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ABSTRACT

AN OPTIMAL CHANGE OF VARIABLES SCHEME FOR

SINGLE SCATTERING PROBLEMS

In this work we are concentrated on the direct obstacle scattering problem for

convex bodies in two dimensions. In order to calculate the scattered field, we first

need to compute the normal derivative of the total field on the object’s surface. This

quantity is the unique solution of a combined field integral equation which we solve

using Galerkin method wherein the approximation spaces depend on the wave num-

ber and the geometry of the scatterer. We are particularly focused on the large wave

numbers in which the solution has highly oscillating behavior. In order to analyze this

solution accurately, we separate the highly oscillating part of it and then study the

derivatives of the acquired function. This derivative study gives us the information

about the smoothness of the solution and an idea about how to approximate it. As

for the geometry of the scatterer, we divide the boundary of the object into subregions

regarding where we expect high oscillations. In each region, in order to achieve im-

proved approximations, we choose different polynomial bases. In various scenarios, we

examine the polynomial bases such as monomial, Lagrange, and Chebyshev. As the

wave number increases, in order to obtain better results one needs to formulate these

approximation spaces with higher polynomial degrees. However, it includes enormous

computational cost and the condition numbers of Galerkin matrices elevate dramati-

cally. The goal of this research is to optimize the choice of approximation spaces so

as to improve accuracy of numerical solutions while keeping the number of degrees of

freedom independent of frequency, and reduce the condition numbers of the related

Galerkin matrices.
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ÖZET

TEKİL SAÇILMA PROBLEMLERİ İÇİN OPTİMAL

DEĞİŞKEN DEĞİŞTİRME ŞEMASI

Bu çalışmada dışbükey nesneler üzerindeki doğrudan saçılma problemi üzerinde

yoğunlaştık. Saçılan dalgayı çözebilmek için, öncelikle nesnenin üzerinde oluşan toplam

dalganın normal türevini hesaplamamız gerekliydi. Bu değer ise Galerkin yaklaştırım

uzayları ile çözmeye çalıştığımız kombine alan integral denklemin tek çözümüdür. Bu-

rada kurmaya çalıştığımız yaklaştırım uzaylarının, gelen dalga boyuna ve nesnenin

geometrisine bağlı olduğunu biliyoruz. Bizim asıl ilgilendiğimiz kısım ise yüksek dalga

boyuna sahip dalgaların oluşturduğu çok salınımlı çözüme sahip olan denklemlerdir.

İşte bu çözümü daha iyi çalışabilmek için, onun yüksek salınımlı kısmını ayırıp kalan

kısmının türevlerini analiz ediyoruz. Bu türev analizi bize çözüm fonksiyonunun asimp-

totları hakkında bilgi veriyor ve ona nasıl yaklaşacağımızı anlamamızı sağlıyor. Nes-

nenin geometrisine baktığımız zaman ise, çözüm fonksiyonundan yüksek salınım bek-

lediğimiz yerleri işaretleyip nesnenin yüzeyini küçük kısımlara ayırıyoruz. Daha sonra

bu kısımlarda çalışan farklı polinom bazları seçerek daha iyi bir yaklaştırım uzayı

bina etmeye çalışıyoruz. Bize nümerik olarak en iyi yakınsaklığı verecek polinom

bazlarını bulmak maksadı ile tek terimli polinom bazı, Lagrange, Chebyshev bazları

ve trigonometrik polinom bazlarını tek tek inceliyoruz. Fakat dalga boyu arttıkça,

elde ettiğimiz sonucu korumak için daha yüksek dereceli polinom uzayları seçmemizin

gerekliliği çok masraflı hesaplamaları karşımıza çıkıyor. Ayrıca bu büyük dereceli u-

zaylarda Galerkin matrisi hesaplamak bize çok büyük kondisyon sayılarına mal oluyor.

İşte bu araştırmadaki hedefimiz, bir yandan yaklaştırma uzaylarının inşasını optimize

edecek bir algoritma oluşturmak, diğer yandan ise çözümün bağımsızlık derecesini

frekanstan serbest yapmak ve Galerkin matrisinden doğabilecek kondisyon sayılarını

mümkün olduğu kadar küçük tutabilmek.
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1. INTRODUCTION

In this thesis, our main problem is determination of a scattered field u for a given

incident field eik α·x and a smooth compact obstacle K in two dimensions. This problem

can be represented by the well known Helmholtz equation

(∆ + k2)u = 0

in exterior domain of K. In order to find the solution u, using the Green’s identities as

well as single and double layer potentials we aim to solve an equivalent linear integral

equation

Rη = f

on the boundary of K, whereR is a combined field integral operator and f is a function

related to the incident field, definitions of which will be discussed in the next chapter.

Our main tool for solving this linear integral equation is Galerkin method.

Moreover, independent of the adopted numerical method, because of the asymp-

totical behaviour of the solution, when the wave number k of the incident field eik α·x

increases, in order to attain the same error, one has to expand the size of the dis-

cretization space by O(k). Hence the computational time for solving the matrix which

arise from the discretization grows by O(k3). It is obvious that when it comes to the

high frequency problems, the required computational complexity becomes dramatically

enormous, and theoretical findings appears to be impractical.

It is important to point the fact that Galerkin method highly depends on the

clever choice of the finite dimensional subspace of L2(∂K) otherwise known as Galerkin

approximation space. In this thesis, we aim to find an optimal scheme to construct this

Galerkin approximation space, in order to achieve better numerical solutions. Here we

take into consideration several objectives when we describe a numerical solution as a



2

better one. (1) Small relative error : We examine a theoretically described scheme’s

numerical results and observe the number of digits of accuracy when computing the

relative L2 error of the function η. (2) Convergence for a fixed frequency, (3) Reduced

dependence on the wave number k: In the previous works low frequency scattering

problem has been discussed thoroughly. However their schemes are not suitable for

high frequency incident fields. In order to describe a stable numerical algorithm for

the latter scattering problem, one has to build up a scheme which requires less degrees

of of freedom while the wave number k elevates. (4) Better condition numbers : As

well as interpreting a convergent numerical solution, we intend our scheme to be well-

conditioned and possess maximum accuracy.

Bearing these objectives in our mind, we rewrite our solution as

η = ηsloweik α·x (1.1)

for x belongs to ∂K. Separating the highly oscillating part eik α·x from the function

η is more convenient when studying the high frequency problems. As a result of this

reformulation, approximation spaces require less than O(k) degrees of freedom while

wave number increases. Thanks to the rigorous asymptotic behavior of the normal

derivative of the total field, which corresponds to our solution η, studied in Melrose

and Taylor’s appreciated work [1], the asymptotic expansion of ηslow can be also derived.

Observing this expansion, we notice that ηslow behaves differently in different re-

gions of ∂K. Although in the most of the previous works, these regions are described to

be the illuminated region, shadow region and shadow boundaries, in order to construct

the optimal basis we divide ∂K into five different types of subregions (see Figure 1.1).

The determination of the length of these intervals depends on the choice of the

utilized basis functions related to the Galerkin approximation space. However, in order

to achieve the finest error analysis, we compute the optimized eight-tuple ξ which will

be defined throughout the thesis and is responsible of the shape of the subregions. After

subtly designing each subregion we define a Galerkin approximation space that consists
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Figure 1.1. Interval scheme: Illuminated region (IIL), shadow boundaries (ISBl), deep

shadow region (IDS), illuminated transitions (IITl), shadow transitions (ISTl).

of algebraic or trigonometric polynomials, then by taking the direct sum of these spaces

we define the global Galerkin approximation space. In order to mimic the nature of the

solution η of the integral equation, we elegantly construct the approximation spaces for

each subregion. More importantly with a cleverly invented change of variables scheme

we manage to attain a requirement of O(log k) increase in the number of degrees of

freedom, which is a highly notable result considering the early works in this area.

When we investigate the relevant literature among those concentrated on the

problem of the computational inefficiency in the high frequency cases and regarded the

separation (1.1), we see many scholars proposed serious solutions. In this area, perhaps

the work of the Abboud et al. [2], [3] (1994,1995) can be considered as a pioneer. In their

work, using the method of stationary phases, they constructed Galerkin approximation

spaces, dimension of which requires an O(k1/3) increase (instead of O(k)) for larger

wave number k, in order to achieve the same precision.

Later, between 2004-2007 several academicians presented some attempts with a

few similarities. For example Bruno et al. designed an approach [4] by extending the

ideas of Abboud et al. In this case they used the Nyström method and introduced

a change of variables scheme where the solution of the integral equation has faster
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oscillations like shadow boundaries. They further broadened their analysis in [5], [6]

and [7]. Following similar footsteps on one hand, we see Giladi et al. [8] offered a

numerical method with the usage of boundary element collocation and a set of basis

functions which mimic the asymptotical behavior of the solution (also see [9]). On the

other hand we also examine the work of Huybrechs et al. [10] in which they used very

effective quadrature rules in order to discretize the integrals. These three researches

raised the question of an error analysis independent of the wave number k. Although,

from some point of view their approach requires an O(1) increase in the number of

degrees of freedom, their analysis are not rigorous and whether or not the application

of this approach is successful in the high frequency numerical experiments is unclear.

Although these approaches are introduced for single scattering problems, they

have been extended to multiple scattering scenarios in [5]. See Ecevit et al. [11], [12]

for an analysis of these approaches.

Afterwards, Graham et al. introduced a more rigorous technique [13] in 2007.

With the implications of Galerkin method and regarding the behavior of the solution

in shadow boundaries they deliberately formed their approximation spaces. Hence

they managed to attain an O(k1/9) requirement in the degrees of freedom. On the

contrary to [4], [8] and [10] Graham et al.’s method is discussed rigorously in their

article. However since they did not use an approximation space for the deep shadow

region and assumed the numerical solution to be zero in there, they could not manage

to obtain a converging scheme.

Recently, Ecevit and Ozen [14] manifested a more compact and carefully analyzed

regime. Comparing to [13], they improved the requirement O(k1/9) to O(kε) where, via

escalating the variable m (or the number of the intervals), ε can be chosen arbitrarily

small. Moreover, in their work (in contrary to [13]) since they adopted an approxima-

tion space in the deep shadow region, the matrix related to the Galerkin approximation

space appeared to be more stable which yielded improved condition numbers. Also we

have to remark that, the numerical solution of η occurred to be convergent thanks to

the approximation in the deep shadow region and their brilliant choice of subregions
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as well as the idea of transition regions facilitated the speed of this convergence. For

recent improvements on the related scattering problems we refer to [15] and [16].

This thesis is an improvement of [14], in which they prescribed 4(m−1) transition

regions and then raised the number m when wave number k increased, in order to

achieve the same correctness. However in this thesis, while keeping the role of the

transition region idea, we adopt a change of variables function that enables us 4 united

transition regions instead of 4(m−1) ones. Especially the estimation in the deep shadow

region is significantly enhanced. Comparing to other attempts it can be seen that our

scheme mimic the behavior of the solution better. For example in the recent work

of Huybrechs et al. [17] examining figures 7, 10, 11, 12 we can see this enhancement.

Thanks to our new scheme, we have less number of subregions to handle, and a better

error analysis. Moreover, one of the most important feature of this change of variables

idea is that other than proportional to an exponential of k, the number of the degree’s

of freedom should be increased by O(log k) as k increases for a desired numerical

precision.

The thesis organized as follows, we begin in Chapter 2 by introducing the com-

bined field integral equation equivalent to our scattering problem, and defining the

Galerkin method as well as approximation space relations.

In Chapter 3, we give the details of the construction of the Galerkin approxi-

mation spaces and how the division of the subregions of ∂K decided. In this chapter

we also state our main theorems about the best approximations of the ηslow related to

the approximation spaces consisting of both algebraic and trigonometric polynomials.

Chapter 4 however, in order to present a favorable error analysis, contains the study

of the asymptotic and derivatives of ηslow.

In Chapter 5 we prove the main theorems stated in Chapter 3, by using both the

asymptotical behavior and the estimates of the derivatives of the ηslow. In this chapter

we also give the details of the change of variables procedure and describe how it is

adopted to unite the m− 1 transition regions as one.
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Finally, Chapter 6 is devoted to the numerical experiments which depicts the

improved results of our optimal scheme of change of variables under the choice of

different approximation spaces and comparing to them those achieved in the previous

work of [14].
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2. SCATTERING PROBLEM, INTEGRAL EQUATIONS,

AND GALERKIN METHOD

We consider the problem of scattering by a smooth compact obstacle K of a time

harmonic incident plane wave of unit amplitude, uinc = eik α·x, in R2. Here α is a two

dimensional vector of magnitude 1 which represents the direction of the incident wave,

and as mentioned earlier k is the wave number. In this thesis we look for a scattered

field u which is a solution to

(∆ + k2)u = 0 in R2 \K (2.1)

otherwise known as the Helmholtz equation. Then we seek our scattered field to satisfy

the Dirichlet condition on the boundary and Summerfeld radiation condition uniformly

for all directions, at infinity which are implemented as follows

u = −uinc on ∂K (2.2)

lim
r→∞

r1/2

[
∂u

∂r
− iku

]
= 0, r = |x|. (2.3)

If we represent the scattered field u as a single layer potential then we have

u(x) =

∫
∂K

Φ(x, y)η(y)ds(y), x ∈ R2 \K,

where

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|)

is the fundamental solution of the Helmholtz equation (2.1) and H
(1)
0 is the Hankel

function of the first kind and order zero. Furthermore the density function η satisfies
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the uniquely solvable integral equation

Rη = f on ∂K (2.4)

Here the integral operator and the right hand side f are given as

R = I +K′ − ikS and f = 2

{
∂uinc

∂ν
− ik uinc

}

where

(Sη)(x) = 2

∫
∂K

Φ(x, y)η(y)ds(y), x ∈ ∂K,

(K′η)(x) = 2

∫
∂K

∂Φ(x, y)

∂ν(x)
η(y)ds(y), x ∈ ∂K,

are the acoustic single-layer operator and its normal derivative, ν(x) is the unit normal

vector to ∂K directed into the exterior of K. Here the normal derivative on the

boundary is given as

∂u

∂ν
= lim

h→0+
ν(x) · ∇u(x− hν(x)), x ∈ ∂D

so our right hand side function in (2.4) becomes

f = ik {α · ν(x)− 1} eik α·x

Before giving the Galerkin formulation let us define the sesquilinear form and the

bounded linear functional

〈R·, ·〉L2(∂K) : L2(∂K)× L2(∂K)→ C

〈f, ·〉L2(∂K) : L2(∂K)→ C
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where 〈g, h〉L2(∂K)
..=
∫
∂K
g(s)h(s)ds. Then according to [18], the unique solution of

the combined field (2.4) coincides with the solution of its weak formulation where we

are looking for an η ∈ L2(∂K) that satisfies

〈Rη, µ〉L2(∂K) = 〈f, µ〉L2(∂K), ∀µ ∈ L2(∂K). (2.5)

We should note that the representation of the boundary of K appeared in these for-

mulations will be clarified in the next chapter.

Now in order to solve (2.4) numerically, applying the Galerkin method to its weak

formulation (2.5), where given a finite dimensional subspace G of L2(∂K), one finds an

approximate solution η̂ ∈ G to equation (2.5) requiring that

〈Rη̂, µ̂〉L2(∂K) = 〈f, µ̂〉L2(∂K), ∀µ̂ ∈ G. (2.6)

From [19] and [20] we can see the unique solvability of (2.6) and approximation prop-

erties of its solution, which are given in the following famous lemma.

Lemma 2.1. (Céa’s lemma) If 〈R·, ·〉L2(∂K) : X × X → C is a bounded sesquilinear

form on a Hilbert space X such that

|〈Rη, µ〉L2(∂K)| ≤ C||η||||µ|| ,∀η, µ ∈ X

Re 〈Rη, µ〉L2(∂K) ≥ c||η||2 ,∀µ ∈ X,

holds for some positive constants C, c and 〈f, ·〉L2(∂K) : X → C is a bounded linear

functional, then given a finite dimensional subspace G of X, there exists a unique

η̂ ∈ G such that

〈Rη̂, µ̂〉L2(∂K) = 〈f, µ̂〉L2(∂K), ∀µ̂ ∈ G
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and we have the error estimate

||η − η̂|| ≤ C

c
inf
µ̂∈G
||η − µ̂|| (2.7)

where η is the solution of

〈Rη, µ〉L2(∂K) = 〈f, µ〉L2(∂K), ∀µ ∈ X

Here the space G, and the unique solution η̂ are called Galerkin approximation

space and Galerkin solution, respectively. Furthermore the constants C and c are called

continuity and coercivity constants and there are many articles about their properties

and estimations. For our scattering problem, the sesquilinear form given in (2.6) which

is related to the combined field integral operator R appearing in (2.4) satisfies the

conditions of the Céa’s Lemma. As it is shown in [13] for circular obstacles the ratio

C/c = O(k1/3) as k →∞.

With the light of Céa’s lemma, if we choose a basis for our Galerkin approximation

space, we can design a linear system the solution of which gives us the numerical

solution η̂ of (2.6).

Remark 2.2. Suppose {µ̂1, · · · , µ̂dim(G)} is a basis of the Galerkin approximation space

G with dimension dim(G), and η̂ satisfies the condition (2.6). If we write η̂ =
dim(G)∑
i=1

λi µ̂i

for some scalers λi. Then for every 1 ≤ i ≤ dim(G) we have

dim(G)∑
j=1

λj〈Rµ̂j, µ̂i〉L2(∂K) = 〈f, µ̂i〉L2(∂K)
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Clearly this set of equations represents the following system


〈Rµ̂1, µ̂1〉 · · · 〈Rµ̂dim(G), µ̂1〉

...
...

〈Rµ̂1, µ̂dim(G)〉 · · · 〈Rµ̂dim(G), µ̂dim(G)〉



λ1

...

λdim(G)

 =


〈f, µ̂1〉

...

〈f, µ̂dim(G)〉


(2.8)

Considering this remark, our Galerkin method aims to find the unknown vector

λG = (λ1, · · ·λdim(G)) for a given basis of the Galerkin approximation space G. The

construction and the numerical solution of the matrix appears in (2.8) will be discussed

in Chapter 6.

In the next chapter, using the results of Céa’s Lemma, we will be constructing our

Galerkin approximation spaces. Our aim will be obtaining an error estimate occurring

in inequality (2.7) which should be less dependent on the wave number k as much as

possible.
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3. GALERKIN APPROXIMATION SPACES

In the process of constructing the Galerkin approximation spaces, our aim is lo-

cally mimicking the behavior of the normal derivative of the total field, i.e. η. In order

to achieve this goal, we divide the surface of the scatterer into subregions where the

behavior of the asymptotics of η changes. Considering the work of [13], we will take

approximation spaces in the O(k1/3) neighborhood of shadow boundaries. Then follow-

ing the foot steps of the previous work of [14], we will also construct an approximation

space in deep shadow region. Moreover we will use their idea of transition regions,

in which the behavior of η changes considerably. Especially the illuminated transition

regions, which is defined in [14] by dividing the region between illuminated and shadow

boundaries to m−1 subregions, provided improved error estimate. Although their work

gives us a stable error analysis, defining a number of, 4m in total, different subregions

makes it harder to construct the approximation spaces. Instead of that we will further

define single transition regions each of which depicts the properties of m− 1 old ones.

The details of this analysis will be discussed in Section 5.2.

In this chapter and so on, we will use L to denote the perimeter of the scatterer.

In Chapter 4 we have introduced our results when s ∈ [0, 2π], however it is clear that

those findings remain also valid when s ∈ [0, L]. Moreover we define the smooth natural

parametrization γ : [0, L]→ ∂K in the counterclockwise orientation such that

• γ(s+ L) = γ(s) satisfies for all s ∈ [0, L].

• γ(0) belongs to deep shadow region, i.e. IDS.

• γ(t1), γ(t2) represent the two shadow boundary points as described in Chapter 1.

• (t1, t2) corresponds to the illuminated region, i.e. IIL.

• (t2, t1 + L) corresponds to the deep shadow region, IDS.

Now, we will describe the construction of Galerkin approximation spaces both

for the algebraic and trigonometric polynomials.
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3.1. Weighted Algebraic Polynomials

Given m ∈ N, 0 ≤ εm < εm−1 < · · · < ε1 ≤ 1/3, and constants ξ1, ξ2 we divide

the interval [0, L] into 4m subregions as follows:

(i) Illuminated region: IIL = [t1 + ξ1k
−1/3+ε1 , t2 − ξ2k

−1/3+ε1 ],

(ii) Deep shadow region: IDS = [0, t1 − ξ1k
−1/3+ε1 ] ∪ [t2 + ξ2k

−1/3+ε1 , L],

(iii) Shadow boundaries (l = 1, 2): ISBl = [tl − ξlk−1/3+εm , tl + ξlk
−1/3+εm ],

(iv) Illuminated transitions: For j = 1, 2, · · · ,m− 1 ,

IjIT1 = [t1 + ξ1k
−1/3+εj+1 , t1 + ξlk

−1/3+εj ],

IjIT2 = [t2 − ξ2k
−1/3+εj , t2 − ξ2k

−1/3+εj+1 ],

(v) Shadow transitions: For j = 1, 2, · · · ,m− 1 ,

IjST1 = [t1 − ξ1k
−1/3+εj , t1 − ξ1k

−1/3+εj+1 ],

IjST2 = [t2 + ξ2k
−1/3+εj+1 , t2 + ξ2k

−1/3+εj ].

Noting that Pd = span{xr : r = 0, · · · , d} and above definitions of intervals, for

j = 1, · · · , 4m in Ij (jth interval), we choose the approximation space to be 1Ij e
ik α·γ Pdj

which is of dimension dj + 1. We will denote this 4m tuple of integers with d ..=

(d1, · · · , d4m). Now for a 4m tuple d we define our global approximation space as

Pd =
4m⊕
j=1

1Ij e
ik α·γ Pdj

dim(Pd) = 4m+
4m∑
j=1

dj

so that in each region we can mimic the behavior of η with the complex exponential

function. Then our Galerkin formulation (2.6) is equivalent finding the unique η̂ ∈Pd
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such that

B(η̂, µ̂) = F (µ̂), ∀µ̂ ∈Pd (3.1)

Theorem 3.1. For all nj ∈ 0, 1, · · · , dj + 1 (j = 1, · · · , 4m) and all sufficiently large

k ≥ 1, we have

||η − η̂||L2(∂K) .n1,··· ,n4m

C

c
k

4m∑
j=1

MP
j (k)

for the Galerkin solution η̂ to equation (3.1) where

MP
j (k) =



1 + k−(1+3ε1)/2
(
k(1/3−ε1)/2

)nj
(dj)nj

, for IIL and IDS,

1 + k−1/2 (kεm)nj

(dj)nj
, for ISB1 and ISB2 ,

1 + k−(1+3εr+1)/2
(
k(εr−εr+1)/2

)nj
(dj)nj

, for IrITl and IrSTl .

(3.2)

Although this theorem with some suitable choice of εj and ξl’s as manifested

in [14] gives us stable error analysis, we will give an alternative version of this theorem.

With this purpose in mind, we set m = 2. Now for the illuminated region, deep

shadow region and shadow boundaries we choose the same polynomial spaces as we do

above, but for the transition regions we choose polynomials composed with a change

of variables function φ−1 the definition of which will be given in Section 5.2. The

important feature of this function φ−1 is that it maps each transition region to itself.

Then we define Pd ◦ φ−1 = span{(φ−1)r : r = 0, · · · , d}. Now for the transition regions

instead of the previous one we choose the approximation space as 1Ij e
ik α·γ Pdj ◦ φ−1

Pdj =

 1Ij e
ik α·γ Pdj , if it is not a transition region

1Ij e
ik α·γ Pdj ◦ φ−1, if it is a transition region
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Similarly, we define our (8+
∑8

j=1 dj dimensional) global Galerkin approximation space

as

P̃d =
4m⊕
j=1

Pdj .

So, our Galerkin formulation is replaced by

〈Rη̂, µ̂〉L2(∂K) = 〈f, µ̂〉L2(∂K), ∀µ̂ ∈ P̃d (3.3)

Theorem 3.2. If we set ε1 = 1/3 and ε2 = 0, then for all nj ∈ 0, 1, · · · , dj + 1 (j =

1, · · · , 8) and all sufficiently large k ≥ 1, we have

||η − η̂||L2(∂K) .n1,··· ,n8

C

c
k

8∑
j=1

M̃P
j (k)

for the Galerkin solution η̂ to our new formulation (3.3) where

M̃P
j (k) =



1 + k−1

(dj)nj
, for IIL and IDS,

1 + k−1/2

(dj)nj
, for ISB1 and ISB2 ,

(log k)1/2(log k)nj

(dj)nj
, for IrITl and IrSTl .

(3.4)

Here it is clear that the upper bound function M̃P
j (k) becomes O(1) in each

region except the transition ones, in other words the error becomes independent of the

variable k. Also in the transition regions, choosing the number of degrees of freedom

d proportional to log k gives us highly stable error analysis while the wave number k

increases. We will discuss the proof of Theorem 3.1 and 3.2 in Section 5.1. However,

we have a more simplified result.
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Using the fact that η = O(k) (see [1]), if we assign the same polynomial degree

for each region’s Galerkin approximation spaces, then we have the following relative

estimates:

Corollary 3.3. For all n ∈ {0, · · · , d+ 1} and all sufficiently large k ≥ 1, we have

||η − η̂||L2(∂K)

||η||L2(∂K)

.n
C

c

(log k)n+1/2

dn

3.2. Weighted Trigonometric Polynomials

For given m ∈ N ∪ {0}, 0 ≤ ε2m < ε2m−1 ≤ ε2m−2 < · · · < ε5 ≤ ε4 < ε3 ≤ ε2 <

ε1 ≤ 1/3, and constants ξ1, ξ2, ξ3, ξ4, we divide the interval [0, L] into 4m subregions as

follows:

(i) Illuminated region: IIL = [t1 + ξ1k
−1/3+ε2 , t2 − ξ2k

−1/3+ε2 ],

(ii) Deep shadow region: IDS = [0, t1 − ξ4k
−1/3+ε2 ] ∪ [t2 + ξ3k

−1/3+ε2 , L],

(iii) Shadow boundaries

ISB1 = [t1 − ξ4k
−1/3+ε2m−1 , t1 + ξ1k

−1/3+ε2m−1 ]

ISB2 = [t2 − ξ2k
−1/3+ε2m−1 , t2 + ξ3k

−1/3+ε2m−1 ]

(iv) Illuminated transitions: For j = 1, 2, · · · ,m− 1,

IjIT1 = [t1 + ξ1k
−1/3+ε2j+2 , t1 + ξ1k

−1/3+ε2j−1 ]

IjIT2 = [t2 − ξ2k
−1/3+ε2j−1 , t2 − ξ2k

−1/3+ε2j+2 ]

(v) Shadow transitions: For j = 1, 2, · · · ,m− 1,

IjST1 = [t1 − ξ4k
−1/3+ε2j−1 , t1 − ξ4k

−1/3+ε2j+2 ]

IjST2 = [t2 + ξ3k
−1/3+ε2j+2 , t2 + ξ3k

−1/3+ε2j−1 ]
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Next, for j = 1, · · · , 4m recalling Ij and dj from the previous section let us define the

space of trigonometric polynomials of degree at most d on the interval I = [a, b] as

follows

Td(I) = Td[a, b] = span

{
exp

(
2π i r

s− a
b− a

)
: r = −d

2
, · · · , d

2

}
.

As we did in the algebraic case, we denote d = (d1, · · · , d4m) as this 4m tuple of integers

and choose our global approximation space in the following way.

Td =
4m⊕
j=1

1Ij e
ik α·γ Tdj(Ij)

dim(Td) = 4m+
4m∑
j=1

dj

Then Galerkin formulation becomes finding the function η̂ ∈ Td such that

〈Rη̂, µ̂〉L2(∂K) = 〈f, µ̂〉L2(∂K), µ̂ ∈ Td. (3.5)

The fundamental result of this section is given in the next theorem.

Theorem 3.4. For all nj ∈ N (j = 1, · · · , 4m) and all sufficiently large k ≥ 1, we

have

||η − η̂||L2(∂K) .n1,··· ,n4m

C

c
k

4m∑
j=1

MT
j (k)

for the Galerkin solution η̂ to (3.5) where

MT
j (k) =



(
k(1/3−ε1)/2

dj

)nj
, for IIL and IDS,

(
kε2m−1

dj

)nj
, for ISB1 and ISB2 ,

(
kε2j−1−ε2j+2

dj

)nj
, for IrITl and IrSTl .

(3.6)
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We will discuss the proof of Theorem 3.4 in Section 5.3. However, we have a more

simplified result.

In order to obtain an optimal error, its more suitable to choose εj such that

1

3
− ε2 = ε2m−1 = ε2j−1 − ε2j+2 (3.7)

for j = 1, · · · ,m− 1. However further requiring that

ε2j − ε2j−1 = ε2j+2 − ε2j+1 =
1

κ
(ε2j+1 − ε2j)

for j = 1, · · · ,m − 1 and for some κ > 0 makes the construction of the spaces easier.

With this purpose in our mind, for each j = 1, · · · , 4m we choose

εj =
1

3
−
b j+1

2
c(κ+ 1) + (−1)j+1−1

2

3[(κ+ 1)m+ (κ+ 2)]

Then the values on (3.7) becomes equal to 1
3m+3κ+1

κ+2

, let us call that ε. In this case

setting the same degree of freedom for each region’s Galerkin approximation spaces,

we will have the following relative error estimate

Corollary 3.5. If εj’s are chosen as above, then for all n ∈ N and all sufficiently large

k ≥ 1, we have

||η − η̂||L2(∂K)

||η||L2(∂K)

.n
C

c
m

(
kε

d+ 1

)n
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4. ASYMPTOTIC AND DERIVATIVE ESTIMATES OF

ηslow

In this chapter, in order to present a converging numerical solution, we aim

to study the asymptotic behavior of ηslow. We also have to examine the nature of

its derivatives in different subregions of the boundary of K, which will be useful in

following chapters. Throughout the chapter and only in this chapter when we talk

about IIL we mean IIL together with IIT1 and IIT2 . Similarly we consider IDS with

IST1 and IST2 . Also only in this chapter variable L will be different from the one defined

in Chapter 3. Now we give some relavant definitions first.

Definition 4.1. (Symbol classes of Hörmander [12, Definition 2.1] ) Let M be an

open subset of Rp, and let Γ be an open conic subset of M×Rq (i.e. (x, ξ) ∈ Γ implies

(x, tξ) ∈ Γ when t > 0). The symbol class of order µ ∈ R and type %, δ ∈ [0, 1] of

Hörmander, denoted as Sµ%,δ(Γ), is defined to be the collection of all complex-valued

functions a ∈ C∞(Γ) such that, for any compact set W ⊂ Γ and all multi-indices β, γ,

the estimate

|Dβ
xD

γ
ξ a(x, ξ)| .β,γ,W (1 + |ξ|)µ−%|γ|+δ|β|, (x, ξ) ∈ W c (4.1)

holds, where W c = {(x, tξ) : (x, ξ) ∈ W, t ≥ 1}.

We should note that this definition is quite general and throughout this thesis

we only consider the case when p = q = 1 therefore Γ ⊂ R2, and the multi-indices β, γ

becomes ordinary indices.

Definition 4.2. (Asymptotic expansion in the sense of Hörmander [12, Definition

2.2]) Let aj ∈ S
νj
%,δ(Γ) where νj → −∞ as j →∞. We say that a ∈ Sµ%,δ(Γ) admits the

asymptotic expansion

a ∼
∞∑
j=0

aj
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if

a−
∑
i<j

ai ∈ S
µj
%,δ(Γ)

for every j = 0, 1, 2, · · · where µj = max
i≥j

νj and µ = µ0.

With the light of these definitions, in order to prove Theorem 3.1, 3.2 and 3.4

we need to estimate the derivates of ηslow. For this reason we will have a look at the

asymptotic expansion of ηslow which is carefully studied in [1] and [13]. From there, we

know that the function ηslow has the following expansion:

Theorem 4.1. For a compact smooth object K which is parametrized as in the begin-

ning of Chapter 3 we have the following asymptotical expansions for ηslow

• In a small subset of I∆ ⊂ (ISB1 ∪ ISB2) (see [13, Theorem 5.1])

ηslow ∼
∑
l,m≥0

k2/3−2l/3−mbl,m(s)Ψ(l)(k1/3Z(s)). (4.2)

valid for s ∈ I∆. Here bl,m and Ψ are a complex valued C∞ functions defined

on I∆. Moreover Z(s) = ω(s)h(s), where h(s) is a smooth positive function and

ω(s) = (s− t1)(t2 − s) on [0, 2π].

• In the illuminate region IIL(see [1, equation 1.15])

ηslow(s, k) ∼
∑
j≥0

k1−jdj(s)

for complex valued C∞ functions dj(s).

• Furthermore, the asymptotical behavior of Ψ is given as [1, Lemma 9.9]:

Ψ(τ) = a0τ + a1τ
−2 + a2τ

−5 + · · ·+ aNτ
1−3N + O(τ 1−3(N+1)) (4.3)

as τ → ∞ and this expansion remains valid for all derivatives of Ψ by formally
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differentiating each term on the right hand side, including the error term.

Although this theorem is useful from many aspects, the following one aims to

compactify the first two items of it.

Theorem 4.2. [13] The function bl,m can be extended to 2π-periodic C∞ functions

such that for all L,M ∈ N ∪ {0}, the decomposition

ηslow(s, k) =

[
L,M∑
l,m=0

k2/3−2l/3−mbl,m(s)Ψ(l)(k1/3Z(s))

]
+RL,M(s, k) (4.4)

holds for all s ∈ [0, 2π], with remainder term satisfying, for all n ∈ N ∪ {0}

|Dn
sRL,M | .L,M,n (1 + k)µ+n/3,

where

µ ..= −min{2

3
(L+ 1), (M + 1)}. (4.5)

For simplicity lets define, al,m(s, k) ..= k2/3−2l/3−mbl,m(s)Ψ(l)(k1/3Z(s)). Before

giving the proof of Theorem 4.2 we will prove some useful propositions.

Proposition 4.3. For some sufficiently large τ ∈ R and Ψ as given in Theorem 4.2

we have:

(i) |Ψ(τ)| ≤ C0(1 + |τ |)

(ii) |Ψ′(τ)| ≤ C1

(iii) |Ψ(l)(τ)| ≤ Cl(1 + |τ |)−2−l, for l ≥ 2

Proof. Assume that |τ | ≥ |τ0| for some |τ0| > 1. Then, according to the asymptotics
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of function Ψ(τ) given in Theorem 4.1 we have

Ψ(τ) . |a0||τ |+
N∑
n=1

|an||τ |1−3n . |τ |+
∞∑
n=1

|τ0|1−3n ≤ C0(|τ |+ 1)

Again, according to Theorem 4.1 after differentiating the right hand side of the expan-

sion (4.3) we have

|Ψ′(τ)| . |a0|+
N∑
n=1

|an||1− 3n||τ |−3n . 1 +
N∑
n=1

|1− 3n||τ0|−3n ≤ C1

Moreover again by (4.3):

|Ψ(l)| .
N∑
n=1

(1− 3n)(−3n)(−1− 3n) · · · ((−l + 2− 3n))|an||τ |1−3n−l

. |τ |−2−l
∞∑
n=0

(1− 3n)(−3n)(−1− 3n) · · · ((−l + 2− 3n))|τ0|−3n

. |τ |−2−lDl
|τ0|

∞∑
n=0

|τ0|−3n

≤ Cl(1 + |τ |−2−l)

This finishes the proof.

Proposition 4.4. For some arbitrary µ1, µ2 ∈ R and m, l ∈ N ∪ {0} with l ≥ 1, we

have:

(i) a ∈ Sµ12/3,1/3 and µ1 < µ2 ⇒ a ∈ Sµ22/3,1/3

(ii) a0,m ∈ S1−m
2/3,1/3

(iii) al,m ∈ S2/3−2l/3−m
2/3,1/3 .

where Sµ%,δ denotes the Hörmander Class as we defined in Definition 4.1
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Proof.

(i) This follows from the definition of Hörmander Classes.

(ii) All we need to show is |Dα
kD

n
s a0,m| .α,n,m (1 + k)1−m+n/3−2α/3 , for all multi-

indices α, n. Now using the Leibnitz rule and the boundedness of function b0,m,

we will take derivatives Ds and Dk in that order.

|Dα
kD

n
s a0,m| = |Dα

k k
2/3−mDn

s b0,m(s)Ψ(k1/3Z(s))|

.α,n,m

n∑
i=0

|Dα
k k

2/3−mki/3Ψ(i)(k1/3Z(s))|

.α,n,m k2/3−m
n∑
i=0

α∑
j=0

k−2j/3+i/3|Ψ(i+j)(k1/3Z(s))|

= k2/3−m
[
|Ψ(k1/3Z(s))|+ k1/3|Ψ′(k1/3Z(s))|+ k−2/3|Ψ′(k1/3Z(s))|

]
+ k2/3−m

n∑
i=1

α∑
j=1

k−2j/3+i/3|Ψ(i+j)(k1/3Z(s))| :

In the last identity we separated the (i = 0, j = 0), (i = 1, j = 0) and (i = 0, j =

1) cases from the sum. After applying Proposition 4.3 to those sums, we will

simplify them using the boundedness of |Z(s)|

|Dα
kD

n
s a0,m| .α,n,m k2/3−m

[
1 + k1/3|Z(s)|+ k1/3 + k−2/3

]
+ k2/3−m

n∑
i=1

α∑
j=1

k−2j/3+i/3(1 + k1/3|Z(s)|)−2−i−j

.α,n,m k1−m + k2/3−m
n∑
i=1

α∑
j=1

ki/3k−2j/3

= k1−m + k2/3−m
n∑
i=1

ki/3k−2/3 1− (k−2/3)α

1− (k−2/3)

.α,n,m k1−m + k2/3−m (nkn/3) k−2/3 (1 + k)−2α/3

1− (k
−2/3
0 )

.α,n,m (1 + k)1−m+n/3−2α/3
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(iii) Same as the previous case we need to show

|Dα
kD

n
s al,m| .α,n,m,l (1 + k)−m+2/3−2l/3+n/3−2α/3

for all multi-indices α, n. By the same arguments and examining the cases (i =

1, j = 0), (i = 0, j = 1) separated from the sum gives us:

|Dα
kD

n
s al,m| . k2/3−2l/3−m

n∑
i=0

α∑
j=0

k−2j/3+i/3|Ψ(l+i+j)(k1/3Z(s))|

. k2/3−2l/3−m(1 + k)n/3−2α/3

.α,n,m,l (1 + k)−m+2/3−2l/3+n/3−2α/3

This prints the desired result.

Proposition 4.5. If we define rN(s, k) ..= ηslow(s, k)−
N∑
j=0

k1−jdj(s), then we have:

rN(s, k) ∈ S−N1,0 ,

ηslow(s, k) ∈ S1
1,0 on IIL.

Proof. Since dj(s) are smooth functions their derivates are bounded in [0, 2π]. Thus

k1−jdj(s) ∈ S1−j
1,0 , for all non-negative j. By Proposition 4.4 we have k1−jdj(s) ∈ S−N1,0 ,

for all j ≥ N + 1 and k1−jdj(s) ∈ S1
1,0, for all j ≥ 0. This implies rN ∈ S−N1,0 and

ηslow(s, k) ∈ S1
1,0.

Now using these propositions we are ready to give the proof of Theorem 4.2.

Proof. (of Theorem 4.2) First of all, we will show that RL,M(s, k) ∈ Sµ2/3,1/3. Then

using Theorem 4.1 we will extend the smooth functions bl,m’s, which are defined only

on ISB, to the regions IIL and IDS, and we will complete the extension of bl,m’s to the

whole interval [0, 2π] as in the way described in the theorem.
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By [13, Remark 5.2] we can choose L′ > L,and M ′ > M such that RL′,M ′(s, k) ∈

Sµ2/3,1/3 and:

RL,M =

[
L′∑

l=L+1

M ′∑
m=0

al,m(s, k) +
L′∑
l=0

M ′∑
m=M+1

al,m(s, k)

]
+RL′,M ′(s, k) (4.6)

In order to prove that RL,M(s, k) ∈ Sµ2/3,1/3, using Proposition 4.4 we will show that

the summands of the double sums in above equality belongs to Sµ2/3,1/3.

In the first sum, since −l ≤ −(L+1), −m ≤ 0, then by its definition µ ≥ −2
3
(L+

1) − 1
3
. So al,m ∈ S

−1/3−2(L+1)/3
2/3,1/3 ⊂ Sµ2/3,1/3. For the second sum, when l = 0, since

−m ≤ −(M+1) ≤ µ, we know that a0,m ∈ Sµ2/3,1/3. For l ≥ 1 since 1/3−2l/3−m ≤ µ,

we have also al,m ∈ Sµ2/3,1/3.

Thus, since Hörmander Class is closed under summation and remainder is in

Sµ2/3,1/3 we have RL,M(s, k) ∈ Sµ2/3,1/3 , for all s ∈ IIL.

Now, since dj(s) and Z(s) ∈ C∞, for j ∈ N ∪ {0} and s ∈ [0, 2π], we can find

b̃l,m ∈ C∞ such that for every s ∈ IIL:

d0(s) = a0(s)b̃0,0(s)Z(s)

d1(s) = a0(s)(b̃0,1(s)Z(s) + b̃1,0(s)) + a1(s)b̃0,0(s)Z−2(s)

dj(s) = a0(s)(b̃0,j(s)Z(s) + b̃1,j−1(s))

+
∑

l+m+n=j
n≥1

[
l−1∏
p=0

(1− 3n− p)

]
an(s)b̃l,m(s)Z1−3n−l(s), j ≥ 2, (4.7)

where ai’s are from equation (4.3).

If we set b̃l,m s as in equation (4.7), then on IIL we will clearly have

ηslow(s, k) ∼
∑
l,m≥0

b̃l,m(s)Ψ(l)(k1/3Z(s))
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Now, let’s define the following:

bnewl,m
..= 1IIL b̃l,m + 1ISB

bl,m

By the same arguments we have at the beginning of the proof, it can be seen that

RL,M(s, k) ∈ Sµ2/3,1/3 for s ∈ ISB ∪ IIL. So we have defined C∞ functions bnewl,m on

[0, 2π] \ IDS such that the conditions of the theorem hold for bnewl,m and the remainder

functions RL,M .

Finally with the similar work we can complete the extension of bl,m’s on IDS and

therefore on the whole interval [0, 2π].

Theorem 4.6. [13] We have

|Dn
s η

slow| .n k +
n+2∑
m=4

(k−1/3 + |ω(s)|)−m

for all n ∈ N ∪ {0}, s ∈ [0, 2π] and all sufficiently large k.

Proof. For a given n ∈ N, we can choose L,M ∈ N such that

min{2/3(L+ 1), (M + 1)} ≥ n/3 (4.8)

Now using the asymptotics of ηslow given in (4.2) and the results of Theorem 4.2, we

define:

Bl,M(s, k) ..=
M∑
m=0

k−mbl,m(s), AL,M(s, k) ..= k2/3

L∑
l=0

k−2l/3Bl,M(s)Ψ(l)(k1/3Z(s))

so that we can write:

ηslow(s, k) = AL,M(s, k) +RL,M(s, k)
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By Theorem 4.2 and inequality (4.8) we know that there exist a constant Cn such that

|Dn
sRL,M(s, k)| ≤ Cn holds for all k, s. In order to complete the proof, we need to

bound |Dn
sAL,M(s, k)|.

By the linearity of the operator Dn
s and the triangle inequality:

|Dn
sAL,M(s, k)| =

∣∣∣∣∣k2/3Dn
s

L∑
l=0

k−2l/3Bl,M(s)Ψ(l)(k1/3Z(s))

∣∣∣∣∣
≤ k2/3

L∑
l=0

k−2l/3
∣∣Dn

sBl,M(s)Ψ(l)(k1/3Z(s))
∣∣ (4.9)

By Leibniz integral rule and boundedness of both function Z(s) and its derivatives, we

have:

|Dn
sBl,m(s)Ψ(l)(k1/3Z(s))| .n

n∑
i=0

|Dn−i
s (Bl,m(s))||ki/3Ψ(l+i)(k1/3Z(s))|

Knowing that derivatives of Bl,M(s) are bounded above, we can bound the right hand

side of inequality (4.9) by the following way:

|Dn
sAL,M(s, k)| .n k

2/3

L∑
l=0

k−2l/3

n∑
i=0

∣∣ki/3Ψ(l+i)(k1/3Z(s))
∣∣

= k2/3

n∑
i=0

L∑
l=0

∣∣k(i−2l)/3Ψ(l+i)(k1/3Z(s))
∣∣

= k2/3

L∑
l=0

∣∣k−2l/3Ψ(l)(k1/3Z(s))
∣∣

+ k2/3

L∑
l=0

∣∣k(1−2l)/3Ψ(l+1)(k1/3Z(s))
∣∣

+ k2/3

n∑
i=2

L∑
l=0

∣∣k(i−2l)/3Ψ(l+i)(k1/3Z(s))
∣∣ (4.10)

Now our aim is estimating the three sums in (4.10) separately.

(i) From Theorem 4.1 we know we can find constants A,B independent of s such
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that A ≤ h(s) ≤ B, for all s ∈ [0, 2π]. Together with the fact that k ≥ k0 for

some fixed k0 > 1 gives us:

(1 + k1/3|Z(s)|) = (1 + k1/3|h(s)||ω(s)|) & (1 + k1/3|ω(s)|)

By Proposition 4.3 for l ≥ 2 we have: |Ψ(l)(τ)| ≤ Cl+2(1 + |τ |)−2−l. Combining

these two estimates we can write:

k2/3

n∑
i=2

L∑
l=0

∣∣k(i−2l)/3Ψ(l+i)(k1/3Z(s))
∣∣ .n k

2/3

n∑
i=2

L∑
l=0

k(i−2l)/3Cl(1 + k1/3|Z(s)|)−2−l−i

.n k
2/3

n∑
i=2

L∑
l=0

k(i−2l)/3(1 + k1/3|ω(s)|)−2−l−i

.n k
2/3

n∑
i=2

ki/3(1 + k1/3|ω(s)|)−2−i
L∑
l=0

k−2l/3

.n k
2/3

n∑
i=2

ki/3(1 + k1/3|ω(s)|)−2−i
∞∑
l=0

k
−2l/3
0

.n k
2/3

n∑
i=2

ki/3(1 + k1/3|ω(s)|)−2−i (4.11)

(ii) By (5.11) and (5.12) we know |Ψ′(τ)| ≤ C1 , |Ψ(l)(τ)| ≤ Cl(1 + |τ |)−2−l, for l ≥ 2.

So we can write:

k2/3

L∑
l=0

∣∣k(1−2l)/3Ψ(l+1)(k1/3Z(s))
∣∣

= k2/3k1/3
∣∣Ψ(1)(k1/3Z(s))

∣∣+ k2/3

L∑
l=1

k(1−2l)/3
∣∣Ψ(l+1)(k1/3Z(s))

∣∣
.n k + k2/3

L∑
l=1

k(1−2l)/3Cl+1(1 + k1/3|ω(s)|)−3−l

.n k + k2/3

L∑
l=1

k(1−2l)/3 .n k + k2/3

∞∑
l=1

k
(1−2l)/3
0

.n k + k2/3 .n k (4.12)

(iii) Again by (5.11) and (5.12) we know |Ψ(τ)| ≤ C0(1+|τ |) , |Ψ′(τ)| ≤ C1 , |Ψ(l)(τ)| ≤
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Cl(1 + |τ |)−2−l , for l ≥ 2. So we can write:

k2/3

L∑
l=0

∣∣k−2l/3Ψ(l)(k1/3Z(s))
∣∣

= k2/3
∣∣Ψ(k1/3Z(s))

∣∣+ k2/3k−2/3
∣∣Ψ′(k1/3Z(s))

∣∣+ k2/3

L∑
l=2

k−2l/3
∣∣Ψ(l)(k1/3Z(s))

∣∣
.n k

2/3(1 + k1/3|ω(s)|) + k2/3k−2/3 + k2/3

L∑
l=2

k−2l/3Cl(1 + k1/3|ω(s)|)−2−l

(since ω is bounded in [0, 2π])

.n k
2/3(1 + k1/3) + 1 + k2/3

∞∑
l=2

k
−2l/3
0

.n k (4.13)

Now combining inequalities (4.10) - (4.13) we can write:

|Dn
sAL,M(s, k)| .n


k, n = 0

k, n = 1

k +
n∑
j=2

kj+2/3(1 + k1/3|ω|)−j−2, n ≥ 2

We have already stated that |Dn
sRL,M(s, k)| ≤ Cn. Using triangle inequality and the

fact that ηslow(s, k) = AL,M(s, k) +RL,M(s, k) we complete the proof.
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5. CONVERGENCE ANALYSIS

In this chapter, we will provide the proof of Theorem 3.1. First we will discuss

the related best approximation theorem in [14, Theorem 3]. Then we will give the

parts where we pose the improved contributions.

5.1. Approximation by weighted algebraic polynomials

Theorem 5.1 (Best approximation of ηslow by algebraic polynomials [14]). Given

d ∈ N, for all n ∈ {0, · · · , d + 1}, all sufficiently large k > k0 > 1, and 0 ≤ ε, δ ≤ 1/3

we have:

(i) [Illuminated region] If IIL = [t1 + ξ1k
−1/3+ε, t2 − ξ2k

−1/3+ε], then

inf
p∈Pd
||ηslow − p||L2(IIL) .n k

1 + k−(1+3ε)/2k(1/3−ε)n/2

dn

(ii) [Deep shadow region] If IDS = [t2 + ξ1k
−1/3+ε, L+ t1 − ξ2k

−1/3+ε], then

inf
p∈Pd
||ηslow − p||L2(IDS) .n k

1 + k−(1+3ε)/2k(1/3−ε)n/2

dn

(iii) [Shadow boundaries] If ISBl = [t1 − ξk−1/3+δ, t1 + ξk−1/3+ε], or if ISBl = [t2 −

ξk−1/3+ε, t2 + ξk−1/3+δ], then

inf
p∈Pd
||ηslow − p||L2(ISBl )

.n k
1 + k−1/2k(ε+δ)n/2

dn

(iv) [Illuminated transitions] If IITl = [t1 + ξk−1/3+δ, t1 + ξk−1/3+ε], or if IITl =

[t2 − ξk−1/3+ε, t2 − ξk−1/3+δ], then

inf
p∈Pd
||ηslow − p||L2(IITl )

.n k
1 + k−(1+3δ)/2k(ε−δ)n/2

dn
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(v) [Shadow transitions] If ISTl = [t1 − ξk−1/3+ε, t1 − ξk−1/3+δ], or if ISTl = [t2 +

ξk−1/3+δ, t2 + ξk−1/3+ε], then

inf
p∈Pd
||ηslow − p||L2(ISTl )

.n k
1 + k−(1+3δ)/2k(ε−δ)n/2

dn

Proof. If we recall the well known semi-norm for a given interval (a, b)

|f |n,(a,b) ..=
[ ∫ b

a

|Dnf(s)|2(s− a)n(b− s)nds
]1/2

. (5.1)

Then we have [21]:

inf
p∈Pd
||f − p|| .n |f |n,(a,b)d−n (5.2)

for all n ∈ {0, 1, · · · , d + 1} where Pd is the space of univariate polynomials of degree

at most d.

Using this inequality and Theorem 4.6 we have:

|ηslow(s, k)|2n,(a,b) .n

∫ b

a

|Dn
s η

slow(s, k)|2(s− a)n(b− s)nds

.n

∫ b

a

[
k2 +

2n+4∑
m=8

[
k−1/3 + |ω(s)|

]−m ]
(s− a)n(b− s)nds

.n k
2 +

2n+4∑
m=8

∫ b

a

(s− a)n(b− s)n

[k−1/3 + |ω(s)|]m
ds (5.3)

Now we will give the estimates of the right hand side of (5.3) and together with (5.2)

we will complete the proof.

First, without loss of generality, assume that (t2 − t1)/2 > 1, k > k0 ≥ 1 and
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0 < ξ, ξ1, ξ2 < min{t1, t2−t12
}, and define:

c1
..=

t2 + t1
2
−

√(
t2 − t1

2

)2

+ k−1/3

d1
..=

t2 + t1
2

+

√(
t2 − t1

2

)2

+ k−1/3

c2
..=

t2 + t1
2
−

√(
t2 − t1

2

)2

− k−1/3

d2
..=

t2 + t1
2

+

√(
t2 − t1

2

)2

− k−1/3

Also note that the L-periodic function k−1/3 + |ω(s)| factors as:

k−1/3 + |ω(s)| =

 (s− c1)(d1 − s), s ∈ [t1, t2],

−(s− c2)(d2 − s), s ∈ [0, L]\[t1, t2],
(5.4)

In order to estimate the integrals on the right hand side of inequality (5.3) we will

use the above separation trick, then using the exact calculation given in Lemma A.3

we will present an estimate on those integrals, therefore an estimate to the semi-norm

|ηslow|n,(a,b). Since the steps of the calculations for the cases (i) and (iv) are symmetric

to (ii) and (v) respectively, we will only give the proof for the cases (i), (iii), and (iv).

In all cases we will take into consideration that,

t2 − t1 < d1 − c1 ≤ 2

√(
t2 − t1

2

)2

+ 1

0 < 2

√(
t2 − t1

2

)2

− 1 ≤ d2 − c2 < t2 − t1

Keeping those in mind, for the case (i) illuminated region, using the exact calculation
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of the integral given in Lemma A.3 we have the following estimate

∫ b

a

(s− a)n(b− s)n

(k−1/3 + |ω(s)|)m
ds =

∫ b

a

(s− a)n(b− s)n

(s− c1)m(d1 − s)m
ds

.n

m∑
r=1

{ ∑
0≤p,q≤n

p+q 6=2n+1−r

∣∣∣(c1 − a)p(c1 − b)q[(b− c1)2n−(p+q+r)+1 − (a− c1)2n−(p+q+r)+1]

+ (a− d1)p(b− d1)q[(d1 − a)2n−(p+q+r)+1 − (d1 − b)2n−(p+q+r)+1]
∣∣∣}

Considering the inequalities,

ξ1k
−1/3kε < a− c1 < (1 + ξ1)k−1/3kε

t2 − t1
2

< b− c1 <
t2 − t1

2
+

√(
t2 − t1

2

)2

+ 1

t2 − t1
2

< d1 − a <
t2 − t1

2
+

√(
t2 − t1

2

)2

+ 1

ξ2k
−1/3kε < d1 − b < (1 + ξ2)k−1/3kε

our integral has the following estimate∫ b

a

(s− a)n(b− s)n

(k−1/3 + |ω(s)|)m
ds

.n

m∑
r=1

∑
0≤p,q≤n

p+q 6=2n+1−r

[
(k−1/3+ε)p|1− (k−1/3+ε)2n−(p+q+r)+1|+ (k−1/3+ε)q|1− (k−1/3+ε)2n−(p+q+r)+1|

]

.n

m∑
r=1

∑
0≤p,q≤n

p+q 6=2n+1−r

[
(k−1/3+ε)p + (k−1/3+ε)2n−(q+r)+1 + (k−1/3+ε)q + (k−1/3+ε)2n−(p+r)+1

]

.n

m∑
r=1

∑
0≤p,q≤n

p+q 6=2n+1−r

[
(k−1/3+ε)p + (k−1/3+ε)2n−(q+r)+1 + (k−1/3+ε)q + (k−1/3+ε)2n−(p+r)+1

]

.n 1 + (k−1/3+ε)2n−(n+m)+1 + 1 + (k−1/3+ε)2n−(n+m)+1 .n (k−1/3+ε)n−m+1

Inserting this upperbound in inequality (5.3) we have

|ηslow(s, k)|2n,(a,b) .n k
2 + max

1≤m≤2n+4
(k−1/3+ε)n−m+1

.n k
2 + (k1/3k−ε)n+3 .n

{
k
(

1 + k−(1+3ε)/2k(1/3−ε)n/2
)}2
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On the other hand, for the case (iii) of shadow boundaries with the same tricks we

have∫ b

a

(s− a)n(b− s)n[
k−1/3 + |ω(s)|

]mds = (−1)m
∫ t1

a

(s− a)n(b− s)n

(s− c2)m(d2 − s)m
ds+

∫ b

t1

(s− a)n(b− s)n

(s− c1)m(d1 − s)m
ds

.n

m∑
r=1

{ ∑
0≤p,q≤n

p+q 6=2n+1−r

∣∣∣(c2 − a)p(c2 − b)q[(b− c2)
2n−(p+q+r)+1 − (a− c2)

2n−(p+q+r)+1]

+ (a− d2)
p(b− d2)

q[(d2 − a)2n−(p+q+r)+1 − (d2 − b)2n−(p+q+r)+1]
∣∣∣

+
∑

0≤p,q≤n
p+q 6=2n+1−r

∣∣∣(c1 − a)p(c1 − b)q[(b− c1)
2n−(p+q+r)+1 − (a− c1)

2n−(p+q+r)+1]

+ (a− d1)
p(b− d1)

q[(d1 − a)2n−(p+q+r)+1 − (d1 − b)2n−(p+q+r)+1]
∣∣∣}

Using the definitions of d1, d2 and the definition of end points of the interval ISBl we

have

t1 + t2
2

< d2, d1 < 2t2

t1 − ξ < t1, a, b < t1 + ξ

Hence for all x ∈ {(d2 − t1), (d2 − b), (d2 − a), (d1 − t1), (d1 − b), (d1 − a)} we have

0 <
t2 + t1

2
− (t1 + ξ) < x < 2t2 − t1 + ξ

Using this idea we can bound our integral as follows∫ b

a

(s− a)n(b− s)n[
k−1/3 + |ω(s)|

]mds = (−1)m
∫ t1

a

(s− a)n(b− s)n

(s− c2)m(d2 − s)m
ds+

∫ b

t1

(s− a)n(b− s)n

(s− c1)m(d1 − s)m
ds

.n

m∑
r=1

{ ∑
0≤p,q≤n

p+q 6=2n+1−r

∣∣∣(c2 − a)p(c2 − b)q[(b− c2)
2n−(p+q+r)+1 − (a− c2)

2n−(p+q+r)+1]
∣∣∣

+
∣∣∣(c1 − a)p(c1 − b)q[(b− c1)

2n−(p+q+r)+1 − (a− c1)
2n−(p+q+r)+1]

∣∣∣}
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Now considering the inequalities

ξ1k
−1/3kδ − 2

k−1/3

t2 − t1
< (c2 − a), (c1 − a) < (1 + ξ1)k−1/3kδ,

k−1/3

t2−t1
2

(1 +
√

2)
< (t1 − c1), (c2 − t1) < 2

k−1/3

t2 − t1
,

ξ2k
−1/3kε − 2

k−1/3

t2 − t1
< (b− c1), (b− c2) < (1 + ξ2)k−1/3kε,

we can bound our integral in following way

∫ b

a

(s− a)n(b− s)n

[k−1/3 + |ω(s)|]m
ds

.n

m∑
r=1

∑
0≤p,q≤n

p+q 6=2n+1−r

{
(k−1/3+δ)p(k−1/3+ε)q[(k−1/3+ε)2n−(p+q+r)+1 + (k−1/3+δ)2n−(p+q+r)+1]

}

.n (k−1/3+δ)n(k−1/3+ε)n[(k−1/3+ε)2n−(n+n+m)+1 + (k−1/3+δ)2n−(n+n+m)+1]

Considering again inequality (5.3) we have

|ηslow(s, k)|2n,(a,b)

.n max
1≤m≤2n+4

(k−1/3+δ)n(k−1/3+ε)n[(k−1/3+ε)2n−(n+n+m)+1 + (k−1/3+δ)2n−(n+n+m)+1

.n k2 + kk(ε+δ)n .n

{
k
(

1 + k−1/2k(ε+δ)n/2
)}2

When it comes to the (iv) illuminated transitions, we have

ξk−1/3kδ < a− c1 < (1 + ξ)k−1/3kδ

ξk−1/3kε < b− c1 < (1 + ξ)k−1/3kε

t2 − t1
2

< d1 − a <
3(t2 − t1)

2
t2 − t1

2
< d1 − b <

3(t2 − t1)

2
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with the similar manipulations done in (i) we conclude

|ηslow(s, k)|2n,(a,b) .n k
(
1 + k−(1+3δ)/2k(ε−δ)n/2)

Finally, applying our semi-norm estimate (5.2) to these inequalities, we complete the

proof.

5.2. Estimate on the Transition Regions and the Change of Variables

In this section we aim to improve the estimates on the transition regions given

in Theorem 5.1. Upon completion of this section the proof of Theorem 3.1 will also be

obtained.

In the previous work [14], in order to mimic the behavior of ηslow, the four main

regions that separates illuminated and deep shadow regions from the shadow bound-

aries are treated carefully. They divided each of those four main regions into m − 1

small regions, the transition regions, and defined different sets of basis functions in

each of them. So, together with the 4m− 4 transition regions they had 4m regions in

total. This approach gave them an enhanced approximation. However it is possible to

unite the each set of m−1 little transition regions and obtain four main regions instead

of 4(m − 1) ones. Yet, in order to unite them we need to present a clever change of

variables in each set of transition regions. Now let us denote the four main transition

regions in the following way:

IIT1 = [t1 + ξk−1/3, t1 + ξ] = [a1, b1]

IIT2 = [t2 − ξ, t2 − ξk−1/3] = [a2, b2]

IST1 = [t1 − ξ, t1 − ξk−1/3] = [a3, b3]

IST2 = [t2 + ξk−1/3, t2 + ξ] = [a4, b4]
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Now in each interval we inroduce the following change of variables:

φ(s) =



t1 + ξkψ(s), s ∈ IIT1
t2 − ξkψ(s), s ∈ IIT2
t1 − ξkψ(s), s ∈ IST1
t2 + ξkψ(s), s ∈ IST2 ,

where the linear function ψ is defined such that

ψ(s) =



1
3(b1−a1)

(s− a1)− 1
3
, s ∈ IIT1

1
3(a2−b2)

(s− b2)− 1
3
, s ∈ IIT2

1
3(a3−b3)

(s− b3)− 1
3
, s ∈ IST1

1
3(b4−a4)

(s− a4)− 1
3
, s ∈ IST2 .

With this clever choice of ψ, our function φ maps each of the transition regions to

itself.

Now, we intent to give the detailed analysis of this change of variables function

φ, but without loss of generality we will only discuss the part of it restricted to the

interval IIT1 , the Illuminated Region-1. Throughout this section we will assume that

the functions φ : [a, b]→ [a, b] and ψ : [a, b]→ [−1
3
, 0] are defined as

φ(s) = t1 + ξkψ(s)

ψ(s) =
1

3(b− a)
(s− a)− 1

3

where a ..= t1 +ξk−1/3, b ..= t1 +ξ, and IIT1 = [a, b]. We also have, k > k0 for some fixed

k0 > 1 and |ξ| < (t2 − t1)/2. Since, ψ(a) = −1/3, ψ(b) = 0, φ(a) = a, and φ(b) = b, φ

preserves the interval IIT1 = [a, b], as we mentioned earlier.

With the aid of this change of variables we will prove the main result of this

section:

Theorem 5.2. For the interval IIT1 = [a, b] and the change of variable function φ
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defined as above, we have

inf
p∈Pd
||ηslow − p(φ−1)||L2(IIT1 ) .n k(log k)1/2

(
log k

d

)n

where Pd represents the univariate polynomials of degree at most than d ∈ N.

Before giving the proof of this theorem, we should verify some propositions.

Proposition 5.3. For φ, ψ defined as above we have

|ψ′(s)| . 1, ∀s ∈ [0, 2π]

|φ(i)(s)| . (log k)i, ∀s ∈ [0, 2π], ∀i ∈ N.

Proof. Since k > k0 implies 1− k−1/3 > 1− k−1/3
0 , we have,

|ψ′(s)| =
∣∣∣∣ 1

3(b− a)

∣∣∣∣ =

∣∣∣∣ 1

3ξ(1− k−1/3)

∣∣∣∣ < 1

3|ξ|(1− k−1/3
0 )

. 1

On the other hand,

s ∈ [a, b] ⇒ 0 ≤ s− a ≤ b− a ⇒ s− a
b− a

≤ 1 ⇒ s− a
3(b− a)

− 1

3
≤ 0

Obviously as s increases s−a
3(b−a)

− 1
3

also increases. Thus we have,

−1/3 ≤ s ≤ 0 ,∀s ∈ [a, b] ⇒ k−1/3 ≤ kψ(s) ≤ 1 ,∀s ∈ [a, b]

Now, calculating the derivatives of φ gives us,

φ′(s) = ξψ′(s)(log k)kψ(s)

φ(i)(s) = (ξψ′(s)(log k))ikψ(s)

|φ(i)(s)| . ((log k))ikψ(s) . ((log k))i
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printing the desired result.

The bounds calculated above for the derivatives of ψ and φ are important for the

derivative analysis of ηslow, which is given in the next proposition.

Proposition 5.4. For φ defined as above and for all n ∈ N we have

|Dn
s (ηslow ◦ φ)(s)| .n k(log k)n

Proof. By Faà Di Bruno’s formula [22],

|Dn
s (η

slow ◦ φ(s))| =

∣∣∣∣∣∑
{
i!Diηslow(φ(s))

n∏
j=1

(Djφ(s))ij

j!ij !
: i =

n∑
j=1

ij , n =
n∑
j=1

jij , ij ≥ 0

}∣∣∣∣∣
.n

∑{
|Diηslow(φ(s))|

n∏
j=1

|(Djφ(s))ij | : i =
n∑
j=1

ij , n =
n∑
j=1

jij , ij ≥ 0

}

.n

∑{
|(ηslow)(i)(φ(s))|

n∏
j=1

|((log k))jijkjψ(s)| : i =
n∑
j=1

ij , n =
n∑
j=1

jij , ij ≥ 0

}

.n

∑{
|(ηslow)(i)(φ(s))||((log k))

∑
jijk

∑
jψ(s)| : i =

n∑
j=1

ij , n =
n∑
j=1

jij , ij ≥ 0

}

Hence we have

|Dn
s (ηslow ◦ φ(s))| .n

n∑
i=0

|(ηslow)(i)(φ(s))|kiψ(s)(log k)n (5.5)

Next, we will give the upper bound for the summand. For this purpose let us recall

the definiton of the function ω(s) = (s − t1)(t2 − s) together with Theorem 4.6 gives

us:

kiψ(s)|η(i)(φ(s))| . kiψ(s)

[
k +

i+2∑
j=4

(k−1/3 + |ω(φ(s))|)−j
]
.

Now, instead of the summation in the right hand side, we will insert the following

estimate, for all j ≤ i+ 2 and s ∈ [a, b]

(k−1/3 + |ω(φ)|)−j .n (k−1/3 + |ω(φ)|)−(i+2).
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This estimate can be seen from,

(k−1/3 + |ω(φ(s))|)−j = (k−1/3 + |ω(φ(s))|)−(i+2)(k−1/3 + |ω(φ(s))|)(i+2)−j

≤ (k−1/3 + |ω(φ(s))|)−(i+2)(k
−1/3
0 + (2π)2)(i+2)−j

.n (k−1/3 + |ω(φ(s))|)−(i+2)

Therefore we have:

kiψ(s)|η(i)(φ(s))| . kiψ(s)

[
k +

i+2∑
j=4

(k−1/3 + |ω(φ(s))|)−j
]

.n k
iψ(s)k + kiψ(s)(k−1/3 + |ω(φ(s))|)−(i+2)

.n k +
( kψ(s)

k−1/3 + |ω(φ(s))|

)i
(k−1/3 + |ω(φ(s))|)−2

The estimate on (k−1/3 + |ω(φ(s))|) can be established as the following way:

(k−1/3 + |ω(φ(s))|)−1 = (k−1/3 + |(t2 − t1)ξkψ(s) − ξ2k2ψ(s)|)−1

= k−ψ(s)(k−1/3−ψ(s) + |(t2 − t1)ξ − ξ2kψ(s)|)−1

≤ k−ψ(s)
(
|(t2 − t1)ξ − ξ2|

)−1

. k−ψ(s)

So we can conclude,

kiψ(s)|η(i)(φ(s))| .n k +
( kψ(s)

k−1/3 + |ω(φ(s))|

)i
(k−1/3 + |ω(φ(s))|)−2

. k + (1)i k−2ψ(s) ≤ k + k2/3 .n k

Hence inserting this result in the estimate (5.5) we complete the proof.

After constructing the necessary propositions now we are ready to prove this

section’s main theorem.
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Proof. (of Theorem 5.2) Using the estimate on the semi-norm that is given in (5.2),

and the boundedness of φ′ on IIT1 = [a, b],

inf
p∈Pd
||ηslow − p(φ−1)||L2[a,b] = inf

p∈Pd

{ b∫
a

|ηslow(s)− p(φ−1(s))|2ds
}1/2

≤ inf
p∈Pd

{ b∫
a

|ηslow(φ(s))− p(s)|2|φ′(s)|ds
}1/2

≤ inf
p∈Pd

{
||(ηslow ◦ φ)− p||L2(max

s∈[a,b]
|φ′(s)|)1/2

}
.n |ηslow ◦ φ|n,[a,b] d−n(max

s∈[a,b]
|φ′(s)|)1/2,

where in the last line estimate holds for all n ∈ N such that n ≤ d + 1. Moreover, in

the last line we will impose the definition of the semi-norm in Definition 5.1, and the

upper bound for φ′, then with the aid of Proposition 5.4:

inf
p∈Pd
||ηslow − p(φ−1)||L2[a,b] .n

{ b∫
a

|Dn(η ◦ φ)(s)|2(s− a)n(b− s)nds
}1/2

d−n(log k)1/2

.n (b− a)
2n+1

2 k (log k)nd−n(log k)1/2

.n k(log k)1/2

(
log k

d

)n

This completes the argument.

Hence, with the help of Theorem 5.2 we have established an improved upper

bound for the error in the transition regions. Together with Theorem 5.1 we have

completed the proof of Theorem 3.1.

5.3. Approximation by weighted trigonometric polynomials

In this section we will use approximation spaces constructed by trigonometric

polynomials. However, our convergence analysis depends on the periodicity of the

functions in those spaces. In order to attain the periodicity we will introduce the



42

smooth bump functions defined on the 4m subregions we described on Section 5.1.

The crucial point here is, the set of these 4m bump functions will be also representing

a smooth partition of the interval [0, L]. So multiplying each of the bump functions

with ηslow gives us periodic smooth functions and summation of all gives us ηslow itself.

To begin with, let us define the smooth functions

λ(x) =


1, x ≤ 0,

exp
(

2 exp(− 1
x

)

x−1

)
, 0 < x < 1,

0, 1 ≤ x.

µ(x) =
1

2
[λ(x) + 1− λ(1− x)]

Here note that µ(x) is a positive non-increasing smooth function (see Figure 5.1).

0 1

0

1

 

 

µ(x)

Figure 5.1. µ(x) on [0, 1].

Now for given real numbers a < a′ ≤ b′ < b, we set up the bump function

χ(a,a′,b′,b)(x) ..= µ

(
x− a
a′ − a

)
µ

(
x− b
b′ − b

)

On [a, a′] the first multiplicand increases from 0 to 1, and on [b′, b] the second one

decreases from 1 to 0. Hence the smooth function χ(a,a′,b′,b) is equal to 1 on [a′, b′] and
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vanishes outside [a, b](See Figure 5.2). On the other hand, since

µ(x) + µ(1− x) = 1, x ∈ R(
x− a
b− a

)
+

(
x− b
a− b

)
= 1, x ∈ R

then for given real numbers a1 < a2 ≤ a3 < a4 ≤ a5 < a6 we have

χ(a1,a2,a3,a4)(x) + χ(a3,a4,a5,a6)(x) = 1, x ∈ R (5.6)

a a' b' b

0

0.5

1

χ(a,a′,b′,b)

Figure 5.2. Plot of χ(a,a′,b′,b).

In order to build up the bump functions χ(a,a′,b′,b), we need to identify the reals

a < a′ ≤ b′ < b for each region. Recalling the definitions of the intervals given in

Section 3.2 we set the variable a′ of an interval to be equal to the end point of the

previous interval, in the counter clockwise orientation. Then we set the variable b′ of an

interval to be equal to the starting point of the next interval, in the same orientation.

From now on we will symbolize the quadruple (a, a′, b′, b) of an interval I with σ(I) .

Regarding these identifications, we denote the jth interval as Ij, its bump function

as χσ(Ij) and its characteristic function as 1j. With the light of the identity (5.6), for

x ∈ [0, L] we have
4m∑
j=1

χσ(Ij)(x) = 1 Then, from Definition 1.1 we have

η =
4m∑
j=1

eik α·γηslowχσ(Ij) (5.7)
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and each µ̂ ∈ dim(Td) can be written in the following form

µ̂ =
4m∑
j=1

eik α·γ1jpj,

where pj ∈ Tdj . Using these facts, Céa’s lemma gives us

||η − η̂||L2(∂K) ≤
C

c
k

4m∑
j=1

inf
p∈Tdj

||ηslowχσ(Ij) − p||L2(Ij) (5.8)

This inequality together with Theorem 5.5 complete the proof of Theorems 3.4

Theorem 5.5 (Best approximation by trigonometric polynomials [14]). For all n ∈

N ∪ {0} and all sufficiently large k ≥ 1 , there holds the following estimates:

(i) [Illumunated region] If 0 ≤ ε1 < ε2 ≤ 1/3 and 0 ≤ ε4 < ε3 ≤ 1/3, and

σ(IIL) = (t1 + ξ1k
−1/3kε1 , t1 + ξ1k

−1/3kε2 , t2 − ξ2k
−1/3kε3 , t2 − ξ2k

−1/3kε4)

then we have

inf
p∈Td(IIL)

||ηslowχσ(IIL) − p||L2(IIL) .n k

(
k1/3−min{ε1,ε4}

d+ 1

)n
.

(ii) [Deep shadow region]If 0 ≤ ε1 < ε2 ≤ 1/3 and 0 ≤ ε4 < ε3 ≤ 1/3, and

σ(IDS) = (t2 + ξ1k
−1/3kε1 , t2 + ξ1k

−1/3kε2 , L+ t1 − ξ2k
−1/3kε3 , L+ t1 − ξ2k

−1/3kε4)

then we have

inf
p∈Td(IDS)

||ηslowχσ(IDS) − p||L2(IDS) .n k

(
k1/3−min{ε1,ε4}

d+ 1

)n
.

(iii) [Shadow boundaries] If 0 ≤ ε2 < ε1 ≤ 1/3 and 0 ≤ ε3 < ε4 ≤ 1/3, and
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σ(ISBl) = (t1 − ξ1k
−1/3kε1 , t1 − ξ1k

−1/3kε2 , t1 + ξ2k
−1/3kε3 , t1 + ξ2k

−1/3kε4)

or

σ(ISBl) = (t2 − ξ1k
−1/3kε1 , t2 − ξ1k

−1/3kε2 , t2 + ξ2k
−1/3kε3 , t2 + ξ2k

−1/3kε4)

then we have

inf
p∈Td(ISBl )

||ηslowχσ(ISBl )
− p||L2(ISBl )

.n k

(
kmax{ε1,ε4}

d+ 1

)n
.

(iv) [Illuminated transitions: ] If 0 ≤ ε1 < ε2 ≤ ε3 < ε4 ≤ 1/3, and

σ(IITl) = (t1 + ξk−1/3kε1 , t1 + ξk−1/3kε2 , t1 + ξk−1/3kε3 , t1 + ξk−1/3kε4)

or

σ(IITl) = (t2 − ξk−1/3kε4 , t2 − ξk−1/3kε3 , t2 − ξk−1/3kε2 , t2 − ξk−1/3kε1)

then

inf
p∈Td(IITl )

||ηslowχσ(IITl )
− p||L2(IITl )

.n k

(
kε4−ε1

d+ 1

)n
.

(v) [Shadow transitions: ] If 0 ≤ ε1 < ε2 ≤ ε3 < ε4 ≤ 1/3, and

σ(ISTl) = (t1 − ξk−1/3kε4 , t1 − ξk−1/3kε3 , t1 − ξk−1/3kε2 , t1 − ξk−1/3kε1)

or

σ(ISTl) = (t2 + ξk−1/3kε1 , t2 + ξk−1/3kε2 , t2 + ξk−1/3kε3 , t2 + ξk−1/3kε4)

then

inf
p∈Td(ISTl )

||ηslowχσ(ISTl )
− p||L2(ISTl )

.n k

(
kε4−ε1

d+ 1

)n
.

In order to prove this theorem we need to establish some estimates about periodic

trigonometric polynomials as in the next Corollary.
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Corollary 5.6. If the periodic function f of period b−a possesses an (n−1)th absolutely

continuous derivative and f (n) ∈ L2[a, b], then for any d ∈ N ∪ {0} we have

inf
p∈Td[a,b]

||f − p||L2[a,b] .n

(
b− a
d+ 1

)n
sup

|h|≤ b−a
2π(d+1)

{∫ b

a

|f (n)(x+ h)− f (n)(x)|2dx
}1/2

(5.9)

Proof. This corollary simply is a more general version of the the best approximation

theorem by trigonometric polynomials in [23, 5.1.32], in which the estimate holds for

a = 0, b = 2π. In the proof we will only apply couple of maps of change of variables to

make sure that theorem still holds in the interval [a, b]. For this purpose let us define

the affine map [0, 2π]→ [a, b]

ρ(x) ..=
b− a
2π

x+ a (5.10)

Then applying the change of variables y = ρ(x) we have

inf
pd∈Td[a,b]

||f − pd||L2[a,b] = inf
pd∈Td[a,b]

{∫ b

a

|f(y)− pd(y)|2dy
}1/2

= inf
pd∈Td[a,b]

(
b− a
2π

)1/2 {∫ 2π

0

|f(ρ(x))− pd(ρ(x))|2dx
}1/2

= inf
p̃d∈Td[0,2π]

(
b− a
2π

)1/2

||f ◦ ρ− p̃d||L2[0,2π]

Now using [23, 5.1.32] we can write

inf
pd∈Td[a,b]

||f − pd||L2[a,b] = inf
p̃d∈Td[0,2π]

(
b− a
2π

)1/2

||f ◦ ρ− p̃d||L2[0,2π]

.n (d+ 1)−n sup
|h|≤1/(d+1)

{b− a
2π

∫ 2π

0
|f (n)(ρ(x+ h))(ρ′(x+ h))n − f (n)(ρ(x))(ρ′(x))n|2dx

}1/2

Considering ρ′(y) = b−a
d+1 and applying back the change of variables ρ(x) = y give us

inf
pd∈Td[a,b]

||f − pd||L2[a,b] .n

(
b− a
d+ 1

)n
sup

|h|≤1/(d+1)

{∫ b

a
|f (n)(y +

b− a
2π

h)− f (n)(y)|2dy
}1/2

=

(
b− a
d+ 1

)n
sup

|h′|≤ b−a
2π(d+1)

{∫ b

a
|f (n)(y + h′)− f (n)(y)|2dy

}1/2

Thus the result.
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We want to note that, although the periodic extension of the function ηslow is not

smooth, by the careful construction of the bump functions, the product ηslowχ(a,a′,b′,b)

is a smooth (b− a)-periodic function. Thus we can apply Corollary 5.6 to them. With

these ideas in our mind, we are ready to present the proof of Theorem 5.5

Proof. (of Theorem 5.5) Since the cases (ii) and (v) are symmetric to (i) and (iv),

respectively, we will only prove the cases (i), (iii), and (iv). Now for σ(I) = (a, a′, b′, b)

we have

Dn
sχσ(I) =

n∑
j=0

(
n

j

)
Dj
sµ

(
s− a
a′ − a

)
Dn−j
s µ

(
s− b
b′ − b

)

=
n∑
j=0

(
n

j

)(
1

a′ − a

)j (
1

b− b′

)n−j
µj
(
s− a
a′ − a

)
µ(n−j)

(
s− b
b′ − b

)

Since µ(x) is a smooth function the derivatives appearing in the last line are bounded

with some constants depending only on n. Hence

||Dn
sχσ(I)||L∞[a,b] .n

n∑
j=0

(
n

j

)(
1

a′ − a

)j (
1

b− b′

)n−j
.

In the case (i) of illuminated region, without loss of generality we may assume

that ε1 ≤ ε4. Then

||Dn
sχσ(I)||L∞[a,b] .n

n∑
j=0

(
1

k−1/3(kε2 − kε1)

)j (
1

k−1/3(kε3 − kε4)

)n−j
.n

(
k1/3

kε4(kε3−ε4 − 1)

)n n∑
j=0

(
kε4(kε3−ε4 − 1)

kε1(kε2−ε1 − 1)

)j
.n

(
k1/3

kε4

)n n∑
j=0

(
kε4

kε1

)j
.n

(
k1/3−ε1

)n

where in the last row we have used the fact that
(
kε4
kε1

)j ≤ (kε4
kε1

)n
.
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On the other hand, Theorem 4.6 gives us,

|Dn
s η

slow(s, k)| .n k +
n+2∑
m=4

(k−1/3 + |ω(s)|)−m .n k +
n+2∑
m=4

(kε1−1/3)−m

.n k + k(n+2)(1/3−ε1).

Therefore,

||Dn
s η

slowχσ(I)||L∞[a,b] = ||
n∑
i=0

(
n

i

)
Di
sη
slowDn−i

s χ[a,a′],[b,b′]||L∞[a,b]

.n k

n∑
i=0

(
1 + k−1k(i+2)(1/3−ε1)

) (
k1/3−ε1

)n−i
.n k

(
k1/3−ε1

)n

Recalling Corollary 5.6 with ξ = min{ξ1, ξ2}, and noting that ||.||L2[a,b] ≤ (b−a)1/2||.||L∞[a,b],

we have the following:

inf
p∈Td[a,b]

||ηslowχσ(I) − p||L2[a,b]

.n

(
b− a
d+ 1

)n
sup

|h|≤ b−a
2π(d+1)

{∫ b

a

|Dn
s η

slowχσ(I)(x+ h)−Dn
s η

slowχσ(I)(x)|2dx

}1/2

.n

(
b− a
d+ 1

)n
||Dn

s η
slowχσ(I)||L2[a,b]

.n
(b− a)n+1/2

(d+ 1)n
k
(
k1/3−ε1

)n
.n k

(
k1/3−min{ε1,ε4}

d+ 1

)n

Secondly, in the case (iii) of shadow boundaries, without loss of generality we may

assume that ε2 ≤ ε3. Then with the same manipulations as we did in the previous case

||Dn
sχσ(I)||L∞[a,b] .n

n∑
j=0

(
1

k−1/3(kε1 − kε2)

)j (
1

k−1/3(kε4 − kε3)

)n−j
.n

(
k1/3

kε3(kε4−ε3 − 1)

)n n∑
j=0

(
kε3(kε4−ε3 − 1)

kε2(kε1−ε2 − 1)

)j
.n

(
k1/3

kε3

)n n∑
j=0

(
kε3

kε2

)j
.n

(
k1/3−ε2

)n
.
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Again, as an immediate consequence of Theorem 4.6,

|Dn
s η

slow(s, k)| .n k +
n+2∑
m=4

(k−1/3 + |ω(s)|)−m .n k +
n+2∑
m=4

(k−1/3)−m

.n k + k(n+2)(1/3),

and combination of these estimates gives us:

||Dn
s η

slowχσ(I)||L∞[a,b] = ||
n∑
i=0

(
n

i

)
Di
sη
slowDn−i

s χ[a,a′],[b,b′]||L∞[a,b]

.n k
n∑
i=0

(
1 + k−1/3ki/3

)
k(n−i)(1/3−ε2) .n kkn/3.

Implementing the results of Corollary 5.6, we get

inf
p∈Td[a,b]

||ηslowχσ(I) − p||L2[a,b]

.n

(
b− a
d+ 1

)n
sup

|h|≤ b−a
2π(d+1)

{∫ b

a

|Dn
s η

slowχσ(I)(x+ h)−Dn
s η

slowχσ(I)(x)|2dx

}1/2

.n

(
b− a
d+ 1

)n
||Dn

s η
slowχσ(I)||L2[a,b]

.n
(b− a)n+1/2

(d+ 1)n
kkn/3 .n k

(
kmax{ε1,ε4}

d+ 1

)n

Lastly, in the case (iv) of illuminated transitions, analogous to the previous ones we

have the following estimates:

||Dn
sχσ(I)||L∞[a,b] .n

n∑
j=0

(
1

k−1/3(kε2 − kε1)

)j (
1

k−1/3(kε3 − kε4)

)n−j
.n

(
k1/3

kε3(kε4−ε3 − 1)

)n n∑
j=0

(
kε3(kε4−ε3 − 1)

kε1(kε2−ε1 − 1)

)j
.n

(
k1/3

kε3

)n n∑
j=0

(
kε3

kε1

)j
.n

(
k1/3−ε1

)n
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The estimate from Theorem 4.6 is

|Dn
s η

slow| .n k +
n+2∑
m=4

(k−1/3 + |ω(s)|)−m .n k +
2n+4∑
m=4

(kε1−1/3)−m

.n k + k(n+2)(1/3−ε1),

and as a consequence,

||Dn
s η

slowχσ(I)||L∞[a,b] = ||
n∑
i=0

(
n

i

)
Di
sη
slowDn−i

s χ[a, a′], [b, b′]||L∞[a,b]

.n k
n∑
i=0

(
1 + k−1k(i+2)(1/3−ε1)

) (
k1/3−ε1

)n−i
.n k

(
k1/3−ε1

)n
Finally, utilizing similar arguments,

inf
p∈Td[a,b]

||ηslowχσ(I) − p||L2[a,b]

.n

(
b− a
d+ 1

)n
sup

|h|≤ b−a
2π(d+1)

{∫ b

a

|Dn
s η

slowχσ(I)(x+ h)−Dn
s η

slowχσ(I)(x)|2dx

}1/2

.n

(
k−1/3(kε4−ε1)

d+ 1

)n
||Dn

s η
slowχσ(I)||L2[a,b]

.n
(k−1/3(kε4−ε1))n+1/2

(d+ 1)n
k
(
k1/3−ε1

)n
.n k

(
kε4−ε1

d+ 1

)n
,

we complete the proof.
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6. NUMERICAL EXPERIMENTS

In this chapter we test our Galerkin method in several settings. In the cases of

unit circle we use the smooth parametrization γ(t) = (cos(t), sin(t)) for t ∈ [0, L].

Throughout the chapter for given eight-tuples ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8), ξ′ =

(ξ′1, ξ
′
2, ξ
′
3, ξ
′
4, ξ
′
5, ξ
′
6, ξ
′
7, ξ
′
8) and a triple ε = (ε1, ε2, ε3) we have constructed our intervals

in the following way

IIL = [t1 + ξ1k
−1/3+ε1 , t2 − ξ′1k−1/3+ε1 ],

IDS = [t2 + ξ2k
−1/3+ε3 , L+ t1 − ξ′2k−1/3+ε3 ],

ISB1 = [t1 − ξ3k
−1/3+ε2 , t1 + ξ4k

−1/3+ε2 ],

ISB2 = [t2 − ξ′4k−1/3+ε2 , t2 + ξ′3k
−1/3+ε2 ],

IIT1 = [t1 + ξ5k
−1/3+ε2 , t1 + ξ6k

−1/3+ε1 ],

IIT2 = [t2 − ξ′6k−1/3+ε1 , t2 − ξ′5k−1/3+ε2 ],

IST1 = [t1 − ξ7k
−1/3+ε1 , t1 − ξ8k

−1/3+ε2 ],

IST2 = [t2 + ξ′8k
−1/3+ε2 , t2 + ξ′7k

−1/3+ε1 ],

and sometimes we divide the deep shadow region into two subregions

IDS1 = [L− L/32, L+ t1 − ξ2k
−1/3+ε2 ],

IDS2 = [t2 + ξ′2k
−1/3+ε2 , L+ L/32].

In the examples if we do not mention ξ′, we consider it is equal to ξ. However in

some elliptical settings where we lost the symmetry we take ξ′ slightly different from

ξ, for better results.



52

Since in the case of change of variables scheme (See Section 5.2) we set ε =

(1/3, 0, 1/3), it can be easily seen that for a given wave number k, the only unknown

parameter in above set of definitions of the intervals is the parameters represented by

ξ (in this analysis we think of ξ together with ξ′). As we mentioned earlier because

of the choice of the approximation spaces highly depends on the construction of the

intervals, we need to choose our ξ wisely in order to obtain the best accuracy. For

this purpose we devise an algorithm, in which we start from a sensible ξ and set two

variables w(width) and ∆(increment) to a desired precision. After that as j ranges over

the indices of ξ at the jth step we pick the element ξj and instead of ξj we try the set

of variables {ξj −w+ r∆ : r = 0, · · · , 2w/∆} one by one. Then we examine the error

related to each of these variables. Then we set ξj to the variable from that set which

is responsible from the minimal error. Cycling couple of times over the elements of ξ,

gives us the optimal one so that increasing or decreasing any element of it by a multiple

of ∆ would give us a larger error. We also need to point that the development of the

intervals is done in a way so that the adjoint intervals do intersect. This intersection

is particularly important for the construction of the bump function related to each

interval.

In the above formulations we only define the variables a, b of an interval I = [a, b].

In order to construct the bump function χσ(I) described in Section 3.2 we also need

to clarify the variables a′, b′ of the interval I. The definitions of those variables are

attained by the same method in Section 3.2 so that the summation of all the χσ(I)

functions of all intervals add up to 1.

Using the ideas discussed in Keller’s Geometrical Theory of Diffraction [24], in

some cases separating the deep shadow region into two subregions offers us better

approximation in the deep shadow region (See the rightmost plots in Figures 6.1 and

6.2). Furthermore, assigning the polynomial degree of approximation space on single

deep shadow region to 2d+ 1 enhances these results. In double deep shadow cases, we

assign d for both of the subregions.
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Figure 6.1. Interval schemes: 8 and 7 subregions.
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Figure 6.2. Interval schemes: 5 and 6 subregions.
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Since our new approach mimic the behavior of the function η on both illuminated

region and illuminated transitions, in the cases based on our change of variables model,

we prefer not to define an illuminated region at all (See Figure 6.2). Moreover observing

the related work of [25] and [26] we did not resort to the idea of shadow transition in

the numerical experiments.

During our experiments, we used univariate polynomial, trigonometric and cosines

bases. We also experimented with Lagrange and Chebyshev bases but they produced

larger condition numbers and slightly worse error behavior. Hence in the examples we

will not discuss the later ones.

In order to produce the numerical solution of Equation (2.4), we solved the linear

system (2.8). We used Nyström method to numerically calculate the functions Rµ̂j
and quadrature rule to evaluate the elements of the matrices appearing on both sides.

Since the exact solution is known for the circular obstacle case, we used that to test

the accuracy of our numerical solution.

In each example we have the following format: First presenting the numerical

experiment using the techniques given in [14], then demonstrating the ones based on

our new scheme described in Section 5.2. The latter set consists of single and double

deep shadow regions. The figures showing the error analysis includes three parts, in

each part for a given degrees of freedom d, the leftmost part shows the relative log10

error of ||η − η̂||/||η||L2 , the middle one is the relative log10 error in the deep shadow

region, and the rightmost part presents the log10 of the condition numbers of the

Galerkin matrices arisen from the related Galerkin approximation spaces. So clearly in

these three graphs the x-axis depicts the degrees of freedom for each approximation.

In the examples with circular object we have the parametrization {(cos(t), sin(t)) :

t ∈ [0, 2π]} and incident field direction α = (0, 1). On the other hand the ones with

elliptical object we have the parametrization {(2 cos(t), sin(t)) : t ∈ [0, 2π]} and inci-

dent field direction α = 1√
10

(3, 1). In both settings we denote L by the circumference

of the object.
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6.1. Weighted Algebraic Polynomials and Change of Variables

While constructing the Galerkin matrix related to the Galerkin formulation de-

scribed in (2.6) one has to be careful in order to decrease the computational error. If

the matrix contains unstable range of elements, then the solution based on that matrix

will be more likely to be inaccurate, which is also known as ill-conditioning problem.

To solve this problem we try to make the basis elements of the global Galerkin approx-

imation space belong to a more narrow interval. With this purpose in our mind we

define the change of variable ρ(s) = 2s−a−b
b−a which maps the interval [a, b] onto [−1, 1].

Then instead of Pd and Pd ◦ φ−1 in Section 5.1 we use

Pd ◦ ρ = span{(ρ(s))r : r = 0, · · · , d}

Pd ◦ φ−1 ◦ ρ = span{(φ−1(ρ(s)))r : r = 0, · · · , d}

respectively.

Example 6.1. : Circular Object

(i) Using the classical basis of monomial algebraic polynomials from [14]

• For 8 subregions (See the leftmost plot in Figure 6.1)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d, d, d) and

• ξ = (L/4, 3L/10, 7L/15, 7L/30, L/15, 7L/20, 2L/5, 3L/10), ε = (1/5, 1/15, 1/5)

the error behavior is given in Figure 6.3.
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Figure 6.3. Algebraic polynomials for 8 subregions.
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(ii) Using our new basis of monomial algebraic polynomials composed with change of

variables,

• Demonstrating for first 6 then 5 subregions (See the plots in Figure 6.2)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d) then d = (2d +

1, d, d, d, d) and

• ξ = (0, 1.0, 5.15, 3.65, 2.10, 2.0, 0, 0), ε = (1/3, 0, 1/3) then

ξ = (0, 0.3, 5.25, 3.70, 1.70, 2.0, 0, 0), ε = (1/3, 0, 1/3), respectively.

The error behavior is given in Figure 6.4
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Figure 6.4. Our new basis with algebraic polynomials for 6 and 5 subregions, upper

and lower row respectively.

Comparing Figures 6.3 and 6.4 we see a fast convergence in the relative L2 norm

difference. However more importantly, we observe a remarkable convergence in the

deep shadow region. On the other hand our new approximation regime slightly disturb

the conditioning of the Galerkin matrix, but the drawback is not significant. Let us

examine the similar improvement in the elliptical case where we lost the symmetries.
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Example 6.2. : Elliptical Object

(i) Using the classical basis of monomial algebraic polynomials from [14]

• For 8 subregions (See the leftmost plot in Figure 6.1)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d, d, d) and

• ξ = (3L/20, L/5, L/4, 3L/20, L/20, L/5, 7L/30, L/5), ε = (2/9, 1/9, 2/9)

the error behavior is given in Figure 6.5.
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Figure 6.5. Algebraic polynomials for 8 subregions.

(ii) Using our new basis of monomial algebraic polynomials composed with change of

variables,

• For 6 subregions (See the rightmost plot in Figure 6.2)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d) and

• ξ = (0, 1.05, 5.75, 3.45, 2.30, 0, 0, 0), ξ′ = (0, 0.8, 5.25, 3.35, 2.30, 0, 0, 0),

ε = (1/3, 0, 1/3)

The error behavior is given in Figure 6.6

6.2. Weighted Trigonometric Polynomials and Change of Variables

As it is discussed in the beginning of the previous section, we also need to stabilize

the Galerkin matrix when it is constructed depending on trigonometric polynomials.

With the same idea, we note that the linear function ρ̃(s) = 2π(s−a)
b−a maps the interval
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Figure 6.6. Our new basis with algebraic polynomials for 6 subregions.

[a, b] onto [0, 2π]. Then instead of Td in the Section 5.3 we use

Td ◦ ρ̃ = span{exp(ir ρ̃(s)) : r = −−d
2
, · · · , d

2
}

Example 6.3. : Circular Object

(i) Using the basis of trigonometric polynomials from [14]

• For 7 subregions(See the rightmost plot in Figure 6.1)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d, d) and

• ξ = (L/4, 3L/10, 7L/15, 7L/30, L/15, 7L/20, 0, 0), ε = (1/5, 1/15, 1/15)

The errors are given in Figure 6.7
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Figure 6.7. Trigonometric polynomials on 7 subregions.

(ii) Using our new basis for trigonometric polynomials composed with change of vari-

bles
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• Demonstrating for first 6 then 5 subregions (See the plots in Figure 6.2)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d) then d = (2d +

1, d, d, d, d) and

• ξ = (0, 1.55, 5.80, 3.55, 2.15, 2.0, 0, 0), ε = (1/3, 0, 1/3) then

ξ = (0, 0.90, 5.75, 3.75, 2.15, 2.0, 0, 0), ε = (1/3, 0, 1/3), respectively.

the error behavior is given in Figure 6.8
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Figure 6.8. Our new basis with trigonometric polynomials for 6 and 5 subregions,

upper and lower row respectively.

Example 6.4. : Elliptical Object

(i) Using the basis of trigonometric polynomials from [14]

• For 7 subregions (See the rightmost plot in Figure 6.1)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d, d, d) and

• ξ = (3L/20, L/5, L/4, 3L/20, L/20, L/5, 7L/30, L/5), ε = (2/9, 1/9, 1/9)

the error behavior is given in Figure 6.9.

(ii) Using our new basis for trigonometric polynomials composed with change of vari-
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Figure 6.9. Algebraic polynomials for 8 subregions.

bles

• For 6 subregions (See the rightmost plot in Figure 6.2)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d) and

• ξ = (0, 1.25, 5.75, 3.45, 2.20, 0, 0, 0), ξ′ = (0, 0.6, 5.25, 3.35, 2.30, 0, 0, 0),

ε = (1/3, 0, 1/3)

The error behavior is given in Figure 6.10
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Figure 6.10. Our new basis with algebraic polynomials for 6 and 5 subregions, upper

and lower row respectively.

Investigating these results, we see the condition numbers related to our new

method exceeds the machine precision, however our scheme enables us a fast converging

algorithm. Furthermore it gives us a numerical solution mimicking ηslow in the deep

shadow region a lot more accurately which is always harder target to attain.

Although we did not give the theoretical developments of the change of vari-

ables scheme related to the trigonometric polynomials, our numerical experiments also
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indicate this composition’s improved results.

Finally, the approximation space taken into consideration in [14] and consisting

of cosines bases will be examined. It is similar to the above trigonometric polynomials

other than having its half periodicity. The normalized approximation space is given as

span{cos(r
1

2
ρ̃(s)) : r = 0, · · · , d}

Hence we have the following results.

Example 6.5. : Circular Object

(i) Using the basis of cosines from [14]

• For 7 subregions (See the rightmost plot in Figure 6.1)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d, d) and

• ξ = (L/4, 3L/10, 7L/15, 7L/30, L/15, 7L/20, 0, 0), ε = (1/5, 1/15, 1/15)

the errors are given in Figure 6.11.
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Figure 6.11. Cosines on 7 subregions.

(ii) Using our new basis for cosines composed with change of variables,

• Demonstrating for first 6 then 5 subregions (See the plots in Figure 6.2)

• Assigning the degrees of freedom to d = (d, d, d, d, d, d) then d = (2d +

1, d, d, d, d) and

• ξ = (0, 1.75, 5.85, 3.35, 1.95, 2.0, 0, 0), ε = (1/3, 0, 1/3) then

ξ = (0, 0.55, 5.45, 3.60, 2.00, 2.0, 0, 0), ε = (1/3, 0, 1/3)
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the error behavior is given in Figure 6.12
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Figure 6.12. Our new basis with cosines for 6 and 5 subregions, upper and lower row

respectively.

Comparing to the trigonometric polynomials this basis seems to provide better

accuracy and condition numbers.
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7. CONCLUSION

In this thesis, we aimed to solve the Helmholtz equation (2.1) for a given incident

eik α·x and a compact object K. We studied the equivalent integral equation version of

this problem, i.e. the combined field integral equation.

In order to make our numerical algorithm stable as the wave number increases,

instead of the solution η of the integral equation we tried to numerically solve the

unknown function ηslow via the Galerkin method. For the purpose of mimicking ηslow

we divided the surface of the obstacle into several subregions and constructed our

Galerkin approximation spaces in each region.

In this subregion division process, we extended the idea of transition regions and

using a clever change of variables scheme we obtained a better approximation in whole

domain as well as in the deep shadow region.

Although we only applied this change of variables idea in the case of algebraic

polynomials, the numerical results corresponding to the case of trigonometric poly-

nomials also demonstrate the feasibility of change of variables for improved accuracy.

The theoretical analysis of that part is currently an ongoing work.

We also want to point that, these improved results may also be applied to the cases

of multiple scattering scenarios with some suitable iteration techniques. The possible

numerical results would have been improved comparing to the previous methods.

All numerical experiments are conducted on a computer with 2.4 GHz Intel Core

I5 processor using the MATLAB software. Thanks to the ideas in [26], all the algo-

rithms are implemented in a vectorized fashion in order to obtain the fastest results.
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APPENDIX A: AUXILIARY RESULTS

Lemma A.1 (A binomial identity). For all t ∈ R and m ∈ N, we have

(t+ 1)2m =
m∑
r=1

(
2m− r − 1

m− r

)
(1 + t)r(1 + tr)t(m−r)

Proof. We will prove this identity by checking the coefficient of tk for k = 0, · · · , 2m.

Considering the right hand side when k ≤ m, the contribution comes from (1+tr)t(m−r),

so it is
(

2m−r−1
m−r

)(
r

k−(m−r)

)
. However when k > m, in this case contribution comes

from (1 + tr)tm, therefore
(

2m−r−1
m−r

)(
r

k−m

)
. Combining these cases, our lemma becomes

equivalent to

(
2m

k

)
=

m∑
r=|m−k|

(
2m− r − 1

m− r

)(
r

|m− k|

)
, k = 0, · · · , 2m

Since the cases are symmetric, we will only prove the part when m − k > 0. If we

change the index of the summation with j = m− r, then we have

(
2m

k

)
=

k∑
j=0

(
m+ j − 1

m− 1

)(
m− j
m− k

)
. (A.1)

Equation (A.1) is a well known binomial identity which can be found in [27, Example

2.6.2] as in the following form

(
p+ q + r + 1

q + r + 1

)
=

p∑
j=0

(
p+ q − j

q

)(
r + j

r

)
(A.2)

In this identity inserting p = k, q = m− k, r = m− 1 delivers our desired result.

Corollary A.2. For real numbers c 6= d and s ∈ R \ {c, d} and natural number m ≥ 1
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we have the following decomposition

1

(s− c)m(d− s)m
=

m∑
r=1

(
2m− r − 1

m− r

)
1

(d− c)2m−r

(
1

(s− c)r
+

1

(d− s)r

)

Proof. In Lemma A.1 after a few manipulations

(t+ 1)2m =
m∑
r=1

(
2m− r − 1

m− r

)
(1 + t)r(1 + tr)t(m−r)

tm(1 +
1

t
)2m =

m∑
r=1

(
2m− r − 1

m− r

)
(1 +

1

t
)r(1 + tr)

tm =
m∑
r=1

(
2m− r − 1

m− r

)
1

(1 + 1
t
)2m−r (1 + tr),

if we insert t = x/y, then we have

(x/y)m =
m∑
r=1

(
2m− r − 1

m− r

)
x2m−r

(x+ y)2m−r (1 +
xr

yr
),

After dividing both sides with x2m, and plugging x = s − c, y = d − s we have our

desired result.

Lemma A.3. For any a, b ∈ R, n ∈ N ∪ {0},m ∈ N, if either,

• c ≤ t1 ≤ α < β ≤ t2 ≤ d, or

• t1 < c < d < t2 and [α, β] ∩ (t1, t2) = ∅,

then we can compute the following integral.

∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds =

m∑
r=1

(
2m− r − 1

m− r

)
(−1)n

(d− c)2m−r

{
A+B + C

}
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where A,B and C are as follows

A ..=
∑

0≤p,q≤n
p+q=2n+1−r

(
n

p

)(
n

q

)[
(c− a)p(c− b)q log

(
β − c
α− c

)
+ (a− d)p(b− d)q log

(
d− α
d− β

)]

B ..=
∑

0≤p,q≤n
p+q 6=2n+1−r

(
n

p

)(
n

q

)
(c− a)p(c− b)q (β − c)2n−(p+q+r)+1 − (α− c)2n−(p+q+r)+1

2n− (p+ q + r) + 1

C ..=
∑

0≤p,q≤n
p+q 6=2n+1−r

(
n

p

)(
n

q

)
(a− d)p(b− d)q

(d− α)2n−(p+q+r)+1 − (d− β)2n−(p+q+r)+1

2n− (p+ q + r) + 1

Proof. The decomposition in Corollary A.2 gives us

∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds

=
m∑
r=1

(
2m− r − 1

m− r

)
1

(d− c)2m−r

∫ β

α

(
(s− a)n(b− s)n

(s− c)r
+

(s− a)n(b− s)n

(d− s)r

)
ds

Now, we apply the change of variables inside the first and second integrals, by setting

s− c = t and d− s = t respectively.∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds =

m∑
r=1

(
2m− r − 1

m− r

)
(−1)n

(d− c)2m−r

×

{∫ β−c

α−c
t−r(t+ c− a)n(t+ c− b)ndt+

∫ d−β

d−α
t−r(t+ a− d)n(t+ b− d)ndt

}

Then we use the binomial identity to have a computable integral.∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds =

m∑
r=1

(
2m− r − 1

m− r

)
(−1)n

(d− c)2m−r
∑

0≤p,q≤n

(
n

p

)(
n

q

)

×

{
(c− a)p(c− b)q

∫ β−c

α−c
t2n−(p+q+r)dt+ (a− p)p(b− d)q

∫ d−β

d−α
t2n−(p+q+r)dt

}

Calculating the integrals for 2n−(p+q+r) = −1 and 2n−(p+q+r) 6= −1 separately,

we complete the proof.
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