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ABSTRACT

EFFICIENT BASES FOR THE GALERKIN SOLUTION OF

MULTIPLE-SCATTERING PROBLEMS

In this thesis we consider high-frequency multiple scattering problems in the ex-

terior of two-dimensional smooth compact scatterers consisting of two disjoint strictly

convex obstacles. The motivation in considering this problem is the lack of fast yet

rigorous numerical algorithms designed for its solution. Indeed, the only algorithm

designed for the solution of this multiple scattering problem is the integral equation

method developed by Bruno et al. in 2005 that uses a combination of geometrical op-

tics to determine the phases of multiple scattering iterations, Nyström discretization

to spectrally represent the unknowns, extensions of the stationary phase method to

evaluate the arising integrals independent of the frequency, and a matrix free linear

algebra solver. Unfortunately this algorithm is not supported with a rigorous conver-

gence analysis.

In this thesis, we take an alternative approach and develop two classes of highly ef-

ficient Galerkin boundary element methods extending the recent single scattering algo-

rithms, namely the frequency-adapted Galerkin boundary element methods and change

of variables Galerkin boundary element methods recently developed by Ecevit et al.,

to multiple scattering problems. In connection with each multiple scattering iterate,

in both cases, we prove that the number of degrees of freedom necessary to obtain

prescribed error tolerances independent of frequency needs increase as O(kε) (for any

ε > 0) with increasing wavenumber k. Consequently, the theoretical developments

supported with the numerical tests in this thesis fill an important gap in the literature.
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ÖZET

ÇOKLU SAÇILIM PROBLEMLERİNİN GALERKİN

ÇÖZÜMÜ İÇİN ETKİN BAZLAR

Bu tezde iki ayrık, düzgün, dışbükey, tıkız engel dışında oluşan iki boyutlu yüksek

frekanslı çoklu saçılım problemlerini inceleyeceğiz. Bu problemi ele almamızın nedeni,

literatürde problemle ilgili hızlı ve sayısal analizi yapılmış herhangi bir yöntemin bulun-

mamasıdır. Nitekim, bu çoklu saçılma probleminin çözümü için tasarlanmış tek algo-

ritma 2005 yılında Bruno ve diğerleri tarafından geliştirilen, geometrik optik yöntemi ile

fazların belirlendiği, Nyström ayrıklaştırma yöntemi ile bilinmeyenlerin spektral olarak

temsil edildiği, durağan faz metodu ile numerik integrallerin hesaplandığı integral den-

klem metodudur. Ne yazık ki bu algoritmanın yakınsama analizi yapılmamıştır.

Bu tezde, alternatif bir yaklaşımla, yukarıda bahsi geçen çoklu saçılım prob-

lemlerinin nümerik çözümü için yüksek verimli Galerkin sınır elemanları yöntemleri

geliştireceğiz. Bu yöntemleri geliştirirken yakın zamanda Ecevit ve diğerleri tarafından

ortaya atılan tekil saçılım algoritmalarını, çoklu saçılım problemlerine genelleyeceğiz.

Ayrıca her çoklu saçılım iterasyonuyla bağlantılı olarak, frekanstan bağımsız hata oranı

elde edilmesi için problemin bilinmeyelerinin, her pozitif ε için, k dalga sayısı olmak

üzere, kε sayısıyla doğru orantılı olarak artan serbestlik derecesiyle ifade edilmesinin

yeterli olduğunu kanıtlayacağız. Sonuç olarak, bu tezde sayısal testler ile destekle-

nen teorik gelişmeler literatürde çoklu saçılım problemleri ile ilgili önemli bir boşluğu

dolduracaktır.
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1. INTRODUCTION

The last twenty years have witnessed important developments in the fields of com-

putational acoustics and electromagnetism from both theoretical and practical perspec-

tives. Indeed, algorithms relating to scattering simulations have mostly concentrated

on finite elements [1–3] and integral equations [4–8]. The approaches based on the

former are in general applicable in the low frequency regime since utilization of fi-

nite element methods in exterior scattering problems necessitate the construction of

artificial interfaces to truncate the infinite computational domain as well as design of

absorbing boundary conditions on this interface to represent the behaviour of solutions

at infinity [9–13]. These requirements naturally limit the applicability of finite element

methods to low frequency simulations since they easily result in loss of accuracy and re-

lated increase in computational cost in high frequency applications. In connection with

the multiple scattering problems considered in this thesis, these difficulties are further

coupled with the need to increase the size of aforementioned artificial interfaces due

to the separation distance between the scatterers. Methods based on integral equation

formulations are therefore better adopted to exterior scattering problems since they

remove the need for an artificial interface simply by choosing an outgoing fundamental

solution and they automatically restrict the computational domain to the region filled

by the scatterers only. Moreover, in surface scattering problems considered in this

thesis, they provide a dimensional reduction in the computational domain since the

solutions can be computed based on a knowledge of the densities confined to the sur-

face of the scattering obstacles [14]. Nonetheless, they give rise to dense linear systems

whose sizes increases as O(kp) with increasing wavenumber k where p is the dimension

of the computational manifold.

The success of integral equation methods in high frequency problems is the ease

of integrating the knowledge of asymptotic behaviour of the unknown into the problem

formulation. This is naturally the path taken in this thesis since it converts the problem

into the computation of a slowly oscillating envelope rather than the full solution

whose oscillations are in harmony with those of the incoming field of radiation. The
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first algorithm, in this direction, can be attributed to Nedéléc et al. [15, 16] where

they considered two-dimensional exterior surface scattering problems related with the

impedance boundary condition, and developed a Galerkin method which reduces the

number of degrees of freedom needed to represent the unknown surface densities to

O(k1/3) through the use of stationary phase method [17]. This has clearly provided a

significant improvement over the classical approaches since the number of degrees of

freedom they require is O(k).

What has had a greater impact in the computational scattering community is the

single scattering algorithm developed by Bruno et al. [18], which has successfully com-

bined the Nyström method with suitable extensions of the the method of stationary

phase and a change of variables around the shadow boundaries, since it has demon-

strated the possibility of reducing the number of degrees of freedom needed to represent

the unknown surface densities to O(1), and thus the possibility of obtaining prescribed

error tolerances within fixed computational times for scattering problems of arbitrarily

high frequency (see [19] for an extension of this algorithm to three-dimensional single

scattering configurations). Alternative implementations of this method based on an

appropriate combination of the collocation method and geometrical theory of diffrac-

tion [20], the collocation method and steepest descent method [21], and a p-version

Galerkin method [22] have since been developed. Indeed, [22] has rigorously shown

that an upper bound necessary to represent the unknown surface densities in these

approaches is O(k1/9).

Among the aforementioned single scattering algorithms, [18,21,22] are asymptotic

in the sense that the numerical solutions based on these algorithms do not converge to

the actual solutions for any fixed wavenumber k as the number of degrees of freedom

goes to infinity since these algorithms approximate the solutions beyond the O(k−1/3)

shadow boundaries simply by zero.

On the other hand, the methods in [18,20,21] are not supported with a rigorous

convergence analysis. Motivated with these observations, Ecevit and Özen [23] have

recently proposed and rigorously analyzed frequency-adapted Galerkin boundary ele-
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ment methods for single scattering problems which demand, for any convex scatterer,

an increase of O(kε) (for any ε > 0) in the number of degrees of freedom to maintain

a prescribed accuracy independent of frequency. More recently, Ecevit and Eruslu [24]

have developed a class of change of variables Galerkin boundary element methods for

the solution of single scattering problems that display similar characteristics when

compared with that in [23] from both theoretical and practical points of view but that

provide significantly improved numerical accuracies in the shadow regions. The aim of

this thesis is to extend and rigorously analyze the single scattering algorithms [23, 24]

to encompass the multiple scattering problems related to two disjoint strictly convex

scatterers.

Indeed, as of today the only algorithm that displays the capability of reproduc-

ing multiple scattering returns in frequency independent computational times in the

exterior of two smooth and convex structures is that of Bruno et al. [25] which is based

on three main principles: 1) Representation of the solution as an infinite superposi-

tion of single scattering returns through a Neumann series, 2) Determination of the

phases of these effects using a geometrical optics solver, and 3) Use of the single scat-

tering algorithm they developed in [18] for the frequency independent solution of the

associated integral equations. While the algorithms in [18] and [25] are not supported

with rigorous numerical analysis, the numerical implementations in [25] have shown

that the Neumann series converges spectrally for two convex obstacles. In this con-

nection, considering a finite collection of smooth strictly convex obstacles Ecevit et

al. have later shown for two-dimensional [26] and three-dimensional [27] configurations

that the Neumann series can be rearranged into primitive periodic orbits and derived

rigorous rate of convergence formulas on these orbits. The theoretical results obtained

in [26] are central to the developments in this thesis as they provide the necessary

tools (namely the Hörmander classes and asymptotic expansions of multiple scattering

iterations) for the extension and rigorous numerical analysis of the single scattering

algorithms in [23, 24] to the case of multiple scattering problems. Indeed, we rigor-

ously prove for the numerical solution of each multiple scattering iteration that the

required number of degrees of freedom to represent each one of these iterates needs

to increase only as O(kε) (for any ε > 0) with increasing wavenumber k to obtain
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prescribed error tolerances independent of the underlying frequency. Accordingly, this

thesis fills an important gap in the literature by providing the first rigorous numerical

algorithms capable of predicting multiple scattering returns in essentially frequency

independent computational times when combined with methods for the evaluation of

highly oscillatory integrals.

Parallel algorithms related to scattering by convex polygons have also been devel-

oped. These algorithms display similar performances as compared to those associated

with smooth convex scatterers (see the survey article [28]). Recently non-convex poly-

gons have also been considered [29] but the algorithm there applies only to orthogonal

non-convexities which clearly allows only for finitely many reflections as opposed to

the multiple scattering problems considered in this thesis.

This thesis is organized as follows. In Chapter 2, we introduce the scattering prob-

lem along with an equivalent integral equation formulation, and provide the necessary

modifications needed to express the solution as a superposition of multiple scattering

iterations when the scatterer consists of two disjoint components. In Chapter 3, we

resort to [26] and present the Hörmander classes and asymptotic expansions of mul-

tiple scattering iterations along with the relevant wavenumber dependent derivative

estimates of these iterates. In Chapter 4, we present the general ideas underlying the

classical Galerkin method in connection with the scattering problems. In Chapter 5,

we discuss the extension of the single scattering algorithm in [26] to multiple scattering

problems, and present a rigorous convergence analysis. Chapter 6 is reserved for an

alternative approach in forming the Galerkin equations which allows for the generation

of orthogonal Galerkin basis functions and thus removes the need to solve the Galerkin

equations. This is importance since the condition numbers of related matrices easily

grow beyond computational framework with increasing polynomial degrees. In Chap-

ter 7, we consider the extension of the single scattering algorithm in [24] to multiple

scattering problems considered in this thesis, and present a full convergence analysis.

Finally, in Chapter 8 we present numerical tests validating the theoretical findings in

this thesis.
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2. THE MULTIPLE SCATTERING PROBLEM

In this chapter, we introduce the two-dimensional multiple scattering problem

along with its equivalent integral equation formulations. Specifically, we consider the

solution of the multiple scattering problem in the exterior of a smooth compact obstacle

K consisting of two disjoint strictly convex structures K1 and K2. For definiteness,

we assume sound-soft boundary conditions and a plane-wave incidence uinc(x) = eikα·x

with direction α (|α| = 1). In this case, the scattered field u is sought to satisfy the

Helmholtz equation in the exterior domain,

∆u(x) + k2u(x) = 0, x ∈ R2\K

the Sommerfeld radiation condition at infinity,

lim
|x|→∞

|x|1/2
[(

x

|x|
,∇u(x)

)
− iku(x)

]
= 0

and the Dirichlet boundary condition

u(x) = −uinc(x) = −eikα·x, x ∈ ∂K.

By Green’s identities, this problem can be converted into finding the solution of one of

the following boundary integral equations

(I + S ′ − ikS)η = 2

{
∂uinc

∂ν
− ikuinc

}
(2.1)

(I + S ′)η = 2

{
∂uinc

∂ν

}
(2.2)

(S)η = 2
{
uinc
}

(2.3)
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for the unknown normal derivative of the total field

η(x) =
∂ (u(x) + uinc(x))

∂ν(x)
, x ∈ ∂K

where I is the identity operator, and S ′ and S are the boundary integral operators

defined as

(Sη)(x) := 2

∫
∂K

Φ(x, y)η(y)ds(y), x ∈ ∂K

(S ′η)(x) := 2

∫
∂K

∂Φ(x, y)

∂ν(x)
η(y)ds(y), x ∈ ∂K.

Here ν is the exterior unit normal vector to ∂K,

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y

is the fundamental solution to the Helmholtz equation in 2D, and H
(1)
0 is the Hankel

function of the first kind and order zero. Indeed, once η is available, the scattered field

can be constructed by means of the single-layer representation

u(x) = −
∫
∂K

Φ(x, y)η(y)ds(y), x ∈ R2/K.

While (2.1) has a unique solution, (2.2) and (2.3) lack this property and therefore,

in what follows, we will work with (2.1) which we re-write as

η(x)−
∫
∂K

{
∂G(x, y)

∂ν(x)
− ikG(x, y)

}
η(y)ds(y)

= 2

{
∂uinc(x)

∂ν(x)
− ikuinc(x)

}
, x ∈ ∂K (2.4)
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where G = −2Φ. For the sake of simplicity let us introduce

R := (−S ′ + ikS) and f = 2

{
∂uinc

∂ν
− ikuinc

}
on ∂K (2.5)

in which case (2.4) becomes

(I −R)η = f on ∂K. (2.6)

Since we have K = K1 ∪K2, we can re-write (2.6) as

I −R11 −R12

−R21 I −R21

η1
η2

 =

f1
f2

 (2.7)

where we take η = (η1, η2)
t and f = (f1, f2)

t with ηj and fj defined on ∂Kj and

fj(x) = 2ik(α · ν(x) − 1)eikα·x for j ∈ {1, 2}. Also, the integral operators Rjj′ are

defined as

(Rjj′ηj′)(x) =

∫
∂Kj′

{
∂G(x, y)

∂ν(x)
− ikG(x, y)

}
ηj′(y) ds(y), x ∈ ∂Kj

for j, j′ ∈ {1, 2}. Now, let us define D = diag(I − R) and multiply (2.7) with D−1 to

get

(I − T )η = g (2.8)

where

g =

(I −R11)
−1f1

(I −R22)
−1f2


and
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T =

 0 (I −R11)
−1R12

(I −R22)
−1R21 0

 .
The Neumann series solution of (2.8) reads

η =
∞∑
m=0

ηm =
∞∑
m=0

Tmg

where we observe that

ηm+1 = Tηm

which gives rise to

ηm+1 =

ηm+1
1

ηm+1
2

 =

(I −R11)
−1R12η

m
2

(I −R22)
−1R21η

m
1

 .
Therefore, solving the multiple scattering problem (2.6) turns into recursively solving

single scattering problems



(I −R11)η
0
1 = f1 on ∂K1

(I −R22)η
0
2 = f2 on ∂K2

(I −R11)η
m+1
1 = R12η

m
2 on ∂K1

(I −R22)η
m+1
2 = R21η

m
1 on ∂K2

(2.9)

for any m ≥ 0 and then adding ηm’s to find η.
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3. MULTIPLE SCATTERING ASYMPTOTIC

EXPANSIONS

Equations in (2.9) motivate that the multiple scattering problem can be disman-

tled into contributions associated with the two paths (Kτj)j≥0 distinguished with the

requirements that τj ∈ {1, 2} and τj 6= τj+1 for all j ≥ 0. Precisely, in this case,

τ0 = 1 determines the first path as (K1, K2, K1, K2, . . . ), and τ0 = 2 the second one as

(K2, K1, K2, K1, . . . ). Equations in (2.9) can then be adapted to these paths to yield

(I −Rτ0τ0)ητ0 = fτ0 on ∂Kτ0 (3.1)

and for j ≥ 1

(I −Rτjτj)ητj = Rτjτj−1
ητj−1

on ∂Kτj (3.2)

for τ0 = 1 and τ0 = 2. Furthermore, provided the obstacles K1 and K2 are strictly

convex and satisfy the “no-occlusion condition” in the sense that at least one ray with

direction α passes between K1 and K2 without touching them, the developments in [26]

entail that the densities ητj can be expressed as

ητj(x) = eikϕτj (x)ηslowτj
(x)

where ϕτj is the geometrical optics phase which we shall shortly describe. Broadly

speaking, this representation combined with the estimates on the derivatives of ηslowτj

allows the generation of Galerkin approximation spaces whose dimensions must in-

crease only very mildly with increasing frequency to obtain solutions of equivalent

accuracy independent of frequency. This will be further elaborated later in the thesis.

Note explicitly that the geometrical optics phase ϕτm is defined at any point x on the
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boundary of Kτm ∈ (Kτj)j≥0 as

ϕτm(x) =


α · x if m = 0

α · Xm
0 (x) +

m−1∑
j=0

|Xm
j+1(x)−Xm

j (x)| if m ≥ 1

where the points

(Xm
0 (x), . . . ,Xm

m (x)) ∈ ∂Kτ0 × · · · × ∂Kτm

called the “broken (m + 1)-rays terminating at x ∈ ∂Kτm ,” are uniquely determined

by the requirements



(a) Xm
m (x) = x

(b) α · ν(Xm
0 (x)) < 0

(c) (Xm
j+1(x)−Xm

j (x)) · ν(Xm
j (x)) > 0

(d)
Xm

1 (x)−Xm
0 (x)

|Xm
1 (x)−Xm

0 (x)|
= α− 2α · ν(Xm

0 (x)) ν(Xm
0 (x))

(e)
Xm
j+1(x)−Xm

j (x)

|Xm
j+1(x)−Xm

j (x)|
=
Xm
j (x)−Xm

j−1(x)

|Xm
j (x)−Xm

j−1(x)|

−2
Xm
j (x)−Xm

j−1(x)

|Xm
j (x)−Xm

j−1(x)|
· ν(Xm

j (x)) ν(Xm
j (x))

(3.3)

for 0 ≤ j ≤ m. Equations in (3.3) simply state that the broken (m + 1)-rays satisfy

the law of reflection for each ray
[
Xm
j (x),Xm

j+1(x)
]

when j ∈ {0, . . . ,m − 2} on the

illuminated regions, however, the ray
[
Xm
m−1(x),Xm

m (x)
]

is allowed to terminate in the

shadow region. In fact, the broken rays allow us to define the illuminated regions, the

shadow regions and the shadow boundaries as

∂KIL
τm =


{x ∈ ∂Kτ0 : α · ν(x) < 0} , m = 0

{
x ∈ ∂Kτm : (Xm

m (x)−Xm
m−1(x)) · ν(x) < 0

}
, m ≥ 1
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and

∂KSR
τm =


{x ∈ ∂Kτ0 : α · ν(x) > 0} , m = 0

{
x ∈ ∂Kτm : (Xm

m (x)−Xm
m−1(x)) · ν(x) > 0

}
, m ≥ 1

as well as

∂KSB
τm =


{x ∈ ∂Kτ0 : α · ν(x) = 0} , m = 0

{
x ∈ ∂Kτm : (Xm

m (x)−Xm
m−1(x)) · ν(x) = 0

}
, m ≥ 1.

Indeed, convexity and (3.3) ensure that the broken rays are uniquely determined and

this, in turn, implies that the illuminated regions, shadow regions, shadow boundaries

and the phase functions are all well-defined.

In what follows, for simplicity we are going to denote ητm , ηslowτm , ∂Kτm , ∂KIL
τm

etc. as ηm, ηslowm , ∂Km, ∂KIL
m etc. since we are going to stick to just one path. Our

approach in designing the Galerkin approximation spaces is based on a detailed under-

standing of the derivative estimates of ηslowm . This naturally calls for a characterization

of Hörmander classes and asymptotic expansions of ηslowm . Following [26] we introduce

the definition of these concepts next.

Definition 3.1 (Symbol classes of Hörmander). Let M be an open subset of Rp, and

let Γ be an open conic subset of M× Rq (i.e. (x, ξ) ∈ Γ implies (x, tξ) ∈ Γ when

t > 0). The symbol class of order µ ∈ R and type %, δ ∈ [0, 1] of Hörmander, denoted

as Sµ%,δ(Γ), is defined to be the collection of all complex-valued functions a ∈ C∞(Γ)

such that, for any compact set W ⊂ Γ and all multi-indices β, γ, the estimate

∣∣Dβ
xD

γ
ξ a(x, ξ)

∣∣ ≤ Cβ,γ,W (1 + |ξ|)µ−%|γ|+δ|β|, (x, ξ) ∈ W c (3.4)
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holds for some constant Cβ,γ,W where W c = {(x, tξ) : (x, ξ) ∈ W, t ≥ 1}. Note that, if

a ∈ Sµ%,δ(Γ), then

Dβ
xD

γ
ξ a(x, ξ) ∈ Sµ−%|γ|+δ|β|%,δ (Γ) .

The upper bound in (3.4) is independent of the variable x on the left hand side.

This permits us to extend this definition to the case where M is a p-dimensional C∞

manifold for which atlas of charts are defined as

{(Uα, χα)|χα : Uα ⊂M → Rp}

on M, and where Dβ
xD

γ
ξ a(x, ξ) is defined by

Dβ
xD

γ
ξ a(x, ξ) =

{
Dβ
yD

γ
ξ a(χ−1α (y), ξ) : (Uα, χα) is a coordinate chart s.t. χα(x) = y

}
such that

∣∣Dβ
xD

γ
ξ a(x, ξ)

∣∣ = max
{∣∣Dβ

yD
γ
ξ a(χ−1α (y), ξ)

∣∣ : Dβ
yD

γ
ξ a(χ−1α (y), ξ) ∈ Dβ

xD
γ
ξ a(x, ξ)

}
.

Definition 3.2 (Asymptotic expansions in the sense of Hörmander). Let M be a p-

dimensional C∞ manifold, Γ an open conic subset of M×Rq, and aj ∈ S
νj
%,δ(Γ) where

νj → −∞ as j →∞. We say that a ∈ Sµ%,δ(Γ) admits the asymptotic expansion

a ∼
∞∑
j=0

aj

if

a−
∑
i<j

ai ∈ S
µj
%,δ(Γ)
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for every j = 0, 1, 2, . . . where µj = maxi≥j νi and µ = µ0. Moreover, the function a is

uniquely determined modulo S−∞%,δ (Γ) =
⋂
µ S

µ
%,δ(Γ) and has the same property relative

to every rearrangement of the series
∑
aj.

Next we present the Hörmander classes and asymptotic expansions of ηslowm as

were classified in [26].

Theorem 3.3 (Hörmander classes and uniform asymptotic expansions of ηslowm ). The

asymptotic characteristics of the slow densities ηslowm are as follows:

(i) On the illuminated region ∂KIL
m , ηslowm (x) = ηslowm (x, k) belongs to S1

1,0(∂K
IL
m ×

(0,∞)) and admits the asymptotic expansion

ηslowm (x, k) ∼
∑
j≥0

k1−jam,j(x)

where am,j(x) are complex-valued C∞ functions. Accordingly, for any N ∈ N ∪

{0}, the difference

rm,N(x, k) = ηslowm (x, k)−
N∑
j=0

k1−jam,j(x)

belongs to S−N1,0 (∂KIL
m × (0,∞)) and thus satisfies the estimates

∣∣Dβ
xD

n
krm,N(x, k)

∣∣ ≤ Cm,β,n,S(1 + k)−N−n

on any compact subset S of ∂KIL
m for any multi-index β and n ∈ N ∪ {0}.

(ii) Over the entire boundary ∂Km, ηslow(x, k) belongs to S1
2/3,1/3(∂Km × (0,∞)) and

admits the asymptotic expansion

ηslowm (x, k) ∼
∑
p,q≥0

k2/3−2p/3−q bm,p,q(x)Ψ(p)(k1/3Zm(x))
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where bm,p,q(x) are complex-valued C∞ functions, Zm(x) is a real-valued C∞ func-

tion that is positive on the illuminated region ∂KIL
m , negative on the shadow region

∂KSR
m , and vanishes precisely to first order on the shadow boundary ∂KSB

m . Here,

the function Ψ admits the asymptotic expansion

Ψ ∼
∞∑
j=0

cjτ
1−3j as τ →∞

and Ψ is rapidly decreasing in the sense of Schwartz as τ → −∞. In other words,

for all N, n ∈ N ∪ {0},

Dn
τ

{
Ψ(τ)−

N−1∑
j=0

cjτ
1−3j

}
= O(τ 1−3N−n) as τ →∞

and

Dn
τ Ψ(τ) = O(τ−N) as τ → −∞.

Note specifically then, for any P,Q ∈ N ∪ {0}, the difference

Rm,P,Q(x, k) = ηslowm (x, k)−
P,Q∑
p,q=0

k2/3−2p/3−q bm,p,q(x)Ψ(p)(k1/3Zm(x))

belongs to S−µ2/3,1/3(∂Km × (0,∞)), µ = min {2P/3, Q}. Thus it satisfies the esti-

mates

∣∣Dβ
xD

n
kRm,P,Q(x, k)

∣∣ ≤ Cm,β,n(1 + k)−µ−2n/3+|β|/3

for any multi-index β and n ∈ N ∪ {0}.

As was shown in [26], Theorem 3.3 yields the following estimates on the derivatives

of ηslowm .
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Theorem 3.4 (Derivative estimates). Let m ≥ 0, and denote by y(s) = (y1(s), y2(s))

the arc-length parametrization of ∂Km. Then, for all n ∈ N∪{0}, there exist constants

Cn > 0 independent of k and s such that for all k sufficiently large,

∣∣Dn
s η

slow
m (y(s))

∣∣ ≤ k

 Cn, n = 0, 1

Cn

[
1 +

∑n
j=2 k

(j−1)/3(1 + k1/3|w(s)|)−(j+2)
]
, n ≥ 2

where w(s) = (s− a)(b− s) and ∂KSB
m = {y(a), y(b)}.
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4. THE GALERKIN METHOD

As is well known, the Galerkin method provides a convenient mechanism for the

solution of operator equations in Hilbert spaces [30]. In this chapter, we describe how

the multiple scattering integral equations (3.1)-(3.2) can be solved through the Galerkin

method. Indeed, while each of (3.1)-(3.2) is an operator equation of the form

Rη = f (4.1)

in L2(∂K) with either K = K1 or K = K2, clearly the unique solution of (4.1) is also

the unique solution of its weak formulation

B(η, µ) = F (µ) for all µ ∈ L2(∂K) (4.2)

where the sesquilinear form B : L2(∂K) × L2(∂K) → C and the bounded linear func-

tional F : L2(∂K)→ C are defined as

B(µ, η) = 〈µ,Rη〉 and F (µ) = 〈µ, f〉 (4.3)

for the L2 inner product given by 〈g, h〉 =
∫
∂K g(s)h(s)ds and the operator R = I −R

(see (2.5) for the definition of R). In order to use the Galerkin method, we need to

work on a finite dimensional subspace X̂ of L2(∂K) and find an approximate solution

η̂ ∈ X̂ to (4.2). Hence, we are going to restrict (4.2) on a “nice” finite dimensional

subspace of L2(∂K), namely X̂, and work on the equation

B(µ̂, η̂) = F (µ̂) for all µ̂ ∈ X̂. (4.4)

By Céa’s lemma, under certain conditions we have a unique solution to (4.4) and a

bound for the error term.
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Lemma 4.1. (Céa’s Lemma) Suppose B : X ×X → C is a bounded strictly coercive

sesquilinear form on a Hilbert space X, that is, there exist positive constants C and c

such that

|B(µ, η)| ≤ C‖µ‖‖η‖, for all η, µ ∈ X

ReB(η, η) ≥ c‖η‖2, for all η ∈ X

and F : X → C is a a bounded linear functional. Given a finite dimensional subspace

X̂ (called a Galerkin approximation space) of X, there exists a unique η̂ ∈ X̂ (called

the Galerkin solution) such that

B(µ̂, η̂) = F (µ̂), for all µ̂ ∈ X̂.

Furthermore, we have the error estimate

‖η − η̂‖ ≤ C

c
inf
µ̂∈X̂
‖η − µ̂‖

where η is the solution of

B(µ, η) = F (µ), for all µ ∈ X.

The constants C and c in the lemma are called the continuity and coercivity

constants respectively. For the operator R = I − R in (2.6) and the sesquilinear form

B in (4.2) we have C/c = O(k1/3) as k →∞.

Incidentally, if B = {µ̂1, . . . , µ̂m} is a basis for a finite dimensional Galerkin

approximation space X̂ of dimension m, then the Galerkin solution η̂ ∈ X̂ can be
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expressed as η̂ =
∑m

j=1 cjµ̂j and (4.4) becomes

〈µ̂i, f〉 = F (µ̂i) = B(µ̂i, η̂) =
m∑
j=1

cjB(µ̂i, µ̂j) =
m∑
j=1

cj〈µ̂i,Rµ̂j〉

for i = 1, . . . ,m. Upon taking conjugates this gives rise to the linear system


〈Rµ̂1, µ̂1〉 . . . 〈Rµ̂m, µ̂1〉

...
...

〈Rµ̂1, µ̂m〉 . . . 〈Rµ̂m, µ̂m〉



c1
...

cm

 =


〈f, µ̂1〉

...

〈f, µ̂m〉

 . (4.5)

We see that for any given finite dimensional subspace X̂, solving (4.4) is equivalent

to solving (4.5) for the vector ĉ = (c1, . . . , cdim(X̂)). Therefore, in what follows we

focus on constructing Galerkin approximation spaces X̂ ⊂ L2(∂K) whose dimensions

increase only very slowly with increasing frequency to fix the error independent of

frequency. The main idea is to construct Galerkin approximation spaces by mimicking

the asymptotic behaviour of the density ητm locally for each reflection.

Bearing these in mind, in the next three chapters, we fix the obstacle path

(Kτj)j≥0 (i.e. we choose either τ0 = 1 or τ0 = 2), and we also fix the reflection

number m and set K = Kτm . Further, we write η = ητm , ηslow = ηslowτm , and ϕ = ϕτm so

that

η(x) = eikϕ(x)ηslow(x), x ∈ ∂K. (4.6)

Finally, we write R = Rτmτm so that the corresponding integral equation in (3.1) or

(3.2) takes on the form

(I −R)η = f. (4.7)
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5. FREQUENCY-ADAPTED GALERKIN BOUNDARY

ELEMENT METHODS FOR MULTIPLE SCATTERING

PROBLEMS

In this chapter, we describe how the frequency-adapted Galerkin boundary ele-

ment methods developed in [23] can be extended to encompass the multiple scattering

problems considered in this thesis for the efficient solution of integral equations (3.1)-

(3.2).

As mentioned in the end of Chapter 4, we fix the obstacle path (Kτj)j≥0 and the

reflection number m, and set K = Kτm . Further, we write η = ητm , ηslow = ηslowτm , and

ϕ = ϕτm so that we have the phase extraction (4.6), and we consider the solution of

the integral equation (4.7) by the Galerkin method.

To this end, we use γ to denote an arc-length parametrization, with period 2L,

of the boundary of the obstacle K. Further, we assume that γ is chosen so that

γ(0) is in the shadow region, γ(t1) and γ(t2) are the shadow boundary points with

0 < t1 < t2 < 2L, and (t1, t2) is mapped onto the illuminated region whereas (t2, t1+2L)

is to the shadow region of this obstacle.

Given m ∈ N, 0 ≤ εm < εm−1 < . . . < ε1 < 1/3, and constants ξ1, ξ2 > 0, we now

divide the interval [0, 2L] into 4m subregions as follows:

(i) Illuminated region:

ΛIL = [t1 + ξ1k
−1/3kε1 , t2 − ξ2k−1/3kε1 ]

(ii) Deep shadow region:

ΛDS = [0, t1 − ξ1k−1/3kε1 ] ∪ [t2 + ξ2k
−1/3kε1 , 2L]
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(iii) Shadow boundaries (` = 1, 2):

ΛSB` = [t` − ξ`k−1/3kεm , t` + ξ`k
−1/3kεm ]

(iv) Illuminated transitions: For j = 1, 2, . . . ,m− 1,

ΛIT1j = [t1 + ξ1k
−1/3kεj+1 , t1 + ξ1k

−1/3kεj ]

ΛIT2j = [t2 − ξ2k−1/3kεj , t2 − ξ2k−1/3kεj+1 ]

(v) Shadow transitions: For j = 1, 2, . . . ,m− 1,

ΛST1j = [t1 − ξ1k−1/3kεj , t1 − ξ1k−1/3kεj+1 ]

ΛST2j = [t2 + ξ2k
−1/3kεj+1 , t2 + ξ2k

−1/3kεj ].

We define the Galerkin approximation spaces Pj for j ∈ {1, . . . , 4m} on these

subregions as

Pj = χj e
ik ϕ Pdj

where χj is the characteristic function of Λj (j = 1, . . . , 4m) and Pdj is the space of

polynomials of degree at most dj which is a dj+1 dimensional polynomial space defined

on each subregion. Hence, our 4m+
∑4m

j=1 dj dimensional Galerkin approximation space

is the direct sum of these spaces

Pd =
4m⊕
j=1

Pj

where d stands for d = (d1, . . . , d4m). Exactly as demonstrated in [23], these choices

give rise to the following result.

Theorem 5.1. For all nj ∈ {0, . . . , dj + 1} (j = 1, . . . , 4m) and all sufficiently large

k ≥ 1, we have

‖η − η̂‖L2(∂K) .n1,...,n4m

C

c
k

4m∑
j=1

E(k, j)

(dj)
nj (5.1)
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for the Galerkin solution η̂ to (4.4), where C and c are the continuity and coercivity

constants of sesquilinear form B in Lemma 4.1, and for

E(k, j) = 1 +


k−(1+3ε1)/2

(
k(1/3−ε1)/2

)nj , if Λj = ΛIL or Λj = ΛDS

k−1/2 (kεm)nj , if Λj = ΛSB1 or Λj = ΛSB2

k−(1+3εr+1)/2
(
k(εr−εr+1)/2

)nj , if Λj = ΛIT`
r or Λj = ΛST`

r .

The error bound in (5.1) can be brought into a more simple form. Indeed, if

dj∗ = min(d1, . . . , d4m), we can have a better upper bound simply by increasing dj∗

as the inequality depends only on nj values. Hence, this suggest us setting d = d1 =

· · · = d4m. In addition, for simplicity, let us take n = n1 = · · · = n4m too. Hence, for

all n ∈ {0, . . . , d+ 1} and all sufficiently large k ≥ 1, inequality in (5.1) becomes

‖η − η̂‖L2(∂K) .n
C

c
k

4m∑
j=1

Ê(k, j)

dn

where and Ê(k, j) is defined as

E(k, j) = 1 +


k−(1+3ε1)/2

(
k(1/3−ε1)/2

)n
, if Λj = ΛIL or Λj = ΛDS

k−1/2 (kεm)n , if Λj = ΛSB1 or Λj = ΛSB2

k−(1+3εr+1)/2
(
k(εr−εr+1)/2

)n
, if Λj = ΛIT`

r or Λj = ΛST`
r .

Corollary 5.2. If d = d1 = · · · = d4m and n = n1 = · · · = n4m such that n ∈

{0, . . . , d+ 1}, and if

εj =
1

3

2m− 2j + 1

2m+ 1
, j = 1, . . . ,m (5.2)

then, for all sufficiently large k ≥ 1, we have

‖η − η̂‖L2(∂K) .n
C

c
km

1 + k−
1
2

(
k

1
6m+3

)n
dn

.
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Proof. Here, we observe that the terms (k(1/3−ε1)/2)n, (kεm)n and (k(εr−εr+1)/2)n in the

definition of E(k, j) go to infinity as k goes to infinity. Therefore, in order to make

the error term less dependent on k we must assign ε values in such a way that the

increase of the error term should not be mainly determined by one region. Hence, this

suggests to have proportional increase in every region as k increases which is equivalent

to having

1/3− ε1
2

= εm =
εj − εj+1

2
, j = 1, . . . ,m− 1. (5.3)

Since
εj−εj+1

2
for j = 1, . . . ,m−1 are equal to each other, we conclude that the interval

(εm, ε1) must be divided into m − 1 many subintervals with equal length in the form

(εm, εm−1), (εm−1, εm−2), . . . , (ε3, ε2), (ε2, ε1) which means

εj − εj+1

2
=
ε1 − εm
m− 1

=
ε1 − 1/3−ε1

2

m− 1
, j = 1, . . . ,m− 1 (5.4)

and this must be equal to 1/3−ε1
2

by (5.3). So, we have

ε1 − 1/3−ε1
2

m− 1
=

1/3− ε1
2

.

By simple algebraic manipulations we find that

ε1 =
1

3

2m− 1

2m+ 1

and we combine this with

εj = ε1 − j
ε1 − 1/3−ε1

2

m− 1
, j = 1, . . . ,m− 1

which we can conclude from (5.4). Finally, simple algebraic manipulations yield (5.2).

The choice of εj’s as in (5.2) turns the error bound in (5.1) into
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‖η − η̂‖L2(∂K) .n
C

c
k Γ(k,m, n)

where

Γ(k,m, n) =
1 + k−

2m
2m+1

(
k

1
6m+3

)n
dn

+
1 + k−

1
2

(
k

1
6m+3

)n
dn

+
m−1∑
j=1

1 + k−
2m−j
2m+1

(
k

1
6m+3

)n
dn

Since −1
2
≥ − 2m−j

2m+1
≥ − 2m

2m+1
for j = 1, . . . ,m− 1 and k ≥ 1, the result follows.

We know that C/c is of order O(k1/2) by [31], and η is of order O(k) by [32].

Also, we can choose d, n ∈ N so that nε ≥ 1/2 where d ∼ kε. Additionally, we observe

that the equality k
1

6m+3 = e
log k
6m+3 suggests us taking m proportional to log k so that

k
1

6m+3 and so 1 + k−
1
2k

1
6m+3 are bounded by a constant independent of k. Here, we also

know that for all δ > 0 there exist k0 such that, for all k > k0, log k is less than kδ

(limk→∞(log k)/kδ = 0). So, C
c
log k
dn

is proportional to k1/2+δ−εn which is less than kδ for

all δ ≥ 0 when k is sufficiently large. Combining these, if εj (j = 1, . . . ,m) are chosen

as in (5.2), the preceding corollary entails for the relative error

‖η − η̂‖L2(∂K)

‖η‖L2(∂K)
.n

C

c

log k

dn
.

This verifies that our boundary element method can be tuned to demand only an O (kε)

increase in the number of degrees of freedom, namely 4m (d+ 1), to maintain a fixed

accuracy with increasing wavenumber k.
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6. AN ALTERNATIVE APPROACH

In the previous chapter, in order to approximate the solution η of (4.7), we used

the Galerkin method considering the L2 inner product 〈a, b〉L2(∂K) =
∫
∂K a(s)b(s)ds and

the Galerkin approximation spaces
⊕4m

j=1Pj that are spanned by the basis functions

of the form χj e
ik ϕmxi for i ∈ {1, . . . , dj} and j ∈ {1, . . . , 4m}. In general, these basis

functions fail to be orthogonal, and therefore the corresponding Galerkin solutions η̂

must be computed as the solution of Galerkin equations (4.5) through use of a linear

algebra solver. Unfortunately, however, the condition numbers of the Galerkin matrices

appearing in (4.5) quickly grow beyond computational range with increasing polynomial

degrees, and this renders the Galerkin equations (4.5) numerically ill-conditioned.

In this chapter, we introduce a new inner product

〈a, b〉R = 〈Ra,Rb〉L2(∂K)

on L2(K) where R = I−R is the integral operator defined as in (2.6) and (2.9), and we

apply the Gram-Schmidt process to the aforementioned basis functions to obtain a new

basis {µ̂1, . . . , µ̂n} for the Galerkin approximation space
⊕4m

j=1Pj that is orthonormal

with respect to this new inner product. While applying Gram-Schmidt process, we use

a numerically stable algorithm [33] which starts by setting w
(1)
j = µj, for i = 1, . . . , n,

and recursively computes

µ̂j =
w

(j)
j

‖w(j)
j ‖R

, i = 1, . . . , n

w(j+1) = w(j) − µ̂j〈w(j+1), µ̂j〉R, k = j + 1, . . . , n

where ‖·, ·‖R is the norm obtained by the inner product 〈·, ·〉R.
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Theorem 6.1. L2(∂K) is a Hilbert space with respect to the inner product 〈·, ·〉R.

Proof. It is obvious that 〈·, ·〉R is conjugate symmetric and linear in the first variable

since 〈·, ·〉L2(∂K) is an inner product and R is a linear operator on L2(∂K). In addition,

for all η ∈ L2(∂K), we have 〈η, η〉R = 〈Rη,Rη〉L2(∂K) ≥ 0. Further, 〈η, η〉R = 0 if and

only if Rη = 0 and this is equivalent to η = 0 since R being invertible is known by [34].

As a result, 〈·, ·〉R is an inner product on L2(∂K).

Now, assuming {ηn} is a Cauchy sequence with respect to 〈·, ·〉R, {Rηn} becomes a

Cauchy sequence with respect to 〈·, ·〉L2(∂K). Therefore, there exist a unique µ ∈ L2(∂K)

such that Rηn → µ as n → ∞, and the invertibility of R guarantees the existence of

a unique η ∈ L2(∂K) such that Rη = µ. Hence, {Rηn} converges to Rη with respect

to 〈·, ·〉L2(∂K), or equivalently {ηn} converges with respect to 〈·, ·〉R.

Theorem 6.2. 〈·, ·〉R is a bounded and strictly coercive sesquilinear form on L2(∂K),

that is, there exist positive constants C∗ and c∗ such that

|〈η, µ〉R| ≤ C∗‖η‖‖µ‖, for all η, µ ∈ L2(∂K)

Re〈η, η〉R ≥ c∗‖η‖2, for all η ∈ L2(∂K)

where ‖ · ‖ is the norm on L2(∂K) generated by the inner product 〈·, ·〉L2(∂K).

Proof. Theorem 6.1 shows that 〈·, ·〉R is a sesquilinear form on L2(∂K). By Theorem 4.1

B is a bounded sesquilinear form on L2(∂K) so that, for any η, µ ∈ L2(∂K), we have

|〈η, µ〉R| = |〈Rη,Rµ〉L2(∂K)| = |B(η,Rµ)| ≤ C‖η‖‖Rµ‖ ≤ C2‖η‖‖µ‖.

For strict coercivity we first observe the following identity

Re〈η, η〉R = Re〈Rη,Rη〉L2(∂K) = ‖Rη‖2.
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Now if we assume that 〈·, ·〉R is not strictly coercive, then for all n ∈ N we can choose

ηn ∈ L2(∂K) such that ‖ηn‖ = 1 and ‖Rηn‖2 ≤ 1
n
. This implies that ‖Rηn‖ → 0

as n → ∞. Since R is a uniquely solvable integral operator and L2(∂K) is a Hilbert

space with respect to the inner product 〈·, ·〉L2(∂K), we conclude that ‖ηn‖ → 0 too.

However, this contradicts with ‖ηn‖ = 1 for all n ∈ N. Hence, 〈·, ·〉R must be strictly

coercive.

As a result of Theorem 6.1 and Theorem 6.2, this new inner product meets the

assumptions of Céa’s Lemma. Accordingly, all the results in the previous chapter

hold exactly when we modify Céa’s Lemma 4.1 with B(η, µ) := 〈η, µ〉R and F (µ) :=

〈Rf,Rµ〉 for all η, µ ∈  L2(∂K). Hence, identity (4.4) turns into 〈Rµ̂,Rη̂〉 = 〈Rµ̂,Rf〉

and the Galerkin equations in (4.5) takes on the form


〈Rµ̂1,Rµ̂1〉 . . . 〈Rµ̂n,Rµ̂1〉

...
...

〈Rµ̂1,Rµ̂n〉 . . . 〈Rµ̂n,Rµ̂n〉



c1
...

cn

 =


〈Rf,Rµ̂1〉

...

〈Rf,Rµ̂n〉

 (6.1)

where η̂ =
∑n

i=1 ciµ̂i is the approximation of η in span{µ̂1, . . . , µ̂n}. Because of

orthonormality of the basis functions with respect to the inner product 〈·, ·〉R, the

Galerkin matrix in (6.1) is simply the identity matrix, and therefore η̂ =
∑n

i=1〈f, µ̂i〉Rµ̂i.

This shows that we do not need to solve the Galerkin equations (6.1) and thus we do

not have to deal with high condition numbers during the numerical computations.
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7. CHANGE OF VARIABLES GALERKIN BOUNDARY

ELEMENT METHODS FOR MULTIPLE SCATTERING

PROBLEMS

In Chapter 5, we designed Galerkin approximation spaces for the efficient compu-

tation of multiple scattering iterates as the direct sum of approximation spaces confined

to the asymptotic behaviour of the solutions. Yet, the number of direct summands

forming the Galerkin approximation spaces had to increase in proportion to log k as

k increases. This naturally complicates the implementation of the frequency-adapted

Galerkin boundary element methods for multiple scattering problems developed in

Chapter 5. In this chapter we take a different approach that removes the need to

increase the number of direct summands defining the Galerkin approximation spaces

with increasing wavenumber k. To this end, following the prescriptions in [24], we in-

troduce novel changes of variables in the transition regions adopted to the asymptotic

behavior of the solutions therein. Consequently we generate new Galerkin approxi-

mation spaces that perform comparable to the approach taken in Chapter 5 but with

reduced numbers of degrees of freedom and significantly better approximations in the

shadow regions.

As in Chapter 5, we choose a 2L-periodic smooth arclength parametrization γ of

∂K in the counterclockwise orientation so that ϕ(γ(0)) · ν (γ(0)) = 1 where ν is the

unit outward normal vector to ∂K. So, given that γ({t1, t2}) are shadow boundaries

with 0 < t1 < t2 < 2L, the illuminated and shadow regions are given, respectively, by

γ((t1, t2)) and γ((t2, t1 + 2L)).

Following the developments in [24] when k > 1, we construct the Galerkin spaces

in two different ways.
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First, we define illuminated transition intervals, shadow transition intervals and shadow

boundary intervals as

IIT1 := [t1 + ξ1k
−1/3, t1 + ξ′1] = [a1, b1]

IIT2 := [t2 − ξ′2, t2 − ξ2k−1/3] = [a2, b2]

IST1 := [t1 − ζ ′1, t1 − ζ1k−1/3] = [a3, b3]

IST2 := [t2 + ζ2k
−1/3, t2 + ζ ′2] = [a4, b4]

ISB1 := [t1 − ζ1k−1/3, t1 + ξ1k
−1/3] = [a5, b5]

ISB2 := [t2 − ξ2k−1/3, t2 + ζ2k
−1/3] = [a6, b6]

where we chose ξj, ξ
′
j, ζj, ζ

′
j > 0 for j ∈ {1, 2} so that

t1 + ξ1 ≤ t1 + ξ′1 ≤ t2 − ξ′2 ≤ t2 − ξ2

and

t2 + ζ2 ≤ t2 + ζ ′2 ≤ L+ t1 − ζ ′1 ≤ L+ t1 − ζ1.

In the second approach, we complement these intervals with the illuminated and deep

shadow intervals defined as

IIL := [t1 + ξ′1, t2 − ξ′2] = [a7, b7]

IDS := [t2 + ζ ′2, L+ t1 − ζ ′1] = [a8, b8].

Similar to the previous cases, given d = (d1, . . . , dJ) ∈ ZJ+ for J ∈ {6, 8}, J +
∑4m

j=1 dj

dimensional change of variable Galerkin approximation space is defined as

Cd =
J⊕
j=1

χIj e
ik α·γ Cdj
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where χIj is the characteristic function of Ij = [aj, bj], and

Cdj :=

 Pdj ◦ φ−1, if Ij is a transition region

Pdj , otherwise.

As before Pdj is the space of polynomials of degree at most dj, and φ is the frequency

dependent change of variables on the transition intervals defined by

φ (s) =



t1 + ϕ (s) kψ(s), s ∈ IIT1

t2 − ϕ (s) kψ(s), s ∈ IIT2

t1 − ϕ (s) kψ(s), s ∈ IST1

t2 + ϕ (s) kψ(s), s ∈ IST2 .

Here ϕ is given by

ϕ(s) =



ξ1 + (ξ′1 − ξ1)
s− a1
b1 − a1

, s ∈ IIT1

ξ′2 + (ξ2 − ξ′2)
s− a2
b2 − a2

, s ∈ IIT2

ζ ′1 + (ζ1 − ζ ′1)
s− a3
b3 − a3

, s ∈ IST1

ζ2 + (ζ ′2 − ζ2)
s− a4
b4 − a4

, s ∈ IST2

which maps every boundary point of the transition regions onto itself, and ψ is given

by

ψ(s) = −1

3



b1 − s
b1 − a1

, s ∈ IIT1

s− a2
b2 − a2

, s ∈ IIT2

s− a3
b3 − a3

, s ∈ IST1

b4 − s
b4 − a4

, s ∈ IST2 .
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Note that when constructing these intervals, we choose Ij so that if any two of them

have a nonempty intersection, then either they are the same intervals or they intersect

each other at one boundary point. Furthermore, we have γ
(
∪Jj=1Ij

)
= ∂K. Therefore

we can clearly identify L2(∂K) and L2(∪Jj=1Ij) through the parametrization γ.

So (4.4) needs to be modified according to this framework. In this respect, observe

that the change of variables in the Galerkin formulation is equivalent to finding the

unique η̂ ∈ Cd such that

B(µ̂, η̂) = F (µ̂), for all µ̂ ∈ Cd. (7.1)

Hence most of the results in Chapter 4 hold with this new approximation space too.

The analogues of Theorem 5.1 and Corollary 5.2 are as follows.

Theorem 7.1. Given k0 > 1 and k ≥ k0, suppose that the sesquilinear form B in (4.3)

associated with the integral operator R = I−R in (2.6) is continuous with a continuity

constant C and coercive with a coercivity constant c. Then, for all nj ∈ {0, . . . , dj + 1}

(j = 1, . . . , J), we have

‖η − η̂‖L2(∂K) .n1,...,nJ ,k0

C

c
k

J∑
j=1

E(k, j)

(dj)
nj

for the Galerkin solution η̂ to (7.1) where

E(k, j) =


(log k)nj+1/2 , j = 1, 2, 3, 4 (transition regions)

k−1/6, j = 5, 6 (shadow boundaries).

If J = 8, then

E(k, j) = 1, j = 7, 8, (illuminated and shadow regions).
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Since η has the same asymptotic behaviour as k, Theorem 5.2 entails the following

corollary.

Corollary 7.2. Under the assumptions of Theorem 7.1, if the same polynomial degree

d = d1 = . . . = dJ is used on each interval, then for all n ∈ {0, . . . , d+ 1}, there holds

‖η − η̂‖
L2(∂K)

‖η‖
L2(∂K)

.n,k0

C

c

(log k)n+1/2

dn

for the Galerkin solution η̂ to (7.1).

According to Theorem 7.1 and Corollary 7.2 theoretically the change of variables

Galerkin approximation spaces have improved convergence behaviour compared with

the method discussed in Chapter 5. In addition, numerically this new method has

better accuracy in shadow region. For the proof of Theorem 7.1, we need the following

results.

Theorem 7.3 (Best approximation by algebraic polynomials [35]). Given an interval

I = (a, b) and n ∈ Z+, introduce the semi–norms (for suitable f) by

|f |n,I =

[∫ b

a

|Dnf(s)|2 (s− a)n (b− s)n ds
]1/2

.

Then, for all n ∈ {0, . . . , d+ 1}, following holds:

inf
p∈Pd
‖f − p‖ .n |f |n,I d

−n.

Theorem 7.4. For given k0 > 0, we have

∣∣Dn
s η

slow(s, k)
∣∣ .n,k0 k +

n+2∑
m=4

(
k−1/3 + |w(s)|

)−m
for all n ∈ Z+ and all k ≥ k0. Here w(s) = (s− t1)(t2 − s).
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Proof. The same estimate is shown to hold for all sufficiently large k in [22]. Thus the

result follows from the continuous dependence of Dn
s η

slow(s, k) on s and k.

Proposition 7.5. For given k0 > 1, we have

|Dn
sφ| .n,k0 (log k)n kψ on Ij (j = 1, 2, 3, 4)

for all n ∈ N and all k ≥ k0.

Proof. Since the argument is the same for j = 1, 2, 3, 4, we prove the result for j = 1.

Using ϕ′′ = ψ′′ = 0, we obtain

Dn
sφ =

n∑
l=0

(
n

l

)
Dn−l
s ϕ Dl

sk
ψ = ϕ Dn

s k
ψ +D1

sϕ Dn−1
s kψ, n ≥ 1 (7.2)

and

Dn
s k

ψ =
(
D1
sψ
)n

(log k)n kψ, n ≥ 0. (7.3)

Next, plugging (7.3) in (7.2), we get

Dn
sφ =

(
ϕ D1

sψ log k +D1
sϕ
) (
D1
sψ
)n−1

(log k)n−1 kψ, n ≥ 1. (7.4)

Since, for k ≥ k0 > 1, we have

1

|b1 − a1|
=

1

ξ′1 − ξ1k−1/3
≤ 1

ξ′1 − ξ1k
−1/3
0

.k0 1

for s ∈ I1 = IIT1 , we obtain

∣∣D1
sψ
∣∣ =

1

3

1

b1 − a1
.k0 1 and

∣∣D1
sϕ
∣∣ =

ξ′1 − ξ1
b1 − a1

.k0 1.



33

Note further that ξ1 ≤ ϕ ≤ ξ′1. Use of these in (7.4) completes the proof.

Proposition 7.6. For given k0 > 0, the inequality

∣∣Dn
s (ηslow ◦ φ)

∣∣ .n,k0 k (log k)n on Ij (j = 1, 2, 3, 4)

holds for all n ∈ N and all k ≥ k0.

Proof. Let us fix k ≥ k0 > 1 and also j = 1, . . . , 4. Faá Di Bruno’s formula for the

derivatives of a composition reads

Dn (f ◦ g) (t) =
∑
{m`}

(Dmf)(g(t))
n∏
`=1

`

m`!

(
D`g(t)

`!

)m`
.

Here the summation is over all non-negative integers m` satisfying n =
∑n

`=1 `m`, and

m =
∑n

`=1m`. Therefore

∣∣Dn
s

(
ηslow ◦ φ

)∣∣ .n

∑
{m`}

∣∣(Dm
s η

slow)(φ)
∣∣ n∏
`=1

∣∣D`
sφ
∣∣m`

so Proposition 7.5 yields

∣∣Dn
s

(
ηslow ◦ φ

)∣∣ .n,k0

∑
{m`}

∣∣(Dm
s η

slow)(φ)
∣∣ n∏
`=1

(
(log k)` kψ

)m`
.

Accordingly, we have

∣∣Dn
s

(
ηslow ◦ φ

)∣∣ .n,k0 (log k)n
∑
{m`}

∣∣(Dm
s η

slow)(φ)
∣∣ kmψ

.n,k0 (log k)n
n∑

m=0

∣∣(Dm
s η

slow)(φ)
∣∣ kmψ.

Thus it suffices to show that
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∣∣(Dm
s η

slow)(φ)
∣∣ kmψ .m,k0 k

holds for all non-negative integers m. Indeed, if 0 ≤ ` ≤ m, then

(
k−1/3 + |ω(φ)|

)−`
=
(
k−1/3 + |ω(φ)|

)−m (
k−1/3 + |ω(φ)|

)m−`
≤
(
k−1/3 + |ω(φ)|

)−m (
k
−1/3
0 + L2

)m−`
.m,k0

(
k−1/3 + |ω(φ)|

)−m
so Theorem 7.4 combined with the inequality ψ ≤ 0 implies

∣∣Dm
s η

slow(φ)
∣∣ kmψ .m,k0

[
k +

m+2∑
`=4

(
k−1/3 + |ω(φ)|

)−`]
kmψ

.m,k0

[
k +

(
k−1/3 + |ω(φ)|

)−(m+2)
]
kmψ

.m,k0 k +

(
kψ

k−1/3 + |ω(φ)|

)m (
k−1/3 + |ω(φ)|

)−2
.m,k0 k +

(
kψ

|ω(φ)|

)m
k2/3.

It remains to show that kψ/ |ω(φ)| is bounded independent of k. As this requires the

same argument for j = 1, 2, 3, 4, we concentrate on j = 1. In this case, we have

φ− t1 = ϕkψ, ϕ ≥ ξ1 > 0 and t2 − φ ≥ t2 − (t1 + ξ′1) ≥ ξ′2 > 0 and therefore

kψ

|ω(φ)|
=

kψ

(φ− t1) (t2 − φ)
=

kψ

ϕkψ (t2 − φ)
≤ 1

ξ1 ξ′2

completing the proof.

Corollary 7.7. On the transition intervals (j = 1, 2, 3, 4), for a given k0 > 1, we have

∣∣ηslow ◦ φ∣∣
n,Ij

.n,k0 k (log k)n

for all n ∈ N and all k ≥ k0.
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Proof. We use Proposition 7.6 combined with the inequality 0 < bj − aj < L to obtain

∣∣ηslow ◦ φ∣∣2
n,Ij

=

∫ bj

aj

∣∣Dn
s

(
ηslow ◦ φ

)
(s)
∣∣2 (s− aj)n (bj − s)n ds

.n,k0 k
2 (log k)2n

∫ bj

aj

(s− aj)n (bj − s)n ds

.n,k0 k
2 (log k)2n .

Taking square roots we obtain the desired result.

Proof. (of Theorem 7.1): Céa’s lemma implies that

‖η − η̂‖L2(∂K) ≤
Ck
ck

inf
µ̂∈Cd
‖η − µ̂‖L2(∂K) (7.5)

where η̂ is the solution of (7.1). Since we identify L2 (∂K) with L2
(
∪Jj=1Ij

)
, we have

‖η − µ̂‖L2(∂K) = ‖η − µ̂‖L2(∪Jj=1Ij)
≤

J∑
j=1

‖η − µ̂‖L2(Ij)

for any µ̂ ∈ Cd. Therefore the particular change of variables employed in the Galerkin

approximation spaces Cd implies

inf
µ̂∈Cd
‖η − µ̂‖L2(∂K) ≤

4∑
j=1

inf
p∈Pdj

‖ηslow − p ◦ φ−1‖L2(Ij) +
J∑
j=5

inf
p∈Pdj

‖ηslow − p‖L2(Ij). (7.6)

Further, for any p ∈ Pdj , using Proposition 7.5 and the inequality kψ < 1, we obtain

‖ηslow − p ◦ φ−1‖2L2(Ij) =

∫ bj

aj

∣∣(ηslow − p ◦ φ−1) (s)
∣∣2 ds

=

∫ bj

aj

∣∣(ηslow ◦ φ− p) (s)
∣∣2D1

sφ(s) ds

.k0 log k ‖ηslow ◦ φ− p‖2L2(Ij).
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This inequality when combined with the inequalities (7.5) and (7.6) implies

‖η − η̂‖L2(∂K) .k0

Ck
ck

{
4∑
j=1

(log k)1/2 inf
p∈Pdj

‖ηslow ◦ φ− p‖L2(Ij)

+
J∑
j=5

inf
p∈Pdj

‖ηslow − p‖L2(Ij)

}

so that Theorem 7.3 entails

‖η − η̂‖L2(∂K) .n1,...,nJ ,k0

Ck
ck

{
4∑
j=1

(log k)1/2
∣∣ηslow ◦ φ∣∣

nj ,Ij
d
−nj
j +

J∑
j=5

∣∣ηslow∣∣
nj ,Ij

d
−nj
j

}
.

Accordingly, we have to show that

∣∣ηslow ◦ φ∣∣
nj ,Ij

.nj ,k0 k (log k)nj , j = 1, 2, 3, 4 (7.7)

and

∣∣ηslow∣∣
nj ,Ij

.nj ,k0 k k
−1/6, j = 5, 6 (7.8)

and, in case J = 8,

∣∣ηslow∣∣
nj ,Ij

.nj ,k0 k, j = 7, 8.

Inequalities in (7.7) are exactly the content of Corollary 7.7. For j = 5, 6, Theorem 7.4

implies

∣∣Dnj
s η

slow(s, k)
∣∣ .nj ,k0 k +

nj+2∑
m=4

(
k−1/3 + |w(s)|

)−m
.nj ,k0 k + k(nj+2)/3
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so that

∣∣ηslow∣∣2
nj ,Ij

=

∫ bj

aj

∣∣Dnj
s η

slow(s)
∣∣2 (s− aj)nj (bj − s)nj ds

.nj ,k0

(
k + k(nj+2)/3

)2
(bj − aj)2nj+1

.nj ,k0

(
k + k(nj+2)/3

)2 (
k−1/3

)2nj+1

.nj ,k0

(
k k−1/6

)2
.

Taking square roots delivers inequalities in (7.8). Therefore the proof is complete when

J = 6.

For J = 8, we appeal to Theorem 7.4 for j = 7, 8, and thereby obtain

∣∣Dnj
s η

slow(s, k)
∣∣ .nj ,k0 k +

nj+2∑
m=4

(
k−1/3 + |w(s)|

)−m
.nj ,k0 k +

nj+2∑
m=4

|w(s)|−m .nj ,k0 k.

Thus it follows that

∣∣ηslow∣∣2
nj ,Ij

=

∫ bj

aj

∣∣Dnj
s η

slow(s)
∣∣2 (s− aj)nj (bj − s)nj ds

.nj ,k0 k
2 (bj − aj)2nj+1

.nj ,k0 k
2

which completes the proof when J = 8.
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8. NUMERICAL RESULTS

In this chapter we present numerical experiments to validate the theoretical de-

velopments in this thesis. Indeed, all our tests have shown that the numerical results

based on implementations of the three different algorithms developed in Chapters 5,6

and 7 display only very minor differences. Therefore here we present only the numeri-

cal results that relate to the multiple-scattering change of variables Galerkin boundary

element methods discussed in Chapter 5.

We consider two different multiple scattering configurations. The first one consists

of two unit circles centered on the y-axis and separated by a distance of 1, and the

direction of incidence is α = (1, 0). We first present the logarithmic relative errors

log10

(
‖ητm − η̂τm‖L2(∂Kτm )

‖ητm‖L2(∂Kτm )

)

for the wave-numbers k = 50, 100, 200, 400, 800 versus the local polynomial degrees

p = 4, 8, 12, 16, 20 on the two paths

(Kτm)m≥0 = (K1, K2, K1, K2, . . .)

and

(Kτm)m≥0 = (K2, K1, K2, K1, . . .)

for the reflection numbers

m = 0, 1, 10, 11, 20, 21.

Figures 8.1 and 8.2 correspond to the numerical results associated with the first path.
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Specifically, Figure 8.1 we presents the results when ητ0 , . . . , ητm−1 and the right-hand

sides in the integral equations (3.1)-(3.2) are computed through use of a combination

of Nyström and trapezoidal quadrature rules, and ητm is constructed via the numerical

solution of (3.1)-(3.2) by the multiple scattering change of variables Galerkin boundary

element methods developed in Chapter 7. On the other hand, the results in Figure 8.2

correspond to the solutions obtained by an implementation of the multiple scattering

change of variables Galerkin boundary element methods at each reflection. Note that

a simple comparison of these figures depict that the second approach results in a minor

loss of accuracy only even though the right-hand sides in the second approach are

significantly restricted in accuracy as compared to those of the first one. This clearly

displays that the multiple scattering change of variables Galerkin boundary element

methods are immune to the loss of accuracy in the right-hand sides of the integral

equations (3.1)-(3.2), and this is clearly related with the smoothing characters of the

integral operators Rjj′ with j 6= j′.

Similarly, Figures 8.3 and 8.4 present the same comparison as in Figures 8.1 and

8.2 but for the second path. As expected due to the symmetrical structure of the

configuration with respect to the direction of incidence, the numerical results are in

harmony with those corresponding to the first path.

Finally, in Figures 8.5 and 8.6, we present the logarithmic relative errors

log10

(
‖η − η̂(m)‖L2(∂K)

‖η‖L2(∂K)

)

for the wave-numbers k = 50, 100, 200, 400, 800 versus the number of terms m used in

the Neumann series solution of the multiple scattering problem for the local polynomial

degrees p = 4, 8, 12, 16, 20. Note specifically that here while η is a highly accurate

reference solution obtained by a direct solution of the multiple scattering problem using

a combination of Nystöm and trapezoidal quadrature rules [30], η̂(m) is exactly the sum

of the first m-terms in the Neumann series solution where each term is associated with
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the corresponding iterates in the two paths and numerically computed in Figure 8.5

using the Nyström solutions as in Figures 8.1 and 8.3, and in Figure 8.6 the Galerkin

solutions as in Figures 8.2 and 8.4.

The second configuration we consider consists of the ellipses with parametriza-

tions

(
3

2
cos t,

1

2
sin t)

and

(
3

2
cos t,

1

3
sin t)

and rotated in the counter clockwise direction by an angle of π/6 and π/12 radians

respectively, and the second one shifted with the vector s = (0.5,−1.6) (see Figure

8.11). The direction of incidence is taken to be α = (1, 0). Figures 8.7–8.12 are arranged

in exactly the same way as Figures 8.1–8.6 for the configuration consisting of two

circles considered above, and they clearly depict that the performance of the Galerkin

boundary element methods developed in this thesis is not influenced by geometrical

changes.
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Figure 8.1. Relative errors using Nyström solutions as a right hand side for two

circles: First path.
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Figure 8.2. Relative errors using Galerkin solutions as a right hand side for two

circles: First path.
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Figure 8.3. Relative errors using Nyström solutions as a right hand side for two

circles: Second path.
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Figure 8.4. Relative errors using Galerkin solutions as a right hand side for two

circles: Second path.
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Figure 8.5. Sum of Galerkin solutions obtained by using Nyström solutions as a right

hand side for two circles.
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Figure 8.6. Sum of Galerkin solutions obtained by using Galerkin solutions as a right

hand side for two circles.
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Figure 8.7. Relative errors using Nyström solutions as a right hand side for two

ellipses: First path.
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Figure 8.8. Relative errors using Galerkin solutions as a right hand side for two

ellipses: First path.
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Figure 8.9. Relative errors using Nyström solutions as a right hand side for two

ellipses: Second path.
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Figure 8.10. Relative errors using Galerkin solutions as a right hand side for two

ellipses: Second path.
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Figure 8.11. Sum of Galerkin solutions obtained by using Nyström solutions as a

right hand side for two ellipses.
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Figure 8.12. Sum of Galerkin solutions obtained by using Galerkin solutions as a

right hand side for two ellipses.
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9. CONCLUSION

In this thesis, we developed Galerkin boundary element methods for the effi-

cient and rigorous numerical solution of multiple scattering problems in the exterior

of two-dimensional smooth compact obstacles consisting of two disjoint strictly con-

vex structures. From a theoretical point of view, the Galerkin approximation spaces

developed herein have the property that the number of degrees of freedom to obtain

a prescribed accuracy independent of frequency needs to increase as O(kε) (for any

ε > 0) with increasing wave-number k. Accordingly, the algorithms developed in this

thesis fill an important gap in the literature as they provide the very first examples of

rigorously error controllable algorithms based on extraction of the phases of associated

multiple scattering iterates.

Possible future directions of research include the extension of the algorithms gen-

erated in this thesis to multiple scattering configurations consisting of several smooth

convex obstacles, and the development of acceleration strategies for the efficient trun-

cation of the Neumann series in this case.
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2012.

35. Schwab, C., p– and hp–Finite Element Methods. Theory and Applications in Solid

and Fluid Mechanics, Oxford University Press, Oxford, 1998.




