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ABSTRACT

TOPOLOGIES ON FAMILIES OF CLOSED SUBSETS

In 1914, Felix Hausdorff introduced a metric, called the Hausdorff metric on the
set of closed subspaces, Hausdorff space, of a metric space. This metric and the corre-
sponding topology are the main objects of the study. In algebraic geometry, there is an
analogous object called the Hilbert scheme, whose points correspond to closed subschemes
of a projective variety X. We give a modular interpretation of the Hausdorff space anal-
ogous to the one for the Hilbert scheme. The Hilbert scheme is used in various structures
in algebraic geometry; using the Hausdorff space we can mimic these constructions in
topology. For example, when an algebraic group acts on a projective variety, one can form
a quotient X /., G called the Hilbert quotient. We consider the analogous Hausdorff
quotient X /.. G associated to a topological group acting on a metric space. We note
that this quotient has some desirable properties: When X is compact X /... G is com-
pact and when G is also compact X //,,. G is the usual quotient X /G. In addition to the
Hausdorff topology, one can also topologize the set of closed subspaces of X by consider-
ing the compact open topology on the set of continuous maps from X to the Sierpinski
space. Although the resulting Hilbert space is less well-behaved than the Hausdorff space,

it admits a nice modular interpretation when X is locally compact.



OZET

KAPALI ALTKUMELERDEKI TOPOLOJILER

1914’te Feliz Hausdorff bir metrik uzaymin kapali altuzaylari, Hausdorff uzays,
kiimesinde bir metrik tanimladi. Bu metrik ve ona mutabik topoloji, bu caligmanin esas
gayesi olacaktir. Cebirsel geometride, buna analog bir nesne, Hilbert semasi, vardir ki
bunun noktalar: izdiigtimsel bir gesitleme olan X'in kapali altsemalarina denk gelir. Biz
Hausdorff uzayimin, Hilbert semasininki ile analog bir modiiler yorumlamasini verecegiz.
Hilbert semas1 cebirsel geometride cesitli yapilarda kullanilir; Hausdorff uzayimi kulla-
narak biz bu yapilar1 topolojide taklit edebiliriz. (")rnegin, bir cebirsel grup bir izdiigiimsel
cesitlemeye etkidiginde, Hilbert boliimii adi verilen bir bolim X /.. G olusturulabilir.
Biz, bir topolojik grubun bir metrik uzaymna etkidigi Hausdorff boliimiiniin X /,. . G
tizerinde diiginecegiz. Dikkate deger ki, bu boliim bazi cazip ozelliklere sahiptir: X kom-
pakt oldugunda X /. G boliimi de kompakttir ve G' de kompakt oldugunda X /. G
boliimii ahigilagelen X /G boliimiiyle aynidir. Hausdorff topolojisine ilave olarak, X’in ka-
pali altuzaylar iizerine, X ten Sierpinski uzayina giden siirekli fonksiyonlar kiimesindeki
kompakt-acik topoloji kullanilarak da topoloji kurulabilir. Her ne kadar ortaya cikan
Hilbert uzayr, Hausdorff uzayindan daha koti tabiath olsa da, X yerel olarak kompakt

oldugunda bu giizel bir modiiler yorumlama meydana gikariyor.
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1. INTRODUCTION

In introductory metric topology, we usually try to find the distance between two
points. How about the distance between two sets? Is it possible to define a reasonable
“distance” between two subsets of, for example, R? What is the distance between the in-
tervals (0,1) and [0, 1]7 It seems to be easier to put a metric between the closed subspaces
of a metric space. Such a metric -the Hausdorff metric- was defined by Feliz Hausdorff in
1914 in his book Grundziige Der Mengenlehre [1]. The space of closed subspaces of a met-
ric space, with the topology determined by the Hausdorff metric is called the Hausdorff
space. It has many interesting properties such as: If a metric space is compact, then so is
the induced Hausdorff space (Corollary 4.21). Furthermore, for a compact metric space
X, if two metrics induce the same topology on X, then these two metric determine the

same topology on the Hausdorff space of X, denoted by ##x (Corollary 4.9).

We can describe an e-neighbourhood in the Hausdorff space of X in terms of the

e-neighbourhoods in X with the equality below:

dyw(Z,2") = inf {5 >0:7'¢c UB(Z,s) and Z < U B(z’,s)}‘

2€Z Z'eZ!

There is another topology on the set of closed subsets of a topological space X given

by the basis
U(K) = {chlosedX:ZOK:@}

where K is a compact subspace of X. This topology is called the Hilbert topology is

the same as the space of continuous functions from X to the Sierpinski space with the



compact-open topology. When X is a locally compact space, the Hilbert topology gives
a nice modular interpretation of the closed subspaces of X. Since the definitions of local
compactness vary book by book, we gave a nice collection of them and described their

differences in the second chapter.

In algebraic geometry, the Hilbert scheme is a moduli space of closed subschemes
of a projective variety. We show in Theorem 4.6 that the Hausdorff space, in fact, has
an analogous modular interpretation. In this study, we tried to apply some constructions
involving the Hilbert scheme to Hausdorff space. For example in Chapter 6, we present

an analog of the Hilbert Quotient, called the Hausdorff Quotient.

We give a nice definition for the Hausdorff Quotient of a metric space X by a
topological group GG. We prove in Prop 6.14 that if both X and G are compact, the
Hausdorff Quotient is the same as the usual quotient. Furthermore, if X or G is not
compact, then the Hausdorff Quotient becomes a more nicely-behaved quotient since it

has properties like Hausdorffness that the usual quotient lacks.

Of course, there are some subtleties in the construction of Hausdorff quotient because
we don’t have “generic flatness” at our disposal as we do in algebraic geometry. We define
notions of stability and semi-stability for certain subsets of X as a replacement for generic

flatness.

Conventions

Throughout this study, U <z X will be used for “U is a subset of X with property /.”

For example Z S ,seq X means that “Z is a closed subset of X.”

For a metric space (X, d) and a point z € X, we define the set {y € X : d(z,y) < ¢}
as the e-neighbourhood of a point xz, and it will be denoted by By(z,¢). Similarly, for
Z € Jx we denote the e-neighbourhood of Z with respect to the Hausdorff metric by



By, (Z,e). Also, we define

By(e,Z) ={re X :d(x,Z) <&} = | | Ba(z,6) for Z< X.

z€Z

Observe that By(e, Z) is open for any Z < X since it is a union of open balls. If the
metric is clear from the context, we simply write B(x,¢), B(Z,¢) and B(e, Z) instead of

By(z,¢), By(Z,¢) and By(e, Z).

By this definition, we can see that B(e, Z) is the union of neighbourhoods of elements

of Z whereas B(Z,¢) is the e-neighbourhood of Z with respect to the Hausdorff metric.

We will write 74 for a topology generated by a metric d, when the space is clear from

the content.



2. LOCAL COMPACTNESS

There are various definitions of a locally compact space. To make a distinction

between them, we make some definitions.

Definition 2.1. A topological space X is called LC1 if every point of X has a neighbour-

hood with a compact closure.

Definition 2.2. A topological space X is called LC2 if every point of X lies in the interior
of a compact subspace K of X.

Definition 2.3. A topological space X is called LC1" (LC2’ resp.) if “compact” is replaced

by “compact Hausdorff” in the definitions above.

Unless explicitly mentioned otherwise, “locally compact” means LC2’ in this text.

Proposition 2.4. Let X be a topological space. Then,

(i) X is LC1’ (resp. LC2’) = X is LC1 (resp. LC2).
(ii) X 1s LC1 = X is LC2.

Proof. (i) This is an immediate consequence of the fact that a compact Hausdorff sub-
space of X is compact.

(ii) Assume that X is an LC1 topological space. Pick x € X arbitrary. By definition of
an LC1 space, there is an open U such that z € U and U = K is compact. Now
since U Sopen U = K and the interior K of K is defined as the union of all opens in
K, wegetxelUC K < K. Hence z lies in the interior of a compact subspace of

X. Therefore X is LC2. O

Remark 2.5. An LC2’ space need not to be LC1’.



Ezample 2.6. Let X = {0,1} x R and let (ig,z0) ~ (i1,21) whenever ig = iy and xy =
1 # 0. The quotient space X / ~ is the real line with double origin, say 0 and 0*. Then
X/~ is LC2'.

To see this fact, pick any x € X/~. If £ # 0 or x # 0* then clearly x lies in the
interior of the compact Hausdorff space B(z, %) Otherwise, the set K :=[—1,0)u(0,1]u
{x} is compact and Hausdorff since any two points y1,y2 € K can be seperated by epsilon

balls around y; and yo with radius |y; — yo|.

However, the space X / ~ is not LC1’. Assume for a contradiction that it is LC1’.
Then z = 0 has a neighbourhood with a compact Hausdorff closure. The closure of any
neighbourhood of x must also contain 0*. Then z and 0* should have disjoint neighbour-
hoods U := B(x,¢e,) and V := B(0* €9« ). The point %min{gx,eo*} lies in both U and V.
Contradiction. Hence, X/~ is not LC1".

Proposition 2.7. All definitions of a locally compact space given in Definition 2.1, Defi-
nition 2.2 and Definition 2.3 coincide when X is Hausdorff.

Proof. Every subspace of a Hausdorff space is Hausdorff. So, LC1 <= LC1’ and LC2 —
LC2’ both holds. It suffices to show LC1 <= LC2. By Proposition 2.4, LC1 = LC2.
Assume that X is Hausdorff and LC2. Let x € X. Then z lies in the interior of a compact
subspace K of X. Since X is Hausdorff, K is closed. K is a neighbourhood of z whose
closure is E = K since K is closed. Thus X is LC1. The result follows. [

Proposition 2.8. All definitions of local compactness are inherited by closed subspaces.

Proof. e Let X be an LC1 space and Z be a closed subspace of X. Let z € Z.
We want to show that z has a neighbourhood with a compact closure. There is a
neighbourhood U of 2 in X so that U is compact in X. U n Z is a neighbourhood of
z in Z with closure U n Z. Also, U n Z is a closed subspace of U, so it is compact.

Hence z has a neighbourhood U n Z with a compact closure U n Z.



e Let X be an LC2 space and Z be a closed subspace of X. Every x € Z lies in
the interior of a compact subspace K of X. Then there is an open U such that
reUcCK. Let V=ZnUand K'=Zn K. Then V ., Z and K’ S ompact £
both holds. So, x € V € K’ and thus Z is LC2.

e Similar to the LC1 part.

e Similar to the LC2 part. O]

Proposition 2.9. Let {U; : i € I} be an open cover of a topological space X. If U; is
locally compact (LC2’) for each i, then X is locally compact.

Proof. Choose x € X. Since {U;} covers X, there is an iy with = € U;,. U, is locally
compact, so there is a compact Hausdorft subspace K of U,, such that x € K. Since K is
Hausdorff, there is an open subset V of U;, such that z € V € V < K. Observe that V is

compact in X and thus X is locally compact. O]

Remark 2.10. Example 2.6 shows that Proposition 2.9 is not true for an LC1 space.



3. THE HILBERT TOPOLOGY

Definition 3.1. Let X and Y be two topological spaces. Let C(X,Y) be the set of con-
tinuous maps f: X =Y. For K< X, U CY define

U (K,U) = {feCX,Y): f(K) < U}

The compact-open topology [2] on C(X,Y) = {f : X — Y} is obtained from the subbasis

{% (K,U) : K < ompact X, U Sopen Y}

Definition 3.2. The Sierpinski Space S is the unique topological space with two elements

and three opens. i.e. S ={0,1} and 7 = {,{0},{0,1}}

Consider the space C(X,S) of continuous functions from a topological space X to
the Sierpinski space. The map f — f~!(1) yields a bijection from C(X,S) to the set J#x
of closed subsets of X.

Definition 3.3. The Hilbert Topology on 7 is defined as the topology induced by the
compact-open topology on C(X,S) via the bijection above. Explicitly, the sets

UK)={Z< X :Zisclosed in X and Z n K = ¢}

for K Ccompact X form a subbasis for the Hilbert topology on k.

Remark 3.4. The obvious formula

U(Kl) N U(Kg) = U(Kl M KQ)



shows that the subbasis defined above is actually a basis.

Proposition 3.5. Let X be a locally compact (LC2’) space. Let S have the Hilbert
topology. Then the subset Z = {(Z,x) : x € Z} is closed in 7 x X.

Proof. We want to show that (7 x X)— Z is open. Let (Z,x) ¢ Z. Then x ¢ Z. Since X
is LC2’ the point x lies in the interior of a compact Hausdorff subspace K of X. Since K is
Hausdorff, there are opens U and V such that te U < U < V < K such that VnZ = &.
U is compact. Now our claim is to show that (Z,z) € U(U) x U and (U(U) xU)n Z = (.
It is clear that (Z,2) € U(U) x U since x € U and U n Z = . Now we want to show
that 2/ ¢ Z' for any (Z',2') e U{U) x U. If 2/ € U(U) then Z' n U = &, so, for every

' e U < U we have 2’ ¢ Z' as desired. H

Theorem 3.6. Let X be a locally compact space and Z be an arbitrary topological space.
Then there is a bijection between the closed subsets of Z x X and the continuous maps

Z — Fx where 7 has the Hilbert topology.

Proof. Let C(X,Y) be the space of continuous functions X — Y with the compact-open
topology and #x have the Hilbert topology. By Theorem 46.11 in Mukres’ Topology [3],
we know that if X is locally compact, there is a bijection between continuous functions
f: X x Z —Y and continuous functions F': Z — C(X,Y") for any topological space Y.
Now let S =Y be the Sierpinski space. Clearly, there are bijections

{f: X xZ — S8 : fis continuous } <« { closed subspaces of X x Z}

{F:7Z— C(X,5): F is continuous } < {g: Z — J#x : g is continuous }.

The result immediately follows. m



Remark 3.7. Consider the functor

F:Top® — Sets

T — {Z C closed T x X}

If X is locally compact, this functor is representable by the Hilbert Topology given
in Definition 3.3, that is Hom(X,S) with the compact-open topology where S is the

Sierpinski space.
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4. THE HAUSDORFF METRIC

Can we define a reasonable metric between subsets (instead of points) of a metric
space? What if we take X = R? Then what would be the distance between (0, 1) and
[0,1]7 In 1914, Felix Hausdorff introduced a metric, called the Hausdorff metric, on the set
Fx of closed subspaces of a metric space. The topology 7% determined by the Hausdorff
metric is called the Hausdorff topology and it has many exciting features. For instance,
if a metric is finer than another metric on compact X, then the induced Hausdorff metric
of the former is finer than the latter. Furthermore, if X is compact, so is the Hausdorff

topology on .

Observe that if (X, d) is a metric space, and we set d'(z,y) := max{d(z,y), 1}, then
(X, d’) is also a metric space satisfying d'(x,y) < 1 for all z,y € X. Furthermore, the
topology on X determined by d is the same as the topology on X determined by d’. Thus,
there is no major loss of generality if we just assume throughout this work that every

metric d satisfies d(z,y) < 1 for all z,y € X.

Definition 4.1. Let (X, d) be a metric space. A metric d on the set  of closed subsets

of X, called the Hausdorff metric, will be given by

beB acA

dw(A,B) = % (sup d(A,b) + supd(a, B)) :

The topology on F€ defined by this metric will be called the Hausdorft topology.

Remark 4.2. Alternatively,

dw(A, B) = max {sup d(A,b),supd(a, B)} )
beB acA
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These two metrics determine the same topology. We will prefer to use the second
definition of the Hausdorff metric. The set .7 with the topology determined by d,» will
be called the Hausdorff space of (X,d).

Proposition 4.3. [1] The function dyy : #x x #x — R defined above is a metric on
H , called the Hausdorff metric.

Proof. e Clearly d (A, B) is symmetric in A, B.
e Let us assume that d (A, B) = 0 for some A, B € . Then by definition, we have

d(a,B) =0 VYaecA
d(A,b) =0 Vbe B.

These imply, respectively, that A € B and B < A. Since both A and B are closed
subsets of X, we get A < B and B < A. And therefore A = B.

e Now assume that A = B. Clearly, d(a, B) = 0 for every a € A and d(A,b) = 0 for
every b e B. So,

max {sup d(A,b),supd(a, B)} =dx(A,B)=0.

beB acA
e For the triangle inequality, we want to show that

By the triangle inequality for d, we have

d(a,c) <d(a,b) +d(a,c) VYa,b,c.
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So,

d(a,C) = inf d(a,c) < inf[d(a,b) + d(b,c)] Va,b

ceC ceC

d(a,C) < d(a,b) + iné d(b,c) Va,b
ce

d(a,C) < d(a,b) +d(b,C) VYa,b
Now using the fact that d(b, c) < sup,.p d(b,C) for any b, we get
d(a,C) < d(a,b) +supd(b,C) VYa,b

beB

Since the left-hand-side is independent of b,

d(a,C) < d(a,B) +supd(b,C) VYa

beB
Taking the supremum over a we have
supd(a,C) < supd(a, B) + supd(b, C') (4.1)
acA acA beB
Symmetry gives us that,
supd(c, A) < supd(b, A) + supd(c, B) (4.2)
ceC beB ceC

By adding the inequalities (4.1) and (4.2) and dividing by two, we get the desired
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result:

djf(A, C) < d(yf(A, B) + dyf(B,C)

Definition 4.4. Let X be a topological space.

o A subset Z < X is called sequentially closed if for every sequence {z,} in Z with a
limit point z € X we have z € Z.
o A subset U € X is called sequentially open if every sequence {z,} converging to a

point z € U, {z,} is eventually in U.

Definition 4.5. A topological space X is called sequential if every sequentially closed

subset of X is closed. Or equivalently, if every sequentially open subset of X is open.

Let SeqTop be the category of sequential spaces. Consider the functor

F: SeqTop” — Sets

T —{Z Cejosea T x X and m : Z — T is open }

Theorem 4.6. If X is a compact metrizable space, this functor is representable by the

metrizable space, H, with the Hausdorff topology (Definition 4.1).

It is natural to ask about the relation between d, and d’,, if d induces a finer

topology than d’ on X.

Lemma 4.7. If 7y < 74 and (X, 74) is compact (hence (X, 14) is also compact), then for
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every € > 0 there exists € > 0 such that
By(z,¢) € By(z,€") Vee X

Proof. d is a finer metric than d’ on X. So, for every x € X and for every ¢’ > 0 there

exists £, such that
8/
Bd(.ﬁE, 2590) c By ({E, E) (43)
Also,

(54(e5) e )

is an open cover for X. Since (X, 74) is compact and

/

By (x,%m) N By <x, %) ety VeeX

There is a finite set {z1,...,x,} such that

covers X. Now let € := min{e,,, ..., ez, }

Claim: By(x,e) € By(z,&') Vre X.
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There exists z; so that
T € {Bd (xi, i) N By (a:i, 6—,> } (4.4)
2 2
Now pick y € By(z,¢) arbitrarily.
dz,y) <e & d(z,x;) <e,, = d(x;,y) < e+ ey, < 2e,,

By (4.3) we have d'(z;,y) < § and by (4.4) we have d'(z,7;) < 5. Thus,
d(z,y) <d(z,2") + d(2',y) < ‘i
The result follows. ]

Theorem 4.8. If 74 < 74 and (X, 714) is compact (hence (X, 7a) is also compact), then

Tdf%a < Td e -

Proof. Let A € # and By (A, €) be a neighbourhood of A. We want to find an € > 0
such that

Bd% (A, 6) - Bd’%a (A, 8/)
Choose ¢ so that (we can choose such ¢ by Lemma 4.7)

/

d(z,e) = d (x, %) Vo e X
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holds. Pick B € By, (A,e). We have d (A, B) < . By definition,

max {sup d(A,b),supd(a, B)} <e

beB acA

and so d(a, B) < e Vae A and d(A,b) < e Vbe B. By the choice of €, we get

!/

™

d(a,B) < Vae A

no| o

d(A,b) < Vbe B

both holds and thus

/
max{supd’(A,b),supd’(a, B)} < % <¢

beB aeA

Therefore

Bd%ﬂ (A, 6) < Bd’ﬁf (A,E/)

is satisfied. The result follows. O]

Corollary 4.9. Let X be a metric space and let d and d' be two metrics determining the
same topology on X. Let X be compact with respect to both metrics. Then, the metrics

dyw and d',, induces the same topology on F€ .

Remark 4.10. Observe that Theorem 4.8 and Corollary 4.9 follows from Theorem 4.6. We

gave an alternative and direct proof for them above.



Lemma 4.11. Let Z and Z' be two closed subsets of a metric space X. Then
dw(Z,2")y <e = Z'< B(e,Z) and Z < B(e, Z")
Proof. Assume that d»(Z,7') < e for Z,Z" € 7. Then,
max { sup d(Z,2"),supd(z, Z/)} <e
Jez! 22

So,

supd(Z,2') <e and supd(z,2') <e

ez 22
This yields that d(z', Z) < e and d(z,Z") < e for any 2’ € Z" and z € Z. So,

2e€By(Z,e) V2 eZ and ze By(Z',e) VzeZ

Then we have

Z'c B(Z,e) and Z < B(Z',¢)

as desired.

Lemma 4.12. Let Z and Z' be two closed subsets of a metric space X. Then

7' € B(e,Z) and Z < B(e, Z'") — du(Z,2') < ¢
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Proof. Assume that 2’ < B(Z,¢) and Z < B(Z',¢). Then 2’ € By(Z,¢) for every 2’ €
Z" and z € By(Z',¢) for every z € Z. Since both Z and Z’ are closed in X we have

SUp,iey d(Z,7') < e and sup,., d(z, Z") < e. Thus,

max { sup d(Z,2"),supd(z, Z/)} <e

ez’ 2€Z

Therefore d (Z,2") < e for Z,7' € H. O

Corollary 4.13. If Z and Z' are two closed subsets of a metric space, then
dw(Z,7") =inf{le >0: 7' < B(e,Z) and Z < B(e, Z")}

Remark 4.14. The Hausdorff topology on the set of closed subspaces of a metrizable space
X may depend on the choice of the metric inducing the topology on X even if these

metrics are equivalent.

Example 4.15. Consider two metrics determining the same topology on R: one is the usual
(Euclidean) metric and the other one is given by d(x,y) = |arctanz — arctany|. Define
Zy = {x} + k € Z=o} where a} = k + + when n # k and 2} = n + 3 otherwise. Let
Z = Zio. Then the Hausdorff distance with respect to the usual metric between the sets
Z and Z, is %, whereas the Hausdorff distance with respect to d between Z and Z,, tends

to 0 as n — oo.

Theorem 4.16. The Hausdorff topology on the set of compact subspaces of a metrizable
space X does not depend on the choice of the metric inducing the topology on X.

Proof. Let d and d’ be two metrics determining the same topology on X. Let K be a

compact subspace of X and let € > 0. We want to show that there exists ¢’ > 0 satisfying

By (K,€') € Ba,, (K,¢) (4.5)
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For each k£ € K there exists ¢ such that

By (k,221) € By (k %) (4.6)

since d and d' induce the same topology on X. So,

U Bd/(k‘, Ek)

keK

is an open cover of K. There is a finite set {ky, ko, ..., ky} S K such that

N N
£

K< | |Bulki,en) and K < B(/@,—> 47

zUl a(ki,ex,) an H a (ki 3 (4.7)

Now let ¢ := min{eg, : 1 < i < N}. To prove the relation (4.5) above, let L €

By, (K,€') and let L be compact. Then d’, (L, K) < &’. We have

max {sup d(k,L),supd(l, K)} <¢
keK leL

And thus

d(k,L)<e and d(,K)<c VkeK Vel

Then, Yk € K we have d'(k, L) < €’. So, there exists [ € L such that d'(k,l) < &'
That is, [ € By/(k,€'). So, l € By (ki,ex, + €’) for some [ € L and thus [ € By (k;, 2¢y, ).
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Using the relation (4.6) we get that [ € By (k;, §) for some [ € L. Also, by the

relation (4.7) we have, Vk € K 31 € L such that d(k,1) < %. Hence,

2
supd(k, L) < 38 (4.8)

keK

/

Similarly, since d'(I, K) <€’ VI e L, we have

d(,K)<¢ Vie L 3k e K such that d'(I,k) < &

Vie L 3k e K such that k€ By(l,¢)

Vie L 3Jief{l,...,N} such that k; € By(l,&' + &)
Vie L 3Jie{l,...,N} such that k; € By (l,2¢y,)

WleL 3ie{l,...,N} such that l e By <k§>

bbbl

Vie L Jie{l,...,N} such that d(k;, () <

2
Wie L 3ke K such that d(k,1) < §

2
vieL d(,K) <§

!

!

Therefore we get

2
supd(l, K) < EE (4.9)

leL

The inequalities (4.8) and (4.9) give us that

2
d(K,L) = max{supd(k,L),supd(l,K)} < g <e

keK leL

So, the relation (4.5) is proved. Similarly, we can prove that for every &' > 0 and for every
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compact K < X there exists € such that

Bu,(K.) € By, (K, (4.10)

Combining the relations (4.5) and (4.10) together, the result follows. O

Proposition 4.17. Let K be a compact and Z be a closed subspace of a metric space X

such that Z n K = . Then the minimal distance between Z and K is positive.

Proof. Assume for a contradiction that d(Z, K) := inf{d(z,k) : z€ Z,k € K} = 0. Then
there are sequences {z,} € Z and {k,} € K such that lim,,_,, d(z,, k,) = 0. Every sequence
in a compact metric space has a convergent subsequence. So, there is a subsequence k,,,
such that k, — k for some k € K. Our claim is to show that lim,,_, 2, = k.

For every € > 0 there exists IV such that for every n > N we have d(k,, z,) < 5.
Then there exists M; > N such that for every m,n > M; we have d(ky,,,2,) < 5. Also

there is a number M, such that for every m > M we get d(k,,,,k) < 5. Thus, for every

n > max{M;, M} we have

d(zn, k) < d(kp,,, zn) + d(kn, k) <

So, z, converges to k. But since Z is closed, k£ must lie in K. Contradiction. d(Z, K) >

0.

Lemma 4.18. Let X be a metric space and K be a compact subspace of X. Then if U is
a open subset of X containing K, there exists ¢ > 0 such that B(e, K) < U.

Proof. Let Z := X — U. Then Z is a closed subset of X. By Proposition 4.17, we must
have d(Z,K) == inf {d(z,k): z€ Z,k e K} = ¢ > 0.
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Now we claim that B(e, K) < U. To see this fact, pick z € B(e, K). Then x ¢ Z by

the choice of € and therefore x € U. The result follows. O]

Proposition 4.19. [4] If X is a totally bounded metric space, so is H .

Proof. Let € > 0. Since X totally bounded, there is a finite subset K := {z1,...,z,} of
X with

Now consider the set P(K) — {J} = {Z1,..., Zon_1} € H. We want to show that

2n—1
| B(Zj,e) =7

j=1

It suffices to show that for every Z € 2 there exists jo € {1,2,...,2" — 1} such that
Z<B(5,%;,) and Z;, < B(5,7).

To prove the claim above, let

Zj, = {xi:B(xi>g)ﬂZ7é@, i=1,...,n}

For every z € Z there exists x;, such that z € B(z;,, 5) and hence z;, € Z;,. Thus,

z € B(xy, 5) € B(5,Zj,) for every z € Z. Therefore, Z < B(5, Zj,).
Now let x; € Zj,. Then, B(x;,5) n Z # . So, there exists z € Z such that
d(x;,2) < 5. Thus, ;€ B(z,5) € B(5,2). So, Z;, < B(5,2).
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So, by Lemma 4.12 we have

dw(Z, Zj,) <

N ™

Therefore, 77 is totally bounded. O]

Proposition 4.20. /5] If X is a complete metric space, so is .

Proof. Let X be complete and {Z,} ey be a Cauchy sequence in (S, d ). Let

Z = {x € X : {2z, }nen such that z, € Z, and z is a limit point of z,}

We claim that Z is the limit of Z,, with respect to the Hausdorff metric.

We start by showing that Z is closed in X. Let {z,} be a convergent sequence in Z
with a limit x € X. We want to show that x € Z. It suffices to show that there exists a

sequence {z, : z, € Z,} converging to x. Let € > 0.

There exists x,, € B (9[:, %) Also, since x,, € Z, there exists z,,, € Z,,, such that
Zmy € B (20, £). So, d(z, 2,) < €.

There exists z,, € B (a:, i) Also, since x,, € Z, there exists ms > my and 2,,, € Z,,
such that z,, € B (4,,%). So, d(z, zn,) < §

3°

£

8). Also, since z,,, € Z, there exists ms > mo and

Similarly, there exists z,, € B (x,

Zmy € Zmg such that 2, € B (2y,,£). So, d(z, 2m,) < &.

With this progress we can construct a convergent subsequence {z,, } of a sequence
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{zm} such that z,, — z. Thus, x € Z and hence Z is a closed subspace of X.

Now it remains show that Z is the limit of the sequence {Z,}. We want to show

that for every ¢ > 0 there exists N such that Vn > N we have d»(Z,,7Z) < 3e.

Let ¢ > 0. There exists Ny such that dy(Z,,Z,) < ¢ for all m,n > N;. So,
Zn < B(e, Zy,) and Z,, < B(e, Z,). Let z € Z. Since z € Z, there exists a sequence {z,}

with z, € Z,, and z,, — z.

Consider the sequence xp,1 = z,1x. We have

r1 =2, € Z, < Ble, Z,)
To=2,+1€ Zn+1 - B(E, Zn)

T3 =2, +2€ Lyio S B(E, Zn>

By construction, since z, — z we must also have x; — 2. So, z is a limit point of B(e, Z,)

and hence

7 < B(e, Zn) < B(2¢, Zy) (4.11)

It remains to show that Z,, < B(2¢, 7). Let € > 0. There exists N > N; such that

Vm,n > N we have d(Z,, Zn) < 5. Also there exists numbers ny < ny < ng < ... all

£
5



bigger than N such that

Ao (Zy Zn) <Z Ym,n > ny
Ao (Zy Zn) <§ Ym,n > ng

Ao (Zpy Zn) <i Vm,n > nz

16
And hence
Z,< B (% Zm>
Z, € B (Z Zm)
Z,, € B (% Zn3>

Let z, € Z,. By the subset relationships above we see that

Jzp, € Z,, such that  d(z,,2,,) <
dzp, € Z,, such that  d(z,,, 2n,) <

2p, € Zn,  such that  d(zn,, 2ns) <

0l M | NI
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It follows that the sequence {z,,} is Cauchy, so, since X is complete, and Z Ciogea X,
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2, — % for some z € Z. So,

d(Zn, an) < d<zn7 an) + d(znl ) Zn2) oot d(znkl ) an)

<ttt <
— —_— PR —_— 5
2 ' 4 ok

So, d(zn, z) < € and thus z, € B(z,¢) € B(e, Z). So, we get

Zn S Ble,Z) < B(2¢,2) (4.12)

By equations (4.11) and (4.12) and using Lemma 4.12 we have d(Z,,, Z) < 2¢ < 3¢ when

n > N as desired. OJ

Corollary 4.21. If X is a compact metric space, so is I .

Proof. By Theorem 45.1 in Munkres [3], a metric space is compact if and only if it is
totally bounded and complete. So, using Proposition 4.19 and Proposition 4.20 give us
the desired result. O

Definition 4.22. Let {Z;}icc © . Then, Z;, € H is the Hausdorft limit of Z; ast — tg

if for every e > 0 there exists 6 > 0 such that

‘t—t0| <(5 — d%(Zt,Zto) < €

Ezample 4.23. Consider the set Z; = {(z,y) € C* : zy = t}. We will show that Z, =
{(z,y) € C? : zy = 0} is the Hausdorff limit of Z; as t — 0.

Let € > 0 and let § = min{5,e*}/2

Assume that |t| < d. Let (x4, ;) € Z;. Then d((zy,y:), Zo) = min{|z,|, |y:|}. Observe
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that for any (x,v;) € Z;, we have

min{lze, |y} </l < V6 <e

So,

sup  d((z¢,y1), Zo) < € (4.13)
(xt,yt)eZt

Now let (zg,yo) € Zy. Either g or yo equals to zero. Without loss of generality, assume

Yo = 0. Let 2y = 19e’. Z, consists of the elements of the form (rewl, %ew?). Then,

reR+

2
d((z9,0), Z;) = inf \/(7’0 —r)?+ <E> <2t <20 <e
r
So,

sup  d((zo, o), Zs) < € (4.14)

(w0,y0)€Z0

Using the inequalities (4.13) and (4.14) we get that

max{( sup d((l'tayt)7ZU>7 sup d((man0)7Zt)} <€

x¢,Yt)EZL (w0,y0)€Z0o

Proposition 4.24. Let X be a metric space and € be the set of closed subsets of X with
the Hausdorff topology. Then the subset Z = {(Z,x) : x € Z} is closed in € x X and the

projection map 7rlz 1 Z — I is open.
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Proof. We want to show that (2 x X) — Z is open. Let (Z,x) ¢ Z. Then x ¢ Z. We

have By(x,e) n Z = J for some € > 0. Now we claim that

(e (25) (55} 2 -2

To prove the claim, suppose Z' € By, (Z,5) and 2’ € Z'. Then d»(Z',Z) < 5. There

must be some z € Z so that d(2',z) < 5. Then 2’ € By(z, §) and so d(z,z') < 5, so we

reach the contradiction
d(z,z) <d(z,2') +d(2',2) <e.

Hence Z is closed.

It suffices to show that each 7 (U) is open for every U in some basis U for . Now
we want to show that the projection map 77 : Z — J# is open. So, it is enough to show

that

72 ((Bw(Z,€) x Bx(x,€)) n Z) = By(Z,¢)
for any Z € 77, x € Z, ¢ > (. Clearly we have

By (Z,e) 2m (By(Z,e) x Bx(z,e)) n Z)
Now for the other direction let Z' € B,(Z, ). Then

Z < B(e,2') = | ] Bx(#,2).

z'eZ’!
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So, there exists ' € Z’ such that x € Bx(2,¢). Hence 2’ € Bx(x,¢) and therefore

Z'em (Bw(Z,e) x Bx(z,¢e))n Z).

The result follows. O

Remark 4.25. Let X be a topological space. Let K be the set of compact and metrizable
subspaces of X. Then the map

%XL)H%K

KeK
is injective.

Since singletons are always compact and metrizable, the image of a closed set under
the map above should have its singletons as coordinates. So, if two closed sets are not
equal, than they differ in at least one point. Then, their images will differ in at least one

coordinate which leads to the injectivity of the map above.

Lemma 4.26. Let T be a sequential space and Y be an arbitrary topological space. Let N
be the one-point-compactification of a countably infinite discrete space. Then, a function
f T — Y 1is continuous if and only if f o g is continuous for every continuous map

g:N—-T.

Proof. (= ) Let f: T — Y and g : N — T be two continuous maps. We want to
show that fog:N — Y is continuous. Let U be an open subset of Y. f~!(U) is open in
T by the continuity of f. Also, g~'(f~'(U)) is open in N by the continuity of g. Thus,

(fog) " (U) is open in N. Hence, f o g is continuous.

( <= ) Assume that f : T — Y is not continuous. Then since T is a sequential

space, there exists an open subset U < Y such that A := f~!(U) is not open in T. There
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exists a continuous map g : N — T such that g~'(A) is not open in N. Thus, (f°g)~*(U)

is not open in N. Therefore, f o g is not continuous. m

Corollary 4.27. Let T be a sequential space and X be an arbitrary topological space. A
map [ :T — X is continuous at a point to € T if and only if for every sequence {t,} < T

converging to ty, the map f}{tnmeN}u{tO} 1S continuous.

Theorem 4.28. Let T be a topological space and X be a compact metrizable space. Let
W be a closed subset of T x X. Fort € T, define Wy := {x € X : (t,x) € W}. If
the map Fy : T — % defined by Fy (t) := Wy is continuous, then the projection map
7V : W — T is open. The converse holds if T is sequential (Definition 4.5).

Proof. ( =) Suppose Fyy is continuous. From the definition of F} we have

W= {(t,P)eT x Z : Fyw(t) = nZ(P)}

It follows that every square in the diagram

W z
(Fw xIdx)
w
7r¥V Tx X FwxTdx %X x X 7r12
1
T il A
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is cartesian. In particular,

%74 Z
TI'W 7'('2
1 1

T Hx

1S cartesian.

We saw in Proposition 4.24 that 77 is open and open maps are stable under base

change. Therefore, 7}" is open.

( <) Assume that 7}V : W — T is an open map and T is sequential. Let ¢y € 7.
We want to show that fy is continuous at to. Let {t,} be a sequence converging to .
By the corollary of Lemma 4.26 it suffices to show that the map f : 7" — X is continuous
where 7" := {to} U {t,, : n € N}.

Let ¢ > 0. We want to show that there is a neighborhood U of t, in T" satisfying

(i) Vte U W, < B(e,W,,) and
(ii) Vte U W, < B(e,Wy).

It is enough to find U; satisfying (i), and U, satisfying (ii), for then we can take
U := U1 N UQ.

First, we want to show that such U; exists. Assume for a contradiction that such U

does not exist. Then we could find a subsequence {m,} of {t,} and points w,, € W, < X

such that

AWy, wy) =€ VneN (4.15)
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By compactness of W, we can assume, after passing to a subsequence, that the points
(my,,w,) € W converge to a point (0,wy) € W. This implies that the w, converge to

wo € Wy in X which contradicts with the inequality (4.15).

Now we want to prove that such U, exists. Since T is a sequential space, a singleton
is closed. Therefore, W}, is a closed subset of X, hence it is compact. So, there are points

wy, ..., w, € Wy, € X such that

W, < O B <w %) (4.16)
=1

Now take

- (Y (05 (0 5)) )

i=1

To prove that U, satisfies (ii), let wy € Wy, and ¢t € U,. By the relation (4.16) i € {1,...,n}

such that d(wg,w;) < 5. Since Uy € 7 ((T' x B(w;, 5)) n W), there exists w € W, such

that d(w;,w) < §. Then d(wo,w) < €. Since wy was arbitrary, we have W, < B(e, W;)

as desired.

Now let U := Uy n Us. For every t € U, by Lemma 4.12 we get that d »(Zy, Z;) < €.

Therefore, Fy, is continuous. [
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5. THE HILBERT SCHEME AND THE HILBERT
QUOTIENT

In this chapter, we begin by recalling some basic properties of the Hilbert scheme
of a projective variety X (over C). We explain how the Hilbert scheme can be used to
define the Hilbert quotient X J/ ., G of an algebraic group G acting on X. The analogous

construction of the “Hausdorff quotient” will be the subject of the next chapter.

Let X be a complex variety. Let Sch and Sets be the category of schemes over C

and the category of sets, respectively. Consider the functor

F : Sch®® — Sets

T —A{Z Cosea T x X :m : Z — T is flat}

Theorem 5.1 (Grothendieck). If X is projective, the functor F is representable by a
disjoint union of projective schemes, HilbX , called the Hilbert scheme of X.

Remark 5.2. [6] One has

HilbX = | | Hilb,X

p

where p € Q[z] and Hilb,X is the moduli space of closed subschemes of X with “Hilbert
polynomial” p (with respect to some ample line bundle Ox (1) on X). Each Hilb,X is

projective.

Definition 5.3. Let G be an algebraic group and X be a projective variety. Consider the
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function

fiX — HilbX

z— Gz

By generic flatness results from algebraic geometry, there is a Zariski open and dense

subvariety U of X such that the set

(Gr:xeU)}

forms a flat family over U/G and

f:U/G — HilbX

z— Gz

is an embedding. Then we define the Hilbert Quotient [7] of X by G as

———HilbX

X//Hz’lb G = f(U/G)

Remark 5.4. The Hilbert Quotient is independent of the choice of U as above. The set

f(U/G) is contained in Hilb,X for some polynomial p, so X /.., G is projective.

Finally, we want to construct the Hilbert-Hausdorff morphism. For a finite-type C-
scheme X, we write X" for the set X (C) of C points of X, with the analytic topology [8].
The space X" is compact (resp. Hausdorff) iff X is proper (resp. separated) [8]. The map

X — X is functorial in X, preserves (fibered) products and takes closed embeddings (of
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schemes) to closed embeddings (of topological spaces). Now let X be a projective variety

over C. Let Z < (HilbX) x X be the universal closed subscheme. We know that the map

™ Z — HilbX (5.1)

is flat. A well-known variation of Serre’s GAGA results [8] says that flat map of finite-
type C-schemes is open in the analytic topology. Such a map is also open in the Zariski

topology. So,

7 Z s (HilbX)™ (5.2)

is open.

By Theorem 4.6 and (5.2) we get the Hilbert-Hausdorff morphism:

fZan . (H/leX)an g %Xﬂn (53)

Define (HilbX),eq := {Z € HilbX : Z is reduced}.

Definition 5.5. Let (HilbX)®, (resp. (Hilb,X ), ) be the subspace of (HilbX )™ (resp.

(Hilb,X)™ ) whose points correspond to reduced closed subschemes of X (resp. with
Hilbert polynomial p).

In fact we suspect an even closer relationship when we restrict to reduced subschemes.

By restriction, the Hilbert-Hausdorff morphism yields a continuous map:

f . (H/llpr)an I %Xan (54)

red
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Conjecture. The map given in (5.4) is an embedding.

Remark 5.6. The map given in (5.4) may not be an embedding if it’s not restricted to a

polynomial p.
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6. THE HAUSDORFF QUOTIENT

Definition 6.1. Let G be a topological group acting continuously on a metric space X.
Let U be the partially ordered family of open, dense, G-invariant subsets of X. For U e U,

consider the map of sets

GZU%%X

—X

e(r) = Gr .
The Hausdorff quotient of X by G, denoted by X )/ ... G is

X //H,WS G = ﬂ mﬁfx

Ueld

Remark 6.2. The map e : U — JZ is not necessarily continuous.

Example 6.3. An example for which the map e is not continuous can be obtained by taking
X ={(z,y) e R? : 2 > 0,y > 0} and G = R*. Let the action G & X be defined as
g (z,y) = (gr,gy). Then, e((z,y)) is a ray from origin passing through the point (z,y).
For any two points (z1,y1), (z2,92) € X, if 2 # L then the (Hausdorff) distance between

the images of these two points is infinite. So, the map e is nowhere continuous on X.

Remark 6.4. The map e is clearly constant on G—orbits, so it yields a map of sets e :

Definition 6.5. A set U € U is called semi-stable if

e(U")

for allU' < U with U' e U.
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Remark 6.6. For reasonable G & X (such as a Lie group acting on a compact manifold)

there is a semi-stable U € U.

Definition 6.7. We call U € U stable if and only if U is semi-stable, e : U — € is
continuous, and the induced map € : U/G —  is an embedding when U/G is given the
quotient topology.

Theorem 6.8. Let U be an open, dense, G-invariant subset of a metric space X. If U is

stable, then U is semi-stable.

Proof. Assume that the map

e: U —

z— Gz

yields an embedding

éZU/G‘H%X

so that U is stable. If V is an open, dense, G-invariant subset of X with V' < U, then V is
open and dense in U. It follows that V /G is open and dense in U/G. Since € : U/G — %
is an embedding, we have that (V' /G) is an open and dense subset of e(U/G). So, é(V /G)

and €(U/G) must have the same closure in J#. Therefore, U is semi-stable. O

Example 6.9. Consider the 2-simplex
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Let G = R under multiplication. G acts on X := Ay by

GxX—-X

gz, y, 2] =gz, 97"y, 2]

In particular, {{(z,y,2) : z = 0} n Ay} and {{(x,y,2) : z.y = 0} N Ay} are two
orbits of this action. So, the orbits are bijective with the closed interval [0,1]. Any U € U

satisfying U < ﬁg gives

O = e(h)

Hence, the semi-stable subset of A is its interior ﬁg for this action.

Remark 6.10. The Hausdorff quotient X //,,... G depends only on the topology of X if X
is compact and metrizable. However, if X is not compact, X /,,. . G may depend on the

metric.

Lemma 6.11. Let G be a compact topological group acting continuously on a metric space
X. Then for every x € X and for every € > 0, there exists 6 > 0 such that

G- B(x,0) < B(e,Gx)

Proof. For each g € GG, the map X — X defined by x — gz is continuous. So, there exists
0 = 0, > 0 such that

g+ B(z,0) < B(gz,¢)
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Claim: ¢ is independent of y when G is compact.

Since the action a : G x X — X is continuous, for all g € G, there exists 6, > 0 and

a neighbourhood U, of g in G such that for all h € U, we have

h-B(z,0) € B(hz,¢)

In other words,

U, x B(x,0) < a Y (B(gx,¢)) = a Y(B(a(g,r),¢))

Since G is compact, the cover UQGG U, has a finite subcover Uy,,...,U,,. Now take

d :=min{dy, : 1 < i < n}. Then for all h € G, we have h - B(x,0) < B(hxz,¢). That is

G - B(z,9) < B(Gz,¢)

The result follows. O

Proposition 6.12. If G is compact, the map

X/GH%X

Tz +— Gz

18 continuous.
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Proof. We start by showing that the map

X — Hx

r— Gz

is continuous. Fix x € X and let ¢ > 0. We need to find § > 0 such that for every
y € Bx(z,0) we have Gy € By (Gr,e). By lemma 6.11, we can find 6; > 0 such that
d(x,y) < 0, implies

Gy< B (— G:L‘) (6.1)

Now we want to find d, > 0 such that d(z,y) < d; implies G-z < B(5,G - y). If

there were no such d, > 0, we could find points y;,ys,... in X converging to = such that
€
Gr ¢ B <§,Gyn) Vn
For each n, pick g, € G such that

0ot (560,

So, in particular we have

= M

A(Gn, GnYn) >
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Since G is compact, the sequence g, has a convergent subsequence g, — ¢ for some g € G.

Then we must have

d(gz, gyn) > (6.2)

€
8

However, G continuously acts on X and y, — x. So, the inequality (6.2) cannot hold.

Contradiction. Hence,
Gr < B <— Gy) (6.3)

Finally, let § = min{dy,d2}. If d(z,y) < ¢, then the relations (6.1) and (6.3) both holds
and this imply that

dy(Gx,Gy) < = <e¢

DO ™

Therefore, the map

X — Ik

z— Gz

is continuous. Observe that this map is constant on G-orbits in X. So, it descends to a

map

X/G — 7#x
[z] — Gz
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by the universal property of the quotient topology. O

Proposition 6.13. The map given in the Proposition 6.12 is an embedding if both G and

X are compact.

Proof. X and G being compact implies that X /G and J#x are both compact Hausdorff.

Furthermore, the map

X/G — H

is one-to-one and continuous, and therefore it is an embedding. O

Proposition 6.14. If X and G are both compact, then the Hausdorff Quotient X J/,,.. G

is the same as the usual quotient X /G.

Proof. The map X /G — J#x is an embedding, hence X is stable. O
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7. CONCLUSION

In the local compactness chapter, we gave four different definitions of local compact-

ness and showed that local compactness is inherited by closed subspaces.

Then, we gave the definition of the compact-open topology on the space of continuous
functions between two topological spaces. Since there is a bijection between the closed
subspaces of a topological space X and the space of continuous functions from X to the
Sierpinski space, we can put a topology on the set 7 of closed subspaces of X by using
the compact-open topology on this space of functions. In Theorem 3.6 we showed that
when X is locally compact this topology on 7 —called the Hilbert topology— represents
the most naive “families of closed subspaces” functor sending a topological space T" to the

set of closed subspaces of T x X.

Another topology that can be put on 5% is the Hausdorff topology given by Haus-
dorff metric. If a metric d induces a finer topology than d’ on compact X, we showed in
Theorem 4.8 that d 4, induces a finer topology than d’,, on J#. Furthermore, we showed

in Corollary 4.13 that there is a more elegant way to express the Hausdorff distance

dw(Z,7')=inf{e >0: 7' < B(e,Z) and Z < B(e, Z')}

A question to ask here was: “Can we express the Hausdorff topology on 7% in terms of
the topology on X7” The answer is yes, if X is compact. Furthermore, if X is compact,
then % is also compact (Corollary 4.21). Another interesting theorem is about the
necessary and sufficient conditions for a function T — J# to be continuous where T is
any sequential space (Theorem 4.28). This leads to the “modular interpretation” of the

Hausdorff topology established in Theorem 4.6.

In Chapter 5, we introduced the Hilbert functor, the Hilbert scheme and the Hilbert
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Quotient. Modifying the Hilbert functor a little gave us two analogs of the Hilbert scheme
on the closed subspaces of a topological space equipped with the Hilbert topology and the
Hausdorff topology. The analog of the Hilbert Quotient is the Hausdorff Quotient and
we established some nice properties of the Hausdorff Quotient in Proposition 6.14 and

Remark 6.10.

The Hausdorff Quotient chapter gives a nice definition of the Hausdorff Quotient
of a metric space X by a topological group G as an arbitrary intersection. We proved
that the usual quotient is the same as the Hausdorff Quotient when both X and G are
compact. An open question is that: “When is the Hausdorff Quotient a finite intersection?
i.e. When does X have a semi-stable subset?” Furthermore, it would be interesting to
investigate circumstances under which “stable” and “semi-stable” are equivalent yet we

know of no example of a semi-stable set which is not stable.
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