □

Now it is important to observe geometric meanings of these equations. Equations 

(6.3.2) and (6.3.4) imply that the tensor ..7; would be like an almost complex tensor if 

its square was -]. As there are N-many supersymmetries, there must exist (N - 1) 

many such J's; that is one for each additional supersymmetry. in the next section we 

will analyze the N = 2 case. 
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6.3.2. Restrictions on the Target Manifold 

By solving the variation of the Lagrangian under supersymmetry transforms, we 

found the relations of (6.3.2) regarding .:T''s. These will prove to provide a Kahler 

manifold structure on the target space. 

For supersymmetry to be manifest, the supercharge commutation relations must be 

satisfied by the tensor fields ,:r(A), that is the highlight of equation ( 6.3.4). lf there is 

a single supersymmetry, i.e. A = B = 1, then (6.3.4) tells nothing original. However 

say that we consider N = 2 supersymmetries, then we have two nonidentical ,:r(1) and

,:r(2) which provide (6.3.1). The first supersymmetry is when ,:r(l): = ı5g the Kronecker

delta; yet the second tensor ,:r(2) is more interesting. We solve (6.3.4) for ,:r(2) ,

,:r(l) ,:r(2) -1 + ,:r(2) ,:r(l) -1 = Ü =} 

].:J(2) -1 + ,:r(2) ] = o.
(6.3.6) 

Proposition 6.4. In a D = 3, N = 2 supersymmetric Non-linear a-Model, the target

manifold admits exactly one complex structure. 

Proof. The relation (6.3.6) implies that ,:r(2) = -,:r(2) -1, i.e., (,:r(2)) 2 = -]. Such .:T

is defined throughout the target space as we assume rigid supersymmetry. Hence it is 

a complex structure. □

Proposition 6.5. In a D = 3, N = 2 supersymmetric Non-linear a-Model, the target

manifold is K iihler. 

Proof. We know the existence of a globally defined complex structure, and it is covari­

antly constant (6.3.2), and we have a complex Riemannian manifold in (M, g, .:T). By 

theorem 4.5, the target manifold ofa D = 3, N = 2 supersymmetric a-model is a 

Kahler manifold. □
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6.4. D = 3, and N = 4 Supersymmetric a-Model 

Now we would like to discuss the theory with more supersymmetries. The number 

of supersymmetries we can include in the theory is not arbitrary, this is the highlight 

of our next proposition. 

Proposition 6.6. In a D = 3 supersymmetric Non-linear a-Model, N = 3 supersym­

metry implies the existence of a 4th supersymmetry. 

Proof. We assume that we have two complex structures {J(l) = ]., J(A), J(B)} corre­

sponding to N = 3 supersymmetries. We write (6.3.4), 

J(A) J(B) -1 + .7(B) .7(A) -1 = Ü

{:} 
.7(A) .7(B) -1 = -J(B) .7(A) -1

{:} 
.7(B) -1 .7(A) .7(B) -1 .7(A) = -]_
o o 

{=}JJ=-].,

o o 

where J := J(B) -l J(A). Let us also show that such J satisfies the supercharge

relation in (6.3.4), 

o o 
o 

for (J, .7(A)) ⇒ J .7(A) -1 + .7(A) .7-1 

= .7(B) -1 .7(A) .7(A) -1 + .7(A) .7(A) -1 .7(B) = Ü. ✓

o o 
o 

for (J, J(B)) ⇒ J J(B)-1 + .7(B) .7-l 

= .7(B) -1 .7(A) .7(B) -1 + .7(B) .7(A) -1 .7(B) 

= J(B) .7(A) .7(B) _ .7(B) .7(A) .7(B) = Ü. ✓

Therefore supposing the existence of unique (and non-trivial) complex structures, we 

can construct a fourth complex tensor. Physically this implies that a fourth supersym-

metry transformation also exists; hence N = 3 implies that N = 4. □

Proposition 6.7. In a D = 3, andN = 4 NLaM, the three complex structures satisfy 

the quaternion algebra. 
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Proof. in a D = 3, N = 4 supersymmetric Non-linear o--Model, we have exactly three 
o 

complex structures {J(i)H=ı := {J(A), J(B), J}. They are covariantly constant. Recall
o 

that for any almost complex tensor .7-1 = -J; hence J = J(A) -ı J(B) = -J(A) J(B), 
o 

which means that J is simply the multiplication of two previous complex structures. 

in quaternion language this corresponds to the relation i j = k . Hence the hyper-
o 

complex algebra consisting of elements { ±11., ±J(A), ±J(B), ±J} is now closed. □

With the above proposition we now have three complex structures defined on 

M that satisfy the quaternionic algebra which are moreover covariantly constant. 

This means that the target manifold M is a Hyperkahler manifold (see [30]). Hy­

perki-ihler manifolds are a generalization of Ki-ihler manifolds. All Hyperki-ihler man­

ifolds are Ki-ihler manifolds themselves and are necessarily of real dimension 4m for 

m EN (for more information on HyperKi-ihler manifolds, see [31]). 

Remark. In the light of Supersymmetric o--Model analysis in D = 3, we can infer 

the results of 1.1. The way supersymmetry works in D = 3 and D = 4 dimensions 

are related; namely we can show by dimensional reduction that N = l and N = 2 

supersymmetry in D = 4 is equivalent to N = 2 and N = 4 supersymmetry in D = 3 

respectively. Hence N = l and N = 2 NLo-M's in D = 4 require the target spaces to 

be Kiihler and HyperKiihler manifolds respectively (see {7}). 

Remark. In supergravity theories, the supersymmetry is local, hence the complex struc­

tures are defined locally. When supergravity is coupled, the target manifold is no longer 

HyperKiihler; the target spaces fall in a larger class of manifolds called quaternionic

manifolds. Far quaternionic manifolds the complex structures still provide a quater­

nion algebra, however this is only locally defined. HyperKiihler and quaternionic Kiihler 

manifolds are special classes of Einstein manifolds, whose Ricci curvature is propor­

tional to the metric tensor. More information can be found at {32]. 

in the case of D = 3 Non-Linear o--Model, we showed the existence of at least 

(N -1) complex structures living on the target manifold. These follow from global/rigid 

supersymmetry transformation rules. Proper supersymmetries also satisfy the super­

charge algebra of (6.3.4) which gives out a Clifford algebra. Through propositions 
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made in this section we investigated the algebraic structure of these tensor fields. 

The recent research including Supersymmetric ü-Models include the study of target 

spaces with U ( 1) isometries such as CP1 and the Poincare plane. Moreover these 

ü-models are coupled to gravity to form supergravity theories. Examples of these can 

be found at the papers of [10, 11, 21-23]. 



7. FUTURE RESEARCH AND REFLECTIONS
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In this thesis we studied various properties of NLo-M's and looked at supersym­

metric versions in 3-dimensions. The models we explored were global supersymmet­

ric models, however we could have studied local supersymmetry and taken a sigma 

model coupled to gravitation. In fact, the final Lagrangian (6.2. 7) is the base for 

global and local supersymmetric models in various spacetime dimensions; hence it has 

also been studied for supergravity theories. Such examples can be found in the litera­

ture [10, 11, 21, 23]. The general classes of target manifolds in such models are classified, 

yet not specifically all models corresponding to each of these target manifolds have been 

written. The explicit models in 3-dimensions are still ongoing problems under current 

research. 

There is also a possibility to describe o--models under generalized geometry for­

mulation. Generalized geometry captures tangent and cotangent spaces under the same 

construction, the o--models in this methodology could or could not inherit supersym­

metry. For more resources in this topic, we refer to [6]. 

Lastly we could have dropped the assumptions on the target manifold; in Non­

Linear o--Models we assume that the target space admits Levi-Civita connection and a 

Euclidean signature metric. However for example this is not the case in string theories. 

Therefore we could have started with a target space that does not admit Levi-Civita 

connection and has non-vanishing torsion. Such generalizations might also be consid­

ered as an im provement in the theory. 



54 

Bibliography 

1. Fecko M., Differential Geometry and Lie Groups far Physicists, Cambridge Uni­

versity Press, 2006.

2. Lindström U., "Uses of Sigma Models", Corfu Summer Institute 2017 "School

and Workshops on Elementary Particle Physics and Gravity", arXiv:1803.08873vl,

2017.

3. Alvarez-Gaume L., Freedman D. Z., "Geometrical Structure and Ultraviolet Finite­

ness in the Supersymmetric Sigma Model", Communications in Mathematical

Physics, Vol.80, 1981.

4. Townsend P. K., "Finite Field Theory", Lectures given at the 18th Winter School

of Theoretical Physics, Poland, 1981.

5. Bagger J., "Supersymmetric Sigma Models", Lectures given at the Bonn-NATO

Advanced Study lnstitute on Supersymmetry, 1984.

6. Lindström U., "Supersymmetric Nonlinear Sigma Model Geometry", 2012, Re­

trieved from arXiv:1207.1241 vl, Accessed on 15.09.2021.

7. Freedman D. Z. and Proeyen A. V., Supergravity, Cambridge University Press,

ISBN 978-0-521-19401-3, 2012.

8. Zwiebach B., A First Course in String Theory, Cambridge University Press, ISBN-

13 978-0-521-88032-9, 2009.

9. Hitchin N. J., Karlhede A., Lindström U., and Rocek M., "Hyperkahler Metrics

and Supersymmetry'' , Communications in Mathematical Physics, Vol. 108, pp.

535-589, 1987.



55 

10. Abou-Zeid M. and Samtleben H., "Chern-Simons Vortices in Supergravity", Phys­

ical Review D., Vol. 65, 085016, 2002.

11. lzquierdo J. M., Townsend P.K., "Supersymmetric spacetimes in 2+1 adS­

supergravity models" , Classical and Quantum Gravity, Vol. 12, pp. 895-924, 1995.

12. Zumino B., "Supersymmetry and Kahler Manifolds", Physics Letters B, Vol. 87,

1979.

13. N akahara M., Geometry & Topology and Physics, Institute of Physics Publishing,

Bristol and Philadelphia, ISBN O 7503 0606.

14. Vandoren S., "Lectures on Riemannian Geometry Part II: Complex Manifolds",

Utrecht, 2008.

15. Moroianu A., "Lectures on Kahler Geometry", Cambridge University Press, Jan­

uary 2010.

16. Lee J. M., Introduction to Smooth Manifolds, 2
nd edition, Springer, ISBN 978-1-

4419-9981-8, 2013.

17. Garrett P., "Classical homogeneous spaces", 2010, Retrieved from http: //

www-users.math.umn.edu/~garrett/m/mfms/notes/08_homogeneous.pdf, Ac­

cessed on 15.09.2021.

18. Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic

Press, 1978.

19. Kobayashi S. and Nomizu K., Foundations of Differential Geometry, Volumes I &

II, Interscience Publishers, 1969.

20. de Wit B., "Supergravity", 2001 Les Houches Summer school "Unity from Duality:

Grnvity, Gauge Theory and Strings", arXiv:hep-th/0212245vl, 2002.



56 

21. Deger N. S., Kaya A., Sezgin E., Sundell P., "Matter Coupled AdS_3 Supergravities

and Their Black Strings", Nuclear Physics B., Vol. 573, pp. 275-290, arXiv:hep­

th/9908089v2, 2000.

22. Deger N. S., Kaya A., Sezgin E., Sundell P., Tanii Y., "(2,0) Chern-Simons Super­

gravity Plus Matter Near the Boundary of AdS_3", Nuclear Physics B., Vol. 604,

pp. 343-366, arXiv:hep-th/0012139v2, 2001.

23. de Wit B., Herger I., Samtleben H., "Gauged locally supersymmetric D=3 nonlinear

sigma models", Nuclear Physics B., Vol. 671, pp. 175-216, 2003.

24. de Wit B., Tollsten A. K., Nicolai H., "Locally supersymmetric D=3 non-linear

sigma models", arXiv:hep-th/9208074vl, Nuclear Physics B., Vol. 392, pp. 3-38,

1993.

25. Gates Jr S. J., Grisaru M.T., Rocek M., Siegel W., "Superspace, ar One thousand

and one lessons in supersymmetry", Frontiers in Physics, Vol. 58, pp. 1-548, 1983.

26. Müller-Kirsten H. J. W. & Wiedemann A., Introduction ta Supersymmetry (Second

Edition), World Scientific Lecture Notes in Physics, Vol.80, 2010.

27. Nastase H., "Introduction ta supergravity", Brazil, December 2011, Retrieved from

arXiv:1112.3502v3, Accessed on 15.09.2021.

28. Wess J. and Bagger J., Supersymmetry and Supergravity, Princeton University

Press, Second edition, 1992.

29. Wess J., Zumino B., "Supergauge transformations in four dimensions", Nuclear

Physics B., Vol. 70, pp. 39-50, 1974.

30. Hitchin N., "Hyperkahler manifolds", Seminaire Bourbaki, Asterisque tome 206,

pp. 137-166 1992.

31. Galicki K., "Quaternionic Kahler and HyperKahler Manifolds", Retrieved



57 

from http://www. gali eki. com/math/courses/pdf /Not es. pdf, Accessed on 

15.09.2021. 

32. Swann A. F., 1990, "HyperKahler and Quaternionic Kahler Geometry", Degree of

D. Phil., Oriel College, Oxford.

33. Candelas P., "Lectures on Complex Manifolds", Department of Physics at the Uni­

versity of Texas, 1988, Retrieved from http://www. math. toronto. edu/mgual t/

courses/MAT477-2017 /docs/Candelas-dela□ssa. pdf, Accessed on 15.09.2021.

34. van Holten J.W., "Kahler manifolds and supersymmetry", arXiv:hep-

th/0309094vl, Acta Physica Polonica B., Vol. 34, pp. 5983-6004, 2003. 

35. Tanii Y., Introduction ta Supergravity, SpringerBriefs in Mathematical Physics,

Vol. 1, ISBN 978-4-431-54827-0, 2014.



Appendices 

58 



59 

A. MANIFOLD GROUNDWORK

We cover the necessary background for the smooth and complex manifolds that 

arise as target manifolds in supersymmetric Non-Linear o--models. The references 

are [13, 14, 16, 33]. 

Definition A.1. A real Smooth/Differentiable Manifold is a space M that sat­

isfies the following axioms, 

(i) M is a topological space. 

(ii) M is given with an atlas {(Ui, cpi)}. 

(iii) For{Ui } is a family of open sets that provide a cover far the space M, 'Pi are 

homeomorphisms; they are one -to -one and continuous maps with a continuous 

inverse (if both differentiable called diffeomorphisms) and provide a chart of 

Ui ----+ U C lRm .

(iv) The diff erentiable structure: The transition map between Ui and U1 where Ui n

U1 -/:- 0 is naturally given by f := cp1 ( cp-; 1 ). Such a function f must be differen­

tiable.

Definition A.2. A Riemannian Manifold is a real smooth manifold (it admits a 

differentiable structure far intersections of open domains) with a positive definite metric 

tensor g
µv defined on T

p
M· Riemannian Manifolds are denoted by the pair (M, g).

Definition A.3. An Almost complex structure on a real manifold is a globally 

defined (1, 1)-tensor field J : T
p
M ----+ T

p
M s.t. J2 

= -]. In local real coordinates 

{ a�
ıı, 

, dxµ } we can write J
p 

= :ı;, (p) 8�
., 

® dxµ . Far a fixed point p on M, this translates 

in local real coordinates to 

Jt(p)J;(p) = -ô�. 

Definition A.4. An almost complex manifold is a real manifold with an almost 

complex tensor field defined on it. An almost complex manifold is given by the pair 

(M, J), existence of a metric tensor g is implied. 
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Corollary. Almost complex manifolds have even dimension. 

Proof. Take M as the base manifold with dimension m; we have a globally defineci J 
such that J2 = -]_mxm· Taking the determinant with multiplicative property gives 
( detJ) 2 = ( -1 )m. An almost complex manifold is a real manifold, thus we can pick 
a real basis to have real entries in J;,. In this basis (detJ)2 must be positive, thus 
(-ı)m must be + 1 rather than -1. Concluding that m = 2n an even integer. □

Definition A.5. The almost complex structure acting on the space T
p
M can be defined 

by transformations of basis vectors in the following way, 

In a given basis, JP2 = -]_ is satisfied due to action on basis vectors. Indeed 
.:lp applied to 8 / 8zµ and 8 / 8zP is just multiplication by complex i and we obtain a 
representation of the almost complex operator in real basis; 

-Ilm
l 2 

⇒ J, =
o

p 

2mx2m 

Ü ] = -]_2mx2m
-Ilm

(A.0.1) 

Thus J4 
= idl rpM acting on real basis {8/8xµ; 8/8yv }. This means when complex 

dimension is dimıcM = m, the real dimension is dimIRM = 2m. The natural principle 
with dimension is when working on the tangent plane of the manifold, one needs 
dimension many basis vectors - for a generating set. A complex manifold is a good 
example for having concrete basis vectors; for locally it looks like IR2m. This means at 
any point p EM, tangent plane TpM is spanned by 2m-many vectors; 

{
a
a , .... ,-

a
a '

a
a , .... ,-8 a } xµı xµm yµı yµm 

While the above is for the vectors on TpM; for covectors living in r; M we consider 
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the basis 

Definition A.6. The following sets give a basis far the vector space TpMc where 

l-5cµ-5cm 

a ı{ a . a } 
-·=- --ı-
azµ

. 2 axµ ayµ 

We call the set { a�
µ 

, a�
µ 

} as the local complex coordinate basis far M. Similarly 

far one-forms we can define a basis of r; Mc ; 

Proposition A. 7. The contractions of the above defined basis vectors are summed up 

by the two equations: 

(dzµ, 8/azv ) = (dz11, 8/azv ) = O

(dzµ, 8/azv ) = (dz11, 8/azv ) = c5t

Proof. Let us show the first one,

(A.0.2) 

(A.0.3) 

where we used bilinearity, and this vanishes. The second equality is similar. □ 

Remark. The almost complex operator satisfying the above properties can be written 



in the complex basis as a (1, 1)-tensor of the form 

J= [
iIT

0

m o l ı.e.,
-iilm

,,.,. . a
d a

. 

a 
d-avp = ı-a ® z - ıa_- ® z 

z
a 

z
a 
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(A.0.4) 

Remark. To distinguish tensors written in real basis and complex basis coordinates, 

we will use Latin indices { a, b, c, .. } far the complex basis, and Greek indices {µ, v, p, .. } 

far the real basis. So in complex basis from (A.0.4), 

(A.0.5) 

A.1. Complex Manifolds

Definition A.8. A holomorphic function is a complex function that satisfies the 

Cauchy-Riemann equations and therefore is differentiable. This allows us to work with 

analytic functions on the complex plane, that is, far f(zµ,) = u(xµ,, yµ,) + iv(xµ,, yµ,) 

au 
H olomorphic: 

ax/J, 

Definition A.9. A complex manifold is a real smooth manifold satisfying the ax­

ioms in definition A.1 with an additional stronger version of condition (4); 

( 4h: The transition map far non-vanishing intersections of neighborhoods, f := cpj( cp-;- 1 ) 

is a holomorphic function. 

For two different atlases constructed on the same manifold, the Cauchy-Riemann 

requirement for composition of different atlases is not broken; thus the holomorphic 

property is independent of the choice of chart on the manifold. This means our defini­

tion is well-defined. 

Definition A.10. We define the Nijenhuis tensor field to be the mapping N: X(M) x
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x(M) ---+ x(M) 

N(Ü, v) := [Ü, v] + J[JÜ, v] + J[Ü, JV] - [JÜ, JV]. 

Theorem A.11. (see /13/) Nijenhuis tensor gives a very precise condition far testing 

integrnbility on a complex manifold. It can be shown that the followings are equivalent: 

(i) Integrnble almost complex structure. 

(ii) Vanishing Nijenhuis tensor field. 

(iii) (M, J) is a Complex manifold. 

Nijenhuis tensor is an important tool for understanding when an almost complex 

manifold can be made a complex manifold. 

Theorem A.12. Complex manifolds are almost complex. 

Proof. Say we have a complex manifold M; it has a holomorphic atlas and holomorphic 

transition functions. Define the almost complex structure on M via the coordinate 

patch (U, z) by J = i8/8zµ ® dzµ - i8/ 8zp, ® dzp,_ We need to analyze J on the 

overlap of two patches (U, z) and (V, w). We know that the following transition is 

analytic 

(A.1.1) 

(A.1.2) 

Thus switching between coordinate patches would give J(u,z) f-----+ J(v,w)· We obtain 

a global well-defined almost complex structure, so M is almost complex. □

Theorem A.13. Any orientable two-dimensional Riemannian manifold is a complex 

manifold. 
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Proof. Riemannian manifold (M, g) comes with a positive-definite metric 9
µv · Around 

the neighborhood ofa point, we can pick coordinates x, y so that the metric tensor takes 
on the form ds2 = >-.2 (x, y)(dx 2+dy2). Using the complex basis, where dz = dx+idy, we 
get dzdz = dx 2 -i2dy2 = dx 2+dy2. Therefore metric can be written ds2 = >-.2(z, z)dzdz.

Now take another coordinate pair u, v and define the complex coordinates (similarly) 
w = u + iv. The metric tensor becomes ds2 = µ2 ( w, w)dwdw. Because the manifold is 
orientable, we need to have the Jacobian ���'.�\ > O. Moreover, the metric must be the 
same on the points living in the overlap; thus )..2dzdz = 11,2dwdw.

We want to show that the transition function on the overlapping neighborhood is 
holomorphic. The change of coordinates is given by 

Öw Öw 
dw= -dz+-dz 

öz öz 

Plugging dw into metric equality gives 

öwöw = o 
öz öz 

(A.1.3) 

(A.1.4) 

This means either w = w(z) or w = w(z) (w is holomorphic or anti-holomorphic). 
Supposing the latter, it must satisfy the anti-Cauchy Riemann equations, resulting in 

öu öu 

det]= 
öx öy

öv öv 

öx öy

<0 i.e., ö(u, v) = _ (öu)
2 

_ (öu) 2 

< 0
ö(x , y) öx Öy 

(A.1.5) 

This contradicts the orientability assumption of Jacobian property. Thus w = w(z),

and the transition functions are holomorphic. □ 

Definition A.14. A non-degenerate closed two-form is called a symplectic form; its

an antisymmetric tensor by construction. A manifold that admits a symplectic 2-form 

is called a symplectic manifold. In loca[ covector basis { dx µ} as l ::; µ ::; dimM it

is defined as D := D
µvdx µ /\ dx v with dD = O. 

A bilinear form is non-degenerate if for some X E T
p
M, D(X, Y) = O for all Y 
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implies that X = O. This means that the form is 'honest' in the sense that it is not 

identically vanishing. Moreover non-degenerate forms are invertible with the use of 

metric; and taking the wedge product m-many times, we obtain a 2m-form 

!1/d:1/\ ... /\!1

that is nowhere vanishing. Thus a good candidate for a volume form. 

A.1.1. Hermitian Manifolds

Definition A.15. Given a complex manifold M with a Riemannian metric g; if 

far any X, YE T
p
M, then g is called a Hermitian metric, and (M, g) is a Hermitian 

manifold. In the complex basis, there is a choice of coordinate domain in which 9µv = 

9p,v = O and the metric obtains the form ds2 = 2g
µvdzµdzv .

Hermicity axiom is a condition for the metric defined on the manifold; it is not 

a condition on the manifold itself. And not every metric can be made Hermitian. In a 

local coordinate patch, a Hermitian metric must satisfy, 

_ı7p t7(T • 9µv - Jµ 9pCTJ v l 
Le., :J g:JT = g (in Matrix Notation). (A.1.6) 

Theorem A.16. A complex Riemannian manifold always admits a Hermitian metric. 

Proof. Take the Riemannian metric g already on the manifold; and define 

-+ -+ l -+ -+ ...... ......

g(X, Y) := 
2

[g(X, Y) + g(.:!pX, .:!pY)] (A.1.7) 

g is positive definite since g is, and g(:JX, :JY) = g(X, Y) meeting the Hermitian 



axıom as, 

g(Jx, JY) = � (9(Jx, JY) + g(�x,�9)) = � (9(Jx, JY) + 9(x, 9)) 

= g(X, Y). This completes the proof.

-]. -]. 
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B. A REVIEW OF SUPERSYMMETRY

B.1. SuperPoincare Algebra

Supersymmetry is one of the important symmetries that was discovered in recent 

years in physics which relates fermions and bosons. it is very much like the previous 

symmetries that we have mentioned, yet it is very unique in the sense that it is a 

combination of external/spacetime symmetries and internal symmetries; it has been a 

fundamental tool in many research in theoretical physics, and it plays a very important 

role in string theory. We will give a brief review of supersymmetry in this section. The 

references for this section are [7, 26-28]. 

Supersymmetry is constructed by forming a Superalgebra. This is done by re­

laxing one condition of Lie algebras; particularly the "defining relations" of the algebra 

includes anti-commutators (those are {,}) in addition to commutator brackets ([,]). 

The Poincare algebra is defined by the following equations, 

[Mµv, Mpa-] = -i('T/µpMvo- - 'T/µo-Mvp - 'T/vpMµo- + 'T/vo-Mµp),

[Mµv, Pp] = -i('T/µpPv - 'T/vpPµ),

[Pµ
, Pv] = O. 

(B.1.1) 

where the { Mµv } are Lorentz group generators and { P
µ

} are the spatial translation 

operators. 

Supersymmetry generalizes the Poincare algebra to a superalgebra by adding Majorana 

spinor charges, denoted { Qa}, with spinor indices are running from a = 1, 2, .. , x. These 



charges satisfy the following axioms: 

{Q,Q} ~ p 

[Q,P] =0 

[Q,M]~Q 

{Q,Q} ~ p 
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(B.1.2) 

The Lorentz group generators Mµv and momentum operators P
µ 

are already contained 

in the Poincare algebra; SuperPoincare algebra extends this with the (anti)commutation 

postulates of (B.1.2). The new operators are the spinor supercharges {Qa }, and their 

action on the fields provide an interchange map between bosonic and spinor sectors. 

Supersymmetry postulates that, 

(B.1.3) 

Definition B.1. The action of the supercharges (an overall look of (B.l.3)) gives us 

the infinitesimal supersymmetry variations. As in the case of Lie groups, we call 

ôE := E°'Qa far a spinor parameter E, the action of E°'Qa · <p = ôE [<p] is the supersymmetry 

variation of an arbitrary field <p. 

The fundamental principles of a supersymmetric theory are the following two 

very important premises; 

(i) The theory must be expressed by a supersymmetry invariant action. For this,

ôE · .C need not be zero, yet ôE · S = J dDxôE [.C] has to vanish. This condition is

satisfied also when the integrand is a total derivative.

(ii) The supersymmetry algebra has to be realized for all field configurations in the

system, i.e., the commutator brackets [ı5Eı, ôE2] must be as postulated by the al­

gebra.

Definition B.2. The bosonic and fermionic fields that define a supersymmetric model 

are called a supermultiplet. This means that the supersymmetry algebra closes on 
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these fields. If this closure requires the use of field equations, then supersymmetry is 

said to be on-shell. Otherwise it is called off-shell. 

B.2. Extended Supersymmetry

In basic N = l supersymmetry, we proposed the inclusion of supersymmetry
generators { Qa} in the superalgebra; this structure is extended when we assume that
N > l, i.e., there is more than a single supersymmetry. This brings in another index
for the supercharges, this is, they carry the capital Latin index { A, B, .. } running from
{ 1, 2, ... , N}. This is to denote the number of supersymmetries in the system. Hence the
new supersymmetry generators are { Q�}. They satisfy the following anticommutation
relation,

(B.2.1)

B.3. Spinors in D = 2, 3, 4 Spacetime

This section serves to mention some of the technical aspects of spinor variables
and related objects that pop out in calculations of supersymmetric field theories.
We are working in a field theory setting; this is to axiomatize the massless Klein­
Gordon equation □q> = O and the massless Dirac equation q)'l/J = O where f/J := '"'ta

w

The square 1-matrices that appear in this equation satisfy what is called a Clifford
algebra,

O :S µ, v :S D - l. (B.3.1)

This leads to the following relationship between the d'Alembertian operator □ and f/J,

□ = aµaµ 
= T/

µvaµa
v = t ( /µ/v + ıv ıµ)aµa

v 

= t ( f/Jf/J + f/Jf/J) = 
f/)2.

(B.3.2)

(B.3.3)
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this is the reason why Dirac equation is in a sense the square root of the Klein-Gordon 

equation. The 1-matrices act on spinor variables 1Pa, hence they must admit an 

applicable size. A Dirac spinor in D = 2m or D = 2m + 1 spacetime dimensions are 

2m x 1 column matrices. From this we refer that Dirac 1-matrices are of 2m x 2m . 

Definition B.3. We define the higher rank 1-matrices by complete antisym­

metrization as in the following, 

(B.3.4) 

the antisymmetrization brackets contain a normalization factor, hence a 1/r! for a 

1-matrix of rank r .

Definition B.4. There exists a unitary matrix C, alsa called the Charge conıu­

gation matrix which allows us to label higher rank 1-matrices as symmetric or 

antisymmetric when multiplied by C. That is to say, 

(B.3.5) 

Such C exists in all spacetime dimensions. Moreover it is not hard to show that the 

coefficients tr are equal modulo 4. i.e., tr = tr+4· 

The values of the constants { ti }f=o in supersymmetry for spacetimes in D = 2, 3 

and 4 are given in B.1. 

il Dimension to tı t2 t3 il 
D=2 +1 -1 -1 +1

D=3 +1 -1 -1 +1

D=4 +1 -1 -1 +1

Table B. l: Constants for D � 4 spacetime dimensions. 

For the details of the table, see [7]. The most im portant relation that follows from 

this is the contraction of two spinors (which gives out a spinor bilinear) via an r-rank 
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1-matrix. In supersymmetric calculations for two spinors '1/; and X, we will make use

of, 

(B.3.6) 

these are called Majorana flip relations. In dimensions D = 2, and 3, for two spinors 

Eı and E2, Majorana flips will allow us to derive relations such as 

• E1 (ıµ)E2 = t1 E°2 (ıµ)E1 = -E2 (ıµ)E1 

• E1 (ıµv)E2 = t2 E°2 (ıµv)E1 = -E2 (ıµv)E1 

Definition B.5. We define a unitary matrix B via the Charge conjugation matrix and 

0th Clifford algebra element B := it0C,0
. Such B satisfies BE*= -t1 li. 

Definition B.6. We define the Charge conjugate ofa spinor by 1/;0 by 1/;0 := B- 11/;*. 

The Majorana spinors are defined to be Dirac spinors that satisfy reality condition. 

They are spinors such that, 

(B.3.7) 

relation is satisfied. Taking the charge conjugate once again to get back to '1/;, we 

find the condition that BE* = li, which is only possible in spacetime dimensions with 

t1 = -1. That is, the reality condition gives consistent result only when the spacetime 

admits t0 = 1 and t1 = -1; from this we conclude that D = 2, 3, 4 (mod 8) are the 

only spacetime dimensions where Majorana spinors can exist. 

This extra condition divides the degrees of freedom of a Majorana spinor by half, 

so in total a Majorana spinor has 2m-ı components as opposed to 2m of a regular Dirac 

spınor. 




