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ABSTRACT

ON ASYMPTOTICS OF TWO NON-UNIFORM

RECURSIVE TREE MODELS

In this thesis the properties of two kinds of non-uniform random recursive trees

are studied. In the first model weights are assigned to each node, thus altering the

attachment probabilities. We will call these trees weighted recursive trees. In the

second model a different distribution rather than the uniform one is chosen on the

symmetric group, namely a riffle shuffle distribution. These trees will be called biased

recursive trees. For both of these models the number of branches, the number of leaves,

the depth of nodes and some other properties are studied. The focus is on asymptotic

results and the comparison with uniform random recursive trees. It will be shown

that the studied properties of weighted recursive trees are close to uniform recursive

trees in many cases when the number of nodes increases. In contrast biased recursive

trees show a different behaviour but approach uniform recursive trees depending on

the parameters of the riffle shuffle distribution.
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ÖZET

İKİ FARKLI DÜZGÜN DAĞILIMA SAHİP OLMAYAN

YİNELİ AĞAÇ MODELİ ÜZERİNE

Bu tezde iki çeşit düzgün dağılıma sahip olmayan yineli ağaç modelinin özellikleri

incelenmektedir. İlk modelde her köşeye ağırlık vermek suretiyle bağlanma olasıklık-

ları değişkenlik göstermektedir. İkinci modelde ise altta yatan düzgün permütasyon

dağılımı özel bir kart karma modeli ile değiştirilerek yine düzgün dağılmayan bir ağaç

tipi oluşturulmaktadır. Her iki modelde de dalların sayısı, yaprakların sayısı, köşelerin

derinliği gibi pek çok özellik incelenecektir. Odak noktamız asimptotik sorular ve oluşan

ağaçların düzgün yineli ağaçlar ile kıyaslanması üzerinedir. Köşelerin sayısı arttıkça

ağırlıklı yineli ağaçların özelliklerinin düzgün dağılmış ağaçlara benzediği gösterilecek-

tir. Benzer şekilde, ikinci modelimizde de altta yatan parametrelere bağlı olarak ortaya

çıkan dağılım düzgün dağılıma yakın olabilmektedir.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. First Definitions and Properties . . . . . . . . . . . . . . . . . . 11

2.1.2. Basics about Trees . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3. Statistics of Interest . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. REVIEW OF UNIFORM RECURSIVE TREES . . . . . . . . . . . . . . . . 25

3.1. Definition of Uniform Recursive Trees . . . . . . . . . . . . . . . . . . . 25

3.1.1. Recursive Construction of a Uniform Recursive Tree . . . . . . . 25

3.1.2. Construction of a Recursive Tree from a Permutation . . . . . . 26

3.1.3. Simultaneous Construction of a URP in Cycle Notation and a

URT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. A Brief Literature Review on Uniform Recursive Trees . . . . . . . . . 29

3.3. Non-uniform Recursive Trees Considered in the Literature . . . . . . . 36

3.3.1. Non-uniform Recursive Trees via External Nodes . . . . . . . . 37

3.3.2. Introducing Choice . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3. Scaled Attachment Random Recursive Trees . . . . . . . . . . . 39

3.3.4. Random Recursive Forests . . . . . . . . . . . . . . . . . . . . . 40

3.3.5. Uniform Random Recursive Directed Acyclic Graphs . . . . . . 41

3.3.6. Hoppe Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



vii

4. WEIGHTED RECURSIVE TREES . . . . . . . . . . . . . . . . . . . . . . . 45

4.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Constructing Weighted Recursive Trees from Uniform Recursive Trees . 46

4.2.1. General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2. Special Case: When the First k Nodes Have Weight θ . . . . . . 50

4.3. The Number of Branches . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1. Some Examples of Weight Sequences . . . . . . . . . . . . . . . 54

4.3.2. Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3. Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.4. Largest Branch in a Hoppe Tree . . . . . . . . . . . . . . . . . . 65

4.4. Depth of Node n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1. Some Examples of Weight Sequences . . . . . . . . . . . . . . . 72

4.4.2. Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3. Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5. Number of Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6. A Coupling View of Some Special Kinds of WRTs . . . . . . . . . . . . 94

4.6.1. Construction of a θk-RT from a URT in the Case θ ∈ N+ . . . . 94

4.6.2. Construction of a θk-RT from a URT in the Case 1
θ
∈ N+ . . . . 97

4.6.3. Constructing a Special Kind of WRT from a Hoppe Tree . . . . 99

4.6.4. Using the Coupling for WRT Statistics Analysis . . . . . . . . . 100

5. BIASED RECURSIVE TREES . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1. Definitions and Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2. Number of Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3. Number of Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1. Anti-records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2. Sequential Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4. Number of Nodes with at least k Descendants . . . . . . . . . . . . . . 122

5.5. Depth of Node n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

APPENDIX A: PROOFS FROM CHAPTER 5 . . . . . . . . . . . . . . . . . 155



viii

A.1. Proof of Theorem 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2. Proof of Theorem 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.3. Proof of Theorem 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.4. Proof of Corollary 5.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.5. Proof of Corollary 5.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



ix

LIST OF FIGURES

Figure 3.1. All increasing trees on 4 vertices. . . . . . . . . . . . . . . . . . . . 25

Figure 3.2. Step by step construction of the recursive tree corresponding to

16387254. The newly attached node is underlined and its parent

bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.3. Simultaneous construction of a uniform recursive tree and a per-

mutation in cycle notation. . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.4. Example of the construction of a 2-oriented tree with external nodes. 38

Figure 3.5. Example of a random recursive forest. . . . . . . . . . . . . . . . . 41

Figure 4.1. Node 6 is relocated from node 2 to node 4. . . . . . . . . . . . . . 47

Figure 5.1. All 2-recursive trees on 4 vertices with corresponding permutation

and probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.2. Example of the construction of an inverse riffle shuffle permutation. 122

Figure 5.3. The biased recursive tree corresponding to γ = 2673845. . . . . . . 123



x

LIST OF TABLES

Table 3.1. Distributions on recursive trees for some values of α and β. . . . . 38



xi

LIST OF SYMBOLS

1(A) Indicator function of the event A

|A| Cardinality of a set A

B(R) Borel sigma algebra of R

Cov(X, Y ) Covariance of two random variables X and Y

→d Convergence in distribution

=d Equality in distribution

dTV Total variation metric

dK Kolmogorov metric

dW Wasserstein metric

E[X] Expectation of a random variable X

G Standard normal distribution

Hn Harmonic numbers of the first order:
∑n

i=1
1
i

H
(2)
n Harmonic numbers of the second order:

∑n
i=1

1
i2

mult(a, ~p) Multinomial distribution with parameters a and

~p = (p1, p2, . . . , pa)

[n] First n positive integers: {1, . . . , n}

O Big O

P(A) Probability of an event A

Po(λ) Poisson distribution with expectation λ

Var(X) Variance of a random variable X



xii

LIST OF ACRONYMS/ABBREVIATIONS

a-RT a-recursive tree

a.s. almost surely

BRT Biased recursive tree

URT Uniform recursive tree

URP Uniform random permutation

WRT Weighted recursive tree



1

1. INTRODUCTION

Recursive trees are rooted labeled trees where the nodes on a path from the

root to any other node form an increasing sequence. Because of this property, many

recursive trees can be considered to grow dynamically, by attaching every new node

to one of the already present nodes. Several distributions can be applied on the set

of recursive trees of size n, the most common one being the uniform distribution, i.e.

every recursive tree being equally likely. Given this distribution the number of leaves,

internodal distances, the number of branches, the height of the tree and various other

statistics are well studied.

In this thesis we will study two non-uniform distributions on recursive trees. Our

main motivation is to get a better understanding of general random recursive tree

models. More precisely the goal is to grasp the behaviour of inhomogeneous recursive

trees, which are recursive trees that can be constructed by attaching at every step the

new node n to one node of a recursive tree of size n−1 according to some distribution on

[n− 1] and independently of the structure of the tree. Our first model is a special kind

of inhomogeneous tree, namely the distribution obtained when each node is assigned

a fixed weight. The second model is not an inhomogeneous tree itself but provides an

approximation for inhomogeneous trees as it asymptotically approaches the uniform

model.

Recursive trees are interesting from a theoretical as well as a practical point of

view. First of all recursive trees are connected to a wide range of other mathematical

structures like permutations, branching processes and records. Because this diversity

is well reflected in the history of the study uniform recursive trees, we will now give

a short summary of that development. After that we will give some examples of

applications of uniform recursive trees that illustrate well how profitable knowledge

of more general recursive tree models is from a practical perspective. For the results

that were established until the early 90’s the reader is referred to the comprehensive

survey [1]. Unless otherwise mentioned, the results discussed below in this section can
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be found in the cited source.

Properties that were considered early on are internodal distances. In particular

the expectation and variance of the distance between two nodes and as a special case

of the depth of node n were solved in the seventies. Moon found a recursion for the

distribution of the distance between two fixed nodes by using the fact that uniform

recursive trees have a relatively simple growing rule [2]. This recursion can then be

used to derive the expectation without solving the recursion for the exact distribution.

In 1996 Dobrow gave the exact distribution of the distance between a fixed node and n

and proves asymptotic normality for the distance between certain sequences of nodes

and node n [3]. Asymptotic normality of the distance between a fixed node and n was

shown by Su, Liu and Feng in 2006 by using the decomposition of the distance into a

sum of random variables and applying the Lindeberg-Feller central limit theorem [4].

They moreover proved a more general result, namely that the distance between any

sequence of nodes and node n is asymptotically normal.

As a special case of an internodal distance, the exact distribution of the depth of

node n was established by making use of a proper recursion by Szymański in 1990 [1].

Finally, asymptotic normality of the depth of node n was proven by two different

methods. Devroye used the theory of records [5] and Mahmoud calculated the limit

of the moment generating function of the depth using its exact distribution which was

already known [1]. The expectation and limiting distribution of the depth of node n

was proved by Feng, Su and Hu by yet another method in 2005 [6]. They were able

to write the depth as a sum of independent indicator random variables, which easily

yields expectation, variance and a central limit theorem.

Another statistic that was studied early on is the number of nodes of a certain

degree and as a special case the number of leaves. The earliest result in this direction

is about the expected number of nodes of a certain degree, which was proved using

a recursion by Na and Rapoport [7]. Gastwirth could establish upper bounds by

first writing the random variables as a sum of Bernoulli random variables and then

using Poisson approximations [8]. For the exact distribution, expectation, variance
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and asymptotic distribution of the number of leaves, again several methods can be

used. First of all a special case of Friedman’s urn [9] can be used to derive the exact

distribution [1]. Friedman’s urn contains balls of two colours and grows according to

a replacement rule. When applied on the leaves of uniform recursive trees, the white

balls represent the internal nodes and the black balls the leaves. When a black ball is

drawn, this means that the parent of the next node was a leaf and has now become

an internal node. The new node definitely is a leaf. We thus put the black ball back,

together with an additional white ball. Similarly, if a white ball is drawn, we put it

back together with a black ball, since the internal node is still internal and the new

node is a leaf. Based on the urn model and recursions derived from it, a differential

equation for the moment generating function can be established, which can be solved

and turns out to be the generating function of the Eulerian numbers [1]. Similarly

Mahmoud and Smythe derived the expectation, variance and asymptotic normality of

the number of nodes of degree 1 and 2 by a generalization of the above described urn

model [10].

By the use of a recursion Najock and Heyde also derived the distribution of the

number of leaves and via some well-known results on permutations they could further

prove asymptotic normality of the number of leaves [11]. The emergence of the use

of results on permutation statistics in leaf related problems is no coincidence, as it

was later discovered that there is a bijection between uniform random permutations

and uniform recursive trees, see for example [12]. Using this bijection, size-biased cou-

pling and Stein’s method, results on the convergence rate could recently be established

by Zhang [13]. Altok and Işlak refined these results and studied other leaf-related

properties [12] .

Moving on to another statistic, the number of nodes with a fixed number of de-

scendants was studied by Devroye in 90’s [14]. He used a connection between recursive

trees and binary search trees, which were well studied then. He also uses the idea of lo-

cal counters which allows many local properties to be studied by writing them as sums

of Bernoulli random variables and using central limit theorems for locally dependent

random variables.
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The properties that were historically investigated next were two global proper-

ties, and thus combinatorial methods turned out not to suffice [1]. For these properties

different probabilistic methods were developed. Concerning the expectation of the

maximum degree, Szymanski proved an upper bound using the averages of the number

of nodes of a certain degree developed earlier [1]. Actually the maximum degree turned

out to converge almost surely to that bound, which was proved by Devroye and Lu in

1995 [15]. Later results on the distribution of the maximum degree were obtained by

Goh and Schmutz [16] and Addario-Berry and Eslava [17]. Moreover Eslava investi-

gated the height of nodes of high degree [18]. The last two papers use a connection

between uniform recursive trees and Kingman’s coalescence, which is a new approach

yet to uniform recursive trees. Kingman’s coalescence is a Markov process that starts

with all singletons of [n]. At every step subsets or blocks can merge to form new blocks,

and all blocks merge with any other at the same rate, until all elements are in the same

block [19].

The other global property about which results could only be obtained in the 90’s

is the height of the tree, i.e. the longest path from the root to a leaf. In 1994 Pittel

obtained almost sure convergence of the height of uniform recursive trees by using

another way of constructing a uniform recursive tree: from a branching structure with

population-dependent rate we can obtain a uniform recursive tree by attaching the

i-th node to the parent of the i-th born child in the branching process [20]. By using

results about the connection between the time the n-th descendant is born and the

birth time of the first member of the k-th generation, almost sure convergence could be

obtained. Devroye proved this result without using branching processes, this time by

making use of a second moment method argument [21]. Moreover convergence results

for the minimum depth of the second half of the nodes are given in that paper.

Finally another important statistic of uniform recursive trees are their branches.

By using the fact that subtrees of uniform recursive trees have, conditioned on their

size, the same structure as the tree itself, results on the number of leaves and the size

of the subtrees were derived in the 90’s by Mahmoud and Smythe [22]. In that paper

a generalized urn model, similar to the one described above, and known asymptotic
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results about urn statistics are used. The branching structure was further investigated

in 2005 by Feng, Su and Hu, mainly by using recursive formulas for branches of a

given size [6]. The number of branches is shown to be asymptotically normal while the

number of branches of a fixed size converges to a Poisson random variable. Furthermore,

results on the size of the largest branch were proven in the same reference.

It is clear that the literature of uniform recursive trees encompasses a wide col-

lection of methods. Recursions play an important role in various proofs, which is not

surprising given that the considered structure is recursive. But the ways used to solve

these recursions, or to use these recursions without solving them explicitly, differ con-

siderably, as was described above. Moreover recursive trees can be constructed by at

least 4 different processes: by dynamically building the tree step by step, by construct-

ing it from a permutation, by building a genealogy tree for a branching process or

by using Kingsman’s coalescence. This makes uniform recursive trees very interesting

from a mathematical point of view, since on the one hand methods from different areas

can be applied in the investigation of uniform recursive trees and on the other hand

connections between different mathematical structures can be discovered through the

study of uniform recursive trees. Also the bijection between uniform recursive trees

and permutations immediately suggests some applications. We will now describe some

of them and demonstrate the importance of more general recursive tree models.

Regarding applications, first, recursive trees can be used as a model for the spread

of epidemics [6]. In that case the root stands for the first person infected, and in general

node i stand for the i-th person infected. Now the second person will definitely be

infected by the first one, the third person can in turn be infected by the first or the

second one and so on. In a uniform recursive tree, every node is attached to any of the

previous nodes with the same probability, so in the model any of the previously infected

persons is equally likely to infect the next one. In [2] a different way of modelling the

spread of an infection is suggested: Given a uniform recursive tree an infection starts

from a node i and spreads to any node attached to i with probability p. A uniform

recursive tree can thus either model the infected people or the structure the infection

spreads on.
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Similarly uniform recursive trees are useful in order to determine the genealogy of

ancient and medieval texts. As described in [11], often the original sources of old texts

are lost. By modeling the existent copies as nodes of a uniform recursive tree whose

root is the original text, it is possible to reconstruct the genealogy of these texts.

Also, recursive trees are used as models for the pyramid scheme [8]. The pyramid

scheme is a business model that is based on offering people a sales job where they have

to pay an initial fee to participate and most of their revenue will come from recruiting

new people. By letting the i-th node in a recursive tree denote the i-th person that

participates, the pyramid scheme can be modeled by a uniform recursive tree, which

gives estimations on the number of persons that will not even recruit enough new sellers

to make up for their initial investment. More generally, a uniform recursive tree can

represent a distribution network where the root is the producer, the internal nodes are

suppliers and the leaves are retailers, i.e. sell the product to the consumer.

Uniform recursive trees are moreover used to model the spread of a fire in a

tree [23]. This is done by first determining each edge to be either fire-proof or to be

set on fire. When an edge is set on fire it burns all edges connected to it, but cannot

pass any edges previously determined as fire-proof. By removing all nodes that are

connected to burnt edges, only some connected components of the tree remain. In [23]

these components and the number of remaining nodes are then investigated.

Having at hand different distributions than the uniform one entails much more

flexibility when modeling real life problems. For many applications described above

recursive trees seem to be a proper structure to represent the phenomenon in question.

Whether the uniform distribution is the most appropriate one is more questionable.

Using uniform recursive trees implies that all nodes are identical, or more specifically

that every infected person is equally likely to infect the next one, that every book is

equally likely to be copied or that every person is equally likely to recruit the next

seller. This is obviously not the case in real world applications. Thus for recursive

trees to be successfully used it is necessary to investigate the properties of non-uniform

distributions on recursive trees.
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Parallel to the development of the theory of uniform recursive trees some other

recursive tree structures were already studied. One of the most common ones are

probably binary recursive trees, which are described in [24] and can also be represented

bijectively by permutations. The binary recursive tree is also very well studied, see for

example [25]. Binary trees can moreover be generalized in a straightforward way to

m-ary trees by specifying that every node can have at most m children [26].

Another possibility is to consider plane-oriented recursive trees, i.e. recursive

trees where the children of each node are ordered. By choosing each such tree with

equal probability and subsequently ignoring different orderings of children, this leads

to a non-uniform distribution on increasing trees [1]. In this model the attachment

probabilities depend on the out-degrees of the nodes [26]. Plane-oriented recursive

trees were first introduced in [27] where results on node degrees were derived and

compared to analogous results for the uniform model.

Yet another distribution on recursive trees recently introduced are scaled attach-

ment random recursive trees. There the parent of each node i is chosen as biXic, where

all Xi are identically distributed on [0, 1). By choosing the uniform distribution for the

Xi’s uniform recursive trees can be recovered. This model was introduced in [21] and

subsequently some depth properties were studied.

Another natural generalization of uniform recursive trees, Hoppe trees, was re-

cently considered in [28]. There, the root is assigned a weight θ, all other nodes get

weight 1. Node i then attaches to the root with probability θ
θ+i−2 and to any other

node with probability 1
θ+i−2 . This model is associated to Hoppe’s urn, which has an

application in modelling the alleles of a gene with mutation rate θ > 0. Concerning

many properties like the number of leaves, the height and the depth of node n, Hoppe

trees behave similarly to uniform recursive trees.

The first model we have chosen to study in this thesis generalizes the idea of

Hoppe trees: we assign every node a weight ωi. Node j then attaches to node 1 ≤ i < j

with probability ωi
ω1+···+ωj−1

. For this model we first give a coupling construction from
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a uniform recursive tree on n nodes. We then study the number of branches and the

depth of node n and give their expectation and variance, as well as some conditions

under which asymptotic normality holds. We moreover derive explicit values for the

expectation and the variance for some examples of weight sequences.

For the number of leaves we had to restrict ourselves to a model where the first

k nodes have weight θ and the rest weight 1. For this case we first use a martingale

argument to get expressions for the expectation and the variance. We then introduce

another coupling between uniform recursive trees and weighted recursive trees like the

one just described with the additional restriction that θ ∈ N. Moreover we introduce a

coupling between Hoppe trees and weighted recursive trees where the first k nodes have

weight ωi ∈ R+ and the rest have weight 1. This coupling easily allows inferences about

the number of leaves of these trees, based on known results about uniform recursive

trees and Hoppe trees.

In our model we choose fixed weights for each node, so every step is independent

of the structure of the already present tree. This property is crucial in many arguments

we use, such as couplings and martingales, as well as in applications of various central

limit theorems. It is also worth noting that by defining the tree model via attachment

probabilities, implies that we directly use some of the approaches on uniform recursive

trees described above, but cannot use others.

Introducing weights is also interesting from the point of view of applications since

it allows to introduce diversity among the nodes. In the other non-uniform distributions

discussed above, all nodes have the same behaviour, or in other words attract nodes

according to the same rule. When a recursive process does not satisfy such conditions,

weighted recursive trees can be used to model it more precisely. Moreover the properties

of weighted recursive trees and how much they differ from the uniform model can be

interpreted as an indicator for the stability of a process. It is reasonable to assume that

it is in general more probable for some nodes to get children as others. For example

some persons might be more likely to infect others, some copies of ancient texts are more

probable to have been copied again and some people might be more likely to recruit
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new people. Thus it is interesting to see how much fluctuation in the attachment

probabilities of a phenomenon can be tolerated when modelling with uniform recursive

trees. If weighted recursive trees have the same asymptotic behaviour as uniform

recursive trees under some conditions, we can still model processes that satisfy these

conditions by the uniform model.

The second model we consider, introduced in [12], is based on a completely differ-

ent approach based on the bijection between the symmetric group and recursive trees.

Instead of the uniform distribution we choose a biased riffle shuffle distribution on the

symmetric group and then consider the trees obtained from these permutations. We

use the aforementioned connections between properties of permutations and recursive

trees in order to derive results on the number of branches, the number of nodes with

at least k descendants and the depth of node n.

Among the non-uniform distributions on the symmetric group the biased riffle

shuffle distribution was chosen for several reasons. First of all the possibility to con-

struct inverse riffle shuffles from random variables makes the model tractable. Moreover

riffle shuffle permutations are themselves theoretically and practically important [12].

Finally biased riffle shuffle distributions vary a lot depending on the chosen parameters.

Accordingly, the properties of the corresponding trees can differ more or less from the

uniform case. For example the number of leaves and the number of branches can be

limited if appropriate parameters are chosen. This allows us to model more diverse

recursive phenomena with more precision. The two models we have chosen hence have

the advantage of reflecting the diversity of approaches there are to uniform recursive

trees and also being interesting for applications.

The rest of the thesis is organized as follows: Chapter 2 is devoted to providing

the necessary background on graph theory and probability theory techniques that are

to be used below. In particular, we begin with a review of some basic definitions and

results from graph theory, especially about trees, and then introduce the tree statistics

that are to be investigated later on. Also, we include some facts about permutations,

and some relevant theorems and methods from probability theory that we will use
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subsequently.

In Chapter 3 we then introduce different representations of uniform recursive

trees and discuss the current literature on them. This will allow us to evaluate the

distance between statistics of our models and the ones from the uniform case. Here,

some non-uniform recursive tree models from the literature are also discussed.

Next we begin the actual topic of this thesis: In Chapter 4 we introduce the

weighted recursive tree model and give results about its number of branches, the depth

of node n and its number of leaves. Furthermore, we introduce two couplings of uniform

recursive trees and weighted recursive trees.

We introduce the second model we will consider in Chapter 5. Since it is based on

a different distribution on the symmetric group we first define riffle shuffle permutations

and based on them biased recursive trees. Subsequently we review known results

about their number of leaves and then give our results about the number of branches,

the number of nodes with at least k descendants and the depth of node n. In the

conclusion we will give an overview of the problems we could not solve and some

further generalizations we think might be interesting.
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2. PRELIMINARIES

2.1. Graph Theory

2.1.1. First Definitions and Properties

A graph G consists of a set of vertices, also called nodes or points, V , denoted

by V (G) and a set of edges, also called lines, E, denoted by E(G), such that each

element of E is an unordered pair of elements of V . The size of G, denoted by |G|

is the number of vertices of G. We will denote the number of edges of G by e(G). A

graph of size n can have between 0 and
(
n
2

)
edges. A graph of size n with

(
n
2

)
edges

is called a complete n-graph, and is denoted by Kn. A graph of size n without edges

is called an empty n-graph and denoted by En. The graph K1 = E1 is called trivial.

Below, we will only focus on a special type of graphs, trees, which will always be of

finite size.

A graph is called labeled, if all its vertices have a name. If a graph is labeled,

not only the structure of the graph matters, but also between which nodes these edges

exist. Thus, for each graph with vertex set V and edge set E, there are |V | labelings.

The number of labeled graphs of size n is 2(n2), since each edge can either be present

or absent in the graph [29]. From now on we will consider all graphs to be labeled.

If two vertices v and w are joined by an edge e = {v, w}, they are said to be

adjacent or neighbouring, and v, w are called endpoints of e. An edge will sometimes

be denoted vw for convenience. Edges are said to be adjacent if they have a common

vertex. A graph without loops, i.e. no edges of the form {v, v}, and no multiple edges

is called simple. We will only deal with simple graphs in this thesis.

The set of vertices adjacent to a vertex v is denoted by A(v) and the degree

of a vertex is denoted by d(v) := |A(v)|. Here, |·| is used for the cardinality of the

underlying set. A vertex of degree 0 is called an isolated vertex. Since every edge
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has two endpoints, the well-known hand shaking lemma says that
∑n

i=1 d(vi) = 2e(G),

where V (G) = {v1, . . . , vn}.

A path P is a sequence of vertices (v1, v2, . . . , vi) with the property that

{v1v2, v2v3, . . . , vi−1vi} ⊆ E. We sometimes also write v1v2 . . . vi to mean the path

through v1 to vi. v1 and vi are called endpoints of P and P is said to join v1 and vi.

The length of P is denoted by ` := e(P ). A path is called simple if no vertex occurs

more than once. A graph is connected if between any two vertices in V there exists a

path joining them, which, in particular, implies that there is no isolated vertex.

If the edges are ordered pairs of vertices, G is said to be a directed graph, and

a given edge e is written as (v, w) or vw. In the directed case, the edges vw and wv

are not the same, and the edge vw can only be used to go from v to w in a path. In a

directed graph the edge vw is said to start at vertex v and end at vertex w. A directed

graph G = (V,E) is called an oriented graph if E ∩ E−1 = ∅; i.e. between any two

vertices, there can only be an edge in one direction. For a detailed account of graph

theory, we refer to the texts [29–32].

2.1.2. Basics about Trees

Given a graph G = (V,E), a cycle is a path v1v2 . . . v`v1, with vi ∈ V for i =

1, . . . , l; i.e. a cycle is a path with only one endpoint. A graph without any cycles is

called a forest, and a connected graph without any cycles is called a tree, and is usually

denoted by T . In a tree all nodes of degree 1 are called leaves. Every tree with at least

one edge has at least two leaves [33]. This can be seen by considering the longest path

in T with distinct nodes, and concluding by contradiction that its endpoints must be

leaves. The following proposition summarizes some equivalent formulations of a tree

structure.
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Proposition 2.1 ( [32, 33]). The following are equivalent:

(i) T is a tree.

(ii) Any two vertices in T are connected by a single path in T .

(iii) T is minimally connected, i.e. T is connected but T \ e is disconnected for every

e ∈ E(T ).

(iv) T is maximally acyclic, i.e. T contains no cycle but T ∪ vw does, for any two

non-adjacent vertices v, w ∈ T .

(v) T is connected and has n− 1 edges.

(vi) T has no cycles and n− 1 edges.

Cayley’s theorem states that there are nn−2 undirected labeled trees on n vertices

[29]. A rooted tree is a labeled tree where one node is specified as the root. Cayley’s

theorem, in particular, implies that there are nn−1 rooted labeled trees on n vertices. In

a rooted plane or planted tree the children of each node have a left-to-right ordering [29].

An oriented tree where all edges are directed outwards from the root is called

branching tree [29]. In a branching tree, leaves are defined slightly differently, since

the root should not be considered a leaf, even if it has degree 1. Thus, for a directed

graph, we define the outdegree, d+(v) := |{e ∈ E(T ) : e = (v, w), w ∈ V (T )}|, i.e. the

number of edges starting in v. In a branching tree, a leaf is a vertex with outdegree

0. Since the trees we will consider are all branching trees, we will from now one use

the word leaf in this sense. Similarly to the outdegree, the indegree d−(v) is defined

as the number of edges ending in v, i.e. d−(v) := |{e ∈ E(T ) : e = (w, v), w ∈ V (T )}|.

Hence, in a branching tree, the root has indegree 0 and all other nodes have indegree

1. By definition of the degree of a vertex, it is in general true in an oriented graph that

d(v) = d+(v) + d−(v).

In a branching tree, if vw ∈ E(T ), w is called a child of v and v is called parent

of w. Similarly, if there is a y ∈ V (T ) such that vy and yw are in E(T ), w is called

grandchild of v and v is called grandparent of w. Every node can only have one parent
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and one grandparent, since otherwise we would get a cycle. On the other hand, a

node can have several children and all the nodes that have the same parent are called

siblings. There is a single path from the root r to each vertex v and all nodes in this

path are called ancestors of v. Similarly if v lies on the path from r to another node

w, w is called a descendant of v [29].

There are many subcategories of trees. Some of these subcategories can be ob-

tained by restricting the number of children a node can have, the most common one

being the restriction to two children. Unfortunately there are different definitions for

binary trees. In [29] a binary tree is defined as a rooted plane tree in which every node

can have at most 2 children. However, a binary tree is also sometimes defined as a

rooted tree where each node can have at most 2 children [32,33]. We will use the term

binary tree is this latter sense, i.e. we will the not consider the children to be ordered.

In general, for m ∈ N, an m-ary tree is a rooted labeled tree where every node has at

most m children [26,33].

The trees we will consider are another subcategory of trees, called increasing

trees. These are rooted trees such that on every path from the root to a node the

labels of the nodes are increasing [33]. It is also possible to consider the intersection of

these two subcategories, i.e. increasing binary trees or increasing m-ary trees.

2.1.3. Statistics of Interest

In this subsection, we define certain tree statistics that are studied under vari-

ous branching structures. Most of these will be directly or indirectly handled in the

following chapters for the non-uniform recursive tree models we discuss. Let T be a

tree.

Recall that a vertex is called a leaf if it has no children. The number of leaves

of a branching tree is denoted by LT . For |E(T )|> 1, 1 ≤ LT ≤ n − 1, which can be

seen by construction or by considering that for a tree
∑

v∈V (E) d−(v) = n− 1, because

the total number of edges is n− 1. Similarly, we can also consider the number of nodes
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with at least degree k, i.e. the number of nodes v ∈ T , with d(v) ≥ k.

The number of branches BT of a rooted tree is the number of children of the root.

Clearly, we have 1 ≤ BT ≤ n − 1. Since every branch is again a branching structure,

with the child of the root as the new root, all statistics defined for trees can also be

considered on branches. In particular, we will be interested in the size of the branches,

i.e. in the number of nodes that are descendants of a given child of the root. Let w be

a child of the root and bw the branch rooted at w. If we define Anc(v) as the set of

ancestors of node v, then |bw|= |{v ∈ V : w ∈ Anc(v)}|.

The depth Dv of node v in a branching tree is the length of the path from the root

to v or equivalently the number of ancestors of v. For v 6= r, we have 1 ≤ D(v) ≤ n−1.

Similarly, the distance from one node to another, denoted by Dvw, is the length of the

path from v to w. For general graphs the distance between two nodes is the length of

the shortest path from v to w but since in a tree there is only one path between any

two nodes, this amounts to the same.

The height HT of a rooted tree is the length of the longest path from the root

to a leaf. As for the other statistics 1 ≤ HT ≤ n − 1, again with the same examples.

When comparing the height of two trees, T and T ′, we say that T is taller than T ′

and T ′ is flater or shorter than T , when HT ′ < HT .

2.2. Permutations

There are several ways to define permutations, we will only give two here, see [34].

While permutations can be defined for any finite set, by giving each element of the set

a label from 1 to n we can consider that all permutations are defined on [n]. First of all

a permutation of size n is an linear ordering of the set [n], say π1π2 . . . πn, where every

integer from 1 to n only appears once. In other words, a permutation is a word with

letters from [n], such that each letter appears exactly once. Equivalently a permutation

can be considered as a bijective map π : [n]→ [n], by defining π(i) = πi.
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Corresponding to these two ways of defining permutations there are two different

notations for permutations. Corresponding to the view of a permutation as a bijection,

a permutation π can be represented as

1 2 3 . . . n− 1 n

π(1) π(2) π(3) . . . π(n− 1) π(n).

We call this the Cauchy representation. Corresponding to the view of a permu-

tation as a list of the numbers from 1 to n, a permutation also has a word or one-line

representation,

π(1) π(2) π(3) . . . π(n− 1) π(n).

Since the word notation is more compact and thus easier to include in the text we will

prefer it most of the time.

The set of all permutations of size n is called symmetric group of size n and is

denoted by Sn. The number of permutations of [n] is n!, since π(1) can be chosen among

n elements, π(2) among n− 1 elements, and so on. A uniform random permutation, or

URP of [n] is a permutation chosen uniformly among all permutations of [n].

There are several properties of permutations that will be important later, when

we use them as representations for trees. For a permutation π of [n], an inversion is

a pair (i, j) ∈ [n] × [n], such that i < j and π(i) > π(j). For 1 ≤ i ≤ n − 1, the

permutation π has a descent in i if π(i) > π(i+ 1) and an ascent in i if π(i) < π(i+ 1).

For example the permutation π = 41562837 has 3 descents: in 1, 4 and 6, and 4 ascents

in 2,3,5 and 7.

Another concept we will often use are records and anti-records. A record is an

element that is greater than all previous ones and an anti-record an element that is
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smaller than all previous ones. More precisely: a permutation π has a record in i if

π(i) > {π(1), . . . , π(i − 1)} and an anti-record in i if π(i) < {π(1), . . . , π(i − 1)} [34].

Every permutation has a record and an anti-record in π(1).

Records and anti-records are equally distributed in uniform random permutations

as we can see by the following bijection: Consider the map f : Sn → Sn defined by

f : π → ρ = n − π, i.e. for all i = 1, . . . , n, we have ρ(i) = n − π(i). This map is

bijective and if π has an anti-record in i, then ρ has a record in i by construction. Thus

the distributions of the number of anti-records and records in URPs are equal.

Nevzorov summarizes many results about records of sequences of random vari-

ables in [35]. The theory of records is very rich and connected to several mathematical

structures and also has many applications. The results in [35] also apply for the records

in a uniform random permutation by the following standard construction of a uniform

recursive permutation from random variables, as described for instance in [12]. Let

Y1, . . . , Yn be independent uniformly distributed random variables over (0, 1). Then

the rank Ri of Yi is equal to j if Yi is the j-th-largest among Y1, . . . , Yn. The sequence

(R1, . . . , Rn) is distributed as a uniform random permutation of [n], see [5]. In our case

we will often only consider permutations where π(1) = 1 and thus use permutations of

{2, 3, . . . , n}. This means that we mostly use Y2, . . . , Yn to construct the permutation

we need.

By considering a permutation as a bijection it can also be represented by its

cycle structure. Since we only consider permutations of finite sets, for every i ∈ [n],

there will be a unique ` ∈ [n], such that π`(i) = i. We can thus define a cycle of

length ` of a permutation as a sequence (i, π(i), π2(i), . . . , π`−1(i)), where π`(i) = i.

For k = 0, 1, 2, . . . , the cycles (πk(i)πk+1(i) . . . πk+`−1(i)) are all representations of the

same cycle. Since every element of [n] can only be in one cycle, the different cycles of a

permutation are distinct and thus partition [n]. Hence we can write every permutation

as a product of at most n distinct cycles, C1, . . . , Cm, i.e. π = C1C2 . . . Cm. The cycles

have different representations because they can start with any member. Moreover

the cycles can also be ordered in several ways. Thus the cycle representation of a
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permutation is not unique.

To guarantee uniqueness it is common to start every cycle with its smallest el-

ement and order the cycles according to this first element from largest to smallest.

In this way, even if we remove the parenthesis, we know that a new cycle starts ev-

ery time there is an anti-record in the permutation. Thus in this standard notation,

every permutation has a unique cycle representation. For example, given the permu-

tation 439782516, we determine the first cycle by considering π(1) = 4, then π(4) = 7,

π(7) = 5, π(5) = 8, π(8) = 1, which gives the cycle (14758) in standard notation. Then

we take the smallest element not in the first cycle, which is in this case 2, and proceed

similarly, and so on. Finally we get π = (2396)(14758). The advantage of this notation

is that one can recover the cycles even if the parenthesis are removed: every time an

anti-record, i.e. a new smallest element appears, a new cycle starts.

2.3. Probability Theory

We start with a brief explanation of the method of indicators as it will be used

several times throughout the thesis. The basic idea is to write a discrete random

variableX as a sum of Bernoulli random variables. OftenX is the number of something,

as in the following example.

Example 2.2 ( [36]). At a party n men throw their hat in the air, and then every man

chooses one of the hats randomly. Let X be the random variable denoting the number

of men who choose their own hat. In order to calculate E[X] we define the Bernoulli

random variables Xi := 1(i-th man finds his own hat). Then we have

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] =
n∑
i=1

1

n
= 1. (2.1)

When we use this method we will often consider the distribution of the limit of

such sums of indicators. The asymptotic results we will prove are results of convergence

in distribution.
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Definition 2.3 ( [37]). Let (Xn)n∈N be a sequence of random variables with cumula-

tive distribution function Fn(x). Let X be another random variable with cumulative

distribution function F (x). If for all x at which F is continuous

lim
n→∞

Fn(x) = F (x) (2.2)

the sequence (Xn) is said to converge in distribution to X and we write Xn
d−→ X.

When comparing random variables we will use three different probability metrics.

Let µ and ν be two probability measures. Then each of the metrics we will consider

have the form

dH(µ, ν) = sup
h∈H

∣∣∣∣∫ h(x)dµ(x)−
∫
h(x)dν(x)

∣∣∣∣ (2.3)

where H is some family of functions. By extension this also gives a distance function

for random variables: if X and Y are random variables with respective laws µ and ν,

then dH(X, Y ) = dH(µ, ν). Depending on the set H, this form gives rise to different

metrics.

Definition 2.4. (i) The Kolmogorov metric is obtained by setting H = {1(x ≤ a) :

a ∈ R}, and is denoted by dK .

(ii) We get the Wasserstein metric if we set H = {h : R→ R : |h(x)−h(y)|≤ |x−y|},

and we denote it by dW . This is the main metric used for approximations by

continuous distributions.

(iii) The total variation metric is obtained by choosing H = {1(x ∈ A) : A ∈ B(R)}

and is denoted by dTV . This metric is commonly used for approximations by

discrete distributions.

These metrics have some important properties, which can be found in [38].

Proposition 2.5 ( [38]). (i) For any two random variables X and Y ,

dK(X, Y ) ≤ dTV (X, Y ). (2.4)
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(ii) If the density function of a random variable X is bounded by a constant C, and

Y is any random variable,

dK(X, Y ) ≤
√

2CdW (X, Y ). (2.5)

(iii) If the random variables X and Y take values in a discrete space A,

dTV (X, Y ) =
1

2

∑
a∈A

|P(X = a)− P(Y = a)|. (2.6)

(iv) The Kolmogorov metric gives the maximum distance between distribution func-

tions. Thus, if for a sequence of random variables X1, X2, . . . and a random

variable Y , dW (Xn, Y )→ 0, then (Xn)n∈N converges to Y in distribution.

For proofs of items (i), (ii), and (iv) see [38] and for (iii) see [39]. Using Stein’s

method several bounds on these metrics for different kinds of random variables are

then given in [38]. While we will mainly use these bounds to determine rates of con-

vergence, Stein’s method is a general tool to determine the distance between two prob-

ability measures. It was introduced by Stein in [40] as a method to bound the error

in approximations of sums of random variables with the normal distribution. Later

the method was generalized and applied on bounds of approximations of more general

random variables as well as with other distributions. The first part of the main idea

of Stein’s method is to bound the distance between the random variable we want to

approximate and a well-known distribution by the expectation of a functional of the

random variable we want to approximate. The second part consists in methods to

bound the expectation of that functional [38].

In order to analyze the asymptotic behavior of the statistics introduced in the

previous section we also need some limit theorems. In subsequent theorems we use the

following notation: in general Y1, Y2, . . . denote a sequence of random variables and we
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define µi := E[Yi] and σ2
i := Var(Yi). Also we set

Wn :=

∑n
i=1 Yi − µi

(
∑n

i=1 σ
2
i )

1
2

. (2.7)

Note that we have E[Wn] = 0 and Var(Wn) = 1. The following theorems give conditions

on when Wn converges to a standard normal distribution.

Theorem 2.6 (Lindeberg-Feller’s central limit theorem, [41]). Let Y1, Y2, . . . be inde-

pendent random variables such that µi < ∞ and σ2
i < ∞ for all i = 1, 2, . . . . Define

s2n =
∑n

i=1 Var(Yi) and let Wn be as above. Assume that for all ε > 0,

lim
n→∞

1

s2n

n∑
i=1

E
[
(Yi − µi)21(|Yi − µi|> εsn)

]
= 0. (2.8)

Then

lim
n→∞

Wn =d G. (2.9)

Another condition for sums of independent random variables to converge, that

implies the Lindeberg-Feller condition, is Liapounov’s condition.

Theorem 2.7 (Liapounov’s central limit theorem, [37]). Let Y1, Y2, . . . be independent

random variables and µi, σ2
i and Wn be as above. Now assume that E [|Yi − µi|3] <∞

for all i = 1, 2, . . . and that

lim
n→∞

∑n
i=1 E[|Yi − µi|3]
(
∑n

i=1 σ
2
i )

3
2

= 0. (2.10)

Then

lim
n→∞

Wn =d G. (2.11)
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The following case of the Liapounov theorem will suffice for our purposes.

Theorem 2.8 (Liapounov’s central limit theorem for sums of independent Bernoulli

random variables, [37]). Let Y1, Y2, . . . be independent Bernoulli random variables with

parameter pi, i = 1, 2, . . . . Letting Wn be as above we have

Wn =

∑n
i=1 Yi −

∑n
i=1 pi

(
∑n

i=1 pi(1− pi))
1
2

. (2.12)

If the infinite series
∑∞

i=1 pi(1− pi) diverges, then

lim
n→∞

Wn =d G. (2.13)

In connection to asymptotic convergence to the normal random variable, the

following result is also of interest.

Theorem 2.9 ( [42]). Let Wn be a sequence of random variables. If there is a sequence

of real numbers λn such that λn →∞ and

dTV (Wn,Po(λn)) −−−→
n→∞

0 (2.14)

then

lim
n→∞

Wn − λn√
λn

=d G. (2.15)

As a bound on the distance between sums of Bernoulli random variables and a

Poisson distribution, we will use the following result.

Theorem 2.10 (Law of small numbers, [38]). Let Y1, Y2, . . . , Yn are independent indi-

cator random variables with P(Yi = 1) = pi, Y =
∑n

i=1 Yi and µ = E[Y ] =
∑n

i=1 pi.
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Then

dTV (Y,Po(µ)) ≤ min{1, µ−1}
n∑
i=1

p2i . (2.16)

As we will also consider several cases of sums of locally dependent random vari-

ables, we will now give two bounds for approximations of sums of locally dependent

random variables by the normal distribution.

Definition 2.11 ( [38]). Let (Y1, Y2, . . . , Yn) be a collection of random variables. For

each i, we call Ni the dependency neighbourhood of Yi, if Yi is independent of {Yj}j /∈Ni
and i ∈ Ni.

For random variables with such dependency neighbourhoods the following con-

vergence theorem is true:

Theorem 2.12 ( [38]). Let Y1, Y2, . . . , Yn be random variables for which E[Y 4
i ] <∞ and

E[Yi] = 0 holds. Let moreover Ni be the dependency neighbourhoods of (Y1, . . . , Yn) and

define D := max1≤i≤n{|Ni|}. Finally set σ2 = Var (
∑n

i=1 Yi) and define W :=
∑n

i=1
Yi
σ
.

Then

dW (W,G) ≤ D2

σ3

n∑
i=1

E[|Yi|3] +

√
28D

3
2

√
πσ2

√√√√ n∑
i=1

E[Y 4
i ]. (2.17)

Note that this theorem can also be applied to independent random variables by

setting D = 1, since i ∈ Ni for all i. There is another more restricted definition of local

dependence, which will mostly suffice for our cases.

Definition 2.13. For m ∈ N0, a sequence (Yi)i∈N of random variables is called m-

dependent if for all i ∈ N, the sets {Yj, j ≤ i} and {Yj, i+m < j} are independent.

Note that a sequence of random variables is independent if it is 0-dependent in the

above sense. Definition 2.13 is a special case of Definition 2.11 where the dependency
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sets do not have to be sets of random variables with consecutive indices. In order to

derive asymptotic results for m-dependent random variables, we will need a special

case of theorem 9.4 in [43]. There, the random variables are indexed over Nd, so we

need to take d = 1. This theorem was also proved by above mentioned Stein’s method.

Theorem 2.14. Let Y1, Y2, . . . be a sequence of zero-mean m-dependent random vari-

ables and Wn :=
∑n
i=1 Yi

(
∑n
i=1 σ

2
i ) 1

2

. Then for all p ∈ (2, 3],

dW (Wn,G) ≤ 75(10m+ 1)p−1
n∑
i=1

E[|Yi|2]. (2.18)

In the analysis of the number of leaves of a special kind of weighted recursive tree,

we will moreover need the following concentration inequality for martingale difference

sequences, which is Theorem 3.13 from [44].

Theorem 2.15 ( [44]). Let Y1, Y2, . . . , Yn be a martingale difference sequence with

ai < Yi < bi for each i, for suitable constants ai, bi. Then for any t ≥ 0,

P
(∣∣∣∣ n∑

i=1

Yi

∣∣∣∣ ≥ t

)
≤ 2e

− 2t2∑n
i=1

(bi−ai)2 . (2.19)

By using a coupling construction we will moreover be able to bound some differ-

ences of random variables. In order to derive results about the asymptotic behaviour

of the unknown random variable from the asymptotic distribution of the known one,

we will use Slutsky’s Theorem.

Theorem 2.16 (Slutsky’s theorem [41]). Let Xn and Yn be sequences of random vari-

ables such that Xn →d X and Yn →d c for c ∈ R. Then

lim
n→∞

Xn + Yn =d X + c. (2.20)
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3. REVIEW OF UNIFORM RECURSIVE TREES

3.1. Definition of Uniform Recursive Trees

In following chapters we will consider different distributions on the space of recur-

sive trees. Increasing or recursive trees are branching trees whose vertices are labeled

by {1, . . . , n} such that on every path starting from the root the labels are increasing,

which implies that node 1 is the root. This property allows us to picture many in-

creasing trees as growing dynamically, such that an increasing tree of size n is obtained

by joining node n to an increasing tree of size n − 1 according to some rule [26]. We

will see later that this is not the case for biased recursive trees. Figure 3.1 shows all

increasing trees on 4 vertices.

1

2

3

4

1

2

3 4

1

2 3

4

1

2 3

4

1

2 4

3

1

2 4
3

Figure 3.1. All increasing trees on 4 vertices.

A uniform recursive tree, abbreviated by URT, of size n is a random tree that is

chosen uniformly among all increasing trees of size n. Since attaching node n to any

of the nodes {1, . . . , n − 1} gives an increasing tree, there are (n − 1)! recursive trees

of size n.

3.1.1. Recursive Construction of a Uniform Recursive Tree

This is equivalent to the following recursive construction principle. A URT Tn
of size n is obtained from a URT Tn−1 of size n − 1 by joining node n to any of the
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nodes {1, . . . , n − 1} with equal probability. If we start from scratch, first node 1 is

added as the root, and node 2 is attached to node 1. Then, node 3 is either attached

to node 1 or to node 2 with equal probability 1
2
. In general node i attaches to any of

the nodes {1, . . . , i − 1} with probability 1
i−1 [12]. It is important to note that every

step is independent of the previous ones for URTs since the structure of Tn−1 does not

affect which node becomes the parent of n. We will call this way of constructing a

URT construction principle and refer to the probabilities for nodes to attach to other

nodes as the attachment probabilities.

3.1.2. Construction of a Recursive Tree from a Permutation

Besides the two alternative definitions of a URT described above, we may also

make use of random permutations to generate such trees. Given a permutation π of

{2, . . . , n}, we construct a URT as follows: First, 2 is attached to 1, then 3 is connected

to 1 if it is to the left of 2, otherwise to 2. In general the node i is attached to the

rightmost node to the left of i that is less than i. If there is no smaller number than

i to its left, i is attached to 1. Thus i = π(s) attaches to node j = π(r) when r =

max{t ∈ {1, . . . , s− 1} : π(t) < π(s)}, where we set π(1) = 1. We will call this way of

constructing a URT the construction from a permutation. Figure 3.2 shows an example

of the step by step construction of a recursive tree corresponding to a permutation.

Similarly, given a URT Tn, we can construct the corresponding permutation by writing

1 to the very left, 2 on its right and then step by step every node i directly on the right

of the node it is attached to.

That this relation gives a bijection between URTs and URPs can be seen by the

symmetry of the recursive constructions. The tree and the permutation corresponding

to it can be constructed simultaneously, since we can construct a uniform random

permutation by inserting the numbers successively, see [12]. Given any permutation π

of {2, . . . , k} we can construct a permutation π′ of {2, . . . , k + 1} by inserting k + 1

at the ultimate left or right or between any π(i) and π(i + 1) for i = 2, . . . , k − 1. In

total there are k spots where we can insert k + 1. If at each step we choose the spot

for the next number uniformly, this process gives a uniform random permutation π′ on
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Figure 3.2. Step by step construction of the recursive tree corresponding to 16387254.

The newly attached node is underlined and its parent bold.

{2, . . . , k + 1}. Note that if we insert k + 1 between πi and πi+1, π′(s) = π(s) for all

s ≤ i, π(i+ 1) = k + 1 and π′(s) = π(s− 1) for all s > i.

3.1.3. Simultaneous Construction of a URP in Cycle Notation and a URT

By using the cycle notation for permutations, we can define another way of defin-

ing a bijection between URPs and URTs. We will show how we can simultaneously

construct a URP in cycle notation and a URT [25]: We start with the node 1. At

the first step we attach 2 to 1. The corresponding permutation is π = (2). At each

following step, we proceed as follows: if j is attached to the root in the URT, we add

a cycle of length 1 that only contains j. If j is attached to a node i > 1, we add j to

the cycle of i right after i. Thus there are in total j − 1 slots we can put j in. If we

choose uniformly among all possibilities, we get a URT and a URP in cycle notation

simultaneously.
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Since we want the permutation to have the standard cycle notation, when we

start a new cycle, we put it in the leftmost place. This is the only thing we need to

do, since when adding a number to an existent cycle, it will always be bigger than

the already present ones, hence the condition that every cycle starts with its smallest

element is automatically satisfied. It is easy to see that we simultaneously get a unique

URT and a unique URP by following this process, so this is a bijection. See Figure 3.3

for an example.
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Figure 3.3. Simultaneous construction of a uniform recursive tree and a permutation

in cycle notation.

When comparing the two permutations one gets for the same tree by these two

bijections, one can see that the numbers are actually in the same order, we just interpret

the sequence in two different ways: either as a permutation in Cauchy notation or

in cycle notation. Thus we get the cycle representation of a URT from the Cauchy

representation by simply starting a new cycle at every anti-record.
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By simultaneously considering a uniform recursive tree and a uniform random

permutation in cycle notation in this way, we can see that the construction is also

equivalent to a Chinese restaurant process : the cycles can stand for round tables and

every node corresponds to a customer. When a new customer arrives, s/he can either

join an already existing table, or sit at a new one [25].

3.2. A Brief Literature Review on Uniform Recursive Trees

Various aspects of URTs are well studied, and in particular the statistics we

introduced in Section 2.1.3 are deeply understood in most cases. In this section, we

briefly go over some known results on URTs. For a more detailed survey on the subject

see [1] or the relevant chapters in [25].

As mentioned in the introduction there are several ways of studying the leaves of a

URT. By using the bijection between URTs and URPs described above, the expectation

and variance of the number of leaves in a URT can easily be derived. First we observe

that i is a leaf if and only if none of the nodes in {i + 1, . . . , n} is attached to i. This

is the case if and only if none of {i + 1, . . . , n} is inserted in the spot to the right of

i. Thus i = π(r) is a leaf if and only if π(r) > π(r + 1), because this implies by the

construction principle that π(r) cannot be the closest smaller label to the left of any

j > i. Moreover π(n) definitely is a leaf. Thus we can write Ln, the number of leaves

of the URT Tn, as

Ln =d

n−1∑
r=2

1(π(r) > π(r + 1)) + 1. (3.1)

Since the permutation is uniformly random, E(1(π(r) > π(r + 1)) = 1) = 1/2, and we

can immediately conclude that E[Ln] = n
2
. Similar considerations yield Var(Ln) = n

12
.

Concerning the limiting distribution of Ln, we moreover have the following theorem:



30

Theorem 3.1 ( [12]). Let Tn be a URT of size n and Ln the number of leaves of Tn.

Then

dK

(
Ln − n/2√

n/12
,G

)
≤ C√

n
(3.2)

and for any x > 0

max
{
P
(
Ln −

n

2
≥ x

)
,P
(
Ln −

n

2
≤ −x

)}
≤ e−

2x2

n . (3.3)

As mentioned in the introduction, the expectation of the number of nodes of

degree k was also established early on.

Theorem 3.2 ( [7]). Let Ck
n denote the number of nodes of degree k in a URT Tn of

size n. Then

E
[
Ck
n

]
n

n→∞−−−→ 1

2k
. (3.4)

There are several methods to analyze the distribution of the number of branches,

Bn in a URT. We will introduce three of them here because we will need them later. The

first approach is to use the construction principle, see for example [6]. Since the number

of branches is equal to the number of children of node 1, we setXi = 1(i is a child of 1),

and write Bn as a sum of these indicator random variables:

Bn =
n∑
i=2

Xi = 1 +
n∑
i=3

Xi. (3.5)

Since it is equally probable for node i to attach to any of the already present nodes,

P(Xi = 1) = 1
i−1 for i = 2, . . . , n. This implies E[Xi] = 1

i−1 and Var(Xi) = i−2
(i−1)2 .
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Thus, we get

E[Bn] =
n∑
i=2

E[Xi] =
n∑
i=2

1

i− 1
=

n−1∑
i=1

1

i
= Hn−1 (3.6)

and for large n we have E[Bn] = ln(n) +O(1). Also

Var(Bn) =
n∑
i=2

Var(Xi) =
n∑
i=2

i− 2

(i− 1)2
=

n−1∑
i=1

i− 1

i2
= Hn−1 −H(2)

n−1 (3.7)

and for large n we have Var(Bn) = ln(n) + O(1). Moreover these results allow us to

derive a central limit theorem for Bn by using the Lindeberg-Feller theorem.

Theorem 3.3 ( [6]). Let Bn denote the number of branches of a URT Tn of size n.

Then

Bn − ln(n)√
ln(n)

d−→ G. (3.8)

We can moreover use the representation of Tn as a random permutation in order

to calculate the number of branches. We can observe that π(2) attaches to 1 and is thus

the first node of a branch of Tn. If π(3) > π(2) it will attach to π(2), if π(4) > π(2) it

will attach to π(2) or π(3) and so on. As long as no π(r) < π(2) appears, all nodes will

be part of the branch starting with node π(2). Let r = min{r = 3, . . . , n : π(r) < π(2)}

then π(r) also attaches to 1 and is thus the start of the next branch. Similarly, as long

as no smaller number comes up, all subsequent nodes will be part of this second branch.

In general, π(r) attaches to 1 if and only if π(r) = min{π(2), . . . , π(r)} which means

that π(r) must be an anti-record. Thus, the number of branches of Tn is equal to

the number of antirecords of π and we can write the number of branches Bn of Tn as

another sum of indicator random variables:

Bn =
n∑
r=2

1(π(r) = min{π(1), . . . , π(r)}). (3.9)
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As expected the number of records in a URP and thus also the number of anti-

records satisfy the same central limit theorem as Bn, see [5, 45]. In [5] the equality in

distribution between the number of branches and the number of records of a permuta-

tion was discovered without refering to the permutation representation of a URT. This

way of analysing the number of branches in a URT has the advantage that records

of sequences of random variables and thus random permutations are well studied, see

for example [35]. Thus all properties true for records of uniform permutations are

bijectively also true for the branches of uniform recursive trees.

The third possibility to calculate the number of branches of a URT is by using the

representation of URTs as permutations in cycle representation. This interpretation

allows us to equate the number of branches with the number of cycles in a random

permutation which is well known, see for example [25].

We can also consider the number of branches of a given size. We have that:

Theorem 3.4 ( [6]). For m ∈ N, let βm,n denote the number of branches of size m in

Tn. Then

(i) for m ∈ N, βm,n
n→∞−−−→ Po

(
1
m

)
and

(ii) for n > m > n−1
2
, βm,n can only take the values 0 or 1 and P(βm,n = 1) = 1

m
.

Moreover the covariance matrix for (βm,n)1≤m≤n is derived and it is shown that the

number of branches of different sizes are asymptotically independent for any sequence

of integers (m1, . . . ,m`), see [6].

As a final note, these results allow some conclusions concerning the size of the

largest branch.

Theorem 3.5 ( [6]). Let νn denote the size of the largest branch of Tn. Then

(i) P
(
νn >

n−1
2

) n→∞−−−→ ln(2) and

(ii) νn
n→∞−−−→
a.s.

∞.
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Also in connection to the size of specific components the number of nodes with

k descendants can be studied. In [14], Devroye uses a connection between URTs and

binary trees and local counters to analyse this statistic.

Theorem 3.6 ( [14]). Let Xk,n denote the number of leaves with exactly k descendants

in a URT. Moreover we define αk = 1
(k+2)(k+1)

, γk = 1
(2k+3)(2k+2)(k+1)

and

σk = αk(1− αk)− 2(k + 1)α2
k + 2γk. Then

(i) Xk,n
n

n→∞−−−→ αk in probability and

(ii) Xk,n−nαk√
n

n→∞−−−→ N (0, σ2
k) in distribution.

The depth of node n can also be studied by several different methods, of which

we will introduce three. Let Dn denote the depth of node n in a URT Tn of size n. It

turns out that Dn and Bn have the same distribution. Again there are several methods

to show that this is the case.

The first possibility is to describe the depth of node n is to consider the path Pn

from 1 to n in Tn. Every node in Pn is an ancestor of n and the number of nodes in

the path, except n, thus gives the depth of the node n:

Dn =
n∑
i=2

1(i ∈ Pn) =
n−1∑
i=2

1(i ∈ Pn) + 1. (3.10)

It can then be shown that P(i ∈ Pn) = 1
i
and that the indicator random variables

1(i ∈ Pn) are mutually independent, which allows to conclude that Dn has the same

distribution as Bn [6].

On the other hand, the depth of node n can also be seen as follows: By construc-

tion, the parent of node n is a node a1 uniformly distributed among {1, . . . , n− 1}. Its

grandparent is then a node uniformly distributed among {1, . . . , a1−1} and so on until

we reach am = 1. The depth of node n is then m. Similarly, the position of the last

record in a random permutation, b1, is uniformly distributed on {1, . . . , n − 1}. The

position of the 2nd to last record, b2, is then uniformly distributed on {1, . . . , b1 − 1}
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and so on, until bm = 1. m then gives the number of records in the permutation.

Therefore, we get

Theorem 3.7 ( [5]). Dn is distributed as the number of records in a uniform random

permutation of {2, . . . , n}.

We already saw that the number of branches is distributed as the number of

records in a uniform random permutation, implying that the depth and the number of

branches are equally distributed as well.

There is a third method to determine the depth of node n by recursions, which

was historically the first one used, see [1]. It is based on a recursion for the expected

number of nodes in the k-th generation, which allows to derive the depth of node n

by the following relation. Let µkn denote the number of nodes in the k-th generation,

where the generation of the root is 0. Then P(Dn = k) =
E[µk−1

n−1]
n−1 . The expectation and

variance can then directly be computed from the distribution.

Finally there is another, easier way of determining the depth of node n by the

use of recursion without first determining the exact distribution described in [1]. It is

a corollary of a result about internodal distances, which we will now give.

In [2] the expectation and variance of the distance between two nodes in a random

recursive tree are derived via a simple recursion. Let us denote the distance between

i and j by Di,j. If i < j, the distance between i and j is longer by 1 than the

distance between the node j attaches to and i. In other words if j attaches to k where

1 ≤ k ≤ j − 1, then we have Di,j = Di,k + 1. This gives the recursion

P(Di,j = d) =
1

j − 1
[P(D1,i = d− 1) + P(D2,i = d− 1)

+ · · ·+ P(Di,j−1 = d− 1)].

(3.11)
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This recursion can be used to prove the following theorem.

Theorem 3.8 ( [2]). Let Di,j denote the distance between i and j where 1 ≤ i < j ≤ n

in a random recursive tree. Then

E[Di,j] = Hi +Hj−1 − 2 +
1

i
and

Var(Di,j) = Hi +Hj−1 − 3H
(2)
i −H

(2)
j−1 + 4− 4

Hi

i
+

3

i
− 1

i2
.

(3.12)

In [3] the exact distribution for Di,n is given and asymptotic results for Din,n for

some special cases of (in)n∈N are given. The asymptotic distribution of the distance

between a fixed node and n is shown to be normal in [4].

Theorem 3.9 ( [4]). Let Di,n denote the distance between nodes i and n in a URT Tn.

Then

Di,n − ln(n)√
ln(n)

n→∞−−−→
d
G. (3.13)

Moreover, asymptotic normality of Din,n for any sequence (in)n∈N is shown.

Theorem 3.10 ( [4]). Let Din,n denote the distance between nodes in and n in a URT

Tn, where in ≥ n− 1 for all n. Then

Din,n − ln(n)− ln(in)√
ln(n) + ln(in)

n→∞−−−→
d
G. (3.14)

As already mentioned in the introduction there are two main global properties

of URTs that were investigated: the maximum degree and the height. First let us

consider the maximum degree. Let the degree of node i in Tn be denoted by δn,i and

∆n be the maximum degree of any vertex in Tn. Since E[δn,1] > ln(n), and ∆n > δn,1,

we get E[∆n] > ln(n). Moreover we have the following result.
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Theorem 3.11 ( [15]). Let Tn be a URT and let ∆n denote the maximum degree among

the vertices of Tn. Then,

∆n

ln(n)

n→∞−−−→
a.s.

1 and
E[∆n]

ln(n)

n→∞−−−→ 1. (3.15)

For results on the distribution of the maximum degree, see [16, 17].

Concerning the height of a URT the following is known.

Theorem 3.12 ( [20]). Let Tn be a URT and let Hn denote the height of Tn i.e. the

longest path from the root to any other node. Then with probability 1

Hn

ln(n)

n→∞−−−→ e. (3.16)

In [20] this result is proved by using the connection between a continuous time

branching process and URTs. In [21] results about the height of a more general family

of random recursive trees are obtained, implying in particular the above result, by

using a second moment method.

Moreover we have a more precise estimation of the expectation of the height of a

uniform recursive tree, again derived by the use of a branching process.

Theorem 3.13 ( [46]). Let Tn be a URT and let Hn denote the height of Tn. Then

E[Hn] = e ln(n)− 3

2
ln ln(n) +O(1). (3.17)

3.3. Non-uniform Recursive Trees Considered in the Literature

There has been a tremendous effort to study uniform recursive trees as the results

above imply. There also are a few papers considering different kinds of non-uniform
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recursive trees. We now give some examples of such distributions.

3.3.1. Non-uniform Recursive Trees via External Nodes

In [26] recursive trees are described by the use of external nodes. By variations

on the number of external nodes each node has, one can thus change the attachment

probabilities and the distribution on the recursive trees. In general, recursive trees can

be constructed by attaching node n according to some rule to a node of a recursive

tree of size n − 1. In order to specify that rule one can add external nodes at every

place the new node can be attached to and then choose one of these according to some

distribution. In the uniform model there is one external node at every node of Tn−1
and one of them is chosen uniformly. This node then becomes the internal node n and

a new external node is created at n and at the parent of n.

This model can be generalized by adding at each step n, after attaching node

n, α external nodes at the parent of n and β external nodes at n. Among all the

external nodes the place for n+ 1 is then again chosen uniformly. Using this principle

the following distributions can for example be obtained. For plane-oriented trees the

number of external nodes of a node i is equal to the out-degree of i +1. This model is

called plane-oriented because it corresponds to the distribution obtained by considering

the children of each node as ordered, then choosing one of these trees uniformly and

finally identifying all trees that only differ because of the ordering of the children in

order to get a distribution on recursive trees [1]. This model was introduced in [27]

as one of the first non-uniform models. In that paper moreover properties related to

the degrees of nodes where obtained and compared to the uniform case. For m ∈ N,

m-oriented trees are a generalization of this model where every node has m− 1 times

its outdegree +1 external nodes.

Binary trees are a tree model where every node can have exactly 2 children. For

m ∈ N, m-ary trees are a generalization of binary trees where every node can have

exactly m children. These trees can also be defined via the use of external nodes.

Table 3.1 shows the α and β values for these tree models [26].
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Table 3.1. Distributions on recursive trees for some values of α and β.

Recursive tree model α β

Uniform recursive 1 1

Plane-oriented 2 1

m-oriented m 1

Binary 0 2

m-ary 0 m

Figure 3.4 demonstrates the construction of a 2-oriented tree with the use of

external nodes. The nodes without label are external nodes. At each step one of the

external nodes is chosen uniformly chosen as the place of the newly added node.

1 1

2

1

2
3

1

2
3

4

Figure 3.4. Example of the construction of a 2-oriented tree with external nodes.

Dobrow and Smythe then give a recursive formula for the distribution of Di,n,

the distance between node i and node n, and the exact distribution of D1,n, the depth

of node n, for general α and β. By using Poisson approximations they then prove

asymptotic normality of Di,n for all the models introduced above.

3.3.2. Introducing Choice

Instead of altering the distribution on the set of recursive trees by introducing

external nodes, it is possible to introduce choice according to some criterion. The idea

is to choose at each step several potential parents one of which is then chosen according
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to some criterion. In [47], k possible parents are selected for each node. The node is

then attached to the one among these with the smallest or biggest distance to the root

or the lowest or highest degree. These are called the smallest-depth, highest-depth,

lowest-degree and highest-degree model respectively. The relevant properties of these

models are then shown to qualitatively differ from the uniform one.

While for both m-oriented trees and the highest degree model the choice of the

parent depends on the degree, the two models differ considerably. In the construction

of plane-oriented trees knowledge about the degrees of all nodes is necessary. On the

other hand in the highest-degree model only knowledge about the degree of k nodes is

necessary at each step. The authors of [47] refer to this as global vs. local knowledge.

In [48] a different choice criterion is introduced because the ones investigated

in [47] are intractable in many cases. They propose to either choose the node with

the minimal or the maximal label among the k potential parents and call this the

label model. In addition to giving the exact distribution of the depths in these trees,

they also show that these label models can be used as bounds for the depth models

introduced in [47].

3.3.3. Scaled Attachment Random Recursive Trees

Another generalization of uniform random recursive trees, that goes into a very

different direction are scaled attachment random recursive trees, abbreviated SARRT,

which were introduced in [21]. To construct an SARRT with n + 1 nodes, we need n

identically distributed independent random variables X1, . . . , Xn on [0, 1). The root

gets label 0. The parent of i is then chosen as biXic. Like the uniform recursive tree, the

attachment probabilities do not depend on structural properties of the tree constructed

before node i is attached. This was not the case for the recursive tree models introduced

in [26], since there the attachment probability depends on the number of children of the

already present nodes. The models introduced in [47] also relies on knowledge of the

structure of Tn−1 in order to choose the parent of n since we need to know the depth

or degree of the potential parents. SARRTs moreover include URTs: when we choose
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the uniform distribution for the Xi, the random variable biXic is uniformly distributed

over [i].

The explicit example given in [21] is the SARRT where Xi = max{U1, U2, . . . , Uk}

or Xi = min{U1, U2, . . . , Uk} with k ∈ N and U`, ` = 1, . . . , k, uniformly distributed

over [0, 1). This is equivalent to choosing uniformly k potential parents for each node

i and among these attaching i to the youngest respectively oldest parent, where labels

with higher label are considered to be younger. In this way SARRTs recover the model

introduced in [48]. In [21] the authors then go on to prove asymptotic results on the

height of the tree, the depth of node n and the minimal depth of the nodes dn
2
e to n,

for general Xi and depending on the common distribution of the Xi.

Apart from different distributions on recursive trees, recursive structures other

than trees are also studied. One possibility is to consider random recursive forests, i.e.

allowing disconnected components. A way in the other direction is to allow every new

node to join several previously present nodes.

3.3.4. Random Recursive Forests

Another generalization of random recursive trees are random recursive forests,

which were introduced in [49]. A random recursive forest is constructed in a similar

way as a random recursive tree. The difference is that each node n can either attach

to any of the nodes 1 to n − 1 or become the root of a new tree. In the general

model, at each step n, a number yn ∈ {0, . . . , n− 1} is chosen according to probability

~p = (pn(y))y=0,...,n−1. If yn = 0, node n is the root of a new tree. If yn ∈ {1, . . . , n− 1},

yn is the parent of n. See Figure 3.5 for an example of a random recursive forest.

For the general model the expectations and variances of the outdegrees of all

nodes i and as a corollary the expected number of components are given. Moreover

the expected number of leaves and of nodes of out-degree 1 are given. The rest of

the results are given for uniform recursive forests, so forests where pn(y) = 1
n
for all

y = 0, 1, . . . , n − 1. For the uniform model asymptotic normality of the number of
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Figure 3.5. Example of a random recursive forest.

components is shown and results about the expected number of nodes of out-degree k

and the maximum out-degree are derived. Moreover the distribution of the label of the

root of the last component and of the label of the root of the component containing

node i are given.

A uniform recursive forest of size n can easily be constructed from a uniform

recursive of size n+1 by deleting the root. The nodes that are the start of the branches

in the URT then become the roots of the components in the uniform recursive forests.

Most results mentioned above thus follow more or less directly from results on URT.

3.3.5. Uniform Random Recursive Directed Acyclic Graphs

As already mentioned, we can also allow nodes to attach to several nodes. In [15]

a model was introduced where initially m roots are present and every additional node

attaches uniformly to r already present nodes, with r and m in N. This yields a

uniform random recursive directed acyclic graph, short URRD, which can be used to

model circuits [21]. In [15] asymptotic results about the maximum degree of such

structures are derived. Similarly as for recursive trees, various distributions different

from the uniform one can be considered on recursive directed acyclic graphs. When

letting the attachment probability depend on the degree of the present nodes, this in

particular yields the preferential attachment model [21]. Also see [50] for results on

paths in uniform random recursive acyclic graphs.
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3.3.6. Hoppe Trees

Another non-uniform distribution on random recursive trees considered in the

literature are Hoppe trees. These trees were introduced by Leckey and Neininger on

the basis of Hoppe’s urn [28]. In Hoppe’s urn one starts with a black ball of weight θ.

All other balls will have weight 1. We will call all balls that are not black coloured. At

each step one of the balls is drawn from the urn with a probability proportional to its

weight. The drawn ball is always put back. Moreover, when the black ball is drawn, a

ball with a new colour is added to the urn. When a coloured ball is drawn, a new ball

of the same colour is added to the urn.

On the basis of this process a random recursive tree called Hoppe tree can be

constructed: The black ball represents the root and gets label 1. The other balls get

their label from the time they were added to the urn. If we consider the black ball as

the first ball added to the urn, the n-th ball added to the urn thus gets label n. The

label of the ball we draw at time n is the label of the parent of node n in the recursive

tree. Each colour in the urn then corresponds to one branch of the tree.

At each time n the probability to draw the black ball is θ
θ+n−2 and the probability

for any coloured ball to be drawn is 1
θ+n−2 . We thus get a random recursive tree with

the following construction principle: let ci,n denote the event that i is the parent of n,

then

P(ci,n = 1) =


θ

θ+n−2 for i = 1

1
θ+n−2 for i = 2, . . . , n− 1.

(3.18)

The Hoppe distribution on recursive trees is equivalent to the θ-biased distri-

bution on permutations as described in [51].We will call these permutations Hoppe

permutations. θ-biased permutations can be constructed by using a variation of the

Chinese restaurant process described in Section 3.1.3. At each step, i either starts a

new cycle with probability θ
θ+i−2 or joins any other cycle after any other integer with
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probability 1
θ+i−2 . The number of cycles of θ-biased permutations and the distribution

of the cycle sizes are known and thus imply the corresponding results for branches of

Hoppe trees, see [51,52]. In particular we have the following theorem.

Theorem 3.14 ( [51, 52]). Let Bθn denote the number of branches of a Hoppe tree of

size n. Then

E
[
Bθn
]

= θ
n∑
i=1

1

θ + i− 1
(3.19)

and

Var
(
Bθn
)

= θ
n∑
i=1

n− 1

(θ + j − 1)2
. (3.20)

Moreover asymptically

Bθn − θ ln(n)√
θ ln(n)

n→∞−−−→
d
G. (3.21)

In [28], results about the depth of node n and the height, the number of leaves

and the internal path length of a Hoppe tree of n nodes are given. We will now give

the theorems from [28] that concern statistics we will also investigate.

Theorem 3.15 ( [28]). Let Dθn denote the depth of the n-th node of a Hoppe tree

and let, for i = 1, . . . , n − 2, Bi be independent Bernoulli random variables with

P(Bi = 1) = 1
θ+1

. Then

Dθn =d 1 +
n−2∑
i=1

Bi. (3.22)
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This easily gives

E
[
Dθn
]

= ln(n) +O(1)

Var
(
Dθn
)

= ln(n) +O(1)

Dθn − E[Dθn]√
Var(Dθn)

n→∞−−−→
d
G and

dTV (Dθn,Poisson(E
[
Dθn
]
)) = O

(
1

ln(n)

)
.

(3.23)

Theorem 3.16 ( [28]). Let Hθ
n denote the height of a Hoppe tree with n nodes. Then

E
[
Hθ
n

]
= e ln(n)− 3

2
ln lnn+O(1) and

Var
(
Hθ
n

)
= O(1).

(3.24)

Theorem 3.17 ( [28]). Let Lθn denote the number of leaves of a Hoppe tree with n ≥ 2

nodes. Then

E
[
Lθn
]

=
n

2
+
θ − 1

2
+O

(
1

n

)
Var

(
Lθn
)

=
n

12
+
θ − 1

12
+O

(
1

n

)
P(|Lθn − E

[
Lθn
]
|≥ t) ≤ 2e−

6t2

n+θ+1 for all t > 0 and

Lθn − E
[
Lθn
]√

Var (Lθn)

n→∞−−−→
d
G.

(3.25)

The first distribution we will consider in this thesis is a generalization of Hoppe

trees so this brings us to the next chapter.
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4. WEIGHTED RECURSIVE TREES

4.1. Definition

We now consider a recursive tree model obtained by varying the weights of each

node. In a URT the weight of each node can be considered to be 1. We now give

each node i = 1, . . . , n a weight ωi ∈ R, thus every weighted recursive tree model can

be characterized by its sequence of weights, denoted (ωi)i∈N. These weights affect the

attachment probabilities: let ci,j denote the event that j is attached to i in the j-th

construction step. Then for i < j we have

P(ci,j = 1) =
ωi∑j−1
k=1 ωk

. (4.1)

We will call these trees weighted recursive tree, or WRT. This is a generalization of

Hoppe trees, which correspond to the case ω1 = θ > 0 and ωi = 1 for i = 2, . . . , n.

WRTs share with URTs the property that the construction steps are mutually

independent: whether j attaches to i is not dependent on the structure of the tree at

time j, but only on the weight sequence. We already mentioned this property above

and saw that this is not true for several distributions considered in the literature. For

example for the trees considered by Dobrow and Smythe in [26] where α, i.e. the

number of external nodes created at the parent, was different from 1, the number of

external nodes of node i, and thus the attachment probabilities, were dependent on

the outdegree of i at time j. The second model we will consider, biased recursive trees,

does not have this independence property either.

Because the construction steps in weighted recursive trees are mutually indepen-

dent, the weighted recursive tree model is a kind of a more general model, which we

call inhomogeneous trees, where j attaches with probability pj,i to a node i, such that∑j−1
i=1 pj,i = 1. In some sense, in inhomogeneous trees, the weight of each node can

change at each step, while in weighted recursive trees the weight is fixed.
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Because of technicalities we will not be able to tackle all problems for a general

sequence of weights. Where it will be necessary we will make some assumptions on

the weight sequence (ωi)i∈N, which will be specified at the beginning of each section or

subsection. For the number of leaves, for example, we will assume that for some k ∈ N,

ωi = 1 for i > k and ωi = θ for 1 ≤ i ≤ k.

In the rest of this section we will proceed as follows: In Section 4.2 we will discuss

a method of constructing WRTs from URTs. It can be applied to any weighted recursive

tree, but is much easier in the case where only the first k nodes get a weight θ that is

different from 1. We then go on by giving results about the number of branches and

the depth of node n of general weighted recursive trees. In both cases we will be able

to write the random variable in question as a sum of independent Bernoulli random

variables. As we will see the depth of node n and the number of branches are not

equidistributed, as it is the case for URTs. We then derive results on the number of

leaves of a special case of weighted recursive trees, where only the first k nodes get

a weight different from 1. This is done by using a martingale approach. Finally we

introduce a second coupling that can only be applied on weighted recursive trees where

for some k ∈ N, ωi = 1 for i > k. The counterpart of this restriction is that it is

much simpler and deterministic and thus allows for easy conclusions concerning the

asymptotic behaviour of the number of leaves of weighted recursive tree of this form.

4.2. Constructing Weighted Recursive Trees from Uniform Recursive

Trees

We begin our discussion of weighted recursive trees by presenting a coupling

construction that can be used to generate a WRT once we are given a URT. Given a

URT we will relocate some nodes with a certain probability. By relocation we mean

that a node j is detached from its parent and attached to another node with all its

descendants. In Figure 4.1 such a relocation is illustrated.

The coupling construction can be applied step by step, as the new edges appear,

or at the end, after the whole URT is constructed. In other words, we can either at
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Figure 4.1. Node 6 is relocated from node 2 to node 4.

each step attach a new node uniformly to any of the present nodes and then relocate

it according to the rule we will now describe, or we can construct a URT with n nodes

and then apply the relocation rule for every node. This amounts to the same result

since the structure of the tree at any time does not affect which node is chosen as the

parent of the next node.

Let us further remark that in the latter case we can relocate the nodes in any

order we like, since we always relocate the node with all its descendants. As we will see,

the relocation process only depends on the weight of the old and the new parent, and

is thus independent of any structural properties of the tree. Thus this coupling has the

property that all adjustments we make, i.e. all relocations, are mutually independent.

So we do not lose the important property of WRTs and URTs that each construction

step is independent while rearranging one to get the other.

4.2.1. General Case

First construct a URT. We will rearrange it by relocating nodes in order to get

a WRT with weight sequence (ωi)i∈N. For any two nodes 3 ≤ i < j, node j can only

be either relocated to or from node i, not both. This depends on whether its weight is

bigger or smaller than the average weight at time j, i.e. among the first j − 1 nodes.

More precisely, let us denote the average weight at time j by ωj :=
∑j−1
k=1 ωk
j−1 . If ωi < ωj

node j can only be relocated from i and if ωi > ωj, node j can only be relocated
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to node i. This restriction is suggested by the fact that ωi > ωj is equivalent to
1
j−1 <

ωi
ω1+···+ωj−1

. We will show that under this condition we can construct a coupling

producing a WRT with weight sequence (ωi)i∈N.

For j ≥ 3, if in the URT j is attached to a node i with ωi < ωj, we relocate it

with probability ri,j to another node such that

P(j at i in WRT) = P(j at i in reconstructed tree)

⇔ P(j at i in WRT) = P(j at i in URT)(1− P(j is relocated from i))

⇔ P(j at i in WRT)) = P(j at i in URT)(1− ri,j)

⇔ ωi∑j−1
k=1 ωk

= (1− ri,j)
1

j − 1

⇔ ri,j = 1− (j − 1)ωi∑j−1
k=1 ωk

⇔ ri,j =

∑j−1
k=1 ωk − (j − 1)ωi∑j−1

k=1 ωk
.

(4.2)

We only get a positive value for ri,j if ωi <
∑j−1
k=1 ωk
j−1 , which is consist with our

assumption that we only relocate from nodes whose weight is strictly less than the

average at time j. It is important to remember that the average of the weights can

change at each step.

Now we want to relocate j to a node that has a weight larger than the av-

erage in such a way that we get the right attachment probabilities. Let pi,j,h =

P(j relocated to i|j relocated from h). We will see that we get the right probabilities

if we choose

pi,j,h =
(j − 1)ωi −

∑j−1
k=1 ωk∑j−1

`=1
ω`>ωj

[
(j − 1)ω` −

∑j−1
k=1 ωk

] . (4.3)
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That pi,j,h does not depend on h implies that given a node j is relocated it does

not matter which node it is relocated from. We thus get

P(j at i in reconstructed tree)

= P(j at i in URT) + P(j relocated to i)

= P(j at i in URT) +

j−1∑
h=1
ωh<ωj

P(j at h in URT)P(j relocated |j at h in URT)

· P(j relocated to i|j relocated from h)

=
1

j − 1
+

j−1∑
h=1
ωh<ωj

1

j − 1
rh,jpi,j,h

=
1

j − 1
+

j−1∑
h=1
ωh<ωj

1

j − 1

∑j−1
k=1 ωk − (j − 1)ωh∑j−1

k=1 ωk

(j − 1)ωi −
∑j−1

k=1 ωk∑j−1
`=1
ω`>ωj

[
(j − 1)ω` −

∑j−1
k=1 ωk

]

=
1

j − 1

1 +

∑j−1
h=1
ωh<ωj

[∑j−1
k=1 ωk − (j − 1)ωh

]
∑j−1

k=1 ωk

(j − 1)ωi −
∑j−1

k=1 ωk∑j−1
`=1
ω`>ωj

[
(j − 1)ω` −

∑j−1
k=1 ωk

]


=
1

j − 1

[
1 +

1∑j−1
k=1 ωk

(j − 1)ωi −
∑j−1

k=1 ωk
1

]

=
1

j − 1

[
1 +

(j − 1)ωi∑j−1
k=1 ωk

−
∑j−1

k=1 ωk∑j−1
k=1 ωk

]
=

ωi∑j−1
k=1 ωk

= P(j at i in WRT).

(4.4)
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In the sixth line we used that

j−1∑
h=1
ωh<ωj

[
j−1∑
k=1

ωk − (j − 1)ωh

]
−

j−1∑
l=1

ω`>ωj

[
(j − 1)ω` −

j−1∑
k=1

ωk

]

=

j−1∑
h=1
ωh<ωj

[
j−1∑
k=1

ωk − (j − 1)ωh

]
+

j−1∑
`=1
ω`>ωj

[
j−1∑
k=1

ωk − (j − 1)ω`

]

+

j−1∑
h=1
ωh=ωj

[
j−1∑
k=1

ωk − (j − 1)ωh

]

=

j−1∑
h=1

[
j−1∑
k=1

ωk − (j − 1)ωh

]

= (j − 1)

j−1∑
k=1

ωk −
j−1∑
h=1

(j − 1)ωh

= 0.

(4.5)

Thus the probabilities for the reconstructed tree correspond to the ones in the weighted

recursive tree we wanted to get. The values of ri,j and pi,j,h imply that, if ωi = ωj,

node j is neither relocated from nor to i.

4.2.2. Special Case: When the First k Nodes Have Weight θ

Let now (ωi)i∈N be such that for some k ∈ N, θ ∈ R+, ωi = θ for i ≤ k and ωi = 1

for i > k. As mentioned above we can either first construct a URT and then rearrange

all nodes or relocate the new node at each step. Since the first k nodes all have the

same weight, for 1 ≤ i < j < k + 1 we have

P(j attaches to i) =
θ

(j − 1)θ
=

1

j − 1
. (4.6)

Hence we don’t need to change anything for the first k + 1 nodes.

We now need to differentiate between the case θ > 1 and θ < 1, because in the

first case the probability that a node attaches to the first k nodes increases in the
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WRT compared to the URT and in the second case this probability decreases. So in

the first case we will need to relocate nodes from the nodes k+1, . . . , n−1 to the nodes

1, . . . , k and in the second case the other way round. The exact rules of relocation will

be specified below.

(i) Let first θ < 1. We have P(j attaches to i in the URT) = 1
j−1 and for j > k and

i ≤ k we would like to have P(j at i in reconstructed tree) = θ
kθ+j−k−1 . Let ri,j be

the probability that j is relocated given that it is attached to some i ≤ k. Then

we want

P(j at i in WRT) = P(j at i in reconstructed tree)

⇔ θ

kθ + j − k − 1
= P(j at i in URT)P(j is not relocated)

⇔ θ

kθ + j − k − 1
=

1

j − 1
(1− ri,j)

⇔ 1− ri,j =
θ(j − 1)

kθ + j − k − 1

⇔ ri,j =
kθ + j − k − 1− θ(j − 1)

kθ + j − k − 1
.

(4.7)

If the node j > k is relocated from a node i ≤ k, we attach it with uniform

probability to any node k < h ≤ j − 1. We now show that this gives the right

probabilities.
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Let h > k, then

P(j at h in reconstructed tree )

= P(j at h in URT)

+
k∑
`=1

P(j at ` in URT)P(j relocated |j at l)P(j relocated to h)

=
1

j − 1
+

k∑
`=1

1

j − 1

kθ + j − k − 1− (j − 1)θ

kθ + j − k − 1

1

j − 1− k

=
1

j − 1

(
1 +

k(kθ + j − k − 1)− k(j − 1)θ

(kθ + j − k − 1)(j − 1− k)

)
=

(kθ + j − k − 1)(j − 1− k) + k(kθ + j − k − 1)− k(j − 1)θ

(j − 1)(kθ + j − k − 1)(j − 1− k)

=
kθj − kθ − k2θ + (j − k − 1)2 + k2θ + k(j − k − 1)− kjθ + kθ

(j − 1)(kθ + j − k − 1)(j − 1− k)

=
(j − k − 1)(j − 1− k + k)

(j − 1)(kθ + j − k − 1)(j − 1− k)

=
1

kθ + j − k − 1

= P(j attaches to h in WRT).

(4.8)

(ii) Let now θ > 1. In the URT P(j attaches to i) = 1
j−1 . But for j > i and i > k

we want in the reconstructed tree P(j attaches to i) = 1
kθ+j−k−1 . Let ri,j be the

probability that j is relocated given that it is attached to some i > k. Then we

want

P(j at i in WRT) = P(j at i in reconstructed tree)

⇔ P(j at i in WRT) = P(j at i in URT)P(j is not relocated)

⇔ 1

kθ + j − k − 1
=

1

j − 1
(1− ri,j)

⇔ 1− ri,j =
(j − 1)

kθ + j − k − 1

⇔ ri,j =
k(θ − 1)

kθ + j − k − 1
.

(4.9)

If node j is relocated from a node h > k, we attach j uniformly to a node

1 ≤ i ≤ k. Again we check if we get the right probabilities.
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Let i ≤ k, then

P(j at i in reconstructed tree )

= P(j at i in URT)

+

j−1∑
`=k+1

P(j at ` in URT)P(j relocated |j at l)P(j relocated to i)

=
1

j − 1
+

j−1∑
`=k+1

1

j − 1

k(θ − 1)

kθ + j − k − 1

1

k

=
1

j − 1

(
1 +

(j − k − 1)k(θ − 1)

(kθ + j − k − 1)k

)
=

1

j − 1

j − 1 + k(θ − 1) + (j − k − 1)(θ − 1)

kθ + j − k − 1

=
1

j − 1

(j − 1)θ

kθ + j − k − 1

=
θ

kθ + j − k − 1

= P(j at i in WRT).

(4.10)

We will now start to study some tree statistics for WRTs. All probabilities in the

next sections refer to probabilities in WRTs.

4.3. The Number of Branches

As before the number of branches is denoted by Bωn and is equal to the number

of nodes attaching to 1. We have the following theorem

Theorem 4.1. Let Bωn denote the number of branches in a WRT with weight sequence

(ωi)i∈N. Then

E[Bωn ] = ω1

n−1∑
i=1

1∑i
k=1 ωk

(4.11)

and

Var (Bωn) =
n−1∑
i=1

ω1∑i
k=1 ωk

−
n−1∑
i=1

ω2
1

(
∑i

k=1 ωk)
2

= ω1

n−1∑
i=2

∑i
k=2 ωk

(
∑i

k=1 ωk)
2
. (4.12)
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Proof. Since the construction steps are independent we can write Bωn as a sum of

independent Bernoulli random variables bωi = 1(node i attaches to node 1). Thus

Bωn =
n∑
i=2

bωi (4.13)

and

E [Bωn ] =
n∑
i=2

E[bωi ] =
n∑
i=2

P(i attaches to 1) =
n∑
i=2

ω1∑i−1
k=1 ωk

= ω1

n∑
i=2

1∑i−1
k=1 ωk

= ω1

n−1∑
i=1

1∑i
k=1 ωk

.

(4.14)

By independence of the bωi it is also easy to calculate the variance:

Var (Bωn) =
n∑
i=2

E
[
(bωi )2

]
−

n∑
i=2

E[bω1 ]2 =
n∑
i=2

ω1∑i−1
k=1 ωk

−
n∑
i=2

ω2
1

(
∑i−1

k=1 ωk)
2

=
n∑
i=2

ω1(
∑i−1

k=1 ωk)− ω2
1

(
∑i−1

k=1 ωk)
2

= ω1

n∑
i=3

∑i−1
k=2 ωk

(
∑i−1

k=1 ωk)
2

= ω1

n−1∑
i=2

∑i
k=2 ωk

(
∑i

k=1 ωk)
2
.

(4.15)

4.3.1. Some Examples of Weight Sequences

We now give the exact values of the expected number of branches and their

variance for some examples of weight sequences. For the Hoppe tree, we write Bθn for
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the number of branches and get

E
[
Bθn
]

= θ
n∑
i=2

1

θ + i− 2

= θ

n−2∑
i=0

1

θ + i
= θ

n−2∑
i=0

1

i+ 1
+

1

θ + i
− 1

i+ 1

= θHn−1 + θ
n−2∑
i=0

1− θ
(θ + i)(i+ 1)

= θHn−1 + θ(1− θ)
n−2∑
i=0

1

i2 + (θ + 1)i+ θ
.

(4.16)

For the variance we similarly get

Var
(
Bθn
)

= θ
n∑
i=3

i− 2

(θ + i− 2)2
= θ

n∑
i=3

1

i− 2
+

i− 2

(θ + i− 2)2
− 1

i− 2

= θ
n−2∑
i=1

1

i
+ θ

n−2∑
i=1

i2 − (θ + i)2

(θ + i)2i

= θHn−2 − θ3
n−2∑
i=1

1

i(θ + i)2
− 2θ2

n−2∑
i=1

1

(θ + i)2
.

(4.17)

Thus asymptotically as n→∞, we get in consistence with Theorem 3.14

E
[
Bθn
]

= θ ln(n) +O(1) and Var
(
Bθn
)

= θ ln(n) +O(1). (4.18)
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For the weighted recursive tree with ωi = θ for i = 1, . . . , k and ωi = 1 for i > k,

we write T θkn for the tree and Bθkn for the number of branches. We get

E
[
Bθkn
]

= θ

k∑
i=1

1

iθ
+ θ

n−1∑
i=k+1

1

kθ + i− k

= θ
n−1∑
i=1

1

i
+ θ

n−1∑
i=k+1

1

θ(k − 1) + i
− 1

i
+

k∑
i=1

1

i
− θ

i

= θ
n−1∑
i=1

1

i
+ kθ(θ − 1)

n−1∑
i=k+1

1

(k(θ − 1) + i)i
+ (1− θ)

k∑
i=1

1

i
.

(4.19)

Also

Var
(
Bθkn
)

= θ
k∑
i=2

(i− 1)θ

(iθ)2
+ θ

n−1∑
i=k+1

(k − 1)θ + i− k
(kθ + i− k)2

= θ
n−1∑
i=2

(i− 1)

i2
+ θ

k∑
i=2

(i− 1)θ

(iθ)2
− θ

k∑
i=2

(i− 1)

i2

+ θ
n−1∑
i=k+1

k(θ − 1) + i− θ
(k(θ − 1) + i)2

− θ
n−1∑
i=k+1

(i− 1)

i2

= θ
n−1∑
i=2

(i− 1)

i2
+ (1− θ)

k∑
i=2

(i− 1)

i2

+ θ
n−1∑
i=k+1

[
k(θ − 1)i2 + i3 − θi2 − k2(θ − 1)2i+ k2(θ − 1)2

(k(θ − 1) + i)2i2

+
−i3 + i2 − 2i2k(θ − 1) + 2k(θ − 1)i

(k(θ − 1) + i)2i2

]

= θ

n−1∑
i=2

(i− 1)

i2
+ (1− θ)

k∑
i=2

(i− 1)

i2

+ θ
n−1∑
i=k+1

−i2(k + 1)(θ − 1) + ik(θ − 1)(k(θ − 1) + 2) + k2(θ − 1)2

(k(θ − 1) + i)2i2

= θ
(
Hn−1 −H(2)

n−1

)
+O(1).

(4.20)
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Asymptotically this gives, as for the Hoppe tree,

E
[
Bθkn
]

= θ ln(n) +O(1) and Var
(
Bθkn
)

= θ ln(n) +O(1). (4.21)

Concerning more general models the following can be said. If the weights are

bounded from below and above, the expectation and variance of the number of branches

will still be equal to O(ln(n)) asymptotically.

Let for all i, 0 < m < ωi < M , then

ω1

n−1∑
i=1

1

iM
< ω1

n−1∑
i=1

1∑i
k=1 ωk

< ω1

n−1∑
i=1

1

im

ω1

M
Hn−1 < E [Bωn ] <

ω1

m
Hn−1

(4.22)

and

ω1

n−1∑
i=2

(i− 1)m

(iM)2
< ω1

n−1∑
i=2

∑i
k=2 ωk

(
∑i

k=1 ωk)
2
< ω1

n−1∑
i=2

(i− 1)M

(im)2

ω1m

M2

n−1∑
i=2

i− 1

i2
< Var (Bωn) <

ω1M

m2

n−1∑
i=2

i− 1

i2

ω1m

M2
Hn−1 +O(1) < Var (Bωn) <

ω1M

m2
Hn−1 +O(1).

(4.23)

The situation is very different when the weights are not bounded. We now give

some examples of weight sequences that give a different asymptotic behaviour.

(i) Let (ωi)i∈N = (i)i∈N. In this case we get from the above formulas

E [Bωn ] =
n−1∑
i=1

1∑i
k=1 k

=
n−1∑
i=1

2

(i+ 1)i

= 2
n−1∑
i=1

(
1

i
− 1

i+ 1

)
= 2

(
1− 1

n

)
−−−→
n→∞

2

(4.24)
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and

Var (Bωn) =
n−1∑
i=2

i(i+1)
2
− 1(

i(i+1)
2

)2
=

n−1∑
i=1

i(i+1)
2
− 1(

i(i+1)
2

)2
=

n−1∑
i=1

2i(i+ 1)

(i(i+ 1))2
− 4

(i(i+ 1))2

=
n−1∑
i=1

2

i(i+ 1)
− 4

(
1

i(i+ 1)

)2

=
n−1∑
i=1

2

i(i+ 1)
− 4

(
1

i
− 1

i+ 1

)2

=
n−1∑
i=1

2

i(i+ 1)
− 4

(
− 2

i(i+ 1)
+

1

i2
+

1

(i+ 1)2

)

=
n−1∑
i=1

10

i(i+ 1)
− 4

(
1

i2
+

1

(i+ 1)2

)

= 10
n−1∑
i=1

(
1

i
− 1

i+ 1

)
− 4

n−1∑
i=1

(
1

i2
+

1

(i+ 1)2

)

= 10

(
1− 1

n

)
− 4

n−1∑
i=1

(
1

i2
+

1

(i+ 1)2

)
n→∞−−−→ 10− 4

(
2
π2

6
− 1

)
= 14− 4π2

3
< 1.

(4.25)

(ii) Let (ωi)i∈N =
(
1
i

)
i∈N. In this case we get

E [Bωn ] = ω1

n−1∑
i=1

1∑i
k=1 ωk

=
n−1∑
i=1

1∑i
k=1

1
k

=
n−1∑
i=1

1

Hi

(4.26)

and

Var (Bωn) =
n−1∑
i=2

1

Hi

−
n−1∑
i=2

1

H2
i

. (4.27)
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(iii) Let (ωi)i∈N =
(

1
i2

)
i∈N . In this case

E [Bωn ] = ω1

n−1∑
i=1

1∑i
k=1 ωk

=
n−1∑
i=1

1∑i
k=1

1
k2

(4.28)

hence

6

π2
(n− 1) ≤ E [Bωn ] ≤ n− 1. (4.29)

Also

Var (Bωn) =
n−1∑
i=1

1∑i
k=1

1
k2

−
n−1∑
i=1

1(∑i
k=1

1
k2

)2
=

n−1∑
i=2

1∑i
k=1

1
k2

(
1− 1∑i

k=1
1
k2

)
.

(4.30)

Now we have on the one hand, for 0 ≤ a ≤ 1, that 0 ≤ a(1 − a) ≤ 1
4
. On the

other hand 1− 1∑i
k=1

1
k2

is increasing in i for 2 ≤ i and 1− 1∑2
k=1

1
k2

= 1
5
. Thus we

get

6

5π2
(n− 2) ≤ Var (Bωn) ≤ 1

4
(n− 2). (4.31)

4.3.2. Central Limit Theorem

As the number of branches can be written as a sum of independent random

variables, we can apply Theorem 2.8, the Liapounov central limit theorem for Bernoulli

random variables if Var(Bωn) diverges.

Theorem 4.2. If Var(Bωn) diverges, Bωn the number of branches of a weighted random

recursive tree converges in distribution to a normal random variable:

Bωn − E[Bωn ]√
Var(Bωn)

n→∞−−−→
d
G. (4.32)
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In particular this is the case

(i) if there is an i > 1 s.t. ωi > 0 and
(∑i

k=1 ωk

)
i∈N

converges

(ii) and if
(∑i

k=1 ωk

)
i∈N

and
(∑n−1

i=1
1∑i

k=1 ωk

)
n∈N

diverge but
(∑n−1

i=1
1

(
∑i
k=1 ωk)

2

)
n∈N

converges.

Proof. In order to apply Liapounov’s central limit theorem for sums of Bernoulli ran-

dom variables we need to show that Var(Bωn) diverges. Now we have

Var(Bωn) = ω1

n−1∑
i=2

∑i
k=2 ωk

(
∑i

k=1 ωk)
2

= ω1

n−1∑
i=2

1∑i
k=1 ωk

∑i
k=2 ωk∑i
k=1 ωk

. (4.33)

If ω1 > 0 and for all k > 1, ωk = 0 this sum is zero so we do not have convergence.

That the distribution of the branches is not normal in that case is obvious because all

nodes will attach to 1, so the number of branches is just n− 1.

Let us assume this is not the case, so there is an i > 1 such that ωi > 0. We now

differentiate two cases. First let us assume that
∑i−1

k=1 ωk converges to a number a ∈ R.

Then

∑i−1
k=2 ωk

(
∑i−1

k=1 ωk)
2
−−−→
i→∞

a− ω1

a2
> 0 (4.34)

thus
∑n

i=2 Var(bωi ) diverges.

Let now
∑i−1

k=1 ωk diverge. Then

Var(Bωn) =
n∑
i=2

∑i−1
k=2 ωk

(
∑i−1

k=1 ωk)
2

=
n∑
i=2

1∑i−1
k=1 ωk

− ω1

(
∑i−1

k=1 ωk)
2
. (4.35)

Thus in that case if
∑n

i=2
1∑i−1

k=1 ωk
diverges and

∑n
i=2

1

(
∑i−1
k=1 ωk)

2 converges, Var(Bωn)

diverges.
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Remark 4.3. Additionally to the statements in Theorem 4.2 we know that if the

series
∑n

i=2
1∑i−1

k=1 ωk
converges, i.e. if the weights increase too fast, the variance is finite

and we cannot apply Theorem 4.2. This is for example the case for (ωi)i∈N = (i)i∈N.

The other case where we cannot say anything general is when
∑i−1

k=1 ωk,
∑n

i=2
1∑i−1

k=1 ωk

and
∑n

i=2
1

(
∑i−1
k=1 ωk)

2 all diverge. This is for example the case if ωi = 1
i
, since then∑i−1

k=1 ωk = O(ln(i)).

Example 4.4. For the other examples above, considering the order of divergence of

the sum mostly allows to decide whether the central limit theorem holds. For example,

if
∑i−1

k=2 ωk = O(i), then 1∑i−1
k=1 ωk

= O(1
i
) and 1

(
∑i−1
k=1 ωk)

2 = O( 1
i2

) and thus Var(Bωn)

diverges. This is in particular the case when ωi = θ for i = 1, . . . , k and ωi = 1 for

i > k. On the other hand, if
∑i−1

k=1 ωk = O(i2), then
∑i−1
k=2 ωk

(
∑i−1
k=1 ωk)

2 = O( 1
i2

) and thus∑n
i=2 Var(bωi ) converges. This is for example the case for ωi = i.

We have another possibility of proving convergence to a normal random variable.

Theorem 4.5. If

∑n−1
i=1

(
1∑i

k=1 ωk

)2
∑n−1

i=1
1∑i

k=1 ωk

n→∞−−−→ 0 (4.36)

and E [Bωn ] diverges, then

Bωn − E [Bωn ]√
E [Bωn ]

n→∞−−−→ G. (4.37)



62

Proof. Let µn := E [Bωn ]. By Theorem 2.10

dTV (Bωn ,Po(µn)) ≤ min

1,

(
n−1∑
i=1

ω1∑i
k=1 ωk

)−1
n−1∑
i=1

(
ω1∑i
k=1 ωk

)2

=

∑n−1
i=1

(
ω1∑i
k=1 ωk

)2
∑n−1

i=1
ω1∑i
k=1 ωk

= ω1

∑n−1
i=1

(
1∑i

k=1 ωk

)2
∑n−1

i=1
1∑i

k=1 ωk

.

(4.38)

Thus, if
∑n−1
i=1

(
1∑i

k=1
ωk

)2

∑n−1
i=1

1∑i
k=1

ωk

n→∞−−−→ 0 and E [Bωn ] diverges, we can apply Theorem 2.9 and

get the result.

Remark 4.6. Theorem 4.5 implies that if for a given WRT the weight sequence satisfies

ωn
n→∞−−−→ 0,

∑∞
i=1 ωi = ∞ and E [Bωn ] diverges, then the number of branches of the

corresponding WRT is asymptotically normal. This is implied by the fact that if

ωn
n→∞−−−→ 0, we have

∑n
i=1 ω

2
i∑n

i=1 ωi

n→∞−−−→ 0, which can be proved as follows: Let ε > 0 and N

be such that for all n > N , ωn < ε. Then we have for n > N ,

∑n
i=1 ω

2
i∑n

i=1 ωi
=

∑N
i=1 ω

2
i∑n

i=1 ωi
+

∑n
i=N+1 ω

2
i∑n

i=1 ωi

≤
∑N

i=1 ωi∑n
i=1 ω

2
i

+ ε

∑n
i=N+1 ωi∑n
i=1 ωi

≤
∑N

i=1 ω
2
i∑n

i=1 ωi
+ ε

n→∞−−−→ ε.

(4.39)

Hence
∑n
i=1 ω

2
i∑n

i=1 ωi

n→∞−−−→ 0.

Remark 4.7. All of the above theorems only hold if Var (Bωn) diverges, which implies

that none covers cases where E [Bωn ] is finite. This follows from (4.11) and (4.12) which

show that if the variance diverges, the expectation diverges to.

4.3.3. Rate of Convergence

We can use some theorems obtained by Stein’s method to obtain bounds on the

rate of convergence. We have
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Theorem 4.8. Let Bωn denote the number of branches of a weighted recursive tree.

Then

dW

(
Bωn − E[Bωn ]√

Var(Bωn)
,G

)
≤ 1√

Var(Bωn)

√
28 +

√
π√

π
. (4.40)

This bound decreases to 0 if and only if Var(Bωn) diverges, which is the same criterion

we had for the CLT.

Proof. In order to apply Theorem 2.12 we will consider Yi = bωi+1 − E[bωi+1] and hence

Y =
∑n
i=2 b

ω
i −E[bωi ]√

Var(Bωn )
= Bωn−E[Bωn ]√

Var(Bωn )
. First of all the Yi are mutually independent thus giving

D = 1. Now for i = 1, . . . , n− 1,

E
[
|Yi|3

]
= E

[∣∣∣∣bωi − ω1

ω1 + · · ·+ ωi−1

∣∣∣∣3
]

=

(
1− ω1

ω1 + · · ·+ ωi−1

)3
ω1

ω1 + · · ·+ ωi−1

+

(
ω1

ω1 + · · ·+ ωi−1

)3(
1− ω1

ω1 + · · ·+ ωi−1

)
=

(
1− ω1

ω1 + · · ·+ ωi−1

)
ω1

ω1 + · · ·+ ωi−1

·

[(
1− ω1

ω1 + · · ·+ ωi−1

)2

+

(
ω1

ω1 + · · ·+ ωi−1

)2
]

=

(
1− ω1

ω1 + · · ·+ ωi−1

)
ω1

ω1 + · · ·+ ωi−1

·
[
1− 2

ω1

ω1 + · · ·+ ωi−1

(
1− ω1

ω1 + · · ·+ ωi−1

)]
<

(
1− ω1

ω1 + · · ·+ ωi−1

)
ω1

ω1 + · · ·+ ωi−1

= Var(bωi ).

(4.41)

We used that for 0 < a < 1, 0 < a(1 − a) ≤ 1
4
, which implies 1 > 1 − 2a(1 − a) > 1

2
.

Hence we get

D2

σ3

n−1∑
i=1

E
[
|Yi|3

]
<

1

σ3

n∑
i=2

Var(bωi ) =
1

σ
. (4.42)
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Similarly

E
[
Y 4
i

]
= E

[(
bωi −

ω1

ω1 + · · ·+ ωi−1

)4
]

=

(
1− ω1

ω1 + · · ·+ ωi−1

)4
ω1

ω1 + · · ·+ ωi−1

+

(
ω1

ω1 + · · ·+ ωi−1

)4(
1− ω1

ω1 + · · ·+ ωi−1

)
=

(
1− ω1

ω1 + · · ·+ ωi−1

)
ω1

ω1 + · · ·+ ωi−1

·

[(
1− ω1

ω1 + · · ·+ ωi−1

)3

+

(
ω1

ω1 + · · ·+ ωi−1

)3
]

=

(
1− ω1

ω1 + · · ·+ ωi−1

)
ω1

ω1 + · · ·+ ωi−1

·

[
1− 3

ω1

ω1 + · · ·+ ωi−1

(
1− ω1

ω1 + · · ·+ ωi−1

)]

<

(
1− ω1

ω1 + · · ·+ ωi−1

)
ω1

ω1 + · · ·+ ωi−1

= Var(bωi ).

(4.43)

We again used that 0 < a(1−a) < 1
4
for 0 < a < 1, which implies 1 > 1−3a(1−a) > 1

4
.

So we get

√
28D

3
2

√
πσ2

√√√√n−1∑
i=1

E [Y 4
i ] <

√
28√
πσ2

√√√√ n∑
i=2

Var(bωi ) =

√
28√
πσ

. (4.44)

Hence in total we have

dW

(
Bωn − E[Bωn ]

σ
,G
)
≤ 1

σ
+

√
28√
πσ

. (4.45)

Finally we will now give a result concerning the size of branches in Hoppe trees.

We hope to generalize it to more general WRT models in the future.
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4.3.4. Largest Branch in a Hoppe Tree

We denote by Bn,i the number of branches of size i in Tn, a recursive tree of size

n. Now we define

νn(Tn) := max{i ∈ [n− 1] : Bn,i ≥ 1} (4.46)

to be the number of nodes in the largest branch of that tree. In [6], it was shown that

lim
n→∞

P
(
νn(Tn) ≥ n

2

)
= ln 2 (4.47)

when Tn is a URT on n vertices. The purpose of this section and the next theorem

is to extend the result of [6] to Hoppe trees, and to provide more details about the

asymptotic distribution, via exploiting the relation between Hoppe trees and Hoppe

permutations, which were introduced in 3.3.6. Further, the result in (4.47) is now

extended to an explicit expression for the limit limn→∞ P (νn(Tn) ≥ cn) for c ∈ [1/2, 1].

Theorem 4.9. (i.) Let T θn be a Hoppe tree. Then νn(T θn )
n

converges weakly to a random

variable ν whose cumulative distribution function is given by

Fθ(x) = eγθxθ−1Γ(θ)pθ(1/x) for x > 0 (4.48)

where γ is Euler’s constant and

pθ(x) =
e−γθxθ−1

Γ(θ)

1 +
∞∑
k=1

(−θ)k

k!

∫
· · ·
∫
Sk(x)

(
1−

k∑
j=1

yj

)θ−1
 dy1 · · · dyk

y1 · · · yk
(4.49)

with

Sk(x) =

{
y1 >

1

x
, . . . , yk >

1

x
,

k∑
j=1

yj < 1

}
. (4.50)
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(ii) When θ = 1, we obtain the following for the largest branch in a URT: νn(Tn)
n

converges weakly to a random variable ν whose cumulative distribution function is given

by

F1(x) =


0 if x < 0

1 +
∑∞

k=1
(−1)k
k!

∫
· · ·
∫
Sk(x)

dy1...dyk
y1...yk

if x ∈ [0, 1]

1 if x > 1

(4.51)

where Sk(x) is as before.

Also, for any c in
[
1
2
, 1
]
, we have

lim
n→∞

P(νn(Tn) ≤ cn) = 1− ln(c−1). (4.52)

In particular, we have

E[ν] ≥ n

2
. (4.53)

Proof. (i.) First, we translate the problem into a random permutation setting. We

have

νn(T θn ) =d max{i ∈ [n− 1] : Cn−1,i(θ) ≥ 1} =: αn(θ) (4.54)

where Cn−1,i(θ) is the number of cycles of length i in a θ-biased Hoppe permutation.

In this setting, Kingman [53] shows that αn(θ)
n

converges in distribution to a random

variable α with cumulative distribution function

Fθ(x) = eγθxθ−1Γ(θ)pθ

(
1

x

)
for x > 0 (4.55)
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where γ is Euler’s constant,

pθ(x) =
e−γθ

Γ(θ)

(
1 +

∞∑
k=1

(−θ)k

k!

)∫
· · ·
∫
Sk(x)

(
1−

k∑
j=1

yi

)θ−1
dy1 . . . dyk
y1 . . . yk

(4.56)

and

Sk(x) =

{
y1 >

1

x
, . . . , yk >

1

x
,

k∑
j=1

yj < 1

}
. (4.57)

This proves the first part.

(ii) Setting θ = 1 in the argument of (i) and recalling that the random permutation

in this case reduces to a uniformly random permutation immediately reveals the result.

For the second claim, we first note Watterson [54] shows that the derivative of

F1(x) over [1/2, 1] simplifies to

f1(x) =
1

x
. (4.58)

Hence, for any c ∈
[
1
2
, 1
]

lim
n→∞

P(νn(Tn) ≤ cn) = P(ν ≤ cn) =

∫ 1

c

1

x
dx = ln(1/c). (4.59)

We have

E[ν] ≥
∫ 1

1/2

x
1

x
dx =

1

2
. (4.60)

Remark 4.10. The value limn→∞
νn(Tn)
n

is known to be the Golomb-Dickman constant

in the literature. Its exact value is known to be 0.62432998854....
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4.4. Depth of Node n

Theorem 4.11. Let Dωn denote the depth of node n in a WRT T ωn and let Zω
n denote

the set of ancestors of n. Let moreover Aωi,n := 1(i ∈ Zω
n ). Then

Dωn = 1 +
n−1∑
i=2

Aωi,n. (4.61)

The Aωi,n are mutually independent Bernoulli random variables with

P(Aωi,n = 1) =
ωi∑i
j=1 ωj

. (4.62)

This directly yields the expectation and the variance:

E [Dωn ] = 1 +
n−1∑
i=2

ωi∑i
j=1 ωj

=
n−1∑
i=1

ωi∑i
j=1 ωj

(4.63)

and

Var (Dωn) =
n−1∑
i=2

ωi∑i
j=1 ωj

(
1− ωi∑i

j=1 ωj

)
=

n−1∑
i=2

ωi
∑i−1

j=1 ωj

(
∑i

j=1 ωj)
2
. (4.64)

Proof. In a rooted tree, the depth of a node is equal to its number of ancestors, since

these determine the path from the root to the node. Using that 1 definitely is an

ancestor of n, in the notation of the theorem we thus get

Dωn = 1 +
n−1∑
i=2

Aωi,n. (4.65)

We will first find the distribution law of the Aωi,n and then show mutual independence.

For the distribution law we will use the method used in [6]: we will first find the values

for n− 1 and n− 2 and then proceed by induction.
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The node n− 1 can only be an ancestor of n if it is the parent of n, so we get

P(n− 1 ∈ Zω
n ) =

ωn−1∑n−1
i=1 ωi

. (4.66)

Similarly n − 2 can only be an ancestor of n if it is the parent of n or if it is the

grandparent of n, in which case n− 2 needs to be the parent of n− 1 who needs to be

the parent of n. This gives

P(n− 1 ∈ Zω
n ) =

ωn−2∑n−1
i=1 ωi︸ ︷︷ ︸

n−2 is parent of n

+
ωn−2∑n−2
i=1 ωi

ωn−1∑n−1
i=1 ωi︸ ︷︷ ︸

n−2 is grandparent ofn

=
ωn−2

∑n−2
i=1 ωi + ωn−2ωn−1∑n−1
i=1 ωi

∑n−2
i=1 ωi

=
ωn−2

∑n−1
i=1 ωi∑n−1

i=1 ωi
∑n−2

i=1 ωi

=
ωn−2∑n−2
i=1 ωi

.

(4.67)

We will now show by induction that for all j = 2, . . . , n− 1,

P(j ∈ Zω
n ) =

ωj∑j
i=1 ωj

. (4.68)

Let the above be true for all j ≥ i+ 1 and let Cω
i,j denote the event that j is a child of

i. Then

P(i ∈ Zω
n ) =

n−1∑
j=i+1

P(j ∈ Zω
n , C

ω
i,j) + P(Cω

i,n). (4.69)

Since Cω
i,j only relates to the j-th step of the construction process and j ∈ Zω

n only

depends on the j + 1-th, . . . , n-th steps, these two events are independent. We thus
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get

P(i ∈ Zω
n ) =

n−1∑
j=i+1

P(j ∈ Zω
n )P(Cω

i,j) + P(Cω
i,n)

=
n−1∑
j=i+1

(
ωj∑j
k=1 ωk

ωi∑j−1
k=1 ωk

)
+

ωi∑n−1
j=1 ωj

.

(4.70)

To simplify this expression we first note that we can factor out ωi and that the following

holds:

ωi+1∑i+1
k=1 ωk

∑i
k=1 ωk

+
ωi+2∑i+2

k=1 ωk
∑i+1

k=1 ωk

=
ωi+1

∑i+2
k=1 ωk + ωi+2

∑i
k=1 ωk∑i+2

k=1 ωk
∑i+1

k=1 ωk
∑i

k=1 ωk

=
(ωi+1 + ωi+2)

∑i
k=1 ωk + ωi+1(ωi+1 + ωi+2)∑i+2

k=1 ωk
∑i+1

k=1 ωk
∑i

k=1 ωk

=
(ωi+1 + ωi+2)

∑i+1
k=1 ωk∑i+2

k=1 ωk
∑i+1

k=1 ωk
∑i

k=1 ωk

=
ωi+1 + ωi+2∑i+2
k=1 ωk

∑i
k=1 ωk

.

(4.71)

In general the following holds for l ∈ N:

ωi+1 + ωi+2 + · · ·+ ωi+l∑i
k=1 ωk

∑i+l
k=1 ωk

+
ωi+l+1∑i+l+1

k=1 ωk
∑i+l

k=1 ωk

=
(ωi+1 + · · ·+ ωi+l)

∑i+l+1
k=1 ωk + ωi+l+1

∑i
k=1 ωk∑i+l+1

k=1 ωk
∑i+l

k=1 ωk
∑i

k=1 ωk

=
(ωi+1 + · · ·+ ωi+l + ωi+l+1)

∑i
k=1 ωk + (ωi+1 + · · ·+ ωi+l)

∑i+l+1
k=i+1 ωk∑i+l+1

k=1 ωk
∑i+l

k=1 ωk
∑i

k=1 ωk

=
(ωi+1 + · · ·+ ωi+l+1)

∑i+l
k=1 ωk∑i+l+1

k=1 ωk
∑i+l

k=1 ωk
∑i

k=1 ωk

=
ωi+1 + · · ·+ ωi+l+1∑i+l+1

k=1 ωk
∑i

k=1 ωk
.

(4.72)
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By using this equality n− i− 2 times, we thus get

P(i ∈ Zω
n ) = ωi

(
ωi+1 + · · ·+ ωn−1∑i

k=1 ωk
∑n−1

k=1 ωk
+

1∑n−1
k=1 ωk

)

= ωi

(
ωi+1 + · · ·+ ωn−1 +

∑i
k=1 ωk∑i

k=1 ωk
∑n−1

k=1 ωk

)
=

ωi∑i
k=1 ωk

.

(4.73)

Now we will show that the events Aωi,n are mutually independent for j = 2, . . . , n− 1.

For this we will use the method used in [28]: for any 2 ≤ k ≤ n− 2 and 2 ≤ jk < · · · <

j2 < j1 ≤ n− 1 consider the event that all ji’s and only the ji’s are ancestors of n. We

will denote this event by E. Then

E := (1(ji ∈ Zω
n ) = 1,1(j ∈ Zω

n ) = 0, for j 6= ji, i = 1, . . . , k). (4.74)

By the structure of the recursive tree, to realize this event, n must be a child of j1, j1

a child of j2, . . . , jk−1 a child of jk and jk a child of 1. In general for i = 1, . . . , k − 1,

ji must be a child of ji+1. It does not matter what nodes j 6= ji attach to. Hence, by
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the attachment probabilities we get:

P(E) = P(ji ∈ Zω
n , j /∈ Zω

n , for j 6= ji, i = 1, . . . , k)

=
ωj1∑n−1
`=1 ω`︸ ︷︷ ︸

n child of j1

k−1∏
i=1

ωji+1∑ji−1
`=1 ω`︸ ︷︷ ︸

ji child of ji+1

ω1∑jk−1
`=1 ω`︸ ︷︷ ︸

jk child of 1

= ω1ωj1 · · ·ωjk
n−1∏
i=1

1∑i
`=1 ω`

∏
1<j<n

j 6=ji,i=1,...,k

(
j−1∑
`=1

ω`

)

=
k∏
i=1

ωji∑ji
`=1 ω`

∏
1<j<n

j 6=ji,i=1,...,k

(∑j−1
`=1 ω`∑j
`=1 ω`

)
ω1∑1
`=1 ω`

=
k∏
i=1

ωji∑ji
`=1 ω`

∏
1<j<n

j 6=ji,i=1,...,k

(
1− ωj∑j

`=1 ω`

)

=
k∏
i=1

P(ji ∈ Zω
n )

∏
1<j<n

j 6=ji,i=1,...,k

P(j /∈ Zω
n ).

(4.75)

This implies that the events 1(i ∈ Zω
n ) are mutually independent. Hence the Aωi,n are

mutually independent Bernoulli random variables, which immediately gives expectation

and variance of Dωn as stated in the theorem.

Remark 4.12. While the number of branches and the depth of node n are identically

distributed in URTs this is not generally the case for WRTs. Both of these statistics

can be written as sums of Bernoulli random variables but these are not identically

distributed in general.

4.4.1. Some Examples of Weight Sequences

We will now consider the examples of weight sequences we also considered in

Section 4.3 to illustrate the above remark. For the Hoppe tree, we write Dθn for the
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depth of node n and have by Theorem 3.15

E
[
Dθn
]

= 1 +
n−2∑
i=1

1

θ + 1
= ln(n) +O(1) and

Var
(
Dθn
)

=
n−2∑
i=1

θ + i− 1

(θ + i)2
= ln(n) +O(1).

(4.76)

This implies that in a Hoppe tree the distribution of the depth of node n is asymp-

totically close to the distribution of the depth in URTs, which is not the case for the

number of branches of a Hoppe tree.

For the WRT with ωi = θ for i = 1, . . . , k and ωi = 1 for i > k, we call the tree

T θ
k

n and write Dθkn for the depth of node n. We get

E
[
Dθkn
]

=
k∑
i=1

θ

iθ
+

n−1∑
i=k+1

1

kθ + i− k

=
k∑
i=1

1

i
+

n−1∑
i=k+1

1

i
+

n−1∑
i=k+1

1

kθ + i− k
−

n−1∑
i=k+1

1

i

=
n−1∑
i=1

1

i
+

n−1∑
i=k+1

−kθ + k

(kθ + i− k)i

=
n−1∑
i=1

1

i
+

n−1∑
i=k+1

k(1− θ)
(k(θ − 1) + i)i

.

(4.77)

This shows that the expectation of the depth of node n in a θk-RT is smaller than the

expectation in a URT by a constant term if θ > 1 and bigger by a constant term if

θ < 1.
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Similarly

Var
(
Dθkn
)

=
k∑
i=2

θ2(i− 1)

(iθ)2
+

n−1∑
i=k+1

kθ + i− 1− k
(kθ + i− k)2

=
k∑
i=2

i− 1

i2
+

n−1∑
i=k+1

i− 1

i2
+

n−1∑
i=k+1

kθ + i− 1− k
(kθ + i− k)2

−
n−1∑
i=k+1

i− 1

i2

=
n−1∑
i=2

i− 1

i2
+

n−1∑
i=k+1

(k(θ − 1) + i− 1)i2 − ((k(θ − 1) + i)2(i− 1)

(k(θ − 1) + i)2i2

=
n−1∑
i=2

i− 1

i2
+

n−1∑
i=k+1

k(θ − 1)(i2 + i+ k(θ − 1))

(i(k(θ − 1) + i))2
.

(4.78)

Asymptotically this gives, as for URTs,

E
[
Dθkn
]

= ln(n) +O(1) and Var
(
Dθkn
)

= ln(n) +O(1). (4.79)

More generally, as for the number of branches, if the weights are bounded from

below and above, the expectation and variance of the depth of node n will still be equal

to O(ln(n)) asymptotically. Let 0 < m < ωi < M for all i, then

n−1∑
i=1

m

iM
<

n−1∑
i=1

ωi∑i
j=1 ωj

<
n−1∑
i=1

M

im

⇔ m

M
Hn−1 < E [Dωn ] <

M

m
Hn−1.

(4.80)

And similarly

n−1∑
i=2

(i− 1)m2

(iM)2
<

n−1∑
i=2

ωi
∑i−1

j=1 ωj

(
∑i

j=1 ωj)
2
<

n−1∑
i=2

(i− 1)M2

(im)2

⇔ m2

M2

n−1∑
i=2

i− 1

i2
< Var (Dωn) <

M2

m2

n−1∑
i=2

i− 1

i2

⇔ m2

M2
Hn−1 +O(1) < Var (Dωn) <

M2

m2
Hn−1 +O(1).

(4.81)
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Thus in the examples above the qualitative behaviour of the depth of node n is

similar to the uniform case, since it is of order ln(n). For the branches the situtation

was very different when the weights were not bounded. We will now consider these

same examples and some others in order to compare the behaviours and get an idea of

the range of values we can get for the expectation and variance of the depth of node n

in WRTs.

(i) Let (ωi)i∈N = (i)i∈N. In this case we get from Theorem 4.11

E [Dωn ] =
n−1∑
i=1

i∑i
j=1 j

=
n−1∑
i=1

2i

(i+ 1)i

= 2
n−1∑
i=1

1

i+ 1
= 2 ln(n) +O(1)

(4.82)

and

Var (Dωn) =
n−1∑
i=2

i
∑i−1

j=1 j(∑i
j=1 j

)2 =
n−1∑
i=2

2i2(i− 1)

(i(i+ 1))2
= 2

n−1∑
i=2

(i− 1)

(i+ 1)2

= 2
n−1∑
i=2

1

i+ 1
− 2

n−1∑
i=2

2

(i+ 1)2
= 2 ln(n) +O(1).

(4.83)

(ii) We can get a similar result for a more general case. Let (ωi)i∈N = (ik)i∈N for

k ∈ N. In this case

E [Dωn ] =
n−1∑
i=1

ik∑i
j=1 j

k
=

n−1∑
i=1

1
1
ik
ik+1

k+1
+O(ik)

=
n−1∑
i=1

1
i

k+1
+O(1)

= (k + 1) ln(n) +O(1)

(4.84)
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and

Var (Dωn) =
n−1∑
i=2

ik
(
ik+1

k+1
+O(ik)

)
(
ik+1

k+1
+O(ik)

)2
=

n−1∑
i=2

(O(1) +O
(

1

i

)
ik

ik+1

k+1
+O(ik)

=
n−1∑
i=2

(
O(1) +O

(
1

i

))
1

i
k+1

+O(1)

= (k + 1) ln(n) +O(1).

(4.85)

(iii) Let (ωi)i∈N =
(
1
i

)
i∈N. In this case we get

E [Dωn ] =
n−1∑
i=1

1
i∑i
j=1

1
j

=
n−1∑
i=1

1

iHi

=
n−1∑
i=1

1

i(ln(i) +O(1))

n→∞−−−→∞ (4.86)

and

Var (Dωn) =
n−1∑
i=2

1
i
Hi−1

iH2
i

=
n−1∑
i=2

1

iHi

−
n−1∑
i=2

1

i2H2
i

n→∞−−−→∞. (4.87)

(iv) Let (ωi)i∈N =
(

1
i2

)
i∈N. Then

E [Dωn ] =
n−1∑
i=1

1
i2∑i
j=1

1
j2

(4.88)

and since for all i ∈ N we have 1 <
∑i

j=1
1
j2
< π2

6
we get

6

π2

n−1∑
i=1

1

i2
≤ E [Dωn ] ≤

n−1∑
i=1

1

i2

⇒ 6

π2

π2

6
≤ E [Dωn ] ≤ π2

6

⇒ 1 ≤ E [Dωn ] ≤ π2

6
.

(4.89)



77

And since we have

Var (Dωn) =
n−1∑
i=1

1
i2

∑i−1
j=1

1
j2(∑i

j=1
1
j2

)2 (4.90)

and for all i ≥ 2, it holds that 4
5
≤

∑i−1
j=1

1
j2(∑i

j=1
1
j2

)2 ≤ 1, we get

4

5

n−1∑
i=2

1

i2
≤ Var (Dωn) ≤

n−1∑
i=2

1

i2

⇒ 4

5

1

4
≤ Var (Dωn) ≤ π2

6
− 1

⇒ 0, 2 ≤ Var (Dωn) ≤ 0, 65.

(4.91)

We will also get a finite expectation and variance for
(

1
ik

)
i∈N where k ∈ N by

similar computations.

(v) Let (ωi)i∈N = (ln(i))i∈N. Then

E [Dωn ] =
n−1∑
i=1

ln(i)∑i
j=1 ln(j)

=
n−1∑
i=1

ln(i)

ln(i! )

>

n−1∑
i=1

ln(i)

ln(ii)
=

n−1∑
i=1

1

i
= ln(n) +O(1).

(4.92)

Also

Var (Dωn) =
n−1∑
i=1

ln(i)∑i
j=1 ln(j)

−
n−1∑
i=1

(ln(i))2(∑i
j=1 ln(j)

)2
=

n−1∑
i=1

ln(i)

ln(i! )
−

n−1∑
i=1

(ln(i))2

(ln(i! ))2

>
n−1∑
i=1

ln(i)

ln(ii)
−

n−1∑
i=1

(ln(i))2(
ln(i

i
2 )
)2

=
n−1∑
i=1

1

i
−

n−1∑
i=1

4

i2
= ln(n) +O(1).

(4.93)
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(vi) Let (ωi)i∈N = (ai−1)i∈N. First let us consider the case a < 1. Then

E [Dωn ] =
n−1∑
i=1

ai−1∑i
j=1 a

j−1
<

n−1∑
i=1

ai−1 <
1

1− a
(4.94)

and similarly

Var (Dωn) =
n−1∑
i=1

ai−1∑i
j=1 a

j−1
−

n−1∑
i=1

(ai−1)2(∑i
j=1 a

j−1
)2 < 1

1− a
. (4.95)

Thus we have a finite expectation and variance. On the other hand, if a > 1,

E [Dωn ] =
n−1∑
i=1

ai−1∑i
j=1 a

j−1
=

n−2∑
i=0

(a− 1)ai

ai+1 − 1
=

n−2∑
i=0

a− 1

a− 1
ai

>
n−2∑
i=0

a− 1

a
= (n− 2)

a− 1

a

(4.96)

and

Var (Dωn) =
n−1∑
i=1

ai−1∑i
j=1 a

j−1

(
1− ai−1∑i

j=1 a
j−1

)
=

n−2∑
i=0

(a− 1)ai

ai+1 − 1

∑i−1
j=0 a

j∑i
j=0 a

j

=
n−2∑
i=0

(a− 1)ai

ai+1 − 1

ai − 1

ai+1 − 1
> (a− 1)

n−2∑
i=0

a2i − ai

(ai+1)2
> (a− 1)

n−2∑
i=0

1− 1
ai

a2

> (a− 1)
n−2∑
i=0

1

a2
− 1

ai+2
=
a− 1

a2
n+O(1).

(4.97)

4.4.2. Central Limit Theorem

As the depth of node n can be written as a sum of independent Bernoulli random

variables, we can apply Theorem 2.8, as we did for the number of branches.

Theorem 4.13. Let Dωn denote the depth of node n in a weighted random recursive

tree T ωn with n nodes. If Var(Dωn) =
∑n−1

i=2
ωi∑i
j=1 ωj

−
(

ωi∑i
j=1 ωj

)2
diverges, then

Dωn − E [Dωn ]√
Var(Dωn)

n→∞−−−→
d
G. (4.98)
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Proof. The result follows directly from Theorem 2.8, i.e. Liapounov’s central limit

theorem for sums of independent Bernoulli random variables.

Remark 4.14. We could not find a general condition for the weight sequence that

implies divergence of the variance. We can though say the following:

(i) When
∑n

i=1 ωi converges, the variance does not diverge. This can be seen by

bounding ωi∑i
j=1 ωj

from above by ωi
ω1
.

(ii) If the variance diverges the expectation diverges too.

4.4.3. Rate of Convergence

We can derive a rate of convergence for the depth of node n that is similar to the

rate of convergence for the number of branches.

Theorem 4.15. Let Dωn denote the number of branches of a weighted recursive tree.

Then

dW

(
Dωn − E[Dωn ]√

Var(Dωn)
,G

)
≤ 1√

Var(Dωn)

√
28 +

√
π√

π
. (4.99)

This bound decreases to 0 if and only if Var(Dωn) diverges, which is the same criterion

as we had for the CLT.

Proof. The proof follows steps similar to the proof of Theorem 4.8.

This concludes the results about the depth of node n, we will continue with

another statistic: the number of leaves.

4.5. Number of Leaves

We will compute the number of leaves for a specific kind of weighted recursive

tree only. In this section we assume that the weight sequence (ωi)i∈N is such that for
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some θ > 0,

ωi =

θ for 1 ≤ i ≤ k

1 otherwise.
(4.100)

We will call such WRTs θk-RTs and denote them by T θkn . The techniques used here

should also apply for more general tree models, but with some accompanying cumber-

some notation.

Theorem 4.16. Let Lθkn denote the number of leaves of a WRT T θkn . Then

(i) for some constant C ′ such that |C ′|< |k(θ − 1)|+k(θ+1)
2

,

E
[
Lθkn
]

=
n

2
+ C ′ +O

(
1

n

)
(4.101)

(ii)

Var
(
Lθkn
)

=
n

12
+O(1) and (4.102)

(iii) for all t ≥ 0,

P
(∣∣∣Lθkn − E

[
Lθ

k

n

]∣∣∣ ≥ t
)
≤ 2e−6

t2

k(θ−1)+n+2 e
6t(kθ(k−1))

(k(θ−1)+n−1)(k(θ−1)+n+2) . (4.103)

Proof. The proof will make use of a martingale argument. First, note that for n ≥ 2

we have

Lθkn = Lθkn−1 + Y θk

n (4.104)

where

Y θk

n =

1 if the parent of n was not a leaf at time n− 1

0 otherwise
(4.105)
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and Lθk1 = 0, implying in particular Lθk2 = 1.

We will now construct the martingale that we will use throughout the proof. We

want to find an expression for E
[
Lθkn |Lθ

k

n−1

]
, so that we can use a martingale to study

the properties of Lθkn . First of all let N θk

n denote the number of leaves among the first

k nodes at time n. We have for n ≥ k + 1,

E
[
Y θk

n

∣∣∣Lθkn−1] =
k∑
j=0

E
[
Y θk

n

∣∣∣Lθkn−1, N θk

n−1 = j
]
P
(
N θk

n−1 = j
)

=
k∑
j=0

P
(
Y θk

n = 1
∣∣∣Lθkn−1, N θk

n−1 = j
)
P
(
N θk

n−1 = j
)

=
k∑
j=0

(
1− P

(
Y θk

n = 0
∣∣∣Lθkn−1, N θk

n−1 = j
))

P
(
N θk

n−1 = j
)

=
k∑
j=0

(
1−

Lθkn−1 − j
kθ + n− 1− k

− θj

kθ + n− 1− k

)
P
(
N θk

n−1 = j
)

=
k∑
j=0

P
(
N θk

n−1 = j
)
−

k∑
j=0

Lθkn−1
kθ + n− 1− k

P
(
N θk

n−1 = j
)

+
k∑
j=0

(1− θ)j
kθ + n− 1− k

P
(
N θk

n−1 = j
)

= 1−
Lθkn−1

kθ + n− 1− k
+

(1− θ)E
[
N θk

n−1

]
kθ + n− 1− k

.

(4.106)

We thus get

E
[
Lθkn
∣∣∣Lθkn−1] = E

[
Lθkn−1 + Y θk

n

∣∣∣Lθkn−1]
= Lθkn−1 + E

[
Y θk

n

∣∣∣Lθkn−1]
= Lθkn−1 + 1−

Lθkn−1
kθ + n− 1− k

+
(1− θ)E

[
N θk

n−1

]
kθ + n− 1− k

=
k(θ − 1) + n− 2

k(θ − 1) + n− 1
Lθkn−1 +

(1− θ)
(
E
[
N θk

n−1

]
− k
)

+ n− 1

k(θ − 1) + n− 1
.

(4.107)
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We now set Xθk

n := a(n)Lθkn + b(n) and try to find a(n) and b(n) such that

E
[
Xθk

n

∣∣∣Lθkn−1] = Xθk

n−1. Now we have that

E
[
Xθk

n

∣∣∣Lθkn−1] = Xθk

n−1

⇔ a(n)E
[
Lθkn
∣∣∣Lθkn−1]+ b(n) = a(n− 1)Lθkn−1 + b(n− 1)

⇔ a(n)

k(θ − 1) + n− 2

k(θ − 1) + n− 1
Lθkn−1 +

(1− θ)
(
E
[
N θk

n−1

]
− k
)

+ n− 1

k(θ − 1) + n− 1

+ b(n)

= a(n− 1)Lθkn−1 + b(n− 1)

⇔
(
a(n)

k(θ − 1) + n− 2

k(θ − 1) + n− 1
− a(n− 1)

)
Lθkn−1

+ a(n)
(1− θ)

(
E
[
N θk

n−1

]
− k
)

+ n− 1

k(θ − 1) + n− 1
+ b(n)− b(n− 1) = 0.

(4.108)

To simplify this equation we first set the factor of Lθkn equal to 0, which gives

a(n)
k(θ − 1) + n− 2

k(θ − 1) + n− 1
− a(n− 1) = 0⇔ k(θ − 1) + n− 2

k(θ − 1) + n− 1
=
a(n− 1)

a(n)
. (4.109)

Since we do not have boundary conditions we choose a(n) = k(θ − 1) + n− 1.

Now we similarly need

a(n)
(1− θ)

(
E
[
N θk

n−1

]
− k
)

+ n− 1

k(θ − 1) + n− 1
+ b(n)− b(n− 1) = 0

⇔ b(n)− b(n− 1) = (θ − 1)
(
E
[
N θk

n−1

]
− k
)
− (n− 1).

(4.110)

This is true for

b(n) = (θ − 1)

(
n∑

i=k+1

E
[
N θk

i−1

]
− k

)
−

n∑
i=k+1

i− 1. (4.111)
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We thus define for n ≥ k + 1,

Xθk

n := (k(θ − 1) + n− 1)Lθkn + (θ − 1)

(
n∑

i=k+1

E
[
N θk

i−1

]
− k

)
−

n∑
i=k+1

i− 1 (4.112)

and thus have E
[
Xθk

n |Lθ
k

n−1

]
= Xθk

n−1.

We can now use this martingale to get the expectation. Since Xθk

n is a martingale

we get for all n ≥ k + 1,

E
[
Xθk

n

]
= E

[
Xθk

k+1

]
. (4.113)

Also we have

E
[
Xθk

k+1

]
= (k(θ − 1) + k + 1− 1)E

[
Lθkk+1

]
+ (1− θ)

(
E
[
N θk

k

]
− k
)

+ k

= kθ
k + 1

2
+ (1− θ)

(
k

2
− k
)

+ k

= kθ
k + 1

2
+
k

2
(1 + θ)

=
k

2
(kθ + 1 + 2θ)

(4.114)

where the second equation comes from the fact that up to time k + 1 the tree has the

same attachment probabilities as a uniform recursive tree.

This gives us an expression for E
[
Lθkn
]
:

E
[
Xθk

n

]
=
k

2
(kθ + 1 + 2θ)

⇔ a(n)E
[
Lθkn
]

+ b(n) =
k

2
(kθ + 1 + 2θ)

⇔ E
[
Lθkn
]

=
1

a(n)

(
k

2
(kθ + 1 + 2θ)− b(n)

)
.

(4.115)
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So we have

E
[
Lθkn
]

=
1

k(θ − 1) + n− 1

·

(
k

2
(kθ + 1 + 2θ)− (θ − 1)

(
n∑

i=k+1

E
[
N θk

i−1

]
− k

)
+

n∑
i=k+1

i− 1

)

=
k(kθ + 1 + 2θ)

2(k(θ − 1) + n− 1)
+

1− θ
k(θ − 1) + n− 1

(
n∑

i=k+1

E
[
N θk

i−1

]
− k

)

+
1

k(θ − 1) + n− 1

n∑
i=k+1

i− 1

=
1

k(θ − 1) + n− 1

(n− k)(n− k − 1)

2
+ C +O

(
1

n

)
=
n

2
+

(n− k)(n− k − 1)− n(k(θ − 1) + n− 1)

2(k(θ − 1) + n− 1)
+ C +O

(
1

n

)
=
n

2
+
n(−θ − 1)k + k + k2

2(k(θ − 1) + n− 1)
+ C +O

(
1

n

)
=
n

2
+ C ′ +O

(
1

n

)

(4.116)

where |C|< |k(θ − 1)| and |C ′|< |k(θ− 1)|+k(θ+1)
2

. In the fifth line we used that for all

i = k + 1, . . . , n, we have |E[N θk

i−1] − k|< k since at any time there can be between 0

and k − 1 leaves among the first k nodes.

We will now derive the concentration equality. Because it is easier to manipulate

zero-martingales we now set

Zθk

n : = Xθk

n − E
[
Xθk

k+1

]
= (k(θ − 1) + n− 1)Lθkn + (θ − 1)

(
n∑

i=k+1

E
[
N θk

i−1

]
− k

)

−
n∑

i=k+1

i− 1− k

2
(k(θ + 2) + 1).

(4.117)
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Then in particular

Zθk

k+1 = Xθk

k+1 − E
[
Xθk

k+1

]
= kθ

(
Lθkk+1 − E

[
Lθkk+1

])
. (4.118)

We have

Zθk

i − Zθk

i−1

= Xθk

i −Xθk

i−1

= (k(θ − 1) + i− 1)Lθki − (1− θ)
i−1∑
j=k

(
E
[
N θk

j

]
− k
)
−

i−1∑
j=k

j

−

[
(k(θ − 1) + i− 2)Lθki−1 − (1− θ)

i−2∑
j=k

(
E
[
N θk

j

]
− k
)
−

i−2∑
j=k

j

]

= (k(θ − 1) + i− 1)Lθki − (k(θ − 1) + i− 2)Lθki−1

− (1− θ)E
[
N θk

i−1

]
+ (1− θ)k − i+ 1.

(4.119)

Now we use that

Lθki = Lθki−1 + Y θk

i (4.120)

and

E
[
Y θk

i

]
= 1−

E
[
Lθki−1

]
− E

[
N θk

i−1

]
k(θ − 1) + i− 1

−
θE
[
N θk

i−1

]
k(θ − 1) + i− 1

(4.121)
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to get

Zθk

i − Zθk

i−1

= Zθk

i − Zθk

i−1 − (k(θ − 1) + i− 1)

·

E [Y θk

i

]
−

1−
E
[
Lθki−1

]
− E

[
N θk

i−1

]
k(θ − 1) + i− 1

−
θE
[
N θk

i−1

]
k(θ − 1) + i− 1


= (k(θ − 1) + i− 1)

(
Lθki−1 + Y θk

i

)
− (k(θ − 1) + i− 2)Lθki−1

− (1− θ)E
[
N θk

i−1

]
+ (1− θ)k − i+ 1− (k(θ − 1) + i− 1)E

[
Y θk

i

]
+ k(θ − 1) + i− 1− E

[
Lθki−1

]
+ E

[
N θk

i−1

]
− θE

[
N θk

i−1

]
= Lθki−1 − E

[
Lθki−1

]
+ [k(θ − 1) + i− 1]

[
Y θk

i − E
[
Y θk

i

]]
.

(4.122)

Since Zθk

i is only defined for k + 1 ≤ i ≤ n, the factor k(θ − 1) + i − 1, which

actually is the sum of all weights at time i − 1, is positive for all such i. Setting

Rθk

i := Lθki−1 − E
[
Lθki−1

]
− [k(θ − 1) + i− 1]E

[
Y θk

i

]
, we get

Rθk

i ≤ Zθk

i − Zθk

i−1 = Rθk

i + [k(θ − 1) + i− 1]Y θk

i ≤ Rθk

i + k(θ − 1) + i− 1. (4.123)

This allows us to derive a concentration inequality via Theorem 2.15. In our case, the

martingale starts with k + 1 and we thus get

P

(∣∣∣∣∣
n−1∑
i=k+1

Zθk

i+1 − Zθk

i

∣∣∣∣∣ ≥ t

)
≤ 2e

− 2t2∑n
i=k+1

(k(θ−1)+i−1)2 (4.124)

which is equivalent to

P
(∣∣∣Zθk

n − Zθk

k+1

∣∣∣ ≥ t
)
≤ 2e

− 2t2∑n
i=k+1

(k(θ−1)+i−1)2 . (4.125)
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We can now bound
∑n

i=k+1(k(θ− 1) + i− 1)2 by an integral bound. Since (k(θ−

1) + i− 1)2 is an increasing function, we have

n∑
i=k+1

(k(θ − 1) + i− 1)2 ≤
∫ n

k+1

(k(θ − 1) + x− 1)2 + (k(θ − 1) + n− 1)2

=
(k(θ − 1) + x− 1)3

3

∣∣∣∣∣
n

x=k+1

+ (k(θ − 1) + n− 1)2

=
(k(θ − 1) + n− 1)3

3
− (kθ)3

3
+ (k(θ − 1) + n− 1)2

≤ (k(θ − 1) + n− 1)3

3
+ (k(θ − 1) + n− 1)2.

(4.126)

Thus,

e
− 2t2∑n

i=k+1
(k(θ−1)+i−1)2 ≤ e

− 2t2

(k(θ−1)+n−1)3

3 +(k(θ−1)+n−1)2 = e
− 6t2

(k(θ−1)+n−1)3+3(k(θ−1)+n−1)2 . (4.127)

In order to derive a concentration equality for Lθkn we notice first of all that

Zθk

n = (k(θ − 1) + n− 1)Lθkn + (θ − 1)

(
n∑

i=k+1

E
[
N θk

i−1

]
− k

)

−
n∑

i=k+1

i− 1− k

2
− E

[
Xθk

k+1

]
= (k(θ − 1) + n− 1)

(
Lθkn − E

[
Lθkn
])
.

(4.128)

Moreover

∣∣∣Zθk

k+1

∣∣∣ =
∣∣∣θk (Lθkk+1 − E

[
Lθkk+1

])∣∣∣ ≤ θk

(
k − k + 1

2

)
=
θk(k − 1)

2
(4.129)

where we use that the expected number of leaves is that of a URT until time k + 1.
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Thus for all t ≥ 0,

P
(∣∣∣Lθkn − E

[
Lθkn
]∣∣∣ ≥ t

)
= P

(
k(θ − 1) + n− 1)

∣∣∣Lθkn − E
[
Lθkn
]∣∣∣ ≥ (k(θ − 1) + n− 1)t

)
= P

(∣∣∣Zθk

n

∣∣∣ ≥ (k(θ − 1) + n− 1)t
)

= P
(∣∣∣Zθk

n

∣∣∣− ∣∣∣Zθk

k+1

∣∣∣ ≥ (k(θ − 1) + n− 1)t−
∣∣∣Zθk

k+1

∣∣∣)
≤ P

(∣∣∣Zθk

n

∣∣∣− ∣∣∣Zθk

k+1

∣∣∣ ≥ (k(θ − 1) + n− 1)t− kθ(k − 1)

2

)
≤ P

(∣∣∣∣∣∣Zθk

n

∣∣∣− ∣∣∣Zθk

k+1

∣∣∣∣∣∣ ≥ (k(θ − 1) + n− 1)t− kθ(k − 1)

2

)
≤ P

(∣∣∣Zθk

n − Zθk

k+1

∣∣∣ ≥ (k(θ − 1) + n− 1)t− kθ(k − 1)

2

)
≤ 2e

−
6((k(θ−1)+n−1)t− kθ(k−1)

2 )
2

(k(θ−1)+n−1)3+3(k(θ−1)+n−1)2

= 2e
−6

(k(θ−1)+n−1)2t2+( kθ(k−1)
2 )

2
−2(k(θ−1)+n−1)t

kθ(k−1)
2

(k(θ−1)+n−1)3+3(k(θ−1)+n−1)2

= 2e−6
t2

(k(θ−1)+n−1)+3 e
−3 (kθ(k−1))2−4(k(θ−1)+n−1)t(kθ(k−1))

2(k(θ−1)+n−1)3+6(k(θ−1)+n−1)2

≤ 2e−6
t2

k(θ−1)+n+2 e
12t(kθ(k−1))

2(k(θ−1)+n−1)2+6(k(θ−1)+n−1)

≤ 2e−6
t2

k(θ−1)+n+2 e
6t(kθ(k−1))

(k(θ−1)+n−1)(k(θ−1)+n+2) .

(4.130)

We will now calculate the variance, Var
(
Lθkn
)
. We will use that

Zθk

n =
k(θ − 1) + n− 1

k(θ − 1) + n− 2
Zθk

n−1 + [k(θ − 1) + n− 1]
(
Y θk

n − E
[
Y θk

n

])
(4.131)

which we obtain by observing the following. First of all

Zθk

n = Zθk

n−1 + Lθkn−1 − E
[
Lθkn−1

]
+ [k(θ − 1) + n− 1]

(
Y θk

n − E
[
Y θk

n

])
. (4.132)
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Also

Lθkn−1 =
1

k(θ − 1) + n− 2

(
Zθk

n−1 + E
[
Xθk

k+1

]
− (θ − 1)

(
n−2∑
i=k

E
[
N θk

i

]
− k

)
+

n−2∑
i=k

i

) (4.133)

and similarly

E
[
Lθkn−1

]
=

1

k(θ − 1) + n− 2

(
E
[
Zθk

n−1

]
+ E

[
Xθk

k+1

]
− (θ − 1)

(
n−2∑
i=k

E
[
N θk

i

]
− k

)
+

n−2∑
i=k

i

)
.

(4.134)

Moreover we use that for all n

E
[
Zθk

n

]
= 0. (4.135)

Using (4.131) we get,

E
[
Zθk

n

2
]

=

(
k(θ − 1) + n− 1

k(θ − 1) + n− 2

)2

E
[
Zθk

n−1
2
]

+ 2
(k(θ − 1) + n− 1)2

k(θ − 1) + n− 2
E
[
Zθk

n−1

(
Y θk

n − E
[
Y θk

n

])]
+ (k(θ − 1) + n− 1)2 E

[(
Y θk

n − E
[
Y θk

n

])2]
.

(4.136)
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Using again E
[
Zθk

n

]
= 0 for all n and the fact that Zθk

n−1 is Lθk1 , . . . ,Lθ
k

n−1 mea-

surable, we get

E
[
Zθk

n−1

(
Y θk

n − E
[
Y θk

n

])]
= E

[
Zθk

n−1Y
θk

n

]
− E

[
Zθk

n−1E
[
Y θk

n

]]
= E

[
E
[
Zθk

n−1Y
θk

n

∣∣∣Lθk1 , . . . ,Lθkn−1]]
= E

[
Zθk

n−1E
[
Y θk

n

∣∣∣Lθk1 , . . . ,Lθkn−1]]
= E

Zθk

n−1

1−
Lθkn−1

kθ + n− 1− k
+

(1− θ)E
[
N θk

n−1

]
kθ + n− 1− k


= E

[
Zθk

n−1

]
−

E
[
Zθk

n−1Lθ
k

n−1

]
kθ + n− 1− k

+ E
[
Zθk

n−1

] (1− θ)E
[
N θk

n−1

]
kθ + n− 1− k

= −E

[
Zθk

n−1

kθ + n− 1− k

·

Zθk

n−1 + E
[
Xθk

k+1

]
+ (θ − 1)

∑n−2
i=k

(
E
[
N θk

i

]
− k
)
−
∑n−2

i=k i

k(θ − 1) + n− 2)

]

= −
E
[
Zθk

n−1
2
]

(k(θ − 1) + n− 1)(k(θ − 1) + n− 2)
.

(4.137)

Moreover

E
[
Y θk

n

]
= 1−

E
[
Lθkn−1

]
k(θ − 1) + n− 1

+
(1− θ)E

[
N θk

n−1

]
k(θ − 1) + n− 1

= 1−
O
(
1
n

)
+O(1) + n

2

k(θ − 1) + n− 1
+

(1− θ)E
[
N θk

n−1

]
k(θ − 1) + n− 1

=
1

2
+O

(
1

n

)
(4.138)
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and

Var
(
Y θk

n

)
= E

[
Y θk

n

]
− E

[
Y θk

n

]2
=

1

2
+O

(
1

n

)
−
(

1

2
+O

(
1

n

))2

=
1

4
+O

(
1

n

)
.

(4.139)

We thus get the recursion

E
[
Zθk

n

2
]

=

(
k(θ − 1) + n− 1

k(θ − 1) + n− 2

)2

E
[
Zθk

n−1
2
]

− 2
(k(θ − 1) + n− 1)2

k(θ − 1) + n− 2

E
[
Zθk

n−1
2
]

(k(θ − 1) + n− 1)(k(θ − 1) + n− 2)

+ (k(θ − 1) + n− 1)2
(

1

4
+O

(
1

n

))
=

(k(θ − 1) + n− 1)2 − 2(k(θ − 1) + n− 1)

(k(θ − 1) + n− 2)2
E
[
Zθk

n−1
2
]

+ (k(θ − 1) + n− 1)2
(

1

4
+O

(
1

n

))
=

(k(θ − 1) + n− 3)(k(θ − 1) + n− 1)

(k(θ − 1) + n− 2)2
E
[
Zθk

n−1
2
]

+ (k(θ − 1) + n− 1)2
(

1

4
+O

(
1

n

))
.

(4.140)

This is equivalent to

k(θ − 1) + n− 2

k(θ − 1) + n− 1
E
[
Zθk

n

2
]

=
k(θ − 1) + n− 3

k(θ − 1) + n− 2
E
[
Zθk

n−1
2
]

+ (k(θ − 1) + n− 2) (k(θ − 1) + n− 1)

(
1

4
+O

(
1

n

))
.

(4.141)

Now set

W θk

n :=
k(θ − 1) + n− 2

k(θ − 1) + n− 1
E
[
Zθk

n

2
]

(4.142)
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then we have

W θk

n = W θk

n−1 + (k(θ − 1) + n− 2) (k(θ − 1) + n− 1)

(
1

4
+O

(
1

n

))
. (4.143)

This is satisfied for n ≥ 2 by

W θk

n =
n∑
i=2

(k(θ − 1) + i− 2) (k(θ − 1) + i− 1)

(
1

4
+O

(
1

n

))
. (4.144)

Hence

E
[
Zθk

n

2
]

=
k(θ − 1) + n− 1

k(θ − 1) + n− 2

·
n∑
i=2

(k(θ − 1) + i− 2) (k(θ − 1) + i− 1)

(
1

4
+O

(
1

n

))
.

(4.145)
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And thus

Var
(
Lθkn
)

= Var

(
1

k(θ − 1) + n− 1

[
Zθk

n − (θ − 1)
∑
i=k

(
E
[
N θk

i

]
− k
)

+
n−1∑
i=k

i+ E
[
Xθk

k+1

] ])

=
1

(k(θ − 1) + n− 1)2

(
E
[
Zθk

n

2
]
− E

[
Zθk

n

]2)
=

1

(k(θ − 1) + n− 1)2
k(θ − 1) + n− 1

k(θ − 1) + n− 2
n∑
i=2

(k(θ − 1) + i− 2) (k(θ − 1) + i− 1)

(
1

4
+O

(
1

n

))
=

1

(k(θ − 1) + n− 1)(k(θ − 1) + n− 2)
n∑
i=2

(k(θ − 1) + i− 2) (k(θ − 1) + i− 1)

(
1

4
+O

(
1

n

))
=

1

(k(θ − 1) + n− 1)(k(θ − 1) + n− 2)

1

4

n∑
i=2

i2 +O(1)

=
1

(k(θ − 1) + n− 1)(k(θ − 1) + n− 2)

1

4

(
(2n+ 1)(n+ 1)n

6
− 1

)
+O(1)

=
n

12
+O(1).

(4.146)

Remark 4.17. We can also get some results by writing Lωn as the sum of 1(`ωi ) where

`ωi denotes the event that i is a leaf in a WRT. It follows from the construction principle

that

P (`ωi ) =
n∏

j=i+1

(
1− ωi

ω1 + · · ·+ ωj−1

)
. (4.147)

After some manipulation this expression becomes

P (lωi ) =
ω1 + · · ·+ ωi−1
ω1 + · · ·+ ωn−1

n−1∏
j=i+1

(
1 +

ωj − ωi
ω1 + · · ·+ ωj−1

)
. (4.148)
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Moreover we get the exact expression for the expectation of the number of leaves of a

θk-tree by writing E
[
Lθkn
]

=
∑n

i=2 E
[
1
(
`θ
k

i

)]
and using the above expression. After

some computations we get by this method

E
[
Lθkn
]

=
n

2
+
k(θ − 1)

2
+

kθ(1− kθ)
2(k(θ − 1) + n− 1)

+
k − 1

2

n−1−k∏
i=1

θ(k − 1) + i

θk + i
. (4.149)

Remark 4.18. It is possible to derive a CLT by using this martingale, but we will now

introduce another coupling construction, that allows much easier inferences concerning

the distribution of the number of leaves.

4.6. A Coupling View of Some Special Kinds of WRTs

We will now introduce three coupling constructions for special kinds of WRTs.

They all have in common that they can only be applied to WRTs for which there is a

k ∈ N such that the weights are constant for all nodes i with i > k. This is a quite

restrictive assumption, but we will see that the first and the third coupling allow very

easy conclusions concerning several statistics.

4.6.1. Construction of a θk-RT from a URT in the Case θ ∈ N+

In the case where θ ∈ N, we can use the following reconstruction to get a θk-

RT from a URT. To emphasize the assumption, we write θ = m from now on. First

construct a URT on mk + n − k nodes. We write Tmk+n−k for this URT. Since we

want the weight of the first k nodes to be m we then join several nodes into one in the

following way. To avoid confusion let us denote the nodes in the URT by i and the

nodes in the reconstructed tree by iT . Then we have the following:

• The nodes 1, . . . ,m will become the node 1T ,

• m+ 1, . . . , 2m will become the node 2T . . .

• (k − 1)m+ 1, . . . , km become kT .
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The new node iT gets all the children of (i−1)m+1, . . . , im. But since we joined

several nodes into one and the nodes (j−1)m+1, . . . , jm might have different parents,

for 1 < j ≤ k, we set the parent of jT as the parent of (j − 1)m + 1, i.e. of the node

with the smallest label among those that become jT . If in the URT the parent of

(j − 1)m+ 1 is any of the nodes (i− 1)m+ 1, . . . , im, the parent of jT is iT .

For j > k, we set jT = j + k(m − 1), so all nodes after k only correspond to a

single node, we just need to "translate" the names of the nodes to take into account

that we used mk nodes instead of k for the first k nodes in the reconstructed tree. If

the parent of node j + k(m− 1) for j > k is among the first km nodes of the URT, we

check into which range this node falls and the parent of jT is chosen as above. In other

words if, for 1 ≤ i ≤ k, the parent of node j+k(m−1) is one of (i−1)m+1, . . . , im, the

parent of node jT is node iT . If the parent of node j+k(m−1) is equal to h+k(m−1)

with h > k, the parent of node jT is node hT . The tree we thus obtain is called T mkn .

We can easily verify that the probabilities are right.

• For i < j ≤ k,

P(jT attaches to iT )

= P((j − 1)m+ 1 attaches to any of the nodes (i− 1)m+ 1, . . . , im)

=
m

(j − 1)m

=
1

j − 1
.

(4.150)

• For i ≤ k < j,

P(jT attaches to iT )

= P(j + k(m− 1) attaches to any of the nodes (i− 1)m+ 1, . . . , im)

=
m

j + k(m− 1)− 1

=
m

j − 1− k + km
.

(4.151)
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• For k < i < j,

P(jT attaches to iT )

= P(j + k(m− 1) attaches to i+ k(m− 1))

=
1

j + k(m− 1)− 1

=
1

j − 1− k + km
.

(4.152)

Let now Lmk+n−k denote the number of leaves of Tmk+n−k and Lmkn denote the

number of leaves of T mkn . Then Lmk+n−k can be used to bound Lmkn . First of all if a node

i > km is a leaf in Tmk+n−k, the corresponding node in T mkn , which is i− k(m− 1)T , is

also a leaf. The reconstruction process thus only affects the children of the nodes i^T

with 1 ≤ i ≤ k, so we can have at most k additional leaves.

For 2 ≤ i ≤ k, we note that 2m + 1, 3m + 1, . . . , (k − 1)m + 1, determine the

parent of 3T , 4T , . . . kT respectively. Similarly the nodes km+1, km+2, . . . , km+n−k

determine the parent of (k+1)T , (k+2)T , . . . nT respectively. Hence if any of the above

are children of one of (i − 1)m + 1, (i − 1)m + 2, . . . , im, the node iT will not be a

leaf. Thus for i ≤ k, the node iT is a leaf if and only if there is no node with the label

2m+1, 3m+1, . . . , (k−1)m+1 and no node with label km+1, km+2, . . . , km+n−k

that attaches to any of the nodes (i−1)m+1, (i−1)m+2, . . . , im. This can theoretically

be used to calculate the exact probability that iT is leaf for 1 ≤ i ≤ k.

But without calculating these exact probabilities we can conclude the following.

For each 2 ≤ i ≤ k we can at most "loose" m− 1 leaves since if all (i− 1)m+ 1, . . . , im

are leaves in Tmk+n−k, iT will be a leaf in T mkn . Hence we can conclude that

Lmk+n−k + k > Lmkn > Lmk+n−k − k(m− 1). (4.153)
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Let moreover Ln denote the number of leaves in a URT on n nodes, then

E[Lmk+n−k] + k > E
[
Lmkn

]
> E[Lmk+n−k]− k(m− 1)

⇔ n+ k(m− 1)

2
+ k > E

[
Lmkn

]
>
n+ k(m− 1)

2
− k(m− 1)

⇔ n+ k(m+ 1)

2
> E

[
Lmkn

]
>
n− k(m− 1)

2

⇔ E[Ln] +
k(m+ 1)

2
> E

[
Lmkn

]
> E[Ln]− k(m− 1)

2

⇒
∣∣∣E[Lmkn ]− E[Ln]

∣∣∣ ≤ k(m+ 1)

2
.

(4.154)

4.6.2. Construction of a θk-RT from a URT in the Case 1
θ
∈ N+

In this case the construction turns out to be a little bit more complicated. When

using the idea introduced above, in order to reduce the weight of the first k nodes given

a URT on an appropriate number of nodes we will now specify, we need to increase

the weight of the remaining n− k nodes. This means that the reconstruction affects a

much bigger number of nodes. This in turn implies that the coupling is not as useful

as the previous one but we nevertheless introduce it, to show the same principle can

be applied.

We now assume that the first k nodes have weight θ with θ = 1
m

for some m ∈ N

and that the remaining ones weight 1. Such a recursive tree on n nodes has a total

weight of k 1
m

+(n−k). Since the actual value of the weights does not matter, but only

the weights relative to each other, it is equivalent to construct a tree with the first k

nodes having weight 1 and the remaining ones m. This would result in a total weight

of k + (n− k)m. So we first construct a URT with nm− k(m− 1) nodes.

We leave the first k nodes as they are, so iT = i for i ≤ k. Then, for i ≥ k+ 1 we

need to join several nodes together. In particular:

• Nodes k + 1, . . . , k +m are joined together to form node (k + 1)T ,

• nodes k +m+ 1, . . . , k + 2m are joined together to form node (k + 2)T . . .
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• nodes k + (i− k − 1)m+ 1, . . . , k + (i− k)m form node iT . . .

• nodes k + (n− k − 1)m+ 1, . . . , k + (n− k)m form node nT .

Again, as before, the parent of iT in the reconstructed tree is the parent of

k+ (i− k− 1)m+ 1 in the URT and all children of the nodes we join together become

children of the new node. Except for the first k nodes, we need to remember that only

if a node has a child with label k+`m+1 for some 0 ≤ ` ≤ n−k−1, the corresponding

node will also have a child in the reconstructed tree.

We now check that this rearrangement gives us the right attachment probabilities.

• For i < j ≤ k+1 both the attachment probabilities in the URT and the weighted

recursive tree correspond to a URT, so there is nothing to check.

• For i ≤ k < j,

P
(
jT attaches to iT

)
= P(k + (j − k − 1)m+ 1 attaches to i)

=
1

k + (j − k − 1)m

=
1
m

k
m

+ j − k − 1
.

(4.155)

• For k < i < j,

P(jT attaches to iT )

= P(k + (j − k − 1)m+ 1 attaches to

one of k + (i− k − 1)m+ 1, . . . , k + (i− k)m)

=
m

k + (j − k − 1)m

=
1

k
m

+ j − k − 1
.

(4.156)

While this reconstruction gives the tree we wanted, i.e. T
1
m

k

n , it does not allow easy

conclusions concerning the number of leaves since the coupling affects the children of
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all but a finite number of nodes.

4.6.3. Constructing a Special Kind of WRT from a Hoppe Tree

Finally we will introduce a third coupling construction that can be applied for

a special case of WRTs that includes the two models presented above. We will now

rearrange a Hoppe tree instead of a URT in order to get a WRT. Let (ωi)i∈N be such that

there is a k ∈ N such that ωi = 1 for i > k. We can then construct the corresponding

WRT from a Hoppe tree using an inverse process than above. Instead of joining nodes

into one we will now split the root into k nodes.

First construct a Hoppe tree with n− k + 1 nodes and with θ, the weight of the

root, equal to
∑k

i=1 ωi. Then construct a weighted recursive tree of size k corresponding

to (ωi)i∈N. Now we replace the root of the Hoppe tree by this weighted recursive tree of

size k. For i ≥ 2, node i in the Hoppe tree becomes node i+k−1T in the reconstructed

tree. Then for all i ≥ 2, if i is a child of 1 in the Hoppe tree, i+k−1T becomes a child

of one of the nodes 1T , . . . , kT in the reconstructed tree proportional to their weights.

This means that if i is a child of 1 in the Hoppe tree, i+ k− 1T will become a child of

node jT in the reconstructed tree with probability ωj∑k
`=1 ω`

. Let us check that this gives

the right probabilities.

• For 1 ≤ i ≤ k < j,

P(jT is child of iT in reconstructed tree)

= P(j − k + 1 is child of 1 in Hoppe tree)
ωi∑k
`=1 ω`

=

∑k
`=1 ω`

j − k + 1− 2 +
∑k

`=1 ω`

ωi∑k
`=1 ω`

=
ωi

j − 1− k +
∑k

`=1 ω`
.

(4.157)
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• For k < i < j,

P(jT is child of iT in reconstructed tree)

= P(j − k + 1 is child of i− k + 1 in Hoppe tree)

=
1

j − k + 1− 2 +
∑k

`=1 ω`

=
1

j − 1 +
∑k

`=1 ω` − k
.

(4.158)

4.6.4. Using the Coupling for WRT Statistics Analysis

The coupling constructions given in previous subsections are useful in understand-

ing various WRT statistics with the aid of well known results on URTs and Hoppe trees.

We already gave an example in subsection 4.6.1. We demonstrate this briefly here for

the number of leaves and the height of a WRT T ωn with (ωi)i∈N such that ωi = 1 for

i > k.

First focusing on the number of leaves, the reconstruction process implies that all

the leaves of the Hoppe tree are still leaves in the reconstructed tree, since we do not

change any relation among the nodes 2, . . . , n− k+ 1 of the Hoppe tree or respectively

k + 1T , . . . nT of the reconstructed tree. There can be at most k − 1 additional leaves

among the first k nodes. Thus,

Lθn−k+1 ≤ Lωn ≤ Lθn−k+1 + k − 1

⇒ n− k + 1

2
+

∑k
i=1 ωi − 1

2
+O

(
1

n

)
≤ E [Lωn]

≤ n− k + 1

2
+

∑k
i=1 ωi − 1

2
+ k − 1 +O

(
1

n

)
⇒ n

2
+

∑k
i=1 ωi − k

2
+O

(
1

n

)
≤ E [Lωn] ≤ n

2
+

∑k
i=1 ωi + k

2
− 1 +O

(
1

n

)
⇒ E [Lωn] =

n

2
+O(1).

(4.159)

In a similar way, one can make conclusions about the variance, concentration and

asymptotic distribution of the number of leaves in a WRT with ωi = 1 for i > k for
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some k ∈ N.

Theorem 4.19. Let Lωn denote the number of leaves of a WRT of size n with (ωi)i∈R

such that there is a k ∈ N such that for all i > k we have ωi = 1. Then Lωn is

asymptotically normal.

Proof. In order to derive a central limit theorem for Lωn, we write

Lωn − E[Lθn−k+1]√
Var(Lθn−k+1)

=
Lωn−k+1 − E[Lθn−k+1]√

Var(Lθn−k+1)
−
Lωn−k+1 − Lθn√

Var(Lθn−k+1)
. (4.160)

Now we have by Theorem 3.17 that

Lωn−k+1 − E[Lθn−k+1]√
Var(Lθn−k+1)

n→∞−−−→
d
G (4.161)

and by (4.159) that

∣∣∣∣∣∣ L
ω
n−k+1 − Lθn√
Var(Lθn−k+1)

∣∣∣∣∣∣ ≤ k√
Var(Lθn−k+1)

a.s.−−→ 0 (4.162)

since Var(Lθn−k+1)
n→∞−−−→∞. Now we can apply Slutsky’s theorem, which we stated as

Theorem 2.16 and conclude that

Lωn − E[Lθn−k+1]√
Var(Lθn−k+1)

n→∞−−−→
d
G. (4.163)

As a second example, we discuss the height. Let Hω
n denote the height of a WRT

with (ωi)i∈N such that ωi = 1 for i > k. Let moreover Dω1,i and Dθ1,i denote the distance

between the root and node i in the reconstructed tree and the original tree respectively.

Then for any node iT , the path from the root to iT corresponds to the path from the
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root to the corresponding node in the original tree, i − k + 1, except that we might

have an additional path among the first k nodes instead of the first edge. Thus Dω1,i is

at least as big as Dθi−k+1.

Also Dω1,i is at most k − 1 bigger than the distance between the root and the

corresponding node in the original tree: For i ≤ k, Dω1,i is at most k − 1 anyway. For

i > k, node i − k + 1 in the original tree becomes node iT in the reconstructed tree.

Let j − k + 1 be the first node on the path from 1 to i − k + 1 in the original tree.

Then in the reconstructed tree jT will be attached to some h, where 1 ≤ h ≤ k. Thus

for all k + 1 ≤ i ≤ n, there is some h ≤ k such that,

Dω
1,i = Dω1,h + 1 +Dθj−k+1,i−k+1 = Dω1,h +Dθ1,i−k+1. (4.164)

Also Dω1,h ≤ k − 1, so we have

Dθ1,i−k+1 ≤ Dω
1,i ≤ Dθ1,i−k+1 + k − 1 (4.165)

which implies that

max
i=1,...,n−k+1

{D1,i} ≤ max
i=1,...,n

{D1,i} ≤ max
i=1,...,n−k+1

{D1,i}+ k − 1. (4.166)

Thus from Hn = maxi=1,...,n{D1,i}, we can derive that

Hθ
n−k+1 ≤ Hω

n ≤ Hθ
n−k+1 + k − 1. (4.167)
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According to Theorem 3.16 we have E[Hθ
n] = e ln(n)− 3

2
ln ln(n) +O(1). Now we have

e ln(n− k + 1)− 3

2
ln ln(n− k + 1)

= e

(
ln(n) + ln

(
1− k − 1

n

))
− 3

2

(
ln ln(n) + ln

(
1 +

ln
(
1− k−1

n

)
ln(n)

))
= e ln(n)− 3

2
ln ln(n) +O(1).

(4.168)

Thus we get for k > n,

e ln(n)− 3

2
ln ln(n) +O(1) ≤ E [Hω

n ] ≤ e ln(n)− 3

2
ln ln(n) +O(1) + k − 1 (4.169)

which implies

E [Hω
n ] = e ln(n)− 3

2
ln ln(n) +O(1). (4.170)

The CLT for Hω
n can be derived similarly as above by using Slutsky’s Theorem.
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5. BIASED RECURSIVE TREES

In Chapter 3 we introduced the representation of recursive trees as permutations

and showed that there is a bijection between uniform random permutations and uniform

random recursive trees. In [12] Altok and Işlak raise the question how the recursive

trees change when a different distribution on Sn is chosen. In particular, the properties

of the random recursive trees that are obtained from a riffle shuffle distribution on Sn

are studied.

In this chapter after introducing riffle-shuffle permutations, we will be analyzing

the associated p-biased recursive trees. Our study of this tree model will begin by

reviewing some results from [12] on the number of leaves. Then we will present our

further investigations on p-biased recursive trees. In particular, we will be working

on the number of branches, the number of nodes with at least k descendants and the

depth of node n.

5.1. Definitions and Basics

Riffle shuffle permutations are based on a common method to shuffle cards: a

deck of cards is first cut into two piles of approximately equal size and these piles are

then riffled together, so that the cards of the two piles interleave. A mathematical

model for riffle shuffles is given in [55].

Definition 5.1 ( [55]). In order to riffle shuffle a deck of n cards, the deck is first

cut into two piles according to a binomial distribution, so that the probability that the

first pile has k cards is (nk)
2n

. Intuitively this means that the deck is approximately cut

in half. The two piles are then riffled together by dropping the cards face down one

by one proportionally to the size of the remaining piles. More precisely, let A1 and A2

denote the sizes of the remaining piles. Then the probability that the next card comes

from pile i is equal to Ai
A1+A2

, i = 1, 2.
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This model is the simplest version of a riffle shuffle and was later generalized into

biased riffle shuffles, where the deck is cut into a piles and the sizes of the piles are

chosen according to a multinomial distribution, see [56].

Definition 5.2 ( [56]). A p-biased riffle shuffle permutation is obtained by first cutting

a deck of n cards into a piles by determining the pile sizes according to mult(a; ~p) with

~p = (p1, p2, . . . , pa). This means that pile sizes b1, . . . , ba are chosen with probability(
n

b1,...,ba

)∏a
i=1 pi

bi . Given the piles, they are riffled such that any of the
(

n
b1,...,ba

)
ways

of interleaving is equally likely. The order of the cards in each pile is not changed

in this process. We call the resulting distribution on Sn the p-biased riffle shuffle

distribution. When ~p is the uniform distribution over [a], i.e. ~p = ( 1
a
, . . . , 1

a
), the

resulting permutation is called an a-shuffle.

The first definition of a riffle shuffle we gave above corresponds to a 2-shuffle. The

shuffling of the cards after determining the sizes of the piles was described in different

ways in these first two definitions. It is standard in the literature that these ways

are equivalent. The following are a few more equivalent descriptions of p-biased riffle

shuffles.

Theorem 5.3 ( [55, 56]). The following are equivalent.

(i) γ is a p-biased riffle shuffle.

(ii) A deck of n cards is cut according to mult(a, ~p) and then the cards are dropped face

down one by one proportional to the size of the remaining piles. More precisely,

let Ai denote the remaining size of each pile, then the probability that the next

card comes from pile i is equal to Ai
A1+···+Aa , i = 1, . . . a.

(iii) A deck of n cards is cut according to mult(a, ~p). The piles are then sequentially

riffled together: first riffle pile 1 and 2 according to the rule in Definition 5.1.

Then riffle this combined pile with pile 3 according to that rule. Continue until

all piles are riffled together.

(iv) Partition the interval [0, 1] into a subintervals of length 1
a
. Then drop n points into

this interval according to the following rule: choose subinterval i with probability

pi and then drop the point uniformly in this interval. Subsequently label the points
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from 1 to n according to their order from smallest to largest and apply the function

f(x) = ax ( mod 1) to rearrange their order.

(v) γ is the inverse of a permutation constructed in the following way: First assign a

digit from 1 to a to each card according to ~p. Then reorder the cards by first taking

all cards with digit 1, then all cards with digit 2, and so on, without changing the

order of cards having the same digit.

Given a p-biased riffle shuffle permutation γ the corresponding recursive tree is

constructed in the usual way: take 1 as the root, attach 2 to 1, then attach every node

i to the node with the label that is the rightmost number to the left of i that is smaller

than i in γ. If there is no such element, attach i to 1.

Definition 5.4 ( [12]). A tree constructed from a permutation over {2, . . . , n} having

the p-biased riffle shuffle distribution is called a p-biased recursive tree, short BRT, and

denoted by T pn . When ~p is the uniform distribution over [a] we call the corresponding

tree an a-recursive tree, short a-RT, and denote it by T an .

In Figure 5.1 all 2-RTs on 4 vertices are depicted. We can see that not all

permutations of n numbers can be obtained as 2-shuffles, for example the permutation

(432) is not a 2-shuffle and the recursive tree on 4 vertices where all nodes are children

of 1 is thus not a 2-RT. This can be seen by considering that either 2 and 3 or 3 and 4

must be in the same pile and thus not all number can be in reversed order. Moreover we

can see that the probability of obtaining the permutation (234) is very high compared

to the others. The reason for this is that no matter how the deck is cut, just putting

the piles on top of each other in the original order is one way of interleaving them.

What makes this model very different from the weighted model and the other

generalizations mentioned in the literature is that we do not have a way of picturing

its dynamic growth. We mentioned in Chapter 3 that for many kinds of increasing

trees we can obtain a tree of size n by attaching n according to some rule to a node

of a tree of size n − 1. BRTs are neither defined in that way nor can such a rule be

easily derived from the definition. In [12], given the pile sizes, a way of constructing a



107

1234

1
2

1

2

3

4

1243

1
8

1

2

3 4

1324

1
8

1

2 3

4

1342

1
8

1

2 3

4

1423

1
8

1

2 4

3

Figure 5.1. All 2-recursive trees on 4 vertices with corresponding permutation and

probability.

BRT step by step is given but it cannot be considered as a dynamic growth because we

cannot construct a BRT on n vertices given a BRT on n−1 vertices using this method.

We thus need to base our results about BRTs on the permutation representation. The

description of p-biased riffle shuffles via their inverse will be crucial in many arguments.

5.2. Number of Leaves

We now review some results from [12] on the distribution of the number of leaves

in p-biased recursive trees.

Theorem 5.5. Let T pn be a BRT and Lpn the number of leaves of T pn . Then

E[Lpn] = (n− 2)
1−

∑a
s=1 p

2
s

2
+ 1 (5.1)

and

Var(Lpn) =(n− 2)

(
1−

∑a
s=1 p

2
s

2
−
(

1−
∑a

s=1 p
2
s

2

)2
)

+ 2(n− 3)

( ∑
1≤s1<s2<s3≤a

ps1ps2ps3 −
(

1−
∑a

s=1 p
2
s

2

)2
)
.

(5.2)
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When ~p is the uniform distribution over [a], these expressions simplify to

E[Lan] = 1 +
(n− 2)(a− 1)

2a
and Var(Lan) = (n− 2)

a2 − 1

4a2
− (n− 3)

a2 − 1

6a2
. (5.3)

In particular for fixed n asymptotically we get the same values as for URTs

lim
a→∞

E[Lan] =
n

2
and lim

a→∞
Var(Lan) =

n

12
. (5.4)

Proof. As already mentioned in the review of uniform recursive trees, i is a leaf if and

only if it is greater than its right neighbour in the permutation representation. So

given a tree constructed from a permutation γ with γ(j) = i, i is a leaf if and only if

γ(j) > γ(j + 1). Moreover the last element of the permutation is always a leaf. This

allows us to write the number of leaves of a p-biased recursive tree as a sum of indicator

random variables. So we have

Lpn =d

n−1∑
i=2

1(γ(i) > γ(i+ 1)) + 1. (5.5)

In the description of the inverse of a riffle shuffle each card is assigned a digit from

1 to a with probability p1, . . . , pa and the cards are then rearranged according to the

digits. This implies that when i < j, i will come before j in the inverse permutation if

and only if card i gets a digit that is smaller or equal to the digit of j. Since γ(i) >

γ(i+ 1) if and only if i+ 1 comes before i in the inverse permutation, γ(i) > γ(i+ 1)

is equivalent to i getting a bigger digit than i+ 1, i.e. to Xi > Xi+1.

Let Xi, for 2 ≤ i ≤ n be independent random variables with distribution ~p, over

{1, . . . , a}, then 1(γ(i) > γ(i+ 1)) = 1(Xi > Xi+1) and we can thus write

Lpn =d

n−1∑
i=2

1(Xi > Xi+1) + 1. (5.6)
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Since all Xi are identically distributed we have P(Xi > Xi+1) = P(Xi+1 > Xi).

Moreover P(Xi > Xi+1) + P(Xi = Xi+1) + P(Xi < Xi+1) = 1 and P(Xi = Xi+1) =∑a
s=1 p

2
s, thus

P(Xi > Xi+1) =
1−

∑a
s=1 p

2
s

2
. (5.7)

So we get

E[Lpn] =
n−1∑
i=2

E[1(Xi > Xi+1)] + 1 = (n− 2)
1−

∑a
s=1 p

2
s

2
+ 1. (5.8)

Let now `i = 1(Xi > Xi+1), then Lpn =
∑n−1

i=2 `i + 1 and by writing Var(Lpn) =∑n−1
i=2 Var(`i) + 2

∑
2≤i<j≤n−1 Cov(`i, `j) Altok and Işlak get

Var(Lpn) =(n− 2)

(
1−

∑a
s=1 p

2
s

2
−
(

1−
∑a

s=1 p
2
s

2

)2
)

+ 2(n− 3)

( ∑
1≤s1<s2<s3≤a

ps1ps2ps3 −
(

1−
∑a

s=1 p
2
s

2

)2
)
.

(5.9)

The results for the uniform case can be derived by substituting 1
a
for all ps in

these expressions.

As in the uniform case, the distribution of the number of leaves tends to a normal

distribution when ~p is non-degenerate, i.e. when there is no i = 1, . . . , a such that

pi = 1.
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Theorem 5.6 ( [12]). Let Lpn denote the number of leaves in a p-biased recursive tree

and assume that ~p is non degenerate. Then for any n ∈ N there is a C ∈ R such that

dK

(
Lpn − E[Lpn]√

Var(Lpn)
,G

)
≤ C√

n
. (5.10)

Moreover a result about the distance between the number of leaves of URTs and

of p-biased recursive trees is given.

Theorem 5.7 ( [12]). Let us denote the number of leaves in a URT, p-BRT and a-RT

of size n as Ln, Lpn and Lan respectively. Then we have the following:

(i) For n ≥ 3,

dTV (Ln,Lpn) ≤
(
n− 1

2

) a∑
s=1

p2s. (5.11)

(ii) For a ≥ n ≥ 3 and ~p the uniform distribution this bound can be improved and we

get

dTV (Ln,Lan) ≤ 1− a!

(a− n)! an
. (5.12)

(iii) These two bounds imply that Lan converges in distribution to Ln as a → ∞ and

that Lpn converges in distribution to Ln as a→∞ if ~p is non-degenerate.

(iv) For a given a, among all distributions on [a], the uniform distribution maximizes

the expected number of leaves of T pn . Thus if ~p is any distribution on [a], then

E[Lpn] ≤ E[Lan].

The proofs of Theorems 5.6 and 5.7 can be found in [12].

We now move on to giving new results about BRTs, namely, on the number of

branches, the number of nodes with at least k descendants and the depth of node n.
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5.3. Number of Branches

We will present two different methods to calculate the number of branches in a

BRT. While we use the first one to get explicit expressions we still mention the second

approach because it might be helpful for other problems.

5.3.1. Anti-records

As we have seen in Chapter 3, in URTs there are several possibilities to obtain

results on the number of branches. For WRTs we used the attachment probabilities,

which allowed us to write the number of branches as a sum of independent random

variables. For BRTs we will use the observation that the number of branches of a

recursive tree is equal to the number of anti-records in its permutation representation.

First of all let us observe that in a riffle shuffle permutation, for γ(i) to be an anti-

record, it must be the first card of one of the a piles. There can thus be at most a

anti-records. Moreover, as we consider riffle shuffles of {2, . . . , n}, there definitely is an

anti-record at γ(2). Using this approach we will prove the following theorem.

Theorem 5.8. Let Bpn denote the number of branches in a p-biased recursive tree T pn .

Then

E[Bpn] =
a−1∑
s=1

ps∑s
`=1 p`

1−

(
a∑

`=s+1

p`

)n−1
+ pa. (5.13)

Moreover we have the following asymptotic result

E[Bpn]
n→∞−−−→

a∑
s=1

ps∑s
`=1 p`

. (5.14)

When ~p is the uniform distribution over [a], letting Ban denote the number of branches

in an a-RT T an ,

E[Ban] =
a−1∑
s=1

1

s

(
1−

(
1− s

a

)n−1)
+

1

a
(5.15)
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and asymptotically

E[Ban]
n→∞−−−→ Ha. (5.16)

Moreover, when a tends to infinity, the expectation tends to the expectation for URTs,

namely

E[Ban]
a→∞−−−→ Hn−1. (5.17)

Proof. We will use the inverse formulation for biased riffle shuffles in order to study the

number of anti-records. When Xi < min{X2, . . . , Xi−1}, we get at i the first card from

a pile with cards that are smaller than all the previous ones, hence there is an anti-

record at i. Thus for 3 ≤ i < n, and γ a p-biased riffle shuffle, γ(i) is an anti-record if

and only if Xi is strictly less than X2, . . . Xi−1 where Xj, j = 2, . . . , n, are independent

random variables such that Xj = s, s ∈ [a], with probability ps. By independence of

the Xi’s we get for 3 ≤ i < n,

P(Xi < min{X2, . . . , Xi−1})

=
a∑
s=1

P(Xi < min{X2, . . . , Xi−1}|Xi = s)P(Xi = s)

=
a∑
s=1

P(s < min{X2, . . . , Xi−1})P(Xi = s)

=
a−1∑
s=1

(
a∑

`=s+1

p`

)i−2

ps.

(5.18)

We only sum from 1 to a − 1 because for i ≥ 3, min{X2, . . . , Xi−1} ≤ a and thus

P(a < min{X2, . . . , Xi−1}) = 0.

Let Ai = 1(γ(i) is an anti-record), then Bpn =
∑n

i=2Ai and γ(2) definitely is an

anti-record. We need to assume p1 6= 0 from now on in order to avoid division by 0.

This is not an important restriction though, since given ~p, we can define ~q as ~p without

the pi’s that are zero. Then the distributions obtained from ~p and ~q are the same.
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Now,

E[Bpn] = 1 +
n∑
i=3

E[Ai]

= 1 +
n∑
i=3

P(Xi < min{X2, . . . , Xi−1})

= 1 +
n∑
i=3

a−1∑
s=1

(
a∑

`=s+1

p`

)i−2

ps

= 1 +
a−1∑
s=1

ps

n−2∑
i=1

(
a∑

`=s+1

p`

)i

= 1 +
a−1∑
s=1

ps

(
1− (

∑a
`=s+1 p`)

n−1

1−
∑a

`=s+1 p`
− 1

)

=
a−1∑
s=1

ps∑s
`=1 p`

1−

(
a∑

`=s+1

p`

)n−1
+ pa.

(5.19)

Since p1 > 0 implies
(∑a

`=s+1 p`
)n−1 n→∞−−−→ 0 for all s,

E[Bpn]
n→∞−−−→

a−1∑
s=1

ps∑s
`=1 p`

+ pa =
a∑
s=1

ps∑s
`=1 p`

. (5.20)

In particular, for ~p the uniform distribution over [a] we have pi = 1
a
, so we get

E[Ban] =
a−1∑
s=1

1
a∑s
`=1

1
a

1−

(
a∑

`=s+1

1

a

)n−1
+

1

a

=
a−1∑
s=1

1

s

(
1−

(
a− s
a

)n−1)
+

1

a

=
a−1∑
s=1

1

s

(
1−

(
1− s

a

)n−1)
+

1

a

(5.21)

and

E[Ban]
n→∞−−−→

a∑
s=1

1

s
= Ha. (5.22)
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Moreover, for a fixed n, if a→∞, for fixed n the expectation tends to the expectation

of the number of branches for URTs. To show this we will manipulate the second line

of 5.21 and then use the following identity:

a∑
s=1

sk =
ak+1

k + 1
+O(ak) for all k ∈ N, k ≥ 0. (5.23)

We have

E[Ban] =
a−1∑
s=1

1

s

(
1−

(
a− s
a

)n−1)
+

1

a

=
a−1∑
s=1

1

a

1−
(
a−s
a

)n−1
1− a−s

a

+
1

a

=
a−1∑
s=1

1

a

n−2∑
`=0

(
a− s
a

)`
+

1

a

=
n−2∑
`=0

1

a`+1

a−1∑
s=1

s` +
1

a

=
n−2∑
`=0

1

a`+1

[
a`+1

`+ 1
+O(a`)

]
+

1

a

=
n−2∑
`=0

1

`+ 1
+O

(
1

a

)
a→∞−−−→ Hn−1.

(5.24)
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Theorem 5.9. Let Bpn denote the number of branches of a p-BRT. Then for ~p such

that p1 > 0,

Var(Bpn) =

a−1∑
s=1

ps∑s
`=1 p`

1−

(
a∑

`=s+1

p`

)n−1
− a−1∑

s=1

ps

−
a−1∑
s=1

p2s

(
a∑

`=s+1

p`

)2
1−

(∑a
`=s+1 p`

)2(n−2)
1−

(∑a
`=s+1 p`

)2
− 2

a−1∑
s=2

s−1∑
r=1

pspr

(
a∑

`=s+1

p`

a∑
`=r+1

p`

)
1−

(∑a
`=s+1 p`

∑a
`=r+1 p`

)n−2
1−

∑a
`=s+1 p`

∑a
`=r+1 p`

+ 2
a−1∑
s=2

ps
∑a

`=s+1 p`∑s
`=1 p`

s−1∑
r=1

pr∑r
q=1 pq

1−

(
a∑

`=s+1

p`

)n−3


− 2
a−1∑
s=2

ps

a∑
`=s+1

p`

s−1∑
r=1

pr
∑a

q=r+1 pq∑r
q=1 pq

1∑s
q=r+1 pq

·

( a∑
q=r+1

pq

)n−3

−

(
a∑

`=s+1

p`

)n−3


− 2
a−1∑
s=1

ps

a∑
`=s+1

p`

a−1∑
r=1

pr∑r
`=1 p`

(
a∑

`=r+1

p`

)2
1−

(∑a
`=s+1 p`

∑a
`=r+1 p`

)n−3
1−

∑a
`=s+1 p`

∑a
`=r+1 p`

+ 2
a−1∑
s=1

ps∑s
`=1 p`

a∑
`=s+1

p`

a−1∑
r=1

pr∑r
`=1 p`

(
a∑

`=r+1

p`

)n−1
1−

(
a∑

`=s+1

p`

)n−3


(5.25)
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and

Var(Bpn)
n→∞−−−→

a−1∑
s=1

ps∑s
`=1 p`

−
a−1∑
s=1

ps

−
a−1∑
s=1

p2s

(
a∑

`=s+1

p`

)2
1

1−
(∑a

`=s+1 p`
)2

− 2
a−1∑
s=2

s−1∑
r=1

pspr

(
a∑

`=s+1

p`

a∑
`=r+1

p`

)
1

1−
∑a

`=s+1 p`
∑a

`=r+1 p`

+ 2
a−1∑
s=2

ps
∑a

`=s+1 p`∑s
`=1 p`

s−1∑
r=1

pr∑r
q=1 pq

− 2
a−1∑
s=1

ps

a∑
`=s+1

p`

a−1∑
r=1

pr∑r
`=1 p`

(
a∑

`=r+1

p`

)2
1

1−
∑a

`=s+1 p`
∑a

`=r+1 p`
.

(5.26)

Proof. See Appendix A.

Theorem 5.10. Let Ban denote the number of branches in an a-RT. Then

Var(Ban) =
a−1∑
s=1

1

s

(
1−

(
a− s
a

)n−1)
− a− 1

a

−
a−1∑
s=1

1

a2

(
a− s
a

)2 1−
(
a−s
a

)2(n−2)
1−

(
a−s
a

)2
− 2

a−1∑
s=2

s−1∑
r=1

1

a2
a− s
a

a− r
a

1−
(
a−s
a

a−r
a

)n−2
1− a−s

a
a−r
a

+ 2
a−1∑
s=2

a− s
as

s−1∑
r=1

1

r

(
1−

(
a− s
a

)n−3)

− 2
a−1∑
s=2

a− s
a2

s−1∑
r=1

a− r
r

1

s− r

((
a− r
a

)n−3
−
(
a− s
a

)n−3)

− 2
a−1∑
s=1

a− s
a2

a−1∑
r=1

1

r

(
a− r
a

)2 1−
(
a−s
a

a−r
a

)n−3
1− a−s

a
a−r
a

+ 2
a−1∑
s=1

a− s
sa

a−1∑
r=1

1

r

(
a− r
a

)n−1(
1−

(
a− s
a

)n−3)

(5.27)
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and

Var(Ban)
n→∞−−−→Ha −

a− 1

a
+

2

a

a−1∑
s=2

a− s
s

s−1∑
r=1

1

r

− 1

a2

a−1∑
s=1

s2

a2 − s2

− 2

a2

a−2∑
s=1

a−s+1∑
r=1

sr

a2 − sr

− 2

a2

a−1∑
s=1

a−1∑
r=1

1

r

s(a− r)2

a2 − s(a− r)
.

(5.28)

Moreover, for fixed n, when a increases the variance approaches the variance from the

uniform case:

Var(Ban)
a→∞−−−→ Hn−1 −H(2)

n−1. (5.29)

Proof. See Appendix A.

Remark 5.11. There are various results in the literature on central limit theorems for

the number of records in random words, for example [57, 58]. We hope to adapt these

for obtaining asymptotic results on the number of branches in a subsequent work.

5.3.2. Sequential Shuffling

We now present another possibility to calculate the expectation and variance of

the number of branches of a BRT. As we described in Section 5.1, in a riffle shuffle,

after choosing the pile sizes, we might first shuffle pile 1 and 2 such that if there are

A1 cards remaining in pile 1 and A2 cards in pile 2, the probability that the next card

is from pile i is Ai
A1+A2

for i = 1, 2. More generally, for i = 2, . . . , n, after shuffling the

first i − 1 piles, we shuffle the obtained shuffled pile with the i-th pile such that if Ai

are the cards remaining in the i-th pile and Bi−1 the cards remaining in the already

shuffled pile, the probability that the next card comes from the i-th pile is Ai
Bi−1+Ai

.



118

Only the first card of each pile can be the start of a branch, since all other cards

will definitely have a smaller card of the same pile to their left. Hence we only need

to consider where these are. Let us call the first cards of each pile F1, F2, . . . , Fa and

the piles S1, . . . , Sa. If pile i is empty Fi refers to no card. We know that all cards of

S1, . . . , Si are smaller than Fi+1. Hence, if Si+1 is non-empty, Fi+1 attaches to 1 if and

only if it comes before any card from piles with lower index. Since each time we riffle

a new pile this only depends on the first step, the remaining pile sizes actually are the

initial pile sizes in our case.

Set Ii = 1(Fi attaches to 1), then we get

P(Ii = 1) =

0, if b1, . . . , bi = 0

bi
b1+···+bi , otherwise.

(5.30)

Or alternatively

E[Ii] = P(Ii = 1) =
bi

max{1, b1 + · · ·+ bi}
. (5.31)

Now Bpn =
∑a

i=1 Ii, and we can write, conditioned on the pile sizes,

E[Bpn|b1, . . . , ba] =
a∑
i=1

E[Ii|b1, . . . , ba] =
a∑
i=1

bi
max{1, b1 + · · ·+ bi}

. (5.32)

Since the pile sizes are chosen according to the multinomial distribution this gives

E[Bpn] =
∑
b1,...,ba

b1+···+ba=n

(
n

b1, . . . , ba

) a∏
i=1

pbii

a∑
j=1

bi
max{1, b1 + · · ·+ bi}

(5.33)

where we used E[X] = E[E[X|Y ]] with X = Bpn and Y = (b1, . . . , ba).
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We can give this a nicer form by considering for all j = 1, . . . , a the expression∑
b1,...,ba

b1+···+ba=n

(
n

b1,...,ba

)∏a
i=1 p

bi
i

bj
max{1,b1+···+bj} separately.

For j = 1 this gives

∑
b1,...,ba

b1+···+ba=n

(
n

b1, . . . , ba

) a∏
i=1

pbii
b1

max{1, b1}
= 1− P(b1 = 0) = 1−

(
a∑
i=2

pi

)n

. (5.34)

For j = 2, we get

∑
b1,...,ba

b1+···+ba=n

(
n

b1, . . . , ba

) a∏
i=1

pbii
b2

max{1, b1 + b2}

=
n∑
k=0

∑
b3,...,ba

b3+···+ba=k

n−k∑
b2=0

(
n

b1, . . . , ba

) a∏
i=1

pbii
b2

max{1, n− k}

=
n−1∑
k=0

∑
b3,...,ba

b3+···+ba=k

n!

b3! . . . ba!

a∏
i=3

pbii

n−k∑
b2=1

b2p
n−k−b2
1 pb22

max{1, n− k}(n− k − b2)! b2!

=
n−1∑
k=0

∑
b3,...,ba

b3+···+ba=k

n · · · (n− k + 1)

b3! . . . ba!

a∏
i=3

pbii

n−k∑
b2=1

(n− k)! b2
(n− k − b2)! b2!

pn−k−b21 pb22
max{1, n− k}

.

(5.35)

Now we have for 1 ≤ k < n,

n−k∑
b2=1

(n− k)! b2
(n− k − b2)! b2!

pn−k−b21 pb22
max{1, n− k}

=
n−k∑
b2=1

(n− k)!

(n− k − b2)! b2!
b2

n− k
pn−k−b21 pb22

=
n−k∑
b2=1

(n− k − 1) · · · (n− k − b2 + 1)

(b2 − 1)!
pn−k−b21 pb22

= p2

n−k−1∑
b2=0

(n− k − 1) · · · (n− k − b2)
b2!

pn−k−1−b21 pb22

= p2(p1 + p2)
n−k−1.

(5.36)
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By inserting this into 5.35 we thus get

p2

n−1∑
k=0

∑
b3,...,ba

b3+···+ba=k

n · · · (n− k + 1)

b3! · · · ba!

a∏
i=3

pbii (p1 + p2)
n−k−1

=
p2

p1 + p2

n−1∑
k=0

∑
b3,...,ba

b3+···+ba=k

n · · · (n− k + 1)

b3! · · · ba!

a∏
i=3

pbii (p1 + p2)
n−k

=
p2

p1 + p2

 ∑
B,b3,...,ba

B+b3+···+ba=n

n!

B! b3! · · · ba!

a∏
i=3

pbii (p1 + p2)
B − P(b1 = b2 = 0)


=

p2
p1 + p2

[(p1 + p2 + · · ·+ pa)
n − (1− (p1 + p2))

n]

=
p2

p1 + p2

(
1−

(
n∑
i=3

pi

)n)
.

(5.37)

The cases j = 3, . . . , a can be calculated similarly, thus we get in total

E[Bpn] =
a∑
i=1

pi
p1 + · · ·+ pi

(
1−

(
a∑

j=i+1

pi

)n)
(5.38)

which is the same expression as in Theorem 5.13.

For the variance we will use that Var(X) = E[Var(X|Y )] + Var(E[X|Y ]). We

have

Var(Bpn|b1, . . . , ba)

= E

( a∑
i=1

Ii

)2 ∣∣∣∣b1, . . . , ba
− E

[
a∑
i=1

Ii

∣∣∣∣b1, . . . , ba
]2

=
a∑
i=1

E[Ii|b1, . . . , ba] + 2
a∑
i=1

a∑
j=i

E[IiIj|b1, . . . , ba]

−
a∑
i=1

E[Ii|b1, . . . , ba]2 − 2
a∑
i=1

a∑
j=i

E[Ii|b1, . . . , ba]E[Ij|b1, . . . , ba]

=
a∑
i=1

E[Ii|b1, . . . , ba]− E[Ii|b1, . . . , ba]2.

(5.39)
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Here we were able to get rid of the mixed terms because Ii and Ij are independent for

i < j, given the pile sizes b1, . . . , ba: Fj attaches to 1 if and only if it is the first card

in the shuffle of S1, . . . , Sj−1, Sj, where S1, . . . , Sj−1 are already mixed together. This

only depends on the sum of the first j pile sizes, i.e. S1 + · · ·+Sj−1, and Sj, not on the

order of the previously shuffled cards, particularly not on the position of Fi. Hence

Var(Bpn|b1, . . . , ba) =
a∑
i=1

bi
max{1, b1 + · · ·+ bi}

− b2i
(max{1, b1 + · · ·+ bi})2

. (5.40)

Also

Var(E[Bpn|b1, . . . , ba]) = E[E[Bpn|b1, . . . , ba]2]− E[E[Bpn|b1, . . . , ba]]2 (5.41)

and

E[E[Bpn|b1, . . . , ba]2] =
∑
b1,...,ba

(
n

b1, . . . , bi

) a∏
i=1

pbii

(
a∑
i=1

bi
max{1, b1 + · · ·+ bi}

)2

(5.42)

and

E[E[Bpn|b1, . . . , ba]]2 =

( ∑
b1,...,bi

(
n

b1, . . . , ba

) a∏
i=1

pbii

a∑
i=1

bi
max{1, b1 + · · ·+ bi}

)2

. (5.43)

So we get in total

Var (Bpn) =
∑
b1,...,ba

(
n

b1, . . . , ba

) a∏
i=1

pbii

·

[(
a∑
i=1

bi
max{1, b1 + · · ·+ bi}

− b2i
(max{1, b1 + · · ·+ bi})2

)

+

(
a∑
i=1

bi
max{1, b1 + · · ·+ bi}

)2

−
(

n

b1, . . . , ba

) a∏
i=1

pbii

(
a∑
i=1

bi
max{1, b1 + · · ·+ bi}

)2 ]
.

(5.44)
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Remark 5.12. We argued at the beginning that the number of branches is limited by

the number of piles we split the deck into, i.e. a. In fact that argument also works for

the degree of any node: if two nodes are children of i, the smaller one must come later

in the permutation, thus the nodes attached to i form a decreasing sequence. But in a

p-biased riffle shuffle permutation any decreasing sequence must consist of cards from

different piles since cards from the same pile remain in the same order. Since there

are a piles, this implies that the degree of any node is limited by a. Since a-ary trees

also have this property, it would be interesting to see whether a-ary recursive trees also

share other properties with trees constructed from a-shuffles.

5.4. Number of Nodes with at least k Descendants

In a BRT the number of nodes with at least k descendants can also be calculated

using the construction of an inverse riffle shuffle. In a recursive tree T , node i has

at least k descendants if in the permutation representation of the tree at least the

k entries following i are bigger than i. This is the case if, given γ(j) = i, we have

γ(j + 1), . . . , γ(j + k) > i. This is equivalent to Xj ≤ {Xj+1, . . . , Xj+k} in the inverse

riffle shuffle construction. We thus get a node with a least k descendants for every Xj

satisfying the above, more precisely, if Xj ≤ {Xj+1 . . . Xj+k}, node i = γ(j) is a node

with at least k descendants.

Example 5.13. Let our deck consist of 8 cards. Assume that we cut it into 3 piles.

We first construct the inverse riffle shuffle by assigning digits from 1 to 3 to every card

as can be seen in Figure 5.2.

X2 X3 X4 X5 X6 X7 X8

1 2 3 1 3 1 1

Figure 5.2. Example of the construction of an inverse riffle shuffle permutation.

This gives the inverse permutation γ−1 = 2578346 and thus γ = 2673845 with

the corresponding recursive tree in Figure 5.3. As can be seen the tree has two nodes

with at least two descendants, 2 and 3. This corresponds to what we can derive from
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1

2

3

4

5

6

7
8

Figure 5.3. The biased recursive tree corresponding to γ = 2673845.

the permutation: π(5) = 3 and we have X5 ≤ X6, X7. Also π(2) = 2 and we have

X2 ≤ X3, X4.

We will now use this observation to calculate the expectation and variance of

the number of nodes with at least k descendants, and then will prove a central limit

theorem by using the fact that the dependence is local.

Theorem 5.14. Let k ∈ N and let Y p
≥k,n denote the number of nodes with at least k

descendants of T pn , a p-biased recursive tree of size n. Then

E
[
Y p
≥k,n

]
= (n− k − 1)

a∑
s=1

ps

(
a∑
r=s

pr

)k

+ 1. (5.45)

Moreover if ~p is the uniform distribution over [a],

E
[
Y a
≥k,n

]
= (n− k − 1)

1

ak+1

a∑
s=1

sk + 1 (5.46)

and in particular, as a→∞, we get

E
[
Y a
≥k,n

] a→∞−−−→ n

k + 1
. (5.47)
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Proof. Let Ck
i = 1(Xi ≤ {Xi+1, . . . , Xi+k}). Then

Y p
≥k,n =d

n−k∑
i=1

Ck
i =

n−k∑
i=2

Ck
i + 1. (5.48)

Also for 2 ≤ i ≤ n− k,

E
[
Ck
i

]
= P(Xi ≤ {Xi+1, . . . , Xi+k})

=
a∑
s=1

P(Xi ≤ {Xi+1, . . . , Xi+k}|Xi = s)P(Xi = s)

=
a∑
s=1

P(s ≤ {Xi+1, . . . , Xi+k})P(Xi = s)

=
a∑
s=1

ps

(
a∑
r=s

pr

)k

.

(5.49)

Thus

E
[
Y p
≥k,n

]
=

n−k∑
i=1

E
[
Ck
i

]
=

n−k∑
i=2

a∑
s=1

ps

(
a∑
r=s

pr

)k

+ 1

= (n− k − 1)
a∑
s=1

ps

(
a∑
r=s

pr

)k

+ 1.

(5.50)

In particular, if ps = 1
a
for all s, we get

E
[
Y a
≥k,n

]
= (n− k − 1)

a∑
s=1

1

a

(
a∑
r=s

1

a

)k

+ 1

= (n− k − 1)
1

ak+1

a∑
s=1

(
a∑
r=s

1

)k

+ 1

= (n− k − 1)
1

ak+1

a∑
s=1

sk + 1.

(5.51)
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This gives asymptotically

lim
a→∞

E
[
Y a
≥k,n

]
= lim

a→∞
(n− k − 1)

1

ak+1

a∑
s=1

sk + 1

= lim
a→∞

(n− k − 1)
1

ak+1

[
ak+1

k + 1
+O(ak)

]
+ 1

=
n

k + 1
.

(5.52)

Remark 5.15. We know from Theorem 3.6 that in a URT, for Ak,n, the number of

nodes with exactly k descendants, Ak,n
n

n→∞−−−→ 1
(k+1)(k+2)

in probability holds. This is

consistent with the expectation of the number of node with at least k descendants we

found for a→∞.

Remark 5.16. For the case k = 1 and ~p the uniform distribution over a this gives the

expected number of internal nodes

E
[
Y a
≥1,n
]

= (n− 2)
1

a2

a∑
s=1

s+ 1 = (n− 2)
1

a2
a(a+ 1)

2
+ 1 =

n− 2

2

a+ 1

a
+ 1. (5.53)

This also follows from the expected number of leaves in an a-RT.

Theorem 5.17. Let k ∈ N and let Y p
≥k,n denote the number of nodes with at least k

descendants in a p-BRT. Then

Var
(
Y p
≥k,n

)
=

a∑
s=1

ps

(
a∑
r=s

pr

)k

[(n− k − 1) + p1 (2nk − 3k(k + 1))]

+ 2
a∑
s=2

ps
1∑s−1
u=1 pu

a∑
r=s

pr

(
a∑
t=r

pt

)k

·

n− k − 1− (n− 2k − 1)

(
a∑
u=s

pu

)k

− 1− (
∑a

u=s pu)
k

1−
∑a

u=s pu


−

 a∑
s=1

ps

(
a∑
r=s

pr

)k
2

[n(2k + 1)− (3k + 1)(k + 1)] .

(5.54)
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We moreover have

lim
n→∞

Var(Y p
≥k,n)

n
=

a∑
s=1

ps

(
a∑
r=s

pr

)k
2kp1 + 1− (2k + 1)

a∑
s=1

ps

(
a∑
r=s

pr

)k


+ 2
a∑
s=2

ps∑s−1
u=1 pu

a∑
r=s

pr

(
a∑
t=r

pt

)k
1−

(
a∑
u=s

pu

)k
 .

(5.55)

Proof. See Appendix A.

Corollary 5.18. If we choose the uniform distribution over [a] we get

Var
(
Y a
≥k,n

)
=

1

ak+1

a∑
s=1

sk
[
(n− k − 1) +

1

a
(2nk − 3k(k + 1))

]

+ 2
1

ak+1

a∑
s=2

1

s− 1

a−s+1∑
r=1

rk

·

[
n− k − 1− (n− 2k − 1)

(
a− s+ 1

a

)k
−

1−
(
a−s+1
a

)k
1− a−s+1

a

]

−

(
1

ak+1

a∑
s=1

sk

)2

[n(2k + 1)− (3k + 1)(k + 1)]

(5.56)

and for fixed a we moreover have

lim
n→∞

Var
(
Y a
≥k,n

)
n

=
1

ak+1

a∑
s=1

sk

[
1 +

2k

a
− 2k + 1

ak+1

a∑
s=1

sk

]

+
2

ak+1

a−1∑
s=1

1

s

[
1−

(
a− s
a

)k] a−s+1∑
r=1

rk.

(5.57)

For fixed n we moreover get asymptotically

Var
(
Y a
≥k,n

) a→∞−−−→n− k − 1

k + 1
− 2

(n− k − 1)

k + 1
Hk+1 + 2

n− 2k − 1

k + 1
H2k+1

+
2

k + 1

k−1∑
`=0

Hk+`+1 −
n(2k + 1)− (3k + 1)(k + 1)

(k + 1)2
.

(5.58)
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If we then take the limit as n→∞ we get

lim
n→∞

lim
a→∞

Var
(
Y a
≥k,n

)
n

=
1

k + 1
+

2H2k+1 − 2Hk+1

k + 1
− 2k + 1

(k + 1)2
. (5.59)

Proof. See Appendix A.

Theorem 5.19. Let k ∈ N and let Y p
≥k,n denote the number of nodes with at least k

descendants in a p-BRT. Then

dW
(
Y p
≥k,n,G

)
≤ 2k + 1√

Var
(
Y p
≥k,n

)
(

(2k + 1) +

√
28(2k + 1)

1
2

√
π

)
. (5.60)

Proof. We will again use Theorem 2.12. For this we set Yi := Ck
i − E[Ck

i ] for i =

1, . . . , n − k. The dependency neighbourhoods are Ni = {Ck
j : i − k ≤ j ≤ i + k} for

i ≤ n− 2k and Ni = {Ck
j : i− k ≤ j ≤ n− k} for i = n− 2k + 1, . . . , n− k. Hence we

have D = max1≤i≤n{|Ni|} = 2k + 1. Let σ2 = Var
(∑n

i=1C
k
i

)
and define

W :=
n∑
i=1

Ck
i − E[Ck

i ]√
Var(

∑n
i=1C

k
i )
. (5.61)

We now need to estimate
∑n

i=1 E[|Yi|3] and
∑n

i=1 E[Y 4
i ]. Since the Yi’s can take values

1− pi or pi, where pi = E[Ck
i ], we have as in the proof of Theorem 4.8 that

E[|Yi|3] = |1− pi|3pi + |−pi|3(1− pi)

= pi(1− pi)((1− pi)2 + p2i )

= pi(1− pi)(1− 2pi(1− pi))

≤ Var[Ck
i ]

(5.62)

since for 0 < a < 1, we have 0 < a(1− a) < 1
4
and thus 1 > 1− 2pi(1− pi) > 1

2
.
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Similarly

E[|Yi|3] = (1− pi)4pi + p4i (1− pi)

= pi(1− pi)((1− pi)3 + p3i )

= pi(1− pi)(1− 3(pi(1− pi))

≤ Var(Ck
i )

(5.63)

since for 0 < a < 1, we have 1 > 1− 3pi(1− pi) > 1
4
.

Thus we get

dW (W,G) ≤ (2k + 1)2

σ3

n−k∑
i=1

Var(Ck
i ) +

√
28(2k + 1)

3
2

√
πσ2

√√√√ n∑
i=1

Var(Ck
i )

=
2k + 1

σ

(
(2k + 1) +

√
28(2k + 1)

1
2

√
π

)
.

(5.64)

Remark 5.20. As we know by Theorem 5.17 that the variance is of order n, the bound

in Theorem 5.19 decreases with order 1√
n
.

Remark 5.21. Since Y p
≤k,n, the number of nodes with at most k descendants is equal

to n − Y p
≥k+1,n the expectation, variance and CLT of Y p

≤k,n follows directly from the

above results.

Moreover the expectation and variance of the number of nodes with exactly k de-

scendants can be calculated from the results of the previous section by some additional

calculations.
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Corollary 5.22. Let Xp
k,n denote the number of nodes with exactly k descendants in a

p-BRT. Then

E[Xp
k,n] = (n− k − 1)

a∑
s=1

ps

( a∑
r=s

pr

)k

−

(
a∑
r=s

pr

)k+1


+
a∑
s=1

ps

(
a∑
r=s

pr

)k+1

.

(5.65)

Moreover if Xa
k,n is the number of nodes with exactly k descendants in a a-RT, then

E[Xa
k,n] = (n− k − 1)

(
1

ak+1

a∑
s=1

sk − 1

ak+2

a∑
s=1

sk+1

)
+

1

ak+2

a∑
s=1

sk+1 (5.66)

and asymptotically

E[Xa
k,n]

a→∞−−−→ n

(k + 1)(k + 2)
. (5.67)

Proof. We have Xp
k,n = Y p

≥k,n − Y
p
≥k+1,n. Thus we get from Theorem 5.14,

E
[
Xp
k,n

]
= E

[
Y p
≥k,n

]
− E

[
Y p
≥k+1,n

]
= (n− k − 1)

a∑
s=1

ps

(
a∑
r=s

pr

)k

+ 1− (n− k − 2)
a∑
s=1

ps

(
a∑
r=s

pr

)k+1

− 1

= (n− k − 1)
a∑
s=1

ps

( a∑
r=s

pr

)k

−

(
a∑
r=s

pr

)k+1
+

a∑
s=1

ps

(
a∑
r=s

pr

)k+1

.

(5.68)

Similarly we get from Theorem 5.14 for ~p uniform,

E[Xa
k,n] = (n− k − 1)

(
1

ak+1

a∑
s=1

sk − 1

ak+2

a∑
s=1

sk+1

)
+

1

ak+2

a∑
s=1

sk+1. (5.69)



130

This implies in particular that

E[Xa
k,n]

= (n− k − 1)

(
1

ak+1

[
ak+1

k + 1
+O(ak)

]
− 1

ak+2

[
ak+2

k + 2
+O(ak+1)

])
+

1

ak+2

[
ak+2

k + 2
+O(ak+1)

]
a→∞−−−→ (n− k − 1)

(
1

k + 1
− 1

k + 2

)
+

1

k + 2

=
n

(k + 1)(k + 2)
− k + 1

(k + 1)(k + 2)
+

1

k + 2

=
n

(k + 1)(k + 2)
.

(5.70)

Remark 5.23. For the variance of the number of nodes with exactly k descendants

we have that

Var
(
Xp
k,n

)
= Var

(
Y p
≥k,n − Y

p
≥k+1,n

)
= Var

(
Y p
≥k,n

)
+ Var

(
Y p
≥k+1,n

)
− 2Cov

(
Y p
≥k,n, Y

p
≥k+1,n

)
.

(5.71)

The covariance can be calculated by the same method as before, so we can obtain an

expression for Var
(
Xp
k,n

)
. Since the calculations as well as the expressions one gets

in the end are quite long, we did not include them here. The asymptotic value of

Var
(
Xa
k,n

)
as a→∞ can also be calculated using the same methods as in the proof of

Theorem 5.10. As expected the value one gets in the end for limn→∞ lima→∞
Var(Xa

k,n)
n

corresponds to the value of the same expression for the number of nodes with exactly

k descendants of URTs, which is stated in Theorem 3.6.

5.5. Depth of Node n

First we observe that given a permutation representation for a recursive tree we

can determine Dpn, the depth of node n by counting the steps we go down from that

position when we go to the left until 1. It is important to note that we must take any

step down if we can, and we don’t go up again once we went down. This implies that



131

we are not looking for the longest increasing subsequence from 1 to n. Rather we are

looking for all anti-records when we start at n and then go to the left until we reach 1.

The following examples will clarify this difference:

Example 5.24. If γ = 13456728 the depth of node 8 is 2, because it is attached to 2

which is attached to 1. This corresponds to the number of steps down we take from 8

since we first go down to 2 and then down to 1. The longest increasing subsequence is

1345678, which is much longer.

For ρ = 12574863 the depth of node 8 is 3 by the construction principle. We can

also see this because from 8 we go down to 4 then there is 7 and 5, which is higher so

we ignore it. Then we go down to 2, and finally to 1. So we take 3 steps down. We

don’t count the step down from 7 to 5 since we already went down to 4 before that, so

we are not interested in anything concerning nodes bigger than 4 anymore.

Thus given Pn = γ−1(n), the position of n in the permutation, we get the depth

of node n by calculating for all i < Pn, the probability that γ(i) < mini<j<Pn{γ(j)}.

We will now use these observations to prove the following theorem:
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Theorem 5.25. Let Dpn denote the depth of node n in a p-BRT. Then

E[Dpn] =

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

( s′∑
r=1

pr

)n−1

−

(
s′−1∑
r=1

pr

)n−1
−

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(∑s′−1
r=1 pr

)n−1
−
(∑a

r=s pr
∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑a

r=s pr
∑s′

r=1 pr

+ p1

a∑
s=2

1

ps

·

(n− 2)

(
s∑
r=1

pr

)n

− (n− 1)

(
s∑
r=1

pr

)n−1 s−1∑
r=1

pr +
s∑
r=1

pr

(
s−1∑
r=1

pr

)n−1


+
a∑
s=2

( s∑
r=1

pr

)n−1

−

(
s−1∑
r=1

pr

)n−1


+

[
a∑
s=2

ps
1− (

∑a
r=s pr)

n−2∑s−1
r=1 pr

+ (n− 2)p1 + 1

]
pn−11 .

(5.72)

Moreover asymptotically we have

lim
n→∞

E[Dpn]

n
= p1. (5.73)

As we will use the position of node n in order to derive its depth, we will need

the following lemma.

Lemma 5.26. Let Ppn denote the position of n in a p-biased random permutation.

Then for 2 ≤ k < n,

P (Ppn = k) =
a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k

(5.74)
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and

P (Ppn = n) =
a∑
s=1

ps

(
s∑
r=1

pr

)n−2

. (5.75)

Proof. As before we will use the construction of an inverse biased riffle shuffle permu-

tation as introduced in Theorem 5.3. We know that n will be the last card in the last

non-empty pile. Also the digits we assign each index when constructing an inverse riffle

shuffle permutation define the position of the cards in the pile with that digit. In other

words, the indices that get digit s, are the positions of the cards in the s-th pile. This

means that n gets the position of the last index that gets the highest digit. We get

Ppn = max {2 ≤ i ≤ n : Xi ≥ {X2, . . . , Xn}} (5.76)

so

P(Ppn = k) = P (Xk ≥ {X2, . . . , Xk−1}, Xk > {Xk+1, . . . , Xn}) . (5.77)

By conditioning on Xk we get independent events and can thus calculate this

probability for 2 ≤ k < n. We get

P(Ppn = k)

= P (Xk ≥ {X2, . . . , Xk−1}, Xk > {Xk+1, . . . , Xn})

=
a∑
s=1

P (Xk ≥ {X2, . . . , Xk−1}, Xk > {Xk+1, . . . , Xn}|Xk = s)P(Xk = s)

=
a∑
s=1

P (s ≥ {X2, . . . , Xk−1}, s > {Xk+1, . . . , Xn})P(Xk = s)

=
a∑
s=1

P (s ≥ {X2, . . . , Xk−1})P (s > {Xk+1, . . . , Xn})P(Xk = s)

=
a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k

.

(5.78)



134

We only sum from s = 2 since if Xk = 1 it cannot be strictly greater than Xk+1, . . . , Xn.

If k = n we have the additional possibility that all Xi are equal to 1 and thus get

P(Ppn = n) =
a∑
s=1

ps

(
s∑
r=1

pr

)n−2

. (5.79)

We can now start with the proof of Theorem 5.25.

Proof of Theorem 5.25. First of all we will find an expression for E[Dpn|Ppn = k]. As we

said above, given Ppn we need to calculate the number of anti-records when we go from

the position of n to the left until we reach 1. Hence, given Ppn, we define for 1 ≤ i < Ppn,

Ei := 1

(
γ(i) = min

i≤k≤Ppn
{γ(k)}

)
. (5.80)

Then, given Ppn, we get Dpn =
∑Ppn−1

i=1 Ei, and so

E[Dpn|Ppn] =

Ppn−1∑
i=1

E[Ei|Ppn]. (5.81)

We can simplify this sum by first observing that

E(EPpn−1) = P(γ(Ppn − 1) < γ(Ppn)) = P(γ(Ppn − 1) < n) = 1 (5.82)

and in general for all i, we have γ(i) < γ(Ppn) = n, so we can rewrite Ei as

Ei = 1

(
γ(i) = min

i≤k<Ppn
{γ(k)}

)
. (5.83)

Moreover P(E1) = P(γ(1) = min1≤k≤Ppn{γ(k)}) = 1 since γ(1) = 1. Now we will again

use the inverse riffle shuffle construction to calculate the rest of these probabilities. We

know that γ(i) < γ(j) for all i < j if and only if Xi ≤ Xj, since this means that in
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the spot j will come a higher card from the same pile or from a pile corresponding to

a higher digit, thus with higher labeled cards.

Let 2 ≤ i ≤ Ppn, then

E[Ei|Ppn]

= P
(
γ(i) = min

i≤k<Ppn
{γ(k)}|γ(Ppn) = n

)
= P

(
Xi = min

i≤k<Ppn
{Xk}|XPpn ≥ {X2, . . . , XPpn−1}, XPpn > {XPpn+1, . . . , Xn}

)
= P

(
Xi = min

i≤k<Ppn
{Xk}

)
=

a∑
s=1

P
(
Xi = min

i≤k<Ppn
{Xk}|Xi = s

)
P(Xi = s)

=
a∑
s=1

P (s ≤ {Xi+1, . . . , XPpn−1})P(Xi = s)

=
a∑
s=1

ps

(
a∑
r=s

pr

)Ppn−1−(i+1)+1

=
a∑
s=1

ps

(
a∑
r=s

pr

)Ppn−i−1
.

(5.84)

We could get rid of the conditional in the third line because the Xk are mutually

independent and thus the fact that XPpn ≥ {X2, . . . , XPpn−1} does not tell us anything

about the ordering of {X2, . . . , XPpn−1}. Moreover XPpn > {XPpn+1, . . . , Xn} concerns

different Xis, so is also independent of Ei. We again assume pi > 0 for all i in order to
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avoid division by 0. In total we thus get, for 2 < k ≤ n,

E[Dpn|Ppn = k] =
k−1∑
i=1

E[Ei|Ppn = k]

=
k−1∑
i=2

a∑
s=1

ps

(
a∑
r=s

pr

)k−i−1

+ 1

=
a∑
s=1

ps

k−1∑
i=2

(
a∑
r=s

pr

)k−i−1

+ 1

=
a∑
s=1

ps

k−3∑
i=0

(
a∑
r=s

pr

)i

+ 1

=
a∑
s=2

ps
1− (

∑a
r=s pr)

k−2

1−
∑a

r=s pr
+ (k − 2)p1 + 1

=
a∑
s=2

ps
1− (

∑a
r=s pr)

k−2∑s−1
r=1 pr

+ (k − 2)p1 + 1

(5.85)

and

E[Dpn|Ppn = 2] = 1. (5.86)
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To get E[Dpn] we now need to use the tower rule, this gives

E[Dpn]

= E [E[Dpn|Ppn = k]]

=
n∑
k=2

E[Dpn|Ppn = k]P(Ppn = k)

=
n−1∑
k=3

E[Dpn|Ppn = k]P(Ppn = k)

+ E[Dpn|Ppn = n]P(Ppn = n)

+ E[Dpn|Ppn = 2]P(Ppn = 2)

=
n−1∑
k=3

[
a∑
s=2

ps
1− (

∑a
r=s pr)

k−2∑s−1
r=1 pr

+ (k − 2)p1 + 1

]

·

 a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


+

[
a∑
s=2

ps
1− (

∑a
r=s pr)

n−2∑s−1
r=1 pr

+ (n− 2)p1 + 1

] a∑
s=1

ps

(
s∑
r=1

pr

)n−2


+
a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2

=
n∑
k=3

[
a∑
s=2

ps
1− (

∑a
r=s pr)

k−2∑s−1
r=1 pr

] a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


+
n∑
k=3

[(k − 2)p1 + 1]

 a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


+

[
a∑
s=2

ps
1− (

∑a
r=s pr)

n−2∑s−1
r=1 pr

+ (n− 2)p1 + 1

]
pn−11

+
a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2

.

(5.87)



138

In order to simplify this expression we first look at the first line

(5.88)

n∑
k =3

[
a∑
s=2

ps
1− (

∑a
r=s pr)

k−2∑s−1
r=1 pr

] a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


=
n∑
k=3

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

1−

(
a∑
r=s

pr

)k−2
( s′∑

r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k

=
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

 n∑
k=3

(
s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k

−
n∑
k=3

(
a∑
r=s

pr

)k−2( s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k .

Now we have

n∑
k=3

(
s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k

=

(
s′−1∑
r=1

pr

)n−2
n∑
k=3

(
s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)−k+2

=

(
s′−1∑
r=1

pr

)n−2


1−

((∑s′

r=1 pr

)(∑s′−1
r=1 pr

)−1)n−1
1−

(∑s′

r=1 pr

)(∑s′−1
r=1 pr

)−1 − 1


=

(∑s′−1
r=1 pr

)n−1
−
(∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑s′

r=1 pr
−

(
s′−1∑
r=1

pr

)n−2

.

(5.89)
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Inserting this into the first part of the last line of (5.88) we get

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′
n∑
k=3

(
s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k

=
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′


(∑s′−1

r=1 pr

)n−1
−
(∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑s′

r=1 pr
−

(
s′−1∑
r=1

pr

)n−2


=
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(∑s′−1
r=1 pr

)n−1
−
(∑s′

r=1 pr

)n−1
−ps′

−
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(
s′−1∑
r=1

pr

)n−2

=
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

( s′∑
r=1

pr

)n−1

−

(
s′−1∑
r=1

pr

)n−1
−

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(
s′−1∑
r=1

pr

)n−2

.

(5.90)

Similarly we have that

n∑
k=3

(
a∑
r=s

pr

)k−2( s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k

=

(
s′−1∑
r=1

pr

)n−2
n∑
k=3

(
a∑
r=s

pr

)k−2( s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)−(k+2)

=

(
s′−1∑
r=1

pr

)n−2


1−

(∑a
r=s pr

∑s′

r=1 pr

(∑s′−1
r=1 pr

)−1)n−1
1−

∑a
r=s pr

∑s′

r=1 pr

(∑s′−1
r=1 pr

)−1 − 1


=


(∑s′−1

r=1 pr

)n−1
−
(∑a

r=s pr
∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑a

r=s pr
∑s′

r=1 pr
−

(
s′−1∑
r=1

pr

)n−2
 .

(5.91)
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Inserting this expression into the second part of the last line of (5.88) we get

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′
n∑
k=3

(
a∑
r=s

pr

)k−2( s′∑
r=1

pr

)k−2(
s′−1∑
r=1

pr

)n−k

=
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(∑s′−1
r=1 pr

)n−1
−
(∑a

r=s pr
∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑a

r=s pr
∑s′

r=1 pr

−
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(
s′−1∑
r=1

pr

)n−2

.

(5.92)

Now we look at the second line. First we separate it into two terms,

n∑
k=3

[(k − 2)p1 + 1]

 a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


=
n∑
k=3

(k − 2)p1

 a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


+
n∑
k=3

a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k

:=A1 + A2.

(5.93)
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Now we easily get

A2 =
n∑
k=3

a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k

=
a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2 n∑
k=3

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)−k+2

=
a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2(
1− (

∑s
r=1 pr)

n−1 (∑s−1
r=1 pr

)−(n−1)
1−

∑s
r=1 pr

(∑s−1
r=1 pr

)−1 − 1

)

=
a∑
s=2

ps

(∑s−1
r=1 pr

)n−1 − (
∑s

r=1 pr)
n−1∑s−1

r=1 pr −
∑s

r=1 pr
−

(
s−1∑
r=1

pr

)n−2


=
a∑
s=2

ps

(
∑s

r=1 pr)
n−1 −

(∑s−1
r=1 pr

)n−1
ps

−

(
s−1∑
r=1

pr

)n−2


=
a∑
s=2

( s∑
r=1

pr

)n−1

−

(
s−1∑
r=1

pr

)n−1
− a∑

s=2

ps

(
s−1∑
r=1

pr

)n−2

.

(5.94)

For the first term we need a little bit more work. First of all

A1 =
n∑
k=3

(k − 2)p1

 a∑
s=2

ps

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)n−k


= p1

a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2 n∑
k=3

(k − 2)

(
s∑
r=1

pr

)k−2( s−1∑
r=1

pr

)−k+2

.

(5.95)
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We now set x :=
(∑s

r=1 pr
(∑s−1

r=1 pr
)−1)

and only look at the sum indexed with

k. Then we have a sum of the form

n∑
k=3

(k − 2)xk−2 = x
n−2∑
k=1

kxk−1

= x
d

dx

n−2∑
k=0

xk

= x
d

dx

1− xn−1

1− x

= x
−(n− 1)xn−2(1− x)− (1− xn−1)(−1)

(1− x)2

= x
(n− 1)xn−1 − (n− 1)xn−2 + 1− xn−1

(1− x)2

= x
(n− 2)xn−1 − (n− 1)xn−2 + 1

(1− x)2
.

(5.96)

We now substitute
(∑s

r=1 pr
(∑s−1

r=1 pr
)−1)

for x and insert the resulting expression

into A1. This gives

A1 = p1

a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2
 s∑

r=1

pr

(
s−1∑
r=1

pr

)−1
·

[
(n− 2)

(∑s
r=1 pr

(∑s−1
r=1 pr

)−1)n−1(
1−

(∑s
r=1 pr

(∑s−1
r=1 pr

)−1))2
−

(n− 1)
(∑s

r=1 pr
(∑s−1

r=1 pr
)−1)n−2 − 1(

1−
(∑s

r=1 pr
(∑s−1

r=1 pr
)−1))2

]

= p1

a∑
s=2

ps ·

[
(n− 2) (

∑s
r=1 pr)

n(∑s−1
r=1 pr −

∑s
r=1 pr

)2
−

(n− 1) (
∑s

r=1 pr)
n−1∑s−1

r=1 pr −
∑s

r=1 pr
(∑s−1

r=1 pr
)n−1(∑s−1

r=1 pr −
∑s

r=1 pr
)2

]

= p1

a∑
s=2

1

ps

[
(n− 2)

(
s∑
r=1

pr

)n

− (n− 1)

(
s∑
r=1

pr

)n−1 s−1∑
r=1

pr +
s∑
r=1

pr

(
s−1∑
r=1

pr

)n−1 ]
.

(5.97)
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In total now we have as an expression for the expectation

E[Dpn] =

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

( s′∑
r=1

pr

)n−1

−

(
s′−1∑
r=1

pr

)n−1
−

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(
s′−1∑
r=1

pr

)n−2

−
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(∑s′−1
r=1 pr

)n−1
−
(∑a

r=s pr
∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑a

r=s pr
∑s′

r=1 pr

+
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(
s′−1∑
r=1

pr

)n−2

+ p1

a∑
s=2

1

ps

[
(n− 2)

(
s∑
r=1

pr

)n

− (n− 1)

(
s∑
r=1

pr

)n−1 s−1∑
r=1

pr +
s∑
r=1

pr

(
s−1∑
r=1

pr

)n−1 ]

+
a∑
s=2

( s∑
r=1

pr

)n−1

−

(
s−1∑
r=1

pr

)n−1
− a∑

s=2

ps

(
s−1∑
r=1

pr

)n−2

+

[
a∑
s=2

ps
1− (

∑a
r=s pr)

n−2∑s−1
r=1 pr

+ (n− 2)p1 + 1

]
pn−11

+
a∑
s=2

ps

(
s−1∑
r=1

pr

)n−2

.

(5.98)
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After some simplifications we get

E[Dpn]

=
a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

( s′∑
r=1

pr

)n−1

−

(
s′−1∑
r=1

pr

)n−1
−

a∑
s=2

ps∑s−1
r=1 pr

a∑
s′=2

ps′

(∑s′−1
r=1 pr

)n−1
−
(∑a

r=s pr
∑s′

r=1 pr

)n−1
∑s′−1

r=1 pr −
∑a

r=s pr
∑s′

r=1 pr

+ p1

a∑
s=2

1

ps

[
(n− 2)

(
s∑
r=1

pr

)n

− (n− 1)

(
s∑
r=1

pr

)n−1 s−1∑
r=1

pr +
s∑
r=1

pr

(
s−1∑
r=1

pr

)n−1 ]

+
a∑
s=2

( s∑
r=1

pr

)n−1

−

(
s−1∑
r=1

pr

)n−1


+

[
a∑
s=2

ps
1− (

∑a
r=s pr)

n−2∑s−1
r=1 pr

+ (n− 2)p1 + 1

]
pn−11 .

(5.99)

Asymptotically this gives, for ~p such that pi 6= 0 for all i ∈ [a] and a > 2, for

n→∞,

lim
n→∞

E[Dpn]

n
= lim

n→∞
p1

(n− 2)− (n− 1)
∑a−1

r=1 pr
npa

= p1 (5.100)

since

p1
(n− 2)− (n− 1)

∑a−1
r=1 pr

pa
= p1

(n− 1)
(
1−

∑a−1
r=1 pr

)
pa

−p1
pa

= (n−1)p1−
p1
pa
. (5.101)
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As a corollary we get for ~p uniformly distributed over a the following results.

Corollary 5.27. Let Dan denote the depth of node n in an a-RT. Then

E [Dan] =Ha−1 + 1 +
n− 2

an
− 1

a2n−3

a−1∑
s=1

(a− s)n−2

s

− 1

an−2

a−1∑
s=1

a−1∑
s′=1

1

s

s′n−1 − ((a− s)(s′ + 1))n−1

ss′ + s− a

+
1

an

a−1∑
s=1

(n− 2) (s+ 1)n − (n− 1) (s+ 1)n−1 s+ (s+ 1)sn−1.

(5.102)

Moreover asymptotically

E [Dan]

n

n→∞−−−→ 1

a
(5.103)

and as a approaches infinity, we get the same expectation as for URTs:

E [Dan]
a→∞−−−→ Hn−1. (5.104)

Proof. See Appendix A.
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6. CONCLUSION

We end the thesis with some concluding remarks which contain some discussions

regarding the results above, and some questions which we are planning to pursue in

subsequent work.

The main motivation for this thesis was to understand the ‘most general’ ran-

dom tree model, which we call an inhomogeneous random tree, where each node has a

specific probability of attaching to an already existing node. Namely, once we have i

nodes present, node i + 1 attaches to node j, 1 ≤ j ≤ i with probability pi+1,j where∑i
k=1 pi+1,j = 1, and where the attachment is independent of the previous evolution

of the tree. Both of the tree models discussed in this thesis provide approximations

for inhomogeneous random trees, and our next step will be to see if our results can be

translated into this more general framework by employing certain limiting arguments.

We were not able to follow up asymptotic equivalence of various random tree models de-

scribed in this thesis. In particular, results towards asymptotic equivalence of weighted

recursive trees for varying weight sequences, and for certain classes of statistics should

be of interest.

Among the problems we could not solve are the number of leaves of a general

weighted recursive tree. The martingale and coupling argument we used only work

when finitely many nodes are assigned a weight different from 1. There might be the

possibility to use a generalization of Friedman’s urn with a variable matrix. This would

allow us to add at each step balls according to the weight of the newly attached node.

Another way might be to use the exact probabilities we introduced, at least for specific

kinds of weight sequences. This might give as an idea of what a result on asymptotic

behaviour could look like.

Concerning weight sequences it would in general be of interest to find precise

conditions on when central limit theorems apply and when the distribution is asymp-

totically close to the one of the uniform case. Especially concerning the expectation
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of the depth we could not establish general conditions for a central limit theorem to

hold, although many of the examples we checked exhibited a similar asymptotic be-

haviour. Additionally there are many statistics of interest we did not study or only

for special cases, like the height, the maximum degree or the number of nodes with a

certain number of descendants. We believe that the coupling constructions given in

Chapter 4 will help us to analyze various other statistics of weighted recursive trees

by making use of corresponding results for uniform recursive trees. This coupling can

be used to obtain concentration inequalities for underlying statistics besides its use in

understanding asymptotic distributions. We hope to follow this in an upcoming work.

Concerning biased recursive trees an open problem is the asymptotic distribution

of the number of branches. Because of the global dependence of the anti-records, we

could not apply any of the central limit theorems mentioned in the preliminaries. A

different approach to the number of branches of biased recursive trees would be to

analyze the cycle structure and more specifically the number of cycles of riffle shuffle

permutations.

Further results on the depth are also necessary for biased recursive trees. While

we could compute the expectation of the depth our method might be too complicated

for computing the variance. Since the expectation only depends on p1 when n is large,

it would be interesting to see if and how the other parameters affect the variance.

We saw that in a biased recursive tree constructed from a riffle shuffle permutation

based on the cutting of the deck into a piles, the maximum degree is a. Thus an

interesting question would be to compare a-ary recursive tree with biased recursive

trees and especially a-recursive trees. It is not clear if this common restriction on the

degree of the nodes is the only property these trees have in common or if they are

more similar that one might expect at first sight. In order to get insights concerning

this relation a dynamic construction of biased recursive trees would be very useful. If

such a construction exists it would probably be very different from the construction

principles we know. Of course such a dynamic growth rule would be useful for many

other questions as well.
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Apart from the problems we could not solve for the models we investigated, there

are moreover other non-uniform models that would be worth investigation in order

to understand the behaviour of inhomogeneous recursive trees. We might gain further

insight by considering weighted tree models where the weights change with time, or are

also randomly distributed. Another possibility would be to use the bijection between

binary recursive trees and permutations, see for example [51]. Extending uniform

binary trees via other random permutation distributions in order to understand all

sorts of random binary trees also seems a promising direction to follow.

Throughout the study of biased recursive trees, the use of biased riffle shuffles

instead of uniformly random permutations stemmed from the fact that certain statis-

tics could be expressed in terms of independent random variables. There is another

random permutation framework allowing such use of independence, namely unfair per-

mutations. See [59, 60] for the definition and analysis of various statistics of unfair

permutations. We are not sure one would gain more insight for inhomogeneous ran-

dom trees by replacing riffle shuffles with unfair permutations, and we believe that this

should be checked in subsequent work. Since in that model the rank of i is determined

by the maximum of i identically distributed independent uniform random variables,

it probably has similarities to models where each node can choose among k potential

parents.
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APPENDIX A: PROOFS FROM CHAPTER 5

Since many of the calculations in the proofs of Chapter 5 are long, we give them

in this appendix.

A.1. Proof of Theorem 5.9

Proof. Let T pn be a BRT of size n and γ be its permutation representation. Let moreover

Bpn denote the number of branches of T pn . For the calculation of the variance difficulty

arises from the dependence of the events Ai = 1(γ(i) is an anti-record). We will again

assume p1 6= 0.

We can write the variance as follows:

Var(Bpn) = Var

(
1 +

n∑
i=3

Ai

)
= Var

(
n∑
i=3

Ai

)

=
n∑
i=3

Var(Ai) + 2
∑

3≤i<j≤n

Cov(Ai, Aj).

(A.1)

Moreover we have

n∑
i=3

Var(Ai) =
n∑
i=3

E[A2
i ]−

n∑
i=3

E[Ai]
2 = E[Bpn]− 1−

n∑
i=3

E[Ai]
2 (A.2)

and

∑
3≤i<j≤n

Cov(Ai, Aj) =
n−1∑
i=3

n∑
j=i+1

E[AiAj]−
n−1∑
i=3

n∑
j=i+1

E[Ai]E[Aj]. (A.3)
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Since the Ai are Bernoulli random variables, we have

n∑
i=3

E[Ai]
2

=
n∑
i=3

a−1∑
s=1

ps

(
a∑

`=s+1

p`

)i−2
2

=
n∑
i=3

a−1∑
s=1

p2s

(
a∑

`=s+1

p`

)2(i−2)

+ 2
n∑
i=3

a−1∑
s=2

s−1∑
r=1

pspr

(
a∑

`=s+1

p`

)i−2( a∑
`=r+1

p`

)i−2

=
a−1∑
s=1

p2s

n∑
i=3

( a∑
`=s+1

p`

)2
i−2

+ 2
a−1∑
s=2

s−1∑
r=1

pspr

n∑
i=3

(
a∑

`=s+1

p`

a∑
`=r+1

p`

)i−2

=
a−1∑
s=1

p2s

(
a∑

`=s+1

p`

)2 n−3∑
i=0

( a∑
`=s+1

p`

)2
i

+ 2
a−1∑
s=2

s−1∑
r=1

pspr

(
a∑

`=s+1

p`

a∑
`=r+1

p`

)
n−3∑
i=0

(
a∑

`=s+1

p`

a∑
`=r+1

p`

)i

=
a−1∑
s=1

p2s

(
a∑

`=s+1

p`

)2
1−

(∑a
`=s+1 p`

)2(n−2)
1−

(∑a
`=s+1 p`

)2
+ 2

a−1∑
s=2

s−1∑
r=1

pspr

(
a∑

`=s+1

p`

a∑
`=r+1

p`

)
1−

(∑a
`=s+1 p`

∑a
`=r+1 p`

)n−2
1−

∑a
`=s+1 p`

∑a
`=r+1 p`

.

(A.4)
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Now let 3 ≤ i < j ≤ n, then

E[AiAj] = P (Xi < min{X2, . . . , Xi−1}, Xj < min{X2, . . . , Xj−1})

= P (Xj < min{X2, . . . , Xj−1}|Xi < min{X2, . . . , Xi−1})

· P (Xi < min{X2, . . . , Xi−1})

=
a−1∑
s=1

P
(
Xj < min

k=2,...,j−1
{Xk}|Xi < min

k=2,...,i−1
{Xk}, Xi = s

)
· P
(
Xi < min

k=2,...,i−1
{Xk}|Xi = s

)
P (Xi = s) .

(A.5)

If Xi = 1, Xj < Xi is not possible, so the above expression is only positive for 2 ≤ s ≤

a− 1. For these s we have:

P
(
Xj < min

k=2,...,j−1
{Xk}|Xi < min

k=2,...,i−1
{Xk}, Xi = s

)
=

s−1∑
r=1

P
(
Xj < min

k=2,...,j−1
{Xk}|Xj = r,Xi = s,Xi < min

k=2,...,i−1
{Xk}

)
︸ ︷︷ ︸

=P(r<Xi+1,...,Xj−1)

P(Xj = r)

=
s−1∑
r=1

(
a∑

q=r+1

pq

)j−i−1

pr.

(A.6)

So in total we have for 3 ≤ i < j ≤ n,

E[AiAj] =
a−1∑
s=2

ps

(
a∑

`=s+1

p`

)i−2 s−1∑
r=1

pr

(
a∑

q=r+1

pq

)j−i−1

. (A.7)
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Thus when summing over i and j we get

n−1∑
i=3

n∑
j=i+1

E[AiAj]

=
n−1∑
i=3

n∑
j=i+1

a−1∑
s=2

ps

(
a∑

`=s+1

p`

)i−2 s−1∑
r=1

pr

(
a∑

q=r+1

pq

)j−i−1

=
a−1∑
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(
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(
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=
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(
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(
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=
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(
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(
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pq

)j

=
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s=2
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r=1

pr

n−3∑
i=1

(
a∑
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p`

)i 1−
(∑a

q=r+1 pq

)n−i−2
1−

∑a
q=r+1 pq

=
a−1∑
s=2
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s−1∑
r=1

pr∑r
q=1 pq

n−3∑
i=1

(
a∑

`=s+1

p`

)i

−
a−1∑
s=2
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s−1∑
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pr∑r
q=1 pq

n−3∑
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(
a∑

`=s+1
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)i( a∑
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)n−i−2

=
a−1∑
s=2
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s−1∑
r=1

pr∑r
q=1 pq

∑a
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(∑a
`=s+1 p`

)n−2
1−

∑a
`=s+1 p`

−
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s=2
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s−1∑
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pr∑r
q=1 pq

(
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(
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`=s+1
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=
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s=2
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∑a
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(
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

−
a−1∑
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(
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)n−2
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∑a
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−
(∑a
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∑a
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 .
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The last term can be simplified a little bit more, such that we get

a−1∑
s=2

ps

s−1∑
r=1

pr∑r
q=1 pq

(
a∑

q=r+1

pq
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
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s=2
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∑a
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−
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
=

a−1∑
s=2

ps

a∑
`=s+1

p`

s−1∑
r=1

pr
∑a

q=r+1 pq∑r
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q=r+1

pq
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−

(
a∑
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 .

(A.9)

So

n−1∑
i=3

n∑
j=i+1

E[AiAj] =
a−1∑
s=2

ps
∑a

`=s+1 p`∑s
`=1 p`

s−1∑
r=1

pr∑r
q=1 pq

1−

(
a∑

`=s+1

p`

)n−3


−
a−1∑
s=2
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a∑
`=s+1
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s−1∑
r=1
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∑a

q=r+1 pq∑r
q=1 pq

1∑s
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·
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)n−3

−

(
a∑
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)n−3
 .
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Moreover we have

∑
3≤i<j≤n

E[Ai]E[Aj]

=
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i=3

n∑
j=i+1
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ps
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(
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r=1

pr

n∑
j=i+1

(
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)i−1 n−i−1∑
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s=1

ps

a∑
`=s+1

p`
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(∑a
`=r+1 p`
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pr∑r
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)i+2( a∑
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(
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−
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ps
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pr∑r
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(
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∑a
`=s+1 p`

∑a
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−
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This gives in total

Var(Bpn) =

a−1∑
s=1

ps∑s
`=1 p`

1−

(
a∑

`=s+1

p`

)n−1
− a−1∑
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−
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(∑a
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a−1∑
s=2

s−1∑
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pr∑r
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p`
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s=2
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s−1∑
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∑a
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Hence we get asymptotically, for all ~p with p1 > 0,

Var(Bpn)
n→∞−−−→

a−1∑
s=1

ps∑s
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−
a−1∑
s=1

ps

−
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A.2. Proof of Theorem 5.10

Proof. If ~p is the uniform distribution over [a], (5.25) gives
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a−1∑
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a
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This gives after some simplifications

Var(Ban) =
a−1∑
s=1

1

s

(
1−

(
a− s
a
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a

−
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1
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(
a− s
a
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a− r
a

1−
(
a−s
a

a−r
a

)n−2
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1
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−
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a
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1

r
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a
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(
a−s
a

a−r
a
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a
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a
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1

r

(
a− r
a

)n−1(
1−

(
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a

)n−3)
.
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We can easily derive the asymptotic term for n→∞:

Var(Ban)
n→∞−−−→

a∑
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1
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a
−

a−1∑
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1
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1

r
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a
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1

r

− 1
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− 2
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− 2
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s=1
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1

r

s(a− r)2
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(A.16)

We now look at the terms in Equation A.15 separately to get an asymptotic result

for a→∞. First of all we know that the first line +1 is equal to the expectation of the

number of branches, for which we already have an asymptotic result, namely that it is

asymptotically equal to Hn−1. Again the following equation will repeatedly be used in

our calculations:

a∑
s=1

sk =
ak+1

k + 1
+O(ak) for all k ∈ N, k ≥ 0. (A.17)
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For the second term we will now show that it converges to 0 as a goes to infinity:
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=
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(A.18)
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For the next term we will show that it converges to the second harmonic number

plus a constant:
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(A.19)

We will now show that the 4th and the 6th term, and the 5th and the 7th term of

Equation A.15 are asymptotically equal. We will repeatedly need the following lemma

in these calculations.

Lemma A.1. Let k, n ∈ N. Then

n−1∑
k=1

(−1)k+1

(
n− 1

k

)
1

k
=

n−1∑
k=1

1

k
. (A.20)
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Proof. We will prove this identity by the use of generating functions. First we calculate

the generating function for
∑n−1

k=1(−1)k+1
(
n−1
k

)
1
k
:

∞∑
n=1

n−1∑
k=1

(−1)k+1

(
n− 1

k

)
1

k
xn−1 =

∞∑
n=0

n∑
k=1

(−1)k+1

(
n

k

)
1

k
xn

=
∞∑
k=1

(−1)k+1 1

k

∞∑
n=k

(
n

k

)
xn

=
∞∑
k=1

(−1)k+1 1

k

∞∑
n=0

(
n+ k

k

)
xn+k

=
∞∑
k=1

(−1)k+1 1

k
xk

∞∑
n=0

(
n+ k

k

)
xn

=
∞∑
k=1

(−1)k+1 1

k
xk

1

(1− x)k+1

=
1

1− x

∞∑
k=1

(−1)k+1 1

k

(
x

1− x

)k
=

1

1− x
ln

(
1 +

x

1− x

)
=

1

1− x
ln

(
1

1− x

)
=
− ln(1− x)

1− x
.

(A.21)

Where we used the following two equalities:

∞∑
n=0

(
n+ k

k

)
xn =

1

(1− x)k+1
(A.22)

from [61] and the Taylor series for the logarithm:

ln(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
for |x|< 1. (A.23)
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The generating function for
∑n−1

k=1
1
k
is easier:

∞∑
n=1

n−1∑
k=1

1

k
xn−1 =

∞∑
n=0

n∑
k=1

1

k
xn

=
∞∑
k=1

1

k

∞∑
n=k

xn

=
∞∑
k=1

xk

k

∞∑
n=0

xn

=
∞∑
k=1

xk

k

1

1− x

= − ln(1− x)

1− x
.

(A.24)

We will now first consider the 4th and the 6th expression and show that they are

asymptotically equal. For the 4th expression we get

a−1∑
s=2

a− s
as

s−1∑
r=1

1

r

(
1−

(
a− s
a

)n−3)

=
a−1∑
s=2

a− s
as

s

a

1−
(
a−s
a

)n−3
1− a−s

a

s−1∑
r=1

1

r

=
a−1∑
s=2

a− s
a2

1−
(
a−s
a

)n−3
1− a−s

a

s−1∑
r=1

1

r

=
a−2∑
r=1

1

r

a−1∑
s=r+1

a− s
a2

1−
(
a−s
a

)n−3
1− a−s

a

=
a−2∑
r=1

1

r

a−r−1∑
s=1

s

a2
1−

(
s
a

)n−3
1− s

a

=
a−2∑
r=1

1

r

a−r−1∑
s=1

s

a2

n−4∑
`=0

(s
a

)`
=

a−2∑
r=1

1

r

n−4∑
`=0

1

a`+2

a−r−1∑
s=1

s`+1

=
a−2∑
r=1

1

r

n−4∑
`=0

1

a`+2

[
(a− r)`+2

l + 2
+O((a− r)`+1)

]
.

(A.25)
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Now we have

a−2∑
r=1

1

r

n−4∑
`=0

1

a`+2
O((a− r)`+1) = O

(
ln(a)

a

)
. (A.26)

We continue with the rest of the expression:

a−2∑
r=1

1

r

n−4∑
`=0

1

a`+2

(a− r)`+2

l + 2

=
a−2∑
r=1

1

r

n−4∑
`=0

1

a`+2

1

l + 2

l+2∑
h=0

(
l + 2

h

)
al+2−h(−r)h

=
n−4∑
`=0

1

a`+2

1

l + 2

l+2∑
h=0

(
l + 2

h

)
al+2−h(−1)h

a−2∑
r=1

rh−1

=
n−4∑
`=0

1

a`+2

1

l + 2

[
l+2∑
h=1

(
l + 2

h

)
al+2−h(−1)h

(
ah

h
+O(ah−1)

)
+ a`+2Ha−2

]

=
n−4∑
`=0

1

l + 2

l+2∑
h=1

(
l + 2

h

)
(−1)h

1

h
+

n−4∑
`=0

1

l + 2
Ha−2 +O

(
1

a

)

= −
n−4∑
`=0

H`+2

l + 2
+

n−4∑
`=0

1

l + 2
Ha−2 +O

(
1

a

)

(A.27)

where we used Lemma A.1 in the last line.
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Now we look at the 6th term of Equation A.15

a−1∑
s=1

a− s
a2

a−1∑
r=1

1

r

(
a− r
a

)2 1−
(
a−s
a

a−r
a

)n−3
1− a−s

a
a−r
a

=
a−1∑
s=1

a− s
a2

a−1∑
r=1

1

r

(
a− r
a

)2 n−4∑
`=0

(
a− s
a

a− r
a

)`
=

n−4∑
`=0

1

a2`+4

a−1∑
s=1

s`+1

a−1∑
r=1

1

r
(a− r)`+2

=
n−4∑
`=0

1

a2`+4

[
a`+2

`+ 2
+O(a`+1)

] a−1∑
r=1

1

r

l+2∑
h=0

(
`+ 2

h

)
a`+2−hrh(−1)h

=
n−4∑
`=0

1

a2`+4

[
a`+2

`+ 2
+O(a`+1)

] l+2∑
h=0

(
`+ 2

h

)
(−1)ha`+2−h

a−1∑
r=1

rh−1

=
n−4∑
`=0

1

a2`+4

[
a`+2

`+ 2
+O(a`+1)

]

·

{
l+2∑
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(
`+ 2

h

)
(−1)ha`+2−h

[
ah

h
+O(ah−1)

]
+ a`+2Ha−1

}

=
n−4∑
`=0

1

a2`+4

[
a`+2

`+ 2
+O(a`+1)

]

·

{
al+2

l+2∑
h=1

(
`+ 2

h

)
(−1)h

1

h
+O

(
1

a

)
+ a`+2Ha−1

}

=
n−4∑
`=0

1

`+ 2

l+2∑
h=1

(
`+ 2

h

)
(−1)h

1

h
+O

(
1

a

)
+

n−4∑
`=0

1

l + 2
Ha−1

= −
n−4∑
`=0

H`+2

`+ 2
+O

(
1

a

)
+

n−4∑
`=0

1

l + 2
Ha−1.

(A.28)

Hence the sum of the 4th and the 6th term is asymptotically negligible:

2
n−4∑
`=0

1

l + 2
Ha−2 − 2

n−4∑
`=0

1

l + 2
Ha−1 +O

(
ln(a)

a

)

= −2
n−4∑
`=0

1

l + 2

1

a− 1
+O

(
ln(a)

a

)
a→∞−−−→ 0.

(A.29)
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Finally we show that the sum of the 5th and the 7th term is asymptotically negligible:

a−1∑
s=2

a− s
a2

s−1∑
r=1

a− r
r

1

s− r

((
a− r
a

)n−3
−
(
a− s
a

)n−3)

=
a−1∑
s=2

a− s
a2

s−1∑
r=1

a− r
r

1

a− r

(
a− r
a

)n−3 1−
(
a−s
a−r

)n−3
1− a−s

a−r

=
a−1∑
s=2

a− s
a2

s−1∑
r=1

1

r

(
a− r
a

)n−3 n−4∑
`=0

(
a− s
a− r

)`
=

1

an−1

n−4∑
`=0

a−1∑
s=2

(a− s)`+1

s−1∑
r=1

(a− r)n−3−l

r

=
1

an−1

n−4∑
`=0

a−2∑
r=1

(a− r)n−3−l

r

a−1∑
s=r+1

(a− s)`+1

=
1

an−1

n−4∑
`=0

a−2∑
r=1

(a− r)n−3−l

r

a−r−1∑
s=1

s`+1

=
1

an−1

n−4∑
`=0

a−2∑
r=1

(a− r)n−3−l

r

[
(a− r)`+2

`+ 2
+O((a− r)`+1)

]
.

(A.30)

Now we have

1

an−1

n−4∑
`=0

a−2∑
r=1

(a− r)n−3−l

r
O((a− r)`+1) = O

(
ln(a)

a

)
. (A.31)
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Continuing with the rest we get

1

an−1

n−4∑
`=0

a−2∑
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(a− r)n−3−l

r

(a− r)`+2

`+ 2

=
1

an−1

n−4∑
`=0

1

`+ 2

a−2∑
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(a− r)n−1

r

=
1

an−1

n−4∑
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1
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a−2∑
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n−1∑
h=0

(
n− 1

h

)
an−1−h(−1)hrh−1

=
1

an−1

n−4∑
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1
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n−1∑
h=0

(
n− 1

h

)
an−1−h(−1)h

a−2∑
r=1
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=
1

an−1

n−4∑
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1
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{
n−1∑
h=1

(
n− 1

h

)
an−1−h(−1)h

[
ah

h
+O(ah−1)

]

+ an−1
a−2∑
r=1

r−1

}

=
n−4∑
`=0

1
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{
n−1∑
h=1

(
n− 1

h

)
(−1)h

[
1

h
+O

(
1

a

)]
+Ha−2

}

=
n−4∑
`=0

1

`+ 2

{
n−1∑
h=1

−1

h
+Ha−2

}
+O

(
1

a

)
.

(A.32)

We again used Lemma A.1 in the last line. Finally we consider the last term of Equation

A.15:

a−1∑
s=1

a− s
sa

a−1∑
r=1

1

r

(
a− r
a

)n−1(
1−

(
a− s
a

)n−3)

=
a−1∑
s=1

a− s
sa

s

a

1−
(
a−s
a

)n−3
1− a−s

a

a−1∑
r=1

1

r

(
a− r
a

)n−1
.

(A.33)
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We now consider the term dependent on s and the term dependent on r separately.

This gives

a−1∑
s=1

a− s
sa

s

a

1−
(
a−s
a

)n−3
1− a−s

a

=
a−1∑
s=1

a− s
a2

n−4∑
`=0

(
a− s
a
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=
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`=0

1

a`+2

a−1∑
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(a− s)`+1

=
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1
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s`+1

=
n−4∑
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1
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[
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`+ 2
+O(a`+1)

]

=
n−4∑
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1

`+ 2
+O

(
1

a

)

(A.34)

and

a−1∑
r=1

1

r
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a− r
a
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=
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1

an−1
1

r

n−1∑
h=0

(
n− 1

h

)
an−1−h(−1)hrh

=
1
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n−1∑
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(
n− 1

h
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=
1

an−1

n−1∑
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(
n− 1

h

)
an−1−h(−1)h

[
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h
+O(ah−1)

]
+

1

an−1
an−1Ha−1

=
n−1∑
h=1

(
n− 1

h

)
(−1)h

1

h
+O

(
1

a

)
+Ha−1

=
n−1∑
h=1

−1

h
+O

(
1

a

)
+Ha−1.

(A.35)
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Thus in total we have

a−1∑
s=1

a− s
sa

a−1∑
r=1

1

r

(
a− r
a

)n−1(
1−

(
a− s
a

)n−3)

=

[
n−4∑
`=0

1

`+ 2
+O

(
1

a
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h=1

−1

h
+O

(
1

a
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+Ha−1

]

=
n−4∑
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1

`+ 2

[
n−1∑
h=1

−1

h
+Ha−1

]
+O

(
ln(a)

a

)
.

(A.36)

Implying that the sum of the fifth and the seventh term of Equation A.15 is asymp-

totically negligible:

−2
n−4∑
`=0

1

`+ 2

{
n−1∑
h=1

−1

h
+Ha−2

}

+ 2
n−4∑
`=0

1

`+ 2

[
n−1∑
h=1

−1

h
+Ha−1

]
+O

(
ln(a)

a

)
a→∞−−−→ 0.

(A.37)

Thus finally we get

Var(Ban)
a→∞−−−→ Hn−1 − 1− 2

1

2

(
H

(2)
n−1 − 1

)
= Hn−1 −H(2)

n−1. (A.38)

So the variance of the number of branches in an a-biased tree converges in the case of

~p uniform to the variance of the number of branches of uniform recursive trees.
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A.3. Proof of Theorem 5.17

Proof. We will now calculate the variance of Y p
≥k,n, the number of nodes with at least

k descendants in a BRT. We will use the following expression for the variance:

Var
(
Y p
≥k,n

)
=Var

(
n−k∑
i=2

Ck
i

)

=E

(n−k∑
i=2

Ck
i

)2
− E

[
n−k∑
i=2

Ck
i

]2

=
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E
[
Ck
i

2
]
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i=2

E
[
Ck
i

]2
+ 2

n−k−1∑
i=2
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E
[
Ck
i C

k
j

]
− 2

n−k−1∑
i=2

n−k∑
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E
[
Ck
i

]
E
[
Ck
j

]
.

(A.39)

First of all we have

n−k∑
i=2

E
[
Ck
i

2
]

=
n−k∑
i=2

E
[
Ck
i

]
= (n− k − 1)

a∑
s=1

ps

(
a∑
r=s

pr

)k

(A.40)

and

n−k∑
i=2

E
[
Ck
i

]2
= (n− k − 1)

 a∑
s=1

ps

(
a∑
r=s

pr

)k
2

. (A.41)

Since the events Ck
i and Ck

j are not mutually independent when i < j ≤ i + k,

we also need to express E[Ck
i C

k
j ] for i < j ≤ i+ k.
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Let 2 ≤ i < j ≤ i+ k, then

E[Ck
i C

k
j ]

= P (Xi ≤ {Xi+1, . . . , Xi+k}, Xj ≤ {Xj+1, . . . , Xj+k})
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· P(Xi = s)

=
a∑
s=1

P (Xi ≤ {Xi+1, . . . , Xj−1}|Xi ≤ Xj, Xj ≤ {Xj+1, . . . , Xj+k}, Xi = s)
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(A.42)
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Now we have
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(A.43)

Where we eliminated all terms where i+ k < j and thus E[Ck
i C

k
j ]− E

[
Ck
i

]
E[Ck

j ] = 0.

Moreover we separated the two sums because if i+ k > n− k, only the Ck
j until n− k,

not until i + k are relevant. We now consider all 4 expressions separately. As in the

expression for the branches, we assume p1 > 0 in order to avoid division by 0. We get
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Also
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For the second part of the sum we get
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Continuing with the previous equation we get
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i=1

(
a∑
u=s

pu

)i a∑
r=s

pr

(
a∑
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Moreover we have
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After adding up these terms, we get

Var(Y k
n ) =
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This becomes after grouping some terms

Var(Y p
≥k,n) =
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And after some simplifications we finally get
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 a∑
s=1

ps

(
a∑
r=s

pr

)k
2

[n(2k + 1)− (3k + 1)(k + 1)] .

(A.51)



184

We will now look at the asymptotic for a fixed k as n→∞:

lim
n→∞
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A.4. Proof of Corollary 5.18

Proof. If we choose the uniform distribution over [a], Theorem 5.17 gives
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Using
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1
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and
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we can simplify this expression and get
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=
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−
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−
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For n→∞ this directly gives, as it also follows from Theorem 5.17,

lim
n→∞
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In order to calculate the asymptotic value as a tends to infinity, we will first of all use

the following equation, that is easy to see

a∑
s=1

sk =
ak+1

k + 1
+O(ak) for all k ∈ N, k ≥ 0. (A.58)

This directly gives results for the first and third term:
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=
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=
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and
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For the middle term we need a little bit more work. First of all
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=
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We moreover have

1
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For the rest we develop the term and get

1

ak+1

a∑
s=2

1

s− 1

(a− (s− 1))k+1

k + 1

=
1

k + 1

1

ak+1

a∑
s=2

1

s− 1

k+1∑
`=0

(
k + 1

`

)
ak+1−`(−1)`(s− 1)`

=
1

k + 1

1

ak+1

k+1∑
`=0

(
k + 1

`

)
ak+1−`(−1)`

a∑
s=2

(s− 1)`−1

=
1

k + 1

1

ak+1

{
k+1∑
`=1

(
k + 1

`

)
ak+1−`(−1)`

[
a`

`
+O(a`−1)

]
+ ak+1Ha−1

}

=
1

k + 1

{
k+1∑
`=1

(
k + 1

`

)
(−1)`

1

`
+Ha−1

}

=
1

k + 1
{Ha−1 −Hk+1}+O

(
1

a

)
.

(A.63)



188

Hence we get
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Next we consider
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Similarly to before we have

1
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Continuing with the rest of the term we get
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Thus
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Finally we consider
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Now we have for all ` = 0, . . . , k − 1,
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Continuing with the rest we get

1

ak+1

a∑
s=2

1

s− 1

k−1∑
`=0

(
a− (s− 1)

a

)`
(a− s+ 1)k+1

k + 1

=
1

k + 1

k−1∑
`=0

1

ak+`+1

a∑
s=2

1

s− 1
(a− (s− 1))k+`+1

=
1

k + 1

k−1∑
`=0

1

ak+`+1

a∑
s=2

1

s− 1

k+`+1∑
h=0

(
k + `+ 1

h

)
ak+`+1−h(−1)h(s− 1)h

=
1

k + 1

k−1∑
`=0

1

ak+`+1

k+`+1∑
h=0

(
k + `+ 1

h

)
ak+`+1−h(−1)h

a∑
s=2

(s− 1)h−1

=
1

k + 1

k−1∑
`=0

1

ak+`+1

·

{
k+`+1∑
h=1

(
k + `+ 1

h

)
ak+`+1−h(−1)h

[
ah

h
+O(ah−1)

]
+ ak+l+1Ha−1

}

=
1

k + 1

k−1∑
`=0

k+`+1∑
h=1

(
k + `+ 1

h

)
(−1)h

1

h
+

k

k + 1
Ha−1 +O

(
1

a

)

= − 1

k + 1

k−1∑
`=0

Hk+`+1 +
k

k + 1
Ha−1 +O

(
1

a

)
.

(A.71)

This gives us the asymptotic value for Var(Y a
≤k,n):
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Ha−1 + 2

1

k + 1

k−1∑
`=0

Hk+`+1 − 2
k

k + 1
Ha−1

− n(2k + 1)− (3k + 1)(k + 1)

2(k + 1)
+O

(
ln(a)

a

)
a→∞−−−→ n− k − 1

k + 1
− 2

(n− k − 1)

k + 1
Hk+1 + 2

n− 2k − 1

k + 1
H2k+1

+
2

k + 1

k−1∑
`=0

Hk+`+1 −
n(2k + 1)− (3k + 1)(k + 1)

(k + 1)2
.
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And in particular we get

lim
n→∞

lim
a→∞

Var
(
Y a
≥k,n

)
n

=
1

k + 1
+

2H2k+1 − 2Hk+1

k + 1
− 2k + 1

(k + 1)2
. (A.73)

A.5. Proof of Corollary 5.27

Proof. We will first derive the exact value for the expected value of the depth of n in

an a-RT, which we denote by Dan. First we exchange all pi for 1
a
in Equation 5.72. This

gives

E [Dan] =

a∑
s=2

1
a∑s−1
r=1

1
a

a∑
s′=2

( s′∑
r=1

1

a

)n−1

−

(
s′−1∑
r=1

1

a

)n−1
−

a∑
s=2

1
a∑s−1
r=1

1
a

a∑
s′=2

1

a

(∑s′−1
r=1

1
a

)n−1
−
(∑a

r=s
1
a

∑s′

r=1
1
a

)n−1
∑s′−1

r=1
1
a
−
∑a

r=s
1
a

∑s′

r=1
1
a

+
1

a

a∑
s=2

1
1
a

[
(n− 2)

(
s∑
r=1

1

a

)n

− (n− 1)

(
s∑
r=1

1

a

)n−1 s−1∑
r=1

1

a
+

s∑
r=1

1

a

(
s−1∑
r=1

1

a

)n−1 ]

+
a∑
s=2

( s∑
r=1

1

a

)n−1

−

(
s−1∑
r=1

1

a

)n−1


+

[
a∑
s=2

1

a

1−
(∑a

r=s
1
a

)n−2∑s−1
r=1

1
a

+ (n− 2)
1

a
+ 1

]
1

a

n−1
.
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This expression can be simplified to get

E [Dan] =
a∑
s=2

1

s− 1

a∑
s′=2

[(
s′

a

)n−1
−
(
s′ − 1

a

)n−1]

−
a∑
s=2

1

s− 1

a∑
s′=2

1

a

(
s′−1
a

)n−1 − (a−s+1
a

s′

a

)n−1
s′−1
a
− a−s+1

a
s′

a

+
a∑
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(n− 2)
(s
a

)n
− (n− 1)

(s
a

)n−1 s− 1

a
+
s

a

(
s− 1

a

)n−1
+

a∑
s=2

((s
a

)n−1
−
(
s− 1

a

)n−1)

+

[
a∑
s=2

1

a

1−
(
a−s+1
a

)n−2
s−1
a

+ (n− 2)
1

a
+ 1

]
1

a

n−1
.

(A.75)

After some more simplifications, we have

E [Dan] =
1

an−1

a−1∑
s=1

a−1∑
s′=1

1

s

[
(s′ + 1)n−1 − s′n−1

]
− 1

an−2

a−1∑
s=1

a−1∑
s′=1

1

s

s′n−1 − ((a− s)(s′ + 1))n−1

ss′ + s− a

+
1

an

a−1∑
s=1

(n− 2) (s+ 1)n − (n− 1) (s+ 1)n−1 s+ (s+ 1)sn−1

+
1

an−1

a−1∑
s=1

(s+ 1)n−1 − sn−1

+
1

an−1

[
1

an−2

a−1∑
s=1

an−2 − (a− s)n−2

s
+
n− 2

a
+ 1

]
.

(A.76)



193

This in turn gives

E [Dan] =
1

an−1

a−1∑
s=1

1

s

(
an−1 − 1

)
− 1

an−2

a−1∑
s=1

a−1∑
s′=1

1

s

s′n−1 − ((a− s)(s′ + 1))n−1

ss′ + s− a

+
1

an

a−1∑
s=1

(n− 2) (s+ 1)n − (n− 1) (s+ 1)n−1 s+ (s+ 1)sn−1

+
1

an−1
(
an−1 − 1

)
+

1

an−1

[
1

an−2

a−1∑
s=1

an−2 − (a− s)n−2

s
+
n− 2

a
+ 1

]
.

(A.77)

And after some more simplifications

E [Dan] = Ha−1 −
Ha−1

an−1

− 1

an−2

a−1∑
s=1

a−1∑
s′=1

1

s

s′n−1 − ((a− s)(s′ + 1))n−1

ss′ + s− a

+
1

an

a−1∑
s=1

(n− 2) (s+ 1)n − (n− 1) (s+ 1)n−1 s+ (s+ 1)sn−1

+ 1− 1

an−1

+
Ha−1

an−1
+

1

an−1
+
n− 2

an
+

1

a2n−3

a∑
s=2

−(a− s+ 1)n−2

s− 1
.

(A.78)

Finally we get

E [Dan] = Ha−1 + 1 +
n− 2

an
− 1

a2n−3

a−1∑
s=1

(a− s)n−2

s

− 1

an−2

a−1∑
s=1

a−1∑
s′=1

1

s

s′n−1 − ((a− s)(s′ + 1))n−1

ss′ + s− a

+
1

an

a−1∑
s=1

(n− 2) (s+ 1)n − (n− 1) (s+ 1)n−1 s+ (s+ 1)sn−1.

(A.79)
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For n→∞ Equation 5.73 gives easily,

E [Dan]

n

n→∞−−−→ 1

a
. (A.80)

This can also be derived from the previous expression.

For the asymptotics when a→∞ we need more work. Since in the uniform case

the expectation of the depth of n is equal to Hn−1 we expect the same here. We will

first look at the term in the second line of Equation A.79. In order to get its asymptotic

value we will use the form it had before simplifying, as in Equation A.75. Using this

we have

1

an−2

a−1∑
s=1

a−1∑
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s′n−1 − ((a− s)(s′ + 1))n−1

ss′ + s− a

=
a∑
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(
s′

a

)n−2 n−2∑
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((
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a

s′ + 1

a

)(
s′

a

)−1)`
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1
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a−1∑
s=1

1

s
(a− s)`
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s′
n−2−`

(s′ + 1)`.
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We know look at the term containing only s and the term containing only s′

separately. First of all for ` = 0, . . . , n− 2,

a−1∑
s=1

1

s
(a− s)` =

a−1∑
s=1

1

s

∑̀
k=0

(−1)k
(
`

k

)
a`−ksk

=
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k=0

(−1)k
(
`

k

)
a`−k
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sk−1

=
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`
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)
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[
ak

k
+O(ak−1)

]
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∑̀
k=1

(−1)k
(
`

k

)
1

k
+O(al−1) + a`Ha−1.

(A.82)

Now for the term depending on s′ only we get for ` = 0, . . . , n− 2,
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s′
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`
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]
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By inserting these expressions into Equation A.81 we get
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1

an−1+`
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where we again used Lemma A.1.
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Now we look at the last term of Equation A.79:

1
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Moreover we have

n− 2

an
− 1

a2n−3

a−1∑
s=1

(a− s)n−2

s
= O

(
1

a

)
. (A.86)

Thus in total we get

E [Dan] = Ha−1 + 1−Ha−1 +Hn−1 − 1 +O
(

ln(a)

a

)
a→∞−−−→ Hn−1.

(A.87)




