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ABSTRACT

ANALYSIS OF CONVERGENT INTEGRAL EQUATION
METHODS FOR HIGH-FREQUENCY SCATTERING

The main aim of this thesis is to devise numerical methods for the solution of
high-frequency scattering problems in 2 dimensional settings by utilizing geometrical
optics ansatz and asymptotic properties of solutions for convex obstacles (see [1]). To
this end, we formulate the sound soft scattering problem as a well-posed boundary inte-
gral equation. Among the numerical methods (Nystrom, collocation, Galerkin, two-grid
and multi-grid) appropriate for solving integral equations, we focus on the classical but
efficacious ones, namely the two- and multi-grid methods. We first portray the defect
correction principle for integral equations of the second kind which constitutes a basis
for the two- and multi-grid methods, then we define both methods over the defect cor-
rection iteration. We also set up these methods to compute the scattering return by the
unit circle numerically and compare theoretical and numerical results. By virtue of the
geometrical optics ansatz, which expresses the normal derivative of the total field as
a highly oscillating complex exponential modulated by a slowly oscillating amplitude,
we construct a new Galerkin method well adapted to the slowly oscillating nature of
the unknown function which we approximate by polynomials. We hereby eliminate the
serious drawbacks arising from high oscillations for approximating the solutions. As
our main convergence result will display, our new algorithm entails that it suffices to
increase the degrees of freedom proportional to k¢ (for any € > 0) in order to preserve a
given accuracy. In contrast with the previous efforts on the problem, we construct our
local approximation spaces with particular emphasis on the transition regions to cap-
ture the boundary layers around shadow boundaries and utilize approximation spaces

in the deep shadow region to incorporate the effects of grazing rays.



OZET

YUKSEK FREKANSLI SACILMALAR ICIN YAKINSAK
INTEGRAL DENKLEM METODLARININ ANALIZI

Bu tezin temel amaci, 2. boyutta yiliksek-frekanshi dalgalarin sagilma prob-
lemleri i¢in geometrik optik yaklagimi vasitasi ile bir niimerik metod tasarlamaktir.
Bu maksatla, sacilma problemlerini iyi konulmusg bir sinir integral denklemi haline
doniistiirdiik. Integral denklemlerini ¢6zmek icin uygun olan niimerik metodlar (Nystrom,
collocation, Galerkin, iki-grid ve goklu-grid) arasindan, klasik ama etkili bir metod olan
iki- ve coklu-grid metodlar tizerine odaklandik. Tk olarak, bu her iki metodun temeli
olan hata diizeltme prensibini tasvir edip, 2. tiir integral denklemlerinin ¢oziimiine
uyarladik. Sonra da bu iki metodu hata diizeltme prensibi tizerinden tamimladik.
Ayni zamanda bu niimerik metodlar1 kullanarak birim ¢emberden sagilan dalgalar:
hesaplayip teorik ve niimerik sonuglar1 karsilagtirdik. Toplam alanin normal tiirevini
yiksek derecede salinim yapan kompleks tistel bir fonksiyon ile diigtik salinim yapan bir
fonksiyonun ¢arpimi olarak veren geometrik optik yaklasim sayesinde, diigiik salinimhi
fonksiyonun dogasina uygun sekilde yeni bir Galerkin metod dizayn edip polinomlarla
bu fonksiyona yaklastik. Boylece yiiksek salimmdan ortaya c¢ikan ciddi problemleri
ortadan kaldirmig olduk. Ispatladigimiz yakinsak metod kendini gosterdiginde, yeni al-
goritmamiz, k artikca, verilen hata payin sabitlemek igin serbestlik derecesini k¢ (keyfi
bir € igin) ile orantili bir gekilde artirilmasimin yeterli olacagini ortaya koymustur. Bu
problem tizerinde calisan diger arastirmacilarin aksine, lokal yakinsama uzaylarini, gegis
bolgelerine 6zel 6nem vererek golge sinir bolgesinde olugsan katmanlar: ve derin golge

sinir bolgesinde ylizeyi siyiran dalgalar: kavrayacak gekilde inga ettik.
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1. INTRODUCTION

In this thesis, we introduce a new method for the computation of scattering re-
turns by smooth convex obstacles in 2-dimensional space for high-frequency scenario.
More precisely, we consider the solution of Helmholtz equation Au + k?u = 0 on the
exterior of a bounded domain. Our approach is based upon utilization of a well-posed
integral equation formulation of the scattering problem, a non-standard Galerkin ap-
proximation space adopted to the known asymptotic expansion of the normal derivative
¥ of the total field u (incident + scattered field) obtained from microlocal analysis [1],

and the utilization of geometrical optics ansatz

D(y(s), k) = kV (s, k) exp(iky(s) - a) (1.1)

where v is the arc-lenght parametrization of the boundary 0D of the obstacle D,
and V (s, k) is the unknown amplitude varying more gradually than 9 for large wave

numbers k [1].

Solving high frequency scattering problems utilizing their boundary integral equa-
tion formulations is a widely used technique. The standard numerical methods for
solving highly-oscillatory integral equations force the degrees of freedom to be O(k)
to maintain a given accuracy. Several authors [2-6] have thus used ansatz (1.1) for
high-frequency scattering problems. In this connection, Abboud et al. [2] developed a
numerical scheme based on boundary integral equation methods, the method of station-
ary phase and geometrical optics ansatz. They utilized a variational formulation of the
problem and showed that, in principle, it requires an O(k'/?) increase in the degrees of
freedom in order to fix a given accuracy with increasing k. Bruno et al. [5] presented a
method using a combined field approach for solving convex scattering problems in two
or three dimensions for which computational complexity of solving the high-frequency
problems has been observed to be O(1) as frequency grows. The ideas underlying their
approach are similar to those of [2] as it utilizes ansatz (1.1) and an appropriate bound-

ary integral equation formulation. In addition, they invoked the localized integration



technique associated with the method of stationary phase, and they employ a variant
of the high-order Nystrom method in order to attain a given accuracy. Furthermore,
they utilize a change of variables around shadow boundaries to resolve the boundary
layers in these regions. In [4], Gilladi and Keller proposed a numerical method based
on a formulation of the scattering problem as an integral equation by a boundary el-
ement collocation method in which basis functions are asymptotically derived. Since
they represent the solution to the scattering problem as a single layer potential, their
method deteriorates for some wave numbers £ leading to non-uniqueness of solutions.
Huybrechs and Vandewalle [6] also presented a numerical method for the scattering
problem. Their method grounded on the formulation of the boundary element method
with carefully chosen basis functions with effective quadrature rules to combine the
asymptotic properties of the solution. Furthermore, they used the numerical steepest
descent methods to compute oscillatory integrals. In [7], Graham et al. also devised
a numerical method based on the use of combined field integral equations approach,
utilization of (1.1) and Galerkin approximation where slowly varying amplitude was
approximated locally via polynomials. They cast that, as k — oo, degrees of freedom
has to increase proportional to k' to attain a given error prescription. However,
they did not carry out an error analysis on the deep shadow region. As in [5,6], they

approximated the solution by zero in the deep shadow region.

Considering the same problem, here we present a novel method for the compu-
tation of normal derivative of the total field on the boundary. As a main convergence
result, we establish that it requires only a minor increase (k¢ for any € > 0) in the num-
ber of degrees of freedom to maintain a given accuracy. Additionally, the significant
advantage of our method over those in the aforementioned scheme is that our method
is fully convergent whereas those in [2,4-6] are not rigorously analysed, and that in [7]

is not convergent for fixed k.

The content of this thesis is concisely described below.

In Chapter 2, we give a brief introduction for 2-dimensional scattering problems.

Then we give the basic properties of single-layer and double-layer potentials and their
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Figure 1.1. Regions.

limiting values on the boundary. Furthermore, we include Green’s theorems and iden-
tities and prove the existence and uniqueness results for the Helmholtz equation under
a physically relevant radiation condition. Towards the end, we formulate our problem
as a combined field integral equation. This formulation enable us to determine the

scattered field by computing the normal derivative of the total field v on 9D.

Chapter 3 is devoted to two classical numerical methods, two- and multi-grid
methods, adapted to solve the integral equations. Although these methods are first
introduced to solve the boundary value problems for the elliptic equations, we see that
they can also be applied for integral equations of the second kind. Firstly we begin with
the notion of approximate inverse(s) within the framework of defect correction principle
which is substructure of the two- and multi-grid iterations adapted upon solving integal
equations of the second kind [8,9]. Following Kress [9], we discuss two variants of the
two-grid methods proposed by Brakhage [10] and Atkinson [11] respectively and the
multi-grid iterations defined by Hackbusch [12]. In the last section of this chapter, we
apply two- and multi-grid methods to the aforementioned scattering problem, and we

observe that both methods successfully work for low-frequency problems.

In Chapter 4, we design and analyze our formula for computing the scattering of
waves of the form exp(ikz - a), where a is a vector with norm 1, by an arbitrary smooth

convex obstacles in 2-D. First, we review the reformulation of the scattering problem



as a boundary integral equation. In the instance of a convex obstacle, we make use of
the geometrical optics ansatz (1.1) which enable us to express the normal derivative of
the total field by the product of a slowly oscillating amplitude (unknown) and a highly-
oscillatory complex exponential (known). Our next step is to approximate the slowly
varying function locally by polynomials. To this and, basically we divide the boundary
of D into five k-dependent regions as depicted in the Figure 1: Transition regions
TI and TS, Illuminated Region I, Deep Shadow Region S and Shadow Boundary
SB. Then we construct local Galerkin approximation spaces in each subregion to
approximate V' (-, k) via polynomials. Next we give the necessary tools for the error
analysis of our Galerkin method and state our main convergence result. We also discuss
the high frequency asymptotic behavior of V (s, k) (see (1.1)) from [1]. In the last
section, we also derive improved approximation errors for V (s, k) over the shadow
region by availing of its asymptotic expansion [1]. Finally we carry out the error

analysis and prove our main result.

Appendix A contains of the necessary functional analytic tools and Appendix B

is dedicated to some auxiliary results.



2. SCATTERING PROBLEM AND ITS INTEGRAL
EQUATION FORMULATION

In this chapter, we begin with a brief introduction to wave prorogation. Then we
introduce the single- and double- layer potentials and discuss their regularity properties.
For later use, we include Green’s theorems and identities and prove the existence and
uniqueness of solutions to exterior Helmholtz equation under a physically relevant
radiation condition. Throughout the manuscript, unless otherwise stated, we always

assume that D C R? is an open bounded domain of class C?.

The propagation of acoustic waves in a homogenous isotropic medium in R? is
governed by the equation
U,
— — AU =0. 2.1
BYe (2.1)
In the case of time-harmonic waves of the form U(z,t) = Re{u(z)e '} with frequency

w > 0, we see that u satisfies the Helmholtz equation
Au+ K*u =0,

where k = w/c is the wave number and c is the speed of sound. Let 4™ be an incident
field impinging on the boundary of an obstacle D and u® be the scattered field. For a
sound-soft obstacle, the total field 4" +u* must vanish on the boundary. Accordingly,
in the case of a sound-soft object, mathematical modelling of the scattering of time-
harmonic waves results in Dirichlet problems for the Helmholtz equation [13]. For a
more detailed description of the sound-soft scattering problem we refer to Section 2.3.

Since we focus on the Helmholtz equation in R?, we state its fundamental solution

Br,y) = (HO (ke —yl), @£y, (2.2



In general, HY = Jp + 1Y, is called the Hankel function of first kind of order n. Here,

n=3 () 23

|
= pl(n+p)

and

and

is the Euler’s constant.

For future reference, we note the relations [14]

d nH,sl) 2n
S HD(r) = = = Ho(r), and H)\() = —2HP() = B2 () (25)

and the asymptotic behavior [14]

HWV(r) =/ = exp'"=2 1) {1 +0 (—) } , T — 00. (2.6)
mr r



Furthermore, from (2.2), (2.3) and (2.4), we conclude that

1 1 i 1. k C ) 1

as |z — y| — 0. In the next section, we give the basic properties of single-layer and
double-layer potentials and their limiting values on the boundary as we formulate the
scattering problem in the form of a combined field integral equation.

2.1. Single- and Double-Layer Potentials

The integrals

S@) = [ cu)@a)ds), = €RNoD (23)
and
D(zx) = /BD gp(y)%ds(y), r € R*\OD, (2.9)

are called single-layer and double-layer potentials for an integrable density function .
Here v is the outward unit normal vector to dD. They solve the Helmholtz equation

inside and outside of the domain D [14].

The next theorem gives the behavior of surface potentials on the boundary for
continuous densities. For a proof of the theorem, we refer to Theorems 2.12, 2.13, 2.19

and 2.21 in [13].

Theorem 2.1. [Jump Relations| Let D be of class C* and let ¢ be continuous. Then

the single-layer potential & with density o is continuous throughout R? and

16]]oc.r2 < Cllé]]oc,00



for some constant C' depending on 0D. On the boundary we have

S(z) = / eW)P(r.y)is(y). =€ oD,

and

5, (&)= /aD so(y)agf(gg)dS(y) F %so(w), z € 0D,

where

06+ (z) = lim v(x) VS (z % hv(x))

ov h—0+

(2.10)

(2.11)

is to be understood in the sense of uniform convergence on 0D and where the inte-

grals exist as improper integrals. The double-layer potential ® with density ¢ can be

continuously extended from D to D and from R*\D to R?\D with limiting values

0.0 = [ o) 5 i) £ 5e(), v oD,

where

Di(z) = lim D(x + hv(x))

h—0t+

and where the integral exists as an improper integral. Furthermore,

Pl < Cllgllocop  and ||D]lscr2\p < Cl#lloc.on

for some constant C' depending on 0D and

lim {aa—?(x + hv(z)) — 8_©(I — hy(ac))} =0, =€ 0D,

h—0t ov

uniformly on 0D.

(2.12)

(2.13)



Next, we give the further regularity properties of these surface potentials in the
setting of Holder spaces (see Definition A.8). Observe that, each function ¢ in C%#(D)
also belongs to C%%(D) for a < 3. Indeed, an appeal to the Arzela-Ascoli theorem (see

Theorem A.6) entails that this embedding is compact as depicted in the next theorem.

Theorem 2.2. [13] Let 0 < aw < 8 < 1 and let D be compact. Then the imbedding

operators

I°:C*(D) —» C(D), I%°:C%(D)— C**(D)

are compact.

We can prove the same properties for the Holder spaces C1*(D) of uniformly
Hoélder continuously differentiable functions with norm defined in Definition A.8 [13].
The direct values of acoustic single- and double-layer potentials have more regularity on
the boundary as seen in the next theorem. In order to examine the mapping properties

of the potentials on the boundary, we first introduce operators

(S¢)(x) =2 / B y)oy)ds(y), =€ dD, (2.14)
oD
- OP(z,y)
(Ko)(z) :==2 - ay—<y)<ﬂ(y)d3(y), x € 0D, (2.15)

called as the single- and double-layer operators, and

(K'p)(x) =2 o 85%9(2?)go(y)ds(y), x € 0D. (2.16)

called as the normal derivative operator.

Theorem 2.3. [14] Let 9D be of class C*. Then the operators S, K and K' are bounded
from C(OD) into C**(OD), and the operators S and K are also bounded from C**(0D)
into CH*(0D).
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For a proof, we refer to Theorems 2.12, 2.15, 2.16, 2.22 and 2.23 in [13]. Also, we

note that S is self-adjoint, and K and K’ are adjoint with respect to the bilinear form

(p, ) = /aD oY) (y)ds(y).

2.2. Green’s Representation Theorems and Sommerfeld’s Radiation

Condition

In this section, we give the basic properties of solutions of Helmholtz equation
under Sommerfeld’s radiation condition. For any domain D C R? of class C?, we define
the linear space (D) of all complex valued functions v € C?(D) N C(D) for which the
normal derivative on the boundary exists in the sense that the limit

O @) = lim v(a) - Vulr — hv(z)), =€ oD
—(x) = lim v(z) - Vu(x — hv(z)), =
ov h—0+ ’ ’
exist uniformly on dD. Notice that the assumption u,v € R(D) suffices to guarantee

the validity of Green’s first theorem

/DU(y)Av(y)dy:/ U(y)gzgz;dé‘(y)—/DVU(y)-W(y)dy (2.17)

oD

and Green’s second theorem

[ st - omsuy s = [ (il - oG ) ast)  (21s)

for a bounded domain D of class C2?. This follows by first integrating over parallel

surfaces (see Definition A.7) and then passing to the limit as parallel surfaces tend to

aD [13].

As the next theorem shows, any solution of Helmholtz equation can be written

as a combination of single- and double-layer potentials.
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Theorem 2.4. [13] Let u € R(D) be a solution to Helmholtz equation

Au+Ek*u=0 in D.

Then,

0P (z,y)  Ju(y) . () — —u(z) ifreD
/"”’ (u@) o) vl ’y))d 7, if v € RA\D.

In R?, the Sommerfeld radiation condition that guarantees the uniqueness of the

exterior scattering problem takes on the form
0
lim +/r (—“ - zku) =0, 7=z, (2.19)
r—00 or

uniformly for all directions x/|x|. The asymptotic expansion

HY(r) = \/gei“-”/‘” (1 +0 (%)) : (2.20)

of the Hankel function Hél)(r) implies that (2.2) satisfies (2.19).

As we state in the next theorem, both the single- and double-layer acoustic po-

tentials satisfy the Sommerfeld radiation condition [13].

Theorem 2.5. Both the single-layer acoustic potential defined by (2.8) and the double-

layer acoustic potential defined by (2.9) satisfy the Sommerfeld radiation condition
(2.19).

The proof is immediate from the next two lemmas.
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Lemma 2.6. For any bounded domain D C R? of class C?,

T , 1
— -V, O(z,y) — ik®P(z,y) = O (|=77|—3/2> , x| = o0 (2.21)

]

uniformly for all directions L and uniformly for all y contained in OD.

]

Proof. Recalling the fundamental solution of Helmholtz equation given in (2.2), we

have

1k x—y
V. ®(z,y) = —ZHfl)(k\x - y\)m- (2:22)

Then, from 2.5 and 2.22, we obtain

|z
ik (1) r—vy T k (1)
= ——HWY(klz — y|)——= - = + ZH (k|z —

k(o 2 k 2
=2 HW (klr — 2 ilklz—yl-7/4) S 2 pilklz—yl-7/4)
4 ( o (ke =) 7rk‘|a:—y|€ T3 ﬁk|x—y|e

_tkr—y =z HY (k| — y|) — _ 2 pilklz—y|—37/4)
4]z —y| |z Tk|z — y|

_tkwoy w2 Myl
Ale—yl ol mklz -y
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Next, take the absolute values of both sides and use the triangle inequality to get

'é_' V. ®(z,y) — ik®(z, y)’

ki 2 el
< — || Hy'(k|lx — _ = ilkle—y|-n/4)
k (1) 2 o
2 HY (ke = — i(klz—y|—3m/4)
LE 2 ke YT ikayl3m/a)
4\ mklz —y| |z —y| 2]
k 1) 2 o
=2l H\V (klz — _ 2 ilklz—y|-n/4)
kA 2 {(El—y|
2 HWY (ke = S i(klz—y|—3m/4)

Z.(ﬂc—y)-:v
|z — yl|z|

k
LR 2 kel |
4 Wk\x - y\

From (2.6), we see that first two terms are O (Iz\;m) as |x| — oo. Thus, it is enough

Al g ) < ) To this end, observe that

to show that the term )z —1
le— y\lfcl

'1 (r—y)-z| |z (a: x—y>‘< x
z—yllz[ | [Jz| \Jz| Jz—yl)]| = |lz] |~”U—y|
Jr e el [lo—sl—lal| Iy
I I e 1 I R T N A B I E ] |z =yl
- 2 1
< | =yl N lyl 2yl :(9(_)
lz -yl Jr—yl |r—yl |z
as |x| — oc. O

The proof of the next lemma is similar.

Lemma 2.7. For any bounded domain D C R? of class C?,

x 00(z,y) . 0P(z,y) 1
w V) oty O \Epr) e
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uniformly for all directions and uniformly for all y contained in 0D.

x
]

As in Theorem 2.4 which concerned the solutions of the Helmholtz equation in
bounded domains, the next theorem provides an expression for solutions in exterior

domains as a combination of single- and double-layer potentials.

Theorem 2.8. [13] Let u € R(R?\D) be a solution to the Helmholtz equation
Au+k*u=0 in R*\D

satisfying the Sommerfeld radiation condition (2.19). Then

0% (x,y)  Duly) 0 JzeD
u(y) - O(z,y) | ds(y) = (2.23)
/8D ( Y ov(y) v (y) ! ) ’ u(r) if v € RA\D.

Proof. First we claim that

/|R ufds(y) = O(1), R — oo. (2.24)

2

du(y) ds(y)

ov(y)

Indeed, as is readily seen from (2.19), given € > 0 we can choose R > 0 so that
Vau(y) - L — iku(y)

/QR st - / v

= [ S (vat) - L = ikt

QR||
12

—iku(y)

ds(y)

21 R

':U

where v is the outward unit normal to the sphere Qr := {y € R?|y| = R}. This

implies

du(y)
ov(y)

— iku(y)

lim
R—o0 Qn
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so that
_ duly) . ’
L e —iku(y)| ds(y)
= lim Ouly) 2 2 u? m | ku Ouly) s
— }%ﬁoo o ( 8y(y)‘ + k%|ul” + 21 (k <y)01/(y))> ds(y). (2.25)

Next, choose R large enough so that Qr C R*\D and apply Green’s first theorem
(2.17) to functions u and % in the domain Dy := {y € R*\D||y| < R} to obtain

[ ey =~ [ atgiBase)+ [ ww gl - [ [wu)Pay

[ iy == [ w5l + [ G - [ [wu)Pay

so that

ef ) 0D 4s(y) = / Du<y>§“(” asty) + & [ Vutly = [ Jut)Pay

Dgr

We can thus deduce that

Im (k; /QR u(y)?jiiids(y)) =Im (k /6D u(y)gzgi ds(y)) :

Accordingly, plugging the last identity into (2.25), we get

2

du(y)
ov(y)

0= lim
R—o0 Qg

+ K u(y)[* + 2Im (lc /aD U(y)gu<y>> ds(y)

This yields that
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for some C' € R. Since the right-hand-side of this identity is finite, we conclude that
Ja., %’2 and [, k®|u|* must be bounded as R — oco. Hence, (2.24) follows. We write

the integral in (2.23) as the sum of

e f o ()

and

Then, observe that

< ([ |52 — ko] st
< ( / R |u<y>|2ds<y>) ( / R i)~ ikt a,) 2ds<y>)

C
<M (R—;QWR> — 0, as R — oo,

where we have used Cauchy-Schwarz inequality, Lemma 2.6 and (2.24). As to I, by
(2.19) and the fact that ®(z,y) = O(m;l/?) as |x| — oo, given € > 0 we can choose R

dS(y))
dS(y))

sufficiently large so that
du(y)

BP< ([ 19Piso)) ( I 7
G (] o (-

2
< (Cy2m) (%27TR> = Chdr?e®,

— iku(y)

Hence, we get

: 0®(z,y)  Ouly) _
lim g (u oY) _Ou(y)(P(x’y)) ds(y) = 0. (2.27)

R—o0
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If x € R?\ D, choose R large enough and r > 0 sufficiently small so that Qz C R?\ D and
€2, C Dg. Then, apply Green’s second theorem (2.18) in Dg, := {y € Dgllx —y| > r}
to get

_ u( 22@:y)  Ouly) o .
= /aDR,< ) v (y) aV(y)(p< ’y)) s(v)

_ u(22@:y)  Ouly) o .
B /aDuQRuQ,. ( ) ov(y) a’/(y)q)( ,y)> ds(y).

Here, observe that the integral on g goes to zero as R — oo by (2.27). By Green’s
second theorem and (2.7), we get that the integral on €2, converges to —u(x) as r — 0.

Thus, we conclude that

00 (x,y) B ou(y) . ) —
/8D <U(y) ov(y) ay(y)q)( ,y)> ds(y) (z)

for x € R\ D. On the other hand, if z € D, we already have

_ () 22@y)  Ouly) o .
0‘/@( W v ’”)d ).

]

Remark 2.9. [13] Observe that any solution u of the Helmholtz equation satisfying the

radiation condition also satisfies

1
u(x) =0 (W), as x| = oo

x
uniformly for all directions W
x

Since the fundamental solution of Helmholtz equation satisfies the radiation con-
dition with respect to both variables, Theorem 2.4 allows us to conclude that solutions

to the Helmholtz equation are analytic as stated in the next theorem.

Theorem 2.10. [13] Any two times continuously differentiable solution to the Helmholtz

equation is analytic.
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Thus, whenever u is a solution to the Helmholtz equation one can always infer
that u is twice continuously differentiable, and hence analytic, in the interior of its

domain [14].
2.3. Scattering from Sound-Soft Obstacle

The scattering of time harmonic waves by an arbitrary sound-soft scatterer gives

rise to the following problem [14].

Direct Acoustic Obstacle Scattering Problem: Let u™¢ be an incident field and
a solution to the Helmholtz equation in R2?. Then, find a total field v = u + u*

satisfying the Helmholtz equation
Au+k*u=0 in R*\D (2.28)

so that the scattered field u® meets the Sommerfeld radiation condition, and the total
field v vanishes on the boundary. This direct scattering problem is evidently a special

case of the following exterior Dirichlet problem.

Eaxterior Dirichlet Problem: Given a continuous function f on 0D, find a radiating
solution v € C%(R*\ D) N C(R?\D) to the Helmholtz equation which satisfies u = f on
oD.

The uniqueness of solutions to the exterior Dirichlet problem is based on the

following lemma due to Rellich [15].

Lemma 2.11. [13] Let k be positive and u € C?(R?\D) a solution to the Helmholtz

equation satisfying the Sommerfeld radiation condition and
/ lu(y)|*ds(y) = o(1), as R — oo, (2.29)
|z|=R

Then u(y) = 0 in R?\D.
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The preceding Lemma gives rise to the next theorem from which the uniqueness

of the exterior Dirichlet problem follows.

Theorem 2.12. [13] Let u € R(R?\D) be a solution to the Helmholtz equation satis-

fying the Sommerfeld radiation condition (2.19) and

Im (k /aD U(y)gU(y) dS(y)> > 0. (2.30)

Then u(y)=0 in R*\D.

Proof. Identity (2.26) in the proof of Theorem 2.8 combined with condition (2.30)entails
/ lu(y)Pds(y) — 0, as R — oo. (2.31)
lz|=R

Therefore, by Lemma 2.11, u is identically zero in R?\D. O

The following uniqueness result is now an immediate consequence of the preceding

theorem.

Theorem 2.13. [14] The exterior Dirichlet problem has at most one solution.

The existence of solutions to the exterior Dirichlet problem can be deduced from
the mapping properties of its boundary integral equation. To this end, we seek the
solution as a combination of acoustic single-layer and double- layer potentials

0P (z,y) .
ute) = [ A inaten fomiast), ceron. (232)
ap L Ov(y)
with a density ¢ € C'(0D) and a real coupling parameter n # 0 [14]. Then, by utilizing
Theorem 2.1, observe that the potential u given by (2.32) in R?\ D solves the exterior
Dirichlet problem if the density satisfies the integral equation

v+ Kp—inSp = 2f. (2.33)
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Next, by Theorems 2.2 and 2.3, we deduce the compactness of the operators S, K :
C(0D) — C(0D). Thus, by virtue of Riesz-Fredholm theory (see A.4), the existence
of a solution to integral equation (2.33) can be guaranteed [14]. As for the uniqueness,
it is enough to show that the homogenous form of the integral equation (2.33) has
only zero as a solution. To this end, let ¢ € C'(9D) be a solution of the homogenous
equation. Then, the potential u given by (2.32) must satisfy u;, = 0 on 9D. The
uniqueness of the exterior dirichlet problem yields that u = 0 in R?\ D. Furthermore,
since u = © — G defined in (2.32) is a difference of double-layer potential © and
single-layer potential &, from jump relation (2.12) of the double-layer potential on the

boundary and continuity of the single-layer potential (2.10), we have

uy —u_ = (D —inS); — (D —inG)_
—D, -D (6, -6 )

= on 0D.

Since u; = 0 on 0D, we thus get —u_ = ¢. Moreover, again employing jump relations

(2.10)-(2.12) for the normal derivatives of layer potentials, we obtain

o  ov  ov  Ov

ov ov

8U/+ 3u, 5’@+ 897 _ 277 (36+ 86)

= on 0D.

0 ou_
By (2.13) and the fact that vy = 0 implies % =0 on 0D, we have —% = iny on
v v

0D. Now, applying Green’s first theorem (2.17) to the function —u(y)_ gives

/aD@_aU(y)ds(y):/D{@Au(y)_‘_lvu(y)P}dy
= [ (=Rl + (V) 7} o

which implies

in [ lewPist) = [ {IVa)F = 1)) dy
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Upon taking the imaginary part of this equation and noting that £ > 0, we get ¢ = 0.
This proves that (I + K —inS) : C(0D) — C(0D) is injective. Accordingly, by Riesz-
Fredholm Theory (see Theorem A.4), it possess a bounded inverse. Therefore, for any
f € C(9D), equation (2.33) is uniquely solvable and the solution depends continuously
on f in the maximum norm. This shows the well-posedness of the exterior Dirichlet

problem as stated in the next theorem.

Theorem 2.14. [14] The exterior Dirichlet problem has a unique solution and the
solution depends continuously on the boundary data with respect to uniform convergence

of the solution on R?>\D, and all its derivatives on closed subsets of R?\D.

Next, by the imbedding Theorem 2.2, since the operator I : Ct*(9D) — C**(dD)
is compact, and the operators S, K : C%*(9D) — CH*(dD) are bounded, we conclude
that the operators S, K : C1*(0D) — C'*(dD) are compact (see Theorem A.3). Since
(I+K—1inS): C(OD) — C(ID) is injective, the operator (I + K —inS) : C+*(0D) —
C12(dD) is also injective. Next, applying Riesz-Fredholm theory (see Theorem A.4),
we get that (I+K—inS)~! : C1*(0D) — C1*(dD) exists and is bounded. This means
that for any given f € C*(9D), the solution ¢ of (2.33) belongs to C*(dD) and de-
pends continuously on f in the | - ||1,, norm. Furthermore, by (2.32), we find that u
is in CY*(AD), and depends continuously on f. Especially, f € C1*(dD) implies that

0
the normal derivative a—u € C%(9D).
%

Now, we return to the scattering of waves of the form u™¢ = e¥** by a sound-soft
obstacle D. For domains D of class C?, by previous regularity results and (2.3), u®

belongs to CY*(R?\ D). Therefore, apply Green’s formula for exterior domains to get

s 22@.y)  9w(y) o () = w(2). 7 e R
[ (%5 - S y)) ds) = wa). ce®AD. (230

Since u™¢(y) solves the Helmholtz equation in whole space, invoking Green’s second
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theorem to the pair of functions u™¢(y) and ®(x,y) gives

mnc 8(13({1,‘,y) . au'mc(y) T S
/, (“ W o) ’”)d )

B /D“mc(y)ﬁy@(x, y) — Au"(y)@(z, y)dy

= 0. (2.35)

Next, adding (2.34) to (2.35) yields

s/ ine w22 y)  (0uily) | du(y)N o )
v = [ { o+ e T - (S5 + Tt ot fas

(2.36)

for x € R?\D. Therefore, imposing the boundary condition 4 + u® = 0 yields that
the total field must satisfies

__ ,,inc . 8u(y) T S
u(z) = u™ () - ay(y)<1>( »y)ds(y) (2.37)

for z € R*\D. Observe that, letting z — 9D in (2.37) and using the boundary

condition v + u* = 0, we obtain
)

du(y)
8D 8”(1/)

0=u"(z); — { d(z, y)dS(y)}

+

0
Since the integral on the right-hand side is a single-layer potential with density a_u €
v
C%*(9D), we have

du(y)
8D 8V(y)

ou(y)
’ ay(y)%,y)ds(y)}

=u™(z) — = (S%) (z), =€ 0D, (2.38)

0= u"(z), — { <I>($,y)d8(y)}

+

= u"(x) —

=~

[\]
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so that

—2inu’™(x) = —in (8%) (), =€ dD. (2.39)

Next, taking the normal derivatives in (2.37), we have

Ju(z)  ou"(x) ou(y) 0P (z,y) . -
ov(z)  Ov(z) op Ov(y) Ov(z) ds(y), =€ R\D

implying that

ou(z)  Ou(x) ou(y) 0P (z,
e~ ooy

Thus, letting £ — 9D, we find that

{85(65) }+ - {gz—ggh " { o g%; aﬁﬁfj) dS(y)} 2 eR\D.

+

Since is continuous, we obtain
ov(x)
ou(x)  Ou(z) 1 ( ,0u 1 du(x)
ov(z)  Ov(z) T3 K v () 20v(x)’ z € 0D,

which gives

Ju(x) ,0u ou'(x)

- =2—= D. 2.4
ov(z) * (IC 8u> (@) dv(x) ’ T (2.40)

Now, adding (2.39) to (2.40), we get the following equality

Oulz) | (/c%) () — in (5%) () = 2@;(5 ) _ ginuine(z), w e oD.

Ou(x)

Equivalently, letting ¥(z) = (1)
v(z

, we end up with the following combined field inte-
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gral equation

I(x) + /aD {% — in®(z, y)} I(y)ds(y) = 2 <8;;n—é? — inumc(x)> xr € 0D

for the unknown ¥(z).

In order to guarantee uniqueness of solutions, one must show that the operator
I+ K —inS : C(0D) — C(0D) is bijective. To this end, observe that X' — inS
and K — inS are compact operators from C(9D) to C(0D). Since S is self-adjoint,
and K and K’ are adjoint with respect to the bilinear form (¢, ) = [, ¢@ds on
C(0D), the operators K' — inS and K — inS are also adjoint with respect to this
bilinear form. Therefore, by Fredholm’s theorem (see Theorem A.5), in the dual system
(C(0D),C(0D)), the operators I + K' —inS and I + K — inS have the same nullity.
As we have shown that I 4+ K —inS is injective, we can conclude that I + K’ —inS has
trivial null space. Consequently, by the Riesz theorem (see Theorem A.4), we get that
the operator I + K’ — inS is bijective.
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3. MULTI-GRID METHOD

In this chapter, following Kress [9] and Hackbusch [12], we discuss two clas-
sical iterative numerical methods: two- and multi-grid methods. In the literature,
these methods are first introduced for the numerical implementations of general ellip-
tic boundary value problems. We shall see that both methods can be well suited to
solve the integral equations as well, and are especially apposite for solving the linear
systems originating from the numerical treatment of Fredholm integral equations of

the second kind [9]

o=Ap+ f. (3.1)

These methods are grounded on the two basic mechanisms: smoothing operation
on the present level and defect correction on some coarser levels. We discuss only
two version of the two-grid methods due to Brakhage [10] and Atkinson [11] respec-
tively and multi-grid iterations defined by Hackbusch [12]. For these iterative methods,
convergence properties are derived using the collectively compact operator theory by
Anselone [16] and Atkinson [11]. In the last section we give algorithms and illustrate

numerical results for two- and multi-grid methods.

3.1. Preliminaries

In this section, we give the basic functional analysis tools to prove convergence

of the two- and multi-grid schemes.

Theorem 3.1. [9] Let X and Y be Banach spaces and let A : X — Y be a bounded
linear operator with a bounded inverse A=' : Y — X. Assume the sequence A, : X =Y

of bounded linear operators to be norm convergent ||A, — A|| — 0, n — oo. Then for
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sufficiently large n, more precisely for all n with

[A-1(An = A < 1,

the inverse operators A1 1Y — X erxist and are bounded by

A< — Al (32)
1 — A=A, = A)
For the solutions of the equations
Ap=f and A,pn = fa
we have the error estimate
hon—gll < — AN - gl - 33
L —[|A-1(A, = A)l

Proof. Assume that n is sufficiently large so that we have |A71(A, — A)|| = ||[A~1(A —
AN < JA7Y||[(A = A,)]] £ 1. Then, the Neumann series theorem (see Theorem A.1)

entails

1
1—[|A~ (A, = A)|0

17— A7 (A, = A < (3-4)

Next, by the identity A, ' = (I — A~ '(A4, — A))"'A~! and the equality above yields

IA~"|

||[]_A7 (AH_A”? A” H < 1 — ||A_1(An—A)||

Finally, the estimate (3.3) can be obtained by

An(SOn - QO) = fn - f + (A - An)cp
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Now, we introduce the notion of collectively compact operators.

Definition 3.2. [9] A set A = {A: X — Y} of linear operators mapping a normed
space X into a normed space Y is called collectively compact if for each bounded set

U C X the image set A(U) ={Ap: ¢ € U, A € A} is relatively compact.

Notice that, any element of a collectively compact set is compact and a set of
finitely many compact operators is collectively compact. Moreover, by definition, a
sequence (A, )nen is collectively compact if the set {A4,, : n € N} is. Also note that the
limit operator A of a pointwisely convergent sequence (A, ),en of collectively compact

operators is compact [9].

Theorem 3.3. [9] Let X,Z be normed spaces and Y be a Banach space. Let A be
a collectively compact set of operators mapping X into Y and let L, : Y — Z be a

pointwise convergent sequence of bounded linear operators with limit operator L :' Y —

Z. Then
(L, — L)A|| = 0, n — oo,
uniformly for all A € A, i.e.,
sup [[(L, — L)A|| = 0, n — oc.
AcA

The following corollary to Theorem 3.3 is used to prove the convergence of two-

grid methods.

Corollary 3.4. [9] Let X be a Banach space and let A, : X — X be a collectively

compact and pointwise convergent sequence with limit operator A : X — X. Then

(A, — DA = 0 and |[(A, — A)AL|| — 0, n — oo.

From the preceding corollary we can prove the next theorem concerning the error
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analysis for equations of the second kind due to the Brahkage [10] and Anselone and

Moore [17].

Theorem 3.5. [9] Let A: X — X be a compact linear operator in a Banach Space X
and let I — A be injective. Assume the sequence A, : X — X to be collectively compact
and pointwise convergent A,p — Ap, n — oo, for all p € X. Then for sufficiently

large n, more precisely for all n with

I = A)" (A, = A A, < 1,

the inverse operators (I — A,)™' : X — X exist and are bounded by

L+ (= A)7 A
(I = A)7 (An = A) (A

I = A7 < 7= || (3.5)

For the solutions of the equations

we have the error estimate

L+ [[(1 = A) " A

Proof. We briefly sketch a proof of the theorem. First observe that, by Riesz Theorem
(see Theorem A.4), the inverse of (I — A) exists and satisfies the identity

(T—A) " =I+(I-A)"4

from which we may conclude that B, = I + (I — A)~'A,, approximate the (I — A4,)~".
Also note that

B.(I—A)=1-C, (3.6)
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where C,, = (I —A)~!(A,— A)A,. Next Corollary 3.4 entails that norm of C,, decreases
to zero as n — oo. Thus, choosing sufficiently large n so that ||C,|| < 1 enable us to
make use of the Neumann series Theorem (see Theorem A.1) to conclude that (I—C,,)~*
exists and satisfies

1
I-C) M € —s—.
I =7 < Ty

Furthermore, since A,, is compact, and from (3.6), I — A,, is injective, invoking the Riesz
Theorem (see Theorem A.4) yields the existence of the inverse of I — A,,. Moreover,
again by utilizing (3.6), we obtain (I — A,)~! = (I —C,)"'B,, from which (3.5) follows.
The error estimate can be established by the identity

(I = Ap)(on—0) = fu— [+ (A — A)p.

The following corollary is an immediate consequence of the preceding theorem.

Corollary 3.6. [9] Under the assumptions of Theorem 3.5 we have the error estimate

ln =l < CLI(Aw = Apll + 11 fn = I} (3.7)

for all sufficiently large n and some constant C.

3.2. Defect Correction

In this section, following [9,12, 18], we discuss the abstract framework of defect
correction principle, which form a basis for the two- and multi-grid, for integral equa-
tions of the second kind. It basicly consists of the sequence of operations: restriction,
coarse grid solution and prolongation, which we described in details in the last section.

For a more detailed description of the defect correction method, we refer to Stetter [8].



30

Assume that A : X — X be a bounded linear operator on a Banach space X
so that (I — A)~! exists and is bounded . Then, we approximate the solution of the

Fredholm integral equations of the second kind

p—Ap=f (3.8)

by solutions of the approximating equations

where A,, approximates A, f,, approximates f, and we expect that ,, approximates ¢.

Here we define the approximating operator A,’s by Nystrom discretization
qn 4 ' '
And(x) = ) winkK (z,2])9(z)),
§=0

where {27 : j = 1,2,...,qn, ¢, € N} is the set nodal points corresponding to level n.
Furthermore, the sequence (A,,) of bounded linear operators A,, : X — X is collectively
compact and pointwise convergent which enable us to utilize Theorem 3.5 to guarantee
existence and uniqueness of a solution to the approximate equation (3.9) [16]. In what
follows, the index n expresses different levels of Nystrom discretization in which the

number of nodal points varies as the level changes. For convenience we set F' := (I — A)

and F, := (I — A,).

Suppose that we are given an approximate solution ¢ of (3.9). Then, in
order to reduce the high oscillations in the error ¢, — ¢"“ we smooth the given
inital approximation. Among the class of smoothing operations (Gauss-Seidel, Jacobi
and Picard’s iteration, conjugate gradient methods,...) for general linear and nonlinear
system, as is anticipated from the nature of our problem, we shall use Picard’s iteration

to smooth the given approximate input. For more detailed descriptions of class of

smoothing operations, we refer to [12] and [19]. Let P’ denotes the j times Picard’s
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iteration operator. Then, by the smoothing operation

©n,0 = Pj [()Oinput]a

we expect that we now have a better approximation ¢, o. Next, we elucidate the defect

correction iteration.

Observe that if ¢,, is the exact correction function of the approximate solution

ono of Fpn = fp, then we must have

Fo(0no +0n) = fo © Fu(pno+0n) = fa
& Foono+ Fuo, = fa
& Foon = frn — Fueno
& FLo, =d,

where d,, := f,, — F,,on0 1s the defect or residual function. These equivalent statements
reveal that 9,, is the exact correction function of ¢, o if and only if it satisfies the defect

correction equation

F.6,=d,. (3.10)
Next, observe that since d,, = ¢,, — ¢n 0, it is comparatively small with respect to ¢, 0,
and thus it is superfluous to solve the defect correction equation exactly. Instead, we

write

8, = Bpd, (3.11)
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where the bounded linear operator B, approximates the inverse F),!. Thus we deduce

On1 = Pno + 0y
= no + Bpd,
= ¢n0 + Bu(fo — Fano)
= ¢n0 + Bufo — BuFupno
= [I = BuFylono + Bafn

as an improved approximate solution to (3.9). Continuing in this way leads to following

defect (residual) correction iteration

Oniv1 =L — BoFy)pn: + Bnfn, 1=0,1,2,3... (3.12)

for the solution of (3.9). If ||I — B,F,|| < 1, or the spectral radius of I — B,F, is
less than one, then, by contraction mapping principle, iteration (3.12) converges to a
solution ,, of B, F,p, = B, f, and the solution is unique. Accordingly, as the unique
solution ¢, of (3.9) automatically solves the equation B, F,¢, = B, f,, the iteration
(3.12) converges to the unique solution of (3.9) if it happen to converge [9].

3.3. Two-Grid Methods

Following Kress [9], here we discuss two type of the two-grid-method due to

Brakhage [10] and Atkinson [11].

Definition 3.7. The two-grid method is an iterative numerical scheme comprised of
two main constituents, namely smoothing operations and defect correction iterations
(3.12) with the approzimate inverse B, on the level n given by the correct inverse F,

for some m < n.

As is clearly, the name “two-grid” comes from the fact that we use only two levels,

namely the present level n and the coarser level m < n. Next, observe that, we can
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write

I—-B,F,=1—-F1'F,
=1-F,'+F, A,
=F,F'—F. '+ F'A,
=FYI—-A,—-1)+F'A,

=F YA, — A,). (3.13)

By previous section, recalling that the operators A, approximate the operator A, the
choice of B,, as in preceding definition means to solve the residual correction equation
in some coarser level. In this section, we focus on the two extreme cases of the two-grid
methods where we use either the preceding level m = n — 1 as is done Brakhage [10]
or the coarsest level m = 0 proposed by Atkinson [11] to solve the residual correction
equation.

Thus, taking BY = f!

1, the first variant of the two-grid iteration we shall

consider reads

Son,i-&-l = [I - BS)Fn]Qpn,z + Br(zl)fnv (314)
=F (A, — Ay )eni + E N fe i=0,1,2,3... (3.15)

and the second variant reads

Pnji+1 = [I - BT(LQ)Fn]SDn,z + By(f)fna (316)

= Fy Y (A, — Ag)pni + (Fo) M f, 1=0,1,2,3... (3.17)
where Bff) = Fofl.

The next theorem regards the convergence of the two-grid iterations.

Theorem 3.8. [9] Assume that the sequence of operators A, : X — X s either norm
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convergent or collectively compact and pointwise convergent A, — Ap, n — oo, for

all p € X. Then two-grid iteration

Oniv1 = F, (A — A ) ni + fo} i=0,1,2,3... (3.18)

using two consecutive grids converges, provided that n is sufficiently large.

Proof. Let ||A, — Al| — 0, as n — oco. Then we immediately get that F), is norm

convergent to F'. Accordingly, from estimate (3.2) we get

L A
1B < T amE, Ay
Ay
T A T(A— 4]
1A

< <C
1= [JAH[[[(A = A

for all sufficiently large n € N. Thus the result follows from the fact that
NF (A, — A )| S C)|A, — Api]] = 0, as n — oo. (3.19)

Now we can deduce that for sufficiently large n € N so that || F; ' (A, — A,_1)| < 1,

the iteration (3.18) converge to the unique solution ¢, of (3.9).

Next assume that the sequence (A,,) is collectively compact and pointwise conver-
gent. Since pointwise convergence A, — A of a collectively compact sequence implies
the compactness of the limit operator, A is compact and from theorem (3.5) the in-
verse of F),’s exist and are uniformly bounded for sufficiently large n. Therefore we can

deduce that the sequence A, := F Y (A, — A,_;) is collectively compact.

Then, from the pointwise convergence A, — A,_1¢ — 0, n — oo for all p € X,

by Theorem (3.3), setting A := {An ‘ne N}, L, = A, —A, 1 :X =X, L=0



35

operator and X =Y = 7, we get

1Ay — A ) EL (A — Ay )| = 0, 1 — oo

n—1

Moreover, by the uniform boundedness of F,!; we obtain

0< [ {F2 (A — A )}
<NEZ (A, = Au ) Y (Ay — Ay y)]| = 0,

n—1

as n — oo which implies
_ 2
H {Fn—11<An_An—l)} H _>07

as n — 0o. Hence the result follows. OJ

The next theorem is about convergence of the two-grid iterations taking the
approximate inverse B,, = F,, ' in defect correction principle. We see that this iteration

converges whenever Ay is already a good approximation to A.

Theorem 3.9. [9] Assume that the sequence of operators A, : X — X is either norm
convergent or collectively compact and pointwise convergent A,p — Ap, n — oo, for

all p € X. Then the two-grid iteration
Pnit1 = Fy {(An — Ao)oni + fu} 1=10,1,2,3... (3.20)

using a fine and coarse grid converges, provided that the approximation Ay is already

sufficiently close to A.

Proof. First assume that the sequence (A,) of operators are norm convergent. Then,

as in the previous theorem, F;! are uniformly bounded by a constant C. Thus choose
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n .

_ _ 1 1
I3 (A = Al < IF5 I (An = A0)] < O = .

which implies that two-grid iteration converges.

Now assume that the sequence (A,) is collectively compact and pointwise con-
vergent. In order to show the convergence of the iteration (3.20), we can select the

coarsest grid so that
—1 —1 1
1™ (A — Ao) Fy (An — Ao)l < 5
for all m,n > 0, which yields
_ 2
I (Fy ' (An = Ag)) " | < 1.

Here we used Theorem 3.3 applied to the collectively compact sequence A,, := FyH(A,—

Ap) and L, := A,, — Ay converging to L := A — Ag. Thus the result follows. O

3.4. Multi-Grid Methods

In this section we discuss two different style of the multi-grid method by following
Hackbusch [12], Schippers [20] and Kress [9]. The two-grid methods described in The-
orem 3.8 and Theorem 3.9 use only two levels whereas the multi-grid methods make

use of n + 1 levels. The basic idea of multi-grid algorithm is as follows.
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Recall that in two-grid algorithm we ended up with the defect correction equation

Fo 1001 = dp_1. (3.21)

on the level n — 1 and solved it exactly in that level. Then, instead of solving the
correction equation exactly on the level n — 1, we can go further and apply same defect

correction principle for approximating the solution of linear system F,,_16,,_1 = d,_1.

/

Thus, as is expected, we now have a new defect correction equation F,_90, o = d,_,

on the level n — 2. Notice that, we have used the three levels n,n — 1 and n — 2 up
to now. In fact we can also apply same defect correction procedure to approximate
the solution of F,,_»d]_, = d,_,. and continue in this way until we reach the coarsest
level, then we solve the correction equation exactly there. Thus we have used total
of n 4+ 1 levels, namely {n,n — 1,n — 2,...,0}. In each level, the exact correction
function is approximated by applying multi-grid algorithm p times in which the initial
approximation is taken to be zero. More compactly, we portray multi-grid algorithm

as in the next definition.

Definition 3.10. [9] The multi-grid method is an iterative numerical scheme based
upon composition of two main characteristics: smoothing operations and defect cor-

rection iteration of the form (3.12) with the approximate inverse defined recursively

by
B = Fyt
p—1
BY =3 "[1-BY F,"BY,, n=12,.. (3.22)
m=0

for some p € N.

Next we show that multi-grid method covers the advantages of the two-grid

method. First observe that, by induction on p and recursive formula (3.22) we have

I— B7(13)Fn71 = - 37(1221Fn—1]p (3.23)
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for all n € N. Let MY := 1 — BS)’)Fn be the multi-grid iteration operator using n + 1
levels. Then from Definition (3.10) and (3.23), we deduce that

M® =1 -B®FE, =1-B®IF, =1 -B®FE, \F\F,
=1—[I-1+BYF,|F,\F,
=1-F\F,+{I - BYF,_\}F,\F,
= By (A — Auy) + { MY

p
nfl} Fn_—lan

This shows that the iteration operators Még) can be defined by the recursive formula

MY =1,

MO = 1@+ PV (1 - 1), n =12, (3.24)
where
T® = F~1 (A, — Ap_y) (3.25)
are the two-grid iteration operators.
As is seen in the next theorem, convergence of the multi-grid method depends
upon the approximation on each level. In particular, in order to guarantee convergence

of the multi-grid method one should set the coarsest level so that approximation on

that level is accurate enough.

Theorem 3.11. [9] Assume that
1T < ¢"'C (3.26)
for alln € N and some constant q € (0,1] and C > 0 satisfying

< 21—q(\/1—|—q2—1). (3.27)
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Then, if p > 2, we have

IMP| < 2" 'C <1, neN.

Proof. First observe that (/1 + ¢%)? < (1 + ¢)? for ¢ > 0 and that by (3.27) we have
1
IMP = 1T <g'C=C<20<~(/1+Z - 1) <1.
q

Thus, the assertion holds true for n = 1. Now suppose that it is correct for some n € N.

Then, we use the recurrence relation (3.24) to obtain

| M| = T30 + {MPY (1= T3]
< |ITEA -+ 1M P+ 1T )

= |T35 1+ 1P P+ | T34 )
< q"C+ (2" (1 +q"C)
<¢"C+(2¢" ) (1+¢"C)
=q"C+ gq%_lC2 + gqgn_lczq”C

4 4
< qnc_'_ _qnc2 + _CQQnC
q q

4
=q"C (1 + aC’(l + qC’)) < ¢"C2.

The last inequality holds because 4C(1 + qC) < g for all 0 < C < ¥ S it YN

2q

follows from the fact that f(t) = 4¢(1 — qt) — ¢ < 0 for all ¢t € [0, \/1;;12_1]‘ O

Recall that, ¢, — ¢ as n — oo and ¢,; — ¢, as ¢ — 0o. Since our primary
aim is to approximate ¢, large number of iterations on each level may be redundant.
In the next definition, we describe the full multi-grid scheme or nested iteration which
makes iteration error ||¢,; — ¢,|| on each level approximately of the same order as
the discretization error ||, — || by fixing the iteration number so that these errors is

maintained to be approximatly the same [9].
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Definition 3.12. Starting with Gy := Fy ' fo, the full multi-grid scheme constructs a
sequence (@) of approximations by performing k steps of the multi-grid iteration on

n + 1 levels using the preceding p,—1 as initial element.

We note that the computational cost of the multi-grid and full multi-grid methods
are O(22"*+1) for the case that the grid size on the level n is the half of the grid size
on the level n — 1 [12]. Before we state a convergence theorem for the full multi-grid

method, we make some observations.

Let Py := F, 'fy be the initial element in multi-grid scheme. For the sake of

simplicity, set ¢19 = o and then iterate the following scheme
Pli+l = (I - B§3)F1(3)>g01,z + B§3)f1 i: 07 ]-a 2)

k times and set the out put ¢; =: ¢; as an input for the iteration in the next level.

Then set @39 = @1 and perform the following iteration
©Y2,i+1 = ([ — ng)FQ(S))QDQ’@ + Bég)fz 7 0, 1, 2,

k times and set the out put ¢, =: ¢2 as an input for the iteration in the next level.

Then set 39 = @2 and perform £ steps iteration in the next level. Continuing in this



way, we get @11 = @nt1x at n+ 1 level. Then,

Bt = @nsip = (I = BOLFui)pnrit + BU funi
= [1 = B, o] (1= BEL P pnsnis + B fusa | + BEL fusa
[f B\ Foy ] Ont1 k-2 + [1 - BﬂanH] BE), i1 + BY) funr
[ n+1 n+1] Pnt1,k—3 T [[ - BganH]Q Bﬂlfm
+|7-

3 3
n+1 n—&-l} 7(1421fn+1 + Bfwilfn—i-l

M) oot 3 [0 B

k—1

3
[ n+1:| (1071_{_2[ n—l—l] fb—lzlfn-‘rl

=0

3

We are now ready to prove the following theorem.

Theorem 3.13. [9] Assume that

len =l < C¢"

for some constants 0 < ¢ <1 and C > 0, and that t := sup,,cy HM H satisfies

tk<q.

Then for the approximation p, obtained by the full multi-grid method we have that

(q +)t"

o q", nelN

|6n —enll < C

Proof. Let

41

(3.28)

(3.29)

(3.30)
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Thus we have

+1 1+ 1+
(oz—i—l—l—q)tk: <(;]_tk)tk+1—|—q) th = <—qé_t2)>tk:q titk:qa

Next observe that (3.30) is trivially satisfied for n = 0 since
Po=Fg ' fo =0 = [0 — wol = 0.

Now suppose that the assertion hold true for some n € N. Then first note that from

Oni1 — Ani10ns1 = fni1 we can deduce

Bﬁlfnﬂ = B£?1Fn+1<ﬁn+1 (3.31)
= -I+ Br(z?ianJrl]SOnJrl (3.32)
= Pny1 — Mr(L?—)Bl(;Dn-i-l- (3.33)

Accordingly, from (3.28) and (3.31) we get

k-1
- 1k r Tm
. 3 . 3 3
Pn+1 = MT(LJF)1 O+ E M7§+)1 Blelfn+1
B B m=0 N

am

- -k k—1 -
3 ~ 3 3
= (M| @t Y |MIL ] (Gun = MDionn)
L i ———— i

r 1k kol T m m+1
3 ~ 3 3

= My(wr)1 Pn + Z M7(1421 Pnt1 — [My(wr)l} Pr+1)
I ] | ]
r 1k k

= Maﬁ)l Gn + Prr1) — |:MT(E21:| Pnt1)-

Thus we obtain
. ® 1" - k|
18n1 = eunll = Il ML) (B0 = @nsa) | < 180 = @unal

<t (180 = @nll + llon — @l + lp = @niall)
<t*(Cagn+ Cq+ Cq"t)

= Ct*(a+1+q)¢" = Caq™.
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The proof is completed now. ]

3.5. Numerical Results

In this section, we illustrate the theoretical convergence result for the two- and
multi-grid methods which are defined by the approximate inverses B (Brakhage’s
method) and B® (Hackbusch’s method) in the previous sections. As an example, the

integral equation governed by the sound soft scattering problem

I(x) — - K(x,y)d(y)ds(y) = f(x), x €D (3.34)
where
K(z,y) = % — ik®(z,y) and f(z) =2 (ag;n—(cg) - z’kumc(x)) (3.35)

is solved for various values of the parameter k for the unknown 9J(x). We test the two-
and multi-grid algorithms for the unit circle D for which, in case u(z) = e*** and
a = (1,0), the exact solution of (3.34) is [21]

2% 0 ein(w+7r/2)

’(9(27) = —? Z W, S [0,27'(]

n=—00
The approximating operators A,, are defined via suitable quadrature rule

2ntl—1
Ad(x) = Y wiK(w,z;)0(x;),
=0
where Q,, = {x; = jh, : j = 1,2,..., 2"} is the set of nodal points, h,, = 2w (2"t —1)~!
is the grid size and the weights {w?} are given by {h,/2, hn, hn, ..., By /2}. Referring
to Kress [9] and Anselone [16], the approximating operators (4,,) is collectively compact
and pointwise convergent which guarantees the convergence of two- and multi-grid

iterations for sufficiently large n.
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3.5.1. Two-Grid Method: First Variant

As in the previous section in which two- and multi-grid method described in
a more abstract framework, assume that we have some approximation 1, for the

solution of discretised equation

9, — Ay = fu, x € OD. (3.36)

Next we shall improve given approximation. To this end, we first smooth the

given approximation by a 1—step Picard’s iteration to get an intermediate result

19n,1 - Anﬂn,o + fn (337)

Then the error §,, = 9, — 1,1 is smooth compared with 9,, — 9, [12]. If 4, is the exact
correction, i.e., ¥, = ¥, 1 + 0, then by pluging 9, ; into the equation 9,, — A, ¥, = f,,
we end up with the defect (residual) d,, = f, — U1 + A,U,1. As is seen below, ¥, 4

exactly solve the (3.36) if and only if d, = 0. Moreover, since

(I, — Ap)oy = (I, — Ay)Vng — (I, — AV = (L — Ap)Ung — fro = dn, (3.38)

the exact correction 4, is the solution of the defect correction equation (I, — A,)d, =
d,. Instead of solving the defect correction equation on the present level, we shall
approximate ¢, by using some coarser levels. By the fact that approximations of
smooth functions by the coarser level can be sufficiently accurate [12], we approximate
the solution of (I, — A,,)d, = d, by the defect correction equation (I, — Ap,)0m = dp,
for some m < n. Taking m = n — 1 to obtain the first variant of the two-grid method
(Brakhage), we solve the equation (1,_1 — A,—1)0,—1 = d,_1 exactly on the level n — 1
and interpolate to level n in order to approximate the solution of (I,, — A,)d, = d,,.
Here note that the matrix (I, — A,) is defined for all levels n > 1. In the previous

section, we carried out the convergence analysis of two-grid and multi-grid methods by
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considering the iteration matrices of the two methods as operators on each level, yet we
need some interpolation and restriction operators to serve as a bridge between different
levels for numerical implementation. Accordingly, we introduce a linear mapping R,
called restriction, which restricts a function defined on level n to the coarser level n—1.

we can simply choose R, to be injection R“™ which is defined as
(R™d,)(x) = dp(z) for all z € Q,_; C Q.

However, since R™ omits the values of a function at z € €,\,_1, it may result in
loss of accuracy. Thus we should also consider components of a function on ©,\€,,_;.

To this end we shall define the restriction operator R,, as

Rod,(x) = i[dn(x ) + 2d(2) + do (& + h)] for @ €

for which the corresponding matrix is then

12100000O0O0O0O0O0O0O0
0012100O0O0O0O0O0O0TO0TO0
0 00O 000 O0O0OOTO0OQ 0
1

Rn:Z 00 0O0O00O0 0 00 0O0O0
00 0O0O0OO0OO0OO® O 0000
000O0OO0OO0OO0OO0OO0OO0OT1TZ2T1TG00O0
000O0O0OO0OO0OO0OO0OO0OO0OO0OT1 2

(2n—1)x (2n+1-1)

Next, letting d,,_; = R,d,,, we can now obtain the exact correction d,,_1 = ([,,_1 —
A,_1)7'd,_1 on the coarser level n — 1. We expect that we can approximate 6,, by 0,1
which is defined on €,,_;. Our next aim is to interpolate the exact correction function
0,1 to the present level n. To this end, we introduce the linear interpolation operator

(called prolongation) denoted by P,, which approximates the §, by interpolating the
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0n—1. We simply choose P, to be the piecewise linear interpolation defined as

On_1(x) € Qyq
(Ppdn—1)(x) =40 r =027 (3.39)

[0p_1(x — hyp) + 6p_1(x + hy)] /2 otherwise.

\

Thus P, can be represented by P, = 2[R,,|T. Since ¥,, = ¥,,1 + J,, is the exact solution
and (il = P,0,—1 is an approximation to ¢,,, we can improve the value of 9,, ; by ¥,,1 —i—(il.
To summarize, let 9, ¢ be a given approximation to the solution of (I,, — A,)0, = fn.

Then

Step 1: Smoothing the Input by Picard Iteration
Uni = AnUno+ [

Step 2: Calculation of the Defect (Residual)
d, = fn - (In - An)ﬁn,l

Step 3: Restriction of the Defect to the Coarse Level
dp—1 = R,d,

Step 4: Solution of the Exact Correction on the Coarse Level
On—1 = (In-1 — An—1) 'dps

Step 5: Interpolation of the Exact Correction from Coarse to the Present Level
On = Pubn-1

Step 6: Improving the Given Approzimate Solution
Dy = 1 + O

More compactly, after the smoothing operation, one can write
1977,,2 - [[n - Pn(jn—l - An—l)_an(]n - An)} 1971,1 - Pn([n—l - An—1>_1Rnfn7
or, more abstractly

19”72 = [] - Fn__lan] 1971,1 - Fn_—llfn
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First Variant of TGM Relative Error versus Wave Number k

10 1| —<~Level=s; Input Level=7
-@-Level=9; Input Level=8
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10° || ~#Level=11; Input Level=10
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50 100 150 200 250 300 350 40(

Figure 3.1. Wave Number versus Relative Error.

which is the first variant of the two-grid method proposed by Brakhage [10]. We, of
course, choose n € N so that Theorem 3.14 guarantees the convergence of two-grid

method.

Next, we depict the convergence behavior of the first variant of the two-grid
method. In Figure 3.1, we see that relative errors increase as the wave number £
increases for fixed level. In each level, we set initial approximations to be Nystrom
solution of the previous level. As we know that increase in k leads to increase in
oscillation of the integrand in 3.34, classical numerical methods naturally loose their
robustness for k£ > 1. On the other hand, Figures 3.2 and 3.3 are the plots of relative
error versus level L for different values of the wave number k. In each plot, initial
approximation is the Nystrom solution of the integral equation (3.34) on the level
L—4,L —3,L—2and L —1 where L represents the present level. As is seen clearly,
as the level of initial approximation increases which means that the initial function

approximates the solution better, the relative error decreases.
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(b) Input Level=Present Level-3

Relative Error vs Level for the Two-Grid Method.
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TGM; Relative Error (R) vs Level (n) Graph; Input Level=n-2

10 +
10°+
107+
10°+
| | | | | | |
5 6 7 8 9 10 11 12
(a) Input Level=Present Level-2
TGM,; Relative Error (R) vs Level (n) Graph; Input Level=n-1
T T T T T T
10 +
10°+
107+
10°
| | | | | | |
5 6 7 8 9 10 11 12

Figure 3.3.

(b) Input Level=Present Level-1

Relative Error vs Level for the Two-Grid Method.
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3.5.2. Multi-Grid: First Variant

In this section, we demonstrate the convergence of the multi-grid algorithm nu-
merically for small wave number k. As in the two-grid method, interpolation and
restriction operator also play an important role in the multi-grid method. Following

Hackbusch [12], we first observe that one can write T as

TTES) = [n - Pn<[n71 - Anfl)ian(In - An)
= In - Pan + Pn(In—l - An—l)_l[([n—l - An—l)Rn - Rn([n - An)]
= ]n - Pan + Pn(]n—l - An—l)_l[RnAn - An—an]

Hence, from the recursive definition of the multi-grid iteration (3.24), we obtain the

recursively defined multi-grid iteration matrices

M® = 7 (3.40)
M =T + P (M) (I = Apt) " Ru(L = An) (3.41)
=T + Po(M2)" [Ry = (It = Apet) H(Rudn = A Ry)], - (342)

where we use the identity
([n—l - An—l)_an(In - An) = [Rn - (In—l - An—l)_l(RnAn - An—an)]-

For a given approximation 9, o to the solution of F, ¥, = f,, the multi-grid algorithm

can then be described as follows.

Stepl: Smoothing the Input by Picard’s Iteration
Ui = A0+ [

Step2: k Iteration of the Smoothed Approximation with Iteration Matriz MY
Opjr = M0, + BY f 5 =1,2, .k

where B are defined recursively in (3.22) and (Mf{q’)) is defined as above.
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In the next two plots (Figures 3.4 and 3.5), multi-grid algorithm is implemented
in a way that only initial approximation is smoothed by Picard’s iteration, and the
improvement of exact correction is done by 2 — step (p=2) multi-grid iteration in each

step taking the initial correction to be zero.
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MGM (6-grid); Relative Error (R) vs Level Graph (n); Input Level=n-1
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Figure 3.4.

(b) Multi-grid Using 5 Level

Relative Error vs Level Graph for Multi-grid Method.
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4. A CONVERGENT INTEGRAL EQUATION METHOD
FOR HIGH FREQUENCY SCATTERING

In this chapter, we devise and analyze a method for computing the scattering
returns by any smooth convex barrier in two dimensions. The classical numerical
methods developed for the solution of such problems give rise to number of degrees of
freedom that (at best) increase linearly with increasing wave number k. Accordingly,
they are not suitable for high-frequency (k > 1) simulations. Our approach is based
upon utilization of a well-posed integral equation formulation of the scattering problem,
and Galerkin approximations adopted to the known asymptotic properties (boundary

layers) of the solution.

4.1. Description of Numerical Method and Main Results

In this section, we describe a numerical method for the sound-soft scattering
problems, and we present that it requires only a minor increase (k¢ for any € > 0) in
the number of degrees of freedom to maintain a fixed accuracy at the end of the section.
In chapter 1, we have formulated the sound-soft scattering problem as the boundary

integral equation (2.41) which we rewrite as

Rl = fi (4.1)

where

auinc

14

Rr=1+K —ikS and f =2 < (x) — zk‘umc(ac)>
and S and K’ are defined as in (2.14) and (2.16). Here, we have replaced the coupling
parameter 1 with k£ so as to optimize the condition number of the boundary integral

operator Ry, (see Kress [22]).
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Now let 0D = {v(s) : s € [0,27]} be a 2m-periodic parametrization of 0D,
and choose t1,ty € [0,27] so that y(t;) and ~y(ty) correspond to tangency points in
accordance with the unit direction vector a of incoming plane wave u’(z) = e***4. Let
v(x) be the unit normal vector at the point © € 9D and (-, -) be the usual inner product
in R?. Then I={z € dD|(v(z),a) < 0} is called the illuminated region and S={z €
OD|(v(x),a) > 0} is called the shadow region. Moreover, we choose parametrization
v so that (0) is a point in the shadow region. For convenience, assume that ~(s) is
proportional to arc-length parametrization on dD. Hence, with the same symbols, we

can rewrite (4.1) as

Ri9(s) = fu(s), for s € [0, 27]. (4.2)

For any measurable subset A of [0, 27, we denote (¢, w)z2(a) to be the usual L? inner
product of complex or real valued functions defined on A and ||-||z2(a) to be the induced
norm. For simplicity, we write (J,w), || - || and L? when A = [0, 27]. In the standard

Galerkin method, the variational formulation of (4.2) is to find ¥ € L? such that,

ar(V,w) = (R, w) = (fr, w) (4.3)

for all w € L?. To define our approximation spaces, we first divide D into five parts
and construct the approximation spaces in each region in the form of complex exponen-
tials modulated by polynomials. Next, in order to study approximation properties of
our algorithm, we study the asymptotic behavior of the function V'(s, k), which is ap-
pearing in the geometrical optics ansatz U(s, k) := 9(y(s), k) = kV (s, k) exp(ik~y(s) - a)
and oscillates slowly than ¢, for large k. Then we derive a bound for the derivatives of

V (s, k) of all orders.

Next, in order to approximate V' (s, k) efficiently, we divide 0D into subregions

as depicted in the next definition.

Definition 4.1. Let 0 < €, < €1 < ... < €1 < 1/3 and &,& > 0 be constants.
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Then, for sufficiently large k > 0, we define a total of 4m subregions as follows:

Nluminated region (I): A' = [t, + & E7Y3kD 1y — &k71V3k9)

Deep shadow region (S): NS = [ty + Ek7V3ES 21 + ) — & k713K

Shadow boundaries (SB; and SBs):

APP = [ty = &k PRt + SRR, ASE = [ty — Gk Bkt + Sk k]
Transitions in the illuminated region (T1): For j=1,2,..,m—1,

AV = [ty + EETVPRG  + GETPRG), AR = [ty — R TVPRY ty — STk
Transitions in the shadow region (T'S): For j=1,2,...m —1,

Afl _ [tl _ glk—1/3kej’ t — Slk—1/3k€j+1]’ A392 — [tg + §2k—1/3k5j+17t2 + ng—1/3k6j}

Next, we let {x; : j = 1,...,4m} be the characteristic functions of these subre-
gions, then clearly

X;($)V(s) = kxj(s)eiM(S)'“V(s, k), se€|0,2n]. (4.4)

Bearing this in mind, choose integers d; > 0 and define the local approximation spaces

as
L] = span {k:xj(s)eik”(s)'“sg :0=0,1,2,..d;} . (4.5)

Finally, we define our global approximation space as
Gy = @i Lo, (4.6)

where |d| = 2?21 (d; 4+ 1) is the dimension of our approximation space. The Galerkin

formulation for (4.4) is thus to find ¥ € G¢ such that

ap(9,0) = (fy, ), for all @ e G¢. (4.7)
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Next, in order to carry out the error analysis, we make use of the following lemma due

to Céa (see [23]).

Lemma 4.2. (Céa’s Lemma) Suppose ay satisfies, for all 9,w € L?, the two assump-

tions:

continuity |ax (¥, w)| < Bi||9|| ||wl]|, Bx >0,

coercivity |a,(9,9)] > ap||9]]*, ax >0

Then both the weak form (4.3) and its Galerkin approzimation (4.7) have unique solu-

tions (9 € L* and 0 € GI). Moreover,
51 Br N
[0 — 9| < —[|¥ — | (4.8)
ay

for all w € Gl

In order to utilize the preceeding lemma in our scattering problem, we use (4.4)

to write
4m 4m
s) = ij(s)ﬁ(s) =k Z x;(8)e® &V (s k), (4.9)
j=1 j=1
and write w € G as

= kZX etk S)“ % () (4.10)

for some p € P(d;) for j = 0,1,2...4m. From (4.8)-(4.10), we have the following

corollary [7].

Corollary 4.3.

B (2 -a
o -l < :)kz{ue’” it V) =l o (410
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In order to derive bounds for the best approximation error, as the preceding
corollary shows, on each subregion we need to estimate the best approximation error
for the approximation to V' (s, k) via polynomials of certain degree. These are given in

the next theorem (for a proof, see Section 4.3).

Theorem 4.4. Let 0 <€, < €, 1 < ... < €1 < 1/3. For2 <n < min{dss, dsp,dr}+1

and sufficiently large k, we have:

Nlluminated and deep shadow regions : For Q € {Af, A5}

inf [V (-, k) = pllreg) Sn k™32 (

peP(drs)

k(1/3—e1>/2)"
drs

Shadow boundaries : For Q € {AYB, ASP}

kem \ ™
nf V() = pllz S k2 (_)
et IV E) =Pl S don

Transition regions : For Q) € {AJIT,A?} j:1.2,,.m—1andr=1,2

inf ||V (-, k) — < (H364)/2
pE%PT%dT)H (k) = pll2 ©

Elei—ei+1)/2\ "
)

where “a <, b” means that a < C,b for some constant C,, that depends only on n, and
drs,dsp and dp are degree of polynomials to approzimate V (s, k) on the regions A,
NS, AFB, ASE, A][T and AJST respectively, and P(d) is the set of algebraic polynomials of

degree d or less.

Since ||e*(#) || L = 1, letting dy = don =ds, =dn, =ds, forj=1,2,..,m—
J J J J
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1, drs = dyr = dps and dgg = dAfB = dA2SB, Corollary 4.3 and Theorem 4.4 entail

m—1 n
- klei—ej+1)/2
19— 9 <. ( )k§ k()2 (—dT ) (4.12)
J=1

where oy and [ are the coercivity and continuity constants respectively and estimated

in [7, sect.4].

Next, in order to obtain an optimum error bound with respect to k, we choose

€;’s so that (¢; —€j41)/2 = (1/3 — €1)/2 = €, holds. An easy calculation shows that

2m—25+1 1
3 2m+1

6]':

for j =1,2,..,m. With this choice of ¢;, inequality (4.12) entails

. B\, = omey fomis )
ool S (2 )y ai (2
7=1
T\
(B ()
a, drs
(Bk)kk: 1/2 @
a, dsp

Observe that the first term of the right-hand-side of the inequality above is maximum
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when j = m — 1. Hence, it follows that

fo— ol o (26 g (220
~ Qe dT
m k(6m1+3) "
+ (&) ]{k_zan ( )
(677 drs
+ <&> ey il
ay, dsp

Now we can summarize the main result in the next theorem.

Theorem 4.5. Let O be the solution of the Galerkin approximation (4.7). Assume
that polynomials of degree dr is used in transition regions and dys in illuminated and
deep shadow regions, and dsg in shadow boundaries. Then for all n with 2 < n <

min{dr,d;s,dsg} + 1, we have

1 n 1 n 1 n
HU — f)H < (ﬁk) _my1 [ k©mE3) _ om ke 6mT3) 1 kGmEs)
— <, | = k™ 2m+1 + k7 2mt1 + k72
k (67X dT dIS dSB

where By, and oy are continuity and coercivity constants.

Notice that k= 2mit < kY2 and k= znit < k723 for m > 1. Thus, choosing

d = dr = djs = dgp, we immediately have the following result.

Corollary 4.6. Let U be the Galerkin solution as described in (4.7). Also assume that

n>2andd=dr =djs =dsg > n—1. Then we have
v — 2 < & L—1/2 komss '
k ~\ oy d

The preceding corollary implies that in order to fix the accuracy of the method,
one should increase the degree of the polynomials d proportional to ksm73 where m is

the number of subregions in each transition region.



61

4.2. Asymptotics Expansion of the Normal Derivative of the Total Field

In this section, we give the asymptotic expansions and properties of the slowly
oscilating function V'(s, k) for the high frequency case (k > 1). We begin with the

following theorem which is proved by from Melrose and Taylor [1].

Theorem 4.7. There exist A > 0 such that V (s, k) has the asymptotic expansion:

V(s,k)~ Y k3725, () BO (K2 2 (s)) (4.13)

£,m>=0

valid for s € In == (t1 — At + A) U (ta — A ta + A), where y(t1) and v(t2) are the

tangency points. The functions by, ¥ and Z have the following properties.
® by, are C° complez-valued functions on Ia.
o 7 is a C™ real valued function on I, with simple zeros at t; and to, which is

positive valued on (t1,t3) N Ian and negative valued on (ty — 2m,t1) N Ia.

o U :C — C is an entire function specified by

exp(—izT)

— P 3
where Ai is the Airy function [24] and ¢ is an appropriate contour. In particular,
V(1) = aoT + ar7 %+ a7’ + a, 7" + 0(7'173(”“)) as T — 00, ag #0 (4.15)
and this expansion remains valid for all derivatives of ¥ by formally differentiating each
term on the right- hand-side, including the error term (see [1, Lemma 9.9]). Moreover,
there exist 5> 0 and cy # 0 such that for any n € N

DMV(7) = oD {exp(—it®/3 —iTan)} (1 + O(exp(—|7|B))), as T — —o0  (4.16)

where o = exp(—2mi/3)vy and 0 < vy is the right-most root of Ai.
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Next, we express V (s, k) as a sum of finitly many explicit k—dependent terms

and a manageable remainder as stated in the next corollary [7, sect. 5].

Corollary 4.8. With the same notation as in Theorem 4.7, the functions by, can be

extended to 21 -periodic C™ functions such that, for all L, M € N, the decomposition

LK
V(s k) = [Z f/3=28mmy, ()UK Z(s)) | + Rpa(s, k) (4.17)
lm

holds for all s € [0, 27], with remainder term satisfying, for alln € N
’D?RLM(S, k)‘ S CL,M,n(l + k)u+n/37 (418)

2
where p = — min {g(L +1), (M + 1)} and Cp .y 1S independent of k.

In the next theorem, we now present bounds on the derivatives of V (s, k) of all
order with respect to s, which is utilized to estimate semi-norms and then carry out

error analysis.

Theorem 4.9. [7] For all n € N and sufficiently large k, we have

L S0, KO K (s)) T2 ifn > 2
DV (s,8)] <. o

1 ifn=0,1.

where w(s) = (s — t1)(ta — s).

Proof. First, note that, by properties of Z given in Theorem 4.7, we have Z(s) =

h(s)w(s) where h is a smooth function and positive on [0, 27] and w(s) = (s—t1)(ta—s).
For any n € N, there exist L, M € N so that —u > n/3, where

p=—min{2(L+1)/3,(M +1)}.
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Next, applying Corollary 4.8 yields,
V(s k) =Apm(s, k) + Roa(s, k)
where

L
Apar(s.k) = k733 KBy 3 ()T (RPZ(s)). (4.20)

=0

Here B, ) is given by the sum Z%ZO kE=™by 1 (s) where by, (s) is described as in Theorem

4.7. As p+n/3 <0, by (4.18), it then follows
|DYRp (s, k)| < Copm(1+ fe)rin/3 < Ch,L,m

for all k. Now, by the Leibniz’s rule for the product of functions and Faa Di Bruno’s
formula [25] for the derivatives of composition of functions and the fact that all deriva-

tives of By (s) are bounded by a constant, we have

| DY AL (s, k)|

L
< k7Y R DL B ()0 (K 2(s))]]

=0

L
— kf_l/3 Z k_—2l/3
=0

L
< kU3 Z E2/3 Z(\If(l)(kl/3Z(s)))(j)
1=0

J=0

i <n> By () (W (1 2(5))) V)

=0 \J

L n J
Sn ]{3_1/3 Z k,—2l/3 Z Z (\I’(l+m1+"+mj)(k:l/SZ(S))) H(k,l/BZ(p)(S))(mp) )
=0

7=0 Z;:1 ymy=j p=1

Note that Z(s) = h(s)w(s) is a smooth function, accordingly all of its derivatives are

bounded by a constant independent from k. For convenience, letting m; +mq..+m; =1



gives

|DnAL M(S k))|

< 1/3 Z = 21/3 Z Z k(m1+"'+mj)/3 |\If(l+m1+"'+mj)(k1/3Z(s>>‘

= OZ] 1 ymy=j

< 1/3Zk 21/32 Z k_z/3‘\11l+z) k1/3Z ))}

7=0 1<i<j

Sm k:_l/3 Z k}_2l/3 Z kj/?) ‘\Il(l+j)(k1/3Z(8))|

1=0 §=0

n L
<, kU3 Z Z L@—20/3 ’\Ij(lﬂ')(kl/?)Z(S))} .

j=0 1=0

At this point, we use (4.15) and (4.16) to derive the estimates

|U(7)] < Co(1+ |7]),
[W'(7)| < C,
vO(n) <1+ 7)Y, for 1> 2.

Thus, splitting the outer sum in (4.21) into three parts, we have

’DnAL M(S ]C)l

< k= 1/SZk, 2l/3|qjl) k,l/3Z ‘—{—k 1/3Zk1 21) /3’\Ij(l+l k,l/3z( ))|

=0 =0

n L
+ RS TST RO [ (113 7 (s))|

~on

+ k3

+ k3

=2 1=0

L
S (1 FRIZ()] + K4 Y (1 k1/3|z<s>|>-2-l>

=2

L
(kl/S + Z k(172l)/3(1 + k1/3|Z(S>D211>

=1

n

L
Zkg 21)/3 1+ ]{?1/3|Z< )|>—2—l—j.

=2 1=0

64

(4.21)

(4.22)
(4.23)

(4.24)
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Since Z(s) = h(s)w(s) and h is a non-vanishing continuous function, we get

L
| DY Ap (s, k)| S k72 (1 + B w(s) + R+ (14 /fl/?’IW(S)I)_Q_l)

=2

L
+ k_1/3 (k,l/?) + Zk,(l—Zl)/B(l + kl/3]w(s)])_2_l_l)

=1

n L
+ k,fl/S Z Z k(jf2l)/3(1 + k1/3|w<8)|>727l7j

7=2 1=0
n L
o 1 KO k() ) 72 (1 S LR kl/?’\w<s>|>-l>
j=2 =1

So 1+ S RUTB(L 4 B3 (s) )2,

j=2

4.3. Semi-norm Estimates and Best Approximation Error
In this section, we estimate the semi-norms of V (s, k) on each region described
in Definition 4.1 and carry out the error analysis of Galerkin method formulated as in
(4.7).
To this end, consider the 2m-periodic function W (s, k) defined on [0, 27] as
W(s, k) = k=3 + Jw(s)]

where w(s) = (s — t1)(t2 — s), and note that

W(s. k) — —(s—c1)(dy —s) if s €[0,27]\[t1, t2], (4.25)

(s —co)(dy —5)  if s € [ty 1],
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for kK > 1 where

o=t + (T — m) — k13,
dy =ty — (T — VT2 —k13) =L+ m
o=ty + (T — T2+ k1/3) = T2 4 13,
dy =ty — (T — /T2 + k=13) = L+ \/T? + k-1/3 (4.26)

with L = 238 and T = 255 Next, given an interval I = (a,b), it is well known that

there exist C), > 0 such that, for all nonnegative integers n with n < d + 1,

f () < Cod ™ 4.2
b 1 = pllemy < Cod ™| flur (4.27)

where

1/2

= | [ 176 = a0 - 9 (428

is the semi-norm defined on I, and P(d) is the set of univariate polynomials of degree
< d (see [26, Cor. 3.12]). We employ this to derive bounds for the approximation of
V (s, k) via polynomials. We now state and prove a theorem regarding the semi-norm

estimates of V (s, k).

Theorem 4.10. Let 0 < ¢, < €1 < ... < €1 < 1/3. Forn > 2 and sufficiently large

k, we have the following semi-norm estimates on each region given in Definition 4.1.

Nlluminated and Deep Shadow Regions : For Q € {AT, A%}
V (s, k) g Sp 14 k= 1F30)/2g(/3=c)n/2 (4.29)
Shadow Boundaries : For Q € {A7B, AP}

Vs, k) |ng Sp 14 & H/2Eemn
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Transition Regions: For €} € {AIT AS cj=12.m—1and r=1,2}.
V (s, k) |ng Sp 14 k- UH3G+0/2p(G—e41)n/2.

where “a <, b7 means that a < C,b for some constant C,, that depends only on n.

Proof. We show only the semi-norm estimate of V' (s, k) on the illuminated region. For
the sake of simplicity, let [a,b] := [t; + &k~ V3k 1y — k73K = AL, Observe that,

by Theorem 4.9, we have
b
Vs, BB wr = [ 1DRV (s DG = )" (b = s)"ds
b J(i-1)/3 ?
Sn/a +Z T ) (s —a)"(b—s)"ds
, 2
1 1 n n
§n/a {1+k Z(k—l/3+|w(s)|)j+2} (s —a)"(b—s)"ds
b (s —a)"(b—s)"
Nn/a(s—a) (b—s)"+ k™ Z W (s, )53 ds

s—a”b—s)
< 1+k™ E:/) (s YT ds (4.30)

Next, we calculate the last integral. By Lemma B.2 and noting that W(s, k) = (s —

¢2)(dy — s) in the given interval [a, b, we get

= Z (s —a)"(b— s)” g
- S
S _ 62 2j+4 8)2]+4
n 2j+4 n

Sk Y Y Fnpg.i)

7j=2 =1 p,q=0
n 2j+4 n

Sk 0D Y (2 — a)P(ca = b)(b — o) PHetO T (4.31)

7j=2 =1 p,q=0
—(cg — a)?(co — b)4(a — 02)2n*(p+q4ri)+1

+(a — do)P(b— dy)?(dy — a)*"~PHFITE — (0 — dy)P(b — dy)(dy — b)zn_(pﬂ“)“)
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1
k™3

T4V T2k~ 3

where F'(n,p, q,1) is defined as in Lemma B.2. For convenience, letting 7 =

and recalling (4.26), we have

O — & <(b—c) =T+ T2+ k™5 — &k 3k <THVIZ+1= (b—cy) = O(1)

1 1 1
glk.*g‘i’él S (a _ 62) 7'+€1kf§+61 < (ﬁ +€1)k 3+61 = (& _ 02) O(kf§+e1)

1 1 1
Gk < (dy —b) = T + &k 3T < (57 + &)k 3T o (dy — b) = O(k™379)

27— & < (dy—a) =T+ \T?+ k5 =&k 39 <T+ VT2 + 1= (dy — a) = O(1)

for sufficiently large k. Plugging these into (4.31) yields

- Z (s —a)"(b— S)" g
- S
8 — C2 2]+4 S>2]+4
n 2j+4 n

Nn k Z Z Z 1/3+61 _ (k*1/3+61 )p(k*l/3+€1)2n7(p+q+i)+1

j=2 i=1 p,q=0
+ (k,—l/3+€1)q _ (k—1/3+e1)q(k—1/3+61)2n—(p+q+i)+1]

n 2j+4 n

-2 Z Z Z 1/3+61 (k—1/3+51)2n—(q+i)+1 + (k—1/3+51)q + (k—1/3+e1)2n—(p+i)+1]

7j=2 i=1 p,q=0
n 2j+4 n

S,n k—QZ Z Z [1 + (k—1/3+e1)2n—(q+i)+1 + (k—1/3+e1)2n—(p+i)+1}

7j=2 i=1 p,q=0
sn ]f_Q [1 + (k—1/3+e1)—n—3}

< [k:_2 + (k—1/3+61)—n—3k—2} < [1 + k(—1/3+el)(—n—3)—2] < [1 + k(l/s—el)n—(1+3e1)}
Thus, by (4.30), we obtain
b
Vs, B = [ DIV (s R)P(s = a)" (b= s

(s —a)"(b—s)"
N Z/ (5 — ca)2+4(dy — 8)2j+4d8

<n [1 + k(1/3—61)n—(1+361)] )

The semi-norm estimates on shadow boundary and transition regions can be established
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similarly. However, when we estimate the semi-norm on deep shadow region we end

up with

s—a” (b—s
|V(S k)|nAS ~n 1+k 22/ S k 2]+4) ds

where [a,0] = A = [ty + LAYk 21 + 4 — & k7V2k9]. Accordingly, we have to
estimate the integral f %ds To this end, we separate the integral in two

parts

"(s—a)"(b=s)" [ (s—a)"(b—s)" b (s —a)"(b— s)
/a W (s, k)2+4 ds —/a (s h)o ds —i—/2 W (s k)5 ds.

™

The first integral can be estimated in a manner similar to that for the illuminated
region, yet for the second integral, we have to make a change of variables u = s — 27 by

noting the fact that W (s, k) is a 2m-periodic function of s. Thus, we need to estimate

/b—277 (u+ 27 —a)"(b— 27 — u)ndu B /b' (u+2m —a)"(b—2m — U)”du
0 W (u+ 27, k)%2+4 —Jo W (u, k)>+

where b/ = b — 2m. The estimation of this integral can now be carried out similar to

that for the illuminated region. O

Now, we are ready to derive bounds for the best approximation error. Indeed,
recalling (4.27), Theorem 4.4 is now an immediate consequence of the preceding the-
orem. In more detail, for the first estimate in Theorem 4.4, let 2 < n < d; + 1. By

(4.27), we then have

nt IV R) = pllzen < Cadi "V (5, E)

where |V (s, k)|, a7 is the semi-norm defined in (4.28). Next, by Theorem 4.10, it follows
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that

inf [|V (s, k) = pllzeary S dy™(1 + k= (502 0/3en/2)
p€EP(dr)

Sn dl—n + k_(1+361)/2k(1/3_61)n/2dl_n

< ]{3_(1+361)/2]€(1/3_€1)n/2d;n

1/3—€1)/2
< gty (KUY

The remaining estimates in Theorem 4.4 can be carried out similarly.
4.4. Shadow Region-Revisited

In this section, we derive improved estimates over the shadow region by analyzing
the second asymptotic expansion of the function W¥(s) given in (4.16). First we note

the following improvement upon Theorem 4.9 on the shadow region.

Theorem 4.11. For s € [0,t1) U (t2, 27| and sufficiently large k, we have,

14 Z;L—O k(j—1)/36—k1/3w(s)sin(27r/3)V1 an > 9

|DSV (s, k)| S (4.32)

1 ifn=0,1.

where v1 < 0 is the right most root of the Airy function Ai(z) [24].
Proof. First note that, by properties of Z (see Theorem 4.7 and (4.13)), we have

Z(s) = h(s)w(s) = h(s)(s — t1)(t2 — s)

where h is a smooth real function and positive on [0,27]. Given any n € N, choose

L, M € N so that —p > n/3, where p is defined as

p=—min{2(L+1)/3,(M +1)}.
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Then, by Corollary 4.8, we get
V(s k) =Apm(s, k) + Roa(s, k)
where

L
Apar(s.k) = k733 KBy 3 ()T (RPZ(s)).

=0

Here B, ) is given by the sum Z%ZO kE=™by 1 (s) where by, (s) is described as in Theorem

4.7. Since p+n/3 < 0, by (4.18), we then have
|D2RL7M(S, ]{?)| S Cn,L,M(l + k),u-l—n/S S Cn,L,M (433)
for all k. Thus, by Leibnitz’s rule,

|DY AL (s, k)|

L
<ETVES R | D2 (B () B O (K2 Z(s))]|
=0

L
_ j1/3 Z —21/3
1=0

J

zn: (n) Bl(j;w—j) () (\Ij(l) (k‘l/?’Z(s)))(j)

J=0

Next, we use Fa Di Bruno’s formula [25] for the derivatives of composed functions.

Since all derivatives of B; y/(s) have k-independent bounds, we obtain

n

SO (k92(5))

J=0

L
|DYALam(s, k)| Sn E—1/3 Z L—2/3
1=0

L n J
Sn E1/3 Z E2/3 Z Z (\Ij(l+m1+...+mj)(k1/3Z(5))) H(kl/?)Z(p)(S))(mp) .
1=0

j=0 21]4:1 ymy=j p=1

The aforementioned properties of the function A in the decomposition Z(s) = h(s)w(s)
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accordingly yields

|DnAL M(S ]{3)|

<, J-1/3 Z jo21/3 Z Z L (matdm;)/3 ’qj(l+m1+~~-+mj)(k1/3w(s))|

I=0 59 ymy=j

<k 1/3 Z o213 Z Z f(mit.+m;)/3 ‘\1;(1+m1+~~+mj)(l<:1/3w(s))\ )

J=0 1<mi+...4+m;<j

Therefore, letting m, + ... + m; = and rearranging sums, we have

L n
DT AL (s, k)| S K73 RN TN RGO (B w(s) )|

1=0 =0 1<i<j

L n
Sn k’_l/3 Z k‘_2l/3 Z k’j/3 ’\I/(l+j)(k71/3w<8))|

1=0 §=0

n L
<. j-1/3 Z Z 1.(=20)/3 |\Ij(l+j)(k1/3w(s))‘ ) (4.34)

=0 1=0

We now use the asymptotic expansion 4.16 of the derivatives of W for the shadow
region. Since the roots of the Airy function Ai(z) are negative [24], when 7 — —o0, the
function ¥ together with its derivatives decay exponentially. If we write (4.16) more

explicitly, Faa Di Bruno’s formula [25] entails

|DTU(7)| = |eo D} [exp(—it/3 — iTan)] [|(1+ O(exp(—|7]8)))| (4.35)

Seo Yo et (it 3 —iray) || [[ (4 (m)™ ) (4.36)

22:1 ymy=n
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where g(7) = —i73/3 —iT. Since g(7) vanishes after 3 times differentiation, we get

IDPW(n)| S D fexpt™ et |(—ir® 3 — iran)[| [ [ (9% ()™
Sy ymy=n p=1

S Y lexptmrermd||(ir® /3 —iran)|I(g' (7)™ (" (1) "2 (g (7)™

22:1 ymy=n

So > et || (i 3 — o) || (i — i)™ (—26m)™2 | (~23)™).

~n

22:1 Yymy=n

(4.37)
Next, let X(s, k) := e *'/*@(©)sin2r/31 and note that
|€—ikw3(s)/3—ik1/3w(s)a1| _ |6—ikw3(s)/3—ik1/3w(s){cos(—27r/3)+isin(—27r/3)}1/1 |
— |€—ikw3(s)/3||e—ikl/sw(s)cos(Zw/3)l/1—k1/3w(s)sin(27r/3)y1|
— |efk1/3w(s)sin(27r/3)u1’ — |:{(57 k)’ (438)

Accordingly, by (4.37) and (4.38), we have

WD (kP (s))|
S Y e OB (21302 (5) — on )™ (~2ik w) ™ (—24) ™|
§n Z |€—ikw3(s)/3—ik1/3w(s)a1||(_Z-k2/3w2(8) _ iOz1>m1‘|(—2i/{?1/3w)m2”<—2i)m3|

Sn Z |6—k1/3w(s)sm(27r/3)y1|’ i z'k:2/3w2(s) . ia1|m1| i 2k1/3w(8)|m2|2|m3
Sn DX (s, k)| — ik () — sin(2m/3)vy — icos(2m/3)in ™| — 2k Pw(s)|™
S Y| (s, k)| = sin(2m/3)v1 — i[k*w?(s) + cos(2m/3)m] ™| — 2K Pw(s)|™

S Y0 NX (s, K)o+ kY3 (s) | — 2k ()|
where all sums above are taken over the set

I+j
{(ml,...,ml+]~) : Zymy:l+j,my eNforl1 <y< l—i—j}.

y=1

As exponential functions of negative exponents decay faster than any polynomial at
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infinity, we obtain

(WD (K w(s))]
< Z e*k1/3w(s)sin(2ﬂ'/3)l/1 (Vl + k4/3w4(3))m1(—2k1/3w(3))m2

43 .
S ymy=l+j

< 6_k1/3w(5)5in(27r/3)l/1 (439)

~T

whenever w(s) > 0. Therefore, using (4.39) in (4.34) gives

n L
DY Apar(s, k)| S k3N 0N KOG (13 7(s) )|

§=0 1=0

n L
Sn k,—l/S Z Z k(j—2l)/3e—k1/Sw(s)sin(%r/3)u1

7=0 1=0

Sm Z k(j*1)/36*k1/3w(s)sin(27r/3)u1 '
=0

Since Ry, pr and its derivatives of all order are bounded by (4.18), we finally have

DRV (5, k)] S L+ D RUTD/ Bk Pule)sintzn/dm (4.40)

j=0

As we anticipated, in the next section, we estimate the semi-norm of V (s, k) in

the shadow region by utilizing the preceding theorem.

Theorem 4.12. [Improved semi-norm estimate in the shadow| Let ¢ > 0 be given.

Then, for any interval [a,b] C [0,t1) or (t2,27] and n > 2 we have
|V(Sv k)|?z (a,b) S <1 + 6k1/3(672‘:’8m(2”/3)1’1))

for sufficiently large k, where @ = max,cqp w(s) and vy < 0 is the right most root of

the Ai.
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Proof. By (4.28), we have

b
V(s )R ) = / DMV (s, B)2(s — a)" (b — 5)"ds

b n 2
Sn / (1 + Zk(j—l)/3€—k1/3w(s)sm(27r/3)u1) (S . a)n<b - S)ndS

J=0

b n
Sn / (1 + Zk(Zj2)/362k1/3w(s)sin(27r/3)1/1> (5 B a)n(b i 5)”ds

J=0

b n b
Sn/ (S . (l)n(b . s)”ds + Zk(2j_2)/3/ 6—2k1/3w(s)sin(27r/3)1/1 (8 . a)n(b . s)nds

=0
n b
Sn 1+ Z k(2j—2)/3 / 6—2k1/3w(s)sin(27r/3)ul (S . a)n(b _ S)ndS.

J=0

Next, since v; < 0, we get

n b ) ‘
V) S R [ st sy — s

a

J=0

S,n 1+ Z k(2j—2)/3e—2k1/3wsm(27r/3)1/1 (b B a)2n+1
§j=0

<. 1+ k(2n*2)/3<b _ a)2n+16*2k1/3®sin(27r/3)1/1

< 1+eek1/36—2k1/3®sin(27r/3)1/1
~T

where @ = maxX,cq5 wW(s). O

Next, recalling (4.27), we derive the best approximation error in the deep shadow

region as depicted in the next theorem.

Theorem 4.13. [Improved best approximation in the shadow| Let € > 0 be given.

Then, for any interval Q C [0,t1) or (t3, 27| and 2 < n < dg + 1, we have

6k1/3(e—2wsin(27r/3)l/1)

peP(dg) dg,

where W = MaXe(qp) w(s) and v1 < 0 is the right most root of the Ai, and dg is the

degree of polynomials to approximate V (s, k).
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5. CONCLUSION

The main aim of this thesis was to devise numerical methods for high-frequency
scattering problems in 2 dimensional settings by utilizing the geometrical optics ansatz
(1.1) for convex obstacles rigorously established by Melrose and Taylor [1]. To this end,
we transformed the sound soft scattering problem into a well-posed boundary integral
equation and, by virtue of the ansatz, which expresses the normal derivative of the
total field as a highly oscillating complex exponential modulated by a slowly oscillating
amplitude, we constructed a new Galerkin method to capture the oscillations for large
wave number k and approximate the slowly oscillating part of the solution. In essence
our method was based on the refinement of transition regions given in Definition 4.1
where asymptotic properties of the solution changes from polynomial to exponential.
As a main convergence result, we showed that it suffices to increase the degrees of

freedom proportional to k¢ for any € in order to retain a fixed accuracy.

In the third chapter, we implemented two- and multi-grid methods for integral
equations of the second kind. We tested both methods with sound-soft scattering
problem for the unit circle for which the exact solution is known. As is seen in numerical
results, multi-grid method is not efficient for high-frequency problems if the number of

level is large.

Our method can also be applied to multiple scattering problems by a carefully

design of a Galerkin approximation spaces in accordance with the given configuration.
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APPENDIX A: Functional Analysis

The following theorems and definitions can be found in [9].

Theorem A.1. [Neumann Series| Let A : X — X be a bounded linear operator on a
Banach space X with |A|| <1 and let [ : X — X denote the identity operator. Then

I — A has a bounded inverse on X that is given by the Neumann series
(I-A)t=> 4
k=0

and satisfies

1

I—A) < —-.
I =471 < T

Definition A.2. [Compact Operators| A linear operator A : X — 'Y from a normed
space X into a normed space Y is called compact if it maps each bounded set in X

into a relatively compact set in Y .

Theorem A.3. Let X,Y and Z be normed spaces and let A: X —Y and B:Y — Z
be bounded linear operators. Then the product BA : X — Z is compact if one of the

two operators A or B is compact.

Theorem A.4. [Riesz Theory for Compact Operators| Let A : X — X be a compact
linear operator on a normed space X. Then I — A is injective if and only if it is

surjective. If I — A is injective (and therefore also bijective), then the inverse operator

(I —A)™: X — X is bounded.

Theorem A.5. [Fredholm Theorem| Let (X,Y) be a dual system and A : X — X,
B :Y =Y be compact adjoint operators. Then the nullspaces of the operators I — A

and I — B have the same finite dimension.

Theorem A.6. [Arzela-Ascoli] A set U C C(D) is relatively compact if and only if it
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s bounded and equicontinuous, i.e., if there exist a constant C' such that
p(x)| < C

forall z € D and all p € U, and for every € > 0 there exists 6 > 0 such that

lp(x) — py)| < e

for all x,y € D with |x —y| <6 and all p € U.

Definition A.7. [Parallel Surface] For a bounded domain D of class C™, m > 1, we

have the notion of the parallel surface described by
0D, ={z=xz+hv(z):z€dD} (A1)

where v is the unit normal to the 0D and h is a real parameter.

Definition A.8. [14] [Holder Spaces| A real or complex valued function ¢ defined on
a set D C R? is called uniformly Holder continuous with Holder exponent 0 < oo < 1 if

there is a constant C such that

lp(z) — o(y)| < Clz —y|”

for all x,y € D. We define the Holder space C%*(D) to be the linear space of all func-
tions defined on D which are bounded and uniformly Holder continuous with exponent

a. It is a Banach Spaces with the norm

r)— Py
el = lpllnep = sup o(a)] + sup D@L
z€D z,yeD |$ - y|
7Y
We also introduce the Holder space C*(D), 0 < a < 1, of uniformly Hélder contin-

uously differentiable functions as the space of differentiable functions for which gradey



belongs to C%*(D). With the norm

Ielle = [[@llian = l¢(@)llw + lgradelloq

CY*(D) is again a Banach space.

79
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APPENDIX B: Auxiliary Results

Lemma B.1. For ¢ < d and m € N, we have

m

(s — c>m1<d— TS <2mm_—j j 1) (d- i)%-j Ls - SE <d—1s>ﬂ‘

Jj=1

Proof. We first compute the partial fraction decomposition

1 AD Al Am—l
S Y Tl PR R PR e S pps (B
o Lo B B
(d—s)m  (d—s)m1t 77 (d—s)

where Ay, By, € R for k =0,1,...,m—1. To this end, we multiply both sides by (s—¢)™

to obtain

ﬁ =Ag+Ai(s—c)+ Ay(s — ).+ Ap_i(s — )™t (B.2)
+(s—c)™ Bo + b — + .t B
(d—s)m  (d=s)™ (d—s)

so that setting s = ¢ we get

1
(d — C)m- - AO +A1(C_ C) + AZ(C_ 0)2‘” +Am_1(c_ C)m—l
m By B By1
+(c—c) (R B =R s

= Ap.
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Next, we differentiate (B.2) to obtain

(CZ_THW = A+ As(s —c) +343(s — ). + Ap_i(m — 1) (s — ¢)™ 2
m—1 BO B, B,,_1
+m(s —c) {(d—S)er(d—s)m1+"'+—(d—3)]

+@—@WWU%)hdf;m+«dfgm4+nﬁkgfg}

so that for s = ¢, we get

= A;.
(d—cymtt —
Continuing in this way, we have
m+k—1 1

In a similar manner, one can multiply equation (B.2) by (d — s)™ to get

B, =A,forall0 <k <m-—1.

Next, writing the coefficients Ay and By in (B.2) and letting let m — k = j, we get

(s—déd—ﬁm:m1(m+:_1>w—1w%{®—;mk+Yd—;mk]

S

Lemma B.2. Letty,ty € [0,27] be so that y(t1) and y(t2) correspond to tangency points

in accordance with the unit direction vector a where v 1s a 2mw-periodic parametrization
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of boundary of a bounded convex domain D. Also let us define

o=t + (T — m) — k13,
dy =ty — (T — VT2 —k13) =L+ m
o=ty + (T — T2+ k1/3) = T2 4 13,
dy =ty — (T — \/T? + k—1/3) = .L+VE?_?TE (B.3)

where L = 258 and T = 258 Suppose that either [a, 5] C [t1,t2] and ¢ = ¢;, d = d;
or [a, Bl N (t1,t2) =0 and ¢ = cg, d = dg. Then, for any a,b € R, n € NU{0}, m € N,
there holds

[ e 55 (72 ) () (i rona

F(n,p,q,5) = (c = a)’(c — b)"log (g - Z) ¥ o= dyb—d)fleg (3:g>

when 2n—p—q—j5+1=0,

. (c—a)P(c—b)
F(n,p,q.j) = ST ———

(a—d)"(b— d)*
+ .
2n—p—q—j+1

[(ﬁ N c)2n—p—q—j+1 . (a . C)2n—p—q—j+1]

[(d N a)?n—p—q—j-H . (d _ 5)2n—p—q—j+1]

when2n—p—q—7+1#0.
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Proof. By Lemma B.1, we have

:Zféi(%z;jgl)u_iywvl@_éiifsw (81??;;qus
S e [ e [ e

Next, we make the change of variables s — ¢ = u in the first integral and d—s = u

in the second to get

—a u’

+Zd5w+adww+b@ﬂm}

As binomial theorem entails

u’J

(Utc—a)(utc—b" o Cﬁ(n

and

u’

(ut+a—d"(u+b—d)" < Cﬁ(n

=



it follows that

[ lzoreor,

(s 2:3 @)
S p%( V) Lo ooy

+

/d ’ u* P (g — d)P (b—d)qczu]

a

i (7.7 1)( 1)“ Z (n> <n) [ ey /fcu%qudu

=1 pa=0 \P/ N4 —¢

d—p
+ (a—d)P(b— d)q/d

&.

<.

i du} )

—Q

Then, the result follows.
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