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ABSTRACT

VARIATIONAL METHODS FOR NONLINEAR ELLIPTIC

PARTIAL DIFFERENTIAL EQUATIONS WITH

NONLOCAL TERMS

In this thesis, existence of standing waves for the Davey–Stewartson (DS) and

generalized Davey–Stewartson (GDS) systems are established using variational meth-

ods. Since both the DS system and the GDS system reduce to a non-linear Schrödinger

(NLS) equation with the only difference in their non-local term, arguments used in this

thesis apply to a larger class of equations which include the DS and GDS systems as

special cases. Existence of standing waves for an NLS equation is investigated in two

ways: by considering an unconstrained minimization problem and a constrained min-

imization problem. These two variational methods apply to the GDS system as well

and here the sufficient conditions on the existence of standing wave solutions for the

GDS system which are imposed by these methods and the minimizers obtained are

investigated in comparison.
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ÖZET

YEREL OLMAYAN TERİMLER İÇEREN DOĞRUSAL

OLMAYAN ELİPTİK KISMİ TÜREVLİ DENKLEMLER

İÇİN VARYASYONEL METOTLAR

Bu tezde Davey–Stewartson (DS) ve genelleştirilmiş Davey–Stewartson (GDS)

sistemlerinin durağan dalga çözümlerinin varlığı varyasyonel metotlar kullanılarak ince-

lenmektedir. DS ve GDS sistemleri bir doğrusal olmayan Schrödinger (NLS) denklem-

ine indirgenebildiğinden bu tezde kullanılan argümanlar DS ve GDS sistemlerini özel

durum olarak içeren daha genel denklem sınıfları için de geçerlidir. Burada NLS den-

kleminin durağan dalga çözümlerinin varlığını göstermek için koşullu ve koşulsuz mini-

mizasyon problemleri ele alınarak iki farklı varyasyonel metot kullanılmaktadır. Ayrıca

GDS sistemi için de geçerli olan bu iki metodun durağan dalga çözümlerinin varlığı için

getirdiği yeter koşullar ve iki metodun ürettiği çözümler karşılaştırmalı olarak incelen-

mektedir.
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Lp(Ω) The Banach space of classes of measurable functions u : Ω →

R (or C) such that
∫

Ω
|u(x)|p < ∞ if 1 6 p < ∞, or

ess supΩ|u| <∞ if p = ∞. Lp(Ω) is equipped with the norm

‖u‖p =


(∫

Ω
|u(x)|pdx

)1/p
, if p <∞,

ess supΩ|u|, if p = ∞.

meas(Ω) Lebesgue measure of the set Ω

p′ The conjugate of p given by
1

p
+

1

p′
= 1



x

<(z) Real part of z

ut Partial derivative of u(t, x) with respect to t

uxi
Partial derivative of u(t, x) or u(x) with respect to the ith

space variable xi

Wm,p(Ω) The Banach space of classes of measurable functions u : Ω →

R (or Ω → C) such that Dαu ∈ Lp(Ω) in the sense of dis-

tributions, for every multi-index α with |α| 6 m. Wm,p is

equipped with the norm

‖u‖Wm,p =

 ∑
|α|6m

‖Dαu‖pLp

1/p

Wm,p
0 (Ω) The closure of C∞

c (Ω) in Wm,p(Ω)

W−m,p′(Ω) The dual of Wm,p
0 (Ω)

|x| Used interchangably to denote the absolute value if x ∈ R,

the modulus of a complex number if x ∈ C and the Euclidean

norm if x ∈ R2

bxc Integer part of x

xn ⇀ x Denotes that xn converges to x weakly

X ↪→ Y Denotes that X ⊂ Y with continuous injection

X ⊂⊂ Y Denotes that X ⊂ Y and X is compact

1Ω Characteristic function of the set Ω, i.e.,

1Ω(x) =

 1, if x ∈ Ω,

0, if x /∈ Ω.

∆u Laplacian of u, i.e.,
n∑
i=1

uxixi
in Rn



1

1. INTRODUCTION

Variational methods play an important role in the analysis of nonlinear partial

differential equations (PDEs). There is no general theory for establishing solutions for

nonlinear PDEs however using variational methods we can recover solutions of some

nonlinear PDE as being critical points of an appropriate “energy” functional J , exactly

when the nonlinear differential operator A is the “derivative” of J in the variational

sense. Symbolically we can write A = J ′, hence the problem of finding a u such that

A(u) = 0 becomes to find a u such that J ′(u) = 0. The point is that although it

might be difficult to show directly that the PDE has a solution, we may easily find a

critical point to the functional. Since the critical points of the functional correspond

to the solutions of the PDE in that case, the problem of existence of solutions may be

addressed following a variational route. To begin with we can consider minimizers of

the functional J which are critical points as well.

Assuming that J has the explicit form J(u) :=

∫
R2

L(∇u(x), u(x), x)dx, where

L : R2×R×R2 → R is a smooth function, we can say that any smooth minimizer of J

is a solution of the Euler–Lagrange PDE and conversely we can try to find a solution to

the Euler–Lagrange equation by searching for minimizers of J (see [1, Section 8.1.2]).

Since our main aim is the guarantee the existence of a solution to a given nonlinear

PDE we define J not only for smooth functions, but also for functions in some Sobolev

space, W 1,q for 1 < q < ∞. After all, the wider the class of functions for which J is

defined, the more candidates we will have for a minimizer.

The process of finding minimizers for a functional J runs as follows: We take

a minimizing sequence {un}, that is, J(un) → m := inf J . We would now like to

show that some subsequence of {un} converges to an actual minimizer. For this to

happen, one possibility is the presence of some kind of compactness. However, even if

we utilize a coercivity condition on J , it turns out that we can only conclude that the

minimizing sequence lies in a bounded set. On bounded domains we can overcome this

problem by considering the weak topologies. Since we are assuming 1 < q < ∞, so
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that Lq is reflexive, we can extract a weakly convergent subsequence and then utilizing

strong convergence by compact imbeddings of Sobolev spaces in appropriate Lp-spaces.

Yet in this thesis our interest is lies in nonlinear PDEs defined on R2 and we definitely

have a problem in unbounded domains since there, Sobolev spaces cannot be imbedded

compactly into an Lp-space. Indeed, as R2 is the “most” unbounded domain, using its

radial symmetry and translation invariance we can extract some sort of compactness

and this is the idea in Strauss’ Compactness Lemma [2] and Lions’ Concentration

Compactness Principle [3]. These compactness results are given in the second chapter.

As we minimize J over a Sobolev space, failure of smoothness results in the need

of some extra growth conditions on L and its derivatives so that any minimizer of J

solves the Euler–Lagrange equation in the weak sense (see Theorem A.3.1).

In this thesis variational methods are applied to the nonlinear Schrödinger (NLS)

equation on R2 given by

ivt + ∆v + g(v) = 0

with a nonlinear term g. For the NLS equation above, we take g(v) = |v|σv for the sake

of simplicity, where 0 < σ <∞. We construct the so-called standing wave solutions of

the NLS equation which are of the form

v(t, x) = eiωtu(x),

where ω ∈ R and u ∈ H1(R2), u 6= 0. In the third chapter we show existence of

standing waves in two ways. First we use Weinstein’s approach [4] and minimize

the functional Jσ(f) =
σ‖∇f‖σ2‖f‖2

2

‖f‖σ+2
σ+2

over H1(R2). In contrast, in the alternative

approach, we introduce the kinetic and potential energies and minimize the kinetic

energy over a space where the potential energy is zero [5]. The first approach is called

an unconstrained minimization whereas the second approach is called a constrained

minimization.
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In dimensionless form the Davey-Stewartson (DS) system given in [6] reads as

the following system for the complex amplitude v(t, x, y) and the real mean velocity

potential φ(t, x, y):

ivt + δvxx + µvyy = χ|v|σv + b1vφx

νφxx + φyy = −b2(|v|2)x,
(1.0.1)

where δ, µ, ν, χ, b1, b2 are real constants, δ being positive. In [7], b1 and b2 are assumed

to be positive. However during the flow of arguments positivity of these constants is

not needed. Here b1 and b2 are of arbitrary sign. According to the signs of µ and ν

as positive–positive, positive–negative, negative–positive and negative–negative, these

systems may be classified as elliptic–elliptic, elliptic–hyperbolic, hyperbolic–elliptic and

hyperbolic–hyperbolic, respectively.

In the fourth chapter we consider the elliptic–elliptic case in two dimensions and

assume that δ = µ = ν = 1, so that we have

ivt + ∆v = χ|v|σv + b1vφx

−∆φ = b2(|v|2)x,
(1.0.2)

where χ ∈ R, σ > 0. The system (1.0.2) may be reduced to a single equation in v by

applying the Fourier transform. Let E1 be the nonlocal linear operator defined by

̂[E1(ψ)](ξ) = γ1(ξ)ψ̂(ξ),

where γ1(ξ) =
ξ2
1

|ξ|2
, ξ = (ξ1, ξ2) ∈ R2. To write this system as a single equation for

v, we begin by expressing φ in terms of v by solving the Poisson equation (1.0.2)2.

Thus (1.0.2) can be reduced to the following nonlinear Schrödinger equation

ivt + ∆v = χ|v|σv + bE1(|v|2)v, (1.0.3)
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where b = −b1b2. In [8] the existence of standing waves for the DS system is guaranteed

by considering an unconstrained minimization problem like in [4] for the NLS equation.

However, in the forth chapter we mainly follow [7] and establish existence of standing

waves by considering a constrained minimization problem.

Finally, the fifth chapter is devoted to the cubic NLS equation with an additional

nonlocal term in two space dimensions:

ivt + ∆v = χ|v|2v + bK(|v|2)v, (1.0.4)

where the nonlocal term is given in terms of Fourier transform variables ξ = (ξ1, ξ2) as

K̂(f)(ξ) = α(ξ)f̂(ξ). The symbol α(ξ) is assumed to satisfy:

(A1) α(ξ) is even and homogenous of degree zero,

(A2) 0 6 α(ξ) 6 αM for all ξ ∈ R2,

(A3) α1 := lim
s→∞

α(sξ1, ξ2) and α2 := lim
s→0+

α(sξ1, ξ2) exist.

The generalized Davey–Stewartson (GDS) system

ivt + δvxx + vyy = χ|v|2v + b(φ1,x + φ2,y)v,

φ1,xx +m2φ1,yy + nφ2,xy =
(
|v|2

)
x
,

λφ2,xx +m1φ2,yy + nφ1,xy =
(
|v|2

)
y
,

(1.0.5)

which is derived by Babaoglu and Erbay [9] to model the propagation of waves in a

bulk medium composed of an elastic medium with couple stresses, is classified in [10]

as elliptic–elliptic–elliptic (EEE), elliptic–hyperbolic–hyperbolic and elliptic–elliptic–

hyperbolic according to the signs of the physical parameters (m1,m2, λ): (+,+,+),

(+,−,−) and (+,+,−), respectively. The GDS system can be written in the EEE

case as in (1.0.4) with

α(ξ) =
λξ4

1 + (1 +m1 − 2n)ξ2
1ξ

2
2 +m2ξ

4
2

λξ4
1 + (m1 + λm2 − n2)ξ2

1ξ
2
2 +m1m2ξ4

2

, (1.0.6)



5

given explicitely. The symbol α(ξ) then satisfies (A1)–(A3) where αM = max{1, 1/m1}

(see [10]) and α1 = 1, α2 =
1

m1

. Here we do not assume that the symbol α(ξ) is given

by the explicit form in (1.0.6), instead we only assume that it satisfies (A1)–(A3).

Hence the results apply to the GDS system a special case.

In [11] the problem of existence of travelling waves for GDS system is considered

for the cases EEE and HEE. The necessary conditions for existence are Pohozaev type

identities. In [12] Pohozaev type identities play an important role in restricting the

parameters ω, χ and b in order to establish the existence of standing waves. The

existence of standing waves for a GDS system is established in [12] by extending the

analysis done by Weinstein for the NLS equation [4] and by Papanicolaou et. al. for

the DS system [8]. However here we choose a different route and obtain the existence

of standing waves for a GDS system under less stringent conditions on the parameters.

The arguments in [5, 7] can be modified so that they apply to a larger class of equations

that include the GDS system as a special case. Here, however, due to assumption (A3)

the more general case considered in [12] is not treated.
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2. MATHEMATICAL PRELIMINARIES

In fact the compactness results given in this chapter apply to Rn with the same

arguments. However to be in harmony with the following chapters we consider them

in R2.

2.1. Strauss’ Compactness Lemma

To be compact in Lp on an unbounded domain, a class of functions has to be

uniformly small at infinity. To achieve this we consider radial functions, i.e., functions

f of a single variable |x|. Before stating the main result of this section we will need the

following technical lemma whose proof follows as in [13, 2]. In this section we assume

that the given functions are real valued.

Lemma 2.1.1. [13, Radial Lemma A.II] Every radial function u ∈ H1(R2) is almost

everywhere equal to a function U(x), continuous for x 6= 0 and such that

|U(x)| 6 C|x|−1/2‖u‖H1 for |x| > 1.

Proof. Let u ∈ H1 be a radial function. Define r(x) = |x|. Since u is radial u(x) =

F (r(x)) for some F . Clearly r is continuous. Now, we need to show that F is continu-

ous. Since u ∈ H1 and since for any x ∈ S1 F (ρ) = u(ρx) implies |F ′(ρ)| = |∇u(ρx)|,

we have

‖F‖H1(0,∞) =

∫ ∞

0

|u(ρx)|2 + |∇u(ρx)|2dρ

<

∫ ∞

0

(∫
ρS1

|u(y)|2 + |∇u(y)|2dA
)
dρ = ‖u‖H1(R2) <∞.

This gives that F is absolutely continuous on (0,∞). Now define U(x) = (F ◦ r)(x)

for x 6= 0 and U(x) = 0 for x = 0. Then U is continuous except x = 0 and almost

everywhere equal to u as claimed.
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Note that ‖U‖H1(R2) = ‖u‖H1(R2) <∞. Since C∞ ∩H1 is dense H1 it suffices to

show the estimate for functions in C∞ ∩H1. Then the result follows from density.

Let v ∈ C∞ ∩H1. We have

−(rv2)r = −[(r1/2v)2]r

= −2(r1/2v)r(r
1/2v)

6
∣∣2(r1/2v)r(r

1/2v)
∣∣

6 [(r1/2v)r]
2 + [r1/2v]2

= r(v2
r + v2) +

(
1

2
v2

)
r

+
1

4r
v2.

Now integrating over [r,∞] we get

rv2 6
∫ ∞

r

ρ(v2
r + v2)dρ− 1

2
v2 +

∫ ∞

r

1

4ρ
v2dρ

6
∫ ∞

r

ρ(v2
r + v2)dρ− 1

2
v2 +

∫ ∞

r

1

4
ρv2dρ,

for r > 1. Thus

rv2(r) 6
5

8π
‖v‖2

H1 ,

and the estimate is established.

Let us denote by H1
r (R2) the subspace of H1(R2) formed by the radial functions.

Lemma 2.1.2 (Strauss Compactness Lemma). [13, Theorem A.I’] The injection

H1
r (R2) ↪→ Lp(R2) is compact for 2 < p <∞.

Proof. Sobolev’s imbedding theorem (Section C.1) guarantees the continuous imbed-

ding H1(R2) ↪→ Lp(R2) for 2 < p < ∞. Let (un) ⊂ H1
r (R2) be a sequence such that
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‖un‖H1 6 M for some M . Then from the lemma above we have

lim
|x|→∞

|un(x)| = 0, uniformly with respect to n. (2.1.1)

Since (un) is bounded in H1 it has a subsequence, say (unk
), converging weakly to

u ∈ H1. Extracting a subsequence of (unk
), denoted by (unk

), such that it converges

almost everywhere in R2 to u we have that u is radial.

Since ||unk
|p − |u|p| 6 |unk

− u|p, |unk
|p → |u|p almost everywhere. We want to

show that (unk
) converges strongly to u in Lp(R2).

Now, let ε > 0 and q be such that p < q < ∞. Since
|s|p

|s|2 + |s|q
→ 0 as s → 0,

and (2.1.1) holds true for (unk
), there exists R0 > 0 such that

|x| > R0 implies |unk
(x)|p 6 ε

(
|unk

(x)|2 + |unk
(x)|q

)
for all nk ∈ N.

Also we have ‖unk
‖q 6 C1‖unk

‖H1 by the continuous injection and ‖unk
‖2 6 ‖unk

‖H1

by definition. Therefore, by Fatou’s lemma, u ∈ Lp(R2), and

∫
{|x|>R0}

|u(x)|pdx 6 εC,

where C = M(1 + C2). We know that for bounded domains the injection H1 ↪→ Lp is

compact, hence there exists N0 ∈ N such that for any nk > N0,

∫
{|x|<R0}

||unk
(x)|p − |u(x)|p| dx 6 ε.

Hence we have for nk > N0,

∫
R2

||unk
(x)|p − |u(x)|p| dx 6 2εC + ε.
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Also since we have almost everywhere convergence we conclude that

unk
→ u strongly in Lp(R2) as nk →∞.

This proves the lemma.

2.2. Concentration Compactness Principle

The invariance of R2 under the actions of noncompact groups of translations and

dilations might cause loss of compactness, e.g., Rellich–Kondrashov theorem is no more

valid in R2. However using this invariance of R2, we state the following theorem which

indicates that the only possible loss of compactness for minimizing sequences stems

from splitting of the functions at least in two parts which are going infinitely away

from each other [3]. This method enables us to solve problems with some form of

“local compactness”. In this section we take the given functions complex valued.

Theorem 2.2.1 (Concentration Compactness Lemma). [14, Lemma 8.3.8] If µ > 0

and if (un) is a bounded sequence of H1(R2) such that

∫
R2

|un(x)|2dx = µ,

then there exists a subsequence, which we still denote by (un), for which one of the

following properties holds.

(i) (Concentration) There exists a sequence (yn) ⊂ R2 such that for every ε > 0,

there exists R <∞ so that

∫
{|x−yn|6R}

|un(x)|2dx > µ− ε.

(ii) (Vanishing) lim
n→∞

sup
y∈R2

∫
{|x−y|6R}

|un(x)|2dx = 0 for all R > 0.
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(iii) (Dichotomy) There exists γ ∈ (0, µ) so that for every ε > 0, there exist N0 > 0

and two sequences (vn), (wn) ⊂ H1(R2), with disjoint supports, such that for

n > N0

‖vn‖H1 + ‖wn‖H1 6 4 sup
n∈N

‖un‖H1 ; (2.2.1)

‖un − vn − wn‖2 6 ε; (2.2.2)∣∣∣∣∫
R2

|vn(x)|2dx− γ

∣∣∣∣ 6 ε; (2.2.3)∣∣∣∣∫
R2

|wn(x)|2dx+ γ − µ

∣∣∣∣ 6 ε; (2.2.4)∫
R2

|∇un(x)|2 − |∇vn(x)|2 − |∇wn(x)|2dx > −ε. (2.2.5)

For this proof we follow along the lines of [14].

Proof. Consider the functions

Qn(t) = sup
y∈R2

∫
{x−y6t}

|un(x)|2dx.

Clearly, 0 6 Qn(t) 6 µ for all t > 0 and for all n ∈ N. Also since the integrand is

positive, Qn(t) is an increasing function of t. Define

Fn(t) =

∫ t

0

Qn(s)ds.

It can be easily shown that Fn is a sequence of C1, convex, increasing, nonnegative

functions. Also, as

|Fn(t)− Fn(τ)| =
∣∣∣∣∫ t

0

Qn(s)ds−
∫ τ

0

Qn(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

τ

Qn(s)ds

∣∣∣∣ 6 µ|t− τ | for all t, τ > 0,

Fn are uniformly Lipschitz continuous. Hence by the Arzela-Ascoli theorem, there

exists a subsequence of Fn, still denoted by Fn, such that Fn → F uniformly on
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compact subsets of R+. It follows that F is also convex, increasing, nonnegative,

and Lipschitz continuous. Moreoever, Rademacher theorem [1, Theorem 5.8.6] implies

that F is differentiable almost everywhere. Then F ′
n(t) → F ′(t) for almost every t

as n → ∞. Let Q(t) = F ′(t). Q′(t) > 0 by almost everywhere convergence, so Q is

increasing. Also Q(t) = F ′(t) > 0 since F increasing. Clearly, 0 6 Q(t) 6 µ for almost

every t ∈ R+. Let γ = lim
t→∞

Q(t). We will consider three cases separately:

(a) The case γ = µ. We claim that in this case (i) occurs. Consider first 0 < λ < µ.

Since Q is increasing, there exists R′ > 0 such that Q(R′) > λ. Thus Qn(R
′) > λ

for n > N0 > 0. For every n 6 N0, there exists Rn such that Qn(Rn) > λ. Taking

R(λ) = max{R′, R0, . . . , RN0}, it follows that Qn(R(λ)) > λ, for all n ∈ N.

Therefore, as Qn is a supremum, there exists xn(λ) such that

∫
{|x−xn(λ)|6R(λ)}

|un(x)|2dx > λ.

Let yn = xn(µ/2). Given λ > µ/2, let R = R(µ/2) + 2R(λ). We claim that

∫
{|x−yn|6R}

|un(x)|2dx > λ for all n ∈ N.

Indeed, |xn(λ)− yn| 6 R(µ/2) +R(λ) since otherwise

{x : |x− xn(λ)| 6 R(λ)} ∩ {x : |x− yn| 6 R(µ/2)} = ∅

which then would imply

∫
R2

|un|2dx >
∫
{|x−yn|6R(µ/2)}

|un|2dx+

∫
{|x−xn(λ)|6R(λ)}

|un|2dx >
µ

2
+ λ > µ,

which contradicts the assumption. Hence

{x : |x− xn(λ)| 6 R(λ)} ⊂ {x : |x− yn| 6 R}.
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To see this, let x ∈ {x : |x− xn(λ)| 6 R(λ)}, i.e., |x− xn(λ)| 6 R(λ). Then

|x− yn| = |x− xn(λ) + xn(λ)− yn|

6 |x− xn(λ)|+ |xn(λ)− yn|

6 R(λ) + (R(µ/2) +R(λ)) = R,

hence x ∈ {x : |x− yn| 6 R}. Therefore we have

∫
{x:|x−yn|6R}

|un(x)|2dx >
∫
{x:|x−xn(λ)|6R(λ)}

|un(x)|2dx > λ,

and so (i) follows.

(b) The case γ = 0. Here we want to show that (ii) occurs. This is easy to see as

follows: Since Q is increasing,

0 = γ = lim
t→∞

Q(t) > Q(R) = lim
n→∞

sup
y∈R2

∫
{|x−y|6R}

|un(x)|2dx > 0.

(c) The case γ ∈ (0, µ). We claim that in this case (iii) occurs. Let ε > 0. There

exits R0 such that γ− ε < Q(R) < γ+ ε for all R > R0. In particular, there exist

R > 0, N0 > 0 and R > max{2R, 1/ε} such that

γ − ε < Qn(R) 6 Qn(R) < γ + ε, for all n > N0,

hence, there exists (yn) such that

γ − ε <

∫
{|x−yn|6R}

|un(x)|2dx < γ + ε.

Let ρ ∈ C∞
0 (R2) be such that ρ ≡ 1 on {|x| 6 R}, ρ ≡ 0 on {|x| > R/2},

0 6 ρ 6 1, and |∇ρ| 6 2ε. Also, let θ ∈ C∞
0 (R2) be such that θ ≡ 0 on

{|x| 6 R/2}, θ ≡ 1 on {|x| > R}, 0 6 θ 6 1, and |∇θ| 6 2ε.

Define ρn(x) = ρ(x − yn) and θn(x) = θ(x − yn) and finally let vn = ρnun and

wn = θnun. Clearly, the supports of vn and wn are disjoint as ρ and θ are chosen
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to be so. Also, as Qn is increasing,

Qn(R) 6
∫

R2

|vn(x)|2dx =

∫
R2

|ρn(x)un(x)|2dx =

∫
R2

|ρ(x− yn)un(x)|2dx

=

∫
{|x−yn|6R/2}

|un(x)|2dx 6 Qn(R/2) 6 Qn(R),

hence equation (2.2.3) follows easily. For the equation (2.2.1), note that ∇vn =

ρn∇un + un∇ρn, and so, |∇vn|2 6 ρ2
n|∇un|2 + 2ε|un||∇un| + 4ε2|un|2. Hence we

have,

∫
R2

|∇vn(x)|2dx 6
∫

R2

ρ2
n(x)|∇un(x)|2dx+ Cε,

similarly,

∫
R2

|∇wn(x)|2dx 6
∫

R2

θ2
n(x)|∇un(x)|2dx+ Cε.

Thus equation (2.2.1) can be established. From the two integrals above it also

follows that

∫
R2

|∇un|2 − |∇vn|2 − |∇wn|2dx >
∫

R2

(
1− ρ2

n − θ2
n

)
|∇un|2dx − 2Cε > −2Cε,

where 1 − ρ2
n − θ2

n > 0, as the supports of ρn and θn are disjoint. Hence we

get (2.2.5). Now it remains to prove (2.2.2) and (2.2.4). To see these, consider

∫
R2

|un − vn − wn|2dx 6
∫
{R6|x−yn|6R}

|un|2dx

=

∫
{|x−yn|6R}

|un|2dx−
∫
{|x−yn|6 R}

|un|2dx

6 Qn(R)−
∫
{|x−yn|6R}

|un|2dx

6 (γ + ε)− (γ − ε) = 2ε.

Hence (2.2.2) and (2.2.4) follow, and this completes the proof.
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Hence we see that given any minimizing sequence (un), we can consider a new

minimizing sequence (uyk,sk
n ) for which by appropriate choices of translations (yk) and

dilations (sk) we can compansate the failure of compactness [15]. An alternative ap-

proach to this principle is given also in [15].

2.3. Positive Solutions of Elliptic PDE’s

This technical theorem is used in the following chapters to show positivity of

standing waves.

Theorem 2.3.1. [14, Lemma 8.1.12] Let a : R2 → R be continuous, and assume that

a(x) → 0 as |x| → ∞. If there exists v ∈ H1(R2) such that

∫
R2

|∇v|2 − a|v|2dx < 0

then there exist λ > 0 and a positive solution u ∈ H1(R2) ∩ C(R2) of the equation

−∆u+ λu = au.

In addition, if w ∈ H1(R2) is nonnegative, w 6= 0, and if there exists ν ∈ R such that

−∆w + νw = aw, then there exists c > 0 such that w = cu. In particular, ν = λ.

Sketch of the proof. First show that the following minimization problem has a nonneg-

ative solution:

‖u‖2 = 1,

J(u) = min{J(v) : v ∈ H1, ‖v‖2 = 1},

where J(u) =

∫
R2

|∇u|2 − a|u|2dx.

Taking a minimizing sequence (vn) yields that (un), where un = |vn|, is also a

minimizing sequence which is bounded in H1(R2) (Section B.1). Passing to a subse-
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quence one can show that there exists u ∈ H1(R2) such that un ⇀ u and u satisfies

the minimization problem above.

Therefore, there exists a Lagrange multiplier λ such that

−∆u+ λu = au.

By standard arguments, we get

λ = − inf{J(v) : ‖v‖2 = 1} > 0,

also easily we see that u ∈ H2(R2) ∩ C(R2) and from the strong maximum principle,

u > 0 on R2 [16, Corollary 8.21]. So the first part of the statement follows.

The claim ν = λ follows easily when one assumes the existence of such a ν.

Second claim of the second part, i.e., w = cu for some c > 0 follows by the way of

contradiction.
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3. NONLINEAR SCHRÖDINGER EQUATION

The existence of solutions to equations of the form −∆u = f(u) has been exten-

sively studied [1]. The first results investigate the case f(u) = |u|σu, which is associated

to standing wave solutions of the NLS equation. These results were later generalized

to larger classes of functions f in [2, 13] in dimensions n > 3 and in [5] in dimension

two. The results below apply in dimensions n > 3 with some modifications however to

be consistent with the following chapters we consider the NLS equation in R2 only.

3.1. Unconstrained Minimization Problem

Considering solutions of

ivt + ∆v + |v|σv = 0

of the form v(t, x) = eiωtu(x) we see that u then satisfies

∆u− ωu+ |u|σu = 0. (3.1.1)

Throughout the arguments in this section we take ω = 1 which can be achieved after

a normalization: u(x) = ω1/σψ(
√
ωx). We also assume that the mentioned functions

in this section are real valued.

To show existence of solutions of (3.1.1) it suffices to minimize the functional

Jσ(f) :=
σ‖∇f‖σ2‖f‖2

2

‖f‖σ+2
σ+2

.

We show that the minimum is attained at some H1-function u∗. By scaling we can

take ‖∇u∗‖2 = 1 and ‖u∗‖2 = 1. Then computing the Euler-Lagrange equation leads

to (3.1.1) [4].
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Theorem 3.1.1. [4, Theorem B] For 0 < σ <∞,

α := inf
f∈H1(R2)

Jσ(f)

is attained at a function u with the following properties:

(i) u is positive and a function of |x| only.

(ii) u ∈ C2(R2).

(iii) u is a solution of (3.1.1) of minimal L2 norm (the ground state).

In addition,

α =
2‖u‖σ2
σ + 2

.

Thus we see that the equation (3.1.1) has a positive, radial solution of class

H1(R2). The proof of this theorem runs as in [4] by using one parameter scalings and

Strauss’ Compactness Lemma.

Proof. If we set ua,b(x) = bu(ax), then we have

Jσ(u
a,b) = Jσ(u),

‖ua,b‖2
2 = a−2b2‖u‖2

2,

‖∇(ua,b)‖2
2 = b2‖∇u‖2

2.

(3.1.2)

Since Jσ > 0, there exists a minimizing sequence fn ∈ H1(R2) ∩ Lσ+2(R2), i.e.,

α = inf Jσ(f) = lim
n→∞

Jσ(fn) <∞.

We can assume fn > 0, and moreover by Schwarz symmetrization (Section B.1) we can

take fn = fn(|x|).
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Choosing an =
‖fn‖2

‖∇fn‖2

and bn =
1

‖∇fn‖2

, we obtain a sequence un(x) =

fan,bn(x). (un) clearly satisfies the followings:

(a) un > 0, un = un(|x|),

(b) un ∈ H1(R2),

(c) ‖un‖2 = 1 and ‖∇un‖2 = 1,

(d) Jσ(un) → α as n→∞.

Note that by (c), (un) is bounded in H1(R2), hence, has a subsequence, denoted by

(un) again, converging to u∗ ∈ H1(R2) weakly, i.e., un ⇀ u∗ in H1(R2).

Since (un) is uniformly bounded in H1 and un are radial, it follows from the

Strauss Compactness Lemma that un → u∗ strongly in Lσ+2(R2) for 0 < σ <∞.

By weak convergence, we have ‖u∗‖2 6 1, ‖∇u∗‖2 6 1, hence,

α 6 Jσ(u
∗) 6

σ∫
|u∗(x)|σ+2dx

= lim
n→∞

Jσ(un) = α.

This implies that ‖∇u∗‖σ2‖u∗‖2
2 = 1 and since ‖u∗‖2 6 1, ‖∇u∗‖2 6 1, we get ‖u∗‖2 = 1

and ‖∇u∗‖2 = 1. Therefore

un → u∗ strongly in H1(R2),

and this proves (i).

For (ii), we refer to [5, Theorem 1].

Now, the minimizing function u∗ is in H1 and satisfies the Euler-Lagrange equa-

tion:

d

dε

∣∣∣∣
ε=0

Jσ(u
∗ + εη) = 0 for all η ∈ C∞

0 (R2).
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Since ‖u∗‖2 = 1 and ‖∇u∗‖2 = 1 the Euler-Lagrange equation becomes

∆u∗ − u∗ + α

(
σ + 2

2

)
|u∗|σu∗ = 0.

Let u∗ =

[
α

(
σ + 2

2

)]−1/σ

u. Then

0 =

[
α

(
σ + 2

2

)]−1/σ

∆u−
[
α

(
σ + 2

2

)]−1/σ

u

+ α

(
σ + 2

2

) [
α

(
σ + 2

2

)]−(σ+1)/σ

|u|σu

and dividing both sides by

[
α

(
σ + 2

2

)]−1/σ

, which is nonzero, we see that u satisfies

(3.1.1).

Also, 1 = ‖u∗‖σ2 =

(∫
|u∗(x)|2dx

)σ/2

=
2

α(σ + 2)

(∫
|u(x)|2dx

)σ/2

gives

α =
2‖u‖σ2
σ + 2

.

Thus (iii) follows.

3.2. Constrained Minimization Problem

Now, we show the existence of a non-zero u ∈ H1(R2) satisfying

−∆u+ ωu− |u|σu = 0 (3.2.1)

using a constrained minimization problem as in [5]. First let us fix some notation.

Given 0 < σ <∞ and ω > 0 define

T (u) := ‖∇u‖2
2, V (u) :=

1

σ + 2
‖u‖σ+2

σ+2 −
ω

2
‖u‖2

2.
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Note that u is a solution of (3.2.1) if and only if u is a critical point of S(u) :=
1

2
T (u)− V (u). Also to be consistent with the notation in [14] define

V := {u ∈ H1(R2) : u 6= 0 and u satisfies (3.2.1)},

W := {u ∈ V : S(u) 6 S(φ),∀φ ∈ V}.

It can be easily shown that if u solves (3.2.1) then V (u) = 0 and hence S(u) =
1

2
T (u). This result follows from [14, Lemma 8.1.3].

Now we give the theorem stating the existence of standing waves. Proof of this

theorem can be found in [14], where arguments of [5] are used.

Theorem 3.2.1. [14, Theorem 8.1.6] For 0 < σ <∞ and ω > 0 the following hold:

(i) V and W are non-empty.

(ii) u ∈ W if and only if u ∈ N with ‖u‖2
2 = c solves

S(u) = min{S(φ) : φ ∈ N},

where N := {u ∈ H1(R2) : u 6= 0, V (u) = 0} and c =
4

ωσ
min{S(φ) : φ ∈ N}.

(iii) There exists a real valued, positive, spherically symmetric and decreasing function

ϕ ∈ W such that W =
⋃
{eiθϕ(· − y) : θ ∈ R, y ∈ R2}.
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4. DAVEY–STEWARTSON SYSTEM

In this chapter we study the existence and regularity of standing waves for (1.0.3),

i.e., periodic solutions of the form

v(t, x, y) = eiωtu(x, y),

φ(t, x, y) = ϕ(x, y),

where ω > 0, u, ϕ ∈ H1(R2) and u, ϕ 6= 0. Then v is a standing wave solution of (1.0.3)

implies that u must solve the following problem:

−∆u+ ωu = −bE1(|u|2)u− χ|u|σu. (4.0.1)

Clearly, u is a solution of (4.0.1) if and only if u is a critical point of the functional

S(u) =
1

2

∫
|∇u|2dx+

b

4

∫
|u|2E1(|u|2)dx+

χ

σ + 2

∫
|u|α+2dx+

ω

2

∫
|u|2dx.

This can be seen by taking the Gâteaux derivative of S at u in any direction and setting

it equal to zero.

Before proceeding further let us introduce some notation to be used from now

on. We define the function sets

X := {u ∈ H1(R2) : u 6= 0, u solves (4.0.1)},

G := {u ∈ X : S(u) 6 S(ψ) ∀ψ ∈ X},

where G is called the set of ground states, and we introduce the set of admissible

parameters

Rω,b = {(σ, χ) : 0 < σ <∞ and χ < χ∗σ},
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where

χ∗σ =


+∞ if σ < 2,

−b if σ = 2,

−bσ/2ω(2−σ)/2
(

2
σ

) (
σ−2
σ

)
if σ > 2.

Note that the factor γ1(ξ) in the definition of E1 prevents the existence of radial

solutions for problem (4.0.1). In fact, H1
r (R2) is not invariant under E1. However to

indemnify the lack of compactness in the imbedding H1 ↪→ Lp, we apply the concen-

tration compactness principle due to P. L. Lions [3].

4.1. Regularity

First we investigate the regularity of solutions of (4.0.1). To do so let us mention

some properties of E1. In general, let Ej be the singular integral operator defined in

Fourier variables by

̂[Ej(ψ)](ξ) = γj(ξ)ψ̂(ξ),

where γj(ξ) =
ξ2
j

|ξ|2
, j = 1, 2. Then Ej satisfies the following.

Lemma 4.1.1. [7, Lemma 2.1] For j = 1, 2 and 1 < p <∞ we have:

(i) Ej is a linear operator from Lp into Lp,

(ii) E1 + E2 = I,

(iii) If ψ ∈ Hs then Ej(ψ) ∈ Hs, s ∈ R,

(iv) If ψ ∈ Wm,p then Ej(ψ) ∈ Wm,p and ∂kEj(ψ) = Ej(∂kψ), k = 1, 2,

(v) Ej preserves the following operations:

– (translation) Ej(ψ(·+ y))(x) = Ej(ψ)(x+ y), for all y ∈ R2,

– (dilatation) Ej(ψ(λ·))(x) = Ej(ψ)(λx), for λ > 0,

– (conjugation) Ej(ψ) = Ej(ψ).
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Proof. Since γj is homogeneous of order zero and |γj(ξ)| =
∣∣∣∣ ξ2

j

|ξ|2

∣∣∣∣ 6 1, (i) follows from

the Calderon-Zygmund theorem [17].

Now,

̂(E1 + E2)(ψ)(ξ) = Ê1(ψ)(ξ) + Ê2(ψ)(ξ) = (γ1(ξ) + γ2(ξ)) ψ̂(ξ) = ψ̂(ξ),

hence, E1(ψ) + E2(ψ) = ψ implies that E1 + E2 = I. This proves (ii).

To prove (iii), recall that

ψ(x) ∈ Hs if and only if
(
1 + |ξ|2

)s/2
ψ̂(ξ) ∈ L2.

Let ψ ∈ Hs. Then (1 + |ξ|2)s/2 ψ̂(ξ) ∈ L2. To show that Ej(ψ) ∈ Hs, it suffices to

show that
(
1 + |ξ|2

)s/2
Êj(ψ) ∈ L2. Since γj(ξ) 6 1 almost everywhere in R2,

∥∥∥(
1 + |ξ|2

)s/2
Êj(ψ)

∥∥∥
2

=
∥∥∥(

1 + |ξ|2
)s/2

γjψ̂
∥∥∥

2
6

∥∥∥(
1 + |ξ|2

)s/2
ψ̂

∥∥∥
2
< +∞,

so (iii) follows.

The remaining claims follow easily when one considers them in the Schwartz

space S of rapidly decreasing functions. The result then is established by a density

argument.

Let Bj be the quadratic functional on L2 defined by

Bj(ψ) =

∫
γj(ξ)|ψ̂(ξ)|2dξ.

It follows from Parseval identity that

Bj(ψ) =

∫
Ej(ψ)ψdξ,



24

and in particular,

Bj(ψ) 6 ‖ψ‖2
2,

since ‖γj‖∞ 6 1. Also Bj ∈ C∞(L2; R), with B′
j = 2Ej. To see this, note that Ej is

linear and by Parseval’s identity

∫
Ej(ψ)u =

∫
Ej(u)ψ and hence we have

∣∣∣∣B(ψ + u)−B(ψ)− 2

∫
Ej(ψ)udx

∣∣∣∣
=

∣∣∣∣∫ Ej(ψ + u)(ψ + u)dx−
∫
Ej(ψ)ψdx−

∫
2Ej(ψ)udx

∣∣∣∣ = |Bj(u)| 6 ‖u‖2
2.

Lemma 4.1.2. [7, Lemma 2.3] Let u ∈ L4, λ > 0 and f(λ) := Bj(|uλ|2), where

uλ = λ1/4u(Λλx),

with Λλ = diag(λ, 1) or diag(1, λ) for j = 1, 2, respectively, where diag(a, b) denotes

the 2 × 2 matrix with diagonal a and b and zero elsewhere. Then f is an increasing

function satisfying f(0) = 0 and

lim
λ→∞

f(λ) = ‖u‖4
4.

Proof. It suffices to consider only j = 1. By a change of variables, ξ ↔ Λλξ, we get

B1(|uλ|2) =

∫
γ1(ξ)

∣∣∣(̂|uλ|2)∣∣∣2 dξ =

∫
γ1(Λλξ)

∣∣∣(̂|u|2)∣∣∣2 dξ,
where γ1(Λλξ) =

λ2ξ2
1

λ2ξ2
1 + ξ2

2

. Since

γ1(Λλξ) → 1, as λ→∞,
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by the Dominated Convergence Theorem we get

f(λ) →
∥∥∥(̂|u|2)

∥∥∥2

2
=

∥∥|u|2∥∥2

2
= ‖u‖4

4.

Also,
d

dλ
γ1(Λλξ) =

2λξ2
1ξ

2
2

(λ2ξ2
1 + ξ2

2)
2
> 0, hence, f is increasing.

Now we can state the regularity result.

Theorem 4.1.3 (Regularity). [7, Theorem 2.4] If 0 < σ < ∞ and u ∈ H1(R2) is a

weak solution of (4.0.1), then the following hold.

(i) u ∈ W 2,p for all 2 6 p <∞,

(ii) lim
|x|→∞

{
|∇u(x)|+ |u(x)|+ |E1(|u|2)(x)|

}
= 0,

(iii) u ∈ C2,

(iv) There exist positive constants C and ν such that

eν|x| {|u(x)|+ |∇u(x)|} 6 C ∀x ∈ R2.

Proof. Theorem will be proved in several steps.

Step 1: We want to show that u ∈ L2 ∩ L∞. Since H1 ↪→ Lp for all 2 6 p <∞,

we can find r > 2 such that E1(|u|2), |u|σu ∈ Lr. As u solves (4.0.1), u ∈ W 2,r and

then u ∈ W 1,∞ from the Sobolev imbedding.

Step 2: It suffices to show that the right hand side of (4.0.1) is in Lp for all p > 2.

Let u ∈ L2 ∩ L∞ and p > 2 be fixed. Then, for µ =
2

p(σ + 1)

‖|u|σu‖p = ‖u‖σ+1
p(σ+1) 6 ‖u‖µ(σ+1)

2 ‖u‖(1−µ)(σ+1)
∞ <∞,

hence, |u|σu ∈ Lp. Also, since |u|2 ∈ Lp/2 for all 2 6 p <∞ we get

E1(|u|2)u ∈ Lq, for all 1 < q <∞.
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Thus (i) follows from the regularity of elliptic equations.

Step 3: From Step 1, we know that u ∈ W 1,∞, i.e., u is globally Lipschitz contin-

uous. Since u ∈ L2, we have,

lim
|x|→∞

|u(x)| = 0.

Step 4: As u ∈ W 1,∞ and u ∈ W 2,p, for all 2 6 p < ∞ we get u ∈ W 1,p, for all

2 6 p 6 ∞. Now, let 2 6 p 6 ∞ be fixed. Then

∫
(|u|2)pdx =

∫
|u|2pdx <∞, since 2 6 2p 6 ∞.

Also ∇(|u|2) = u∇u+ u∇u implies

∥∥∇(|u|2)
∥∥
p

= ‖u∇u+ u∇u‖p 6 ‖u‖∞‖∇u‖p + ‖u‖∞‖∇u‖p <∞.

Thus |u|2 ∈ W 1,p. For 2 6 p < ∞, |u|2 ∈ W 1,p implies that E1(|u|2) ∈ W 1,p. Since

W 1,p is a Banach algebra [18, Theorem 5.23], E1(|u|2)u ∈ W 1,p. Similarly, |u|σu ∈ Lp

for all 2 6 p <∞. Thus we get, (−∆ + ω)∂ku ∈ Lp and this yields

u ∈ W 3,p, for all 2 6 p <∞.

Since W 3,p ↪→ C2 if p > 3, (iii) follows.

This also implies that |∇u| ∈W 1,∞ and like in Step 3, we get lim
|x|→∞

|∇u(x)| = 0.

Step 5: From Lemma 4.1.1, |u|2 ∈ W 2,p implies E1(|u|2) ∈ W 2,p, and E1(|u|2) ∈

W 1,∞, as before. We therefore have lim
|x|→∞

|E1(|u|2)(x)| = 0. Thus (ii) is established.
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Step 6: Now it remains to prove (iv). It suffices to consider the case ω = 1, as u

is a solution of (4.0.1) if and only if ψ defined by u(x) = ω1/σψ(
√
ωx) is a solution of

−∆ψ + ψ = −ω(2−σ)/σbE1(|ψ|2)ψ − χ|ψ|σψ,

like in the previous chapter. Let ε > 0, θε(x) := exp

(
|x|

1 + ε|x|

)
. Then θε is bounded,

since exp

(
|x|

1 + ε|x|

)
6 exp

(
1

ε

)
= M . Also

|∇θε(x)|2 = θ2
ε (x)

x2
1

|x|2(1 + ε|x|)4
+ θ2

ε (x)
x2

2

|x|2(1 + ε|x|)4
= θ2

ε (x)
1

(1 + ε|x|)4
6 θ2

ε (x),

gives that |∇θε| 6 θε almost everywhere in R2, and since θε 6 M , θε is Lipschitz

continuous.

Multiplying the equation (4.0.1) by θεu ∈ H1 and integrating we get,

∫
<(∇u · ∇(θεu))dx+

∫
θε|u|2dx = −b

∫
θε|u|2E1(|u|2)dx− χ

∫
θε|u|σ+2dx.

Note that ∇ (θεu) = u∇θε + θε∇u yields <(∇u · ∇(θεu)) > θε|∇u|2 − θε|u||∇u|, which

in turn gives us

∫
θε|∇u|2dx−

∫
θε|u||∇u|dx+

∫
θε|u|2dx 6 |b|

∫
θε|u|2E1(|u|2)dx+ |χ|

∫
θε|u|σ+2dx.

Let δ <
1

4(|b|+ |σ|)
. From (ii), we know that, for some R1,

|E1(|u|2)(x)| < δ, |u(x)|σ < δ,

for |x| > R1.
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By Cauchy inequality,

1

2

∫
θε|∇u|2dx+

1

2

∫
θε|u|2dx 6 |b|

∫
{|x|6R1}

e|x||u|2E1(|u|2)dx+ |b|δ
∫
{|x|>R1}

θε|u|2dx

+ |χ|
∫
{|x|6R1}

e|x||u|σ+2dx+ |a|δ
∫
{|x|>R1}

θε|u|2dx,

and this yields

1

2

∫
θε|∇u|2dx+

1

2

∫
θε|u|2dx 6 C1 +δ(|b|+ |χ|)

∫
{|x|>R1}

θε|u|2dx 6 C1 +
1

4

∫
θε|u|2dx.

Thus, we get

1

2

∫
θε|∇u|2dx+

1

4

∫
θε|u|2dx 6 C1,

where C1 is a positive constant independent of ε. Here letting ε→ 0 yields

1

4

∫
e|x|(|∇u|2 + |u|2)dx 6 C1, (4.1.1)

by the Monotone Convergence Theorem.

Now, again (ii) implies that for some R2 > 0, we have |u(x)| + |∇u(x)| < 1

provided |x| > R2. On the other hand, for |x| 6 R2, we have,

e
|x|
2 (|u(x)|+ |∇u(x)|) 6 e

R2
2 ‖u‖W 1,∞ . (4.1.2)

Let x ∈ R2 be such that |x| > R2. Since u and ∇u are globally Lipschitz continuous,

there is L > 0 such that, for all y ∈ R2,

|∇u(y)| > |∇u(x)| − L√
2
|x− y|

|u(y)| > |u(x)| − L√
2
|x− y|,

(4.1.3)
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which then implies |u(x)|2 + |∇u(x)|2 6 2(|u(y)|2 + |∇u(y)|2 + L2|x − y|2). Taking

ρ :=
1

2L
(|u(x)|2 + |∇u(x)|2)1/2, gives

|u(x)|2 + |∇u(x)|2 6 4(|u(y)|2 + |∇u(y)|2), ∀y ∈ Bρ(x).

Integrating this inequality over Bρ(x) we obtain

C2ρ
2(|u(x)|2 + |∇u(x)|2) 6 4

∫
Bρ(x)

(|u(y)|2 + |∇u(y)|2)dy,

and plugging ρ we have,

C3(|u(x)|2 + |∇u(x)|2)2 6 4

∫
Bρ(x)

(|u(y)|2 + |∇u(y)|2)dy (4.1.4)

For |x| > R2 we have ρ 6
1

2L
, so it follows that

|y| − |x|+ 1

2L
> 0, ∀y ∈ Bρ(x),

and from (4.1.4)

C3e
|x|(|u(x)|2 + |∇u(x)|2)2 6 4

∫
Bρ(x)

e|x|(|u(y)|2 + |∇u(y)|2)dy

6 4

∫
Bρ(x)

e
1

2L e|y|(|u(y)|2 + |∇u(y)|2)dy 6 C,

using (4.1.1). Thus for |x| > R2,

e|x|(|u(x)|2 + |∇u(x)|2)2 6 C4, (4.1.5)

and therefore (iv) follows combining (4.1.2) and (4.1.5).
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To simplify the notation, we introduce the following functionals on H1:

T (u) = ‖∇u‖2
2,

V (u) = − b
4
B1(|u|2)−

χ

σ + 2
‖u‖σ+2

σ+2 −
ω

2
‖u‖2

2,

S(u) =
1

2
T (u)− V (u).

Here we have a proposition with useful identities which can be obtained from the

Theorem 4.1.3 as in [7].

Proposition 4.1.4. [7, Proposition 2.5] If u ∈ H1 is a solution of (4.0.1), then

(i) T (u) + ω‖u‖2
2 = −bB1(|u|2)− χ‖u‖σ+2

σ+2,

(ii) 2ω‖u‖2
2 = −bB1(|u|2)−

4χ

σ + 2
‖u‖σ+2

σ+2.

The following corollary follows easily from the above proposition.

Corollary 4.1.5. [7, Corollary 2.6] If u is a solution of (4.0.1), then

S(u) =
1

2
T (u), V (u) = 0.

4.2. Existence of Standing Waves

Now we prove the existence of ground states for the problem (1.0.3), that means,

solutions of (4.0.1) that minimizes the Lagrangian S over the set of solutions of (4.0.1).

Theorem 4.2.1 (Existence). [7, Theorem 3.1] Let (σ, χ) ∈ Rω,b. Then the following

hold.

(i) X and G contain a real valued positive function,

(ii) u ∈ G if and only if u solves the minimisation problem

u ∈ Σ0,

T (u) = min{T (ψ) : ψ ∈ Σ0},
(4.2.1)
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where Σ0 = {u ∈ H1 : u 6= 0, V (u) = 0}.

Before proving this theorem we need the following lemmas:

Lemma 4.2.2. [14, Lemma 8.3.7] Let 0 < q <∞. Then there exists a constant C > 0

such that, for all ψ ∈ H1,

‖ψ‖q+2
q+2 6 C

(
sup
y

∫
B1(y)

(|∇ψ|2 + |ψ|2)dx
)q/2

‖ψ‖2
H1 .

Proof. We can cover R2 by unit squares {Sk} such that Sk ∩ Sj = ∅ for k 6= j. Then

‖ψ‖q+2
q+2 =

∞∑
k=1

∫
Sk

|ψ|q+2dx,

and,

‖ψ‖2
H1 =

∞∑
k=1

∫
Sk

(|∇ψ|2 + |ψ|2)dx.

Since H1(Sk) ↪→ Lq+2(Sk), we get

∫
Sk

|ψ|q+2dx 6 C

(∫
Sk

|∇ψ|2 + |ψ|2dx
)(q+2)/2

6 C

(
sup
k∈N

∫
Sk

|∇ψ|2 + |ψ|2dx
)q/2 ∫

Sk

(|∇ψ|2 + |ψ|2)dx.

Summing up in k yields,

‖ψ‖q+2
q+2 6 C

(
sup
k∈N

∫
Sk

|∇ψ|2 + |ψ|2dx
)q/2

‖ψ‖2
H1

6 C

(
sup
y

∫
B1(y)

|∇ψ|2 + |ψ|2dx
)q/2

‖ψ‖2
H1 .
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For each µ ∈ R we define

Σµ := {u ∈ H1 : u 6= 0, V (u) = µ}, j(µ) = inf

{
1

2
T (u) : u ∈ Σµ

}
.

Then we have

Lemma 4.2.3. [7, Lemma 3.4] Let (σ, χ) ∈ Rω,b. Then the following hold:

(i) Σµ 6= ∅ for all µ ∈ R,

(ii) There exists a constant I > 0 such that j(µ) = I, for all µ ∈ R.

Proof. Let u ∈ H1, u 6= 0 and define for λ > 0, uλ(x) := u

(
x√
λ

)
. Then by a change

of variables, x↔ x√
λ

, we have V (uλ) = λV (u). Also note that V (εu) = ε2P (ε), where

P (ε) := −ε2 b
4
B1(|u|2)− εσ

χ

σ + 2

∫
|u|σ+2dx− ω

2

∫
|u|2dx. Since P (0) = −ω

2
‖u‖2

2 < 0

and P is a continuous function of ε, there exists ε̃ > 0, small enough, such that P (ε̃) < 0,

hence, so is V (ε̃u). As V ((ε̃u)λ) = λV (ε̃u) for all λ > 0, Σµ 6= ∅ for all µ < 0.

To prove Σµ 6= ∅ for all µ > 0, it suffices to show

∃u0 ∈ H1 such that V (u0) > 0. (4.2.2)

Suppose, for the moment, that (4.2.2) holds true. Then V (εu0)|ε=0 < 0 and V (εu0)|ε=1 >

0 imply that there exists τ0 < 1 such that V (τ0u0) = 0, so Σ0 6= ∅. Also since

V (u0λ
) = λV (u0) for all λ > 0, Σµ 6= ∅ for all µ > 0.

Now it remains to show (4.2.2). Let (σ, χ) ∈ Rω,b, and u ∈ H1, u 6= 0.

First, if σ < 2, ε4 is the dominant term in V (εu) with positive coefficient. Simi-

larly, if χ < 0, the dominant term in V (εu), ε4 or εσ+2, has positive coefficient. Thus

taking u0 = τu with τ large enough gives V (u0) = V (τu) > 0.
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Second, assume σ = 2 and χ < −b. For any u ∈ L4, consider uλ(x1, x2) =

λ1/4u(λx1, x2). Then using Lemma 4.1.2,

lim
λ→∞

(
− b

4
B1(|uλ|2)−

χ

4
‖uλ‖4

4

)
=

(
− b

4
− χ

4

)
‖u‖4

4 > 0.

Thus there exists λ0 such that − b
4
B1(|uλ0|2) −

χ

4
‖uλ0‖4

4 > 0, which is exactly the

coefficient of the ε4 term in V (εuλ0). Taking u = uλ0 shows that (4.2.2) holds with

u0 = τu, for sufficiently large τ .

Third, for σ > 2 and χ < −bσ/2ω(2−σ)/2

(
2

σ

) (
σ − 2

σ

)(σ−2)/2

, define

Gλ(s) := − b
4
s4 − χ

σ + 2
λ(σ−2)/4sσ+2 − ω

2
λ−1/2s2.

Easily, for all λ > 0, there exists s0 > 0 such that Gλ(s0) > 0 if and only if χ <

−bσ/2ω(2−σ)/2

(
2

σ

) (
σ − 2

σ

)(σ−2)/2

. Let ε > 0 and u = s1BR
. From Lemma 4.1.2,

there exists λ such that

− b
4
B1(|uλ|2) > − b

4
‖u‖4

4 − ε.

Therefore,

V (uλ) = − b
4
B1(|uλ|2)−

χ

σ + 2
‖uλ‖σ+2

σ+2 −
ω

2
‖uλ‖2

2

> − b
4
‖u‖4

4 − ε− χλ(σ−2)/4

σ + 2
‖u‖σ+2

σ+2 −
ω

2
λ−1/2‖u‖2

2

= meas(BR)Gλ(s)− ε.

Hence there exists s0 > 0 such that Gλ(s0) > 0. Thus choosing R large enough we get

V (uλ) > 0, so (4.2.2) follows and (i) is established.
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To prove (ii), let

I := j(0) = inf

{
1

2
T (u) : u ∈ Σ0

}
.

We want to show that I > 0. Let u ∈ Σ0 be arbitrary. Since V (u) = 0 and B1(u) 6

‖u‖2
2, we have

ω

2
‖u‖2

2 6
|b|
4
‖u‖4

4 +
|χ|
σ + 2

‖u‖σ+2
σ+2. (4.2.3)

Moreover, from Gagliardo-Nirenberg-Sobolev’s inequality (Section B.2):

‖u‖4
4 6 C1‖∇u‖2

2‖u‖2
2

‖u‖σ+2
σ+2 6 C2‖∇u‖σ2‖u‖2

2.
(4.2.4)

Hence putting (4.2.3) and (4.2.4) together we get

ω

2
6 C3T (u) + C4T (u)σ/2.

Taking infimum over Σ0 we receive that I > 0 as claimed.

Note that for uλ(x) = u

(
x√
λ

)
we have V (uλ) = λV (u), hence,

u ∈ Σµ ⇔ uλ ∈ Σλµ.

As T (uλ) = T (u) for all λ > 0, j(µ) must be constant on (−∞, 0) and on (0,+∞). Let

µn ↘ 0 and ε > 0. There exists u ∈ Σ0 such that

I <
1

2
T (u) < I + ε,

since I is the infimum.
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Taking τn > 1 such that V (τnu) = µn, we have:

j(µn) <
1

2
T (τnu) =

1

2
τ 2
nT (u), and

−I < −1

2
T (u) + ε.

Adding up we get j(µn)− I <
1

2
(τ 2
n − 1)T (u) + ε, and so

lim sup
n→∞

(j(µn)− I) 6 0. (4.2.5)

On the other hand, let ψn ∈ Σµn be such that

1

2
T (un) < j(µn) + ε.

Taking τn < 1 such that τnun ∈ Σ0 yields

I 6
1

2
T (τnun) =

1

2
τ 2
nT (un) < j(µn) + ε,

hence,

lim inf
n→∞

(j(µn)− I) > 0. (4.2.6)

From (4.2.5) and (4.2.6) we obtain lim
n→∞

j(µn) = I, i.e., j(0) = I and therefore

j(µ) = I for all µ ∈ [0,+∞).

Same arguments with µn ↗ 0 give

j(µ) = I for all µ ∈ (−∞, 0].

Therefore (ii) follows.
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Here we state a lemma showing an equivalent formulation of the minimization

problem in (4.2.1).

Lemma 4.2.4. [7, Lemma 3.6] Let (σ, χ) ∈ Rω,b. Then the problem (4.2.1) is equiva-

lent to

V (u) = 0, u 6= 0,

T (u) = min{T (ψ) : V (u) > 0}.

Proof. Let

I := inf{T (u) : V (u) > 0}, I = inf{T (u) : V (u) = 0}.

Clearly, I 6 I. If u ∈ H1, u 6= 0 is such that V (u) > 0, we can find 0 < τ 6 1, as in

the previous arguments, for which V (τu) = 0 and the assertion follows, since

I 6 T (τu) = τ 2T (u) 6 T (u),

and taking infimum yields I 6 I.

We are now ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Using the arguments given in [7] we prove the theorem in

several steps. Let j(µ) be as before and consider the minimization problem (4.2.1).

Step 1 [Existence of a solution of (4.2.1)]: Let (ψn) be a minimizing sequence

and let us define un(x) := ψn(
√

Λnx), where Λn = ‖ψn‖2
2. Since T (un) = T (ψn), and

V (un) =
1

Λn

V (ψn) = 0, (un) is also a minimizing sequence. Also ‖un‖2
2 =

1

Λn

‖ψn‖2
2 = 1

implies that (un) is bounded in H1, so there exists u ∈ H1 and a subsequence of (un),

still denoted by (un), such that

un ⇀ u weakly in H1.



37

Now, we will apply the concentration compactness principle with

ρn = |∇un|2 + |un|2.

Observe that as n→∞

∫
ρn = T (un) + 1 → 2I + 1 > 0.

Assume “vanishing” occurs, then lim
n→∞

sup
y∈R2

∫
B1(y)

ρndx = 0. Using Lemma 4.2.2 we see

that ‖un‖σ+2 → 0. Similarly, since B1(|un|2) 6 ‖un‖4
4, we get B1(|un|2) → 0. But then,

since ω > 0, V (un) = 0 entails ‖un‖2 → 0, which contradicts the fact that ‖un‖2
2 = 1.

Thus “vanishing” does not occur.

Assume “dichotomy” occurs. Then for all ε > 0, there exist N0 ∈ N and two

sequences (u
(1)
n ), (u

(2)
n ) ⊂ H1 with disjoint supports such that for n > N0,

‖∇un‖2
2 − ‖∇u(1)

n ‖2
2 − ‖∇u(2)

n ‖2
2 > −Cε,

for some C > 0 independent of ε. Since u
(1)
n , u

(2)
n 6= 0, for n large enough,

I + ε >
1

2
T (un) >

1

2
T (u(1)

n ) +
1

2
T (u(2)

n )− C

2
ε

> j(V (u(1)
n )) + j(V (u(2)

n ))− C

2
ε = 2I − C

2
ε

Hence, I 6 ε

(
1 +

C

2

)
, where I and C are independent of ε. Sending ε to zero yields

I 6 0, which is in contradiction with the fact that I > 0 and shows that “dichotomy”

does not occur.
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Therefore, “concentration” occurs, that means, there exists a sequence (yn) ⊂ R2

such that for every ε > 0 there is Rε >
1

ε
such that

∫
R2\BRε (yn)

ρn(x)dx 6 ε. (4.2.7)

Let ũn(·) := un(· − yn). Then ũn ⇀ ũ weakly in H1

As H1 ↪→ Lp for all 2 6 p <∞, (4.2.7) implies

∫
R2\BRε (0)

|ũn|p 6 εp/2, for all 2 6 p <∞. (4.2.8)

Defining

VΩ(ψ) :=

∫
Ω

|ψ|2
{
− b

4
E1(|ψ|2)−

χ

σ + 2
|ψ|σ − ω

2

}
dx,

and using (4.2.8), we obtain that

|VR2\BRε
(ũn)| < δ(ε), (4.2.9)

with δ(ε) → 0 as ε→ 0. Since the injection H1(BRε) ↪→ Lp(BRε) is compact, we have

VBRε
(ũn) → VBRε

(ũ) as n→∞. (4.2.10)

Moreover, 0 = V (ũn) = VBRε
(ũn) + VR2\BRε

(ũn) and (4.2.9) entail

|VBRε
(ũn)| < δ(ε). (4.2.11)

Letting n→∞ in (4.2.11) gives by (4.2.10),

|VBRε
(ũ)| < δ(ε).
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As ε↘ 0, we get that ũ ∈ Σ0.

Since T is weakly lower semi-continuous, T (ũ) 6 lim infn→∞ T (ũn) = I. There-

fore ũ is the desired minimum.

Step 2 [X is nonempty]: Let u be a solution of (4.2.1). Then there exists a

Lagrange multiplier λ (see Theorem A.4.2) such that

−∆u = λ(−bE1(|u|2)u− a|u|σu− ωu).

Let φ ∈ H1 satisfy 〈V ′(u), φ〉 > 0, where 〈·, ·〉 denotes the H−1-H1 duality pairing.

Since T, V ∈ C1(H1,R), we have

V (u+ tφ) = V (u) +

∫ t

0

〈V ′(u+ sφ), φ〉ds,

T (u+ tφ) = T (u) + tλ〈V ′(u), φ〉+ t2‖∇φ‖2
2.

(4.2.12)

If λ < 0, from (4.2.12) we have for t 6
2

‖∇φ‖2
2

(−λ〈V ′(u), φ〉),

V (u+ tφ) > 0 and T (u+ tφ) < T (ϕ), (4.2.13)

which contradict Lemma 4.2.4. Hence λ > 0. Let

uλ(x) = u

(
x√
λ

)
.

We claim that uλ solves (4.0.1). This follows from (4.2.13) and by a simple change of

variables, x↔ x√
λ

. Therefore uλ ∈ X , and so X 6= ∅.

Step 3 [(ii) holds]: Let u be a solution of (4.2.1) and let ψ ∈ X . Then ψ

solves (4.0.1) and V (ψ) = 0 by Proposition 4.1.4. Hence ψ ∈ Σ0. Since u is a solution

of (4.2.1), V (ϕ) = 0 and T (u) 6 T (ψ). This gives that S(u) 6 S(ψ). Since ψ was

chosen arbitrarily, u ∈ G.
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Conversely, assume u ∈ G, then S(u) 6 S(ψ) for all ψ ∈ X . We know that the

problem (4.2.1) has a solution, say ũ ∈ Σ0, i.e., T (ũ) = minψ∈Σ0 T (ψ). However, ũ need

not be in X , but as ũ solves (4.2.1), ũλ ∈ X as in Step 2. Also note that T (ũ) = T (ũλ).

Since X ⊂ Σ0, we have

T (ũλ) = T (ũ) 6 T (φ) 6 T (ψ) ∀ψ ∈ X .

Taking ψ = ũλ yields

T (ũλ) 6 T (u) 6 T (ũλ),

hence, T (u) = T (ũλ) = min
ψ∈Σ0

T (ψ), i.e., u solves (4.2.1), so (ii) is established.

Step 4 [(i) holds]: From Step 1 and Step 3, G 6= ∅. Let u ∈ G. Define A(x) :=

−bE1(|u(x)|2) − χ|ϕ(x)|σ. Then A(x) → 0, as |x| → ∞ by Theorem 4.1.3(ii). Also

J(u) = −ω‖u‖2
2 < 0. Therefore, from the Theorem 2.3.1, there exists a function ψ > 0

and a constant c > 0 such that u = cψ > 0, and so the claim follows.
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5. GENERALIZED DAVEY–STEWARTSON SYSTEM

The existence of standing waves for a generalized Davey–Stewartson (GDS) sys-

tem is shown by Eden and Erbay in [12] using an unconstrainted minimization prob-

lem. Here, we consider the same problem but relax the conditions on the parameters

to χ + α1b < 0 or χ + α2b < 0 with α1 and α2 defined in (A3). Our approach, in the

spirit of Berestycki, Gallouët and Kavian [5] and Cipolatti [7], is to use a constrained

minimization problem and utilize Lions’ concentration compactness theorem [3]. When

both methods are applicable we show that they give the same minimizer and obtain

a sharp bound for a Gagliardo–Nirenberg type inequality. As in [12], this leads to a

global existence result for small-mass solutions. Moreover, following an argument in

Eden, Erbay and Muslu [19] we show that when p > 2, the Lp-norms of solutions to

the Cauchy problem for a GDS system converge to zero as t → ∞. These results are

to appear in an article by Eden and Topaloğlu [20].

5.1. Review of previous results

For v0 ∈ H1(R2) the existence and uniqueness of solutions to the Cauchy problem

for the GDS system is discussed in [10]. Moreover it is shown that the Hamiltonian

H(v) =

∫
R2

(
|ξ|2|v̂|2 +

1

2
(χ+ bα(ξ))

∣∣∣|̂v|2∣∣∣2) dξ (5.1.1)

for the GDS system is conserved in the EEE case. It can easily be checked that the

same quantity H(v) is conserved for solutions of (1.0.4) under (A1) and (A2), [21].

Looking for a solitary wave in (1.0.4) of standing wave type, that is, v is of the

form eiωtu(x) with u ∈ H1(R2), one is led to the equation

−∆u+ ωu = −χ|u|2u− bK(|u|2)u. (5.1.2)
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One of the key properties of the map K is that K : Lp(R2) → Lp(R2) is bounded

for all 1 < p < ∞ and we have ‖K(f)‖ 6 αM‖f‖2
2. This and further properties of

K are given in [12, Lemma 2.1]. Also we know that if u is a solution of (5.1.2), then

u ∈
∞⋂
m=1

Wm,p for all 2 6 p < ∞ and there exist positive constants C, ν such that

|u(x)| + |∇u(x)| 6 Ce−ν|x| for all x ∈ R2 and lim
|x|→∞

K(|u|2)(x) = 0, [12, Lemma 2.2].

As in the previous chapters we can take ω = 1 without loss of generality by defining ψ

as u(x) =
√
ωψ(

√
ωx).

In [12, Theorem 2.1], the following necessary conditions are obtained for the

existence of solutions of (5.1.2):

∫
R2

(|∇R|2 − ωR2)dx = 0,

∫
R2

(2ω + χR2 + bK(R2))R2dx = 0. (5.1.3)

From (5.1.3) the two inequalities ω > 0 and χ‖R‖4
4 + b(K(R2), R2) < 0 follow as neces-

sary conditions on the existence of solutions. To guarantee the latter it is assumed that

χ < min{−bαM , 0}. In [12] under the assumption χ < min{−bαM , 0}, the functional

J(f) =
−2‖f‖2

2‖∇f‖2
2

χ‖f‖4
4 + b(K(|f |2), |f |2)

is shown to have a minimum on H1(R2), say R, which satisfies (5.1.2) after a proper

normalization. Hence the following Gagliardo–Nirenberg type inequality is obtained as

a corollary to [12, Theorem 2.1]:

−χ‖f‖4
4 − b(K(|f |2), |f |2) 6 Copt‖f‖2

2‖∇f‖2
2, (5.1.4)

where Copt =
2

‖R‖2
2

.

Here we adapt the approach of Berestycki and Lions [13] and Berestycki, Gallouët

and Kavian [5] for the NLS equation and consider a constrained minimization problem.
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5.2. Existence of Standing Waves

We note that u 6= 0 solves (5.1.2) if and only if u is a critical point of the

Lagrangian

Lω(u) =
1

2
‖∇u‖2

2 +
b

4
B(|u|2) +

χ

4
‖u‖4

4 +
ω

2
‖u‖2

2,

where B(f) :=

∫
α(ξ)|f̂(ξ)|2dξ =

∫
K(f)(x)f(x)dx.

Various parts of this Lagrangian are invariant under different scalings, [12]: if

ua,b(x) := sau(sbx), for some s > 0, (5.2.1)

then we have

‖ua,b‖2
2 = s2a−2b‖u‖2

2, ‖∇ua,b‖2
2 = s2a‖∇u‖2

2,

‖ua,b‖4
4 = s4a−2b‖u‖4

4, B(|ua,b|2) = s4a−2bB(|u|2).
(5.2.2)

There is also a partial scaling that reveals the closer kinship between B(|u|2) and ‖u‖4
4.

Letting

us(x) = us(x1, x2) = s1/4u(sx1, x2), (5.2.3)

we get B(|us|2) =

∫
α(sξ1, ξ2)

∣∣∣(̂|u|2)(ξ1, ξ2)∣∣∣2 dξ. By (A3) and the Dominated Conver-

gence Theorem it follows that lim
s→∞

B(|us|2) = α1‖u‖4
4 and lim

s→0+
B(|us|2) = α2‖u‖4

4.

Using the standard terminology, as in [14, 7], we set

T (u) := ‖∇u‖2
2, V (u) := − b

4
B(|u|2)− χ

4
‖u‖4

4 −
ω

2
‖u‖2

2

so that Lω(u) =
1

2
T (u) − V (u) is to be minimized over H1(R2). Now define Σ0 :=

{u ∈ H1(R2) : u 6= 0, V (u) = 0} and I := inf
{

1
2
T (u) : u ∈ Σ0

}
as in [7]. Then it can
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be easily shown that if Σ0 6= ∅ and ω > 0 then I > 0.

Theorem 5.2.1. For χ+α1b < 0 or χ+α2b < 0, and ω > 0 the minimization problem

u ∈ Σ0,

T (u) = min{T (ψ) : ψ ∈ Σ0} = 2I,
(5.2.4)

has a positive solution. This solution satisfies 0 < Lω(u) 6 Lω(ψ) among all ψ ∈

H1(R2) solving (5.1.2). Moreover, if u is properly scaled then it is a solution of (5.1.2).

Proof. First we will note that Σ0 is not empty. To establish this we will use one

parameter scalings given by (5.2.1) and (5.2.3). If χ+α1b < 0, for u ∈ H1(R2) defining

us as in (5.2.3), s→∞ implies (−bB(|us|2)− χ‖us‖4
4) −→ −(χ+ α1b)‖u‖4

4 > 0. Thus

there exists s0 large enough such that −bB(|us0|2) − χ‖us0‖4
4 > 0. Since V (sus0) is

a quintic polynomial in s with positive leading coefficient, there exists an s1 so that

V (s1us0) = 0. Similarly if χ+α2b < 0 we let s→ 0+ to have (−bB(|us|2)−χ‖us‖4
4) −→

−(χ+α2b)‖u‖4
4 > 0, hence we choose s0 close to 0 such that −bB(|us0|2)−χ‖us0‖4

4 > 0.

Rest of the argument proceeds as above.

Now, let (un) ⊂ Σ0 be a minimizing sequence such that ‖un‖2 = 1. Since T (un)

is bounded so is ‖un‖H1 , hence there exists u ∈ H1(R2) and a subsequence such that

un ⇀ u weakly in H1. In order to utilize the concentration compactness principle of

Lions [3] we consider

ρn(x) = |∇un(x)|2 + |un(x)|2,

where

∫
R2

ρn(x)dx = T (un) + ‖un‖2
2 → 2I + 1. There are three possibilities: vanishing,

dichotomy or concentration. Since concentration is the only possibility, there exists

(yn) ⊂ R2 such that for every ε > 0, there exists Rε >
1

ε
and

∫
R2\BRε (yn)

ρn(x)dx 6 ε.



45

Replacing un(x) by ũn(x) = un(x−yn), ũn ⇀ ũ weakly inH1(R2) and by the imbedding

H1(R2) ↪→ Lp(R2) for 2 6 p < ∞, it follows that

∫
R2\BRε (0)

|ϕ̃n|2dx 6 εp/2 for 2 6

p < ∞. Over BRε(0) the imbedding is compact and we can pass to the limit in V .

Combining these two, from V (ũn) = 0 it follows that V (ũ) = 0, i.e., ũ ∈ Σ0 with

T (ϕ̃) 6 lim infn→∞ T (ϕ̃n) = 2I. Hence ũ is the desired minimum. Positivity of this

minimum is granted by [14, Lemma 8.1.12]. If u solves the minimization problem

and ψ is any solution of (5.1.2) then by the Pohozaev like identities in [12] (see also

Proposition 5.2.4), we get V (ψ) = 0, and hence Lω(u) 6 Lω(ψ).

Let u be a solution of (5.2.4). Then there is a Lagrange multiplier s > 0 such

that −∆u = s(−bK(|u|2)u− χ|u|2u− ωu) (see Theorem A.4.2). From that we have a

solution of (5.1.2) under the scaling u0,− 1
2

= u

(
x√
s

)
.

Remark 5.2.2. The minimum of T does not change if we replace Σ0 by {u ∈ H1(R2) :

u 6= 0, V (u) > 0}. This is easy to see using one parameter scalings defined in (5.2.1),

i.e., the fact that if V (u) > 0 then there exists 0 < s 6 1 such that V (su) = 0.

Remark 5.2.3. Here we want to highlight that minimizers obtained from both methods

coincide. By [12, Theorem 2.2], there exists R, which minimizes J =
−2‖f‖2

2‖∇f‖2
2

χ‖f‖4
4 + bB(|f |2)

over H1. Furthermore R satisfies Pohozaev type identities, i.e., T (R) = ω‖R‖2
2 and

V (R) = 0. Noting that for any u with V (u) = 0, J(u) =
1

ω
T (u) and hence

1

ω
T (R) 6

J(ψ) for all ψ ∈ H1. Restricting this inequality to Σ0 we see that R minimizes T over

Σ0. Conversely, let u ∈ Σ0 be a minimizer of T and let ψ ∈ H1. If V (ψ) = 0, clearly

J(u) 6 J(ψ). Otherwise consider V (sψ). Since χ < min{−bαM , 0}, there exists s0 such

that V (s0ψ) = 0. Note that J(ψ) = J(s0ψ), hence we get that J(u) 6 J(s0ψ) = J(ψ)

and so u is a minimizer of J over H1.

Now we want to outline how to establish Pohozaev type identities given in [12]

in an alternative way.

Proposition 5.2.4. If u ∈ H1 is a solution of (5.1.2) then

T (u) + ω‖u‖2
2 = −bB(|u|2)− χ‖u‖4

4, 2ω‖u‖2
2 = −bB(|u|2)− χ‖u‖4

4.
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Proof. Note that if u is a solution of (5.1.2) then it is a critical point of Lω. To show

the first identity, differentiate Lω along the one parameter family defined by s 7−→ u1,0.

Since Lω(u1,0) = s2 1

2
T (u) + s4 b

4
B(|u|2) + s4χ

4
‖u‖4

4 + s2ω

2
‖u‖2

2, the result follows from

dLω(u1,0)

ds

∣∣∣∣
s=1

= 0. For the second identity, differentiate Lω along s 7−→ u0,−1. Using

the scalings given in (5.2.2), Lω(u0,−1) =
1

2
T (u)− λ2V (u). Hence

dLω(u0,−1)

ds

∣∣∣∣
s=1

= 0

yields the second identity.

5.3. A Gagliardo–Nirenberg Type Inequality and its Consequences

In this section we give an alternative derivation of the Gagliardo–Nirenberg type

inequality using the constrained minimization problem described in the previous sec-

tion. When χ + α1b < 0 or χ + α2b < 0, in the unconstrained minimization problem

the denominator of the functional J can be zero for u ∈ H1(R2), hence this method

does not seem to be applicable. On the other hand, in the constrained minimization

problem the potential V (u) can be arranged to change sign along a continuous one

parameter family of functions passing through u. This fact plays an important role in

the derivation of the main result of this section.

Theorem 5.3.1. If χ+ α1b < 0 or χ+ α2b < 0 then for any f ∈ H1(R2) we have

−
(
χ‖f‖4

4 + bB(|f |2)
)

6
ω

I
‖f‖2

2‖∇f‖2
2,

where I =
1

2
T (u) and u is a solution of (5.1.2).

Proof. Let f ∈ H1(R2) be arbitrary. First, if V (f) = 0 then we know that I 6
1

2
‖∇f‖2

2.

Hence we establish the result. Second, assume V (f) > 0. Since ω > 0 we have

−χ‖f‖4
4 − bB(|f |2) > 0, and using scaling properties of V we can show the existence

of an s such that V (sf) = 0. Since J is invariant under these type of scalings the

assertion follows from the first case. Finally, if V (f) < 0 the claim is trivially true

when −χ‖f‖4
4 − bB(|f |2) 6 0. If V (f) < 0 but −χ‖f‖4

4 − bB(|f |2) > 0, considering
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V (sf) as a quintic polynomial as before we can find s0 > 1 so that V (s0f) = 0 hence

the first case applies.

Remark 5.3.2. The connection between I and Copt, where Copt is given in (5.1.4), is

established as follows: For R obtained in [12, Theorem 2.2], we have
1

ω
T (R) 6

1

ω
T (u)

for all u ∈ Σ0. Hence
1

ω
T (R) 6

1

ω
inf{T (u) : u ∈ Σ0} =

2I

ω
. Since R ∈ Σ0 via

the Pohozaev type identities, inf T (u) 6 T (R). Noting that T (R) = ω‖R‖2
2 we have

ω

Copt

=
ω

2
‖R‖2

2 =
1

2
T (R) = I.

Using this estimate we can find an upper bound on the initial condition and hence

state the following global existence result proof of which is as in [12].

Corollary 5.3.3. For the Cauchy problem for the GDS system, if χ+b < 0 or χ+
b

m1

<

0, and ‖v0‖2 < ‖u‖2, where v0 ∈ H1(R2) is the initial amplitude and u is a solution

of (5.1.2), then the corresponding solution of the GDS system is global.

The asymptotic behaviour of solutions is described in the corollary below.

Corollary 5.3.4. Let v be a solution to the Cauchy problem for a GDS system and

assume that v remains in Σ := {v ∈ H1(R2) : (x2 + y2)1/2 v ∈ L2(R2)}. If χ+ b < 0 or

χ+
b

m1

< 0, and ‖v0‖2 < ‖u‖2, where u is a solution of (5.1.2), then

‖v(t)‖pp 6 C(1 + |t|)2−p,

for t > 0, p > 2 where C depends only on v0 and p.

Proof. In fact, ‖v0‖2 < ‖u‖2 implies that ‖∇v(t)‖2
2 6 MH(v0) for every t > 0, with

M =

(
1− ‖v0‖2

2

‖u‖2
2

)−1

. Proceeding as in [19, Section 4] the claim can be proved.

In order to adapt the argument in [19] to the present situation one needs the

validity of the pseudoconformal invariance under (A1) and (A2). This is addressed

in Eden and Kuz [21] as well as the existence and uniqueness of the Cauchy problem

for (5.1.2) under (A1) and (A2).
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6. CONCLUSION

The hypothesis (A3) given in the previous chapter is satisfied by the symbol of

DS system with α1 = α2 = 1 and by the symbol of the GDS system with α1 = 1 and

α2 =
1

m1

. (A3) was not assumed in [12], hence in a certain sense the result in [12]

on existence is more general. However, (A3) plays the key role in the scaling u ↔ us

defined in (5.2.3) and in the relation between B(|u|2) and ‖u‖4
4.

Note that the constraint V (u) = 0 in the minimization problem gives that J(u) =
1

ω
T (u), however for V (u) 6= 0 we have J(u) =

2‖u‖2
2T (u)

4V (u) + 2ω‖u‖2
2

. Nevertheless using the

partial scaling u ↔ us (5.2.1) and the scalings u ↔ ua,b with a = 1, b = 0 (5.2.3) one

can make V (u) equal to zero when χ + α1b < 0 or χ + α2b < 0 under the assumption

(A3) on α(ξ). Here, although J is invariant under the scalings (5.2.3) it is no longer

invariant under the scaling (5.2.1).

The stregth of this thesis lies in the fact that comparing the condition χ <

min{−bαM , 0} with χ + b < 0 or χ +
b

m1

< 0 for the GDS system, we see that, when

b > 0, the first condition reduces to χ + bαM < 0. Since αM > 1 and αM >
1

m1

this

is a stronger assumption than χ + b < 0 or χ +
b

m1

< 0. When on the other hand

b < 0, from the first condition we have χ < 0, whereas χ < −b or χ < − b

m1

allows

positive values for χ as well. When m1 = 1, hence αM = 1, there is still improvement

in χ+ b < 0 case.
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APPENDIX A: THE CALCULUS OF VARIATIONS

A.1. Euler–Lagrange Equation

Let L : R2 × R× R2 → R be a smooth function and consider

J(u) :=

∫
R2

L(∇u(x), u(x), x)dx.

Computing the Gateâux derivative of J at u in any direction v ∈ C∞
0 (R2) gives the

Euler–Lagrange equation associated with the energy functional J , which is the following

second-order PDE:

−
n∑
i=1

(Lpi
(∇u, u, x))xi

+ Lz(∇u, u, x) = 0,

where p = (p1, . . . , pn) = ∇u(x) and z = u(x).

A.2. Existence of Minimizer in Bounded Domains

Theorem A.2.1. [1, Theorem 8.2.2] Assume that for some fixed 1 < q < ∞, there

exists constants α > 0, β > 0 such that L(p, z, x) > α|p|q − β for all p ∈ R2, z ∈ R,

x ∈ Ω. Assume also that L is convex in the variable p. Suppose the space over which

J is minimized is nonempty. Then there exists at least one function u such that u

minimizes J .
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A.3. Weak Solutions of Euler–Lagrange Equation

Theorem A.3.1. [1, Theorem 8.2.4] Assume L verifies the growth conditions:

|L(p, z, x)| 6 C (|p|q + |z|q + 1) ,

|DpL(p, z, x)| 6 C
(
|p|q−1 + |z|q−1 + 1

)
,

|DzL(p, z, x)| 6 C
(
|p|q−1 + |z|q−1 + 1

)
,

for some constant C. Suppose u is a minimizer of J . Then u is a weak solution of the

Euler–Lagrange equation associated with J .

A.4. Constraint Minimization

For Ω open and bounded consider the problem of minimizing J(u) =
1

2

∫
Ω

|∇u|2dx

over all functions inH1
0 (Ω) but subject to the integral constraint I(u) =

∫
Ω

G(u)dx = 0,

where G : R → R is given a smooth function. Write g for G′ and assume |g(z)| 6

C(|z|+ 1). Then the following theorem holds true.

Theorem A.4.1. [1, Theorem 8.4.1] Assume the admissible set A := {w ∈ H1
0 (Ω) :

I(w) = 0} is nonempty. Then there exists u ∈ A satisfying

I(u) = min
w∈A

I(w).

We can relax the bounded condition of the space by utilizing other compact-

ness tools like Strauss Compactness Lemma or Concentration Compactness Lemma.

Independent of the boundedness of the domain we have the following theorem.
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Theorem A.4.2 (Lagrange multiplier). [1, Theorem 8.4.2] Let u ∈ A satisfy

I(u) = min
w∈A

I(w).

Then there exists a real number λ such that

∫
Ω

∇u · ∇vdx = λ

∫
Ω

g(u)vdx

for all v ∈ H1
0 (Ω).
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APPENDIX B: SOME BACKGROUND IN ANALYSIS

B.1. Schwarz Symmetrization

We introduce here the basic properties of Schwarz symmetrization without giving

the proofs and refer them to [13, 2]. First, recall the definition of the spherical sym-

metrization of a function. Let f ∈ L1(R2), then f ∗, the Schwarz symmetrized function

of f , is a radial, nonincreasing, measurable function such that for any α > 0,

meas{f ∗ > α} = meas{|f | > α}.

It is obvious that

∫
R2

F (f)dx =

∫
R2

F (f ∗)dx for every continuous function F such that

F (f) is integrable. A fundamental property of the mapping f 7→ f ∗ is the following:

Proposition B.1.1 (Riesz inequality). Let f, g be in L2(R2), then

∫
R2

f(x)g(x)dx 6∫
R2

f ∗(x)g∗(x)dx.

From this inequality we have ‖f ∗ − g∗‖2 6 ‖f − g‖2 for all f, g ∈ L2(R2).

Another important consequence of the Riesz inequality is the following result.

Proposition B.1.2. Let u ∈ H1(R2). Then u∗ ∈ H1(R2) and we have

∫
R2

|∇u∗(x)|2dx 6
∫

R2

|∇u(x)|2dx.

B.2. Gagliardo-Nirenberg-Sobolev Inequality

Theorem B.2.1. [14, Theorem 2.3.7] Let 1 6 p, q, r 6 ∞ and let j,m be two integers,

0 6 j < m. If

1

p
=
j

n
+ a

(
1

r
− m

n

)
+

(1− a)

q
,
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for some a ∈ [j/m, 1] (a < 1 if r > 1 and m − j − n

r
= 0), then there exists C =

C(n,m, j, a, q, r) such that

∑
|α|=j

‖Dαu‖p 6 C

 ∑
|α|=m

‖Dαu‖r

a

‖u‖1−a
q ,

for every u ∈ C∞
c (Rn).

Indeed, taking n = 2, p = 4, q = 2, r = 2, j = 0, m = 1 and a =
1

2
we get

‖u‖4
4 6 C1‖∇u‖2

2‖u‖2
2 for some C1. Similarly for n = 2, p = σ + 2, q = 2, r = 2, j = 0,

m = 1 and a =
σ

σ + 2
there exists a constant C2 such that ‖u‖σ+2

σ+2 6 C2‖∇u‖σ2‖u‖2
2.
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APPENDIX C: A FACT OF SOBOLEV SPACES

C.1. Sobolev Imbedding Theorem

Theorem C.1.1. [22, Theorem 2.4.5] Let m > 1 be an integer and 1 6 p <∞. Then

(i) if
1

p
− m

n
> 0, Wm,p(Rn) ↪→ Lq(Rn), with 1

q
= 1

p
− m

n
,

(ii) if
1

p
− m

n
= 0, Wm,p(Rn) ↪→ Lq(Rn), for p 6 q <∞,

(iii) if
1

p
− m

n
< 0, Wm,p(Rn) ↪→ L∞(Rn).

In particular Wm,p(Rn) ↪→ Ck(Rn) for m >
n

p
, where k =

⌊
m− n

p

⌋
.

From the theorem we have, for n = 2, m = 1 and p = 2, H1(R2) ↪→ Lq(R2) for

all 2 6 q <∞.
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