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ABSTRACT

ZEROS OF ORTHOGONAL POLINOMIALS AND

UNIVERSALITY LIMITS

It has been discovered that “old style” techniques from orthogonal polynomials

have been very useful in establishing universality results for quite general measures.

The main goal of this master thesis is to present some methods recently introduced by

D. S. Lubinsky for establishing universality limits of random matrices, in the unitary

case, based on orthogonal polynomials and some Hilbert spaces of entire functions.

Let µ be a measure defined on the real line with compact support. Assume that µ is

absolutely continuous in a neighbourhood of some point x in the support, and that µ′

is positive and continuous in a compact subset of that neighbourhood. Theorem 1.1

shows that universality at x is equivalent to universality “along the diagonal”. The

same equivalence is obtained when the hypothesis involve a Lebesgue type condition,

instead of continuity of µ′ on a compact subset. Such universality limits can be also

described by the reproducing kernel of a de Branges space of entire functions that

equals a Paley-Wiener space (Theorem 1.4). In order to study this assertion, we use

the theory of entire functions of exponential type and de Branges spaces as background.
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ÖZET

DİK POLİNOMLARIN SIFIRLARI VE EVRENSELLİK

LİMİTLERİ

Dik polinomlardaki “eski stil” tekniklerin oldukça genel ölçüler için evrensel net-

iceleri göstermekte çok işe yaradığı tespit edilmiştir. Bu tezin ana amacı, D. S. Lubinsky

tarafından dik polinomlar ve bazı tüm düzlemde analitik Hilbert uzayları baz alınarak,

birimsel durumda, rastgele matrislerin evrensellik limitlerini belirlemek amacıyla ortaya

konulan yeni metodları sunmaktır. µ, gerçel sayı ekseni üzerine tanımlı tıkız destekli

bir ölçü olsun. Destekteki bir x noktasının etrafında µ’nün mutlakça sürekli olduğunu;

ve µ′’in o komşuluğun tıkız bir alt kümesinde pozitif ve sürekli olduğunu varsayalım.

Theorem 1.1, x’teki evrenselliğin köşegende evrenselliğe denk olduğunu kanıtlar. µ′’in

tıkız bir alt kümedeki sürekliliği yerine Lebesgue tipi koşulunu sağladığını varsayarsak

aynı denkliği elde ederiz. Bu tip evrensellik limitleri bir Paley-Wiener uzayına eşit

de Branges’ın tüm düzlemde analitik fonksiyonlar uzayının doğuran çekirdeğiyle de

tanımlanabilirler (Teorem 1.4). Bu iddiayı çalışmak için, arka plan olarak üssel tipteki

tüm düzlemde analitik fonksiyonlar teorisi ve de Branges uzaylarını kullanıyoruz.
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1. INTRODUCTION

Discussions on the zeros of orthogonal polynomials on the real line dates back to

Gauss’ discovery that the best discrete approximations of Riemann integrals involve

zeros of Legendre polynomials, and has generated a huge work in many areas includ-

ing general theoretical and mathematical physics communities who study “eigenvalue

statistics.” Much of the work on random matrices deals with this subject. Interested

readers should refer to Mehta [1]. An approach generating orthogonal polynomials that

has turned out to be of great importance was given by Fokas, Its and Kitaev in the

early 1990’s [2]. This new approach concerns with the matrix valued Riemann-Hilbert

problem. For details on this Riemann-Hilbert approach, see Deift [3].

Over the past few years, Barry Simon provided two reviews related to the sub-

ject which survey the recent progress and the open questions [4]. The latter one in-

cludes some works of Lubinsky and Levin on universality limits. The approach in-

troduced by Lubinsky was followed by many other authors, even though the tactics

differ. Levin’s rediscovery of universality limits for some measures, which was implicit

in Freud’s book [5], yields the associated work of Avila, Last, and Simon on clock

spacing [6]. Maltsev transferred the theory of universality limits from orthogonal poly-

nomials to half-line Schrödinger operators [7]. In this new framework, Maltsev deduced

the “clock behaviour” of eigenvalues and the zeros of the solution of eigenvalue problem

for Schrödinger operators subject to Dirichlet or Neumann boundary conditions at 0.

In order to take a closer look to the approach introduced by Lubinsky, we begin

by setting notation and terminology. Let µ be a finite positive Borel measure on R with

all moments
∫
R x

kdµ(x), k ≥ 0, finite; and with infinitely many points in its support.

By applying the Gram-Schmidt process to 1, x, x2, . . ., we may define the orthonormal

polynomials

pn(x) = γnx
n + · · · , γn > 0,
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for n ∈ N, satisfying the orthonormality conditions

∫
R
pnpmdµ(x) = δnm.

Throughout we use µ′(x) = dµ
dx

to denote the Radon-Nikodym derivative of µ. The nth

reproducing kernel for µ is

Kn(x, y) =
n−1∑
k=0

pk(x)pk(y).

And the normalized kernel is

K̃n(x, y) = µ′(x)1/2µ′(y)1/2Kn(x, y).

Kn satisfies the very useful extremal property

Kn(ξ, ξ) = inf
deg(P )≤n−1

P 2(ξ)∫
P 2dµ

.

The simplest case of the universality limit is the limit

lim
n→∞

K̃n(ξ + a
K̃n(ξ,ξ)

, ξ + b
K̃n(ξ,ξ)

)

K̃n(ξ, ξ)
=

sin π(a− b)
π(a− b)

, (1.1)

with the sinc kernel on the right hand side. It describes the distribution of spacing of

eigenvalues of random matrices. Thus, an assertion about the distribution of eigen-

values of random matrices has been reduced to a technical limit involving orthogonal

polynomials. The term universal is quite justified: the limit on the right-hand side

of (1.1) is independent of ξ, but more importantly is independent of the underlying

measure.

Typically, the limit (1.1) is established uniformly for a, b in compact subsets of the

real line, but if we remove the normalization from the outer Kn, we can also establish
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its validity for complex a, b, that is

lim
n→∞

Kn(ξ + a
K̃n(ξ,ξ)

, ξ + b
K̃n(ξ,ξ)

)

Kn(ξ, ξ)
=

sin π(a− b)
π(a− b)

.

The most obvious approach is to use Christoffel-Darboux formula,

Kn(u, v) =
γn−1

γn

pn(u)pn−1(v)–pn−1(u)pn(v)

u− v
, u 6= v,

and

Kn(u, u) =
γn−1

γn
(p′n(u)pn−1(u)− p′n−1(u)pn(u)).

This leads to (for a 6= b),

Kn(ξ + a
K̃n(ξ,ξ)

, ξ + b
K̃n(ξ,ξ)

)

Kn(ξ, ξ)

= w(ξ)
γn−1

γn

pn(ξ + a
K̃n(ξ,ξ)

)pn−1(ξ + b
K̃n(ξ,ξ)

)–pn−1(ξ + a
K̃n(ξ,ξ)

)pn(ξ + b
K̃n(ξ,ξ)

)

a− b
.

It has been seen that if we have sufficient knowledge of the asymptotic behaviour of pn

as n→∞, then we can substitute in these asymptotics, and deduce universality.

In this thesis, we first present a method of Lubinsky, based on the theory of entire

functions of exponential type, that works for arbitrary, possibly non-regular, measures

with compact support.

Theorem 1.1. Let µ be a finite positive Borel measure on the real line with compact

support. Let J ⊂ supp(µ) be compact, and such that µ is absolutely continuous in an

open set containing J . Assume that µ′ is positive and continuous at each point of J .

The following are equivalent:
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(i) Uniformly for ξ ∈ J and a in compact subsets of the real line,

lim
n→∞

Kn(ξ + a
K̃n(ξ,ξ)

, ξ + a
K̃n(ξ,ξ)

)

Kn(ξ, ξ)
= 1. (1.2)

(ii) Uniformly for ξ ⊂ J and a,b in compact subsets of the complex plane, we have

lim
n→∞

Kn(ξ + a
K̃n(ξ,ξ)

, ξ + b
K̃n(ξ,ξ)

)

Kn(ξ, ξ)
=
sinπ(a− b)
π(a− b)

. (1.3)

Instead of assuming continuity on J , we can assume a Lebesgue point type con-

dition.

Theorem 1.2. Let µ be a finite positive Borel measure with compact support. Let

J ⊂ supp(µ) be compact, and such that µ is absolutely continuous in an open set

containing J . Assume that w is bounded above and below by positive constants in that

open set. Assume, moreover, that uniformly for ξ ∈ J , we have

lims→0+
1

s

∫ ξ+s

ξ−s
|w(t)− w(ξ)|dt = 0. (1.4)

Then the equivalence of (i), (ii) in Theorem 1.1 remains valid.

Lubinsky obtained these results by exploring the possible limits of subsequences

of the sequence {fn}, where

fn(a, b) =
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + a

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
,

and {ξn} is a sequence of real numbers. Since {Kn} are reproducing kernels for polyno-

mials, it is quite probable that the limits of subsequences of {fn} produces reproducing

kernels for suitable spaces of entire functions. It turns out that such spaces are de

Branges spaces.

Definition 1.3. The de Branges space H(E) corresponding to the entire function E ∈
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HB, is the set of all entire functions g such that g/E and g∗/E belong to H2(C+), with

||g||E =

(∫
R

∣∣∣ g
E

∣∣∣2)1/2

<∞. (1.5)

H(E) is a Hilbert space with inner product

(g, h) =

∫
R

gh̄

|E|2
. (1.6)

One may construct a reproducing kernel for H(E) from E. Indeed, if we let

K(ζ, z) =
i

2π

E(z)E(ζ)− E∗(z)E∗(ζ)

z − ζ̄
(1.7)

then for all ζ, K(ζ, .) ∈ H(E) and for all complex ζ and all g ∈ H(E),

g(ζ) =

∫
R

g(t)K(ζ, t)

|E(t)|2
dt. (1.8)

The classical de Branges spaces are Paley-Wiener spaces PWσ, consisting of entire

functions of exponential type ≤ σ that are square integrable along the real axis. There

one may take E(z) = exp(−iσz), and the norm is just

||g||L2(R) =

(∫
R
|g|2
)1/2

.

We write

H(E) = PWσ

if the two spaces are equal as sets, and have equivalent norms (we do not imply isometric

isomorphism). Let us recall that having equivalent norms means that for some C > 1



6

independent of g ∈ PWσ,

C−1||g||L2(R) ≤ ||g||E ≤ C||g||L2(R) (1.9)

In much of this thesis, we will be concerned with the proof of the following result.

Theorem 1.4. Let µ be a measure with compact support. Let J be a compact set such

that µ is absolutely continuous in an open set O containing J , and for some C > 1,

C−1 ≤ µ′ ≤ C in O.

Choose {ξn} ⊂ J and define {fn} by (1.7).

(i) {fn(., .)} is a normal family in compact subsets of C2.

(ii) Let f(., .) be the limit of some subsequence {fn(., .)}n∈S. Then f is an entire

function of two variables, that is real valued in R2 and has f(0, 0) = 1. Moreover,

for some σ > 0, f(., .) is entire of exponential type σ in each variable.

(iii) Define

L(u, v) = (u− v)f(u, v), u, v ∈ C. (1.10)

Let a ∈ C have Im a > 0 and let

Ea(z) =
√

2π
L(ā, z)

|L(a, ā)|1/2
. (1.11)

Then f is a reproducing kernel for H(Ea). In particular, for all z, ζ,

f(z, ζ̄) =
i

2π

Ea(z)Ea(ζ)− E∗a(z)E∗a(ζ)

z − ζ̄
. (1.12)
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(iv) Moreover,

H(Ea) = PWσ (1.13)

and the norms ||.||Ea of H(Ea) and ||.||L2(R)
of PWσ are equivalent.

The fundamental aim of this thesis is to analyze the new approach of Lubinsky

[8], [9] in establishing universality limits in the bulk; and present the proofs of above

theorems in a self contained manner. Chapter 2 is devoted to the theory of classical

orthogonal polynomials. In Chapter 3, our main issue is to define de Branges spaces

of entire functions, and cite some basic properties of this space. Then, we give some

preliminary results from the theory of entire functions of exponential type that will be

needed in proving main theorems. Ultimately, we will be concerned with proving those

theorems in a great detail in Chapter 4.
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2. ORTHOGONAL POLYNOMIALS

Let µ(t) be a non-decreasing function on the real line R with finite limits as

t→ −∞ and t→∞, and assume that the positive measure dµ has finite moments of

all orders,

µr :=
∫
R t

rdµ(t), r = 0, 1, 2, . . . , with µ0 > 0. (2.1)

Let P be the space of real polynomials and Pk ⊂ P the space of polynomials of degree

≤ k. For any pair u, v in P, an inner product is defined as follows:

(u, v) =

∫
R
u(t)v(t)dµ(t). (2.2)

Setting v = u, we obtain

||u|| =
√

(u, u) =

(∫
R
u2(t)dµ(t)

) 1
2

, (2.3)

which is called the norm of u. One may easily see that ||u|| ≥ 0 for all u ∈ P.

Definition 2.1. The inner product (2.2) is said to be positive definite on P if ||u|| > 0

for all u ∈ P, u 6≡ 0. Similarly, it is said to be positive definite on Pk if ||u|| > 0 for

any u ∈ Pk, u 6≡ 0.

To decide whether the inner product (2.2) is positive definite or not, we firstly

look at the points of increase of the function µ(t). A point t ∈ R is a point of increase

of µ(t), if µ(t1) < µ(t2) holds for every pair of numbers t1, t2 with t1 < t < t2.

Definition 2.2. The support of a measure dµ is the set of all points of increase of

µ(t), and is denoted by supp(µ).

Proposition 2.3. Let µ(t) be a function as described at the beginning of this chap-

ter whose support supp(µ) contains infinitely many points and let p(t) be a non-zero
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polynomial, taking non-negative values for t ∈ supp(µ). Then

∫
R
p(t)dµ(t) > 0.

Proof. The existence of this integral is satisfied by hypothesis. Since p(t) can have

only a finite number of zeros and supp(µ) is an infinite set, there must exist a point

x0 ∈ supp(µ) with p(x0) > 0; then there also exists an interval [x1, x2], containing x0,

such that p(x) ≥ 1
2
p(x0) holds for x ∈ [x1, x2]. Then

∫
R
p(x)dµ(x) ≥

∫ x2

x1

p(x)dµ(x) ≥ 1

2
p(x0)[µ(x2)− µ(x1)] > 0,

in accordance with our statement.

The next theorem demonstrates another criterion for positive definiteness using

the Hankel determinants in the moments µr;

∆n = detMn, Mn =


µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
...

µn−1 µn · · · µ2n−2

 , n = 1, 2, 3, . . . . (2.4)

Theorem 2.4. The inner product (2.2) is positive definite on P if and only if

∆n > 0, n = 1, 2, 3, . . . . (2.5)

It is positive definite on Pk if and only if ∆n > 0, for n = 1, 2, . . . , k + 1.

Proof. Let us first consider the finite dimensional case. Let u ∈ Pk, u = a0 + a1t +
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· · ·+ adt
d for some d ≤ k. We have

||u||2 =

∫
R

k∑
l,m=0

amalt
m+ldµ(t) =

k∑
l,m=0

µm+lamal. (2.6)

Hence, positive definiteness on Pk is equivalent to the Hankel matrix Mk+1 being

positive definite. By definition, this is equivalent to ∆n > 0 for n = 1, 2, . . . , k + 1.

Positive definiteness on P, in turn, is equivalent to ∆n > 0 for n = 1, 2, 3, . . ..

Definition 2.5. Monic real polynomials πk(t) = tk + · · · , k = 0, 1, 2, . . . , are called

monic orthogonal polynomials with respect to the measure dµ, if they satisfy the follow-

ing properties:

(i) (πk, πl) = 0 for k 6= l, k, l = 0, 1, 2, . . .,

(ii) ||πk|| > 0 for k = 0, 1, 2, . . . .

Normalization π̃k = πk
||πk||

, k = 0, 1, 2, . . . , yields the orthonormal polynomials,

which satisfy

(π̃k, π̃l) = δkl
.
=

 0 if k 6= l,

1 if k = l.
(2.7)

Lemma 2.6. Let πk, k = 0, 1, . . . , n, be monic orthogonal polynomials. If p ∈ Pn
satisfies (p, πk) = 0 for k = 0, 1, . . . , n, then p ≡ 0.

Proof. If we write p(t) = a0 + a1t+ · · ·+ ant
n, then

0 = (p, πn) = an(tn, πn) = an(πn, πn).

As (πn, πn) > 0, we have an = 0. Similarly, it can be shown that an−1 = an−2 = · · · =

a0 = 0.

Theorem 2.7. If the inner product (2.2) is positive definite on P, there exists a unique
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infinite sequence πk of monic orthogonal polynomials.

Proof. In order to generate the polynomials πk, we apply Gram-Schmidt process to the

sequence, ek(t) = tk, k = 0, 1, 2, . . . . Taking π0 = 1, we recursively obtain

πk = ek −
k−1∑
l=0

clkl, cl =
(ek, πl)

(πl, πl)
. (2.8)

By Theorem 2.4, (πl, πl) > 0, and therefore the polynomials πk are uniquely defined

and, by construction, is orthogonal to all polynomials πj, j < k.

Lemma 2.8. A set π0, π1, . . . , πn of monic orthogonal polynomials is linearly indepen-

dent. Moreover; any polynomial p ∈ Pn can be uniquely represented in the form

p =
n∑
k=0

ckπk (2.9)

for some real constants ck, i.e., π0, π1, . . . , πn form a basis of Pn.

Proof. Suppose
∑n

k=0 γkπk ≡ 0. Then, taking the inner product of both sides with

πj, j = 0, 1, . . . , n, yields γj =0 by orthogonality. This proves linear independence. If

p = anx
n + · · · , then the degree of p − anπn is less than n. By repeated applications

of this fact, p can be represented in the form

p =
n∑
k=0

ckπk

with certain real constants ck. Taking the inner product of both sides with πj gives

cj = (p, πj)/(πj, πj), j = 0, 1, . . . , n. Uniqueness of this representation follows from the

linear independence of π0, π1, . . . , πn.

Theorem 2.9. If the inner product (2.2) is positive definite on Pk but not on Pn for

any n > k, there exists only k + 1 of orthogonal polynomials π0, π1, . . . , πk.
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Proof. The Gram- Schmidt procedure is applicable as long as the denominators (πl, πl)

in (2.8) is positive. In this case, it is, for l ≤ k + 1, and the last polynomial πk+1 is

orthogonal to the all πj, j ≤ k. The set π0, π1, π2, . . . , πk consists of mutually orthogonal

polynomials with positive norm. The norm of πk+1 on the other hand is zero. Indeed,

by hypothesis there exists a monic polynomial u ∈ Pk+1 such that ||u|| = 0. As u−πk+1

has degree k, there holds

u = πk+1 +
k∑
j=0

γjπj

for some coefficients γj. As a result,

0 = ||u||2 = ||πk+1||2 +
k∑
j=0

γj
2||πj||2,

which leads ||πk+1|| = 0. Hence, we cannot add πk+1 to the sequence of orthogonal

polynomials.

In applications, we mostly deal with absolutely continuous measures where dµ(t) =

w(t)dt and w is a non-negative integrable function on R called the weight function. In

that case, supp(µ) is mainly an interval-finite, half-infinite, infinite-or possibly a finite

number of disjoint intervals.

Another type of measure is discrete measure whose support consists of a finite or

denumerably infinite number of distinct points tk at which µ has positive jumps wk.

If the number of points in the support is N , the discrete measure will be denoted by

dµN , and the inner product associated with it is

∫
R

u(t)v(t)dµN(t) =
N∑
k=1

wku(tk)v(tk). (2.10)

It is positive definite on PN−1, but not on any Pn with n ≥ N . By Theorem 2.9,

there exists only N orthogonal polynomials π0, π1, . . . , πN−1. These are called discrete
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orthogonal polynomials and they satisfy

N−1∑
k=0

wkπr(tk)πs(tk) = ||πr||2δrs. (2.11)

Theorem 2.10. Let π0, π1, . . . , πN−1 be the monic orthogonal polynomials relative to

the discrete measure dµN of (2.10). Then,

N−1∑
k=0

1

||πk||2
πk(tr)πk(ts) =

1

wr
δrs. (2.12)

Proof. The condition given in (2.11) can be rewritten in matrix form as QTQ = I,

where Q is a matrix in RN×N whose entries are qrs = πs(tr)
√
wr/||πs||. Then, we have

QQT = I as well, which gives us (2.12).

Throughout the following sections, we will see several properties of orthogonal

polynomials, and assume that dµ is a positive measure with infinite support, and with

finite moments of all orders.

Definition 2.11. An absolutely continuous measure dµ(t) = w(t)dt is said to be sym-

metric if its support interval is [−b, b], 0 < b ≤ ∞, and w(−t) = w(t) for all t ∈ R.

Theorem 2.12. If dµ is symmetric, then

πk(−t) = (−1)kπk(t), k = 0, 1, . . . . (2.13)

Thus, depending on the parity of k, πk is an even or an odd polynomial.

Proof. Define π̂k = (−1)kπk(t). Then, due to the symmetry assumption

(π̂k, π̂l) = (−1)k+l(πk, πl) = 0 if k 6= l.
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Since all π̂k are monic, by Theorem 2.7 we have π̂k(t) ≡ πk(t).

2.1. Three Term Recurrence Relation

Theorem 2.13. The monic orthogonal polynomials {πk} satisfy the recursion formula

πk+1(t) = (t− αk)πk(t)− βkπk−1, k = 0, 1, . . . , (2.14)

π0(t) = 1, π−1(t) = 0,

where

αk = (tπk,πk)
(πk,πk)

, k = 0, 1, 2, . . . ,

βk = (πk,πk)
(πk−1,πk−1)

, k = 1, 2, . . . .

Proof. We take the inner product of tπk with πn. By orthogonality, we have

(πn, tπk) = (pn+1, πk) = 0

for n ≤ k − 2, where pn represents any polynomial with degree n.

Thus, in the representation (2.9) of the polynomial tπk only the three coefficients

are nonzero; namely ck+1, ck, ck−1. As done in the proof of Lemma 2.8, the coefficients

are find as follows; for ck+1 we obtain

ck+1(πk+1, πk+1) = (tπk, πk+1) = ((πk+1 + pk), πk+1)

= (πk+1, πk+1) + (pk, πk+1)

= (πk+1, πk+1).
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and in a similar manner we find

ck−1(πk−1, πk−1) = (πk, πk).

and

ck =
(tπk, πk)

(πk, πk)
.

Therefore,

tπk = πk+1 +
(tπk, πk)

(πk, πk)
πk +

(πk, πk)

(πk−1, πk−1)
πk−1

Setting

αk = (tπk,πk)
(πk,πk)

, βk = (πk,πk)
(πk−1,πk−1)

and putting the terms multiplied by πk−1 together, we obtain the desired formula.

Remark The index set in (2.14) may be finite or infinite depending on if the inner

product is positive definite on P, or on Pd but not on Pn for n > d respectively.

2.2. Zeros

Theorem 2.14. All zeros of πn, n > 1 are real and simple; if supp(µ) ⊂ [a, b], then

all zeros of πn belong to [a, b].

Proof. Notice that
∫
R πn(t)dµ(t) = 0 for n ≥ 1. Therefore, there exist at least one

point in the interior of [a, b] at which πn changes sign. Let τ1, τ2, . . . , τk, k ≤ n, be all
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such points. If k < n were true, then

∫
R
πn(t)

k∏
j=1

(t− τj)dµ(t) =

∫
[a,b]

πn(t)
k∏
j=1

(t− τj)dµ(t) = 0

as a consequence of orthogonality. This, however, cannot be the case since the integrand

has constant sign. As the sum of the multiplicities of the zeros is n, it follows from

this that k = n and that all the zeros τj are simple.

Let us denote the zeros of πn as

τn,n < · · · < τ2,n < τ1,n.

Theorem 2.15. The zeros of πn+1 alternate with those of πn, that is,

τn+1,n+1 < τn,n < τn,n+1 < τn−1,n < · · · < τ1,n < τ1,n+1. (2.15)

Proof. We firstly show that

sign πn−1(τk,n) = (−1)k+1 for n ≥ 1 (2.16)

holds, by induction. Since π0 = 1, (2.16) is satisfied for n = 1, k = 1. Now let us

assume that (2.16) is fulfilled for an n ≥ 1 and for every 1 ≤ k ≤ n. By Theorem 2.13,

we have πn+1(τk,n) = −βnπn−1(τk,n), βn > 0; hence

sign πn+1(τk,n) = (−1)k.

For sufficiently large values of t the sign of πn(t) is determined by the term tn, so we

have

sign πn+1(+∞) = 1 , sign πn+1(−∞) = (−1)n+1. (2.17)
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In each of the following (n+ 1) intervals

(−∞, τn,n), (τn,n, τn−1,n), . . . , (τ2,n, τ1,n), (τ1,n,+∞)

there is at least one zero of πn+1. As πn+1 has exactly n+ 1 zeros, it follows that

τn+1,n+1 < τn,n < τn,n+1 < · · · < τk+1,n+1 < τk,n < τk,n+1 < · · · <

< τ2,n+1 < τ1,n < τ1,n+1.

This in turn yields that in the interval [τk,n+1,∞) the polynomial πn changes its sign

exactly k−1 times (namely at the zeros τ1,n, τ2,n, . . . , τk−1,n), it follows from (2.17) that

sign πn(τk,n+1) = (−1)k. This proves (2.16), and in the course of the proof we have

also seen that (2.15) is a consequence of (2.16).

Theorem 2.16. If c < d and µ(c) = µ(d), then πn(dµ, t) has at most one zero in the

interval [c, d].

Proof. By the way of contradiction assume that there are two zeros c ≤ τi,n < τj,n ≤ d,

and let all the other zeros, within [c,d] or without, be τk,n. Notice that

πn
∏

k 6=i,j(t− τk,n) ≥ 0 on (−∞, c] ∪ [d,∞).

Then, by orthogonality

0 =

∫
R
πn
∏
k 6=i,j

(t− τk,n)dµ(t)

=

∫ c

−∞
πn
∏
k 6=i,j

(t− τk,n)dµ(t) +

∫ ∞
d

πn
∏
k 6=i,j

(t− τk,n)dµ(t)

=

∫ c

−∞

∏
k 6=i,j

(t− τk,n)2(t− τi,n)(t− τj,n)dµ(t) +

∫ ∞
d

∏
k 6=i,j

(t− τk,n)2(t− τi,n)(t− τj,n)dµ(t).
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in contradiction to Proposition 2.3.

2.3. Extremal Properties

The set of monic polynomials with degree n will be denoted by P◦n.

Theorem 2.17. For any monic polynomial π ∈ P◦n there holds

∫
R
π2(t)dµ(t) ≥

∫
R
π2
ndµ(t), (2.18)

with equality if and only if π = πn. In other words, πn minimizes the integral on the

left over all π ∈ P◦n :

min
π∈P◦n

∫
R
π2(t)dµ(t) =

∫
R
π2
ndµ(t). (2.19)

Proof. According to Lemma 2.8, the polynomial can be represented in terms of the

orthogonal polynomials π0, π1, . . . , πn as

π(t) = πn(t) +
n−1∑
k=0

ckπk(t). (2.20)

Then,

∫
R
π2(t)dµ(t) =

∫
R
π2
n(t)dµ(t) +

n−1∑
k=0

∫
R
c2
kπ

2
k(t)dµ(t).

This proves inequality (2.18) and equality if and only if c0 = c1 = · · · = cn−1 = 0, that

is, π = πn.

Remark Another way of seeing (2.19) can be given as follows. Consider the left-hand

integral as a function φ(a0, a1, . . . , an−1) of the coefficients in the monic polynomial
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π(t). Setting the partial derivative with respect to each ak equal to zero yields

∫
R
π(t)tkdµ(t) = 0, k = 0, 1, . . . , n− 1. (2.21)

Notice that this is precisely the conditions of orthogonality that π = πn must satisfy.

Furthermore, the Hessian matrix of φ is twice the Hankel matrix Mn in (2.4), which is

positive definite by Theorem 2.4, confirming the minimality of πn.

2.4. The Gauss-Jacobi quadrature formula

In this section we will deal with orthonormal polynomials

π̃n = πn/||πn||,

which are no longer monic, and use them to develop a Gaussian quadrature formula.

The question here is that if p(t) is a polynomial of degree ≤ 2n − 1, can we obtain a

formula like

∫
R
p(t)dµ(t) =

K∑
i=1

λn(ξi)p(ξi), (2.22)

for some function λn(t) and some points ξ1, . . . , ξK ∈ supp(µ)? The point of (2.22) is

that generally if one fixed n points, using the Lagrange interpolation formula one can

only hope to fit polynomials up to degree n − 1 by adjusting the constants. But here

we get a space of almost twice the dimension. Both the formula (2.22) and the weights

λn deserve special names which will be specified later.

In order to form the Lagrange fundamental polynomials, let us now focus on the

expression

ψn(t, ξ) = ψn,ξ(t) = π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t), (2.23)
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where the parameter ξ ranges in real numbers. It can be observed that the degree of

ψn, as a function t, depends on whether π̃n−1(ξ) = 0 or not. If π̃n−1(ξ) 6= 0, it is a

polynomial of degree n − 1, as π̃n−1(ξ) and π̃n(ξ) cannot be zero at the same time,

according to Theorem 2.15. We denote the degree of ψn(t, ξ) by n∗. Therefore,

n∗ =

 n for π̃n−1(ξ) 6= 0

n− 1 for π̃n−1(ξ) = 0
(2.24)

Theorem 2.18. All zeros (with respect to the variable t) of the polynomial ψn(t, ξ) are

real and simple. If supp (µ) ⊂ [a, b], then at least n− 1 zeros lie in (a, b).

Proof. If π̃n−1(ξ) = 0 or π̃n(ξ) = 0, then ψn is a multiple of π̃n(t) or, respectively, of

π̃n−1(t), the statement follows from Theorem 2.14. Thus, we assume that π̃n(ξ)π̃n−1(ξ) 6=

0, and n∗ = n. By (2.16) we have

signψn(τkn, ξ) = −signπ̃n(ξ)signπ̃n−1(τkn) = (−1)ksignπ̃n(ξ).

We see from this formula that ψn(t, ξ) has odd number of zeros, counting multiplicity,

in any of the intervals (τn,n, τn−1,n), (τn−1,n, τn−2,n), . . . , (τ2,n, τ1,n). Combining this with

the fact that the total number of zeros is equal to n, we see that there is exactly one

zero of ψn in each of those intervals. There remains only a single zero η which must be

real too, since the complex roots occur in conjugate pairs. Now, we are going to show

that η lies outside of [τn,n, τ1,n]. Firstly, as signψn(τi,n, ξ) 6= 0, η cannot coincide with

any of the τi,n. Moreover, as we discussed above, it cannot be in (τi+1,n, τi,n). To sum

up, there is one zero in each interval (τi+1,n, τi,n) and one outside of [τn,n, τ1,n], so that

every zero is simple. By Theorem 2.14 [τn,n, τ1,n] ⊂ (a, b), whence the second assertion

of the theorem follows.

We will denote the zeros of ψn(t, ξ) in a decreasing order by

ξ1 > ξ2 > · · · > ξn∗ .
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Notice that ξ itself is one of these zeros, since ψn(t, ξ) vanishes at t = ξ. By the

Lagrange interpolation formula for n ≥ 2 an arbitrary polynomial pn∗−1(t) of degree

at most equal to n∗ − 1 can be represented in the form

pn∗−1(t) =
n∗∑
i=1

pn∗−1(ξi)ln(t, ξi) (2.25)

with

ln(t, ξi) =
ψn(t, ξ)

ψ′n(ξi, ξ)(t− ξi)
(2.26)

where ψ′n(t, ξ) represents the derivative of ψn with respect to t. Since all of its zeros

are simple, ψ′n(ξi, ξ) 6= 0. The degree of the Lagrange fundamental functions ln(t, ξi) is

equal to n∗ − 1 and,

ln(ξk, ξi) =

 1 for ξk = ξi,

0 for ξk 6= ξi.
(2.27)

holds.

Theorem 2.19. The polynomial ln(t, ξi) is uniquely determined by the following three

properties:

(i) ln(t, ξi) ∈ Pn∗−1(t)

(ii) ln(ξi, ξi) = 1

(iii) The relation

∫
R
ln(t, ξi)pn−1(t)dµ(t) = 0

holds for every polynomial pn−1(t) of degree at most equal to n∗ − 1 and vanishing at

the point ξi.

Proof. Statements (1) and (2) are clear. In order to prove (3), we set pn−1(t) =
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(t− ξi)pn−2(t), and

∫
R
ln(t, ξi)pn−1(t)dµ(t) =

∫
R

ψn(t, ξ)

ψ′n(ξi, ξ)(t− ξi)
(t− ξi)pn−2(t)dµ(t)

=
1

ψ′n(ξi, ξ)

{
π̃n−1(ξ)

∫
R
π̃n(t)pn−2(t)dµ(t)−

−π̃n(ξ)

∫
R
π̃n−1(t)pn−2(t)dµ(t)

}
= 0

the last step is justified by the orthogonality of the polynomials π̃n−1(t) and π̃n(t).

For the uniqueness, we consider another function, l∗n(t, ξ), satisfying (1),(2) and

(3). By (1) and (2) we have

ln(t, ξi)− l∗n(t, ξi) = pn−1(t)

is a polynomial of degree at most equal to n−1 and vanishing for t = ξ. We infer from

(3) that

∫
R
[ln(t, ξi)− l∗n(t, ξi)]

2dµ(t) =

∫
R
ln(t, ξi)pn−1(t)dµ(t)−

−
∫
R
l∗n(t, ξi)pn−1(t)dµ(t) = 0.

Due to the hypothesis on the measure µ(t) we arrive at the conclusion that

l∗n(t, ξi) = ln(t, ξi).

Since the expression

ψn(t, ξ)

ψ′n(ξi, ξ)(t− ξi)
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satisfies the given conditions, it follows that

ln(t, ξi) =
ψn(t, ξ)

ψ′n(ξi, ξ)(t− ξi)

This result is of fundamental importance for the next theorems. To a real number

ξ we have adjoined the zeros ξ1, ξ2, . . . , ξn∗ of the polynomial ψn(t, ξ), where ξ was one

of these numbers. When we constructed the Lagrange fundamental polynomials ln(t, ξi)

this way, the further nodes ξj (j 6= i), in the formula (2.25) can then be obtained as

zeros of ln(t, ξi).

Theorem 2.20. For an arbitrary polynomial pn′(t) of degree at most equal to n′ =

(n+ n∗ − 2) the quadrature formula

∫
R
pn′(t)dµ(t) =

n∗∑
i=1

λn(ξi)pn′(ξi) (2.28)

holds with

λn(ξi) =

∫
R
[ln(t, ξi)]

2dµ(t) > 0

for every i = 1, 2, . . . , n∗.

Remark The values λn(ξi) are obtained by substituting the value η = ξi into the

function

λn(η) =

∫
R
[ln(t, η)]2dµ(t) (2.29)

defined for every real η. Formula of type (2.28) are called quadrature formula, and the

coefficients λn(ξi) are named Christoffel numbers.
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Proof. Let pn′ and qn′ be two polynomials of degree at most equal to n′ for which

pn′(ξi) = qn′(ξi) holds for i = 1, 2, . . . , n∗. Then we have

qn′(t)− pn′(t) = ψn(t, ξ)pn−2(t)

for some polynomial pn−2(t) of degree at most equal to n−2 (since the degree of ψn(t, ξ)

is at most equal to n∗, the degree of pn−2(t) is at most equal to n′−n∗ = n−2). Hence,

pn−2(t) is orthogonal to π̃n, as well as to π̃n−1,

∫
R
ψn(t, ξ)pn−2dµ(t) = π̃n−1(ξ)

∫
R
π̃n(t)pn−2(t)dµ(t)−

−π̃n(ξ)

∫
R
π̃n−1(t)pn−2(t)dµ(t) = 0.

Therefore,

∫
R
pn′(t)dµ(t) =

∫
R
qn′(t)dµ(t).

For qn′ , we substitute the uniquely determined polynomial

n∗∑
k=1

pn′(ξk)ln(t, ξk)

of degree at most equal to n∗ − 1, agreeing with pn′(t) for t = ξk (k = 1, 2, . . . , n∗), by

the Lagrange interpolation formula. This way we obtain

∫
R
pn′(t)dµ(t) =

n∗∑
k=1

∫
R
pn′(ξk)ln(t, ξk)dµ(t).

In order to finish the proof, we need to show that

∫
R
ln(t, ξi)dµ(t) =

∫
R
l2n(t, ξi)dµ(t) (2.30)

for i = 1, 2, . . . , n∗. This can be seen by substituting pn′(t) = l2n(t, ξi) into the last but
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one formula, which is possible since the degree of l2n(t, ξ) is equal to 2(n∗−1) ≤ n+n∗−2.

Taking into account of (2.27),

l2n(ξk, ξi) =

 1 for ξk = ξi,

0 for ξk 6= ξi.

we obtain (2.30).

2.5. Consequences of Quadrature Formula

Taking into consideration the relation (2.27) we obtain from the quadrature for-

mula (2.28) for k ≤ n− 1

∫
R
π̃k(t)ln(t, ξ) = λn(ξ)π̃k(ξ),

hence by the expansion (2.9)

ln(t, ξ) = λn(ξ)
n−1∑
k=0

π̃k(ξ)π̃k(t) = λn(ξ)Kn(t, ξ) (2.31)

with

Kn(t, ξ) =
n−1∑
k=0

π̃k(ξ)π̃t

moreover, from (2.26) we have

Kn(t, ξ) = {λn(ξ)ψ′n(ξ, ξ)}−1 π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)

(t− ξ)

Comparing the coefficients of tn−1 on both sides of the formula

π̃n−1(ξ)
1

||πn−1||
= {λn(ξ)ψ′n(ξ, ξ)}−1π̃n−1(ξ)

1

||πn||
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holds true. As this equation must hold identically with respect to ξ, we have

λn(ξ)ψ′n(ξ, ξ) =

1
||πn||

1
||πn−1||

(2.32)

and

Kn(t, ξ) =
n−1∑
k=0

π̃k(ξ)π̃k(t) =
||πn||
||πn−1||

π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)

(t− ξ)
. (2.33)

Formula (2.33) is called the Christoffel-Darboux summation formula; and it has a sig-

nificant role at the treatment of expansions of functions in orthogonal polynomials,

since Kn(t, ξ) represents the kernel of the partial sums of the orthogonal expansion.

Notice that Kn(t, ξ) has the following symmetry relation:

Kn(t, ξ) = Kn(ξ, t). (2.34)

The following theorem provides a direct proof of the reproducing kernel relation.

Theorem 2.21. For an arbitrary polynomial pn−1(t) of degree at most equal to n− 1

we have

∫
R
Kn(t, ξ)pn−1(t)dµ(t) = pn−1(ξ). (2.35)

Proof. For an arbitrary pn−1(t),

pn−1(t)− pn−1(ξ)

(t− ξ)

is a polynomial of degree at most equal to n− 2, and therefore it is orthogonal to both

π̃n(t) and π̃n−1(t). Accordingly,

∫
R

pn−1(t)− pn−1(ξ)

(t− ξ)
[π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)]dµ(t) = 0,



27

which implies that

∫
R

π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)

t− ξ
pn−1(t)dµ(t)

= pn−1(ξ)

∫
R

π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)

t− ξ
dµ(t) = Λn−1(ξ)pn−1(ξ).

Substituting pn−1(t) = π̃k(t) in this formula for k = 0, 1, · · · , n − 1, we obtain the

coefficients of π̃k(t) in the orthogonal expansion of π̃n−1(ξ)π̃n(t)−π̃n(ξ)π̃n−1(t)
t−ξ :

∫
R

π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)

t− ξ
π̃k(t)dµ(t) = Λn−1(ξ)π̃k(ξ),

and then

π̃n−1(ξ)π̃n(t)− π̃n(ξ)π̃n−1(t)

t− ξ
= Λn−1(ξ)

n−1∑
k=0

π̃k(ξ)π̃k(t).

Comparing the coefficients of tn−1 on both sides we obtain the value 1
||πn||/

1
||πn−1|| for

Λn−1(ξ), independent of ξ, in accordance with (2.35).

Remark Another important consequence of the quadrature formula follows from (2.31).

Using (2.27), we observe that if j 6= k

0 = ln(ξk, ξj) = λn(ξj)Kn(ξk, ξj). (2.36)

Since λn(ξj) > 0, Kn(ξk, ξj) = 0 holds for all j 6= k.
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3. BACKGROUND

Before we get to the proofs of the main results, we give brief introductions into

the areas we will use. In Section 3.1, we give an overview of de Branges spaces of

entire functions. In Section 3.2, we give some details of the theory of entire functions

of exponential type, as it features prominently in this work.

3.1. de Branges Spaces of Entire Functions

In this section the Hilbert space of entire functions associated with a function E

is defined and useful properties from this space are cited.

de Branges spaces are built around the Hermite-Biehler class. An entire function

E is said to belong to the Hermite-Biehler class if it has no zeros in the upper half-plane

C+ = {z : Im z > 0} and

|E(z)| ≥ |E(z̄)| for z ∈ C+. (3.1)

We write E ∈ HB. Recall that the Hardy space H2(C+) is the set of all functions g

analytic in the upper-half plane, for which

sup
y>0

∫
R
|g(x+ iy)|2dx <∞.

Given an entire function g, we let

g∗(z) = g(z̄). (3.2)

One interpretation of de Branges spaces is to see them as weighted versions of Paley

Wiener spaces. The reader may refer to [10] and [11]. Here, we recall the Paley-Wiener

theorem.
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Fix σ > 0, and let

f̂(k) = (2π)−1/2

∫
R
f(x)e−ikxdx

for f ∈ L2(−σ, σ). The function f̂ is called the Fourier transform of f , originally

defined as an element of L2(R), and extends to an entire function. Paley-Wiener space

PWσ is defined as the space of Fourier transforms f̂ of functions f from L2(R). The

Paley-Wiener theorem says that

PWσ = {F : C→ C : F entire,

∫
R
|F (x)|2dx <∞, |F (z)| ≤ CF e

σ|z|}. (3.3)

The de Branges space is defined in analogy to (3.3). It consists of the entire functions

F which are square integrable on the real line with respect to the weight function |E|−2

for E ∈ HB,

∫
R

∣∣∣∣F (x)

E(x)

∣∣∣∣2 dx <∞ (3.4)

and satisfy a growth condition. In the presence of (3.4) there are several ways to state

this condition. In the following section, we sum up the results which will be needed in

defining the de Branges spaces.

3.1.1. Preliminary Results

We will begin by defining the space N(C+), the space of functions of bounded

type.

Definition 3.1. A real valued function f(x + iy) defined on an open subset Ω ∈ C is

called harmonic in Ω if f is twice differential with respect to x and y; and the Laplacian

4f vanishes, i.e.

4f =
∂2f

∂2x
+
∂2f

∂2y
= 0.
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Definition 3.2. Let Ω ∈ C be open. A function f : Ω → [−∞,∞) is called subhar-

monic on Ω if

(i) f is upper semi-continuous, i.e. {x ∈ Ω : f(x) < a} is open for all a ∈ R,

(ii) for every set A with compact closure A ∈ Ω and every continuous function h :

A→ R whose restriction to A is harmonic, if f ≤ h on ∂A, then f ≤ h on A.

The following theorem yields some important properties about harmonic and

subharmonic functions.

Theorem 3.3. Let Ω ∈ C be an open set.

(i) A continuous function f : Ω → R is harmonic if and only if for any closed disk

{z + reiφ : φ ∈ (0, 2π], r ∈ [0, R]} with center z and radius R contained in Ω

f(z) =
1

2π

∫ 2π

0

f(z +Reiφ)dφ.

(ii) An upper semi-continuous function f : Ω → R is subharmonic if and only if for

any closed disk {z + reiφ : φ ∈ (0, 2π], r ∈ [0, R]} with center z and radius R

contained in Ω

f(z) ≤ 1

2π

∫ 2π

0

f(z +Reiφ)dφ.

In this case,

0 ≤ 1

2π

∫ 2π

0

f(z + reiφ)dφ ≤ 1

2π

∫ 2π

0

f(z +Reiφ)dφ

holds for all r < R.

(iii) A function f : Ω→ R in C2(Ω) is subharmonic if and only if 4u ≥ 0.

(iv) Let f be an analytic function on a region Ω. Then f, f̄ ,Re f, Im f are harmonic
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and

log+|f(z)| = max{log|f(z)|, 0}

is subharmonic on Ω.

Definition 3.4. A harmonic function h on a region Ω is called harmonic majorant of

a subharmonic function f 6≡ −∞, if h ≥ f on Ω.

Theorem 3.5. Let Ω be a simply connected region of C and f be an analytic function

on Ω. Then the following assertions are equivalent.

(i) There exist analytic and bounded functions g and h on Ω such that f = g
h

.

(ii) log+|f(z)| has a harmonic majorant on Ω.

Definition 3.6. A function f defined and analytic on a simply connected region Ω is

said to be of bounded type in Ω, if it satisfies the equivalent conditions in Theorem 3.5.

The space of all functions of bounded type on Ω is denoted N(C+).

Before we introduce a subset of N(C+), we will state the Nevanlinna’s factoriza-

tion of functions of bounded type in a half plane. The following results are mainly

from the book [12].

Definition 3.7. An analytic function on C+ is called outer if

f(z) = α exp

(
1

πi

∫
R

(
1

t− z
− t

1 + t2

)
logK(t)dt

)

where |α| = 1, K(t) > 0 and

∫
R

| logK(t)|
1 + t2

dt <∞. (3.5)

A function of the form

f(z) = α

(
z − i
z + i

)n∏
j∈J

|z2
j + 1|
z2
j + 1

z − zj
z − z̄j
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is called a Blascke product where |α| = 1, n ≥ 1, zj ∈ C+�{i} for all j ∈ J , J ⊂ N.

An empty product is defined as 1. The set {zj} forms the zeros of the function f(z),

and written in the rectangular form zj = xj + iyj, they satisfy that

∑
j∈J

yj
x2
j + (yj + 1)2

<∞. (3.6)

Theorem 3.8. Let f(z) ∈ N(C+), f 6≡ 0. Then

f(z) = eiαe−ihzB(z)F (z)S1(z)/S2(z), (3.7)

where α, h ∈ R, B(z) is a Blaschke product, F (z) is an outer function, and S1(z) and

S2(z) are functions of the form

S1,2(z) = exp

(
− 1

πi

∫
R

(
1

t− z
− t

1 + t2

)
dµ1,2(t)

)

where µ1,2 are singular and mutually singular nonnegative Borel measures on the real

line satisfying

∫
R

1

1 + t2
dµ1,2(t) <∞. (3.8)

Except for the choice of α, the factorization (3.7) is unique. Every function of the form

(3.7) is in N(C+).

The number h in the above theorem which is associated with the function f(z) ∈

N(C+) deserves a special name as it is frequently used in the literature.

Definition 3.9. The number h in the Theorem 3.8 is called the mean type of the

function f .

Definition 3.10. The functions in N(C+) for which h ≤ 0 form a subclass of N(C+)

called N+(C+).

Proposition 3.11. Let f(z) ∈ N(C+), f 6≡ 0. Then in (3.7) the singular factor S2 ≡ 1
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if and only if f(z) ∈ N+(C+).

After this introduction of preliminary results we can finally define de Branges

spaces. Before giving an explicit definition, let us remind that there are various ways

to define this space; and the following proposition, proof of which is contained in [13],

summarizes the most basic ones.

Proposition 3.12. Suppose that F is entire and (3.4) holds. Then the followings are

equivalent:

(i) |F (z)/E(z)|, |F ∗(z)/E(z)| ≤ CF (Im z)−1/2 for all z ∈ C+.

(ii) F/E, F ∗/E ∈ N+(C+).

(iii) F/E, F ∗/E ∈ H2(C+).

Definition 3.13. The de Branges space H(E) corresponding to the entire function

E ∈ HB, is the set of all entire functions f such that, in addition to (3.4), one of the

above conditions are satisfied.

In de Branges book [10], the condition (ii) is required to define H(E). Condition

(i) is used in [14], while (iii) gives the most famous description of the space H(E).

The space H(E) is a vector space over complex numbers, and the next theorem

shows that any space H(E) contains nonzero elements.

Theorem 3.14. H(E) endowed with the inner product

(F,G) =

∫
R
F (x)G(x)

dx

|E(x)|2
, (3.9)

is a Hilbert space. Moreover, for any ζ ∈ C, point evaluation is a bounded linear

functional. More explicitly, the entire function K(ζ, .) given by

K(ζ, z) = Kζ(z) =
i

2π

E(ζ)E(z)− E(ζ̄)E(z̄)

(z − ζ̄)
(3.10)
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belongs to H(E) for every ζ ∈ C, and (K(ζ, .), F ) = F (ζ) for all F ∈ H(E).

It is possible to give an abstract definition of a de Branges space. One useful

alternative involves the reproducing kernel K(ζ, z) defined in terms of E. Then H(E)

is the set of all entire functions g with

||g||E =

(∫
R

∣∣∣ g
E

∣∣∣2)1/2

<∞ (3.11)

and

|g(ζ)| ≤ K(ζ, ζ)1/2||g||E for all ζ ∈ C. (3.12)

Example Eσ = e−iσz is a function from HB. With this setting, we obtain the classical

de Branges space: H(Eσ) = PWσ with the norm

||g||L2(R) =

(∫
R
|g|2
)1/2

.

Note also that the reproducing kernel K(ζ, .) for H(Eσ) = PWσ is the Dirichlet kernel,

K(ζ, .) = Dσ(ζ̄ − z) =
sin a(ζ̄ − z)

ζ̄ − z
.

Example Another familiar de Branges space is formed in [9]. Let

Ln(x, t) = (x− t)Kn(x, t),

where Kn(x, t) regarded as a function of t is the reproducing kernel of the space of

polynomials whose degree ≤ n− 1. Then, as shown in [9], Ln(ā, .) ∈ HB for Im a > 0.

After normalizing it, we set En,a =
√

2π Ln(ā,z)

|Ln(a,ā)|1/2 . The de Branges space H(En,a) is

the space of polynomials of degree ≤ n− 1.
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Here, and later on, we shall use the generic decomposition of a function E ∈ HB

as E = C − iS with

C
.
= E+E∗

2
, S

.
= iE−E

∗

2
.

Note that C(z) and S(z) are entire functions which are real for real z.

The notion of a phase function is important in the theory of de Branges spaces.

For E ∈ HB, there exists a continuous function φ(x) of real x such that E(x)eiφ(x)

is real for all values of x. The phase function φ associated with E is unique up to

an additive constant in πZ; and it is given by a continuous branch of −Im logE(x).

Throughout this paper, we may assume that E(z) has no zero in the closed upper half

plane. Then, for all x ∈ R,

φ′(x) =
d

dx
arctan

(
S(x)

C(x)

)
=

C2(x)

|E(x)|2
S ′(x)C(x)− C ′(x)S(x)

C2(x)

=
S ′(x)C(x)− C ′(x)S(x)

|E(x)|2
.

Since K(x, x) = 1
π
(S ′(x)C(x)− C ′(x)S(x)), we obtain that

φ′(x) =
πK(x, x)

|E(x)|2
> 0. (3.13)

Let α be a given real number; and let {sk} denote the increasing sequence such

that

φ(sk) = α + kπ, k ∈ Z. (3.14)

Then, the functions

{
K(sk,z)√
K(sk,sk)

}
k

form an orthonormal sequence inH(E), and the only

elements of H(E) which are orthogonal to K(sk,z)√
K(sk,sk)

for every k are constant multiples
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of eiαE(z)− e−iαE∗(z). If this function does not belong to H(E), then

∫
R

∣∣∣∣F (t)

E(t)
dt

∣∣∣∣2 =
∑
k

π|F (sk)|2

φ′(sk)|E(sk)|2
=
∑
k

|F (sk)|2

K(sk, sk)
, (3.15)

while for all z,

F (z) =
∑
k

F (sk)
K(sk, z)√
K(sk, sk)

. (3.16)

Furthermore, there is at most one real α ∈ [0, π) for which eiαE(z)−e−iαE∗(z) belongs

to H(E) [10, p.55].

3.2. Entire Functions of Exponential Type

Here we review some theory that we shall use about entire functions of exponential

type. Most of this results can be found in [15]. To begin with, we shall consider some

basic terms which help us understand how fast an entire function can grow. For a

general characterization of the growth, the function

Mf (r) = max
|z|=r
|f(z)|

is introduced. By the Maximum Principle, Mf (r) increases monotonically.

Before we define the order and the type of an entire function, let us recall the

following notation. An inequality h(r) < φ(r) which holds for sufficiently large values

of r, is called an asymptotic inequality, and write h(r) <as φ(r). If the same inequality

holds for some sequences of values rn →∞, then we shall write h(r) <n φ(r).

Definition 3.15. An entire function f(z) is called a function of finite order if Mf (r) <
as

exp(rk) for some k > 0. The order of an entire function f is the greatest lower bound

of those values of k for which the given asymptotic inequality is fulfilled. The order of

an entire function is denoted by ρ = ρf .
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It follows from the above definition that

er
ρ−ε

<n Mf (r) <
as er

ρ+ε

for all ε > 0. By taking the logarithm twice we deduce that

ρ = lim sup
r→∞

log logMf (r)

log r
. (3.17)

Definition 3.16. Let ρ be the order of an entire function f . The function is said to

have a finite type if for some A > 0 the inequality Mf (r) <
as eAr

ρ
is fulfilled. The

greatest lower bound for those values of A for which the latter asymptotic inequality is

fulfilled is called the type σ = σf of the function f .

Using a very similar argument, we obtain that

σf = lim sup
r→∞

logMf (r)

rρ
. (3.18)

If, for a given ρ > 0, the type of a function is infinite, then the function is of

maximal type; for 0 < σf <∞ the type is called normal or mean; for σf = 0 the type

is minimal.

Definition 3.17. Entire functions of order ρ = 1 and normal type σ are called

entire functions of exponential type σ.

Let us now consider a function f(z) which is analytic inside a sector D = {z =

reiθ : α < θ < β} and satisfies the estimate

Mfα,β(r) <as eAr
ρ

(3.19)

with Mfα,β(r) = sup{α<θ<β, |z|=r} |f(z)|.
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Definition 3.18. The function

hf (θ) = lim sup
r→∞

log |f(reiθ)|
rρ

(3.20)

is called the indicator function of f(z) with respect to the order ρ.

The indicator function hf (θ) describes the growth of the function f(z) along a

ray {z : argz = θ}. There are a couple of frequently used and basic results that the

indicator function satisfies.

Proposition 3.19. Let f and g be functions which are analytic in a sector D and

satisfy the estimate (3.19). Then,

hfg(θ) ≤ hf (θ) + hg(θ),

and

hf+g(θ) ≤ max(hf (θ), hg(θ)).

In the theory of the entire functions, functions of exponential type possess a

huge importance. According to the Phragmen- Lindelöf theorem, every function f

analytic and of exponential type σ in the upper half plane C+ which is bounded by

some constant M on the real axis, satisfies the inequality

|f(x+ iy)| ≤Meσy, y ≥ 0.

In this work, entire functions that are bounded on the real axis in a weaker sense are

pointed out as well.

Definition 3.20. By the Cartwright class C we mean the class of all entire functions
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of exponential type satisfying the inequality

∫
R

log+ |f(t)|
1 + t2

dt <∞.

The following theorem of Krein presents a characterization of the class C.

Theorem 3.21. An entire function f belongs to the class C if and only if f belongs to

the classes N(C+) and N(C−), i.e., log |f(z)| have positive harmonic majorants in the

upper and lower half-planes C+ and C−.

To study the growth and the distribution of zeros of functions class C, one should

look at the book [15]. Here, we concentrate on the representation of log |f(z)| for f ∈ C.

Definition 3.22. A set of disks {Cj}∞j=1, centered at points zj of the upper half plane

and of radii ρj is called a set of finite view if

∞∑
j=1

ρj
rj
<∞,

where rj = |zj|.

Theorem 3.23. Every function f(z) of class C satisfies the following relations:

log |f(z)| = σ+y + o(|z|), y ≥ 0,

log |f(z)| = σ−y + o(|z|), y ≤ 0,

for some real numbers σ+ and σ−, everywhere outside a system of exceptional disks of

finite view.

It follows from Theorem 3.23 that if f(z) belongs to the class C, then the limit

lim
r→∞

log |f(reiθ)|
r

=

 σ+ sin θ, 0 ≤ θ ≤ π

σ−| sin θ|, π ≤ θ ≤ 2π
(3.21)
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exists for almost all θ ∈ [0, 2π]. Indeed, for any ε > 0, one can choose sufficiently

large Rε such that the sum of openings of the angles at which the exceptional disks

Cj centered outside the disk {z : |z| < Rε} are viewed, is less than ε. Relation (3.21)

holds for all θ such that the ray argz = θ does not belong to these angles. Since ε is

an arbitrary small number, the limit in (3.21) exists almost everwhere in [0, 2π].

Let n(f, r) denote the number of zeros of a function f in the ball with center 0

and radius r, counting multiplicity. By the famous Jensen formula,

log |f(0)| = 1

2π

∫ 2π

0

log |f(Reiψ)|dψ −
∫ R

0

n(t)

t

for functions f that is analytic in the disk {z : |z| ≤ R} such that f(0) 6= 0.

It follows directly from the Jensen formula that

log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(Reiψ)|dψ.

If f is an entire function with |f(0)| = 1, then for r > 0 we have

logMf (er) ≥
∫ er

0

n(t)

t
dt ≥

∫ er

r

n(t)

t
dt ≥ n(r),

and thus

n(r) < logMf (er).

To study the distribution of zeros of an entire function of class C, we need the

following lemma.

Lemma 3.24. Let n(t) be a nondecreasing function for t > 0, let n(t) = 0 for 0 ≤ t ≤ ε,
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for some positive number ε, and let there exists α > −2 such that

ψ(R) =
1

Rα+2

∫ R

0

tαn(t)dt (3.22)

approaches the limit d as R→∞. Then the function n(R)
R

approaches the limit (α+2)d

as R→∞.

The proof of the lemma is contained in [15]. Here, we use this lemma to show

the following result.

Theorem 3.25. If f(z) belongs to the class C, and it is real valued on the real axis

with f(0) 6= 0, then

lim
r→∞

nf (R)

R
= 2

σ

π
. (3.23)

Proof. According to Theorem 3.23, we have an asymptotic estimate of log |f(reiθ)| for

each f ∈ C. The hypothesis that f being real valued on the real axis, yields that

σ+ = σ− = σ by Schwarz’s lemma where σ is the exponential type of f(reiθ). In other

words, hf (θ) = σ| sin θ| exists for almost all θ ∈ [0, 2π].

Using the Jensen formula, we obtain that

∫ R

0

n(t)

t
=

1

2π

∫ 2π

0

log |f(Reiψ)|dψ − log |f(0)|

=
1

2π

∫ 2π

0

Rσ| sinψ|dψ − log |f(0)|

= 2R
σ

π
− log |f(0)|.

outside a set of exceptional disks of finite view. Since the left hand side is a monotonic

function of R, the above equality holds for all R.
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Therefore,

lim
R→∞

1

R

∫ R

0

n(t)

t
dt = 2

σ

π
. (3.24)

The relation (3.23) is a consequence of the lemma 3.24.

We now discuss theorems of Phragmen- Lindelöf type. For these results, see [15].

Theorem 3.26. If f(z), z = x+ iy, is an analytic function in the half-plane C+ such

that, for all ε > 0,

Mf (r) <
as e(σ+ε)r,

and |f(z)| ≤M on the real axis, then

|f(x+ iy)| ≤Meσy. (3.25)

Remark The estimate given by (3.25) is sharp. Functions of the type f(z) = Mγe−iσz,

|γ| = 1 attains the upper bound.

Remark If f(z) is an entire function of exponential type σ, and |f(x)| ≤ M , −∞ <

x <∞, the estimate (3.25) holds in the whole complex plane.

If we require f ∈ L2(R) instead of its boundedness along the real axis, we obtain

another estimate. For this, we first recall Plancherel- Polya theorem.

Theorem 3.27. (Plancherel- Polya Theorem) Let f(z) be an analytic function in the

upper half-plane {y > 0}, continuous up to the real axis, and let

|f(z)| <as e(σ+ε)|z|,
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for an arbitrary ε > 0. If

∫
R
|f(x)|pdx = M <∞, p > 0, (3.26)

then

∫
R
|f(x+ iy)|pdx ≤Mepσy,

for an arbitrary y > 0.

When f is an entire function of exponential type, Theorem 3.27 takes the following

form.

Remark If f(z) is an entire function of exponential type σf such that

∫
R
|f(x)|pdx ≤M, (3.27)

for some p > 0 then Theorem 3.27 yields that

∫
R
|f(x+ iy)|pdx ≤ epσ|y|||f ||pLp(R).

Therefore, we have

∫ 1

−1

∫
R
|f(x+ i(y + s))|pdxds ≤ 2ep(1+|y|)||f ||pLp(R),

for any y ∈ R. Since |f |p is a subharmonic function, we obtain

|f(x+ iy)|p ≤ 2

π
eσp(|y|+1)||f ||pLp(R). (3.28)
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4. UNIVERSALITY LAWS

In the previous chapters, we have explored several results from various fields. We

would like note that all of them will be put in action in this chapter. We now begin to

study the main theorems which are presented in the introduction.

4.1. Notation

We will record the notation that will be used throughout this chapter. Indepen-

dent constants will be denoted by C,C1, C2, . . .. We write C = C(α) to denote the

dependence on the parameter α. We use ∼ in the following sense: given real sequences

{cn}, {dn}, we write

cn ∼ dn

if there exist positive constants C1, C2 with

C1 ≤
cn
dn
≤ C2.

Throughout the entire section, µ denotes a finite positive Borel measure with not

necessarily compact support on the real line; and J will be the compact set in Theorem

1.1. The corresponding orthonormal polynomials are denoted by {pn}∞n=0, so that

∫
pnpmdµ = δmn.

We denote the zeros of pn by

xn,n < xn−1,n < · · · < x2,n < x1,n.
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The reproducing kernel Kn(x, t) is defined in the following way:

Kn(x, t) =
n−1∑
k=0

pk(x)pk(y).

and the normalized kernel is

K̃n(x, y) = µ′(x)1/2µ′(y)1/2Kn(x, y).

We let

Ln(x, t) = (x− t)Kn(x, t)

=
γn−1

γn
(pn(x)pn−1(t)− pn−1(x)pn(t)). (4.1)

The nth Christoffel function is

λn(x) = 1/Kn(x, x) = inf
deg(P )≤n−1

∫
P 2dµ

P 2(x)
.

By the Gauss quadrature formula, whenever P is a polynomial of degree ≤ 2n− 1,

n∑
j=1

λn(xjn)P (xjn) =

∫
Pdµ.

We shall need another Gauss type of quadrature formula. Given a real number ξ, there

are n or n− 1 points tjn = tjn(ξ), one of which is ξ, such that

∑
j

λn(tjn)P (tjn) =

∫
Pdµ, (4.2)

whenever P is a polynomial of degree ≤ 2n− 2. The {tjn} are zeros of

Ln(ξ, t) =
γn−1

γn
(pn(ξ)pn−1(t)− pn−1(ξ)pn(t)),
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regarded as a function of t. Because we consider a sequence {ξn} of points in J, rather

than a fixed ξ, we use the quadrature rule that includes ξn, so that

tjn = tjn(ξn) for all j.

We set t0n = ξn, and order the {tjn}, treated as the origin:

· · · < t−2,n < t−1,n < t0n = ξn < t1n < · · · .

The sequence {tjn} consists of either n or n−1 points, and it is possible that all tjn lie to

the left or right of ξn. As it was proven in the first section, when (pnpn−1)(ξn) 6= 0,then

one zero of Ln(ξn, t) lies in (xjn, xj−1,n) for each j, and the remaining zero lies outside

(xnn, x1n). For the given sequence {ξn} in J , we shall define for n ≥ 1,

fn(a, b) =
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

Kn(ξn, ξn)

and

L̃n(a, b) = (a− b)fn(a, b). (4.3)

The zeros of

fn(0, t) =
Kn(ξn, ξn + t

K̃n(ξn,ξn)
)

Kn(ξn, ξn)

will be denoted by {ρjn}j 6=0. Since {tjn} = {tjn(ξn)} are the zeros of Ln(ξn, t), we have

ρjn = K̃n(ξn, ξn)(tjn − ξn).

We set

ρ0n = 0,
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corresponding to t0n = ξn. For an appropriate subsequence S of integers, we set

f(a, b) = lim
n→∞,n∈S

fn(a, b).

The zeros of f(0, .) will be denoted by {ρj}j 6=0 and we set ρ0 = 0. Our ordering of zeros

is

· · · ≤ ρ−2 ≤ ρ−1 < ρ0 = 0 < ρ1 ≤ ρ2 ≤ · · · .

4.2. Normality

We begin with a consequence of Bernstein’s growth inequality for polynomials

in the complex plane. Throughout this section, J is as in Section 4.1, while {ξn} is

a sequence in J . We shall assume the hypotheses of Theorem 1.1, however, shall not

assume (1.2).

Lemma 4.1. Let [c, d] be a real interval and K be a compact subset of (c, d). Let

A, η > 0 and

Γ = sup
x∈K

1√
(d− x)(x− c)

.

There exists η0 = η0(A,K, η,Γ) such that for η ≥ η0, polynomials P of degree n, x ∈ K

and |a| ≤ A,

∣∣∣P (x+ i
a

n
)
∣∣∣ ≤ e(1+η)Γ|a|||P ||L∞[c,d]

. (4.4)

Proof. We will consider the case [c, d] = [−1, 1]. The general case follows by a linear

transformation. Let x ∈ K, and z = x+ i a
n
. We will use Bernstein’s inequality,

|P (z)| ≤
∣∣∣z +

√
z2 − 1

∣∣∣n ||P ||L∞[−1,1]. (4.5)
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We have

∣∣∣x+
√
x2 − 1

∣∣∣ =
∣∣∣x+ i

√
1− x2

∣∣∣
=
√
x2 + (1− x2) = 1.

Therefore,

log
∣∣∣z +

√
z2 − 1

∣∣∣ = Re

∫ x+i a
n

x

(
d
du

(u+
√
u2 − 1)

u+
√
u2 − 1

)
|u=x+is

du


= Re

(∫ a/n

0

d

du
log(u+

√
u2 − 1)|u=x+isids

)

= Re

(∫ a/n

0

1√
u2 − 1|u=x+is

ids

)

=
1√

1− x2
Re

∫ a/n

0

ds√
1 + s2−2ixs

1−x2


=

1√
1− x2

(
a

n
+O

(a
n

)2

/(1− x2)

)
.

Substituting this result into (4.5), we obtain (4.4).

Lemma 4.2. For n ≥ 1, let

fn(u, v) =
Kn(ξn + u

K̃n(ξn,ξn)
, ξn + v

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
.

(i) {fn(u, v)} is uniformly bounded for u, v in compact subsets of the plane.

(ii) Let f(u, v) denote the locally uniform limit of some subsequence {fn(u, v)}n∈S of

{fn(u, v)}∞n=1. Then, for each fixed real number u, f(u, .) is an entire function

of exponential type. Moreover, for some C1 and C2 independent of u, v, and the

subsequence S,

|fn(u, v)| ≤ C1e
C2(|Im u|+|Im v|).

(iii) For each fixed real number u, f(u, .) has only real zeros.
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Proof. (i) According to the assumptions we made in Section 4.1, µ is absolutely con-

tinuous in some open set O containing the compact set J , and µ′ is bounded above and

below there. As J is covered by finitely many open intervals in O, by increasing the

size of J , we may assume that J consists of finitely many compact intervals. It then

suffices to consider the case where J is just one interval. By the absolute continuity of

µ in O and the boundedness of µ′ there, we have the following bound

Kn(x, x)−1 = λn(x) ∼ 1

n
, (4.6)

uniformly in n, and in each compact subset of O. Since we have the freedom of reducing

the size of O, we can assume that this holds in O. By Cauchy-Schwarz, we have

1

n
|Kn(ξ, t)| ≤

(
1

n
Kn(ξ, ξ)

)1/2(
1

n
Kn(t, t)

)1/2

≤ C

for ξ, t ∈ O. We apply the Bernstein’s growth lemma in the plane (4.4) in each variable

separately, and then for each ξ, t ∈ O, |a|, |b| ≤ A and n ≥ n0(A), we have

1

n

∣∣∣∣Kn

(
ξ + i

a

n
, t+ i

b

n

)∣∣∣∣ ≤ CeC2(|a|+|b|). (4.7)

(Normally, we have to take a slightly smaller set than O; but we can take care of that

problem by relabelling.) In (4.7), the constants C and C2 are independent of A, ξ, t, a, b.

If u, v lie in a bounded subset of the plane, and ξ ∈ O, then for n large enough, we

write ξ + u
n

= ξ + Re(u)
n

+ i Im (u)
n

, where ξ + Re(u)
n

is contained in a slightly large open

set than O. Again, we relabel the open set O. Then, (4.7) takes the form

1

n

∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ CeC2(|Im u|+|Im v|).

Recalling that µ′ ∼ 1 in O, we have

K̃n(ξn, ξn) = µ′(ξn)Kn(ξn, ξn) ∼ n.
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Therefore, we see that for |u|, |v| ≤ A and n ≥ n0(A)

|fn(u, v)| ≤ C1e
C2(|Im u|+|Im v|), (4.8)

where C1, C2 are independent of n, u, v, A; which yields the stated uniform bounded-

ness.

(ii) By (4.8) {fn(u, v)}∞n=1 is a normal family of two variables u, v; i.e., the given

family contains a subsequence which converges uniformly on compact subset of C to a

continuous function. If f(u, v) is the locally uniform limit through the subsequence S

of integers, then f(u, v) is an entire function in u, v satisfying for all complex u, v,

|f(u, v)| ≤ C1e
C2(|Im u|+|Im v|). (4.9)

In particular, f(u, v) is bounded for u, v ∈ R, and is an entire function of exponential

type in each variable.

Lemma 4.3. (i) Uniformly for u ∈ R,

f(u, u) ∼ 1. (4.10)

(ii) Assume

lim
ε→0+

1

2ε

∫ ξn+ε

ξn−ε
|w(t)− w(ξn)|dt = 0. (4.11)

Then for all u ∈ C,

∫ ∞
−∞
|f(u, s)|2ds ≤ f(u, ū). (4.12)

(iii) For each a ∈ R, f(a, .) has infinitely many real zeros.
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Proof. (i) By (4.6), we have

C1 ≤
Kn(ξn + t, ξn + t)

Kn(ξn, ξn)
≤ C2

for some ε > 0, for |t| ≤ ε, and for large n. Let us note that w(ξn) 6= 0 for any ξn ∈ J ;

and w is bounded in J . Then,

f(u, u) = lim
n→∞,n∈S

Kn(ξn + u
K̃n(ξn,ξn)

, ξn + u
K̃n(ξn,ξn)

)

Kn(ξn, ξn)

yields (4.10) for any u ∈ R.

(ii) The identity

Kn(s, s̄) =

∫
R
Kn(s, t)Kn(s̄, t)dµ(t)

=

∫
R
Kn(s, t)Kn(s̄, t̄)dµ(t)

=

∫
R
|Kn(s, t)|2dµ(t),

is valid for all s ∈ C. Let r > 0. Using the above identity, we write;

1 ≥
∫ ξn+ r

K̃n(ξn,ξn)

ξn− r
K̃n(ξn,ξn)

|Kn(s, t)|2

Kn(s, s̄)
w(t)dt (4.13)

= w(ξn)

∫ ξn+ r
K̃n(ξn,ξn)

ξn− r
K̃n(ξn,ξn)

|Kn(s, t)|2

Kn(s, s̄)
dt+

∫ ξn+ r
K̄n(ξn,ξn)

ξn− r
K̄n(ξn,ξn)

|Kn(s, t)|2

Kn(s, s̄)
(w(t)− w(ξn))dt

= I1 + I2.

Applying Cauchy- Schwarz inequality and the upper bound (4.7),

|Kn(s, t)|2

Kn(s, s̄)
≤ Kn(t, t) ≤ Cn. (4.14)
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By (4.14) and (4.6),

|I2| ≤ Cn

∫ ξn+ r
K̃n(ξn,ξn)

ξn− r
K̃n(ξn,ξn)

|w(t)− w(ξn)|dt

≤ CK̃n(ξn, ξn)

r

∫ ξn+ r
K̃n(ξn,ξn)

ξn− r
K̃n(ξn,ξn)

|w(t)− w(ξn)|dt

→ 0, n→∞,

by (4.11). We now do the following substitutions:

s = ξn + u
K̃n(ξn,ξn)

, t = ξn + y

K̃n(ξn,ξn)
.

Then,

I1 =

∫ r

−r

∣∣∣∣∣∣
Kn

(
ξn + u

K̃n(ξn,ξn)
, ξn + y

K̃n(ξn,ξn)

)
Kn(ξn, ξn)

∣∣∣∣∣∣
2

Kn(ξn, ξn)

Kn(s, s̄)
dy.

Since the integrand tends to the limit |f(u,u)|2
f(u,ū)

as n→∞ through S, we have

lim inf
n→∞,n∈S

I1 ≤
∫ r

−r

|f(u, y)|2

f(u, ū)
dy.

Substituting into (4.13) yields

1 ≥
∫ r

−r

|f(u, y)|2

f(u, u)
dy.

Finally, we may let r →∞ to obtain the desired result.

(iii)We already showed that f(a, .) has only real zeros in Lemma 4.2. These zeros

of f(a, .) will be named in the later results. Here, we write f(a, .) as a product of its

zeros.

By being the limit of polynomials with increasing degrees, f(a, .) is non-constant,
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and not a polynomial. We also know that f(a, .) is real on the real axis. Under the

assumption (4.11) we have just shown that it belongs to L2(R). Moreover, f(a, a) 6= 0.

By (4.9), we have

|f(a, t)| ≤ CeC1(|Im a|+|Im t|) ≤ C

which yields that f(a, .) belongs to the Cartwright class. We can then write [15, p. 130]

f(a, a+ z) = f(a, a) lim
R→∞

∏
b:|b|<R and f(a,a+b)=0

(
1− z

b

)
.

4.3. Proof of Theorems 1.1 and 1.2

In this section we shall be concerned almost exclusively with the properties of

the limit function f(u, v). We begin with recalling that f(a, .) is entire function of

exponential type for each real a. Let us call it σa. Firstly, we show that this exponential

type is independent of a; although it could possibly depend on {ξn} and the subsequence

S.

Lemma 4.4. For a ∈ R, let n(f(a, .), r) denote the number of zeros of f(a, .) in the

ball center 0, radius r, counting multiplicity. Then for any real a, we have as r →∞,

n(f(a, .), r)− n(f(0, .), r) = O(1). (4.15)

Consequently,

σa = σ0 = σ, and . (4.16)

Moreover, for all a ∈ R, f(a, .) ∈ L2
σ.
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Proof. In order to calculate the difference (4.15), we recall the proof of Theorem 2.18

which deals with the zeros of the function

ψn(ξ, t) =

(
γn−1

γn

)−1

Kn(ξ, t)(ξ − t) = pn(t)pn−1(ξ)− pn−1(t)pn(ξ).

Given ξ ∈ R, with pn−1(ξ)pn(ξ) 6= 0, ψn(ξ, t) has, as a function of t, simple zeros in

each of the intervals

(xn,n, xn−1,n), (xn−1,n, xn−2,n), . . . , (x2,n, x1,n).

There is just one zero lying outside [xn,n, x1,n]. When pn−1(ξ)pn(ξ) = 0, ψn(ξ, t) is a

multiple of pn or pn−1. As zeros of the latter polynomials interlace, then ψn(ξ, t) has a

simple zero in each of the intervals

[xn,n, xn−1,n), [xn−1,n, xn−2,n), . . . , [x2,n, x1,n).

We then deduce that, regardless of ξ, the number j of zeros of Kn(ξ, t) in [xm,n, xk,n]

satisfies

|j − (m− k)| ≤

 0 if pn−1(ξ)pn(ξ) 6= 0

1 if pn−1(ξ)pn(ξ) = 0

Consider now

fn(a, t) = Kn

(
ξn +

a

K̃n(ξn, ξn)
, ξn +

t

K̃n(ξn, ξn)

)
/Kn(ξn, ξn)

and

fn(0, t) = Kn

(
ξn, ξn +

t

K̃n(ξn, ξn)

)
/Kn(ξn, ξn)

as functions of t. In any fixed interval [−r, r], it follows that the difference between

the number of zeros of these two functions is at most 2. Letting n→∞ through S we
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obtain (4.15). Then (4.16) follows from (3.23). Finally, since f(a, .) ∈ L2(R) under the

assumption (4.11), we have f(a, .) ∈ L2
σ.

Lemma 4.5. Assume (4.11). Then we have for all a ∈ R,

∫
R

(
f(a, s)

f(a, a)
− sinσ(a− s)

σ(a− s)

)2

ds ≤ 1

f(a, a)
− π

σ
(4.17)

and

σ ≥ π sup
a∈R

f(a, a) ≥ π. (4.18)

Proof. In order to show (4.17), we firstly recall an important identity for L2
σ that we

will use. For any g ∈ L2
σ, we have the following reproducing kernel identity;

g(x) =

∫
R
g(t)

sinσ(x− t)
σ(x− t)

dt, x ∈ R. (4.19)

In particular, setting g(t) = sinσ(x−t)
σ(x−t) , we shall also use,

∫
R

(
sinσ(x− s)
σ(x− s)

)2

ds = 1. (4.20)

We now expand the square at the left hand side of (4.17), and see that

1

f(a, a)2

∫
R
f(a, s)2ds− 2

f(a, a)

∫
R
f(a, s)

sinσ(a− s)
σ(a− s)

ds+

∫
R

(
sinσ(a− s)
σ(a− s)

)2

ds

≤ 1

f(a, a)
− 2

π

σ
+
π

σ
,

by (4.12), and the identities (4.19) and (4.20) which are applicable since f(a, .) ∈ L2
σ.
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Since the left-hand side of (4.17) is non-negative, we obtain for all real a,

σ ≥ πf(a, a).

As f(0, 0) = 1, we then obtain (4.18).

We are now ready to consider the properties of the zeros of f(0, z). Recall from

Section 4.1, The Gauss type quadrature formula, with nodes {tjn} including the point

ξ = ξn:

∑
j

λn(tjn)P (tjn) =

∫
P (t)dµ(t),

for all polynomials P of degree ≤ 2n− 2. Recall that we order the nodes as

· · · < t−2,n < t−1,n < t0,n = ξn < t1,n < t2,n < · · ·

and write

tjn = ξn +
ρjn

K̃n(ξn, ξn)
(4.21)

where {ρjn}j 6=0 are the zeros of fn(0, t).

Lemma 4.6. (i) For each fixed j, as n→∞ through S,

ρjn → ρj,

where ρ0 = 0 and

· · · ≤ ρ−2 ≤ ρ−1 < 0 < ρ1 ≤ ρ2 ≤ · · · .
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(ii) There exists C1 such that for all integers j,

ρj − ρj−1 ≤ C1.

(iii) The function f(0, z) has (possibly multiple) zeros at ρj, j 6= 0, and no other zeros.

Proof. (i), (iii) We already know that f(0, z) has infinitely many zeros, and is not

identically zero. We also know that fn(0, z) = Kn(ξn, ξn + z
K̃n(ξn,ξn)

)/Kn(ξn, ξn) has

simple zeros at ρjn, and no other zeros. Since fn(0, z) converges uniformly to f(0, z)

on compacta through the subsequence S, the result then follows by Hurwitz’ Theorem.

(ii) We will use two results from [5]. By Markov- Stieltjes inequalities [5, p. 33, (5.10)]

∫ tj,n

tj−1,n

w ≤
∫ tjn

tj−1,n

dµ ≤ λn(tj−1,n) + λn(tjn)

holds true for any j. Fixing j, and using our upper bounds for the Christoffel function,

valid in an open set containing J , and the fact that each point of J is a limit point

of zeros [5, p. 67], we see that the last right hand side is O( 1
n
). Furthermore, by

hypothesis, w is bounded below in an open set containing J . It follows that n > n0(j),

tj,n − tj−1,n ≤
C

n
.

We note that C does not depend on j, since it arises from the upper bound for the

Christoffel functions and the lower bound for w. Then from (4.21) and (4.6), for

n ≥ n0(j),

ρj,n − ρj−1,n ≤ C.

Letting n→∞ through S gives the result.

Lemma 4.7. Assume (4.11) and let

Λ = sup
x∈R

f(x, x).
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For each real a, f(a, .) is entire of exponential type σ = πΛ.

Proof. In view of Lemma 4.4, it suffices to show that f(0, .) is entire of exponential

type σ = πΛ. To this end, we shall consider the zero distribution of f(0, .). Here, we

again use the Markov- Stieltjes inequalities: for each 1 ≤ l ≤ n,

l−1∑
j=1

λn(tj,n) ≤
∫ tl,n

−∞
dµ ≤

tl,n∑
j=1

λn(tj,n).

Writing the same equation for k > l, and subtracting the relevant parts of the inequal-

ities,

k−1∑
j=l+1

λn(tj,n) ≤
∫ tk,n

tl,n

dµ(t).

Assume that tl,n, tk,n ∈ O. Then by the absolute continuity of µ in O, and the substi-

tution t = ξn + s
K̃n(ξn,ξn)

, we obtain

k−1∑
j=l+1

Kn(ξn, ξn)

Kn(tj,n, tj,n)
≤
∫ ρk,n

ρl,n

w(ξn + s
K̃n(ξn,ξn)

)

w(ξn)
ds.

Notice that

∫ ρk,n

ρl,n

w(ξn + s
K̃n(ξn,ξn)

)

w(ξn)
=
K̃n(ξn, ξn)

w(ξn)

∫ ξn+
ρk,n

K̃n(ξn,ξn)

ξn+
ρl,n

K̃n(ξn,ξn)

w(t)dt (4.22)

We now consider the limit

lim
n→∞,n∈S

1

w(ξn)
K̃n(ξn, ξn)

∫ ξn+
ρk,n

K̃n(ξn,ξn)

ξn+
ρl,n

K̃n(ξn,ξn)

w(t)dt.

Letting ε = 1/K̃n(ξn, ξn) in (4.11), we deduce that

lim
n→∞

(
K̃n(ξn, ξn)

∫ ξn+
ρk,n

K̃n(ξn,ξn)

ξn+
ρl,n

K̃n(ξn,ξn)

w(t)dt− K̃n(ξn, ξn)

∫ ξn+
ρk,n

K̃n(ξn,ξn)

ξn+
ρl,n

K̃n(ξn,ξn)

w(ξn)dt

)
= 0.
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So, the right-hand side in (4.22) will be equal to

lim
n→∞

1

w(ξn)
K̃n(ξn, ξn)

∫ ξn+
ρk,n

K̃n(ξn,ξn)

ξn+
ρl,n

K̃n(ξn,ξn)

w(ξn)dt = lim
n→∞,n∈S

K̃n(ξn, ξn)
ρk,n − ρl,n
K̃n(ξn, ξn)

= ρk − ρl

Next, for each fixed j, as n→∞ through S,

Kn(tj,n, tj,n)

Kn(ξn, ξn)
=
Kn

(
ξn +

ρj,n
K̃n(ξn,ξn)

, ξn +
ρj,n

K̃n(ξn,ξn)

)
Kn(ξn, ξn)

= fn(ρj,n, ρj,n)

→ f(ρj, ρj).

Thus for each fixed k, l,

k−1∑
j=l+1

1

f(ρj, ρj)
≤ ρk − ρl.

As f(ρj, ρj) ≤ Λ for all j, we obtain

k − l − 1 ≤ Λ(ρk − ρl).

In particularly, ρl+2 − ρl ≥ C > 0, so f(0, .) has at most double zeros. Moreover,

because {ρj,n} are simple zeros of fn(0, .), ρk can only be a double zero of f(0, .) if it is

repeated in the sequence {ρj}. Then, in the interval [ρl, ρk], the total number of zeros

of f(0, .), namely k − l + 1 or k − l + 2 or k − l + 3, if 0 does not belong to [k, l], and

k − l or k − l + 1 or k − l + 2 if it does, is at most Λ(ρl − ρk) + 4. We now count the

zeros of f(0, .) in the interval [−r, r] whose number is denoted by n(r). Recall that

C1 ≤ ρj+2 − ρj ≤ C2 and the sequence of zeros {ρj} is infinite. Therefore, we can

pick a ρk which is bounded distance from r, and ρl a bounded distance from −r. We

obtain that n(r) is at most the number of zeros in [ρl, ρk] plus O(1), and hence at most
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Λ(ρl − ρk) +O(1). Thus,

n(r) ≤ 2Λr +O(1).

Then, recalling (3.23),

σ

π
= lim

r→∞

n(r)

2r
≤ Λ.

Together with our lower bound σ ≥ πΛ from Lemma 4.5, we obtain the result.

Remark Plugging σ
π

= Λ = supx∈R f(x, x) into the Lemma 4.5, we obtain

∫
R

(
f(a, s)

f(a, a)
− sinσ(a− s)

σ(a− s)

)2

ds ≤ 1

f(a, a)
− 1

supx∈R
.

In particular, if a attains the sup, so that f(a, a) = supx∈R f(x, x), then for all s ∈ R,

f(a, s)

f(a, a)
=

sinσ(a− s)
σ(a− s)

.

If the supremum is not attained at any finite point, then instead we obtain a sequence

{ak} with limk→∞ |ak| =∞ such that

lim
k→∞

∫
R

(
f(ak, s)

f(ak, ak)
− sinσ(ak − s)

σ(ak − s)

)2

ds = 0.

Note that we have not used the hypothesis (1.2) yet.

4.3.1. Proof of Theorem 1.2

Noting that

lim
a→b

sinπ(a− b)
π(a− b)

= 1,
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it is clear that (ii) implies (i). We now assume (i). Using the uniformity of (1.2) for

ξ ∈ J , and the fact that K̃n(ξn, ξn) ∼ n, our hypothesis (1.2) implies also that

lim
n→∞

fn(a, a) = lim
n→∞

Kn

(
ξn + a

K̃n(ξn,ξn)
, ξn + a

K̃n(ξn,ξn)

)
Kn(ξn, ξn)

= 1,

and by the uniformity in a,

f(a, a) = 1 for all real a.

Thus,

Λ = sup
x∈R

f(x, x) = 1.

Together with Lemma 4.7 this yields that , for each fixed a, f(a, .) is entire of expo-

nential type σ = π. By (4.17), we then obtain, for each real a,

∫
R

(
f(a, s)

f(a, a)
− sin π(s− a)

π(s− a)

)2

ds = 0,

that is

f(a, s) =
sin π(s− a)

π(s− a)
.

for all a, s ∈ R. Using the uniqueness theorem for entire functions, we get

f(a, b) =
sin π(a− b)
π(a− b)

for all a, b ∈ C. All in all,

lim
n→∞,n∈S

Kn(ξn + a
K̃n(ξn,ξn)

, ξn + b
K̃n(ξn,ξn)

)

Kn(ξn, ξn)
=

sinπ(a− b)
(a− b)

,
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uniformly for a, b in compact subsets of the plane. Since the limit function is indepen-

dent of the subsequence S, we obtain

lim
n→∞

Kn(ξn + a
K̃n(ξn,ξn)

, ξn + b
K̃n(ξn,ξn)

)

Kn(ξn, ξn)
=

sin π(a− b)
(a− b)

,

uniformly for a, b in compact subsets of the plane. Finally as {ξn} can be any sequence

in J , the conclusion (1.3) holds true uniformly for ξ ∈ J .

4.3.2. Proof of Theorem 1.1

Since w is assumed to be continuous at each point ξ ∈ J , we obtain (1.4) imme-

diately; and the uniformity of (1.4) follows easily from the continuity of w (regarded

as a function defined on all of supp(µ)) at each point of compact J .

4.4. de Branges Spaces of Entire Functions Associated with General

Measure µ

In this section, we shall prove four general theorems. Throughout the entire

section, we do not assume the hypotheses of Theorem 1.4. In particular, the measure

µ may not be absolutely continuous in some open set, nor bounded in its support

unless otherwise stated. Therefore, we may need to prove the same results that we

have proven in the previous section.

Firstly, recall the notation

fn(a, b) =
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
.

Theorem 4.8. Let µ be a measure with support on the real line, with all power moments∫
xjdµ(x), j ≥ 0 finite, and with infinitely many points in its support. Let {ξn} be a

sequence of real numbers. Assume that there is a non-real complex number a, and an
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infinite sequence of integers S, for which there exists

f(a, z) = lim
n→∞,n∈S

fn(a, z), (4.23)

uniformly in compact subsets of C, and that

f(a, a) 6= 0. (4.24)

Then

(i) There exists, for all z, v ∈ C,

f(z, v) = lim
n→∞,n∈S

fn(z, v),

and the limit is uniform for z, v in compact subsets of C.

(ii) Let

L(z, v) = (z − v)f(z, v).

For all complex α, β, z, v,

L(z, v)L(α, β) = L(α, z)L(β, v)− L(β, z)L(α, v). (4.25)

(iii) Let Im a > 0. Then for Im z > 0,

|f(a, z)| ≥ |f(a, z)|;

|L(a, z)| > |L(a, z)|. (4.26)

In particular, for Im z > 0,

|L(z, z)| > 0 and f(z, z) > 0. (4.27)
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(iv) If f(z, v) = 0, then Im z and Im v have the same sign. In particular, Im z > 0⇒

Im v > 0. Consequently, for Im a > 0, L(a, .) ∈ HB.

Proof. Recall from (4.1) and (4.3) that we set

Ln(u, v) = (u− v)Kn(u, v)

and

L̃n(a, b) = (a− b)fn(a, b)

= (a− b)
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

Kn(ξn, ξn)

=
(a− b)

Kn(ξn, ξn)
Kn(ξn +

a

K̃n(ξn, ξn)
, ξn +

b

Kn(ξn, ξn)
)

= µ′n(ξn)Ln(ξn +
a

K̃n(ξn, ξn)
, ξn +

b

Kn(ξn, ξn)
).

By expanding Ln(z, v) using Christoffel- Darboux formula, the following formula is

obtained for all z, v, α, β after the usual calculations:

Ln(z, v)Ln(α, β) = Ln(α, z)Ln(β, v)− Ln(β, z)Ln(α, v).

Clearly, we have the same formula for L̃n(z, v); i.e.

L̃n(z, v)L̃n(α, β) = L̃n(α, z)L̃n(β, v)− L̃n(β, z)L̃n(α, v)

for all z, v, α, β. Putting α = a and β = ā, we get

L̃n(z, v)L̃n(a, ā) = L̃n(a, z)L̃n(ā, v)− L̃n(ā, z)L̃n(a, v) (4.28)

Let us also recall that the sequence of functions {fn}∞n=1 satisfies the conjugate relation

fn(ā, z) = fn(a, z̄) and the symmetry fn(a, b) = fn(b, a). We now use our hypothesis
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(4.23) to obtain

lim
n→∞,n∈S

L̃n(a, z) = (a− z)f(a, z) = L(a, z);

lim
n→∞,n∈S

L̃n(ā, z) = (ā− z)f(ā, z) = L(ā, z);

lim
n→∞,n∈S

L̃n(a, ā) = L(a, ā).

Note that

L(a, ā) = 2i(Im a)f(a, ā) 6= 0,

by our hypothesis (4.24). Then using (4.28), we obtain

lim
n→∞,n∈S

L̃n(z, v) =
1

L(a, ā)
[L(a, z)L(ā, v)− L(ā, z)L(a, v)]

for z, v in compact subsets of C. This then yields that the limit

f(z, v) = lim
n→∞,n∈S

fn(z, v) =
L(a, z)L(ā, v)− L(ā, z)L(a, v)

L(a, ā)(z − v)
, (4.29)

exists uniformly for z, v in compact sets with z 6= v. We notice that

lim
z→v

(z − v)f(z, v) = lim
z→v

L(a, z)L(ā, v)− L(ā, z)L(a, v)

L(a, ā)
= 0,

and conclude that the singularity of the right hand side of (4.29) is removable. There-

fore, the limit in (4.29) is uniform for z, v on compacta.

(ii) This follows from (4.29) and part (i).

To prove (iii) and (iv), we will need the following lemma.

Lemma 4.9. (i) If Kn(z, w) = 0, then Im z and Im w have the same sign. In

particular, Im z > 0⇒ Im w > 0.
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(ii) Let Im a > 0. Then for Im z ≥ 0,

|Kn(ā, z)| ≥ |Kn(a, z)|; (4.30)

|Ln(ā, z)| ≥ |Ln(a, z)|. (4.31)

In particular, Ln(ā, .) ∈ HB.

Proof. When z is real, then all zeros of Kn(z, .) are real [5, p.19]. In this case, Im

z = Im w = 0. Before the general case, we show the following equality.

Ln(u, v) = (u− v)Kn(u, v)

=
γn−1

γn
pn(u)pn(v)[Gn(v)−Gn(u)]

where

Gn(u) =
pn−1(u)

pn(u)
=
γn−1

γn

n∑
j=1

λn(xj,n)p2
n−1(xj,n)

u− xj,n
.

Clearly, Gn(u) = pn−1(u)
pn(u)

. To prove the second inequality, we apply the Lagrange

interpolation to pn−1 at the zeros of pn, namely at the points {xj,n}. Then,

pn−1(z) =
n∑
j=1

pn−1(xj,n)pn(z)

p′n(xj,n)(z − xj,n)
. (4.32)

By the Christoffel-Darboux formula, we have

λ−1
n (x) = Kn(x, x) =

γn−1

γn
(p′n(x)pn−1(x)− pn(x)p′n−1(x)).

Setting x = xj,n,

λ−1
n (xj,n) =

γn−1

γn
p′n(xj,n)pn−1(xj,n).
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Substituting this into (4.32), we obtain the formula for Ln(u, v). Now, Kn(z, w) = 0

for non-real z yields that

Gn(z) = Gn(w),

as pnpn−1 has only real zeros. Taking the imaginary parts of the above equation, we

get

(Im z)
n∑
j=1

λn(xj,n)p2
n−1(xj,n)

|z − xj,n|2
= (Im w)

n∑
j=1

λn(xj,n)p2
n−1(xj,n)

|w − xj,n|2
.

Since both sums are positive, the result follows.

(ii) We will consider the function

h(z) := Kn(a, z)/Kn(ā, z)

is analytic for z in the closed upper-half plane, and on the real axis

|h(x)| = 1.

Moreover, the coefficients of the Taylor expansion about 0 of

Kn(ā, z) =
n∑
k=0

pk(ā)pk(z),

are the conjugates of

Kn(a, z) =
n∑
k=0

pk(z).

Then, as z →∞, |h(z)| → 1. Therefore,

|h(z)| ≤ 1 for Im z ≥ 0,
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by the maximum-modulus principle. This shows (4.30); and (4.31) follows from the

observation that

|ā− z| ≥ |a− z| for Im z ≥ 0.

(iii), (iv) By taking limits in the previous lemma, we get that

|f(ā, z)| ≥ |f(a, z)| and |L(ā, z)| ≥ |L(a, z)|, (4.33)

for Im z ≥ 0. Before we show the strict inequality in the latter inequality, we show the

assertion on zeros. Suppose that Im v > 0 and f(z, v) = 0. By Hurwitz’s Theorem,

there exist {zn} with fn(zn, v) = 0 and

lim
n→∞,n∈S

zn = z.

Lemma 4.9i then yields that Im zn > 0 which in turn implies that Im z ≥ 0. We now

prove that it is actually positive. Assume Im z = 0. By (4.29),

0 = L(a, z)L(ā, v)− L(ā, z)L(a, v)

= L(a, z)L(ā, v)− L(a, z)L(a, v). (4.34)

Define

h(u) =
L(a, u)

L(ā, u)
for Im u ≥ 0.

Notice that h is meromorphic in the upper-half plane which satisfies

|h(u)| ≤ 1 for Im u ≥ 0
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by (4.33) except perhaps at isolated poles which are in fact removable singularities

because of the local boundedness of h. Therefore, h is analytic in the upper half plane.

Moreover, |h(x)| = 1 for real x after we removed any possible isolated singularities on

R. Also,

|h(v)| =
∣∣∣∣L(a, v)

L(ā, v)

∣∣∣∣ =

∣∣∣∣∣L(a, z)

L(a, z)

∣∣∣∣∣ = 1

by (4.34). Since Im v > 0, the maximum-modulus principle shows that h = c in the

upper half plane, for some unimodular constant c. Then (4.29) takes the following

form:

f(u, v) =
cL(ā, u)L(ā, v)− L(ā, u)cL(ā, v)

L(a, ā)(u− v)
= 0,

for all u, v in the upper half plane. But this contradicts with the fact that f(0, 0) = 1.

So, Im z > 0, as desired.

We now show that |L(ā, z)| > |L(a, z)| for Im z > 0. Reminding that we have

(4.33), suppose that we have equality |L(ā, z)| = |L(a, z)| for some z in the open upper

half plane. Since we will follow the previous argument, we form

h(u) =
L(a, u)

L(ā, u)
,

which is analytic in the upper half plane, and has |h(u)| ≤ 1 there. According to our

assumption on z, |h(z)| = 1. Then, by the maximum-modulus principle, h = c for

some uni-modular constant c. As above, this yields a contradiction.

Theorem 4.10. Assume the hypotheses of Theorem 4.8. Fix a with Im a > 0, and let

Ea(z) =
√

2π
L(ā, z)

|L(a, ā)|1/2
.
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(i) Then all zeros of Ea lie in the lower half plane, and Ea ∈ HB. Moreover,

f(z, ζ̄) =
i

2π

Ea(z)Ea(ζ)− E∗a(z)E∗a(ζ)

z − ζ̄
. (4.35)

(ii) For all g ∈ H(Ea), and all z ∈ C, we have

g(z) =

∫
R
g(t)

f(z, t)

|Ea(t)|2
dt. (4.36)

Moreover, f(z, .) ∈ H(Ea) for all z ∈ C.

(iii) For any a,b with Im b > 0, H(Ea) = H(Eb) and the norms ||.||Ea and ||.||Eb are

equivalent.

Proof. (Theorem 4.10) (i) By Theorem 4.8iv we know that all zeros of Ea must lie in

the open lower half-plane. Besides,

|Ea(z)| > |Ea(z̄)| for Im z > 0,

by (4.26). Therefore, Ea ∈ HB. We also notice that

L(a, ā) = 2i(Im a)f(a, ā) = i|L(a, ā)|,

so the functional equation (4.25) yields

L(z, ζ̄)i|L(a, ā)| = L(a, z)L(ā, ζ̄)− L(ā, z)L(a, ζ̄);

and thus in turn,

f(z, ζ̄) =
i(L(ā, z)L(ā, ζ)− L(ā, z̄)L(ā, ζ̄))

(z − ζ)|L(a, ā)|
.
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Plugging the definition of Ea, and recalling that E∗a(z) = E∗a(z̄), we obtain

f(z, ζ̄) =
i

2π

(Ea(z)Ea(ζ)− E∗a(z)E∗a(ζ))

(z − ζ)
.

(ii) As we showed above, Ea ∈ HB; and so H(Ea) is well-defined. By (1.7) and (4.35)

the reproducing kernel K of the space H(Ea) is given by the formula

i

2π

(Ea(z)Ea(ζ)− E∗a(z)E∗a(ζ))

(z − ζ)
.

Hence, f(z, ζ̄) = K(ζ, z); and (1.8) gives (4.36). As outlined in de Brange’s theory

f(z, .) ∈ H(Ea).

We will need the following lemma for part (iii):

Lemma 4.11. (i) For Im a > 0, Im b > 0 and Im z ≥ 0,

∣∣∣∣L(z, b̄)

L(z, ā)

∣∣∣∣ ≤ 2

∣∣∣∣L(a, b̄)

L(a, ā)

∣∣∣∣ . (4.37)

(ii) For all u, v ∈ C,

|f(u, v)|2 ≤ f(u, ū)f(v, v̄). (4.38)

(iii) For all a, b ∈ R, with L(a, b) 6= 0, and all z ∈ C,

f(z, z̄) ≤
(
|b− z|
|Im z|

|L(a, z)|
|L(a, b)|

)2

f(b, b). (4.39)

Proof. (i) The functional equation (4.25) gives

L(z, b̄)L(a, ā) = L(a, z)L(ā, b̄)− L(ā, z)L(a, b̄).
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As we showed in the Theorem 4.8iii; if Im z ≥ 0, then |L(a, z)| ≤ |L(ā, z)| and

|L(ā, b̄)| = |(ā− b̄)f(ā, b̄)|

= |a− b||f(a, b)|

= |L(a, b)|

≤ |L(ā, b)|

= |L(a, b̄)|.

Thus,

|L(z, b̄)L(a, ā)| ≤ 2|L(ā, z)L(a, b̄)|.

(ii) By Cauchy-Schwarz inequality,

|Kn(z, w)|2 ≤ Kn(z, z̄)Kn(w, w̄).

After division by Kn(ξn, ξn) > 0, we obtain

|fn(u, v)|2 ≤ fn(u, ū)fn(v, v̄)

Letting n→∞ through S, we get the desired result.

(iii) Let a, b ∈ R. (4.25) gives

L(z, z̄)L(a, b) = L(a, z)L(b, z̄)− L(b, z)L(a, z̄).
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We have a, b ∈ R. By part (ii), we write

L(z, z̄)L(a, b) = 2|Im z||f(z, z̄)|

≤ 2|L(a, z)||L(b, z)|

≤ 2|L(a, z)||b− z|f(b, b)1/2f(z, z̄)1/2.

We now prove Theorem (4.10)(iii): From (i) of the previous lemma, we see that

for all z ∈ C+,

∣∣∣∣Eb(z)

Ea(z)

∣∣∣∣ =

∣∣L(b̄, z)
∣∣∣∣L(b, b̄)
∣∣1/2 |L(a, ā)|1/2

|L(ā, z)|

≤ 2
|L(a, b̄)|

|L(a, ā)|1/2|L(b, b̄)|1/2
. (4.40)

Similarly,

∣∣∣∣Ea(z)

Eb(z)

∣∣∣∣ ≤ 2
|L(b, ā)|

|L(b, b̄)|1/2|L(a, ā)|1/2
. (4.41)

Recall that the denominators are positive by (4.27). To show that H(Ea) = H(Eb), we

pick g ∈ H(Eb). Then g/Eb, g
∗/Eb ∈ H2(C+). By the inequality (4.40), g/Ea, g

∗/Ea ∈

H2(C+). So, H(Ea) ⊇ H(Eb),. The converse inclusion follows from the other inequality

(4.41). These two inequalities also yield the norm equivalence of H(Ea) and H(Eb),

i.e., for all g, we have

||g||Eb ≤ 2
|L(a, b̄)|

|L(a, ā)|1/2|L(b, b̄)|1/2
||g||Ea

and the reverse inequality.

Theorem 4.12. Assume the hypotheses of Theorem (4.8). Fix a with Im a > 0.
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(i) Let

F (z) = L(z, 0) = zf(0, z),

and let {ρj} be the zeros ρ of F for which f(ρ, ρ) 6= 0. These are all real and

simple.

(ii) The set

{
f(ρj ,.)√
f(ρj ,ρj)

}
j

is an orthonormal sequence in H(Ea) and for all g ∈ H(Ea),

∑
j

|g(ρj)|2

f(ρj, ρj)
≤
∫ ∣∣∣∣ gEa

∣∣∣∣2 , (4.42)

while

G[g] =
∑
j

g(ρj)
f(ρj, z)

f(ρj, ρj)
∈ H(Ea).

(iii) Assume that F /∈ H(Ea). Then for all g, h ∈ H(Ea), we have

∫
R

gh̄

|Ea|2
=
∑
j

(gh̄)(ρj)

f((ρj, ρj))
, (4.43)

and

G[g] = g.

Proof. (i) Since zfn(0, z) has only real zeros, its uniform limit as n → ∞ through S

cannot have any non-real zeros. Therefore, F has only real zeros. Remember that, for

any E ∈ HB we define a phase function on R by

E(x) = |E(x)|e−iφ(x).
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Since Ea ∈ HB, we have a corresponding phase function φ defined for real x by

Ea(x) = |Ea(x)|e−iφ(x).

Then, by (4.35), for real x,

F (x) = xf(x, 0)

=
i

2π
(Ea(x)Ea(0)− E∗a(x)E∗a(0))

=
1

π
|Ea(x)||Ea(0)| sin(φ(x)− φ(0)). (4.44)

Taking the derivative of the last formula,

F ′(x) =
1

π

(
d

dx
|Ea(x)|

)
|Ea(0)| sin(φ(x)− φ(0))

+
1

π
|Ea(x)||Ea(0)| cos(φ(x)− φ(0))φ′(x). (4.45)

By Theorem 4.10(a), Ea has non-real zeros. It then follows from (4.44) that F (x) = 0

if and only if sin(φ(x)− φ(0)) = 0.

Let α = φ(0) and recall that the sequence {sj} were defined at (3.14) by φ(sj) =

α + jπ, j ∈ Z. After reordering, we see that the {ρj} are just {sk}. Suppose ρj is not

simple for some j. Then, it follows from (4.44) and (4.45) that both φ(ρj) = α + kπ

for some k, and φ′(ρj) = 0. Using K(ζ, z) = f(z, ζ̄) in (3.13) we obtain that

f(ρj, ρj) =
1

π
φ′(ρj)|Ea(ρj)|2 = 0,

which contradicts to our hypothesis that f(ρj, ρj) 6= 0. Thus, all zeros {ρj} are simple

of F with f(ρj, ρj) 6= 0 are simple.
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(ii) Recall that we set α = φ(0). Putting this into (4.35),

F (z) = zf(z, 0)

=
i

2π
(Ea(z)Ea(0)− E∗a(z)E∗a(0))

= C(eiαEa(z)− e−iαE∗a(z)). (4.46)

Since Ea and E∗a have zeros in opposite half-planes, the constant in (4.46) is non-zero.

Here, we do not know that if eiαEa(z)− e−iαE∗a(z) belongs to H(Ea) or not; otherwise

we could simply apply de Branges theory. We now turn back to the zeros {ρj,n} of fn.

Here, we will use the following result that we mentioned earlier; if j′ 6= k′,

fn(ρj′,n, ρk′,n) =
Kn(tj′,n, tk′,n)

Kn(ξn, ξn)
= 0. (4.47)

Taking limits through S on some appropriate subsequences {j′(n)}, {k′(n)} whose

terms satisfy (4.47) ; and using Hurwitz’ Theorem, leads to

f(ρj, ρk) = 0, j 6= k. (4.48)

The reproducing kernel relation (4.36) gives

0 =

∫
R

f(t, ρj)f(t, ρk)

|Ea(t)|2
dt.

Note that { f(ρk,.)√
f(ρk,ρk)

}k is an orthonormal sequence in H(Ea). Let ek = f(ρk,.)√
f(ρk,ρk)

. For

all g ∈ H(Ea), we have the orthonormal expansion

∑
j

< g, ej >

||ej||2
ej =

∑
j

g(ρj)√
f(ρj, ρj)

f(ρj, z)√
f(ρj, ρj)

,

= G[g](z).
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by (4.36) and the orthonormality of the sequence {ek}k. Using Bessel’s inequality,

∑
j

| < g, ej > |2 =
∑
j

|g(ρj)|2

f(ρj, ρj)

≤ ||g||2Ea =

∫
R

∣∣∣∣ g(t)

Ea(t)

∣∣∣∣2 dt. (4.49)

Clearly, every partial sum of G[g] lies in H(Ea). Moreover, (4.49) yields the

convergence of the series in the norm of H(Ea):

∥∥∥∥∥
j=N∑
j=1

< g, ej > ej −G[g]

∥∥∥∥∥
2

Ea

=

∥∥∥∥∥
∞∑

j=N+1

< g, ej > ej

∥∥∥∥∥
2

Ea

=

∫
R

|
∑∞

j=N+1 < g, ek > ek(t)|2

|Ea(t)|2

≤
∫
R

∞∑
j=N+1

| < g, ej > |2
|ek(t)|2

|Ea(t)|2

=
∞∑

j=N+1

| < g, ej > |2 −→ 0

as N tends to infinity. Since H(Ea) is a Hilbert space, G[g] ∈ H(Ea).

(iii) By hypothesis, F /∈ H(Ea). (4.46) then shows that

eiαEa(z)− e−iαE∗a(z) /∈ H(Ea).

Recalling that α = φ(0); and that we identified the zeros {ρj} with {sj}, we apply

(3.15) and (3.16).

Theorem 4.13. Assume, in addition to the hypothesis of Theorem (4.8), that f(a, .)

is an entire function of exponential type σ and

f(t, t) ∼ 1 for t ∈ R. (4.50)

(i) Then for all complex b, f(b, .) is an entire function of exponential type σ.
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(ii) For all g ∈ PWσ,

g = G[g] ∈ H(Ea).

In particular,

PWσ ∈ H(Ea).

(iii) Assume that there exists C0 > 0 such that for a.e. t ∈ R,

lim inf
n→∞

µ′(ξn + t
K̃n

(ξn, ξn))

µ′(ξn)
≥ C0, (4.51)

or, assume that for each r > 0,

lim
n→∞

∫ r

−r

∣∣∣∣∣µ
′(ξn + t

K̃n
(ξn, ξn))

µ′(ξn)
− 1

∣∣∣∣∣ dt = 0 (4.52)

Then

PWσ = H(Ea).

We do not assume that µ is absolutely continuous in the above result. Recall that

Ln(u, v) = (u− v)Kn(u, v)

and

L̃n(a, b) = (a− b)fn(a, b)

= µ′(ξn)Ln

(
ξn +

a

K̃n

(ξn, ξn), ξn +
b

K̃n

(ξn, ξn)

)
.

Proof. (i) Suppose f(a, z) is of exponential type σ for some a, with Im a > 0. Clearly,
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L(a, z) = (z − a)f(a, z) is of exponential type σ as well. By conjugate symmetry,

f(ā, z) = f(a, z̄)

the same is true for f(ā, z) and L(ā, z). By (4.37), we have

|L(z, b̄)| ≤ 2
|L(a, b̄)|
|L(a, ā)|

|L(z, ā)| (4.53)

when Im b > 0, Im z ≤ 0. Also, by Theorem 4.8iii,

|L(z̄, b̄)| = |L(z, b)| ≤ |L(z, b̄)|. (4.54)

We then deduce that the exponential type of L(b̄, .) is no greater than that of L(ā, .).

The same therefore holds true for f(b̄, .) and f(ā, .), and also for the couple f(b, .)

and f(a, .). Note that the reverse assertion too holds true since the inequalities (4.53)

and (4.54) are symmetric in a and b. Recalling conjugate symmetry once again, the

statement generalizes to the cases Im a < 0 or Im b < 0. Therefore, for any non-real

number b, f(b, .) has exponential type σ.

It remains to show that if b is real, f(b, z) is of exponential type σ. Since L(b, z)

and f(b, z) are of same type, it suffices to show the result for L(b, z). Let α, β ∈ C \R,

and L(α, β) 6= 0. From the functional equation (4.25),

|L(b, z)| = |L(z, b)|

=
1

|L(α, β)|
|L(α, z)L(β, b)− L(β, z)L(α, b)|.

As both L(α, z) and L(β, z) are of exponential type σ, it follows that L(b, z) is of type

at most σ. To show the reverse inequality, let c be a real number with L(b, c) 6= 0, and
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d be non-real. We will use (4.38) and (4.39):

|f(d, z)| ≤ f(d, d̄)1/2f(z, z̄)1/2

≤ f(d, d̄)1/2 |c− z|
|Im z|

|L(b, z)|
|L(b, c)|

f(c, c)1/2

Hence for |Im z| ≥ 1, |f(d, z)| grows no faster than C|z||L(b, z)|. Since both f(d, z)

and L(b, z) are entire functions of type at most σ, we can estimate f(d, z) on the strip

|Im z| ≤ 1 by Phragmen- Lindelof principle. We then conclude that exponential type

of L(b, z) is at least that of f(c, z). Consequently, L(b, z) has exponential type ≥ σ.

For the proof of part (ii), we need the following lemma.

Lemma 4.14. Assume in addition to the hypotheses of Theorem 4.8, that f(a, .) is of

type σ and (4.50) holds. Then

(i) There exists C > 0 such that the zeros {ρj} of L(z, 0) satisfy for all j,

ρj+1 − ρj ≥ C.

(ii) There exists C > 0 such that for all g ∈ PWσ,

∑
j

|g(ρj)|2 ≤ C‖g‖2
L2(R). (4.55)

(iii) For all z ∈ C,

∞∑
j=1

|f(ρj, z)|2

f(ρj, ρj)
≤ f(z, z̄).

Proof. (i) As we mentioned in (4.48)

f(ρj+1, ρj) = 0.
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Moreover, (4.50) and (4.38) yields that

|f(ρj+1, x)| ≤ f(ρj+1,j+1)1/2f(x, x)1/2 ≤ C1.

Since f(ρj+1, .) is entire of exponential type σ which is bounded on the real axis, we

may apply Bernstein’s inequality for entire functions of exponential type [15, p.227];

and then we obtain for all real t,

∣∣∣∣ ∂∂tf(ρj+1, t)

∣∣∣∣ ≤ C1σ.

Then using (4.50) one more time, for some real number ξ between ρj and ρj+1,

C2 ≤ f(ρj+1, ρj+1)

= f(ρj+1, ρj+1)− f(ρj+1, ρj)

=

(
∂

∂t
f(ρj+1, ξ)

)
(ρj+1 − ρj)

≤ C1σ(ρj+1 − ρj).

(ii) This follows directly by an estimate on PWσ [15, p.150].

(iii) Applying Bessel’s inequality (4.42) to g(t) = f(t, z), and using the reproduc-

ing kernel identity (4.36), we have

∑
j

|f(ρj, t)|2

f(ρj, ρj)
≤
∫
R

∣∣∣∣f(t, z)

Ea(t)
dt

∣∣∣∣2 = f(z̄, z) = f(z, z̄).

We now turn back to the proof of Theorem 4.13ii. Let g ∈ PWσ and define

G(z) = G[g](z) =
∞∑
j−∞

g(ρj)
f(ρj, z)

f(ρj, ρj)
.
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By (4.50) and part (ii) of the previous lemma,

∑
j

|g(ρj)|2

f(ρj, ρj)
≤ C‖g‖2

L2R <∞.

Proceeding as in the proof of Theorem 4.12ii, we see that G ∈ H(Ea). We now show

that G = g. Let

ψ(z) =
g(z)−G(z)

F (z)
.

Since G(ρj) = g(ρj) by (4.48) and F has simple zeros at each ρj, ψ is an entire function.

As both numerator and denominator are of exponential type, so is ψ. We first show

that

G(z) =

j=∞∑
j=−∞

g(ρj)
F (z)

F ′(ρj)(z − ρj)
. (4.56)

Let F (α) = L(α, 0) 6= 0. By (4.25), we have

L(z, ρj)L(α, 0) = L(α, z)L(0, ρj)− L(0, z)L(α, ρj) = F (z)L(α, ρj).

Arranging the above equation and using L(0, ρj) = 0,

f(z, ρj) =
F (z)L(α, ρj)

F (α)(z − ρj)
.

Taking limit z → ρj, we obtain

f(ρj, ρj) = F ′(ρj)
L(α, ρj)

F (α)
.

We therefore write

f(ρj, z)

f(ρj, ρj)
=

F (z)

F ′(z)(z − ρj)
,
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which gives (4.56). Furthermore,

∣∣∣∣G(z)

F (z)

∣∣∣∣ ≤
(

j=∞∑
j=−∞

|g(ρj)|2
)1/2( j=∞∑

j=−∞

1

|F ′(ρj)(z − ρj)|2

)1/2

.

Let ε = (0, π/2), and define Aε = {z : |z| ≥ 1 and ε ≤ | arg z| ≤ π − ε}. We claim that

lim
z→∞,z∈Aε

∣∣∣∣G(z)

F (z)

∣∣∣∣ = 0. (4.57)

To this end, we note that there exists Cε such that for all j,

|z − ρj| ≥ Cε|i− ρj|.

Moreover,

∞∑
j=−∞

1

|F ′(ρj)(i− ρj)|2
=

1

|F (i)|2
∞∑

j=−∞

|F (i)|2

|F ′(ρj)(i− ρj)|2

=
1

|F (i)|2
∞∑

j=−∞

∣∣∣∣ f(ρj, i)

f(ρj, ρj)

∣∣∣∣2
≤ 1

|F (i)|2 infx∈R f(x, x)
f(i,−i) <∞.

Since

lim sup
z→∞,z∈Aε

∑
|j|<n

1

|z − ρj|2
= 0,

for any n ≥ 1, we see that

lim sup
z→∞,z∈Aε

∣∣∣∣G(z)

F (z)

∣∣∣∣ ≤
(

∞∑
j=−∞

|g(ρj)|2
)1/2

 1

C2
ε

∑
|j|≥n

1

|F ′(ρj)(i− ρj)|2

1/2

.

Since this has limit 0 as n→∞, we have shown (4.57).
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As we discussed earlier F (z) = zf(0, z) is of exponential type σ, has real zeros,

and

|F (x)| = |xf(0, x)| ≤ |x|f(0, 0)1/2f(x, x)1/2 ≤ C|x|

by (4.50) and (4.38). Hence, it lies in the Cartwright class. From the proof of Theorem

3.23, for all θ ∈ (−π, π) \ {0},

lim
r→∞

log |F (reiθ)|
r

= σ| sin θ|.

Let us now assume that g has type τ < σ. Since g belongs to L2(R), it lies in the

Cartwright class as well. Similarly, for θ ∈ (−π, π) \ {0},

lim sup
r→∞

log |g(reiθ)|
r

≤ τ | sin θ|.

Then, for θ ∈ (−π, π) \ {0}, as r →∞,

∣∣∣ g
F

∣∣∣ (reiθ) ≤ exp((τ − σ)r| sin θ|+ o(r)).

Therefore, for such θ,

lim
r→∞

∣∣∣ g
F

∣∣∣ (reiθ) = 0.

Combining this with (4.57), we see that

lim
r→∞
|ψ|(reiθ) = 0

Since ψ is an entire function of exponential type, Phragmen-Lindelof principle, applied

on sectors of opening angle less than π, shows that it is bounded in the plane, and
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hence constant. As it has limit 0 at ∞, we have ψ ≡ 0, so

g = G ∈ H(Ea).

Finally, if g has type σ, then for ε ∈ (0, 1), gε(z) = g(εz) has type εσ < σ, so

gε = G[gε].

As gε and G[gε] converge to g and G[g] respectively, uniformly on compacta, we let

ε→ 1−; and obtain

g = G[g].

(iii) Let g ∈ H(Ea). Then g/Ea, g ∗ /Ea ∈ H2(C+). Since Ea is of exponential

type σ, we claim that g has exponential type at most σ. Recall that {tjn} = {tjn(ξn)}

are the quadrature points for µ including ξn. Fix l ≥ 1. By the Gauss quadrature

formula (4.2), and the fact that Kn(tjn, tkn) = 0 for j 6= k,we have

∫ ∣∣∣∣∣∣
∑
|j|≤l

g(ρj)
Kn(tjn, s)

Kn(tjn, tjn)

∣∣∣∣∣∣
2

dµ(s) =
∑
|j|≤l

|g(ρj)|2

Kn(tjn, tjn)
.

Let us make the substitution

s = ξn +
t

K̃n(ξn, ξn)
= ξn +

t

Kn(ξn, ξn)µ′(ξn)

Also, recall that

ρjn = K̃n(ξn, ξn)(tjn − ξn),
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fn(a, b) =
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
.

Let r > 0. We disregard the singular part of µ, we obtain for large n,

∫ r

−r

∣∣∣∣∣∣
∑
|j|≤l

g(ρj)
fn(ρjn, t)

fn(ρjn, ρjn)

∣∣∣∣∣∣
2
µ′(ξn + t

K̃n(ξn,ξn)
)

µ′(ξn)
dt ≤

∑
|j|≤l

|g(ρj)|2

fn(ρjn, ρjn)
. (4.58)

As n→∞ through S, the right-hand side converges to

∑
|j|≤l

|g(ρj)|2

f(ρj, ρj)
≤

∞∑
j=−∞

|g(ρj)|2

f(ρj, ρj)
.

As we mentioned earlier, uniform convergence of fn(0, z) to f(0, z) forces the zeros

{ρjn} of fn to converge to those of f . Therefore,

∑
|j|≤l

g(ρj)
fn(ρjn, t)

fn(ρjn, ρjn)
→
∑
|j|≤l

g(ρj)
f(ρj, t)

f(ρj, ρj)
.

Let Gl(t) denote the right-hand side of the above equation. By Fatou’s lemma,

lim inf
n→∞,n∈S

∫ r

−r

∣∣∣∣∣∣
∑
|j|≤l

g(ρj)
fn(ρjn, t)

fn(ρjn, ρjn)

∣∣∣∣∣∣
2
µ′(ξn + t

K̃n(ξn,ξn)
)

µ′(ξn)
dt

≥
∫ r

−r
|Gl(t)|2 lim inf

n→∞,n∈S

µ′(ξn + t
K̃n(ξn,ξn)

)

µ′(ξn)
dt

≥ C0

∫ r

−r
|Gl(t)|2dt

under our hypothesis (4.51). If we assume (4.52), we write the left-hand side of (4.58)
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as

∫ r

−r

∣∣∣∣∣∣
∑
|j|≤l

g(ρj)
fn(ρjn, t)

fn(ρjn, ρjn)

∣∣∣∣∣∣
2

dt

+

∫ r

−r

∣∣∣∣∣∣
∑
|j|≤l

g(ρj)
fn(ρjn, t)

fn(ρjn, ρjn)

∣∣∣∣∣∣
2{

µ′(ξn + t
K̃n(ξn,ξn)

)

µ′(ξn)
− 1

}
dt

=

∫ r

−r
|Gl(t)|2dt+ o(1) +O

(∫ r

−r

∣∣∣∣∣µ
′(ξn + t

K̃n(ξn,ξn)
)

µ′(ξn)
− 1

∣∣∣∣∣ dt
)

=

∫ r

−r
|Gl(t)|2dt+ o(1).

Hence,

C0

∫ r

−r
|Gl(t)|2dt ≤

∞∑
j=−∞

|g(ρj)|2

f(ρj, ρj)
, (4.59)

where C0 = 1 if we have (4.52). Since g ∈ H(Ea), G[g] belongs to H(Ea) as well, by

Theorem 4.12ii. In this regard, we can proceed as in the proof of Theorem 4.13ii; and

deduce

∫ r

−r
|g(t)−Gl(t)|2dt→ 0 as l→∞.

We then write (4.59) as

C0

∫ r

−r
|g(t)|2dt ≤

∞∑
j=−∞

|g(ρj)|2

f(ρj, ρj)
.

Letting r →∞ gives

C0

∫ ∞
−∞
|g|2 ≤

∞∑
j=−∞

|g(ρj)|2

f(ρj, ρj)
. (4.60)

Therefore, g ∈ L2(R), and of exponential type at most σ, so g ∈ PWσ. We have shown

that H(Ea) ⊂ PWσ. Combining this with Theorem 4.13ii gives H(Ea) = PWσ. It
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remains to prove equivalence of the norms. We first note that F /∈ H(Ea). We could

suppose for a contradiction that F ∈ H(Ea). Since F (ρj) = 0 for all j, Theorem 4.13ii

shows that

F = G[F ] = 0,

a contradiction. Then (4.43) and (4.60) shows that

‖g‖2
Ea =

∫
R

∣∣∣∣ gEa
∣∣∣∣2 =

∞∑
j=−∞

|g(ρj)|2

f(ρj, ρj)
≥ C0‖g‖2

L2(R).

In the other direction, as f(ρj, ρj) ∼ 1 uniformly in j, (4.55) shows that

‖g‖2
Ea =

∞∑
j=−∞

|g(ρj)|2

f(ρj, ρj)
≤ C2‖g‖2

L2(R).

4.4.1. Proof of Theorem 1.4

(i) This follows directly from Lemma 4.2.

(ii) This part was proven in Lemma 4.2 and Theorem 4.13. We only need to justify

the hypothesis (4.50) that f(t, t) ∼ 1 for t ∈ R. This was shown in Lemma 4.3i.

(iii) This follows from Theorem 4.10.

(iv) This follows from Theorem 4.13. To see that hypothesis (4.51) holds, we will

recall that there exists C > 1,

C−1 ≤ µ′ ≤ C (4.61)

in some open set O containing the compact set J where the sequence {ξn} belongs
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to. By (4.61), there exists ε > 0, for all |t| ≤ ε,

µ′(ξn + t)

µ′(ξn)
≥ C0

for some C0. Since K̃n(ξn, ξn) = µ′(ξn)Kn(ξn, ξn) & C−1n, for ant t ∈ R we have,

∣∣∣∣ t

K̃n(ξn, ξn)

∣∣∣∣ < ε

for sufficiently large n. Therefore,

lim inf
n→∞

µ′(ξn + t
K̃n(ξn,ξn)

)

µ′(ξn)
≥ C0.
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5. CONCLUSION

The interplay between the universality limits and orthogonal polynomials is a very

active and growing field. In this thesis we have only attempted to expose a slice of

results that we believe are coherent and could be presented in a self-contained manner.

In order to give a taste of other work in this field we would like to cite some related

work and theorems without their proofs.

In the last few years, D.S. Lubinsky has produced a number of exciting papers

establishing universality limits. In this Master’s thesis, the methods presented in [8]

and [9] has been taken under review. In [8], he uses ideas from orthogonal polynomials

to prove new results about universality limits that do not require regularity of the

measure involved. Beginning with a finite positive Borel measure µ with compact

support on the real line, we first define orthonormal polynomials pn with respect to µ.

We denote by

Kn(x, y) =
n−1∑
k=0

pk(x)pk(y)

the corresponding reproducing kernel and by

K̃n(x, y) = µ′(x)1/2µ′(y)1/2Kn(x, y)

the normalized kernel, where µ′ is the Radon-Nikodym derivative of µ with respect to

the Lebesgue measure. Assume that µ is absolutely continuous in a neighborhood of a

point x in the support and that µ′ is bounded near x, where x is a Lebesgue point of

µ′. Then, we have been interested in the limit

lim
n→∞

Kn(x+ a
n
, x+ a

n
)

Kn(x, x)
= 1, (5.1)

where a belongs to the compact subsets of the real line; and, more generally, in the
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limit

lim
n→∞

Kn(x+ a
n
, x+ b

n
)

Kn(x, x)
=

sin π(a− b)
π(a− b)

, (5.2)

where a, b belongs to compact subsets of the complex plane. It has been proven in

Theorem 1.1 that the equalities (5.1) and (5.2) are equivalent. More importantly, the

above limits are uniform in a compact subset J of the support where µ′ is absolutely

continuous in a neighborhood of J . In this framework, it was proven that the family

of functions {fn(., .)} with,

fn(a, b) =
Kn(ξn + a

n
, ξn + b

n
)

Kn(ξn, ξn)
,

where {ξn} is an arbitrary sequence from J is a normal family of functions over C2; and

any limit of f(., .) of a subsequence of fn(., .) is entire of exponential type σ in both

variables for some positive real number σ. This limit function f(., .) is the so-called

universality limit. Theorem 1.4 asserts that, under some mild conditions on µ, the

universality limit is the reproducing kernel of de Branges space which is isomorphic to

a classical Paley-Wiener space. All of these arguments are present in [8] and [9]. In

this context, aforementioned de Branges space is denoted by H(Ea), where

Ea(z) =
√

2π
(ā− z)f(ā, z)

|(a− ā)f(a, ā)|1/2
.

The isomorphism in Theorem 1.4 means that H(Ea) and PWσ are equal as sets, and

have equivalent norms. This does not imply isometric isomorphism; therefore the inner

products on these two spaces need not be equal. Recalling that the reproducing kernel

in PWσ is

K(ζ, z) =
sinσ(z − ζ̄)

π(z − ζ̄)
,

which is called “sinc kernel”; the function f(., .), which is the universality limit and the

reproducing kernel of H(Ea), need not be a sinc kernel. In [16], Lubinsky addresses
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this question: given such a universality limit f(., .), how far is f(., .) from being a sinc

kernel? To this end, the author defines an operator L : L2(R)→ L2(R) as

L[h](t) =

∫
R
h(t)f(t, x)dt.

If f is the sinc kernel of PWσ, then for h ∈ PWσ we would have L[h] = h. Thus,

to measure how far f is from the sinc kernel of PWσ one may consider the difference

h−L[h] for all h ∈ PWσ. Theorem 1.5 in [16] addresses this question. The author also

gives conditions when the universality limit f is indeed the sinc kernel in Corollary 1.6

in [16].

Aside from these techniques that can be used to establish universality limits in

the bulk, Lubinsky applies a wide variety of methods for establishing universality at the

hard or soft edge of the spectrum. In [17], the author proved that the universality at

the hard edge (endpoints of the support of the measure) for arbitrary parameters a, b is

equivalent to universality in the diagonal case (a = b). Avila, Last and Simon [6] have

shown that these methods can be adapted to prove universality for measures whose

support is a Cantor set of positive measure.
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