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ABSTRACT

CASCADING BEHAVIOR IN INFINITE NETWORKS

The aim of this master thesis is to analyze the underlying mathematical structure of

the infinite network models of cascading behavior. Graph theoretical tools are essential to

understand the structure of the network and game theoretical tools are employed for the

dynamics of the model. It is tried to determine under what conditions on the structure

of the graph or on the parameters of the game, cascading is possible. We also consider

the optimization problem of choosing the initial set from which cascading behavior spreads

through the network. For this purpose, we use the theory of submodular functions. Sub-

modularity condition provides close approximations to the optimal value when the initial

set is selected by Greedy Algorithm.
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ÖZET

SONSUZ AĞLARDA SARİ DAVRANIŞ

Bu tezin amacı, sari davranışın sonsuz ağlar üzerindeki modellerinin altında yatan

matematiksel yapıyı araştırmaktır. Çizge kuramsal araçlar ağ yapısını anlamak için esas

olup, oyun kuramsal araçlar da modelin dinamiği için kullanılmıştır. Ağın yapısını ve oynun

parametrelerini ilgilendiren hangi şartlar altında sari davranışın mümkün olduğu belirlenm-

eye çalışılmaktadır. Ayrıca, sari davranışa dair eniyileme problemini de gözönüne alıyoruz.

Ayrıca sari davranışın ağ boyunca yayıldığı çıkış kümesini seçme probleminin eniyileme göz

önünde bulunduruyouz. Bu amaçla, altmodüler fonksiyonlar kuramından faydalanıyoruz.

Başlangıç kümesinin elemanları hırslı algoritma ile seçilmişse, altmodülerlik koşulu en iyi

değere yakın yaklaşımlar elde etmemizi sağlıyor.
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1. INTRODUCTION

One of the pioneering question relevant to our topic is posed by Milgram that how

many people there are in a chain of acquaintance between two random persons. Series of

experiments on the structure of the network of acquaintance in the U.S. is carried out. The

experiment goes in this way: At first two persons are randomly selected from U.S. popu-

lation. One of them receives a document that contains the name of the other person and

certain information about her. She was told to send this document to her acquaintances

who are more likely than her to know the person. Then the receiver is informed about the

experiment and she does the same. The experiment ends when the document is reached

to the target person. The number of steps varied from 2 to 10 with median 5. It was also

noted that the frequency of tightly connected communities is in direct proportion to this

number. The relevant point to our topic is the demonstration of how fast a behavior may

spread in large networks [1].

Two seminal works cascading behavior is discussed on theoretical ground are [2]

and [3]. Banerjee prefers to use “herd behavior” instead of cascading behavior. Each

member of the population sequentially chooses an asset whose return is unknown prior to

decision. Before deciding on the asset, person receives a signal with some probability; and

with a small probability, person is informed about the asset whose return is the largest.

Then the decision is made considering the signal and the decisions of persons preceding

her. It happens almost surely a cascading at an inefficient option unless the first several de-

cision makers receive the signal of the asset with largest return [2]. In the model presented

in [3], individuals decide on two options one has a payoff 1 and the other has 0, receiving a

signal that can be deceptive. It is shown that the probability of cascade not to occur falls

exponentially with the number of people in the population. An interesting result is that

when there is a probability of a change in the payoffs of the options, cascade can switch to

other option with a probability larger than the probability that the payoffs change [3]. In
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the thesis, we only consider deterministic models with more complex structure determining

the interactions between players.

Dynamic models constructed on a large but not necessarily infinite populations where

interactions are determined by a 2 by 2 coordination games are precursors to the ones with

more complex network structures [4–8]. The long run Nash equilibria of these models are

classified according to the distinction put forth by Harsanyi and Selten [9]. One type of

Nash equilbrium is the risk dominant equilibrium where players choose the strategy that

provides a payoff less susceptible to a switch in the other players’ choices, in other words

the best choices of players when there is no information about what others choose. The

other one is the Pareto-efficient equlibrium where players choose the strategy offering at

least as much as payoff as the other equilibria [9]. Throughout the thesis, we do not men-

tion this distinction as the coordination games of the models does not distinguish between

two types of equilibrium.

When the interaction rule is the matching of two random players of the population,

it was shown that the constant possibilty of mutation, mutation here refers to switching

strategy externally, drives population to the risk dominant equilibrium in the long run [5].

In the model, players from a finite population are matched randomly at each stage of the

game. The interesting part is that the long run equilibrium does not depend on the mu-

tation, but the payoff table of the game. Ellison develops the argument by introducing a

local interaction rule that restricts players’ interactions to a small group. Regardless of

the interaction rule the outcome converges to the risk dominant equilibrium. In his second

notable result, he derives a formula, given the magnitude of the mutation and the desired

proportion of the population playing the risk dominant strategy, for the expected time to

reach the desired proportion as the size of the population goes to infinity [6].

On the other hand, the payoff dominant equilibrium is shown to be achieved in

the models presented in [7,8]. In the model of Galesloot and Goyal, each player is allowed
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to choose two actions at the same time with a learning cost for the strategy if it is the first

time she plays it. At each stage, each player has a small possibility to be removed and

those removed ones are replaced by new ones who choose a strategy randomly at their first

round. If the cost of learning is smaller than a threshold depending on the payoffs, the

game converges to the payoff dominant equilibrium in the long run [8]. Unlike the models

above, In Ely’s model, the interactions does not entirely follow a random matching rule.

At each stage, some players are removed from the game and replaced with new ones who

are allowed to choose their location in the network only once as they join in. The long run

equilibrium of the game is shown to be payoff dominant equilibrium [7].

Apart from the structure of the game and the selection of the long run equilibrium,

the structure of the network is another topic of investigation. In Morris’ Contagion, the

structure of the network is elaboratively investigated as a determinant of the cascade. Like

in the earlier models mentioned, the process is deterministic. The best response dynamics

lead to a long run equilibrium where a strategy initially adopted by a finite set of the

population is spread to the whole population which is taken to be infinite. The spread of

a strategy to the whole population is controlled by a threshold value which is defined as

the maximum possible payoff of the vanishing strategy [10].

One of the result on the structure of the network as a model of a population is

that the existence of tightly connected set of players increases the threshold for the cas-

cading of a behavior among the members of a population [10]. A related phenomenon is

observed earlier by Granovetter’s 1983 paper in which he makes the distinction between

weak ties and strong ties. Weak ties refers to acquaintance, and the strong ties stands

for close friendship. Relying on empirical studies, the individuals lacking weak tie are less

affected by a novelty in the population [11].

Morris also introduces two global properties for the graph to arrive at a stricter

bound for the contagion threshold. First one is low neighborhood growth. Low neighbor-
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hood growth condition requires less than exponential growth of any chain of neighborhoods

of a finite set of players. The second condition is δ-uniformity which refers to structural

likelihood of interactions for different communities of a network [10].

The relation between graph structure and the rate of convergence to a risk dominant

equilibrium is comprehensively studied by Montanari and Saberi. Best-response dynam-

ics of their model is specified by Markov chains called Glauber dynamics for the Ising

Model. The rate of convergence is determined by the hitting time to the configuration

where each vertex of the graph adopts the desired strategy. The results obtained are that

the convergence is faster in locally connected networks and slower in networks consisting

tightly connected communities showing contrast to the ones derived from epidemic models

of spread of behavior [12].

Another topic of interest is the best selection of an initial set of vertices from which

the behavior spreads through the network. The problem is finding the set of given size that

maximizes the number of players adopting the behavior at the end of the process. An algo-

rithmic approach to the problem is supplied in [13]. Several models of cascading behavior

in networks are used to approximate the most influential initial set. The model that is in

most frequent use dealing with this problem is the Threshold Model introduced in [14].

The model describes an initial set of active players, i.e. the set of players adopting a desired

strategy while the others do not. Then any inactive player is activated if the proportion of

her active neighbors exceeds her threshold value. The aim is activating as many as players

at the end of the process [14]. The model is adopted to more general frameworks regard-

ing the structure of the network by Kempe and Kleinberg. It encompasses the model of [10].

In [15], the influence of an initial set is defined by a function on the subsets of

the set of vertices. It gives the expected number of vertices to which the behavior spreads

at the end of the process, taking the initiator set as input. The maximization problem for

the influence function is shown to be NP-Hard. [15,16]. Yet if the function is submodular,
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the optimal value is in close approximation. It was shown in [17] that if f is a submod-

ular function defined on the subsets of a finite set X , at least
(

1 − 1
e

)

times the optimal

value among the subsets of size k is achieved by choosing the subset constructed starting

from any element of X and each time adding an element that maximizes f . The influence

maximization functions of the special cases of the threshold model and the cascade model

are shown to be submodular in [15]. The submodularity of the cascade model is proven

in [15] and the case for the threshold model is conjectured [16]. In 2007 Mossel and Roch

came up with the proof of the conjecture using coupling methods [18].

The fundamental aim of the thesis is to understand the mathematical framework

of [10] and treat it elaboratively. This is achieved through mostly relying on the resuls

in [10,19,20] on deterministic models of cascading behavior in infinite networks. Then we

restrict our attention to the computational problems of cascading behavior in finite net-

works expecting to arrive at generalizations for infinite networks. The thesis is organized

as follows.

In Chapter 2, some definitions and examples for Erdös Distance, Erdös Labelling

and NP-hardness are supplied.

In Chapter 3, first the model of cascading of a behavior in infinite networks is set up.

Then, the results concerning the dynamics of the cascading process are presented. Finally,

we discuss the conditions for the cascading to occur in relation with the game defined on

the network.

Chapter 4 is about the problem of choosing the initial set from which cascading

occurs through the network. In this respect different models of cascading are discussed.

We give some results pertaining to the theory of submodular functions. The complexity of

the problem of optimizing the initial set is the final subtopic.
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2. PRELIMINARIES

We first discuss a measure of distance on graphs where the distance is defined between

vertices. Secondly, a labelling rule related to the distance concept will be introduced on the

set of vertices of a graph. In the remaining part, some definitions and examples belonging

to the theory of NP-completeness are presented which will be referred while discussing the

complexities of optimization problems on the set of vertices.

2.1. Erdös Distance

The Erdös distance is defined between a vertex v of graph G and a subset X of the

set of vertices of G, which will be denoted by V(G), as the length of the shortest path from

v to X if there exists any, otherwise is equal to ∞.

Define inductively Γn(X) for the set of vertices whose Erdös distance to X is less

than or equal to n.

Γ0(X) = X, (2.1)

Γn+1(X) = Γn(X) ∪ {v′ : vv′ ∈ E(G) for some v ∈ Γn(X)}. (2.2)

Observe that X ⊆ Γ(X) ⊆ Γ2(X) ⊆ ...Γn(X) ⊆ ...

2.2. Erdös Labelling

Definition 2.1. [10] Labelling is a bijection from natural numbers N to the set of vertices

V(G). Labelling l is an Erdös labelling if there exists a finite set of vertices X such that

l(m) ∈ Γk(X) and l(n) /∈ Γk(X) for some natural number k implies m < n.
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We denote the set of labellings by L.

Define αl(n) to be the proportion of adjacent vertices of the vertex l(n) which are

labelled with lower values, i.e.

αl(n) =
|{m : l(m)l(n) ∈ E(G), m < n}|

|{m : l(m)l(n) ∈ E(G)}|
. (2.3)

Now, we have to find the conditions under which the existence of Erdös labelling is

guaranteed. We start with an example showing that Erdös labelling is unattainable.

Example 2.2. A graph that has no Erdös labelling.

Each vertex has infinitely many subordinate neighbors, and exactly one superior ex-

cept the one with the highest rank.

•

• • • ..... • • •

• • • ..... ..........

Figure 2.1. Hierarchy of infinite order.

Formally, let X1 be the set, includes only a vertex which will be the uppermost one

in the hierarchy. For all n greater than 1, let {Xn} be a sequence of set of vertices, each

consisting of countably many elements.
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Now let fn be a bijection from N to Xn. Partition Xn into the sets X1
n, ..., X

i
n, ...

defining

X i
n =: {fn(p

i
1), fn(p

i
2), ..., fn(p

i
m), ...} (2.4)

where pm is the mth smallest prime number.

Define the set of edges Ei
n =: {fn−1(i)u : fn−1(i) ∈ Xn−1, u ∈ X i

n}. Then V (G) =
⋃∞

n=1Xn and E(G) =
⋃∞

n=1

⋃|Xn−1|
m=1 Em

n .

Claim 2.3. The graph defined in Example 2.2. has no Erdös labelling.

Proof. Let X0 be a finite subset of V (G) and l be an arbitrary labelling. Choose x ∈ X0

that is on the lowest rank among the elements of X0 in the sense that “hierarchy” suggests.

Choose x2 ∈ Γ2(X0) \ Γ
1(X0). Then under l, x2 has a label l(x2) ∈ N. But, since Γ1(X0)

contains all adjacent vertices to x which are infinitely many, there exists an x1 ∈ Γ1(X0)

such that l(x1) > l(x2).Therefore, l is not an Erdös labelling.

�

Proposition 2.4. An infinite graph with all of its vertices has at most finite neighbors has

an Erdös labelling.

Proof. Choose any finite subset X of V (G). Label the elements of X from 1 to |X| in any

order. Then, since any neighbor growth is finite, i.e. Γk(X) is always finite, label them

accordingly to obtain an Erdös labelling.
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2.3. NP-Hardness

Before defining NP-Hardness, we have to mention the class of NP problems. NP

problems are the set of decision problems, which refers to the problems having “yes” or

“no” answer with a given input, such that the “yes” answer to the problem is provable in

polynomial time.

Definition 2.5. [21] A problem is called NP-hard if it is reducible to an NP problem in

polynomial time by the transformation of the inputs.

NP-hardness does not only include decision problems, a well known example Traveling

Salesman Problem, which is a search problem, is NP-hard. Yet all NP problems are not in

the class of NP-Hard unless P=NP.

The problems below are NP problems that will be shown as a special case of other

problems in the last chapter, from which we will deduce NP-Hardness.

Example 2.6. [21] Set Cover Problem

Let S be a finite set and A is a subset of the power set 2S. And let N be a positive

natural number such that N ≤ |2S|. The decision problem is whether there is a subset B

of A with cardinality smaller than N such that

S ⊆
⋃

X∈B

X. (2.5)
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Example 2.7. [21] Vertex Cover Problem

Let G be a finite undirected graph with the set of vertices V (G) and set of edges

E(G). And let N be a positive natural number such that N ≤ |V (G)|.

The aim of the problem is to find the smallest set of vertices in which each edge

of the graph has an endpoint. The decision problem can be stated that if there is a set of

vertices X ⊆ V (G) such that |X| ≤ N and for uv ∈ E(G), either u ∈ X or v ∈ X .
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3. LOCAL INTERACTION GAMES AND THE CASCADING

BEHAVIOR

This chapter is basically concerned with the analysis of how a behavior spreads among

a population and follows closely the works of [10, 16, 19]. The model posited to explain

this stands at the intersection of graph theory and game theory. The graph theory part

deals with the structure of the population and tries to answer how prone the population

is to adopting a behavior. The population is considered to be large, which is reflected in

the models with infinite graphs. On the other hand , the game theory part handles micro-

level questions by imposing rules on the interactions between members of the population

resulting in a change of behavior. Although, the game theoretical part lies in the core of

the model, throughout the thesis we are less interested in the questions arising from it as

compared to the graph theoretical ones.

In the first part, we define the game and the graph, restricting our attention to

symmetric coordination games defined on infinite graphs. Then, we bring out the neces-

sary technical information including notations and several lemmas before the cascading

dynamics is introduced. The dynamics of the model is the next topic. Our main results

are about a parameter called contagion threshold which is related to the parameter of

the game. At the end, we present examples of local interaction system and discuss the

cascading behavior on them.

3.1. On the Structure of the Game and the Graph

Definition 3.1. Local interaction game is a pair consisting of a graph and a game defined

between adjacent vertices where each player maximizes her utility having a unique strategy

invariant with respect to the games played with her neighbors. More explicitly, the last
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statement of the sentence says that the player should stick to her strategy during a stage of

the game and cannot change it depending on with whom she plays.

For our purpose we need some restrictions on the graph and on the game. Let G

be the simple undirected graph with possibly countably many vertices. Each vertex rep-

resents a player and it is inferred by what we have assumed on the graph that no player

has interaction with herself and every interaction is reciprocal. The graph will be

assumed to satisfy two properties:

Property 3.2. Uniform Boundedness : The degree of each vertex is bounded by a natural

number M. We note that if the degree of each vertex of a graph is finite, the graph is said

to satisfy finite neigborhood property

Property 3.3. Connectedness : For any vertex u, v of the graph there exists a u, v-path.

The game is a symmetric coordination game having a strategy space of size 2, consist-

ing of strategies “0” and “1”, for each player. More explicitly, the game has a symmetric

payoff table and two pure Nash equilibria, two playing the same stategy. We first interpret

this as the game does not distinguish players. Secondly, players must coordinate in order

to maximize their payoff. The payoff table is of the form:

assuming that a > c and d > b.

Table 3.1. Payoff table.

0 1

0 a,a b,c

1 c,b d,d
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The inequalities assumed above can be interpreted that if both of the players choose

the same strategy, one of them switching to other strategy will be worse off in terms of

utility. Therefore there are exactly two Nash equilibria of the game, “0”-“0” and “1”-“1”.

We introduce some notations.

The set of neighbors of a vertex:

Γ(v) = {v′ : vv′ ∈ E(G)}.

The set of neighbors of a vertex v playing “0” :

Γ0(v) = {v
′ : vv′ ∈ E(G) and v’ chooses action 0}.

The set of neighbors of a vertex v playing “1” :

Γ1(v) = {v
′ : vv′ ∈ E(G) and v’ chooses action 1}.

The fraction of neighbors of a vertex v in a subset X of V(G):

π[X|v] = |Γ(v)∩X|
|Γ(v)|

.

The set of vertices for which at least p-fraction of neighbors are in a subset X of V(G):

Πp(X) = {v ∈ V (G) : π[X|v] ≥ p}.
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3.1.1. Normalization of Payoff Table

For a vertex v ∈ V (G) considering the games played between v and the neighbors of

it, the strategy “1” is best response for v if and only if

(d− b)

(a− c) + (d− b)
|Γ1(v)| ≥

(a− c)

(a− c) + (d− b)
|Γ0(v)|. (3.1)

Now we can modify the pay-off table invariant to the best responses of players by the

factor

q =
(d− b)

(a− c) + (d− b)
(3.2)

The resulting table will be:

Table 3.2. Normalized payoff table.

0 1

0 q,q 0,0

1 0,0 1-q,1-q

3.1.2. Best Response to a Set

Definition 3.4. [10] Let X be a subset of V(G). We call Y a best response to X if

Y ⊆ Πq(X) and Ȳ ⊆ Π1−q(X̄).
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Πq(X) is clearly a best response to X , so there always exists a best response for any

subset of V(G).

For the uniqueness, it suffices to show V (G) = Πq(X) ∪Π1−q(X̄)

Proof. Let x ∈ V (G). If x /∈ Πq(X), then π[X|x] < p. This means that more than 1 − p

fraction of neighbors of x are not in X . Therefore x ∈ Π1−q(X̄).

�

3.2. Cascading Behavior

We start with a local interaction game and restrict our attention to an infinite simple

undirected graph and the symmetric coordination game described in the section 2.1.1. The

players are allowed to choose their strategy at each round, but should stick to it for each

game played with their neighbors during the round. At first round, we assume that each

player in the network plays the same strategy “0”, the one which has a payoff of q if chosen

by both. This is clearly an equilibrium of the game, considering that if any player switches

to strategy “1” will end up with 0 payoff.

Our aim is to identify the conditions under which the game switches to the other

trivial equilibrium where each player chooses to play strategy “1” if a finite set of players

are told to adopt strategy “1”. The term “cascade” refers to this stage by stage transition

to strategy “1”.

Now we can define contagion threshold as:
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Definition 3.5. [10] The contagion threshold ξ is the largest q such that action “1” spreads

to the whole population at some round of the repeated game from a finite subset of vertices

by best response dynamics, i.e.

ξ = sup{q ∈ (0, 1) :
⋃

k≥1

[Πq]k(X) = V (G) for some finite X} (3.3)

But for our purpose, it does not suffice to guarantee the choice of the desired strategy

by each player at varying stages of the game. We need to show the same contagion threshold

as defined above also guarantees us the achievement of the ubiquitous adoption of strategy

“1”.

3.3. Operator Πp
+

Referring to the last paragraph of the previous section, we define a new operator

hoping it to be superior to Πp.

Πp
+(X) =: X ∪ Πp(X) (3.4)

Observe that the operator Πp(X) does not necessarily include X . In fact, it may be

included by X , or neither inclusion may be true. In each example, encircled vertices

denote the elements of Πp(X), whereas elements of X are labelled by xi’s.
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Example 3.6. X = {x1, x2, x3, x4, x5} and take p = 1
2
.

• •

• •

•x5
•x4

•

• •

•

•x1

•x2
•x3

• •

• •

•

•

•

•

Figure 3.1. X = Πp(X).

Example 3.7. X = {x1, x2} and take p = 1
3
.

• •x1
•x2

•

Figure 3.2. X ⊂ Πp(X).
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Example 3.8. X = {x1, x2, x3, x4, x5} and take p = 1
2
.

• •

•

•x1

•x2
•

• •

•

•x5

•x3
•x4

• •

•

•

•

Figure 3.3. Πp(X) ⊂ X .

Example 3.9. X = {x1} and take p = 1
2
.

•

•x1

•

•

•

Figure 3.4. Neither X ⊆ Πp(X) nor Πp(X) ⊆ X .
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Example 3.10. X = {x1, x2, x3, x4} and take p = 2
5
.

..... • • •x4

•

•
x1••.....

.....•••x3

•

•
x2 • • .....

Figure 3.5. X is finite,
⋃

k≥1[Π
p]k(X) is finite, but

⋃

k≥1[Π
p
+]

k(X) is infinite.

Observe that Π
2

5 [Π
2

5 (X)] = Π
2

5 (X) consists of the two encircled elements above, so

is
⋃

k≥1[Π
2

5 ]k(X). But Π
2

5

+[Π
2

5

+(X)] also includes two pairs of vertices, one is left to x1 and

x4, the other is right to x2 and x3. From then on, action “1” spreads along the graph and
⋃

k≥1[Π
2

5

+]
k(X) = V (G).

Lemma 3.11. (i) If X ⊆ Y , then Πp(X) ⊆ Πp(Y ) and Πp
+(X) ⊆ Πp

+(Y ).

(ii) If Xk ր X, then Πp(X) =
⋃

k≥1Π
p(Xk) and Πp

+(X) =
⋃

k≥1Π
p
+(Xk).

(iii) For p < r, then Πr(X) ⊆ Πp(X) and Πr
+(X) ⊆ Πp

+(X).

(iv) If pk ր p, then Πpk(X)ց Πp(X) and Πpk
+ (X)ց Πp

+(X).

Proof. (i) If X ⊆ Y , then π[X|v] ≤ π[Y |v] for every v ∈ V (G). From which it follows

that Πp(X) ⊆ Πp(Y ) and Πp
+(X) ⊆ Πp

+(Y ).

(ii) By (1),
⋃

k≥1Π
p(Xk) ⊆ Πp(X).

For the other inclusion, for any v ∈ V (G), there exists a k such that Γ(v) ∩X ⊆ Xk

by finite neighborhood property, (here Γ(v) could be equal to X , and X could be

infinite) so Πp(X) = Πp(Xk) for some k. This implies Πp(X) =
⋃

k≥1Π
p
+(Xk).

Now Πp
+(X) = X ∪ Πp(X) =

⋃

k≥1[Xk ∪ Πp(Xk)] =
⋃

k≥1Π
p
+(Xk).
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(iii) π[X|v] ≥ r and r > p implies that π[X|v] ≥ p. So if r > p, Πr(X) ⊆ Πp(X) and

Πr
+(X) = Πr(X) ∪X ⊆ Πp(X) ∪X = Πp

+(X).

(iv) By (3), Πpk(X) is a decreasing sequence of sets and Πp(X) ⊆ Πpk(X) for all k. Now

take v ∈
⋂

k≥1Π
pk(X), then π[X|v] ≥ pk for all k, which implies x ∈ Πp(X). Hence,

Πpk(X)ց Πp(X) and Πpk(X) = (X ∪Πpk
+ (X))ց (X ∪Πp(X)) = Πp

+(X).

�

Lemma 3.12. The followings are equivalent

(i)
⋃

k≥1[Π
p
+]

k(X) is co-finite, for some finite X.

(ii) [Πp
+]

k(X)ր V (G), for some finite X.

(iii) [Πp]k(X)ր V (G), for some finite X.

Proof. Suppose
⋃

k≥1[Π
p
+]

k(X) is co-finite, for some finite X .

Let Y = X ∪ (
⋃

k≥1[Π
p
+]

k(X)), then Y is finite.

By (3),
⋃

k≥1[Π
p
+]

k(X) ⊆
⋃

k≥1[Π
p
+]

k(Y ).

By monotonicity of Y , the result follows.

�

Proposition 3.13. [10]

ξ = sup{q ∈ (0, 1) :
⋃

k≥1

[Πq
+]

k(X) = V (G) for some finite X} (3.5)
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Proof. The proof is by induction on k,

[Πp
+]

k(X) = X ∪ Πp([Πp
+]

k−1(X)). (3.6)

For k = 1 it is true by the definition of Π+. Now,

[Πp
+]

k+1(X) = Πp
+([Π

p
+]

k(X)) (3.7)

= [Πp
+]

k(X) ∪Πp([Πp
+]

k(X)) (3.8)

= X ∪ Πp([Πp
+]

k−1(X)) ∪ Πp([Πp
+]

k(X)) (3.9)

= X ∪ Πp([Πp
+]

k(X)) (3.10)

X ⊆ Y → Πp(X) ⊆ Πp(Y ). (3.11)

Suppose that X is finite and
⋃

k≥1[Π
p
+]

k(X) = V (G). Let Y = X ∪ Γ(X). Since

X is finite implies that Y is finite by finite neighborhood property of the graph. Now,

choose K such that Y ⊆ [Πp
+]

K(X) and therefore Y ⊆ [Πp
+]

k(X) for every k ≥ K. Since

Γ(X) ⊆ Y ⊆ [Πp
+]

K(X), X ⊆ Πp(Πp
+)

k(X) for every k ≥ K.

Now by the statement proved above,

[Πp
+]

k+1(X) = X ∪ Πp([Πp
+]

k(X)) = Πp([Πp
+]

k(X)) (3.12)

for every k ≥ K. Then,

[Πp]k([Πp
+]

K(X)) = [Πp
+]

K+k(X) (3.13)
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for every k ≥ K. Thus,

⋃

k≥1

[Πp]k([Πp
+]

K(X)) = V (G) (3.14)

[Πp
+]

K(X) is the desired finite subset.

�

3.4. Contagion Threshold

Theorem 3.14. [16] The contagion threshold is at most 1
2
.

Proof. Assume for a contradiction that ξ > 1
2
and there exists a finite set X0 from which

action “1” spreads to the whole population. We can assume that no player switches from

strategy “1” to strategy “0” by Proposition 3.13.

Now, let Xk be the set of players adopting strategy “1” at the kth stage of the

game. And let δ(Xk) be the set of edges that have one end in Xk and the other end in X̄k.

δ(Xk) is the interface where the action “1” spreads. To arrive at a contradiction, it has to

be shown that the size of δ(Xk) decreases strictly as k increases, so that action “1” ceases

to spread.

Define Sk = Xk+1 \ Xk. For an arbitrary sk ∈ Sk, Γ1(sk) is strictly larger than

Γ0(sk) provided that q > 1
2
. So |

⋃

sk∈Sk
Γ1(sk)| > |

⋃

sk∈Sk
Γ0(sk)|.

Now, we identify the set δ(Xk+1). By the assumption that no player switches from

strategy “1” to strategy “0”
⋃

sk∈Sk
Γ1(sk) ∩ δ(Xk+1) = ∅.
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Then for any uv in the set of edges of Sk, if u or v is in Xk, then uv ∈ δ(Xk) \
⋃

sk∈Sk
Γ1(sk). Otherwise, uv ∈ Γ0(sk). Therefore, δ(Xk+1) ⊆ (δ(Xk) ∪ Γ0(sk)) \ Γ1(sk).

By the inequality above, |δ(Xk+1)| < |δ(Xk)|.

Since δ(Xk) is finite for any k by uniform boundedness property and decreases in

terms of cardinality as k increases, will terminate the cascade at some finite point. Action

“1” is not spread to the whole population, we arrive at a contradiction.

Hence, ξ must be smaller than or equal to 1
2
.

�

Definition 3.15. [10] Cohesion is a property of subsets X of V (G) and is defined as

c(X) = inf
v∈X

π[X|v]. (3.15)

X is called p− cohesive if c(X) ≥ p. Equivalently,

c(X) = sup{p ∈ (0, 1) : X ⊂ Πp(X)}. (3.16)

Cohesion measures how tightly a community is connected within a network. Those

communities having a large cohesion is referred to as “clusters” in the literature [16]. One

result which will be presented next is that large cohesion is an obstacle for contagion.

Lemma 3.16. There exists an ǫ ≥ 0 such that
⋃

k≥1[Π
r
+]

k(X) is (1− p) cohesive for every

subgraph H of G and r ≤ p+ ǫ.
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Proof. Consider

F (M) = {α ∈ (0, 1) : α =
n

m
for some integers m,n with 0 < m ≤M and 0 ≤ n ≤ m}.

(3.17)

Given p, choose ǫ > 0 such that F (M) ∩ (p, p + ǫ) = ∅. By uniform boundedness

assumption,

|X ∩ Γ(x)|

|Γ(x)|
∈ F (M) for every x ∈ V (G) and for every X ⊆ V (G). (3.18)

Since F (M) ∩ (p, p+ ǫ) = ∅,

Πr(X) = Πr′(X) for every r, r′ ∈ (p, p+ ǫ). (3.19)

So for any X ⊆ V (G) let

Y =
⋃

k≥1

[Πr
+]

k(X)) for every r ∈ (p, p+ ǫ). (3.20)

Now for every x ∈ Y and r ∈ (p, p+ ǫ), π(Y |x) > 1− r, so

π(Y |x) ≥ 1− p for every x ∈ Y .

�

Theorem 3.17. [19] The action “1” spreads contagiously from a finite set X if and only

if X̄ does not contain a (1− p)-cohesive subset Y for some p < ξ.

Proof. For the first part, consider an infinite graph G that the strategy “1” spreads con-

tagiously with threshold ξ from a finite subset X . Assume for a contradiction that X̄

contains a subset of cohesion larger than (1− ξ). Let t be the first stage of the game that
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action “1” spreads to Y , and let v ∈ Y that adopts strategy “1” at the tth stage. Now, we

will show that v could not have enough neighbor choosing strategy “1” at the t− 1st stage

and arrive at a contradiction.

At the t − 1st stage, no vertex belonging to Y chooses strategy “1”, that is how

we assumed. So more than (1− ξ) fraction of neighbors of v were still playing “0” by cohe-

siveness of Y larger than (1− ξ). But then, the fraction neighbors of v having chosen “1”

could not exceed ξ. Therefore, v must have chosen “0” at the tth, which is a contradiction.

Hence, contrary to our assumption V (G)−X does not contain a subset of cohesion larger

than (1− ξ).

For the necessity part, suppose that action “1” is initiated to a finite subset X

of a graph G and ceases to spread at some stage of the game. Let Y be the subset of play-

ers that still playing “0” after this stage. We will show that Y is more than (1−ξ)-cohesive.

Let v be an arbitrary element of Y , since v chooses strategy “0”, then more than

(1 − ξ) - fraction of neighbors of v chooses “0”, so are in Y . Therefore, π[Y |v] > (1 − ξ)

for v ∈ Y , from which it follows that c(Y ) ≥ (1− ξ), hence Y is (1− ξ)-cohesive.

Yet we need stricter result, for this purpose we employ uniform boundedness as-

sumption. Let M be the natural number that bounds the number of neighbors one player

has. Then, there exists a natural number n such that

n

M
> (1− ξ) ≥

(n− 1)

M
(3.21)

for 1 ≤ n ≤M .

Since π[Y |v] > (1 − ξ) for v ∈ Y , the infimum of π[Y |v] over the elements of Y
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is greater than or equal to n
M
. This implies that Y is more than (1− ξ) cohesive.

�

Corollary 3.18. Upper Bound- If every co-finite set of vertices contains an infinite,

(1− p)-cohesive, set of vertices, then ξ ≤ p.

Theorem 3.19. [10] ξ = supl∈L

(

lim infn αl(n)
)

.

Proof. We first show that for any labelling l, ξ ≥ lim infn αl(n). Let l be an arbitrary

labelling, X be a set that action “1” spreads contagiously and N be a natural num-

ber that is larger than the greatest label among elements of X . Now define the set

Y =: {l(1), l(2), ..., l(N)}, Y is a superset of X . By Lemma 3.12., an inductive argu-

ment would reveal that Y is also contagious. Since Y is contagious, Πp(Y ) is non-empty

for every p < ξ. Then, for every p, there exists an v such that π[Y |v] ≥ p. From which

we can deduce by the construction of Y that αl(n) ≥ p where n is the label of v under l.

Therefore, for every labelling l and every sufficiently large N , infn≥Nαl(k)) ≥ p for every

p < ξ. The desired result is obtained.

Now, we show that the limit cannot be larger than ξ to obtain maximality. By

the definition of ξ, there exists a finite set X such that
⋃

k≥1[Π
ξ
+]

k(X) = V (G). Define

the set Xn = [Πξ
+]

n(X) ∩ [Πξ
+]

n−1(X) for n ≥ 1 and X0 =: X , so Xn is the set of vertices

adopts strategy “1” beginning from the nth stage of the game. Then label the elements of

Xn from |
⋃n−1

i=0 Xi| + 1 to |
⋃n

i=0Xi| in an arbitrary order, call the labelling l0. Then for

any v in XN for an N ≥ 1 with label nv,
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ξ ≤ Π[Xn−1|v] =
|Xn−1 ∩ Γ(v)|

|Γ(v)|
≤
|{m : l0(m)l0(nv) ∈ E(G) and m < nv}|

|Γ(v)|
= αl0(nv).

(3.22)

Therefore, ξ ≤ limN→∞(infn≥Nαl0(n)) which implies by the result above that ξ is

the maximum.

�

Corollary 3.20. Lower Bound- If there exists a labelling l with αl(k) ≥ p for all suffi-

ciently large k, then ξ ≥ p.

The following definition introduces a stricter condition regarding to neighborhood

growth.

Definition 3.21. [10] An infinite graph G is said to satisfy low neighborhood growth if

for any γ > 1 limn→∞ γ−n|Γn(X)| = 0 for all finite subsets X of V (G).

Another graph property, this time related to labelling, is:

Definition 3.22. [10] An infinite graph G satisfies δ - uniformity if there exists an Erdös

labelling l such that for all sufficiently large K,

max
k,k′≥K

|αl(k
′)− αl(k)| ≤ δ. (3.23)

Theorem 3.23. [10] If a local interaction system satisfies low neighbour growth and δ-

uniformity, then ξ ≥ 1
2
− δ.
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Proof. Let l be an Erdös labelling on the graph that satisfies δ-uniformity. Then there

exists an α such that

α− δ ≤
|{m : l(m)l(n) ∈ E(G) and m < n}|

|{m : l(m)l(n) ∈ E(G)}|
≤ α, (3.24)

for all n > N where N is sufficiently large. By Corollary 3.20, ξ > α− δ. So we need

to show α ≥ 1
2
to prove the theorem. Assume for a contradiction that α < 1

2
.

Now, there exists a set X such that l(m) ∈ Γk(X) and l(n) /∈ Γk(X) implies m < n,

since l is an Erdös labelling. Define X0 = X and Xn = Γn(X) \ Γn−1(X). By 3.23., for a

sufficiently large n we obtain,

∣

∣

∣

⋃

l(i)∈Xn

{j : l(j)l(i) ∈ E(G) and j < i}
∣

∣

∣
≤ α

∣

∣

∣

⋃

l(i)∈Xn

{j : l(j)l(i) ∈ E(G)}
∣

∣

∣
(3.25)

∣

∣

∣

⋃

l(i)∈Xn

{j : l(j)l(i) ∈ E(G) and j < i}
∣

∣

∣
≤ (

α

1− α
)
∣

∣

∣

⋃

l(i)∈Xn

{j : l(j)l(i) ∈ E(G) and j > i}
∣

∣

∣

(3.26)

By the definition of Xn and the above inequality we have

∣

∣{uv ∈ E(G) : u ∈ Xn−1 and v ∈ Xn}
∣

∣+
∣

∣{uv ∈ E(G) : u ∈ Xn and v ∈ Xn}
∣

∣ ≤
( α

1− α

)

∣

∣{uv ∈ E(G) : u ∈ Xn and v ∈ Xn+1}
∣

∣+
∣

∣{uv ∈ E(G) : u ∈ Xn and v ∈ Xn}
∣

∣.

(3.27)

By uniform boundedness property for some natural number M and from the assump-
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tion that α < 1
2
we have

|Xn| ≥

∣

∣{uv ∈ E(G) : u ∈ Xn−1 and v ∈ Xn}
∣

∣

M
≥

(1− α

α

)n

|X0|. (3.28)

|Γn(X)| =
n

∑

i=0

|Xn| ≥
n

∑

i=0

(1− α

α

)n

|X0|. (3.29)

Since α < 1
2
,
(

1−α
α

)

> 1. Now for γ ∈
(

1,
(

1−α
α

))

,

γ−n|Γn(X)| ≥
n

∑

i=0

(1− α

α

)n

γ−n|X0| ≥
(1− α

α

)n

γ−n|X0| → ∞. (3.30)

But this contradicts the low neighborhood growth assumption. Therefore α ≥ 1
2
and

the theorem is proven.

�

3.5. Uniform Boundedness Assumption

Example 3.24. An infinite graph satisfying finite neighborhood that does not necessarily

have a contagion threshold.

Let X1 be the set, includes only a vertex which will be the uppermost one in the

hierarchy. Inductively for all n greater than 1, let Xn be a set of vertices consisting of

n|Xn−1| elements.Partition Xn into the sets X1
n, ..., X

n−1
n each having exactly n members.

For an arbitrary labelling of Xn−1, define the set of edges Ei
n = {viu : vi ∈ Xn−1, u ∈ X i

n}.
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• • • • • •

• •

•

...

..

Figure 3.6. Hierarchy of increasing order.

Let V (G) =
⋃∞

n=1Xn and E(G) =
⋃∞

n=1

⋃|Xn−1|
m=1 Em

n . Then for any q > 0, there

exists a natural number N such that 1
N

< q. So for all n > N , the action “1” does not

spread contagiously from a vertex of Xn to subordinate ones. Hence, the contagion is

unattainable for any q ∈ (0, 1).

Proposition 3.25. The contagion threshold ξ exists for any infinite graph satisfying uni-

form boundedness assumption.

Proof. Let m be a natural number such that for any v ∈ V (G), |Γ(v)| < M . Then for any

q < 1
M
, Πq(v) = Γ(v).

Now take any finite subset X of V (G). For any q < 1
M
, Πq(X) = Γ(X) and

[Πq]n(X) = Γn(X). But since the graph is connected,

⋃

n≥1

[Πq]n(X) = limn→∞Γn(X) = V (G). (3.31)

�
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3.6. Examples

Example 3.26. [10] Interaction on a line

Each vertex has exactly two neighbors, one to her left and one to her right.

..... • • • • • • • .....

Figure 3.7. A graph with vertices of integers.

Now, we show that the contagion threshold is 1
2
for this example. Take q < 1

2
. Then

any vertex having a neighbor playing “1” is better off by switching to “1”. So, initiating

the srategy “1” to a pair of adjacent vertices, it spreads to whole population. Hence ξ ≥ 1
2
.

If q > 1
2
, then no player switches to “1” unless both of the neighbors play “1”.

But since any finite set has a farmost left and a farmost right element having negihbors

playing “0”, the strategy “1” does not spread. Therefore, ξ = 1
2
.

Example 3.27. [10] n-max distance interaction in m-dimensions

The vertices are put in an infinite m dimensional lattice, Z
m. u is a neighbor of v if

maxi≤m|ui − vi| ≤ n.

For m = 2 and n = 1, we have the following graph,

We utilize Theorem 3.17. to obtain a bound the contagion threshold. Take any finite

set of vertices X of V (G) and consider the corresponding co-finite set X̄ . Now, for the

first coordinate of the vertices in the lattice define α =: maxv∈X v1. Take a vertex u ∈ X̄

such that u1 = α+ 1. Then u has exactly (2n+ 1)m−1 − 1 neighbors with first coordinate



32

• • • • • • •
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• • • • • • •
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Figure 3.8. m-dimensional lattice.

α + 1 . And u has n(2n + 1)m−1 neighbors with first coordinate greater than α + 1. So u

has at least (n + 1)(2n + 1)m−1 − 1 neighbors within the set X̄. Since total neighbors of

any vertex is (2n + 1)m − 1 many, X̄ is ((n+1)(2n+1)m−1−1)
((2n+1)m−1)

is cohesive.

By the theorem, ξ ≤ n(2n+1)m−1

((2n+1)m−1)
.

Example 3.28. [10] Regions

The set of vertices consist of infinite complete graphs of n vertices. Each complete graph

has two adjacent complete graphs, here adjacency is connectedness of each vertex of a graph

with exactly one vertex from an adjacent graph. The following figure illustrates the case

for n = 3.

.....

.....

.....

.....

.....

.....

• • • • • • •

•••••••

• • • • • • •

Figure 3.9. Regions of order three.

For the cohesiveness of the graph, consider the subset X of vertices consisting of two



33

adjacent complete graphs. Each vertex v of X has n + 1 neighbors, where n − 1 of them

are in the same complete graph with v, so is in X . One of the remaining two is in the

adjacent complete graph included by X , and the other is in X̄ . Hence X is n
n+1

cohesive.

But since any subset of vertices Y where Ȳ is finite includes a pair of adjacent complete

graphs and n
n+1

is not exceedable unless Y = V (G), by Theorem 3.17. ξ ≤ 1
n+1

.

Moreover, maxv∈V (G) |Γ(v)| = n+ 1 implies ξ ≥ 1
n+1

. Therefore ξ = 1
n+1

.

Example 3.29. [10] Hierarchy

Let X1 be the set, includes only a vertex which will be the uppermost one in the hi-

erarchy. For all n greater than 1, let {Xk} be a sequence of set of vertices, each consisting

of nk elements.

Now let fk be a bijection from {1, 2, ..., nk} to Xk. Partition Xk into the sets X1
k , ..., X

i
n, ...

defining

X i
k =: {fk(in+ 1), ..., fk(i(n + 1))} (3.32)

Now define the set of edges Ei
k =: {fk−1(i)u : fk−1(i) ∈ Xk−1, u ∈ X i

k}.

Let V (G) =
⋃∞

k=1Xk and E(G) =
⋃∞

k=2

⋃|Xk−1|
m=1 Em

k .

• • • • • • • • • • • • • • • •

• • • • • • • •

• • • •

• •

•

.....

Figure 3.10. Hierarchy of order two.
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Take any subset X of the set vertices consisting of all subordinates of a vertex v. X is

n
n+1

cohesive, since only vertex having a neighbor in X̄ is v, and it has exactly one neighbor

in X̄ . Since any subset of vertices Y where Ȳ is finite contains a subset of the form above,

by Theorem 2.17. ξ ≤ 1
n+1

. Moreover, maxv∈V (G) |Γ(v)| = n+1 implies ξ ≥ 1
n+1

. Therefore

ξ = 1
n+1

.

For δ-uniformity, consider an Erdös labelling where the uppermost vertex v̄ is la-

belled by ”1”, i.e. v̄ is l(1). Since Xk = Γ(v̄), by Definition 1.1. l(m) ∈ Xk and l(n) /∈ Xk

for some k implies m < n. Therefore for any vertex l(i) ∈ V (G), l(i) has exactly one

neighbor with a lower label. So, αl(i) =
1
n
for all i > 1. Hence 0-uniformity is satisfied.
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4. EXTENSIONS

This chapter is devoted to a question arising from the cascading model of the previ-

ous chapter which is dealt extensively in [15], [16], [22], [17], [20] and [18]. In the model,

the condition for cascading to occur is the existence of an initial contagious set. However,

almost nothing has mentioned about this set yet. From now on, we deal with the problem

of finding a good set to start with. The approaches developed in the mentioned works

are helpful to some extent, yet they are not completely satisfactory. The difficulty is due

to cardinality. The optimization problem for the best initial set is transformed into the

maximization of the number of vertices converted by the initial set, but in case of infinite

graphs the maximum is unattainable. In this chapter, instead of restricting ourselves to

infinite graphs, we deviate a bit and mention several results related to the initial set selec-

tion problem in finite graphs which bear hope of generalization.

First, we introduce other models of cascading which focus on the initial set selec-

tion problem rather than the conditions for cascading to occur. Then, we compare the

models and apply possible transformations. Next, the optimization problem is introduced

and the function related to this problem is expected to satisfy a property, namely the

submodularity. The submodularity is shown to hold for each model presented. Finally, the

complexity of this optimization problem for different models is examined.

4.1. General Models of Cascading Behavior

So far we have considered the cascading behavior specifically on local interaction

systems with infinite vertices and certain simplifications such as indistiguishable players,

reciprocal relations etc. Now, we present several cascading behavior models that capture

more general settings of diffusion of a behavior in general networks.
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4.1.1. Linear Threshold Model

In this model, we allow players to distinguish their neighbors in terms of their in-

fluence on the adoption of a new behavior. Also, it will be ascribed seperate contagion

thresholds to each player. Just as before, there are two strategies, call them A and B and

we are looking for the strategy A to overcome B when A is initiated to a set of vertices.

The model is as follows:

Let G be possibly an infinite undirected graph. On the set V (G) × V (G) we de-

fine a non-negative function f requiring f(u, v) = 0 if u and v are not neighbors and

Σu∈Γ(v)f(u, v) ≤ 1. So player v attains seperate weights on her neighbor’s influence whose

sum does not exceed 1. Secondly, each player v has a threshold θv, uniformly distributed

between 0 and 1. This is the required fraction of neighbors adopting the cascading strategy.

At the beginning of the game, each player adopts the strategy B. Then at the

first round, possibly infinite set of players are told to choose strategy A. Then, at the kth

round, player v, still adopting the strategy B, switches to strategy A if

Σu∈ΓB(v)f(u, v) ≥ θv. (4.1)

In the cascading model we discussed in the previous chapter, we simply define f for

two adjacent vertices u and v as f(u, v) = 1
|Γ(v)|

. The threshold θ(v) = q for each v ∈ V (G)

where q is the normalized payoff of the initial strategy if they both adopt it.

4.1.2. General Threshold Model

One generalization of the model above is defining the influence function on the sub-

sets of vertices through which we allow group influence on players. But in the case of

infinite graphs, the domain of the function has the same cardinality with 2N. So it is more
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convenient to deal with distinct functions fv defined on the set 2Γ(v) for v ∈ V (G).

The function fv is a restricted form of the function f above and has further re-

strictions. In accordance with the model above, fv will be non-negative and smaller than

1. In addition, the function will be monotone, i.e. if X ⊆ Y ⊆ Γ(v), then fv(X) ≤ fv(Y ).

The interpretation is that there is no negative influence.

The threshold θv is as defined on the previous model and at any stage of the game

the action A is adopted by player v who chose B before if,

fv(ΓA(v)) ≥ θv. (4.2)

4.1.3. Independent Cascade Model

In the local interaction for this model, we once again assume there are two strategies

for each player. In the beginning, each player choose strategy A, then a set of players

is initiated to strategy B as in every model we have investigated. Each player adopting

strategy B is given a single chance to introduce the strategy one by one to her neighbors.

The process is independent from the order in which a player is tried to be influenced by

her neighbors and from the history of the game. It terminates until no more diffusion of

strategy B is possible.

For this purpose, we define the function p on the set V (G) × V (G), which takes

values between 0 and 1. We will call p(u, v) the probability for u to initiate strategy B to

v. If the graph is undirected, then p(u, v) = p(v, u).
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4.1.4. General Cascade Model

This model is a generalization of the one above. The distinction is that now the

probability for a player to influence one of her neighbors could possibly depend on the

set of players that have already tried and failed to do so. But as in the general threshold

model, the probability of influence functions will be defined distinctly.

For any vertex v of G, pv is defined from Γ(v) × 2Γ(v) to [0,1]. The value pv(u,X)

refers to the probability that u succeeds influencing v to adopt the strategy B, given that

the set X has already tried and failed. What we infer is pv(u,X) is always 0, if u ∈ X .

Furthermore, we still expect the functions to be order-independent, i.e.if a set of neighbors

of v try to influence v, the order in which they try does not affect the overall success that

v adopts B.

4.1.5. Equivalence of the Models

Now, it will be shown that the two general models introduced above are in fact equiv-

alent in the sense that given the influence functions of one, the functions of the other can

be expressed in terms of them.

Firstly, consider a vertex v of a graph and the corresponding influence function fv.

Now, v tries to influence u given that vertices of X , a subset of Γ(u), have already tried

and failed. Then, by Bayes’ formula the conditional probability that u influences v while

X could not is:

pv(u,X) =
fv(X ∪ u)− fv(X)

1− fv(X)
. (4.3)

In this way, we obtain order-independent functions which can be shown by taking an

arbitrary set X of neighbors of a vertex v and calculating the overall success that v adopts
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B through the attempts of the elements of X . Regardless of the orders of the attempts

this calculation will give fv(X).

Conversely, take a vertex v in the general cascade model and a subset of Γ(v), call it

X and X = {u1, u2, ..., uk}. Now, our aim is to calculate the probability of success of the

set X converting v to strategy B. Since, pv is order-independent, the calculation will be

independent of the order of ui’s.

Let Xi = {u1, u2, ..., ui} and X0 = ∅. Then the probability that v still chooses A

after the attempts of the players in X is Πk
i=1(1−pv(ui, Xi−1)). So by order-independence,

the influence function of the general threshold model is well-defined as:

fv(X) = 1−Πk
i=1(1− pv(ui, Xi−1)). (4.4)

4.2. Submodularity of the Influence Function

In this chapter, we introduce a new property for the influence functions of the models

defined above. Assuming this property on the functions, it is aimed to achieve an approx-

imation to the optimal solution of the selecting most influential vertices problem.

Let G be a graph and V(G) be the set of its vertices.

Definition 4.1. [17,18] The function f : 2V (G) → R is submodular if for all X, Y ⊆ V (G)

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ). (4.5)
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The equivalent condition is if X ⊂ Y ⊂ V (G) and v ∈ V (G), then

f(X ∪ v)− f(X) ≥ f(Y ∪ v)− f(Y ). (4.6)

This expression has a clearer interpretation: the effect of adding a vertex decreases as

the set increases. That is why the condition is classified as a diminishing returns property.

Now we come back to our problem, we try to find an initial subset of vertices with

a limited cardinality that has the most influence, in other words we try to choose such a

small set of vertices as the first adopters of a strategy that at the end of the process the

most possible number of adoption of the strategy is achieved.

Definition 4.2. [17,18] Let G be a graph and X0 be a subset of V (G). Xn denotes the set

of players adopting the new strategy n rounds after X0 is introduced to it. The influence

function σ : 2V (G)→ R
+ is defined as

σ(X) = E[XN ] (4.7)

where X ⊆ V (G) and N is the cardinality of V (G) for finite graphs, otherwise a predeter-

mined finite number.

The main result of the chapter is

Theorem 4.3. [17] Let σ be a monotone submodular function, and let X∗ be the n-element

set for which σ is maximized. On the other hand, let X be an n-element set obtained by

each time adding an element that maximizes σ (this corresponds to the greedy algorithm

below). Then

σ(X) ≥ (1−
1

e
)σ(X∗). (4.8)
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Algorithm 4.4. Greedy Algorithm.

• X = ∅

• for i = 1 to n

• Let vi solves the problem maxv∈V (G)σ(X ∪ v)− σ(X).

• X ←→ X ∪ vi

• end for

Example 4.5. The influence function σ is not submodular.

Let G consist of five vertices. Suppose that the condition for one vertex to adopt a

strategy is that all of its neighbors play the strategy, i.e. θv = 1 for all v ∈ V (G); and f

be the expected value function of number of vertices adopting the desired strategy at the

end of the game. Consider the figure below. X = {x1, x2}, Y = {x1, x2, x3} and v

•x4
•x3

•x5

•x1
•x2

Figure 4.1. A graph that on which a non-submodular function can be defined.

Claim 4.6. f is not submodular.

Since adding x4 to X only increases the set of vertices playing the strategy by 1

throughout the game,

f(X ∪ x4)− f(X) = 1. (4.9)
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On the other hand, adding x4 to Y guarantees x5 to play the same strategy with the

others.

f(Y ∪ x4)− f(Y ) = 2. (4.10)

But X ⊂ Y , hence f is not submodular.

Now, we will show that the influence functions derived from the models described

above are in fact submodular. First we start with two lemmas.

Lemma 4.7. If f1, f2, ..., fn are submodular functions, and c1, c2, ..., cn are non-negative

real numbers, then f = Σn
i=1cifi is also submodular.

Proof. For X, Y ⊆ V (G)

f(X) + f(Y ) = Σn
i=1cifi(X) + Σn

i=1cifi(Y ) (4.11)

≤ Σn
i=1cifi(X ∪ Y ) + Σn

i=1cifi(X ∩ Y ) (4.12)

= f(X ∪ Y ) + f(X ∩ Y ). (4.13)

�

Lemma 4.8. Let C1, C2, ..., Cn be a collection of sets and X ⊆ {1, 2, ..., n}. Define f(X) =

|
⋃

i∈X Ci|. Then f is submodular.

Proof. For X, Y ⊆ 1, 2, ..., n

|
⋃

i∈X∪Y

Ci| = |
⋃

i∈X

Ci|+ |
⋃

i∈Y

Ci| − |
⋃

i∈X∩Y

Ci|. (4.14)

Hence, f is submodular.
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�

Theorem 4.9. [15, 16] The influence function σ derived from the Independent Cascade

Model is submodular.

Proof. A new approach will be developed for this and the following proofs. The cascading

process is considered as a network formation game. The influence probability p(u, v) for

u, v ∈ V (G) is taken to be the probability of edge uv to be formed. The game does not take

place stage by stage, but all at once every edge is determined to be ”active” or ”inactive”,

as if coins of biases p(u, v) ’s are thrown beforehand and noted, then the game unfolds

deterministically stage by stage. This model is equivalent to the Independent Cascade

Model in terms of analysis and helps us to resolve computational intricacies of stage by

stage approach.

Let α be one of the 2|E(G)| possible outcomes of the game. Let σα(X) denote the

vertices playing strategy B at the end of the game when strategy B is first initiated to the

set X ⊆ V (G), For a vertex v, the set P v
α denotes the set of vertices that are connected to

v through active edges of event α. Since at the beginning, only players adopting B belongs

to X ,

σα(X) = |
⋃

v∈X

P v
α |. (4.15)

By Lemma 4.7, σα is monotone for every α in the set of events.

Finally, we express the influence function σ of the Independent Cascade Model as,

σ(X) =
∑

α

σα(X)Prob(α). (4.16)

Hence, by Lemma 4.6, σ is submodular.
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�

Theorem 4.10. [15,16] The influence function σ derived from the Linear Threshold Model

is submodular.

Proof. [20] In order to prove this, it will be shown that the Linear Threshold Model is

equivalent to the network formation model above in terms of the expected number of ver-

tices playing B at a certain stage of the game. The claim is that for any X ′ ⊆ X ′′ the

probability that exactly X ′ consists of vertices playing B at tth stage and X ′′ at t + 1st

stage is the same in both the Linear Threshold model and the network formation game.

The proof is by induction on t. For t = 0, choosing X = ∅ and X = X0, where

X0 is the initial set playing B, the probability is 1; otherwise 0 for both cases.

Now let Xt denote the set of vertices to which strategy B is spread at the t − 1st

stage of the game. Take a vertex v such that v still plays A at the tth stage of the game.

We need to show that the probability that v plays B at the t + 1st stage of the game is the

same in either model.

For the Linear Threshold Model, that v still plays A at the tth stage of the game

implies θv ≥
∑

u∈Xt−1
f(u, v). So θv is taken to be uniformly distributed in the interval

(
∑

u∈Xt−1
f(u, v), 1]. Therefore, the probability that v adopts strategy B is

∑

u∈Xt\Xt−1
f(u, v)

1−
∑

u∈Xt−1
f(u, v)

. (4.17)

For the network formation game, v plays B at t + 1st stage if and only if its active

edge comes from Xt \ Xt−1. The probability that v’s active edge does not come from

Xt−1 is 1−
∑

u∈Xt−1
f(u, v). On the other hand, it comes from Xt \Xt−1 with probability

∑

u∈Xt\Xt−1
f(u, v). Hence, the conditional probability that v plays B at the t+ 1st stage
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is the same with the Linear Threshold Model’s.

So for any X , the probability that exactly the vertices of X plays B at certain

stage of the game is the same under both models. We obtain

Prob[exactly X ′ plays B at t and exactly X ′′ plays B at t+ 1]

=
∑

X Prob[exactly X plays B at t−1 and exactly X ′ plays B at t] · Prob[exactly X ′′ \X ′

plays B at t — X ′ plays B at t].

Hence, by induction, the expected number of vertices playing B at a certain stage of

the game is the same for both. By Theorem 4.9., σ is submodular.

�

Theorem 4.11. [22] The influence function σ derived from the General Cascade Model

where the probabilty functions are non-increasing, is monotone and submodular.

Theorem 4.12. [18] The influence function σ derived from the General Threshold Model

where all the threshold functions are monotone submodular, is monotone and submodular.

Now the proof of Theorem 4.3 is presented, we start with a lemma.

Lemma 4.13. Let σ be a monotone, submodular function and X, Y be subsets of the set

of vertices. Denote σ(X ∪ {v})− σ(X) by sv(X) for v ∈ V (G). Then,

σ(Y ) ≤ σ(X) +
∑

v∈Y \X

sv(X) (4.18)



46

Proof. Start with labelling the elements of Y \X as y1, y2, ..., yn. Since σ is monotone,

σ(Y ) ≤ σ(X) +
∑

yi∈Y \X

σ(X ∪ {y1, ..., yi})− σ(X ∪ {y1, ..., yi−1}). (4.19)

And by submodularity,

σ(Y ) ≤ σ(X) +
∑

yi∈Y \X

σ(X ∪ yi)− σ(X). (4.20)

Proof of Theorem 4.3 [20] Let X t be the set obtained at the tth iteration of the Algorithm

4.4. and X∗ be the optimal set for the influence maximization problem. Denote σ(X i+1)−

σ(X i) by si. Then,

σ(X t) =
t−1
∑

i=0

si. (4.21)

Since |X∗ − X t| ≤ N where N is the cardinality of V (G), we obtain by the lemma

above,

σ(X∗) ≤ σ(X t) +Nst (4.22)

for all t smaller than the number of iterations.

Then we have,

σ(X t+1) ≥ σ(X t) +
1

N

(

σ(X∗)− σ(X t)
)

. (4.23)
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Now the claim is

σ(X t) ≥
(

1−
(

1−
1

N

)t)

σ(X∗). (4.24)

The proof is by induction on t. For the case t = 0, σ(X t) ≥ 0 which holds.For the

inductive step by the above inequality we have,

σ(X t+1) ≥
(

1−
1

N

)

σ(X t) +
1

N
σ(X∗) (4.25)

σ(X t+1) ≥
(

1−
1

N

)(

1−
(

1−
1

N

)t)

σ(X∗) +
1

N
σ(X∗) (4.26)

(4.27)

by the induction hypothesis. We obtained the desired result.

Since
(

1−
(

1− 1
N

)t)

≥
(

1− 1
e

)

for t ≤ N , the theorem is proven.

�

4.3. Complexity of the Influence Maximization Problems

Theorem 4.14. [15,16] The influence maximization problem is NP-hard for the indepen-

dent cascade model.

Theorem 4.15. [15, 16] The influence maximization problem is NP-hard for the linear

threshold model.

Proof. The proof is by showing that the vertex cover problem in Example 2.7. is a spe-

cial case of the influence maximization problem of the linear threshold model, so that the
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influence maximization problem is as hard as the vertex cover problem which suffices to

show NP-hardness.

Now, let N be the desired largest size of a subset of V (G) such that a set of vertices

X of smaller cardinality than N includes an endpoint of every edge in E(G). If there exists

such a subset X we want to show σ(X) = |V (G)| where σ is the influence function. For

this purpose we assume,

∑

u∈Γ(v)

f(u, v) ≤ 1 (4.28)

for any v ∈ V (G) in the linear threshold model 4.1.1.

Then, if there exists such an X , among vertices those who does not belong to X

have all their neighbors in X . But by the equation above, they will adopt the desired

strategy at the first round, if X is chosen to be initial set. Therefore, σ(X) = |V (G)|.

Theorem 4.16. [15,16] If submodularity is not satisfied for the general cascade model and

the general threshold model, it is NP-hard to approximate the optimal value of the influence

function within a factor of n1−ǫ for any ǫ > 0 where n is the number of vertices.
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5. CONCLUSION

In this thesis, we presented only a limited perspective on the cascading behavior in

networks relying on a game theoretical perspective to the problem.

On the other hand, the models used in evolutionary biology to describe the cas-

cading behavior are remarkably different. The difference is due to the fact that the agents

in the models are completely exposed to a certain behavior, as they are infected with

disease unlike the models described in the thesis where the agents adopt a behavior in

accordance with best response dynamics.

Another perspective is the structure of the graph and its relation with the cascading

behavior both in finance and biology. The type of connectedness of the graph can also

play a significant role in the models we have described. This point of view needs a further

scrutiny. Also similar studies on finite graphs with special structures ought to be performed.

As a last remark, introducing randomness to the decisions of players in the mod-

els has interesting results but we restrained ourselves only to deterministic models.
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