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ABSTRACT

MASLOV INDICES FOR LAGRANGIAN TRIPLETS

In this thesis, we study the properties and an application of Maslov ternary

index. By finding some special elements which generate symplectic group, we show

that Maslov ternary index becomes a very important tool in the process of calculating

the signature of a Lefschetz fibration. Besides, we will provide easier proofs of some

known theorems by using those special elements.
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ÖZET

LAGRANGE ÜÇLÜLERİ İÇİN MASLOV İNDİSLERİ

Bu tezde, Maslov üçlü indeksinin özellikleri ve bir uygulaması incelenmiştir.

Simplektik grubu oluşturan bazı özel elemanları keşfederek Maslov üçlü indeksinin

Lefschetz liflenmesinin işaretinin bulma sürecinde önemli bir araç olduğu gösterilmiştir.

Ayrıca, bu özel elemanlarla bazı bilinen teoremlerin daha basit ispatları verilmiştir.
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1. INTRODUCTION

Topologists have been interested in topological 4 dimensional manifolds, espe-

cially in the last 40 years. For dimensions up to 3, each topological manifold has

unique smooth structure, and for dimensions 5 or higher, it is known that topolog-

ical manifolds have finitely many smooth structures. For dimension 4, there is no

information about the finiteness of smooth structures.

Let us consider Rn, it has unique smooth structure up to diffeomorphism for

n < 4, see [1] and [2] for the case n = 2 and 3 respectively. This statement is valid also

for n > 4, see [3, Theorem 5.1]. However, for n = 4 there are many smooth structures.

Indeed, Taubes showed that R4 admits uncountably many smooth structures, see [4,

Theorem 1.1].

Different smooth structures have given rise to different categories of manifolds.

From mathematical physics, a new category emerged in 80s. This is symplectic man-

ifolds and they are smooth manifolds admitting a closed nondegenerate 2-form. The

properties of these manifolds have attracted the attentions of many topologists to study

in this area. There was a breaktrough which led us to examine the topological prop-

erties of these manifolds. Donaldson and Gompf showed that any 4-manifold admits

a symplectic structure if and only if it admits a Lefschetz fibration. This implies that

the topology of a symplectic 4-manifold is determined by a monodromy factorization

which can be understood by 2-dimensional methods.

Topologists are mainly interested in the invariants of topological manifolds. For

symplectic 4-manifolds, to compute the invariants one can look at the monodromy

factorization of the corresponding Lefschetz fibration. Signature is the known simplest

non-trivial invariant. The signature σ(X) of a compact oriented 4-manifold X is the

signature of the intersection form on the second homology group H2(X;Z).
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Firstly, Moishezon [5] defined the smooth Lesfchetz fibrations and studied their

monodromies in the case of fiber genus 1. Matsumoto benefited from Moishezon’s

study and classified Lefschetz fibrations up to isomorphism [6]. Then he studied the

case of fiber genus 2, and gave a signature formula (see [7]) by using Meyer’s signature

formula ( [8]). Endo [9] extended local signature formula for genus 2 fibrations due

to Matsumoto to that of hyperelliptic Lefschetz fibrations of arbitrary genus g and

calculated its values.

Moreover, Endo and Nagami [10] introduced the signature for relations in map-

ping class groups and gave a signature formula for Lefschetz fibrations over 2-sphere

by using that notion. They found that the signature is the sum of the signatures

for basic relations appearing in its monodromy. Then Endo, Hasegawa, Kamada and

Tanaka [11] generalized the signature formula of Endo and Nagami for Lefschetz fibra-

tions over the 2–sphere to that for Lefschetz fibrations over a closed oriented surface

of arbitrary genus.

Furthermore, Ozbagci [12] developed an algorithm to compute the signature for

Lefschetz fibrations over 2-disc or 2-sphere with closed fibers by using handlebody

decomposition by Kas [13] and Wall’s non-additivity formula [14]. By Kas’s handlebody

description, the topology of symplectic 4-manifold is determined by its vanishing cycles.

Ozbagci showed that the signature of a symplectic 4-manifold depends only on the

algebraic properties of the vanishing cycles. This means that although vanishing cycles

are defined up to isotopy, their homology classes are the only elements which determine

the signature.

Currently, Çengel and Karakurt [15] developed a new algorithm for computing

the signature of Lefschetz fibrations over 2-disc of any genus g with fibers which can

be closed or not. They introduced the notion of partial fiber sum decomposition and

by using this notion, they remodified Wall’s non-additivity formula. In this thesis, we

rewrote this formula by putting Maslov ternary index instead of Wall’s index.
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Cappell, Lee and Miller [16] showed that Maslov ternary index is the minus one

times Wall’s index. We will show that using Maslov ternary index leads to an easier

calculation of the signature.

By the way, in all calculations we assume that Lefschetz fibrations have closed

fibers. If we encounter a bordered Lefschetz fibration, we can make some manipulations

to make fibers closed without any change in signature thanks to Çengel and Karakurt’s

study, see [15, Theorem 3.1].

Maslov index is an invariant for Lagrangian subspaces of symplectic vector spaces,

it maps some Lagrangians to an integer. There are different definitions of Maslov index

in literature. Some are defined for pairs and one is defined for triplets. Cappell, Lee

and Miller [16] showed that all these definitions are equivalent. The reason why we

chose ternary (triple) index is that it is directly related to the defect of the Wall’s

non-additivity formula, which is called Wall’s index.

Kashiwara defined Maslov ternary index in a very simple way. By using this

definition to the Çengel and Karakurt’s formula, we will see that the signature of

Lefschetz fibrations will be calculated in an easier way with the use of some simple maps,

which are positive transvections. In this thesis, we benefited from positive transvections

to prove some theorems about the signature of Lefschetz fibrations. Additionally, we

prove some known theorems by using positive transvections. The first theorem is that

determinant of any symplectomorphism is 1. The second one is the surjectivity of

symplectic representation of mapping class groups.

In chapters 2 and 3, we will give necessary preliminaries.

In chapter 4, we define transvections and show that they generate symplectic

group. We classify transvections into two, which are positive and negative transvec-

tions. We provide an easier proof of the fact that determinant of symplectomorphisms

is 1 in that chapter.
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In chapter 5, we define Maslov ternary index and give its properties. We give the

reasons why we are interested in that index.

In chapter 6, we give information about mapping class group and its generating

elements, which are Dehn twists. We show that Dehn twists are transvections on

homology. We provide an easier proof of surjectivity of symplectic representation.

In chapter 7, we give information about Lefschetz fibration.

In chapter 8, we rewrite Çengel and Karakurt’s formula for the signature of

Lefschetz fibration by putting Maslov ternary index instead. Then, it will turn out that

the positive transvections play the most important role in the process of computing

the signature.
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2. SYMPLECTIC VECTOR SPACES

In this chapter, we will give background to this study. For more information

about this chapter, we refer the reader to Chapter 2 in [17].

Definition 2.1. Let V be a vector space and ω be a nondegenerate skew symmetric

bilinear form on V . Then the vector space V is symplectic vector space, and denoted

by (V, ω).

Definition 2.2. The symplectic complement of a subspace W of V is defined as

W ω = {v ∈ V | ω(v, w) = 0 ∀w ∈ W}

Definition 2.3. Let u and v be elements of V . Then u and v are symplectically

orthogonal if ω(u, v) = 0. For any two subspaces U and W , we say U and W are

symplectically orthogonal if ω(u, v) = 0 for all u ∈ U and v ∈ W .

Theorem 2.4. Symplectic vector spaces are even dimensional.

Proof. Suppose that V is an m dimensional symplectic vector space. For the case

m = 1, all vectors have to be a multiple of any nonzero vector, i.e. for any two nonzero

vectors v and w, there exists a scalar number k such that v = kw. This implies that

ω(v, w) = kω(w,w) = 0, nondegeneracy of the symplectic form is violated. For the

case m = 2 is trivial. Assume that m > 2, then there must be a symplectic vector

space with dimension m − 2 by the following way. Nondegeneracy of the symplectic

form shows that there exist u and v satisfying ω(u, v) is nonzero. Let W be the space

spanned by u and v. It is easy to see that W ω is m− 2 dimensional symplectic vector

space. After applying this method many times, we will get a 2 dimensional symplectic

vector space if m is even, and a one dimensional symplectic vector space if m is odd,

which is impossible.
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Theorem 2.5. [17, Theorem 2.1.3] Let (V, ω) be a symplectic vector space with di-

mension 2n. Then there exists a basis {u1, u2, ..., un, v1, v2, ..., vn} such that ω(ui, uj) =

0, ω(vi, vj) = 0 and ω(ui, vj) = δij. This basis is called a symplectic basis for V.

Proof. Assume V is a nonzero vector space. So there exist u1 and ṽ1 such that

ω(u1, ṽ1) 6= 0. Let it call k and if we take v1 = ṽ1/k, then ω(u1, v1) = 1. Let W

be span of u1 and v1. Then W ω is 2n− 2 dimensional symplectic vector space and we

can choose u2 and v2 by the same way. After repeating, we will find the basis which

satisfy the conditions in the theorem.

Definition 2.6. R2n has a symplectic structure and (R2n, ω0) denotes the symplectic

vector space with the symplectic basis {e1, ..., en, f1, ..., fn} such that ω0{ei, fj} = δij

and ω0{ei, ej} = ω0{fi, fj} = 0 for all i, j ∈ {1, ..., n}.

By Theorem 2.5, we can say that all symplectic vector spaces with same di-

mensions are isomorphic. This lead us to consider (R2n, ω0) as a representation of all

symplectic vector spaces with dimension 2n.

Let W be a subspace of the symplectic vector space V . By its structure form,

W ω can be in different shapes. It can be included in W . On the contrary, it can cover

W or can be equal to W .

Definition 2.7. Let W be a subspace of symplectic vector space V , then W is

• Symplectic if W ∩W ω = {0}

• Isotropic if W ⊂ W ω

• Coisotropic if W ⊃ W ω

• Lagrangian if W = W ω.

By the way, the next theorem is also very important to consider for understanding

whether the subspaces are Lagrangian or not.
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Theorem 2.8. [17, Lemma 2.1.1] dim W + dim W ω = dim V for all subspaces W

of symplectic vector space V .

Proof. Let f be the map from V to dual space V ∗ by defining

f(v) = ω(v, .)

By nondegeneracy of ω, kerf = 0. This means f is isomorphism and dim f(W ) = dim

W . In the dual vector space, f(W ) is a subspace and f(W )⊥ is annihilator of W . This

implies dim f(W ) + dimf(W )⊥ = dim V ∗ by rank nullity. Let W̃ be the subspace of V

whose dual is f(W )⊥. So, the elements of W̃ are kernel of f(W ), this means W ω = W̃

and isomorphic to f(W )⊥, so dimensions are equal. Therefore,

dimW + dimW ω = dimf(W ) + dimf(W )⊥ = dimV ∗ = dimV

An important result emerges after this theorem: Lagrangian subspaces of 2n-

dimensional symplectic vector spaces are always n-dimensional. In other words, let W

be a subspace of symplectic vector space V with dim V = 2n, if for all v and w in W ,

ω(v, w) = 0, and dim W = n, then W is a Lagrangian subspace of V .

Example 2.9. Let (V, ω) be 2n-dimensional symplectic vector space and has the sym-

plectic basis {u1, u2, ..., un, v1, v2, ..., vn}. Then

(i) span{u1, v1} and span{u3, un, v3, vn} are symplectic subspaces,

(ii) span{u1} and span{v2, v3} are isotropic subspaces,

(iii) span{v1, v2, ..., vn} is a Lagrangian subspace,

(iv) The symplectic complements of isotropic subspaces are coisotropic subspaces.
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3. SYMPLECTOMORPHISMS

In this chapter, we will give information about symplectomorphisms, which are

one of the core elements of this study. For more detailed information, we refer the

reader to Chapter 2 in [17].

Let (V, ω) be a symplectic vector space and Ψ : V → V be linear isomorphism.

Then Ψ be a symplectomorpism if it preserves the form structure, Ψ∗ω = ω, in other

words

ω(Ψv,Ψw) = ω(v, w) for all v, w ∈ V

Theorem 3.1. Let (V,ω) be a symplectic vector space. The set of all symplectomor-

phisms of (V,ω) is a group under composition of maps, called symplectic group and

denoted by Sp(V ).

Proof. Since identity map preserves the form, it is included in that group. So Sp(V )

is not empty set. Let Ψ and Φ be in Sp(V ), then

ω(ΨΦv,ΨΦw) = ω(Φv,Φw) = ω(v, w)

This implies ΨΦ ∈ Sp(V ). Associativity and identity properties are satisfied obviously.

All elements in Sp(V ) are linear isomorphisms, so their inverses are also linear isomor-

phisms and it can be easily shown that they preserve the form structure. So, inverse

property is also satisfied.

Corollary 3.2. Because any 2n dimensional symplectic vector space is isomorphic to

(Rn, ω0), Sp(V ) is isomorphic to the symplectic group of R2n, and denoted by Sp(2n).

Theorem 3.3. Sp(2n) = {Ψ ∈ GL(2n,R) | ΨTJΨ = J} where J is

 0 I

−I 0

.
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Proof. Let Ψ ∈ Sp(2n) be chosen arbitrarily. For any α, β ∈ R2n, we know that

ω0(α, β) = ω0(Ψα,Ψβ). Due to ω0(α, β) = αTJβ, Ψ ∈ Sp(2n) is equivalent to ΨTJΨ =

J .

3.1. The structure of Sp(2n)

Let Ψ be in Sp(2n), and a block matrix

A B

C D

 where A,B,C and D are n×n

matrices. ΨT =

AT CT

BT DT

 and JΨ =

 C D

−A −B

. Then,

ΨTJΨ =

ATC − CTA ATD − CTB

BTC −DTA BTD −DTB

 = J

Thus,

ATC = CTA, BTD = DTB, ATD − CTB = I. (3.1)

Ψ is also invertible matrix but there is no need for modifying A,B,C and D. The next

theorem shows determinant is nonzero, so Ψ is invertible.

Theorem 3.4. det Ψ = 1

There are many complicated proofs of Theorem 3.4 in the literature. We will see

a very simple proof of this theorem later. But now, it must be seen that determinant

of any symplectomorphism must be 1 or −1 by the Theorem 3.3 and preserving the

structure implies 1.

Definition 3.5. O(2n) is the group of orthogonal 2n×2n matrices. If A ∈ O(2n) then

ATA = I.



10

Definition 3.6. GL(n,C) is the group of all matrices

 X Y

−Y X

 in GL(2n,R).

Definition 3.7. U(n) is a subgroup of GL(n,C) with the condition XTX + Y TY = I

and XTY = Y TX.

As you noticed that we wrote a bit different definitions of GL(n,C) and U(n).

These are isomorphisms of the actual groups. Let h be the map from GL(n,C) to

GL(2n,R) as defined

h([X + iY ]) =

 X Y

−Y X


Obviously, h is injective and all matrices in the image of h under GL(n,C) are invertible.

The decomposition below show invertibility by looking the determinants.

 X Y

−Y X

 =
1

2

 I I

iI −iI

X + iY 0

0 X − iY

I −iI
I iI


For U(n), if X+ iY ∈ U(n) then, (X+ iY )H(X+ iY ) = I, this means (XT − iY T )(X+

iY ) = I. So XTX + Y TY = I and XTY = Y TX. Now, we are ready for the next

lemma.

Lemma 3.8. [17, Lemma 2.2.1] Sp(2n) ∩ O(2n) = Sp(2n)∩ GL(n,C) = O(2n)∩

GL(n,C) = U(n)

Proof. Let Ψ ∈ GL(2n,R), then

(i) Ψ ∈ GL(n,C) ⇐⇒ ΨJ = JΨ notice that J is image of iI in GL(n,C).

(ii) Ψ ∈ Sp(2n) ⇐⇒ ΨTJΨ = J , and

(iii) Ψ ∈ O(2n) ⇐⇒ ΨTΨ = I.
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Recognize that any two of them implies the third one. So,

(i) GL(n,C)∩ Sp(n) ⊂ O(2n)

(ii) GL(n,C) ∩O(2n) ⊂ Sp(2n)

(iii) Sp(2n) ∩ O(2n) ⊂ GL(n,C)

One can easily show that GL(n,C)∩ Sp(n), GL(n,C)∩O(2n) and Sp(2n) ∩ O(2n)

are same. Ψ ∈ GL(n,C), so it is in the form of

 X Y

−Y X

, and also in Sp(2n). By

putting the conditions at 3.1, we will get that any matrix in U(n) satisfy all conditions

and all such matrices are in U(n).

3.2. Lagrangian Subspaces

The set of all Lagrangian subspaces of (V, ω) is denoted by L(V ). If the vector

space is (R2n, ω0), L(V ) is denoted by L(n).

Theorem 3.9. [17, Lemma 2.3.1] Let X and Y be n × n matrices and Z =

X
Y

.

Let Λ be the column space of Z. Then

Λ ∈ L(n) ⇐⇒ rankZ=n and XTY = Y TX

Proof. Suppose that Λ is a Lagrangian subspace, so dimension of Λ is n. This is

equivalent to rankZ = n when Λ is the column space of Z =

X
Y

. Let us take z and

z′ in Λ arbitrarily. So there is some u and u′ such that z =

X
Y

u and z′ =

X
Y

u′.
Then.

ω0(z, z′) = zTJz′ = uT
[
XT Y T

] 0 I

−I 0

X
Y

u′
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ω0(z, z′) = uT (XTY − Y TX)u′ = 0

So, ω0(z, z′) = 0 if and only if XTY − Y TX = 0, which means XTY = Y TX.

Definition 3.10. The Z matrices (2n × n) satisfying the conditions above are called

Lagrangian frame. If the columns of Z constitute an orthonormal basis, then they are

called unitary Lagrangian frame.

Notice that

zT z =
[
XT Y T

]X
Y

 = XTX + Y TY = I ⇐⇒ U = X + iY is unitary matrix.

There are some properties of L(n).

Lemma 3.11. If Λ ∈ L(n) and Ψ ∈ Sp(2n), then ΨΛ ∈ L(n).

Proof. Since Ψ is invertible, ΨΛ has rank n. Let v1 and v2 be arbitrary elements in Λ.

So, ω0(v1, v2) = 0 and this implies ω0(Ψv1,Ψv2) = 0. Thus ΨΛ ∈ L(n).

This lemma says that image of any Lagrangian space under any symplectomor-

phism is a Lagrangian space.

Lemma 3.12. [17, Lemma 2.3.2] Assume Λ and Λ′ ∈ L(n), then there exists a

symplectic matrix Ψ ∈ U(n) such that Λ′ = ΨΛ.

Proof. Assume that Λ and Λ′ are given and their unitary Lagrangian frames are Z and

Z ′ respectively. Let Z =

X
Y

, so XTY = Y TX and XTX + Y TY = I. This means if

Ψ =

 X Y

−Y X

, then Ψ ∈ Sp(2n) ∩O(2n).



13

For Z ′, similarly, if we put K and T instead of X and Y , and Θ instead of Ψ,

then Θ =

 K T

−T K

 ∈ Sp(2n) ∩O(2n). So ΘΨ−1(Λ) = Λ′.

This lemma says that for any two Lagrangian spaces, there exists a symplecto-

morphism mapping from the one to the other one.

Some Lagrangian subspaces are created by using symplectomorphisms. We will

use such spaces later in this study.

Definition 3.13. Let (V, ω) be a symplectic vector space and Ψ ∈ Sp(V ), then Γ(Ψ)

and Γ̃(Ψ) denotes the graph and reversed graph of Ψ respectively. In other words,

Γ(Ψ) = {(u,Ψu)|u ∈ V } and Γ̃(Ψ) = {(Ψu, u)|u ∈ V }

Theorem 3.14. Assume (V, ω) is symplectic vector space and Ψ ∈ Sp(V ). Then Γ(Ψ)

and Γ̃(Ψ) are Lagrangian spaces of V × V with the symplectic form ω ⊕ (−ω).

Proof. V × V is 4n dimensional symplectic vector space and dimension of the graphs

is 2n. Thus it is rest to show that any two elements are symplectically orthogonal. Let

u and v be chosen arbitrarily. Then

(ω ⊕ (−ω))((u,Ψu), (v,Ψv)) = ω(u, v)− ω(Ψu,Ψv) = 0

Similarly,

(ω ⊕ (−ω))((Ψu, u), (Ψv, v)) = ω(Ψu,Ψv)− ω(u, v) = 0
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4. TRANSVECTIONS

In this chapter, we give information about transvections, which are the other core

elements of this study. The definition and properties of transvections can be found in

Chapter 3 of the book [18].

Definition 4.1. Let T : V → V be a linear map. T is transvection with fixed hyperplane

W if T |W = idW and T (v)− v ∈ W for all v ∈ V .

Theorem 4.2. Let W be a hyperplane, then there exists a nonzero vector u in V such

that W = uω.

Proof. By Theorem 2.8, dim(W ω) = 1. This means W ω = span{u} for some nonzero

u ∈ V . Thus uω = (W ω)ω = W .

Theorem 4.3. [18, p. 22,23] Any transvection in a symplectic group can be written

in the following way

Ta,u := v −→ v + aω(v, u)u.

Here W = uω and T (v)− v = aω(v, u)u ∈ uω. Conversely, for any nonzero a, and any

nonzero vector u, Ta,u is a transvection in symplectic group.

Throughout this study, we use the term transvection as a transvection in sym-

plectic group, so Ta,u.

Definition 4.4. For any transvection Ta,u, a is called the coefficient of Ta,u and u is

called the vector of Ta,u.

Theorem 4.5. [18, Theorem 3.4] Sp(V) is generated by transvections.

Let T be the group generated by all transvections. It must be shown that T =

Sp(V ). Firstly, we want to show that T ⊂ Sp(V ).
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Let T (v) = v + aω(v, u)u be given and v1 and v2 be arbitrarily chosen elements

of V . Then

ω(T (v1), T (v2)) = ω(v1 + aω(v1, u)u, v2 + aω(v2, u)u)

= ω(v1, v2 + aω(v2, u)u) + ω(aω(v1, u)u, v2 + aω(v2, u)u)

= ω(v1, v2) + aω(v2, u)ω(v1, u) + aω(v1, u)ω(u, v2)

= ω(v1, v2) + aω(v2, u)ω(v1, u)− aω(v1, u)ω(v2, u)

= ω(v1, v2)

So, any transvection is actually a symplectomorphism. By induction, one can show

that composition of transvections is also a symplectomorphism.

Now, we want to show Sp(V ) ⊂ T . Let v 6= w ∈ V \{0} be given. It will be

shown that there is a composition of transvections which map v to w. Actually with

at most 2 transvections, one can do this.

Case 1: ω(v, w) 6= 0

Let a be 1
ω(v,w)

and u be v − w. Then

Ta,u(v) = v + aω(v, u)u

= v +
1

ω(v, w)
ω(v, v − w)(v − w)

= v +
1

ω(v, w)
ω(v,−w)(v − w)

= v +
ω(v,−w)

ω(v, w)
(v − w)

= v − (v − w)

= w.
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So, in this case, we have a transvection mapping v to w.

Case 2: ω(v, w) = 0

In this case, we want to select z ∈ V such that ω(v, z) 6= 0 and ω(w, z) 6= 0. By

nondegeneracy of ω, there exist z1 and z2 in V such that ω(v, z1) 6= 0 and ω(w, z2) 6= 0.

If ω(v, z2) 6= 0, then z can be z2. Assume not, and ω(w, z1) 6= 0, then we can choose

z = z1. There is one case left, which is ω(v, z2) = 0 = ω(w, z1). Then we can choose

z = z1 + z2. In all cases, such z can be found. By Case 1, there exist T1 and T2 such

that T1(v) = z and T2(z) = w. T2T1(v) = w. Thus, we proved the next lemma.

Lemma 4.6. [18, Proposition 3.2] For all v and w in V , there exists an element

in T mapping v to w.

Lemma 4.7. [18, Proposition 3.3] T is transitive on hyperbolic pairs.

Proof. Let (α1, β1) and (α2, β2) be hyperbolic pairs in V (ω(α1, β1) = ω(α2, β2) = 1).

We want to find a composition of transvections such that α1 will be mapped to α2 and

β1 will be mapped to β2. By Lemma 4.4, there is T1 ∈ T such that T1(α1) = α2. Now

our aim is to find T2 ∈ T such that

T2(α2) = α2 and T2(T1(β1)) = β2

Case 1: ω(T1(β1), β2) 6= 0
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Let a = 1
ω(T1(β1),β2)

and u = T1(β1)− β2, then

Tu,a(α2) = α2 + aω(α2, u)u

= α2 +
ω(α2, u)

ω(T1(β1), β2)
u

= α2 +
ω(α2, T1(β1)− β2)

ω(T1(β1), β2)
u

= α2 +
ω(α2, T1(β1))− ω(α2, β2)

ω(T1(β1), β2)
u

= α2 +
ω(T1(α1), T1(β1))− ω(α2, β2)

ω(T1(β1), β2)
u

= α2 +
ω(α1, β1)− ω(α2, β2)

ω(T1(β1), β2)
u

= α2 +
0

ω(T1(β1), β2)
u

= α2

and

Tu,a(T1(β1)) = T1(β1) + aω(T1(β1), u)u

= T1(β1) +
ω(T1(β1), u)

ω(T1(β1), β2)
u

= T1(β1) +
ω(T1(β1), T1(β1)− β2)

ω(T1(β1), β2)
u

= T1(β1) +
ω(T1(β1),−β2)

ω(T1(β1), β2)
u

= T1(β1)− u

= T1(β1)− (T1(β1)− β2)

= β2.

Let this transvection be denoted by T2. In this case, T2T1 ∈ T and T2T1(α1) = α2,

T2T1(β1) = β2.

Case 2: ω(T1(β1), β2) = 0
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By the similar way we have made before, we want to find a z such that

ω(T1(β1), z) 6= 0 and ω(β2, z) 6= 0. For this α2 + T1(β1) is very good choice since

ω(T1(β1), α2 + T1(β1)) = ω(T1(β1), T1(α1)) = −1 and

ω(β2, α2 + T1(β1)) = ω(β2, α2) = −1.

We want to find the transvections T3 and T4 such that

T3(α2) = α2 T3(T1(β1)) = T1(β1) + α2

T4(α2) = α2 T4(T1(β1) + α2) = β2

Finally, we will see that T4T3T1 ∈ T and T4T3T1(α1) = α2, T4T3T1(β1) = β2.

For T3, let a be −1 and u be −α2, then

T3(α2) = α2 + (−1).ω(α2,−α2)(−α2)

= α2 and

T3(T1(β1)) = T1(β1) + (−1).ω(T1(β1),−α2)(−α2)

= T1(β1) + (−1).ω(T1(β1),−T1(α1))(−α2)

= T1(β1) + (−1).(−1).(−1)(−α2)

= T1(β1) + α2.
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For T4, let a be 1 and u be α2 + T1(β1)− β2, then

T4(α2) = α2 + ω(α2, α2 + T1(β1)− β2)(α2 + T1(β1)− β2)

= α2 + ω(α2, T1(β1)− β2)(α2 + T1(β1)− β2)

= α2 + [ω(T1(α1), T1(β1))− ω(α2, β2)](α2 + T1(β1)− β2)

= α2 + 0.(α2 + T1(β1)− β2)

= α2 and

T4(α2 + T1(β1)) = α2 + T1(β1) + ω(α2 + T1(β1), α2 + T1(β1)− β2)(α2 + T1(β1)− β2)

= α2 + T1(β1) + ω(α2 + T1(β1),−β2)(α2 + T1(β1)− β2)

= α2 + T1(β1) + [ω(α2,−β2) + ω(T1(β1),−β2)](α2 + T1(β1)− β2)

= α2 + T1(β1) + ω(α2,−β2)(α2 + T1(β1)− β2)

= α2 + T1(β1) + (−1)(α2 + T1(β1)− β2)

= β2.

Remark 4.8. Let T1 be a transvection, then there is T2 such that T2T1 = id. If

T1 = Ta,u, then T2 must be T−a,u. Assume θ1 is an element of T and θ2 is inverse of

θ1. So if θ1 = T1T2...Tn, then θ2 must be T−1
n T−1

n−1...T
−1
1 . Thus, every element in T has

an inverse in T .

Proof of Theorem 4.5. If Ψ ∈ Sp(V ) and {u1, v1, u2, v2, ..., un, vn} is a symplectic basis

of V , then there is an element in T , let it be denoted by θ1, such that θ1(Ψu1) = u1

and θ1(Ψv1) = v1. Let W1 := span{u1, v1}. θ1Ψ is identity on W1. W ω
1 is symplectic

vector space with basis {u2, v2, ..., un, vn}. So, θ1Ψ ∈ Sp(W ω
1 ).
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Assume that there are similar k elements such that θk...θ1Ψ is identity on Wk :=

span{u1, ..., uk, v1, ..., vk}. So, θk...θ1Ψ ∈ Sp(W ω
k ). There is an element in T , θk+1 ∈

Sp(W ω
k ) mapping Ψuk+1 to uk+1, and Ψvk+1 to vk+1. Notice that any vector in W ω

k is

symplectically orthogonal to Wk, this means hyperplanes of the transvections in W ω
k

cover Wk. This implies that these transvections are identity on Wk. So θk+1θk...θ1Ψ is

identity on Wk+1 := {u1, ..., uk+1, v1, ..., vk+1}. By induction, we showed θnθn−1...θ1Ψ

is identity. By Remark 4.6, Ψ ∈ T .

Theorem 4.9. Let Ta,u be a transvection. Then the only eigenvalue of Ta,u is 1.

Proof. Let x be a nonzero vector such that Ta,u(x) = λx. After applying the definition

of transvections, we get that

Ta,u(x) = λx→ x+ aω(x, u)u = λx→ aω(x, u)u = (λ− 1)x (4.1)

If u and x are linearly independent, then λ must be 1. If they are linearly dependent,

then ω(x, u) = 0, so λ is again 1. In all cases, eigenvalue is 1.

Corollary 4.10. All transvections in Sp(2n) have determinant 1.

Proof. By Theorem 4.9, product of all eigenvalues is 1, so determinant is 1.

Remark 4.11. Now, we are ready to give a very simple proof of Theorem 3.4. By

Theorem 4.5, determinant of a symplectomorphism is equal to determinant of some

transvections, which is always 1.

4.1. Some Properties of Transvections

Theorem 4.12 (Conjugacy). Assume (V, ω) is symplectic vector space and Ψ ∈ Sp(V ),

then for any transvection Ta,u

Ta,Ψu = ΨTa,uΨ
−1 (4.2)
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Proof. Ta,Ψu(v) = v+aω(v,Ψu)Ψu = ΨΨ−1(v+aω(v,Ψu)Ψu) = Ψ(Ψ−1v+aω(v,Ψu)u)

ω(v,Ψu) = ω(Ψ−1v, u) implies that v + aω(v,Ψu)Ψu = Ψ(Ta,uΨ
−1u). Because v is

chosen arbitrarily in V , the equation 4.2 holds.

Theorem 4.13 (Commutativity). Assume that (V, ω) is symplectic vector space, Ta1,u1

and Ta2,u2 are transvections. If ω(u1, u2) = 0, then

Ta1,u1Ta2,u2 = Ta2,u2Ta1,u1

Proof. This theorem can be proven easily by using the definition of transvections.

Corollary 4.14. By Theorem 4.13, k transvections commute if their vectors are sym-

plectically orthogonal.

If any two transvections are the same maps, then, their vectors must be linearly

dependent, i.e. one of them is a multiple of the other one. However, for the coefficients

of transvections, we can do any change but the sign of the numbers cannot be changed,

since any multiple of the vector contributes to the coefficient by square of that number.

The next theorem clarifies this situation. Yet first, we should define the types of the

transvections.

Definition 4.15. The transvections T−1,u1 and T1,u2 are called positive and negative

transvections respectively.

Although the signs of coefficients and the names of this transvections are opposite,

there is a fair reason for it. We will see this reason later.

Theorem 4.16. Any transvection on the symplectic vector space is a positive transvec-

tion or a negative transvection.

Proof. If a = 0, Ta,u is identity, so not transvection. Assume that a is nonzero.
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Let a > 0 and u ∈ V , then

Ta,u(v) = v + aω(v, u)u = v + ω(v,
√
au)
√
au = T1,

√
au(v)

Similarly,

T−a,u(v) = v − aω(v, u)u = v − ω(v,
√
−au)

√
−au = T−1,

√
−au(v)

Thus, the proof is completed.

Theorem 4.17. The symplectic vector space V is generated by positive transvections.

Proof. Theorem 4.5 and 4.16 implies that Sp(V ) is generated by positive and negative

transvections. Remark 4.8 says that negative transvections are inverse of positive

transvections.
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5. MASLOV INDEX

In the literature, there are different definitions of Maslov index which is an invari-

ant for Lagrangian spaces. Some of them are defined on pairs and one of them is defined

on triplets, which we will focus on completely. This is called Maslov ternary index or

Maslov triple index. In their comprehensive study [16], Cappell, Lee and Miller showed

that these different definitions satisfy the same system of axioms and hence is equiva-

lent to each other. Kashiwara defined the Maslov ternary index and his definition looks

very simple. For the details of Maslov ternary index, we refer the reader to Chapter

1.5 of [19].

Definition 5.1. [19, Definition 1.5.1 (Kashiwara)] Assume (V, ω) is symplectic

vector space and L1, L2 and L3 are Lagrangian subspaces of V . The Maslov index

µ(L1, L2, L3) is an integer and defined as the signature of the quadratic form

Q : L1 ⊕ L2 ⊕ L3 → R

Q(x1, x2, x3) = ω(x1, x2) + ω(x2, x3) + ω(x3, x1)

Theorem 5.2. µ(L1, L2, L3) = ε(σ)µ(Lσ(1), Lσ(2), Lσ(3)) where σ is any permutation on

{1, 2, 3}, and ε is +1 if number of elementary permutations is even and −1 otherwise.

Proof. Without loss of generality, assume we change places of L1 and L2, then

Q(x2, x1, x3) = ω(x2, x1) + ω(x1, x3) + ω(x3, x2) = −Q(x1, x2, x3)

This is equaivalent to say that

Q(x1, x1, x3) = ε(σ)Q(xσ(1), xσ(2), xσ(3))

which proves theorem.
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Remark 5.3. There are two equivalent definitions of the signature of quadratic forms.

From the given variables of quadratic forms, we can create new variables A1, ..., Ak

such that the quadratic form is equal to
∑k

i=1 aiA
2
i where ai = ±1. First definition is

that the number of ai = +1’s minus number of ai = −1’s is signature. This definition

help us to understand Theorem 5.2. The second definition is that the signature of the

correspondent symmetric matrix of the quadratic form is signature. The latter will be

more helpful to understand the next theorems, indeed the all theorems.

Another proof of Theorem 5.2. Assume A is the correspondent symmetric matrix of Q,

then if we permute arbitrarily two elements, then −A become the correspondent matrix

of the new quadratic form. If Λ is the diagonal matrix of A by applying simultaneous

row and column operations, then

A = P TΛP ⇒ −A = P T (−Λ)P ⇒ all signs of diagonal elements change.

This proves the theorem.

Theorem 5.4. Assume that (V, ω1) and (W,ω2) are symplectic vector spaces and Li ⊂

V , L#
i ⊂ W are Lagrangian subspaces for i = 1, 2, 3. Then

µV⊕W (L1 ⊕ L#
1 , L2 ⊕ L#

2 , L3 ⊕ L#
3 ) = µV (L1, L2, L3) + µW (L#

1 , L
#
2 , L

#
3 ) (5.1)

Proof. If {u1, ..., un, v1, ..., vn} is a symplectic basis of V and {u′1, ..., u′m, v′1, ..., v′m} is a

symplectic basis of W . Then V ⊕W is symplectic vector space with the form

ω(α1 + β1, α2 + β2) = ω1(α1, α2) + ω2(β1, β2)

where α1, α2 ∈ V and β1, β2 ∈ W . The basis of V ⊕W become {ui + u′j, vi + v′j | i =

1, 2, ..., n, j = 1, 2, ...,m}.
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Let Q1 and Q2 be the quadratic forms on V and W respectively, then the

quadratic form on V ⊕W become

Q(x1 + x′1, x2 + x′2, x3 + x′3) = Q1(x1, x2, x3) +Q2(x′1, x
′
2, x
′
3)

If A is symmetric matrix of Q1 and B is symmetric matrix of Q2, then

A 0

0 B

 is

symmetric matrix of Q. So after diagonalization we will get

Λ1 0

0 Λ2

. This implies

5.1.

Theorem 5.5. For all Ψ ∈ Sp(V ), then

µ(L1, L2, L3) = µ(ΨL1,ΨL2,ΨL3) (5.2)

Proof. Under any symplectomorphism, quadratic form cannot change, so the signature

too.

Theorem 5.6. Assume (C, ω) is symplectic vector space such that ω(1, i) = 1, then

µC(R,R(1 + i),R(i)) = 1 (5.3)

where R(z) := {az | a ∈ R}.

Proof. Assume a ∈ R, b+ bi ∈ R(1 + i) and ci ∈ R(i) where a, b and c ∈ R. Then the

quadratic formula of the three Lagrangian subspaces R,R(1 + i) and R(i) is,

Q(a, b+ bi, ci) = ω(a, b+ bi) + ω(b+ bi, ci) + ω(ci, a)

= ω(a, bi) + ω(b, ci) + ω(ci, a)

= ab+ bc− ac
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The matrix representation of this quadratic form is

[
a b c

]
0 1/2 −1/2

1/2 0 1/2

−1/2 1/2 0



a

b

c

 (5.4)

So the similar matrix of the quadratic form is


0 1/2 −1/2

1/2 0 1/2

−1/2 1/2 0


To get diagonal matrix, we should apply all row operations and column operations at

the same time,


0 1/2 −1/2

1/2 0 1/2

−1/2 1/2 0

 R2+R3=R3−−−−−−→


0 1/2 −1/2

1/2 0 1/2

0 1/2 1/2

 C2+C3=C3−−−−−−→


0 1/2 0

1/2 0 1/2

0 1/2 1


−R1+R3=R3−−−−−−−→


0 1/2 0

1/2 0 1/2

0 0 1

 −C1+C3=C3−−−−−−−→


0 1/2 0

1/2 0 0

0 0 1

 C1+C2=C1−−−−−−→
R1+R2=R1


1 1/2 0

1/2 0 0

0 0 1

 R1
2
−R2=R2−−−−−−−→


1 1/2 0

0 −1/4 0

0 0 1

 C1
2
−C2=C2−−−−−−−→


1 0 0

0 −1/4 0

0 0 1


After applying same row and column operations simultaneously, we get our diagonal

matrix


1 0 0

0 −1/4 0

0 0 1

 The diagonal entries are 1,−1/4 and 1.
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There are 2 positive numbers and 1 negative number. So the signature is 2−1 = 1.

Theorem 5.7. [19, Proposition 1.5.8] Assume L1, L2, L3 and L4 are Lagrangian

spaces, then

µ(L1, L2, L3) = µ(L1, L2, L4) + µ(L1, L4, L3) + µ(L4, L2, L3) (5.5)

The proof of this theorem is not straightforward. Therefore we will sketch the

proof and show some lemmas which directly affect the theorem. Transversality of

spaces means that they have only one common element which is zero vector. We will

first assume that L4 is transverse to L1, L2 and L3 and prove the theorem. Then we

will find a Lagrangian space which is transverse to L1, L2, L3, L4 and by using the first

case, we will prove this theorem for all Lagrangian spaces.

Assume L1, L2, L3 and L4 are Lagrangian subspaces of V such that Li∩L4 = {0}

for i ∈ {1, 2, 3}. So Li ⊕ L4 = V .

Suppose x1 ∈ L1, x2 ∈ L2, x3 ∈ L3 and y1, y2, y3 are constructed in the following

way

y1 =
1

2
(x1 − P14x2 + P14x3)

y2 =
1

2
(x2 − P24x3 + P24x1)

y3 =
1

2
(x3 − P34x1 + P34x2)

where Pi4 is the projection map on Li perpendicular to L4 for i ∈ {1, 2, 3}. Notice that

y1 ∈ L1, y2 ∈ L2, and y3 ∈ L3.
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L1

L2

L3

L4

x1

x2

x3

P24x1

P34x1

P24x3

P14x3

P14x2

P34x2

Figure 5.1. The vectors and their projections on Li’s

P14y2 = P14(
1

2
(x2 − P24x3 + P24x1))

=
1

2
P14(x2 − P24x3 + P24x1)

=
1

2
(P14x2 − P14P24x3 + P14P24x1)

=
1

2
(P14x2 − P14x3 + x1)

So, x1 = y1 + P14y2.

P24y3 = P24(
1

2
(x3 − P34x1 + P34x2))

=
1

2
P24(x3 − P34x1 + P34x2)

=
1

2
(P24x3 − P24P34x1 + P24P34x2)

=
1

2
(P24x3 − P24x1 + x2)
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So, x2 = y2 + P24y3.

P34y1 = P34(
1

2
(x1 − P14x2 + P14x3))

=
1

2
P34(x1 − P14x2 + P14x3)

=
1

2
(P34x1 − P34P14x2 + P34P14x3)

=
1

2
(P34x1 − P34x2 + x3)

So, x3 = y3 + P34y1.

Let Q′ be a quadratic form on L1 ⊕ L2 ⊕ L3 constructed in the following way

Q′(y1, y2, y3) = ω(P14y2, y2) + ω(P24y3, y3) + ω(P34y1, y1)

Lemma 5.8. ω(y1, y2) + ω(y2, P34y1) + ω(P34y1, P14y2) = 0

Proof. y2 = P14y2 + P41y2 implies that

ω(y1, y2) + ω(y2, P34y1) + ω(P34y1, P14y2)

= ω(y1, P14y2 + P41y2) + ω(P14y2 + P41y2, P34y1) + ω(P34y1, P14y2)

= ω(y1, P41y2) + ω(P14y2, P34y1) + ω(P41y2, P34y1) + ω(P34y1, P14y2)

= ω(y1, P41y2) + ω(P41y2, P34y1)

= ω(y1, P41y2) + ω(P41y2, P34y1 + P43y1)

= ω(y1, P41y2) + ω(P41y2, y1)

= 0
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By Lemma 5.8, we can write

ω(y2, y3) + ω(y3, P14y2) + ω(P14y2, P24y3) = 0

ω(y3, y1) + ω(y1, P24y3) + ω(P24y3, P34y1) = 0

So now, we can state the next proposition

Proposition 5.9. Q′(y1, y2, y3) is equivalent to Q(x1, x2, x3).

Proof. Q(x1, x2, x3) = ω(x1, x2) + ω(x2, x3) + ω(x3, x1) implies that

Q(x1, x2, x3) = ω(x1, x2) + ω(x2, x3) + ω(x3, x1)

= ω(y1 + P14y2, y2 + P24y3) + ω(y2 + P24y3, y3 + P34y1) + ω(y3 + P34y1, y1 + P14y2)

= ω(y1, y2) + ω(y2, P34y1) + ω(P34y1, P14y2)

+ ω(y2, y3) + ω(y3, P14y2) + ω(P14y2, P24y3)

+ ω(y3, y1) + ω(y1, P24y3) + ω(P24y3, P34y1)

+ ω(y1, y2) + ω(y2, y3) + ω(y3, y1)

= ω(y1, y2) + ω(y2, y3) + ω(y3, y1)

= Q′(y1, y2, y3)

If one of the Lagrangian subspaces is L4, Q′ becomes,

• Q′(y1, y2, y3) = ω(P14y2, y2) + ω(P34y1, y1)

• Q′(y1, y4, y3) = ω(P24y3, y3) + ω(P34y1, y1)

• Q′(y4, y2, y3) = ω(P14y2, y2) + ω(P24y3, y3)
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Then, their sum is

Q′(y1, y2, y3) +Q′(y1, y4, y3) +Q′(y4, y2, y3)

= ω(P14y2, y2) + ω(P34y1, y1) + ω(P24y3, y3) + ω(P34y1, y1) + ω(P14y2, y2) + ω(P24y3, y3)

= 2(Q′(y1, y2, y3))

By using Proposition 5.9, the above equation implies that

µ(L1, L2, L3) = µ(L1, L2, L4) + µ(L1, L4, L3) + µ(L4, L2, L3)

if L4 is transverse to the other ones.

Now assume that L4 is not transverse to the other Lagrangian spaces. Then,

Theorem 5.11 guarantees the existence of a Lagrangian space which is transverse to Li

for i ∈ {1, 2, 3, 4}.

Lemma 5.10. Let L1, ..., Ln be some Lagrangian spaces. Then there is an element

v ∈ V such that v /∈ Li for all i ∈ {1, ..., n}.

Proof. This lemma can be proven by induction, k = 1 is obvious. Assume that v /∈ Li
for all i ∈ {1, ..., k}. We want to show that if we add Lk+1, then we can still find such

vector. If v /∈ Lk+1, then we are done. Assume v ∈ Lk+1, by nondegeneracy of the

form, there exists u ∈ V such that ω(v, u) = 1. This means that u /∈ Lk+1. In fact,

tv + u /∈ Lk+1 for all real numbers t. Thus, this vector can be in the form of tv + u,

but firstly this vector must not be in the previous Lagrangian spaces.

If v + u is in one of the Lagrangian spaces, then we can choose (v + u) + v. If

this vector is in another Lagrangian space, we can choose (2v+ u) + v. Since there are

finitely many Lagrangian spaces, we can find a vector tv+ u which is not in any Li for

all i ∈ {1, ..., k}.
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Thus there exists a vector which is not included in one of the Lagrangian spaces

L1, ..., Lk+1.

Theorem 5.11. For the Lagrangian spaces L1, L2, ..., Ln, there exists another La-

grangian space Ln+1 which is transverse to them.

Proof. By the previous lemma, there exists v ∈ V such that v /∈ Li for all i ∈ {1, ..., n}

and let R denote span{v}. So R is an isotropic subspace of V which is transversal to

{L1, ..., Ln}. Let K be the set of all isotropic subspaces including R and transversal to

{L1, ..., Ln}. Since R ∈ K, then K is not empty set. Let L′ ∈ K such that there is no

element in K whose proper subset is L′. This means L′ is maximal isotropic subspace

including R and transversal to {L1, ..., Ln}. The definition of isotropic subspace implies

L′ ⊂ (L′)ω. Suppose that L′ 6= (L′)ω.

Let us choose α ∈ (L′)ω\L′ arbitrarily. This implies ω(x, α) = 0 for all x ∈ L′.

Let us consider L′ ⊕ {α}. This is isotropic subspace containing R and L′ is proper

subspace of it. Maximality of L′ implies that L′⊕{α} is not in K. So this subspace is

not transverse to {L1, ..., Ln}. There exists at least one j ∈ {1, ..., n} such that

(L′ ⊕ {α}) ∩ Lj 6= {0}

This implies that

v + α ∈ Lj for some v ∈ L′

So ω(v + α, x) = 0 for all x ∈ Lj. L′ is transverse to Lj, so v /∈ Lj. This means there

exist y ∈ Lj such that ω(v, y) = 1. Then we get that

0 = ω(v + α, y) = ω(v, y) + ω(α, y) = 1 + ω(α, y)→ ω(α, y) = −1 6= 0
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So α /∈ Lj. Since α can be choosen in (L′)ω\L′ arbitrarily, we can say that

((L′)ω\L′) ∩ Lj = {0}

This is equivalent to

(L′)ω ∩ Lj = {0}

But v + α ∈ Lj and v + α ∈ (L′)ω since v ∈ L′ ⊂ (L′)ω and α ∈ (L′)ω. Contradiction!

So L′ = (L′)ω this means L′ is Lagrangian subspace. We can choose Lk+1 = L′.

Proof of Theorem 5.7. The case in which L4 is transversal to Li for all i ∈ {1, 2, 3} is

proven. Assume transversality condition is not hold. Then we can choose L5 to be

transverse to L1, L2, L3 and L4 by the Theorem 5.11. Then

µ(L1, L2, L4) = µ(L1, L2, L5) + µ(L1, L5, L4) + µ(L5, L2, L4)

µ(L1, L4, L3) = µ(L1, L4, L5) + µ(L1, L5, L3) + µ(L5, L4, L3)

µ(L4, L2, L3) = µ(L4, L2, L5) + µ(L4, L5, L3) + µ(L5, L2, L3)

Their sum is

µ(L1, L2, L4) + µ(L1, L4, L3) + µ(L4, L2, L3)

= µ(L1, L2, L5) + µ(L1, L5, L3) + µ(L5, L2, L3)

= µ(L1, L2, L3)
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By the study of Cappell, Lee and Miller [16, Theorem 8.1], there is a unique

system of functions µ(L1, L2, L3) which satisfies the properties which are stated in

Theorem 5.2, 5.4, 5.5 and 5.6. Any such system equals Kashiwara’s definition of Maslov

ternary index, and so the property which stated in Theorem 5.7 is also satisfied.

Let L1, L2 and L′1, L
′
2 be transverse Lagrangian pairs of same symplectic vector

space V . Since these pairs give some symplectic basis for V , we find a symplecto-

morphism mapping Li to L′i for i ∈ {1, 2}. This means that Sp(V ) is transitive on

transverse Lagrangian pairs. However, Sp(V ) is not transitive on Lagrangian triplets.

By Theorem 5.5, there is no symplectomorphism which maps one triplet to the other

one if their indices are not same. Maslov ternary index determines the configuration

of these Lagrangian subspaces.
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6. MAPPING CLASS GROUPS

In this chapter, we will give some information about mapping class group. We will

see the definition and some properties of Dehn twists which are another core elements of

this study. We will recognize a correspondence between Dehn twists and transvections.

For the definitions and theorems, we follow this book [20].

Let Σ be a compact connected orientable surface. This implies that Σ has some

holes and some cut parts. These are called genus and boundary parts, respectively. We

denote such a surface by Σb
g, g genus b boundary parts. Throughout this study, we use

the term surface in referring to the compact connected orientable surfaces, and we are

mainly concerned about the closed (no boundary parts) surfaces. Therefore we usually

use the notation Σg instead of Σ0
g.

Figure 6.1. Σ3
2 surface

Definition 6.1. Let f : Σb
g → Σb

g be an orientation preserving homeomorphism and

induced map on the boundary is identity. Such maps create a group called mapping

class group up to isotopy. The mapping class group of Σb
g is denoted by Mod(Σb

g).

In other words, Mod(Σb
g) is the group of all isotopy classes of orientation pre-

serving self diffeomorphisms of Σb
g, which is identity on ∂Σb

g. We use the term dif-

feomorphism instead of homeomorphism due to the fact that any homeomorphism is

homotopic to a diffeomorphism in the surface.
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γ twisting

Figure 6.2. Dehn twist Dγ

In this study, we are mainly interested in the generator set of the mapping class

groups, which are called Dehn twists. Therefore we will talk more about Dehn twists

under the next heading.

6.1. Dehn Twists

Definition 6.2. Consider a simple closed curve γ on a surface. In the closed tubular

neighborhood of γ, Dehn twist about γ is a self-homeomorphism on that surface, made

by regluing after 360◦ twisting of that closed tubular neigborhood, as in Figure 6.2.

Remark 6.3. Twisting right or left gives two different Dehn twists. The former is

called right Dehn twist and the latter is called left Dehn twist. Twisting right and left

gives identity map in the mapping class group. So we can say that left Dehn twists are

inverse of right Dehn twists.

Definition 6.4. Let γ be a simple closed curve on a surface. Then γ is called separating

if the new surface is disconnected after cutting γ, and nonseparating if the new surface

is still connected.

γ2

γ1

Figure 6.3. γ1 is nonseparating curve and γ2 is separating curve

For any simple closed curve γ in a surface, Dγ represents right Dehn twists and

D−1
γ represents left Dehn twists. We are mainly interested in right Dehn twists.
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By Dehn-Lickorish theorem [20, Theorem 4.1], Dehn twists generate the mapping

class group of a surface. For a closed surface, although there are many studies giving a

finite number of Dehn twists, Humphries [21] showed that 2g+ 1 Dehn twists generate

Mod(Σg) and this number is the most favorable one in the literature.

There are some properties of Dehn twists which deserve attention. For the de-

tails and proofs, see [20]. First one is that for disjoint simple closed curves γ1 and

γ2, Dγ1Dγ2 = Dγ2Dγ1 . By induction, we conclude that Dehn twists about disjoint

curves commute. The second property is conjugation. For any f ∈ Mod(Σg), we have

fDγf
−1 = Df(γ).

6.2. Symplectic Representation

Definition 6.5. For given Σg, the algebraic intersection map î(., .) is defined on the

first homology group of Σg, denoted by H1(Σg,Z) and satisfy the following properties

(i) For all a, b ∈ H1(Σg,Z), î(a, b) = −î(b, a), î is skew symmetric.

(ii) For all a, b ∈ H1(Σg,Z), let α and β represent a and b respectively. Then î(a, b)

is the sum of signed intersections of α and β curves.

Theorem 6.6. Let Σg be given and γ be separating curve, then the sum of the signed

intersection with any curve in the surface is zero.

For convention, let [a] ∈ H1(Σg,Z) is the homology class representing the oriented

simple closed curve a. For any separating curve γ, [γ] = 0. By Theorem 6.6, we can

get a result that î is nondegenerate.
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a1 a2

b1 b2 bg

ag

Figure 6.4. Geometric symplectic basis for H1(Σg,R)

Let us consider the ordered basis {[a1], [b1], ..., [ag], [bg]} for H1(Σg,R) in Figure

6.4. The algebraic intersection map extends to a nondegenerate skew symmetric bilin-

ear form

î : H1(Σg,R)⊕ H1(Σg,R)→ R (6.1)

With this structure, (H1(Σg,R), î) is 2g dimensional symplectic vector space and the

basis {[a1], [b1], ..., [ag], [bg]} is symplectic basis.

This collection of the curves a1, ..., ag, b1, ..., bg is called geometric symplectic basis

for H1(Σg,Z).

The action of Mod(Σg) on H1(Σg,R) preserves the structure of î. This yields a

representation

Mod(Σg)→ Sp(2g)

and this representation is called the symplectic representation of Mod(Σg).

Theorem 6.7. The representation Mod(Σg) → Sp(2g) is surjective.

Before proving this theorem, we must look at the actions of the generators of

Mod(Σg) on H1(Σg,Z). By [20, Proposition 6.3],

Dγ(a) = a− î(a, [γ]).[γ] where a ∈ H1(Σg,Z) (6.2)
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This is exactly what transvections do in a symplectic vector space. We get the result

that a right Dehn twist about a nonseparating curve is a positive transvection and left

Dehn twist about nonseparating curve is a negative transvection on H1(Σg,Z). Besides,

Dehn twists and transvections have some common properties, which are conjugacy and

commutativity properties.

Remark 6.8. Dehn twists about separating curves are trivial on H1(Σg,Z). By Theo-

rem 6.6 and the equation in 6.2 gives this result.

Proof of Theorem 6.7. Theorem 4.16 says that the images of all Dehn twists about

nonseparating curves generate Sp(V ).

Although the Dehn twists about separating curves are trivial on homology, they

are nontrivial and infinite order in the mapping class group. The kernel of the sym-

plectic representation is nontrivial for g > 1 and this kernel is called Torelli group of

Mod(Σg). The Dehn twists about separating curves are not the only elements in Torelli

group, Torelli group is not finitely generated like Mod(Σg). See Chapter 6 in [20] for

details.
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7. LEFSCHETZ FIBRATIONS

We now come to the core topic of this study, Lefschetz fibrations. Relevant

theorems of Donaldson and Gompf show that any 4-manifold admits a symplectic

structure if and only if it admits a Lefschetz fibration. For details the reader can

look at Chapter 10 of this book [22]. Studying Lefschetz fibrations is more preferable

because of their properties. We will see these properties and more in the light of Fuller’s

study [23] in this chapter.

Definition 7.1. Let X be a compact, oriented smooth 4-manifold and A be a compact,

oriented smooth 2-manifold. A Lefschetz fibration on X is a smooth surjective map

f : X → A such that:

(i) {x1, x2, ..., xn} are the critical points of f and ai = f(xi) are the distinct critical

values of f inside A, and

(ii) about each xi and ai, f has an orientation preserving chart on which f : C2 → C

is given by f(w, z) = w2 + z2.

X

f

A

Figure 7.1. Lefschetz Fibration

The points in A which are different from {a1, a2, ..., an} are called regular values

of f and f−1(b) for any regular value b is called regular fiber of f . By Sard’s theorem,

regular fibers of f are diffeomorphic to Σg with fixed genus g. Therefore, we can call

f as a genus g Lefschetz fibration.
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The points {a1, a2, ..., an} are called singular values of f and their preimages are

called singular fibers of f . At Definition 3.1, we assumed that all critical points are in

different singular fibers.

7.1. The Topology of Lefschetz Fibrations

It is always best to start from the simplest case, which is looking at the neighbor-

hood of a critical point. Let f : X → D2 be a Lefschetz fibration with only one singular

fiber. Let the singular fiber be denoted by F1 = f−1(a1). From the assumptions of

Definition 7.1, we assumed that a1 is in the interior of D2. Moreover, let a0 be a regular

value near to a1, and F0 be regular fiber of it with genus g surface Σg as in Figure 3.2.

We can visualize F1 as a new shape of F0 by shrinking a simple closed curve γ in F0

to a point. This curve γ is called the vanishing cycle of that fiber. We will see that all

vanishing cycles give us information about the topology of Lefschetz fibrations.

γ

Figure 7.2. F0 and F1

What is the shape of X? Intuitively, if there is no any critical point, then X is

diffeomorphic to Σg×D2. In the existence of one singular fiber, there must be a change

in the structure of Σg × D2 around the vanishing cycle γ. To shrink for γ to a point,

2-handle must be attached around it with some framing conditions which are stated

in [13].

When we think Morse theoretically, we can say that the boundary of X is diffeo-

morphic to the boundary of the neigborhood of the singular fiber. In the absense of the

singular fiber, the boundary is automatically diffeomorphic to Σg × S1. The existense

of the singular fiber enable us to cut S1 to interpret about the boundary of X. After

cutting S1, we get I and the edges of I must be attached by a map. Figure 7.3 helps

us to understand this cutting-gluing process.
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F1

X

Figure 7.3. Blue dashed lines are diffeomorphic

As a result, we can describe the boundary of X as

∂X =
Σg × I

(ψ(x), 0) ∼ (x, 1)

where ψ : Σg → Σg is a homeomorphism and is called the monodromy of the singular

fiber. This monodromy is right Dehn twist about the vanishing cycle.

Due to the local charts of the fibration around the critical points, we have to

preserve the orientation of this charts. This enable us to use only right twists as

monodromies of Lefschetz fibrations.

Now we can generalize the simplest case. Assume that f : X → D2 is a Lefschetz

fibration with singular fibers F1 = f−1(a1), F2 = f−1(a2), ..., Fn = f−1(an) in the

interior of X. Let Vi be a small disk centered at ai and contain only one critical value

which is ai and all Vi’s are disjoint for all i ∈ {1, 2, .., n}. Then we can say that f is a

Lefschetz fibration on f−1(Vi) with one singular fiber and we know its topology from

the previous paragraphs. But now the question is how can we relate this topologies

determined by different vanishing cycles, say {γ1, γ2, ..., γn}.

Let a0 be a regular value of f and so F0 = f−1(a0) be a regular fiber of f , and

let si be an arc from a0 to ai for all i ∈ {1, 2, ..., n}. We assume that these arcs are

indexed in order to move counterclockwise about a0 and they never intersect to each

other and the other Vi’s. Figure 3.5 helps us to illustrate this construction.
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a0

a1

a2

a3

an

s1

s2

s3

sn

V0

V1

V2

V3

Vn

Figure 7.4. Fibration over the disk

We already know that f−1(V0) ∼= Σg×D2. Let ν(si) denote a regular neighborhood

of the arc si, this is diffeomorphic to Σg × I, and f−1(V0 ∪ ν(s1)∪ V1) is diffeomorphic

to Σg × D2 with a 2-handle H1 attached along γi with the framing conditions, and

the boundary is diffeomorphic to Σg × S1 with the monodromy Dγ1 . After moving

counterclockwise about a0, we collected the other ai’s and we can say that

X ∼= f−1

(
V0 ∪

(
n⋃
i=1

ν(si)

)
∪

(
n⋃
i=1

Vi

))

and this is diffeomorphic to Σg × D2 with 2-handle Hi’s are attached along γi’s with

the framing conditions. The boundary of X is diffeomorphic to Σg × S1 with the

monodromy DγnDγn−1 ...Dγ2Dγ1 , which is a composition of Dehn twists. This is called

the global monodromy of f .

Now, a new question arises. Does any change in choice of paths or regular value

affect this global monodromy? A Lefschetz fibration does not completely determine

the ordered collection of vanishing cycles. Choosing different regular value gives a

conjugation of the Dehn twist in the global monodromy by the same element in the

mapping class group.
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Changing regular fiber gives another vanishing cycle but this new cycle is dif-

feomorphic to the first one and an element in the mapping class group maps the first

cycles to the new ones. This can be shown that Dγi → ψ ◦Dγi ◦ ψ−1, which is Dψ(γi),

a new Dehn twist. Moreover, different choice of arcs will give different monodromies.

For a given two choices, it is possible to get one of them from the other one by applying

some moves in finite steps. These moves are called elementary transformations.

si

si+1

s
′

i

s
′

i+1

Figure 7.5. Elementary transformation

The Figure 7.6 shows an example of getting different order of vanishing cycle by

applying elementary transformations, represented by right rows.

Each elementary transformation change the vanishing cycles (..., γi, γi+1, ...) to

(..., γi+1, Dγi+1
(γi), ...). If we look at the new global monodromies, ...Dγi+1

Dγi ... become

...(Dγi+1
DγiD

−1
γi+1

)Dγi+1
.... This implies that the global monodromy is not affected.

Thus, any choice of paths never affect the global monodromy.

Figure 7.6. A different choice of paths

Now let us look at the new case, f : X → S2 is Lefschetz fibration over S2. Since

we assumed that there are finitely many critical values in S2, we can divide S2 to two

hemispheres, S2 = D2
1 ∪ D2

2 in which D2
1 contains all the critical values. The topology

of induced f on f−1(D2
1) is described above.
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However in this case, the boundary must be the trivial Σg × S1 to attach the

other hemisphere. So the global monodromy must be isotopic to the identity.

7.2. Bordered Lefschetz Fibrations

In the previous paragraphs, we assumed that all regular fibers are closed, i.e.

diffeomorphisc to Σg. In some cases, Let f : X → A be a Lefschetz fibration where X

is compact oriented smooth 4-manifold with non-closed regular fiber. Such fibrations

are called Bordered Lefschetz fibration.

Assume that Σb
g is regular fiber of the Lefschetz fibration f . By adding 2-

dimensional 1 handles to the boundary parts, we reduce b to 1 and then by capping

off a disk to the left boundary part, we will get Σg+b−1. The figure below helps us to

illustrate this modification.

Figure 7.7. Σ3
2 becomes Σ4

From this view, we get a fact that Mod(Σb
g) is a subgroup of Mod(Σg+b−1). So

there is a homeomorphism from Mod(Σb
g) to Sp(2(g + b− 1)).

Definition 7.2. Let f : X → D2 be a bordered Lefschetz fibration whose regular fiber

is Σb
g. Then f : X → D2 new Lefschetz fibration whose regular fiber is closed surface

Σg+b−1, constructed in the way explained above. The monodromy of the original fibra-

tion extend to the 1-handles in the new closed fibers. This new fibration f is called the

closure of f .
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The next theorem lead us consider only closed fibers to find signature of total

spaces of Lefschetz fibrations.

Theorem 7.3. [15, Theorem 3.1] The signature of the total space of a bordered

Lefschetz fibration is equal to that of its closure.
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8. THE SIGNATURES OF LEFSCHETZ FIBRATIONS

Signature is the simplest invariant of a 4-manifold and denoted by σ. Let X1

and X2 be two compact oriented 4-manifolds. If their boundaries are glued via an

orientation reversing diffeomorphism and then we get a closed 4-manifold X. Then

the signature of X is the sum of the signatures of X1 and X2, this is called Novikov

additivity, see [24, p. 587-589] for the proof. However, if X1 and X2 are glued along

their common submanifold X0, the signature of X is not sum of the other signatures. In

his study [14], Wall gave a formula for the signature in all cases. This formula is called

Wall’s non-additivity formula, which is sum of the signatures of X1 and X2 minus

Wall’s index. By using this formula and defining new terms, Çengel and Karakurt

gave a new formula for the signature of 4-manifold which admit a Lefschetz fibration

in their study [15]. Cappell, Lee and Miller showed that Wall’s index coincides with

Maslov ternary index, see [16, Proposition 8.2]. In this chapter, we rewrite Çengel and

Karakurt’s formula by putting Maslov ternary index instead of Wall’s index. We will

see that the key elements of this rewritten formula are positive transvections, which

makes the operations in proofs and examples easier. Then, we will write some theorem

and corollaries. At the end of this chapter, we will give an example.

8.1. Wall’s Formula and Partial Fiber Sum Decompositions

Suppose we have a Lefschetz fibration f : X → D2, bordered or not. If bordered,

take f : X → D2, then we will get the same signature by Theorem 7.3. Therefore

assume that f : X → D2 is not bordered, and let φ be its monodromy and Σg be its

regular fiber. Divide D2 to two hemispheres D+ and D− in which no singular value on

the diameter.

D2 = D+ ∪D− and X = X+ ∪X− where f± is the induced map of f on X±, and

X± = f±
−1

(D±). The pair (f+, f−) is called a partial fiber sum decomposition of the

Lefschetz fibration f .
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We denote the monodromies of f+ and f− by φ+ and φ− respectively. Let φ±∗

be the image of φ± under the symplectic representation. Çengel and Karakurt [15]

created the descriptions above and then remodified Wall’s non-additivity formula.

Theorem 8.1. [15, Theorem 4.1] For the partial fiber decomposition f = (f+, f−)

σ(X) = σ(X+) + σ(X−)− µWall(Γ(φ−∗ ),Γ(id), Γ̃(φ+
∗ )) (8.1)

As we said before, this study [16, Proposition 8.2] showed that

µWall(Γ(φ−∗ ),Γ(id), Γ̃(φ+
∗ )) = −µ(Γ(φ−∗ ),Γ(id), Γ̃(φ+

∗ ))

Hence, 8.1 becomes

σ(X) = σ(X+) + σ(X−) + µ(Γ(φ−∗ ),Γ(id), Γ̃(φ+
∗ )) (8.2)

In the rest of this study we focus on the equation 8.2. Assume that σ(X) is

known, and its monodromy is φ. Via that formula, we can interpret about the new

signature of X if we add a Dehn twist to φ, say δ. Let us construct D+ and D− such

that D− contains the new singular value and others are in D+. Then the formula

become

σ(X) = σ(X+) + σ(X−) + µ(Γ(δ∗),Γ(id), Γ̃(φ∗))

σ(X−) is the signature of a Lefschetz fibration whose monodromy is a unique Dehn

twist. It is well known that if the vanishing cycle is nonseparating, then σ(X−) = 0,

and σ(X−) = −1 if the vanishing cycle is separating, see [15, p. 10-11] for proofs. Thus

if we know the Maslov index, then we know the new signature.

Example 8.2. Let f : X → D2 be a Lefschetz fibration and its monodromy is product

of same two Dehn twists about nonseparating curves. Then we know that the signature

is −1.
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If we apply the partial fiber sum decomposition, D+ contains one singular value

and D− contains the other one, then we will get that

σ(X) = µ(Γ(S),Γ(id), Γ̃(S)) (8.3)

where S is a positive transvection, and signatures of preimages of hemispheres vanish.

Let S = T−1,u, so µ(Γ(S),Γ(id), Γ̃(S)) is the signature of the quadratic form

Q((a, Sa), (b, b), (Sc, c)) = (ω ⊕ (−ω))((a, Sa), (b, b))

+ (ω ⊕ (−ω))((b, b), (Sc, c))

+ (ω ⊕ (−ω))((Sc, c), (a, Sa))

This equals to

= ω(a− Sa, b) + ω(b, Sc− c) + ω(Sc, a) + ω(c, Sa) (8.4)

In this quadratic form, u is given and a, b and c can be choosen arbitrarily, so we can

choose the following variables in the quadratic form

• X = ω(a, y)

• Y = ω(b, y)

• Z = ω(c, y)

Then 8.4 becomes −XY −Y Z+ 2XZ. The symmetric matrix of this quadratic form is


0 −1/2 1

−1/2 0 −1/2

1 −1/2 0
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After applying simultaneous row and column operations, we will get that


0 −1/2 1

−1/2 0 −1/2

1 −1/2 0

 −R1+R3=R3−−−−−−−→


0 −1/2 1

−1/2 0 −1/2

1 0 −1

 −C1+C3=C3−−−−−−−→


0 −1/2 1

−1/2 0 0

1 0 −2

 2C2+C3=C3−−−−−−−→
2R2+R3=R3


0 −1/2 0

−1/2 0 0

0 0 −2

 C2+C1=C1−−−−−−→
R2+R1=R1


−1 −1/2 0

−1/2 0 0

0 0 −2

 −C1/2+C2=C2−−−−−−−−−→
−R1/2+R2=R2


−1 0 0

0 1/2 0

0 0 −2


So the signature is −1.

Theorem 8.3. If we add a Dehn twist about separating curve to the monodromy of a

Lefschetz fibration whose signature is h, then the new signature is h− 1.

Proof. If we apply the partial fiber sum decomposition, then we get

σ(X) = σ(X+) + σ(X−) + µ(Γ(δ∗),Γ(id), Γ̃(φ∗))

where δ is the added Dehn twist, X− is the preimage of the hemisphere including only

one singular value which is the last one. Since δ is trivial homologically, δ∗ is identity

implying that the Maslov index vanishes by Theorem 5.2. Hence

σ(X) = σ(X+) + σ(X−) = h− 1
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Corollary 8.4. If the monodromy is the product of k Dehn twists and all vanishing

cycles are separating curves, then the signature is −k.

Proof. By induction, Theorem 8.3 implies this result.

Theorem 8.5. Let f : X → D2 be a Lefschetz fibration with monodromy which is

trivial homologically. Suppose we applied partial fiber sum decomposition f = (f1, f2)

with correspondent total space X+ and X−, then σ(X) = σ(X−) + σ(X+).

Proof. Let φ± denote the monodromy of f±, then φ−∗ φ
+
∗ = id. Let Ψ denote φ−∗ and

Ψ−1 denote φ+
∗ , then the signature of X is

σ(X) = σ(X−) + σ(X+) + µ(Γ(Ψ),Γ(id), Γ̃(Ψ−1))

Notice that Γ(Ψ) and Γ̃(Ψ−1) are same Lagrangian spaces. By theorem 5.2, Maslov

index vanishes.

Theorem 8.6. Let f : X → D2 be a Lefschetz fibration such that all vanishing cycles

nonseparating curves and their homology classes are linearly independent. Then the

signature of the total space is zero.

Proof. By partial fiber sum decomposition, it is enough to show that for all k

µ(Γ(Sk+1),Γ(id), ˜Γ(Sk...S1)) = 0 (8.5)

For k = 1, let S1 = T−1,u1 and S2 = T−1,u2 be given and u1 and u2 are linearly

independent. Thus, we have 6 variables in the quadratic formula. The variables are

the followings



52

• X = ω(a, u1)

• Y = ω(b, u1)

• Z = ω(c, u1)

• X ′ = ω(a, u2)

• Y ′ = ω(b, u2)

• Z ′ = ω(c, u2)

After applying the definition of the quadratic form, that for k = 1 is

−X ′Y ′ − Y Z +XZ +X ′Z ′ (8.6)

The symmetric matrix (with the order X, Y, Z,X ′, Y ′, Z ′) of this quadratic form is

A 0

0 B

 where A =


0 0 1/2

0 0 −1/2

1/2 −1/2 0

 and B =


0 −1/2 1/2

−1/2 0 0

1/2 0 0


Since signatures of A and B are zero, the total signature is also zero.

Assume that the next equation is true.

µ(Γ(Sk),Γ(id), Γ̃(Ψ)) = 0 where Ψ = Sk−1...S1 (8.7)

We want to prove the next statement

µ(Γ(Sk+1),Γ(id), Γ̃(SkΨ)) = 0 (8.8)

Since all homology classes of vanishing cycles are linearly independent, the vectors of

transvections are also linearly independent. Therefore we have the next variables for

quadratic forms for all i ∈ {1, 2, ..., k + 1}
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• Xi = ω(a, ui)

• Yi = ω(b, ui)

• Zi = ω(c, ui)

The quadratic form of 8.7 is

−XkYk +XkZk + ω(b,Ψc− c) + ω(Ψc− c, a) (8.9)

and the quadratic form of 8.8 is

−Xk+1Yk+1 +Xk+1Zk+1 +Xkω(Ψc, uk)− Ykω(Ψc, uk) + ω(b,Ψc− c) + ω(Ψc− c, a)

(8.10)

by the way

ω(Ψc, uk) = Zk +
k−1∑
i=1

AiZi where Ai’s are some coefficients (8.11)

Then,

Xkω(Ψc, uk) = XkZk +
k−1∑
i=1

AiXkZi and Ykω(Ψc, uk) = YkZk +
k−1∑
i=1

AiYkZi (8.12)

Let us write the symmetric matrices (with the order X1, Y1, Z1, ..., Xk+1, Yk+1, Zk+1) of

the quadratic forms 8.9 and 8.10 respectively

F1 =

A 0

0 B

 and F2 =


A CT 0

C D 0

0 0 B
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whereA is 3(k−1)×3(k−1) matrix, B =


0 −1/2 1/2

−1/2 0 0

1/2 0 0

, D =


0 0 1/2

0 0 0

1/2 0 0

,

C is 3× 3(k − 1) matrix whose first and second rows are same, which is

C =


0 0 A1 0 0 A2 ... Ak−1

0 0 A1 0 0 A2 ... Ak−1

0 0 0 0 0 0 ... 0

 (8.13)

For matrix F2, applying −R3k +R3k+1 → R3k+1 and −C3k + C3k+1 → C3k+1, we get

sign



A CT 0

C D 0

0 0 B


 = sign



A C ′T 0

C ′ D 0

0 0 B


 (8.14)

where C ′T is same matrix in 8.16 but the second row is zero. If we apply the related

simultaneous column and row operations by using 1/2s in matrix D, we get that

sign



A C ′T 0

C ′ D 0

0 0 B


 = sign



A 0 0

0 D 0

0 0 B


 (8.15)

Thus

µ(Γ(Sk+1),Γ(id), Γ̃(SkΨ)) = signA+ signD + signB = signA (8.16)

By the assumption,

µ(Γ(Sk),Γ(id), Γ̃(Ψ)) = signA = 0

Thus µ(Γ(Sk+1),Γ(id), Γ̃(SkΨ)) = 0.
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8.2. An Example

In this section, we apply our method on an example which has a well known

result. Consider the elliptic surface E(1) whose signature is −8. Its monodromy is

φ6 = id, where φ = DβDα and α, β are the curves in Figure 8.1. Let Xφ denote the

total space whose monodromy is φ to ease the next calculation. So we want to find

σ(Xφ6).

Figure 8.1. The red curve is α and the blue one is β

By Theorem 8.6, φ6
∗ = id implies that σ(Xφ6) = 2σ(Xφ3). Then,

σ(Xφ3) = σ(Xφ2) + σ(Xφ) + µ(Γ(φ∗),Γ(id), Γ̃(φ2
∗)) (8.17)

By Theorem 8.6, σ(Xφ) vanishes. Thus σ(Xφ2) = µ(Γ(φ∗),Γ(id), Γ̃(φ∗)). If we combine

all of these results above, we will get that

σ(E(1)) = 2
(
µ(Γ(φ∗),Γ(id), Γ̃(φ∗)) + µ(Γ(φ∗),Γ(id), Γ̃(φ2

∗))
)

Let S1, S2 be positive transvections representing (Dα)∗, (Dβ)∗, respectively. Then,

T−1,ui = Si implies ω(u1, u2) = 1.

φ∗(v) = S2(S1v) = S2(v − ω(v, u1)u1) = v − ω(v, u1)u1 − ω(v, u2)u2 + ω(v, u1)u2
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and

φ2
∗(v) = φ∗(φ∗(v)) = φ∗(v − ω(v, u1)u1 − ω(v, u2)u2 + ω(v, u1)u2)

= v − ω(v, u1)u1 − ω(v, u2)u1 + 2ω(v, u1)u2 − 3ω(v, u2)u2

Let X,X ′, Y, Y ′ be defined as the previous paragraphs. Then, the quadratic form of

µ(Γ(φ∗),Γ(id), Γ̃(φ∗)) is that

−XY −X ′Y ′ +XY ′ − Y Z − Y ′Z ′ + Y ′Z + 2XZ + 2X ′Z ′ −X ′Z −XZ ′ (8.18)

The symmetric matrix (with order X, Y, Z,X ′, Y ′, Z ′) of 8.18 is that



0 −1/2 1 0 1/2 −1/2

−1/2 0 −1/2 0 0 0

1 −1/2 0 −1/2 1/2 0

0 0 −1/2 0 −1/2 1

1/2 0 1/2 −1/2 0 −1/2

−1/2 0 0 1 −1/2 0


(8.19)

and signature of this matrix is −2. The quadratic form of µ(Γ(φ∗),Γ(id), Γ̃(φ2
∗)) is that

−XY −X ′Y ′ +XY ′ − Y Z − Y Z ′ + 2Y ′Z − 3Y ′Z ′ + 2XZ − 2X ′Z + 4X ′Z ′ (8.20)
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The symmetric matrix (with order X, Y, Z,X ′, Y ′, Z ′) of 8.20 is that



0 −1/2 1 0 1/2 −1/2

−1/2 0 −1/2 0 0 −1/2

1 −1/2 0 −1 1 0

0 0 −1 0 −1/2 2

1/2 0 1 −1/2 0 −3/2

−1/2 −1/2 0 2 −3/2 0


(8.21)

and the signature of this matrix is also −2. Thus signature of total space is 2(−2−2) =

−8.
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9. CONCLUSION

As we saw from the proof techniques, calculating the signature by using Maslov

ternary index looks easy. Only elementary linear algebra is enough to calculate the

signatures. Indeed, positive transvections are the key elements of the process of calcu-

lating the signature of Lefschetz fibrations. We saw that positive transvections enabled

us to prove some known theorems more easily.

By this method, we found some important results like Theorem 8.6. This method

may open new doors in this area. For a given monodromy, if a new Dehn twist is added,

whose homology class is linearly independent from the others, it is highly likely that

one can show the total signature stays unchanged by using this method. Furthermore,

one may prove that the signature of a Lefschetz fibration, whose monodromy is trivial

homologically, is nonpositive. This remains as an open problem.
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