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I owe much to Hasan Hüseyin. He has been a sincere friend, supporter and colleague.
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ABSTRACT

TOPOLOGIES ON FAMILIES OF CLOSED SUBSETS

In 1914, Felix Hausdorff introduced a metric, called the Hausdorff metric on the

set of closed subspaces, Hausdorff space, of a metric space. This metric and the corre-

sponding topology are the main objects of the study. In algebraic geometry, there is an

analogous object called the Hilbert scheme, whose points correspond to closed subschemes

of a projective variety X. We give a modular interpretation of the Hausdorff space anal-

ogous to the one for the Hilbert scheme. The Hilbert scheme is used in various structures

in algebraic geometry; using the Hausdorff space we can mimic these constructions in

topology. For example, when an algebraic group acts on a projective variety, one can form

a quotient X �
Hilb

G called the Hilbert quotient. We consider the analogous Hausdorff

quotient X �
Haus

G associated to a topological group acting on a metric space. We note

that this quotient has some desirable properties: When X is compact X �
Haus

G is com-

pact and when G is also compact X �
Haus

G is the usual quotient X{G. In addition to the

Hausdorff topology, one can also topologize the set of closed subspaces of X by consider-

ing the compact open topology on the set of continuous maps from X to the Sierpinski

space. Although the resulting Hilbert space is less well-behaved than the Hausdorff space,

it admits a nice modular interpretation when X is locally compact.
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ÖZET

KAPALI ALTKÜMELERDEKİ TOPOLOJİLER

1914’te Felix Hausdorff bir metrik uzayının kapalı altuzayları, Hausdorff uzayı,

kümesinde bir metrik tanımladı. Bu metrik ve ona mutabık topoloji, bu çalışmanın esas

gayesi olacaktır. Cebirsel geometride, buna analog bir nesne, Hilbert şeması, vardır ki

bunun noktaları izdüşümsel bir çeşitleme olan X’in kapalı altşemalarına denk gelir. Biz

Hausdorff uzayının, Hilbert şemasınınki ile analog bir modüler yorumlamasını vereceğiz.

Hilbert şeması cebirsel geometride çeşitli yapılarda kullanılır; Hausdorff uzayını kulla-

narak biz bu yapıları topolojide taklit edebiliriz. Örneğin, bir cebirsel grup bir izdüşümsel

çeşitlemeye etkidiğinde, Hilbert bölümü adı verilen bir bölüm X �
Hilb

G oluşturulabilir.

Biz, bir topolojik grubun bir metrik uzayına etkidiği Hausdorff bölümünün X �
Haus

G

üzerinde düşüneceğiz. Dikkate değer ki, bu bölüm bazı cazip özelliklere sahiptir: X kom-

pakt olduğunda X �
Haus

G bölümü de kompakttır ve G de kompakt olduğunda X �
Haus

G

bölümü alışılagelen X{G bölümüyle aynıdır. Hausdorff topolojisine ilave olarak, X’in ka-

palı altuzayları üzerine, X’ten Sierpinski uzayına giden sürekli fonksiyonlar kümesindeki

kompakt-açık topoloji kullanılarak da topoloji kurulabilir. Her ne kadar ortaya çıkan

Hilbert uzayı, Hausdorff uzayından daha kötü tabiatlı olsa da, X yerel olarak kompakt

olduğunda bu güzel bir modüler yorumlama meydana çıkarıyor.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

In introductory metric topology, we usually try to find the distance between two

points. How about the distance between two sets? Is it possible to define a reasonable

“distance” between two subsets of, for example, R? What is the distance between the in-

tervals p0, 1q and r0, 1s? It seems to be easier to put a metric between the closed subspaces

of a metric space. Such a metric -the Hausdorff metric- was defined by Felix Hausdorff in

1914 in his book Grundzüge Der Mengenlehre [1]. The space of closed subspaces of a met-

ric space, with the topology determined by the Hausdorff metric is called the Hausdorff

space. It has many interesting properties such as: If a metric space is compact, then so is

the induced Hausdorff space (Corollary 4.21). Furthermore, for a compact metric space

X, if two metrics induce the same topology on X, then these two metric determine the

same topology on the Hausdorff space of X, denoted by HX (Corollary 4.9).

We can describe an ε-neighbourhood in the Hausdorff space of X in terms of the

ε-neighbourhoods in X with the equality below:

dH pZ,Z
1
q “ inf

#

ε ą 0 : Z 1 Ď
ď

zPZ

Bpz, εq and Z Ď
ď

z1PZ1

Bpz1, εq

+

.

There is another topology on the set of closed subsets of a topological space X given

by the basis

UpKq “ tZ Ďclosed X : Z XK “ Hu

where K is a compact subspace of X. This topology is called the Hilbert topology is

the same as the space of continuous functions from X to the Sierpinski space with the
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compact-open topology. When X is a locally compact space, the Hilbert topology gives

a nice modular interpretation of the closed subspaces of X. Since the definitions of local

compactness vary book by book, we gave a nice collection of them and described their

differences in the second chapter.

In algebraic geometry, the Hilbert scheme is a moduli space of closed subschemes

of a projective variety. We show in Theorem 4.6 that the Hausdorff space, in fact, has

an analogous modular interpretation. In this study, we tried to apply some constructions

involving the Hilbert scheme to Hausdorff space. For example in Chapter 6, we present

an analog of the Hilbert Quotient, called the Hausdorff Quotient.

We give a nice definition for the Hausdorff Quotient of a metric space X by a

topological group G. We prove in Prop 6.14 that if both X and G are compact, the

Hausdorff Quotient is the same as the usual quotient. Furthermore, if X or G is not

compact, then the Hausdorff Quotient becomes a more nicely-behaved quotient since it

has properties like Hausdorffness that the usual quotient lacks.

Of course, there are some subtleties in the construction of Hausdorff quotient because

we don’t have “generic flatness” at our disposal as we do in algebraic geometry. We define

notions of stability and semi-stability for certain subsets of X as a replacement for generic

flatness.

Conventions

Throughout this study, U Ďβ X will be used for “U is a subset of X with property β.”

For example Z Ďclosed X means that “Z is a closed subset of X.”

For a metric space pX, dq and a point x P X, we define the set ty P X : dpx, yq ă εu

as the ε-neighbourhood of a point x, and it will be denoted by Bdpx, εq. Similarly, for

Z P HX we denote the ε-neighbourhood of Z with respect to the Hausdorff metric by
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BdH
pZ, εq. Also, we define

Bdpε, Zq ..“ tx P X : dpx, Zq ă εu “
ď

zPZ

Bdpz, εq for Z Ď X.

Observe that Bdpε, Zq is open for any Z Ď X since it is a union of open balls. If the

metric is clear from the context, we simply write Bpx, εq, BpZ, εq and Bpε, Zq instead of

Bdpx, εq, BdpZ, εq and Bdpε, Zq.

By this definition, we can see that Bpε, Zq is the union of neighbourhoods of elements

of Z whereas BpZ, εq is the ε-neighbourhood of Z with respect to the Hausdorff metric.

We will write τd for a topology generated by a metric d, when the space is clear from

the content.
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2. LOCAL COMPACTNESS

There are various definitions of a locally compact space. To make a distinction

between them, we make some definitions.

Definition 2.1. A topological space X is called LC1 if every point of X has a neighbour-

hood with a compact closure.

Definition 2.2. A topological space X is called LC2 if every point of X lies in the interior

of a compact subspace K of X.

Definition 2.3. A topological space X is called LC1’ ( LC2’ resp.) if “compact” is replaced

by “compact Hausdorff” in the definitions above.

Unless explicitly mentioned otherwise, “locally compact” means LC2’ in this text.

Proposition 2.4. Let X be a topological space. Then,

(i) X is LC1’ (resp. LC2’) ùñ X is LC1 (resp. LC2).

(ii) X is LC1 ùñ X is LC2.

Proof. (i) This is an immediate consequence of the fact that a compact Hausdorff sub-

space of X is compact.

(ii) Assume that X is an LC1 topological space. Pick x P X arbitrary. By definition of

an LC1 space, there is an open U such that x P U and U “ K is compact. Now

since U Ďopen U “ K and the interior
˝

K of K is defined as the union of all opens in

K, we get x P U Ď
˝

K Ď K. Hence x lies in the interior of a compact subspace of

X. Therefore X is LC2.

Remark 2.5. An LC2’ space need not to be LC1’.
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Example 2.6. Let X “ t0, 1u ˆ R and let pi0, x0q „ pi1, x1q whenever i0 “ i1 and x0 “

x1 ‰ 0. The quotient space X
L

„ is the real line with double origin, say 0 and 0˚. Then

X
L

„ is LC2’.

To see this fact, pick any x P X
L

„. If x ‰ 0 or x ‰ 0˚ then clearly x lies in the

interior of the compact Hausdorff space Bpx, |x|
2
q. Otherwise, the set K ..“ r´1, 0qYp0, 1sY

txu is compact and Hausdorff since any two points y1, y2 P K can be seperated by epsilon

balls around y1 and y2 with radius |y1 ´ y2|.

However, the space X
L

„ is not LC1’. Assume for a contradiction that it is LC1’.

Then x “ 0 has a neighbourhood with a compact Hausdorff closure. The closure of any

neighbourhood of x must also contain 0˚. Then x and 0˚ should have disjoint neighbour-

hoods U ..“ Bpx, εxq and V ..“ Bp0˚, ε0˚q. The point 1
2

mintεx, ε0˚u lies in both U and V .

Contradiction. Hence, X
L

„ is not LC1’.

Proposition 2.7. All definitions of a locally compact space given in Definition 2.1, Defi-

nition 2.2 and Definition 2.3 coincide when X is Hausdorff.

Proof. Every subspace of a Hausdorff space is Hausdorff. So, LC1 ðñ LC1’ and LC2 ðñ

LC2’ both holds. It suffices to show LC1 ðñ LC2. By Proposition 2.4, LC1 ùñ LC2.

Assume that X is Hausdorff and LC2. Let x P X. Then x lies in the interior of a compact

subspace K of X. Since X is Hausdorff, K is closed.
˝

K is a neighbourhood of x whose

closure is
˝

K “ K since K is closed. Thus X is LC1. The result follows.

Proposition 2.8. All definitions of local compactness are inherited by closed subspaces.

Proof. • Let X be an LC1 space and Z be a closed subspace of X. Let x P Z.

We want to show that x has a neighbourhood with a compact closure. There is a

neighbourhood U of x in X so that U is compact in X. U XZ is a neighbourhood of

x in Z with closure U X Z. Also, U X Z is a closed subspace of U , so it is compact.

Hence x has a neighbourhood U X Z with a compact closure U X Z.
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• Let X be an LC2 space and Z be a closed subspace of X. Every x P Z lies in

the interior of a compact subspace K of X. Then there is an open U such that

x P U Ď K. Let V “ Z X U and K 1 “ Z XK. Then V Ďopen Z and K 1 Ďcompact Z

both holds. So, x P V Ď K 1 and thus Z is LC2.

• Similar to the LC1 part.

• Similar to the LC2 part.

Proposition 2.9. Let tUi : i P Iu be an open cover of a topological space X. If Ui is

locally compact (LC2’) for each i, then X is locally compact.

Proof. Choose x P X. Since tUiu covers X, there is an i0 with x P Ui0 . Ui0 is locally

compact, so there is a compact Hausdorff subspace K of Ui0 such that x P
˝

K. Since K is

Hausdorff, there is an open subset V of Ui0 such that x P V Ď V Ď
˝

K. Observe that V is

compact in X and thus X is locally compact.

Remark 2.10. Example 2.6 shows that Proposition 2.9 is not true for an LC1 space.
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3. THE HILBERT TOPOLOGY

Definition 3.1. Let X and Y be two topological spaces. Let CpX, Y q be the set of con-

tinuous maps f : X Ñ Y . For K Ď X, U Ď Y define

U pK,Uq ..“ tf P CpX, Y q : fpKq Ď Uu.

The compact-open topology [2] on CpX, Y q “ tf : X Ñ Y u is obtained from the subbasis

tU pK,Uq : K Ďcompact X,U Ďopen Y u.

Definition 3.2. The Sierpinski Space S is the unique topological space with two elements

and three opens. i.e. S “ t0, 1u and τS “ tH, t0u, t0, 1uu

Consider the space CpX,Sq of continuous functions from a topological space X to

the Sierpinski space. The map f ÞÑ f´1p1q yields a bijection from CpX,Sq to the set HX

of closed subsets of X.

Definition 3.3. The Hilbert Topology on HX is defined as the topology induced by the

compact-open topology on CpX,Sq via the bijection above. Explicitly, the sets

UpKq ..“ tZ Ď X : Z is closed in X and Z XK “ Hu

for K Ďcompact X form a subbasis for the Hilbert topology on HX .

Remark 3.4. The obvious formula

UpK1q X UpK2q “ UpK1 XK2q
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shows that the subbasis defined above is actually a basis.

Proposition 3.5. Let X be a locally compact (LC2’) space. Let H have the Hilbert

topology. Then the subset Z “ tpZ, xq : x P Zu is closed in H ˆX.

Proof. We want to show that pH ˆXq´Z is open. Let pZ, xq R Z. Then x R Z. Since X

is LC2’ the point x lies in the interior of a compact Hausdorff subspace K of X. Since K is

Hausdorff, there are opens U and V such that x P U Ď U Ď V Ď K such that V XZ “ H.

U is compact. Now our claim is to show that pZ, xq P UpUqˆU and pUpUqˆUqXZ “ H.

It is clear that pZ, xq P UpUq ˆ U since x P U and U X Z “ H. Now we want to show

that x1 R Z 1 for any pZ 1, x1q P UpUq ˆ U . If Z 1 P UpUq then Z 1 X U “ H, so, for every

x1 P U Ď U we have x1 R Z 1 as desired.

Theorem 3.6. Let X be a locally compact space and Z be an arbitrary topological space.

Then there is a bijection between the closed subsets of Z ˆ X and the continuous maps

Z Ñ HX where HX has the Hilbert topology.

Proof. Let CpX, Y q be the space of continuous functions X Ñ Y with the compact-open

topology and HX have the Hilbert topology. By Theorem 46.11 in Mukres’ Topology [3],

we know that if X is locally compact, there is a bijection between continuous functions

f : X ˆ Z Ñ Y and continuous functions F : Z Ñ CpX, Y q for any topological space Y .

Now let S “ Y be the Sierpinski space. Clearly, there are bijections

tf : X ˆ Z Ñ S : f is continuous u ÐÑ t closed subspaces of X ˆ Zu

tF : Z Ñ CpX,Sq : F is continuous u ÐÑ tg : Z Ñ HX : g is continuous u.

The result immediately follows.
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Remark 3.7. Consider the functor

F : Topop Ñ Sets

T ÞÑ tZ Ďclosed T ˆXu.

If X is locally compact, this functor is representable by the Hilbert Topology given

in Definition 3.3, that is HompX,Sq with the compact-open topology where S is the

Sierpinski space.
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4. THE HAUSDORFF METRIC

Can we define a reasonable metric between subsets (instead of points) of a metric

space? What if we take X “ R? Then what would be the distance between p0, 1q and

r0, 1s? In 1914, Felix Hausdorff introduced a metric, called the Hausdorff metric, on the set

HX of closed subspaces of a metric space. The topology HX determined by the Hausdorff

metric is called the Hausdorff topology and it has many exciting features. For instance,

if a metric is finer than another metric on compact X, then the induced Hausdorff metric

of the former is finer than the latter. Furthermore, if X is compact, so is the Hausdorff

topology on HX .

Observe that if pX, dq is a metric space, and we set d1px, yq ..“ maxtdpx, yq, 1u, then

pX, d1q is also a metric space satisfying d1px, yq ď 1 for all x, y P X. Furthermore, the

topology on X determined by d is the same as the topology on X determined by d1. Thus,

there is no major loss of generality if we just assume throughout this work that every

metric d satisfies dpx, yq ď 1 for all x, y P X.

Definition 4.1. Let pX, dq be a metric space. A metric dH on the set H of closed subsets

of X, called the Hausdorff metric, will be given by

dH pA,Bq “
1

2

ˆ

sup
bPB

dpA, bq ` sup
aPA

dpa,Bq

˙

.

The topology on H defined by this metric will be called the Hausdorff topology.

Remark 4.2. Alternatively,

dH pA,Bq “ max

"

sup
bPB

dpA, bq, sup
aPA

dpa,Bq

*

.
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These two metrics determine the same topology. We will prefer to use the second

definition of the Hausdorff metric. The set H with the topology determined by dH will

be called the Hausdorff space of pX, dq.

Proposition 4.3. [1] The function dH : HX ˆHX Ñ Rě0 defined above is a metric on

HX , called the Hausdorff metric.

Proof. • Clearly dH pA,Bq is symmetric in A,B.

• Let us assume that dH pA,Bq “ 0 for some A,B P H . Then by definition, we have

dpa,Bq “ 0 @a P A

dpA, bq “ 0 @b P B.

These imply, respectively, that A Ď B̄ and B Ď Ā. Since both A and B are closed

subsets of X, we get A Ď B and B Ď A. And therefore A “ B.

• Now assume that A “ B. Clearly, dpa,Bq “ 0 for every a P A and dpA, bq “ 0 for

every b P B. So,

max

"

sup
bPB

dpA, bq, sup
aPA

dpa,Bq

*

“ dH pA,Bq “ 0.

• For the triangle inequality, we want to show that

dH pA,Cq ď dH pA,Bq ` dH pB,Cq.

By the triangle inequality for d, we have

dpa, cq ď dpa, bq ` dpa, cq @a, b, c.
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So,

dpa, Cq “ inf
cPC

dpa, cq ď inf
cPC
rdpa, bq ` dpb, cqs @a, b

dpa, Cq ď dpa, bq ` inf
cPC

dpb, cq @a, b

dpa, Cq ď dpa, bq ` dpb, Cq @a, b

Now using the fact that dpb, cq ď supbPB dpb, Cq for any b, we get

dpa, Cq ď dpa, bq ` sup
bPB

dpb, Cq @a, b

Since the left-hand-side is independent of b,

dpa, Cq ď dpa,Bq ` sup
bPB

dpb, Cq @a

Taking the supremum over a we have

sup
aPA

dpa, Cq ď sup
aPA

dpa,Bq ` sup
bPB

dpb, Cq (4.1)

Symmetry gives us that,

sup
cPC

dpc, Aq ď sup
bPB

dpb, Aq ` sup
cPC

dpc, Bq (4.2)

By adding the inequalities (4.1) and (4.2) and dividing by two, we get the desired
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result:

dH pA,Cq ď dH pA,Bq ` dH pB,Cq

Definition 4.4. Let X be a topological space.

• A subset Z Ď X is called sequentially closed if for every sequence tznu in Z with a

limit point z P X we have z P Z.

• A subset U Ď X is called sequentially open if every sequence tznu converging to a

point z P U , tznu is eventually in U .

Definition 4.5. A topological space X is called sequential if every sequentially closed

subset of X is closed. Or equivalently, if every sequentially open subset of X is open.

Let SeqTop be the category of sequential spaces. Consider the functor

F : SeqTopop Ñ Sets

T ÞÑ tZ Ďclosed T ˆX and π1 : Z Ñ T is open u

Theorem 4.6. If X is a compact metrizable space, this functor is representable by the

metrizable space, HX , with the Hausdorff topology (Definition 4.1).

It is natural to ask about the relation between dH and d1H , if d induces a finer

topology than d1 on X.

Lemma 4.7. If τd1 Ď τd and pX, τdq is compact (hence pX, τd1q is also compact), then for
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every ε1 ą 0 there exists ε ą 0 such that

Bdpx, εq Ď Bd1px, ε
1
q @x P X

Proof. d is a finer metric than d1 on X. So, for every x P X and for every ε1 ą 0 there

exists εx such that

Bdpx, 2εxq Ď Bd1

ˆ

x,
ε1

2

˙

(4.3)

Also,

!

Bd

´

x,
ε

2

¯

: x P X
)

is an open cover for X. Since pX, τdq is compact and

Bd

´

x,
εx
2

¯

XBd1

ˆ

x,
ε1

2

˙

P τd @x P X

There is a finite set tx1, . . . , xnu such that

"

Bd

´

xi,
εxi
2

¯

XBd1

ˆ

xi,
ε1

2

˙*

covers X. Now let ε ..“ mintεx1 , . . . , εxnu

Claim: Bdpx, εq Ď Bd1px, ε
1q @x P X.
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There exists xi so that

x P

"

Bd

´

xi,
εxi
2

¯

XBd1

ˆ

xi,
ε1

2

˙*

(4.4)

Now pick y P Bdpx, εq arbitrarily.

dpx, yq ă ε & dpx, xiq ă εxi ùñ dpxi, yq ă ε` εxi ă 2εxi

By (4.3) we have d1pxi, yq ă
ε1

2
and by (4.4) we have d1px, xiq ă

ε1

2
. Thus,

d1px, yq ď dpx, x1q ` dpx1, yq ă
ε1

2
`
ε1

2
“ ε1

The result follows.

Theorem 4.8. If τd1 Ď τd and pX, τdq is compact (hence pX, τd1q is also compact), then

τd1H Ď τdH
.

Proof. Let A P H and Bd1H
pA, ε1q be a neighbourhood of A. We want to find an ε ą 0

such that

BdH
pA, εq Ď Bd1H

pA, ε1q

Choose ε so that (we can choose such ε by Lemma 4.7)

dpx, εq Ď d1
ˆ

x,
ε1

2

˙

@x P X
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holds. Pick B P BdH
pA, εq. We have dH pA,Bq ă ε. By definition,

max

"

sup
bPB

dpA, bq, sup
aPA

dpa,Bq

*

ă ε

and so dpa,Bq ă ε @a P A and dpA, bq ă ε @b P B. By the choice of ε, we get

dpa,Bq ă
ε1

2
@a P A

dpA, bq ă
ε1

2
@b P B

both holds and thus

max

"

sup
bPB

d1pA, bq, sup
aPA

d1pa,Bq

*

ď
ε1

2
ă ε1

Therefore

BdH
pA, εq Ď Bd1H

pA, ε1q

is satisfied. The result follows.

Corollary 4.9. Let X be a metric space and let d and d1 be two metrics determining the

same topology on X. Let X be compact with respect to both metrics. Then, the metrics

dH and d1H induces the same topology on H .

Remark 4.10. Observe that Theorem 4.8 and Corollary 4.9 follows from Theorem 4.6. We

gave an alternative and direct proof for them above.
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Lemma 4.11. Let Z and Z 1 be two closed subsets of a metric space X. Then

dH pZ,Z
1
q ă ε ùñ Z 1 Ď Bpε, Zq and Z Ď Bpε, Z 1q

Proof. Assume that dH pZ,Z
1q ă ε for Z,Z 1 P H . Then,

max

"

sup
z1PZ1

dpZ, z1q, sup
zPZ

dpz, Z 1q

*

ă ε

So,

sup
z1PZ1

dpZ, z1q ă ε and sup
zPZ

dpz, Z 1q ă ε

This yields that dpz1, Zq ă ε and dpz, Z 1q ă ε for any z1 P Z 1 and z P Z. So,

z1 P BdpZ, εq @z1 P Z 1 and z P BdpZ
1, εq @z P Z

Then we have

Z 1 Ď BpZ, εq and Z Ď BpZ 1, εq

as desired.

Lemma 4.12. Let Z and Z 1 be two closed subsets of a metric space X. Then

Z 1 Ď Bpε, Zq and Z Ď Bpε, Z 1q ùñ dH pZ,Z
1
q ď ε
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Proof. Assume that Z 1 Ď BpZ, εq and Z Ď BpZ 1, εq. Then z1 P BdpZ, εq for every z1 P

Z 1 and z P BdpZ
1, εq for every z P Z. Since both Z and Z 1 are closed in X we have

supz1PZ1 dpZ, z
1q ď ε and supzPZ dpz, Z

1q ď ε. Thus,

max

"

sup
z1PZ1

dpZ, z1q, sup
zPZ

dpz, Z 1q

*

ď ε

Therefore dH pZ,Z
1q ď ε for Z,Z 1 P H .

Corollary 4.13. If Z and Z 1 are two closed subsets of a metric space, then

dH pZ,Z
1
q “ inftε ą 0 : Z 1 Ď Bpε, Zq and Z Ď Bpε, Z 1qu

Remark 4.14. The Hausdorff topology on the set of closed subspaces of a metrizable space

X may depend on the choice of the metric inducing the topology on X even if these

metrics are equivalent.

Example 4.15. Consider two metrics determining the same topology on R: one is the usual

(Euclidean) metric and the other one is given by dpx, yq “ | arctanx ´ arctan y|. Define

Zn ..“ txnk : k P Zą0u where xnk “ k ` 1
n

when n ‰ k and xnk “ n ` 1
2

otherwise. Let

Z ..“ Zą0. Then the Hausdorff distance with respect to the usual metric between the sets

Z and Zn is 1
2
, whereas the Hausdorff distance with respect to d between Z and Zn tends

to 0 as nÑ 8.

Theorem 4.16. The Hausdorff topology on the set of compact subspaces of a metrizable

space X does not depend on the choice of the metric inducing the topology on X.

Proof. Let d and d1 be two metrics determining the same topology on X. Let K be a

compact subspace of X and let ε ą 0. We want to show that there exists ε1 ą 0 satisfying

Bd1H
pK, ε1q Ď BdH

pK, εq (4.5)
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For each k P K there exists εk such that

Bd1 pk, 2εkq Ď Bd

´

k,
ε

3

¯

(4.6)

since d and d1 induce the same topology on X. So,

ď

kPK

Bd1pk, εkq

is an open cover of K. There is a finite set tk1, k2, . . . , kNu Ď K such that

K Ď

N
ď

i“1

Bd1pki, εkiq and K Ď

N
ď

i“1

Bd

´

ki,
ε

3

¯

(4.7)

Now let ε1 ..“ mintεki : 1 ď i ď Nu. To prove the relation (4.5) above, let L P

Bd1H
pK, ε1q and let L be compact. Then d1H pL,Kq ă ε1. We have

max

"

sup
kPK

d1pk, Lq, sup
lPL

d1pl,Kq

*

ă ε1

And thus

d1pk, Lq ă ε1 and d1pl,Kq ă ε1 @k P K @l P L

Then, @k P K we have d1pk, Lq ă ε1. So, there exists l P L such that d1pk, lq ă ε1.

That is, l P Bd1pk, ε
1q. So, l P Bd1pki, εki ` ε

1q for some l P L and thus l P Bd1pki, 2εkiq.
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Using the relation (4.6) we get that l P Bd

`

ki,
ε
3

˘

for some l P L. Also, by the

relation (4.7) we have, @k P K Dl P L such that dpk, lq ă 2ε
3

. Hence,

sup
kPK

dpk, Lq ď
2ε

3
(4.8)

Similarly, since d1pl,Kq ă ε1 @l P L, we have

d1pl,Kq ă ε1 ùñ @l P L Dk P K such that d1pl, kq ă ε1

ùñ @l P L Dk P K such that k P Bd1pl, ε
1
q

ùñ @l P L Di P t1, . . . , Nu such that ki P Bd1pl, ε
1
` εkiq

ùñ @l P L Di P t1, . . . , Nu such that ki P Bd1pl, 2εkiq

ùñ @l P L Di P t1, . . . , Nu such that l P Bd

´

ki,
ε

3

¯

ùñ @l P L Di P t1, . . . , Nu such that dpki, lq ă
ε

3

ùñ @l P L Dk P K such that dpk, lq ă
2ε

3

ùñ @l P L dpl,Kq ă
2ε

3

Therefore we get

sup
lPL

dpl,Kq ď
2ε

3
(4.9)

The inequalities (4.8) and (4.9) give us that

dpK,Lq “ max

"

sup
kPK

dpk, Lq, sup
lPL

dpl,Kq

*

ď
2ε

3
ă ε

So, the relation (4.5) is proved. Similarly, we can prove that for every ε1 ą 0 and for every
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compact K Ď X there exists ε such that

BdH
pKεq Ď Bd1H

pK, ε1q (4.10)

Combining the relations (4.5) and (4.10) together, the result follows.

Proposition 4.17. Let K be a compact and Z be a closed subspace of a metric space X

such that Z XK “ H. Then the minimal distance between Z and K is positive.

Proof. Assume for a contradiction that dpZ,Kq ..“ inftdpz, kq : z P Z, k P Ku “ 0. Then

there are sequences tznu P Z and tknu P K such that limnÑ8 dpzn, knq “ 0. Every sequence

in a compact metric space has a convergent subsequence. So, there is a subsequence knm

such that knm Ñ k for some k P K. Our claim is to show that limnÑ8 zn “ k.

For every ε ą 0 there exists N such that for every n ą N we have dpkn, znq ă
ε
2
.

Then there exists M1 ą N such that for every m,n ą M1 we have dpknm , znq ă
ε
2
. Also

there is a number M2 such that for every m ą M2 we get dpknm , kq ă
ε
2
. Thus, for every

n ą maxtM1,M2u we have

dpzn, kq ă dpknm , znq ` dpknm , kq ă
ε

2
`
ε

2
“ ε

So, zn converges to k. But since Z is closed, k must lie in K. Contradiction. dpZ,Kq ą

0.

Lemma 4.18. Let X be a metric space and K be a compact subspace of X. Then if U is

a open subset of X containing K, there exists ε ą 0 such that Bpε,Kq Ď U .

Proof. Let Z ..“ X ´ U . Then Z is a closed subset of X. By Proposition 4.17, we must

have dpZ,Kq ..“ inf tdpz, kq : z P Z, k P Ku “ ε ą 0.



22

Now we claim that Bpε,Kq Ď U . To see this fact, pick x P Bpε,Kq. Then x R Z by

the choice of ε and therefore x P U . The result follows.

Proposition 4.19. [4] If X is a totally bounded metric space, so is H .

Proof. Let ε ą 0. Since X totally bounded, there is a finite subset K ..“ tx1, . . . , xnu of

X with

X “

n
ď

i“1

B
´

xi,
ε

2

¯

Now consider the set PpKq ´ tHu “.. tZ1, . . . , Z2n´1u Ď H . We want to show that

2n´1
ď

j“1

BpZj, εq “ H

It suffices to show that for every Z P H there exists j0 P t1, 2, . . . , 2
n ´ 1u such that

Z Ď B
`

ε
2
, Zj0

˘

and Zj0 Ď B
`

ε
2
, Z

˘

.

To prove the claim above, let

Zj0
..“ txi : Bpxi,

ε

2
q X Z ‰ H, i “ 1, . . . , nu

For every z P Z there exists xi0 such that z P Bpxi0 ,
ε
2
q and hence xi0 P Zj0 . Thus,

z P Bpxi0 ,
ε
2
q Ď Bp ε

2
, Zj0q for every z P Z. Therefore, Z Ď Bp ε

2
, Zj0q.

Now let xi P Zj0 . Then, Bpxi,
ε
2
q X Z ‰ H. So, there exists z P Z such that

dpxi, zq ă
ε
2
. Thus, xi P Bpz,

ε
2
q Ď Bp ε

2
, Zq. So, Zj0 Ď Bp ε

2
, Zq.
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So, by Lemma 4.12 we have

dH pZ,Zj0q ď
ε

2
ă ε

Therefore, H is totally bounded.

Proposition 4.20. [5] If X is a complete metric space, so is H .

Proof. Let X be complete and tZnunPN be a Cauchy sequence in pH , dH q. Let

Z ..“ tx P X : DtznunPN such that zn P Zn and x is a limit point of znu

We claim that Z is the limit of Zn with respect to the Hausdorff metric.

We start by showing that Z is closed in X. Let txnu be a convergent sequence in Z

with a limit x P X. We want to show that x P Z. It suffices to show that there exists a

sequence tzn : zn P Znu converging to x. Let ε ą 0.

There exists xn1 P B
`

x, ε
2

˘

. Also, since xn1 P Z, there exists zm1 P Zm1 such that

zm1 P B
`

xn1 ,
ε
2

˘

. So, dpx, zm1q ă ε.

There exists xn2 P B
`

x, ε
4

˘

. Also, since xn2 P Z, there exists m2 ą m1 and zm2 P Zm2

such that zm2 P B
`

xn2 ,
ε
4

˘

. So, dpx, zm2q ă
ε
2
.

Similarly, there exists xn3 P B
`

x, ε
8

˘

. Also, since xn3 P Z, there exists m3 ą m2 and

zm3 P Zm3 such that zm3 P B
`

xn3 ,
ε
8

˘

. So, dpx, zm3q ă
ε
4
.

With this progress we can construct a convergent subsequence tzmk
u of a sequence
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tzmu such that zmk
Ñ x. Thus, x P Z and hence Z is a closed subspace of X.

Now it remains show that Z is the limit of the sequence tZnu. We want to show

that for every ε ą 0 there exists N such that @n ě N we have dH pZn, Zq ă 3ε.

Let ε ą 0. There exists N1 such that dH pZn, Zmq ă ε for all m,n ą N1. So,

Zn Ď Bpε, Zmq and Zm Ď Bpε, Znq. Let z P Z. Since z P Z, there exists a sequence tznu

with zn P Zn and zn Ñ z.

Consider the sequence xk`1 “ zn`k. We have

x1 “ zn P Zn Ď Bpε, Znq

x2 “ zn ` 1 P Zn`1 Ď Bpε, Znq

x3 “ zn ` 2 P Zn`2 Ď Bpε, Znq

...

By construction, since zn Ñ z we must also have xk Ñ z. So, z is a limit point of Bpε, Znq

and hence

Z Ď Bpε, Znq Ď Bp2ε, Znq (4.11)

It remains to show that Zn Ď Bp2ε, Zq. Let ε ą 0. There exists N ě N1 such that

@m,n ą N we have dH pZn, Zmq ă
ε
2
. Also there exists numbers n1 ă n2 ă n3 ă . . . all
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bigger than N such that

dH pZm, Znq ă
ε

4
@m,n ą n1

dH pZm, Znq ă
ε

8
@m,n ą n2

dH pZm, Znq ă
ε

16
@m,n ą n3

...

And hence

Zn Ď B
´ε

2
, Zn1

¯

Zn1 Ď B
´ε

4
, Zn2

¯

Zn2 Ď B
´ε

8
, Zn3

¯

...

Let zn P Zn. By the subset relationships above we see that

Dzn1 P Zn1 such that dpzn, zn1q ă
ε

2

Dzn2 P Zn2 such that dpzn1 , zn2q ă
ε

4

Dzn3 P Zn3 such that dpzn2 , zn3q ă
ε

8
...

It follows that the sequence tznk
u is Cauchy, so, since X is complete, and Z Ďclosed X,
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znk
Ñ z for some z P Z. So,

dpzn, znk
q ă dpzn, zn1q ` dpzn1 , zn2q ` ¨ ¨ ¨ ` dpznk1

, znk
q

ă
ε

2
`
ε

4
` ¨ ¨ ¨ `

ε

2k
ă ε

So, dpzn, zq ď ε and thus zn P Bpz, εq Ď Bpε, Zq. So, we get

Zn Ď Bpε, Zq Ď Bp2ε, Zq (4.12)

By equations (4.11) and (4.12) and using Lemma 4.12 we have dpZn, Zq ď 2ε ă 3ε when

n ě N as desired.

Corollary 4.21. If X is a compact metric space, so is H .

Proof. By Theorem 45.1 in Munkres [3], a metric space is compact if and only if it is

totally bounded and complete. So, using Proposition 4.19 and Proposition 4.20 give us

the desired result.

Definition 4.22. Let tZtutPC Ď H . Then, Zt0 P H is the Hausdorff limit of Zt as tÑ t0

if for every ε ą 0 there exists δ ą 0 such that

|t´ t0| ă δ ùñ dH pZt, Zt0q ă ε

Example 4.23. Consider the set Zt ..“ tpx, yq P C2 : xy “ tu. We will show that Z0 “

tpx, yq P C2 : xy “ 0u is the Hausdorff limit of Zt as tÑ 0.

Let ε ą 0 and let δ “ mint ε
2
, ε2u{2

Assume that |t| ă δ. Let pxt, ytq P Zt. Then dppxt, ytq, Z0q “ mint|xt|, |yt|u. Observe
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that for any pxt, ytq P Zt, we have

mint|xt|, |yt|u ď
a

|t| ă
?
δ ă ε

So,

sup
pxt,ytqPZt

dppxt, ytq, Z0q ă ε (4.13)

Now let px0, y0q P Z0. Either x0 or y0 equals to zero. Without loss of generality, assume

y0 “ 0. Let x0 “ r0e
iθ0 . Zt consists of the elements of the form

`

reiθ1 , t
r
eiθ2

˘

. Then,

dppx0, 0q, Ztq “ inf
rPR`

$

&

%

d

pr0 ´ rq2 `

ˆ

t

r

˙2

,

.

-

ď |2t| ă 2δ ă ε

So,

sup
px0,y0qPZ0

dppx0, y0q, Ztq ă ε (4.14)

Using the inequalities (4.13) and (4.14) we get that

max

#

sup
pxt,ytqPZt

dppxt, ytq, Z0q, sup
px0,y0qPZ0

dppx0, y0q, Ztq

+

ă ε

Proposition 4.24. Let X be a metric space and H be the set of closed subsets of X with

the Hausdorff topology. Then the subset Z “ tpZ, xq : x P Zu is closed in H ˆX and the

projection map πZ
1 : Z Ñ H is open.
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Proof. We want to show that pH ˆ Xq ´ Z is open. Let pZ, xq R Z. Then x R Z. We

have Bdpx, εq X Z “ H for some ε ą 0. Now we claim that

!

BdH

´

Z,
ε

2

¯

ˆBd

´

x,
ε

2

¯)

X Z “ H

To prove the claim, suppose Z 1 P BdH
pZ, ε

2
q and x1 P Z 1. Then dH pZ

1, Zq ă ε
2
. There

must be some z P Z so that dpx1, zq ă ε
2
. Then x1 P Bdpx,

ε
2
q and so dpx, x1q ă ε

2
, so we

reach the contradiction

dpx, zq ă dpx, x1q ` dpx1, zq ă ε.

Hence Z is closed.

It suffices to show that each πZ
1 pUq is open for every U in some basis U for H . Now

we want to show that the projection map πZ
1 : Z Ñ H is open. So, it is enough to show

that

πZ
1 ppBH pZ, εq ˆBXpx, εqq X Zq “ BH pZ, εq

for any Z P H , x P Z, ε ą 0. Clearly we have

BH pZ, εq Ě π1 ppBH pZ, εq ˆBXpx, εqq X Zq

Now for the other direction let Z 1 P BH pZ, εq. Then

Z Ď Bpε, Z 1q “
ď

z1PZ1

BXpz
1, εq.
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So, there exists x1 P Z 1 such that x P BXpx
1, εq. Hence x1 P BXpx, εq and therefore

Z 1 P π1 ppBH pZ, εq ˆBXpx, εqq X Zq .

The result follows.

Remark 4.25. Let X be a topological space. Let K be the set of compact and metrizable

subspaces of X. Then the map

HX ãÑ
ź

KPK
HK

is injective.

Since singletons are always compact and metrizable, the image of a closed set under

the map above should have its singletons as coordinates. So, if two closed sets are not

equal, than they differ in at least one point. Then, their images will differ in at least one

coordinate which leads to the injectivity of the map above.

Lemma 4.26. Let T be a sequential space and Y be an arbitrary topological space. Let N

be the one-point-compactification of a countably infinite discrete space. Then, a function

f : T Ñ Y is continuous if and only if f ˝ g is continuous for every continuous map

g : NÑ T .

Proof. p ùñ q Let f : T Ñ Y and g : N Ñ T be two continuous maps. We want to

show that f ˝ g : NÑ Y is continuous. Let U be an open subset of Y . f´1pUq is open in

T by the continuity of f . Also, g´1pf´1pUqq is open in N by the continuity of g. Thus,

pf ˝ gq´1pUq is open in N. Hence, f ˝ g is continuous.

p ðù q Assume that f : T Ñ Y is not continuous. Then since T is a sequential

space, there exists an open subset U Ď Y such that A ..“ f´1pUq is not open in T . There
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exists a continuous map g : NÑ T such that g´1pAq is not open in N. Thus, pf ˝ gq´1pUq

is not open in N. Therefore, f ˝ g is not continuous.

Corollary 4.27. Let T be a sequential space and X be an arbitrary topological space. A

map f : T Ñ X is continuous at a point t0 P T if and only if for every sequence ttnu Ď T

converging to t0, the map f
ˇ

ˇ

ttn:nPNuYtt0u
is continuous.

Theorem 4.28. Let T be a topological space and X be a compact metrizable space. Let

W be a closed subset of T ˆ X. For t P T , define Wt
..“ tx P X : pt, xq P W u. If

the map FW : T Ñ HX defined by FW ptq :“ Wt is continuous, then the projection map

πW1 : W Ñ T is open. The converse holds if T is sequential (Definition 4.5).

Proof. p ùñ q Suppose FW is continuous. From the definition of FW we have

W “ tpt, P q P T ˆ Z : FW ptq “ πZ
1 pP qu

It follows that every square in the diagram

W
pFWˆIdXq

ˇ

ˇ

ˇ

ˇ

W

//

��
πW
1

��

Z� _

��
πZ
1

��

T ˆX
FWˆIdX //

��

HX ˆX

π1

��
T

FW //HX
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is cartesian. In particular,

W //

πW
1

��

Z

πZ
1

��
T //HX

is cartesian.

We saw in Proposition 4.24 that πZ
1 is open and open maps are stable under base

change. Therefore, πW1 is open.

p ðù q Assume that πW1 : W Ñ T is an open map and T is sequential. Let t0 P T .

We want to show that fW is continuous at t0. Let ttnu be a sequence converging to t0.

By the corollary of Lemma 4.26 it suffices to show that the map f : T 1 Ñ X is continuous

where T 1 ..“ tt0u Y ttn : n P Nu.

Let ε ą 0. We want to show that there is a neighborhood U of t0 in T 1 satisfying

(i) @t P U Wt Ď Bpε,Wt0q and

(ii) @t P U Wt0 Ď Bpε,Wtq.

It is enough to find U1 satisfying (i), and U2 satisfying (ii), for then we can take

U ..“ U1 X U2.

First, we want to show that such U1 exists. Assume for a contradiction that such U1

does not exist. Then we could find a subsequence tmnu of ttnu and points wn P Wmn Ď X

such that

dpWt0 , wnq ě ε @n P N (4.15)
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By compactness of W , we can assume, after passing to a subsequence, that the points

pmn, wnq P W converge to a point p0, w0q P W . This implies that the wn converge to

w0 P W0 in X which contradicts with the inequality (4.15).

Now we want to prove that such U2 exists. Since T is a sequential space, a singleton

is closed. Therefore, Wt0 is a closed subset of X, hence it is compact. So, there are points

w1, . . . , wn P Wt0 Ď X such that

Wt0 Ď

n
ď

i“1

B
´

wi,
ε

2

¯

(4.16)

Now take

U2
..“

n
č

i“1

π1

´´

T ˆB
´

wi,
ε

2

¯¯

XW
¯

To prove that U2 satisfies (ii), let w0 P Wt0 and t P U2. By the relation (4.16) Di P t1, . . . , nu

such that dpw0, wiq ă
ε
2
. Since U2 Ď π1ppT ˆ Bpwi,

ε
2
qq XW q, there exists w P Wt such

that dpwi, wq ă
ε
2
. Then dpw0, wq ă ε. Since w0 was arbitrary, we have Wt0 Ď Bpε,Wtq

as desired.

Now let U ..“ U1 XU2. For every t P U , by Lemma 4.12 we get that dH pZ0, Ztq ď ε.

Therefore, FW is continuous.
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5. THE HILBERT SCHEME AND THE HILBERT

QUOTIENT

In this chapter, we begin by recalling some basic properties of the Hilbert scheme

of a projective variety X (over C). We explain how the Hilbert scheme can be used to

define the Hilbert quotient X �
Hilb

G of an algebraic group G acting on X. The analogous

construction of the “Hausdorff quotient” will be the subject of the next chapter.

Let X be a complex variety. Let Sch and Sets be the category of schemes over C

and the category of sets, respectively. Consider the functor

F : Schop Ñ Sets

T ÞÑ tZ Ďclosed T ˆX : π1 : Z Ñ T is flatu

Theorem 5.1 (Grothendieck). If X is projective, the functor F is representable by a

disjoint union of projective schemes, HilbX, called the Hilbert scheme of X.

Remark 5.2. [6] One has

HilbX “
ž

p

HilbpX

where p P Qrxs and HilbpX is the moduli space of closed subschemes of X with “Hilbert

polynomial” p (with respect to some ample line bundle OXp1q on X). Each HilbpX is

projective.

Definition 5.3. Let G be an algebraic group and X be a projective variety. Consider the
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function

f : X Ñ HilbX

x ÞÑ Gx

By generic flatness results from algebraic geometry, there is a Zariski open and dense

subvariety U of X such that the set

tGx : x P Uu

forms a flat family over U{G and

f : U{GÑ HilbX

x ÞÑ Gx

is an embedding. Then we define the Hilbert Quotient [7] of X by G as

X �
Hilb

G ..“ fpU{Gq
HilbX

Remark 5.4. The Hilbert Quotient is independent of the choice of U as above. The set

fpU{Gq is contained in HilbpX for some polynomial p, so X �
Hilb

G is projective.

Finally, we want to construct the Hilbert-Hausdorff morphism. For a finite-type C-

scheme X, we write Xan for the set XpCq of C points of X, with the analytic topology [8].

The space Xan is compact (resp. Hausdorff) iff X is proper (resp. separated) [8]. The map

X ÞÑ Xan is functorial in X, preserves (fibered) products and takes closed embeddings (of
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schemes) to closed embeddings (of topological spaces). Now let X be a projective variety

over C. Let Z Ď pHilbXqˆX be the universal closed subscheme. We know that the map

π1 : Z Ñ HilbX (5.1)

is flat. A well-known variation of Serre’s GAGA results [8] says that flat map of finite-

type C-schemes is open in the analytic topology. Such a map is also open in the Zariski

topology. So,

πan1 : Zan
Ñ pHilbXqan (5.2)

is open.

By Theorem 4.6 and (5.2) we get the Hilbert-Hausdorff morphism:

fZan : pHilbXqan Ñ HXan (5.3)

Define pHilbXqred ..“ tZ P HilbX : Z is reducedu.

Definition 5.5. Let pHilbXqanred (resp. pHilbpXq
an
red ) be the subspace of pHilbXqan (resp.

pHilbpXq
an ) whose points correspond to reduced closed subschemes of X (resp. with

Hilbert polynomial p).

In fact we suspect an even closer relationship when we restrict to reduced subschemes.

By restriction, the Hilbert-Hausdorff morphism yields a continuous map:

f : pHilbpXq
an
red ÝÑ HXan (5.4)
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Conjecture. The map given in (5.4) is an embedding.

Remark 5.6. The map given in (5.4) may not be an embedding if it’s not restricted to a

polynomial p.
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6. THE HAUSDORFF QUOTIENT

Definition 6.1. Let G be a topological group acting continuously on a metric space X.

Let U be the partially ordered family of open, dense, G-invariant subsets of X. For U P U ,

consider the map of sets

e : U Ñ HX

epxq ..“ Gx
X
.

The Hausdorff quotient of X by G, denoted by X �
Haus

G is

X �
Haus

G ..“
č

UPU
epUq

HX

Remark 6.2. The map e : U Ñ H is not necessarily continuous.

Example 6.3. An example for which the map e is not continuous can be obtained by taking

X “ tpx, yq P R2 : x ą 0, y ą 0u and G “ R`. Let the action G ýX be defined as

g ¨ px, yq ..“ pgx, gyq. Then, eppx, yqq is a ray from origin passing through the point px, yq.

For any two points px1, y1q, px2, y2q P X, if x1
x2
‰

y1
y2

then the (Hausdorff) distance between

the images of these two points is infinite. So, the map e is nowhere continuous on X.

Remark 6.4. The map e is clearly constant on G´orbits, so it yields a map of sets e :

U{GÑ HX .

Definition 6.5. A set U P U is called semi-stable if

epU 1q
HX

“ epUq
HX

for all U 1 Ď U with U 1 P U .
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Remark 6.6. For reasonable G ýX (such as a Lie group acting on a compact manifold)

there is a semi-stable U P U .

Definition 6.7. We call U P U stable if and only if U is semi-stable, e : U Ñ H is

continuous, and the induced map e : U{G Ñ H is an embedding when U{G is given the

quotient topology.

Theorem 6.8. Let U be an open, dense, G-invariant subset of a metric space X. If U is

stable, then U is semi-stable.

Proof. Assume that the map

e : U Ñ HX

x ÞÑ Gx
X

yields an embedding

e : U{G ãÑ HX

so that U is stable. If V is an open, dense, G-invariant subset of X with V Ď U , then V is

open and dense in U . It follows that V {G is open and dense in U{G. Since ē : U{G ãÑ HX

is an embedding, we have that ēpV {Gq is an open and dense subset of ēpU{Gq. So, ēpV {Gq

and ēpU{Gq must have the same closure in HX . Therefore, U is semi-stable.

Example 6.9. Consider the 2-simplex

∆2
..“

R3
ě0 ´ 0̄

Rą0
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Let G “ Rą0 under multiplication. G acts on X ..“ ∆2 by

GˆX Ñ X

g ¨ rx, y, zs ..“ rgx, g´1y, zs

In particular, ttpx, y, zq : z “ 0u X ∆2u and ttpx, y, zq : x.y “ 0u X ∆2u are two

orbits of this action. So, the orbits are bijective with the closed interval r0, 1s. Any U P U

satisfying U Ď
˝

∆2 gives

epUq
HX

“ ep
˝

∆2q
HX

Hence, the semi-stable subset of ∆2 is its interior
˝

∆2 for this action.

Remark 6.10. The Hausdorff quotient X �
Haus

G depends only on the topology of X if X

is compact and metrizable. However, if X is not compact, X �
Haus

G may depend on the

metric.

Lemma 6.11. Let G be a compact topological group acting continuously on a metric space

X. Then for every x P X and for every ε ą 0, there exists δ ą 0 such that

G ¨Bpx, δq Ď Bpε,Gxq

Proof. For each g P G, the map X Ñ X defined by x ÞÑ gx is continuous. So, there exists

δ “ δy ą 0 such that

g ¨Bpx, δq Ď Bpgx, εq
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Claim: δ is independent of y when G is compact.

Since the action a : GˆX Ñ X is continuous, for all g P G, there exists δg ą 0 and

a neighbourhood Ug of g in G such that for all h P Ug we have

h ¨Bpx, δq Ď Bphx, εq

In other words,

Ug ˆBpx, δq Ď a´1pBpgx, εqq “ a´1pBpapg, xq, εqq

Since G is compact, the cover
Ť

gPG Ug has a finite subcover Ug1 , . . . , Ugn . Now take

δ ..“ mintδgi : 1 ď i ď nu. Then for all h P G, we have h ¨Bpx, δq Ď Bphx, εq. That is

G ¨Bpx, δq Ď BpGx, εq

The result follows.

Proposition 6.12. If G is compact, the map

X{GÑ HX

x ÞÑ Gx

is continuous.
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Proof. We start by showing that the map

X Ñ HX

x ÞÑ Gx

is continuous. Fix x P X and let ε ą 0. We need to find δ ą 0 such that for every

y P BXpx, δq we have Gy P BHX
pGx, εq. By lemma 6.11, we can find δ1 ą 0 such that

dpx, yq ă δ1 implies

Gy Ď B
´ε

2
, Gx

¯

(6.1)

Now we want to find δ2 ą 0 such that dpx, yq ă δ2 implies G ¨ x Ď Bp ε
2
, G ¨ yq. If

there were no such δ2 ą 0, we could find points y1, y2, . . . in X converging to x such that

Gx Ę B
´ε

2
, Gyn

¯

@n

For each n, pick gn P G such that

gnx R B
´ε

2
, Gyn

¯

So, in particular we have

dpgnx, gnynq ą
ε

4
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Since G is compact, the sequence gn has a convergent subsequence gnk
Ñ g for some g P G.

Then we must have

dpgx, gynq ą
ε

8
(6.2)

However, G continuously acts on X and yn Ñ x. So, the inequality (6.2) cannot hold.

Contradiction. Hence,

Gx Ď B
´ε

2
, Gy

¯

(6.3)

Finally, let δ “ mintδ1, δ2u. If dpx, yq ă δ, then the relations (6.1) and (6.3) both holds

and this imply that

dH pGx,Gyq ď
ε

2
ă ε

Therefore, the map

X Ñ HX

x ÞÑ Gx

is continuous. Observe that this map is constant on G-orbits in X. So, it descends to a

map

X{GÑ HX

rxs ÞÑ Gx
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by the universal property of the quotient topology.

Proposition 6.13. The map given in the Proposition 6.12 is an embedding if both G and

X are compact.

Proof. X and G being compact implies that X{G and HX are both compact Hausdorff.

Furthermore, the map

X{GÑ HX

is one-to-one and continuous, and therefore it is an embedding.

Proposition 6.14. If X and G are both compact, then the Hausdorff Quotient X �
Haus

G

is the same as the usual quotient X{G.

Proof. The map X{G ãÑ HX is an embedding, hence X is stable.
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7. CONCLUSION

In the local compactness chapter, we gave four different definitions of local compact-

ness and showed that local compactness is inherited by closed subspaces.

Then, we gave the definition of the compact-open topology on the space of continuous

functions between two topological spaces. Since there is a bijection between the closed

subspaces of a topological space X and the space of continuous functions from X to the

Sierpinski space, we can put a topology on the set HX of closed subspaces of X by using

the compact-open topology on this space of functions. In Theorem 3.6 we showed that

when X is locally compact this topology on HX –called the Hilbert topology– represents

the most naive “families of closed subspaces” functor sending a topological space T to the

set of closed subspaces of T ˆX.

Another topology that can be put on HX is the Hausdorff topology given by Haus-

dorff metric. If a metric d induces a finer topology than d1 on compact X, we showed in

Theorem 4.8 that dHX
induces a finer topology than d1HX

on HX . Furthermore, we showed

in Corollary 4.13 that there is a more elegant way to express the Hausdorff distance

dH pZ,Z
1
q “ inftε ą 0 : Z 1 Ď Bpε, Zq and Z Ď Bpε, Z 1qu

A question to ask here was: “Can we express the Hausdorff topology on HX in terms of

the topology on X?” The answer is yes, if X is compact. Furthermore, if X is compact,

then HX is also compact (Corollary 4.21). Another interesting theorem is about the

necessary and sufficient conditions for a function T Ñ HX to be continuous where T is

any sequential space (Theorem 4.28). This leads to the “modular interpretation” of the

Hausdorff topology established in Theorem 4.6.

In Chapter 5, we introduced the Hilbert functor, the Hilbert scheme and the Hilbert
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Quotient. Modifying the Hilbert functor a little gave us two analogs of the Hilbert scheme

on the closed subspaces of a topological space equipped with the Hilbert topology and the

Hausdorff topology. The analog of the Hilbert Quotient is the Hausdorff Quotient and

we established some nice properties of the Hausdorff Quotient in Proposition 6.14 and

Remark 6.10.

The Hausdorff Quotient chapter gives a nice definition of the Hausdorff Quotient

of a metric space X by a topological group G as an arbitrary intersection. We proved

that the usual quotient is the same as the Hausdorff Quotient when both X and G are

compact. An open question is that: “When is the Hausdorff Quotient a finite intersection?

i.e. When does X have a semi-stable subset?” Furthermore, it would be interesting to

investigate circumstances under which “stable” and “semi-stable” are equivalent yet we

know of no example of a semi-stable set which is not stable.
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