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priceless friendship.

I would like to thank all faculty members.

I would also like to thank all my officemates for their true friendships.

I gratefully acknowledge support from Bogazici University BAP Projects through

the project “Fast and convergent methods for high-frequency acoustic scattering”

(project code 5548P).

Most importantly, I am indebted to my family for their sacrifices throughout my

education.



iv

ABSTRACT

ANALYSIS OF CONVERGENT INTEGRAL EQUATION

METHODS FOR HIGH-FREQUENCY SCATTERING

The main aim of this thesis is to devise numerical methods for the solution of

high-frequency scattering problems in 2 dimensional settings by utilizing geometrical

optics ansatz and asymptotic properties of solutions for convex obstacles (see [1]). To

this end, we formulate the sound soft scattering problem as a well-posed boundary inte-

gral equation. Among the numerical methods (Nyström, collocation, Galerkin, two-grid

and multi-grid) appropriate for solving integral equations, we focus on the classical but

efficacious ones, namely the two- and multi-grid methods. We first portray the defect

correction principle for integral equations of the second kind which constitutes a basis

for the two- and multi-grid methods, then we define both methods over the defect cor-

rection iteration. We also set up these methods to compute the scattering return by the

unit circle numerically and compare theoretical and numerical results. By virtue of the

geometrical optics ansatz, which expresses the normal derivative of the total field as

a highly oscillating complex exponential modulated by a slowly oscillating amplitude,

we construct a new Galerkin method well adapted to the slowly oscillating nature of

the unknown function which we approximate by polynomials. We hereby eliminate the

serious drawbacks arising from high oscillations for approximating the solutions. As

our main convergence result will display, our new algorithm entails that it suffices to

increase the degrees of freedom proportional to kε (for any ε > 0) in order to preserve a

given accuracy. In contrast with the previous efforts on the problem, we construct our

local approximation spaces with particular emphasis on the transition regions to cap-

ture the boundary layers around shadow boundaries and utilize approximation spaces

in the deep shadow region to incorporate the effects of grazing rays.
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ÖZET

YÜKSEK FREKANSLI SAÇILMALAR İÇİN YAKINSAK

İNTEGRAL DENKLEM METODLARININ ANALİZİ

Bu tezin temel amacı, 2. boyutta yüksek-frekanslı dalgaların saçılma prob-

lemleri için geometrik optik yaklaşımı vasıtası ile bir nümerik metod tasarlamaktır.

Bu maksatla, saçılma problemlerini iyi konulmuş bir sınır integral denklemi haline

dönüştürdük. İntegral denklemlerini çözmek için uygun olan nümerik metodlar (Nyström,

collocation, Galerkin, iki-grid ve çoklu-grid) arasından, klasik ama etkili bir metod olan

iki- ve çoklu-grid metodları üzerine odaklandık. İlk olarak, bu her iki metodun temeli

olan hata düzeltme prensibini tasvir edip, 2. tür integral denklemlerinin çözümüne

uyarladık. Sonra da bu iki metodu hata düzeltme prensibi üzerinden tanımladık.

Aynı zamanda bu nümerik metodları kullanarak birim çemberden saçılan dalgaları

hesaplayıp teorik ve nümerik sonuçları karşılaştırdık. Toplam alanın normal türevini

yüksek derecede salınım yapan kompleks üstel bir fonksiyon ile düşük salınım yapan bir

fonksiyonun çarpımı olarak veren geometrik optik yaklaşım sayesinde, düşük salınımlı

fonksiyonun doğasına uygun şekilde yeni bir Galerkin metod dizayn edip polinomlarla

bu fonksiyona yaklaştık. Böylece yüksek salınımdan ortaya çıkan ciddi problemleri

ortadan kaldırmış olduk. İspatladığımız yakınsak metod kendini gösterdiğinde, yeni al-

goritmamız, k artıkça, verilen hata payını sabitlemek için serbestlik derecesini kε (keyfi

bir ε için) ile orantılı bir şekilde artırılmasının yeterli olacağını ortaya koymuştur. Bu

problem üzerinde çalışan diğer arastırmacılarin aksine, lokal yakınsama uzaylarını, geçiş

bölgelerine özel önem vererek gölge sınır bölgesinde oluşan katmanları ve derin gölge

sınır bölgesinde yüzeyi sıyıran dalgaları kavrayacak şekilde inşa ettik.
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1. INTRODUCTION

In this thesis, we introduce a new method for the computation of scattering re-

turns by smooth convex obstacles in 2-dimensional space for high-frequency scenario.

More precisely, we consider the solution of Helmholtz equation ∆u + k2u = 0 on the

exterior of a bounded domain. Our approach is based upon utilization of a well-posed

integral equation formulation of the scattering problem, a non-standard Galerkin ap-

proximation space adopted to the known asymptotic expansion of the normal derivative

ϑ of the total field u (incident + scattered field) obtained from microlocal analysis [1],

and the utilization of geometrical optics ansatz

ϑ(γ(s), k) = kV (s, k) exp(ikγ(s) · a) (1.1)

where γ is the arc-lenght parametrization of the boundary ∂D of the obstacle D,

and V (s, k) is the unknown amplitude varying more gradually than ϑ for large wave

numbers k [1].

Solving high frequency scattering problems utilizing their boundary integral equa-

tion formulations is a widely used technique. The standard numerical methods for

solving highly-oscillatory integral equations force the degrees of freedom to be O(k)

to maintain a given accuracy. Several authors [2–6] have thus used ansatz (1.1) for

high-frequency scattering problems. In this connection, Abboud et al. [2] developed a

numerical scheme based on boundary integral equation methods, the method of station-

ary phase and geometrical optics ansatz. They utilized a variational formulation of the

problem and showed that, in principle, it requires an O(k1/3) increase in the degrees of

freedom in order to fix a given accuracy with increasing k. Bruno et al. [5] presented a

method using a combined field approach for solving convex scattering problems in two

or three dimensions for which computational complexity of solving the high-frequency

problems has been observed to be O(1) as frequency grows. The ideas underlying their

approach are similar to those of [2] as it utilizes ansatz (1.1) and an appropriate bound-

ary integral equation formulation. In addition, they invoked the localized integration
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technique associated with the method of stationary phase, and they employ a variant

of the high-order Nyström method in order to attain a given accuracy. Furthermore,

they utilize a change of variables around shadow boundaries to resolve the boundary

layers in these regions. In [4], Gilladi and Keller proposed a numerical method based

on a formulation of the scattering problem as an integral equation by a boundary el-

ement collocation method in which basis functions are asymptotically derived. Since

they represent the solution to the scattering problem as a single layer potential, their

method deteriorates for some wave numbers k leading to non-uniqueness of solutions.

Huybrechs and Vandewalle [6] also presented a numerical method for the scattering

problem. Their method grounded on the formulation of the boundary element method

with carefully chosen basis functions with effective quadrature rules to combine the

asymptotic properties of the solution. Furthermore, they used the numerical steepest

descent methods to compute oscillatory integrals. In [7], Graham et al. also devised

a numerical method based on the use of combined field integral equations approach,

utilization of (1.1) and Galerkin approximation where slowly varying amplitude was

approximated locally via polynomials. They cast that, as k → ∞, degrees of freedom

has to increase proportional to k1/9 to attain a given error prescription. However,

they did not carry out an error analysis on the deep shadow region. As in [5, 6], they

approximated the solution by zero in the deep shadow region.

Considering the same problem, here we present a novel method for the compu-

tation of normal derivative of the total field on the boundary. As a main convergence

result, we establish that it requires only a minor increase (kε for any ε > 0) in the num-

ber of degrees of freedom to maintain a given accuracy. Additionally, the significant

advantage of our method over those in the aforementioned scheme is that our method

is fully convergent whereas those in [2,4–6] are not rigorously analysed, and that in [7]

is not convergent for fixed k.

The content of this thesis is concisely described below.

In Chapter 2, we give a brief introduction for 2-dimensional scattering problems.

Then we give the basic properties of single-layer and double-layer potentials and their
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Figure 1.1. Regions.

limiting values on the boundary. Furthermore, we include Green’s theorems and iden-

tities and prove the existence and uniqueness results for the Helmholtz equation under

a physically relevant radiation condition. Towards the end, we formulate our problem

as a combined field integral equation. This formulation enable us to determine the

scattered field by computing the normal derivative of the total field u on ∂D.

Chapter 3 is devoted to two classical numerical methods, two- and multi-grid

methods, adapted to solve the integral equations. Although these methods are first

introduced to solve the boundary value problems for the elliptic equations, we see that

they can also be applied for integral equations of the second kind. Firstly we begin with

the notion of approximate inverse(s) within the framework of defect correction principle

which is substructure of the two- and multi-grid iterations adapted upon solving integal

equations of the second kind [8, 9]. Following Kress [9], we discuss two variants of the

two-grid methods proposed by Brakhage [10] and Atkinson [11] respectively and the

multi-grid iterations defined by Hackbusch [12]. In the last section of this chapter, we

apply two- and multi-grid methods to the aforementioned scattering problem, and we

observe that both methods successfully work for low-frequency problems.

In Chapter 4, we design and analyze our formula for computing the scattering of

waves of the form exp(ikx ·a), where a is a vector with norm 1, by an arbitrary smooth

convex obstacles in 2-D. First, we review the reformulation of the scattering problem
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as a boundary integral equation. In the instance of a convex obstacle, we make use of

the geometrical optics ansatz (1.1) which enable us to express the normal derivative of

the total field by the product of a slowly oscillating amplitude (unknown) and a highly-

oscillatory complex exponential (known). Our next step is to approximate the slowly

varying function locally by polynomials. To this and, basically we divide the boundary

of D into five k-dependent regions as depicted in the Figure 1: Transition regions

TI and TS, Illuminated Region I, Deep Shadow Region S and Shadow Boundary

SB. Then we construct local Galerkin approximation spaces in each subregion to

approximate V (·, k) via polynomials. Next we give the necessary tools for the error

analysis of our Galerkin method and state our main convergence result. We also discuss

the high frequency asymptotic behavior of V (s, k) (see (1.1)) from [1]. In the last

section, we also derive improved approximation errors for V (s, k) over the shadow

region by availing of its asymptotic expansion [1]. Finally we carry out the error

analysis and prove our main result.

Appendix A contains of the necessary functional analytic tools and Appendix B

is dedicated to some auxiliary results.
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2. SCATTERING PROBLEM AND ITS INTEGRAL

EQUATION FORMULATION

In this chapter, we begin with a brief introduction to wave prorogation. Then we

introduce the single- and double- layer potentials and discuss their regularity properties.

For later use, we include Green’s theorems and identities and prove the existence and

uniqueness of solutions to exterior Helmholtz equation under a physically relevant

radiation condition. Throughout the manuscript, unless otherwise stated, we always

assume that D ⊆ R2 is an open bounded domain of class C2.

The propagation of acoustic waves in a homogenous isotropic medium in R2 is

governed by the equation

∂2U

∂t2
− c2∆U = 0. (2.1)

In the case of time-harmonic waves of the form U(x, t) = Re{u(x)e−iωt} with frequency

ω > 0, we see that u satisfies the Helmholtz equation

∆u+ k2u = 0,

where k = ω/c is the wave number and c is the speed of sound. Let uinc be an incident

field impinging on the boundary of an obstacle D and us be the scattered field. For a

sound-soft obstacle, the total field uinc+us must vanish on the boundary. Accordingly,

in the case of a sound-soft object, mathematical modelling of the scattering of time-

harmonic waves results in Dirichlet problems for the Helmholtz equation [13]. For a

more detailed description of the sound-soft scattering problem we refer to Section 2.3.

Since we focus on the Helmholtz equation in R2, we state its fundamental solution

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y. (2.2)
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In general, H
(1)
n = Jn + iYn is called the Hankel function of first kind of order n. Here,

Jn(t) =
∞∑
p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

(2.3)

and

Yn(t) =
2

π

{
ln
t

2
+ C

}
Jn(t)− 1

π

n−1∑
p=0

(n− 1− p)!
p!

(
2

t

)n−2p

− 1

π

∞∑
p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

{ψ(p+ n) + ψ(p)} (2.4)

are Bessel functions where ψ(0) = 0,

ψ(p) =

p∑
m=1

1

m
, p = 1, 2, ...,

and

C = lim
p→∞

{
p∑

m=1

1

m
− ln p

}

is the Euler’s constant.

For future reference, we note the relations [14]

d

dr
H(1)
n (r) =

nH
(1)
n

r
−Hn+1(r), and H

(1)
n+1(r) =

2n

r
H(1)
n (r)−H(1)

n−1(r) (2.5)

and the asymptotic behavior [14]

H(1)
n (r) =

√
2

πr
expi(r−

nπ
2
−π

4
)

{
1 +O

(
1

r

)}
, r →∞. (2.6)
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Furthermore, from (2.2), (2.3) and (2.4), we conclude that

Φ(x, y) =
1

2π
ln

1

|x− y|
+
i

4
− 1

2π
ln
k

2
− C

2π
+O

(
|x− y|2 ln

1

|x− y|

)
(2.7)

as |x − y| → 0. In the next section, we give the basic properties of single-layer and

double-layer potentials and their limiting values on the boundary as we formulate the

scattering problem in the form of a combined field integral equation.

2.1. Single- and Double-Layer Potentials

The integrals

S(x) =

∫
∂D

ϕ(y)Φ(x, y)ds(y), x ∈ R2\∂D (2.8)

and

D(x) =

∫
∂D

ϕ(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ R2\∂D, (2.9)

are called single-layer and double-layer potentials for an integrable density function ϕ.

Here ν is the outward unit normal vector to ∂D. They solve the Helmholtz equation

inside and outside of the domain D [14].

The next theorem gives the behavior of surface potentials on the boundary for

continuous densities. For a proof of the theorem, we refer to Theorems 2.12, 2.13, 2.19

and 2.21 in [13].

Theorem 2.1. [Jump Relations] Let ∂D be of class C2 and let ϕ be continuous. Then

the single-layer potential S with density ϕ is continuous throughout R2 and

||S||∞,R2 ≤ C||ϕ||∞,∂D
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for some constant C depending on ∂D. On the boundary we have

S(x) =

∫
∂D

ϕ(y)Φ(x, y)ds(y), x ∈ ∂D, (2.10)

and

∂S±
∂ν

(x) =

∫
∂D

ϕ(y)
∂Φ(x, y)

∂ν(x)
ds(y)∓ 1

2
ϕ(x), x ∈ ∂D, (2.11)

where

∂S±
∂ν

(x) := lim
h→0+

ν(x) · ∇S(x± hν(x))

is to be understood in the sense of uniform convergence on ∂D and where the inte-

grals exist as improper integrals. The double-layer potential D with density ϕ can be

continuously extended from D to D and from R2\D to R2\D with limiting values

D±(x) =

∫
∂D

ϕ(y)
∂Φ(x, y)

∂ν(y)
ds(y)± 1

2
ϕ(x), x ∈ ∂D, (2.12)

where

D±(x) := lim
h→0+

D(x± hν(x))

and where the integral exists as an improper integral. Furthermore,

||D||∞,D ≤ C||ϕ||∞,∂D and ||D||∞,R2\D ≤ C||ϕ||∞,∂D

for some constant C depending on ∂D and

lim
h→0+

{
∂D

∂ν
(x+ hν(x))− ∂D

∂ν
(x− hν(x))

}
= 0, x ∈ ∂D, (2.13)

uniformly on ∂D.
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Next, we give the further regularity properties of these surface potentials in the

setting of Hölder spaces (see Definition A.8). Observe that, each function ϕ in C0,β(D)

also belongs to C0,α(D) for α < β. Indeed, an appeal to the Arzelà-Ascoli theorem (see

Theorem A.6) entails that this embedding is compact as depicted in the next theorem.

Theorem 2.2. [13] Let 0 < α < β ≤ 1 and let D be compact. Then the imbedding

operators

Iβ : C0,β(D)→ C(D), Iα,β : C0,β(D)→ C0,α(D)

are compact.

We can prove the same properties for the Hölder spaces C1,α(D) of uniformly

Hölder continuously differentiable functions with norm defined in Definition A.8 [13].

The direct values of acoustic single- and double-layer potentials have more regularity on

the boundary as seen in the next theorem. In order to examine the mapping properties

of the potentials on the boundary, we first introduce operators

(Sϕ)(x) := 2

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ ∂D, (2.14)

(Kϕ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂D, (2.15)

called as the single- and double-layer operators, and

(K′ϕ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂D. (2.16)

called as the normal derivative operator.

Theorem 2.3. [14] Let ∂D be of class C2. Then the operators S, K and K′ are bounded

from C(∂D) into C0,α(∂D), and the operators S and K are also bounded from C0,α(∂D)

into C1,α(∂D).
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For a proof, we refer to Theorems 2.12, 2.15, 2.16, 2.22 and 2.23 in [13]. Also, we

note that S is self-adjoint, and K and K′ are adjoint with respect to the bilinear form

〈ϕ, ψ〉 :=

∫
∂D

ϕ(y)ψ(y)ds(y).

2.2. Green’s Representation Theorems and Sommerfeld’s Radiation

Condition

In this section, we give the basic properties of solutions of Helmholtz equation

under Sommerfeld’s radiation condition. For any domain D ⊂ R2 of class C2, we define

the linear space <(D) of all complex valued functions u ∈ C2(D)∩C(D) for which the

normal derivative on the boundary exists in the sense that the limit

∂u

∂ν
(x) = lim

h→0+
ν(x) · ∇u(x− hν(x)), x ∈ ∂D,

exist uniformly on ∂D. Notice that the assumption u, v ∈ <(D) suffices to guarantee

the validity of Green’s first theorem

∫
D

u(y)∆υ(y)dy =

∫
∂D

u(y)
∂υ(y)

∂ν(y)
ds(y)−

∫
D

∇u(y) · ∇υ(y)dy (2.17)

and Green’s second theorem

∫
D

{u(y)∆υ(y)− υ(y)∆u(y)} dy =

∫
∂D

(
u(y)

∂υ(y)

∂ν(y)
− υ(y)

∂u(y)

∂ν(y)

)
ds(y) (2.18)

for a bounded domain D of class C2. This follows by first integrating over parallel

surfaces (see Definition A.7) and then passing to the limit as parallel surfaces tend to

∂D [13].

As the next theorem shows, any solution of Helmholtz equation can be written

as a combination of single- and double-layer potentials.



11

Theorem 2.4. [13] Let u ∈ <(D) be a solution to Helmholtz equation

∆u+ k2u = 0 in D.

Then,

∫
∂D

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y) =

−u(x) if x ∈ D

0 if x ∈ R2\D.

In R2, the Sommerfeld radiation condition that guarantees the uniqueness of the

exterior scattering problem takes on the form

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x|, (2.19)

uniformly for all directions x/|x|. The asymptotic expansion

H
(1)
0 (r) =

√
2

πr
ei(r−π/4)

(
1 +O

(
1

r

))
, (2.20)

of the Hankel function H
(1)
0 (r) implies that (2.2) satisfies (2.19).

As we state in the next theorem, both the single- and double-layer acoustic po-

tentials satisfy the Sommerfeld radiation condition [13].

Theorem 2.5. Both the single-layer acoustic potential defined by (2.8) and the double-

layer acoustic potential defined by (2.9) satisfy the Sommerfeld radiation condition

(2.19).

The proof is immediate from the next two lemmas.
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Lemma 2.6. For any bounded domain D ⊂ R2 of class C2,

x

|x|
· ∇xΦ(x, y)− ikΦ(x, y) = O

(
1

|x|3/2

)
, |x| → ∞ (2.21)

uniformly for all directions
x

|x|
and uniformly for all y contained in ∂D.

Proof. Recalling the fundamental solution of Helmholtz equation given in (2.2), we

have

∇xΦ(x, y) = −ik
4
H

(1)
1 (k|x− y|) x− y

|x− y|
. (2.22)

Then, from 2.5 and 2.22, we obtain

x

|x|
· ∇xΦ(x, y)− ikΦ(x, y)

= −ik
4
H

(1)
1 (k|x− y|) x− y

|x− y|
· x
|x|

+
k

4
H

(1)
0 (k|x− y|)

=
k

4

(
H

(1)
0 (k|x− y|)−

√
2

πk|x− y|
ei(k|x−y|−π/4)

)
+
k

4

√
2

πk|x− y|
ei(k|x−y|−π/4)

− ik

4

x− y
|x− y|

· x
|x|

(
H

(1)
1 (k|x− y|)−

√
2

πk|x− y|
ei(k|x−y|−3π/4)

)

− ik

4

x− y
|x− y|

· x
|x|

√
2

πk|x− y|
ei(k|x−y|−3π/4).
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Next, take the absolute values of both sides and use the triangle inequality to get

∣∣∣∣ x|x| · ∇xΦ(x, y)− ikΦ(x, y)

∣∣∣∣
≤ k

4

∣∣∣∣∣
(
H

(1)
0 (k|x− y|)−

√
2

πk|x− y|
ei(k|x−y|−π/4)

)∣∣∣∣∣
+
k

4

∣∣∣∣∣
(
H

(1)
1 (k|x− y|)−

√
2

πk|x− y|
ei(k|x−y|−3π/4)

)∣∣∣∣∣
+
k

4

√
2

πk|x− y|

∣∣∣∣ei(k|x−y|−π/4) − i x− y
|x− y|

· x
|x|
ei(k|x−y|−3π/4)

∣∣∣∣
=
k

4

∣∣∣∣∣
(
H

(1)
0 (k|x− y|)−

√
2

πk|x− y|
ei(k|x−y|−π/4)

)∣∣∣∣∣
+
k

4

∣∣∣∣∣
(
H

(1)
1 (k|x− y|)−

√
2

πk|x− y|
ei(k|x−y|−3π/4)

)∣∣∣∣∣
+
k

4

√
2

πk|x− y|
ei(k|x−y|−3π/4)

∣∣∣∣i− i(x− y) · x
|x− y||x|

∣∣∣∣ .
From (2.6), we see that first two terms are O

(
1
|x|3/2

)
as |x| → ∞. Thus, it is enough

to show that the term
∣∣∣i− i (x−y)·x

|x−y||x|

∣∣∣ is O
(

1
|x|

)
. To this end, observe that

∣∣∣∣1− (x− y) · x
|x− y||x|

∣∣∣∣ =

∣∣∣∣ x|x| ·
(
x

|x|
− x− y
|x− y|

)∣∣∣∣ ≤ ∣∣∣∣ x|x| − x− y
|x− y|

∣∣∣∣
≤
∣∣∣∣ x|x| − x

|x− y|

∣∣∣∣+

∣∣∣∣ y

|x− y|

∣∣∣∣ =
|x|
|x|

∣∣∣∣ |x− y| − |x||x− y|

∣∣∣∣+
|y|
|x− y|

≤ | − y|
|x− y|

+
|y|
|x− y|

=
2|y|
|x− y|

= O
(

1

|x|

)

as |x| → ∞.

The proof of the next lemma is similar.

Lemma 2.7. For any bounded domain D ⊂ R2 of class C2,

x

|x|
· ∇x

∂Φ(x, y)

∂ν(y)
− ik∂Φ(x, y)

∂ν(y)
= O

(
1

|x|3/2

)
, |x| → ∞
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uniformly for all directions
x

|x|
and uniformly for all y contained in ∂D.

As in Theorem 2.4 which concerned the solutions of the Helmholtz equation in

bounded domains, the next theorem provides an expression for solutions in exterior

domains as a combination of single- and double-layer potentials.

Theorem 2.8. [13] Let u ∈ <(R2\D) be a solution to the Helmholtz equation

∆u+ k2u = 0 in R2\D

satisfying the Sommerfeld radiation condition (2.19). Then

∫
∂D

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y) =

0 if x ∈ D

u(x) if x ∈ R2\D.
(2.23)

Proof. First we claim that

∫
|y|=R

|u|2ds(y) = O(1), R→∞. (2.24)

Indeed, as is readily seen from (2.19), given ε > 0 we can choose R > 0 so that

∫
ΩR

∣∣∣∣∂u(y)

∂ν(y)
− iku(y)

∣∣∣∣2 ds(y) =

∫
ΩR

∣∣∣∣∇u(y) · y
|y|
− iku(y)

∣∣∣∣2 ds(y)

=

∫
ΩR

1

|y|

∣∣∣∣|y|1/2(∇u(y) · y
|y|
− iku(y)

)∣∣∣∣2 ds(y)

≤ 1

R
ε22πR

where ν is the outward unit normal to the sphere ΩR := {y ∈ R2||y| = R}. This

implies

lim
R→∞

∫
ΩR

∣∣∣∣∂u(y)

∂ν(y)
− iku(y)

∣∣∣∣2 ds(y) = 0
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so that

0 = lim
R→∞

∫
ΩR

∣∣∣∣∂u(y)

∂ν(y)
− iku(y)

∣∣∣∣2 ds(y)

= lim
R→∞

∫
ΩR

(∣∣∣∣∂u(y)

∂ν(y)

∣∣∣∣2 + k2|u|2 + 2Im

(
ku(y)

∂u(y)

∂ν(y)

))
ds(y). (2.25)

Next, choose R large enough so that ΩR ⊂ R2\D and apply Green’s first theorem

(2.17) to functions u and u in the domain DR := {y ∈ R2\D||y| < R} to obtain

∫
DR

u(y)∆u(y)dy = −
∫
∂D

u(y)
∂u(y)

∂ν(y)
ds(y) +

∫
ΩR

u(y)
∂u(y)

∂ν(y)
ds(y)−

∫
DR

|∇u(y)|2dy.

Since ∆u = (−k2u) = −k2u, this entails

−k2

∫
DR

|u(y)|2dy = −
∫
∂D

u(y)
∂u(y)

∂ν(y)
ds(y) +

∫
ΩR

u(y)
∂u(y)

∂ν(y)
ds(y)−

∫
DR

|∇u(y)|2dy

so that

k

∫
ΩR

u(y)
∂u(y)

∂ν(y)
ds(y) = k

∫
∂D

u(y)
∂u(y)

∂ν(y)
ds(y) + k

∫
DR

|∇u(y)|2dy − k3

∫
DR

|u(y)|2dy.

We can thus deduce that

Im

(
k

∫
ΩR

u(y)
∂u(y)

∂ν(y)
ds(y)

)
= Im

(
k

∫
∂D

u(y)
∂u(y)

∂ν(y)
ds(y)

)
.

Accordingly, plugging the last identity into (2.25), we get

0 = lim
R→∞

∫
ΩR

∣∣∣∣∂u(y)

∂ν(y)

∣∣∣∣2 + k2|u(y)|2 + 2Im

(
k

∫
∂D

u(y)
∂u(y)

∂ν(y)

)
ds(y)

This yields that

lim
R→∞

∫
ΩR

∣∣∣∣∂u(y)

∂ν(y)

∣∣∣∣2 + k2|u(y)|2ds(y) = −2Im

(
k

∫
∂D

u(y)
∂u(y)

∂ν(y)
ds(y)

)
< C (2.26)



16

for some C ∈ R. Since the right-hand-side of this identity is finite, we conclude that∫
ΩR

∣∣∂u
∂ν

∣∣2 and
∫

ΩR
k2|u|2 must be bounded as R→∞. Hence, (2.24) follows. We write

the integral in (2.23) as the sum of

I1 :=

∫
ΩR

u(y)

(
∂Φ(x, y)

∂ν(y)
− ikΦ(x, y)

)
ds(y)

and

I2 := −
∫

ΩR

Φ(x, y)

(
∂u(y)

∂ν(y)
− iku(y)

)
ds(y)

Then, observe that

|I1|2 ≤
(∫

ΩR

|u(y)|
∣∣∣∣∂Φ(x, y)

∂ν(y)
− ikΦ(x, y)

∣∣∣∣ ds(y)

)2

≤
(∫

ΩR

|u(y)|2ds(y)

)(∫
ΩR

∣∣∣∣∂Φ(x, y)

∂ν(y)
− ikΦ(x, y)

∣∣∣∣2 ds(y)

)

≤M

(
C1

R3
2πR

)
→ 0, as R→∞,

where we have used Cauchy-Schwarz inequality, Lemma 2.6 and (2.24). As to I2, by

(2.19) and the fact that Φ(x, y) = O( 1
|x|1/2 ) as |x| → ∞, given ε > 0 we can choose R

sufficiently large so that

|I2|2 ≤
(∫

ΩR

|Φ(x, y)|2ds(y)

)(∫
ΩR

∣∣∣∣∂u(y)

∂ν(y)
− iku(y)

∣∣∣∣2 ds(y)

)

≤
(
C2

R
2πR

)(∫
ΩR

1

|y|

∣∣∣∣|y|1/2(∂u(y)

∂ν(y)
− iku(y)

)∣∣∣∣2 ds(y)

)

≤ (C22π)

(
ε2

R
2πR

)
= C24π2ε2.

Hence, we get

lim
R→∞

∫
ΩR

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y) = 0. (2.27)
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If x ∈ R2\D, choose R large enough and r > 0 sufficiently small so that ΩR ⊂ R2\D and

Ωr ⊂ DR. Then, apply Green’s second theorem (2.18) in DR,r := {y ∈ DR||x− y| > r}

to get

0 =

∫
∂DR,r

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y)

=

∫
∂D∪ΩR∪Ωr

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y).

Here, observe that the integral on ΩR goes to zero as R → ∞ by (2.27). By Green’s

second theorem and (2.7), we get that the integral on Ωr converges to −u(x) as r → 0.

Thus, we conclude that

∫
∂D

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y) = u(x)

for x ∈ R2\D. On the other hand, if x ∈ D, we already have

0 =

∫
∂D

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

)
ds(y).

Remark 2.9. [13] Observe that any solution u of the Helmholtz equation satisfying the

radiation condition also satisfies

u(x) = O

(
1

|x|1/2

)
, as |x| → ∞

uniformly for all directions
x

|x|
.

Since the fundamental solution of Helmholtz equation satisfies the radiation con-

dition with respect to both variables, Theorem 2.4 allows us to conclude that solutions

to the Helmholtz equation are analytic as stated in the next theorem.

Theorem 2.10. [13] Any two times continuously differentiable solution to the Helmholtz

equation is analytic.
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Thus, whenever u is a solution to the Helmholtz equation one can always infer

that u is twice continuously differentiable, and hence analytic, in the interior of its

domain [14].

2.3. Scattering from Sound-Soft Obstacle

The scattering of time harmonic waves by an arbitrary sound-soft scatterer gives

rise to the following problem [14].

Direct Acoustic Obstacle Scattering Problem: Let uinc be an incident field and

a solution to the Helmholtz equation in R2. Then, find a total field u = uinc + us

satisfying the Helmholtz equation

∆u+ k2u = 0 in R2\D (2.28)

so that the scattered field us meets the Sommerfeld radiation condition, and the total

field u vanishes on the boundary. This direct scattering problem is evidently a special

case of the following exterior Dirichlet problem.

Exterior Dirichlet Problem: Given a continuous function f on ∂D, find a radiating

solution u ∈ C2(R2\D)∩C(R2\D) to the Helmholtz equation which satisfies u = f on

∂D.

The uniqueness of solutions to the exterior Dirichlet problem is based on the

following lemma due to Rellich [15].

Lemma 2.11. [13] Let k be positive and u ∈ C2(R2\D) a solution to the Helmholtz

equation satisfying the Sommerfeld radiation condition and

∫
|x|=R

|u(y)|2ds(y) = o(1), as R→∞. (2.29)

Then u(y) = 0 in R2\D.
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The preceding Lemma gives rise to the next theorem from which the uniqueness

of the exterior Dirichlet problem follows.

Theorem 2.12. [13] Let u ∈ <(R2\D) be a solution to the Helmholtz equation satis-

fying the Sommerfeld radiation condition (2.19) and

Im

(
k

∫
∂D

u(y)
∂u(y)

∂ν(y)
ds(y)

)
≥ 0. (2.30)

Then u(y)=0 in R2\D.

Proof. Identity (2.26) in the proof of Theorem 2.8 combined with condition (2.30)entails

∫
|x|=R

|u(y)|2ds(y)→ 0, as R→∞. (2.31)

Therefore, by Lemma 2.11, u is identically zero in R2\D.

The following uniqueness result is now an immediate consequence of the preceding

theorem.

Theorem 2.13. [14] The exterior Dirichlet problem has at most one solution.

The existence of solutions to the exterior Dirichlet problem can be deduced from

the mapping properties of its boundary integral equation. To this end, we seek the

solution as a combination of acoustic single-layer and double- layer potentials

u(x) =

∫
∂D

{
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

}
ϕ(y)ds(y), x ∈ R2\∂D, (2.32)

with a density ϕ ∈ C(∂D) and a real coupling parameter η 6= 0 [14]. Then, by utilizing

Theorem 2.1, observe that the potential u given by (2.32) in R2\D solves the exterior

Dirichlet problem if the density satisfies the integral equation

ϕ+Kϕ− iηSϕ = 2f. (2.33)
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Next, by Theorems 2.2 and 2.3, we deduce the compactness of the operators S,K :

C(∂D) → C(∂D). Thus, by virtue of Riesz-Fredholm theory (see A.4), the existence

of a solution to integral equation (2.33) can be guaranteed [14]. As for the uniqueness,

it is enough to show that the homogenous form of the integral equation (2.33) has

only zero as a solution. To this end, let ϕ ∈ C(∂D) be a solution of the homogenous

equation. Then, the potential u given by (2.32) must satisfy u+ = 0 on ∂D. The

uniqueness of the exterior dirichlet problem yields that u = 0 in R2\D. Furthermore,

since u = D − iηS defined in (2.32) is a difference of double-layer potential D and

single-layer potential S, from jump relation (2.12) of the double-layer potential on the

boundary and continuity of the single-layer potential (2.10), we have

u+ − u− = (D− iηS)+ − (D− iηS)−

= D+ −D− − iη(S+ −S−)

= ϕ on ∂D.

Since u+ = 0 on ∂D, we thus get −u− = ϕ. Moreover, again employing jump relations

(2.10)-(2.12) for the normal derivatives of layer potentials, we obtain

∂u+

∂ν
− ∂u−

∂ν
=
∂D+

∂ν
− ∂D−

∂ν
− iη

(
∂S+

∂ν
− ∂S−

∂ν

)
= iηϕ on ∂D.

By (2.13) and the fact that u+ = 0 implies
∂u+

∂ν
= 0 on ∂D, we have −∂u−

∂ν
= iηϕ on

∂D. Now, applying Green’s first theorem (2.17) to the function −u(y)− gives

∫
∂D

u(y)−
∂u(y)−
∂ν(y)

ds(y) =

∫
D

{
u(y)∆u(y) + |∇u(y)|2

}
dy

=

∫
D

{
−k2|u(y)|2 + |∇u(y)|2

}
dy,

which implies

iη

∫
∂D

|ϕ(y)|2ds(y) =

∫
D

{
|∇u(y)|2 − k2|u(y)|2

}
dy.
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Upon taking the imaginary part of this equation and noting that k > 0, we get ϕ = 0.

This proves that (I +K− iηS) : C(∂D)→ C(∂D) is injective. Accordingly, by Riesz-

Fredholm Theory (see Theorem A.4), it possess a bounded inverse. Therefore, for any

f ∈ C(∂D), equation (2.33) is uniquely solvable and the solution depends continuously

on f in the maximum norm. This shows the well-posedness of the exterior Dirichlet

problem as stated in the next theorem.

Theorem 2.14. [14] The exterior Dirichlet problem has a unique solution and the

solution depends continuously on the boundary data with respect to uniform convergence

of the solution on R2\D, and all its derivatives on closed subsets of R2\D.

Next, by the imbedding Theorem 2.2, since the operator I : C1,α(∂D)→ C0,α(∂D)

is compact, and the operators S,K : C0,α(∂D)→ C1,α(∂D) are bounded, we conclude

that the operators S,K : C1,α(∂D)→ C1,α(∂D) are compact (see Theorem A.3). Since

(I +K− iηS) : C(∂D)→ C(∂D) is injective, the operator (I +K− iηS) : C1,α(∂D)→

C1,α(∂D) is also injective. Next, applying Riesz-Fredholm theory (see Theorem A.4),

we get that (I+K− iηS)−1 : C1,α(∂D)→ C1,α(∂D) exists and is bounded. This means

that for any given f ∈ C1,α(∂D), the solution ϕ of (2.33) belongs to C1,α(∂D) and de-

pends continuously on f in the ‖ · ‖1,α norm. Furthermore, by (2.32), we find that u

is in C1,α(∂D), and depends continuously on f . Especially, f ∈ C1,α(∂D) implies that

the normal derivative
∂u

∂ν
∈ C0,α(∂D).

Now, we return to the scattering of waves of the form uinc = eikx·a by a sound-soft

obstacle D. For domains D of class C2, by previous regularity results and (2.3), us

belongs to C1,α(R2\D). Therefore, apply Green’s formula for exterior domains to get

∫
∂D

(
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us(y)

∂ν(y)
Φ(x, y)

)
ds(y) = us(x), x ∈ R2\D. (2.34)

Since uinc(y) solves the Helmholtz equation in whole space, invoking Green’s second
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theorem to the pair of functions uinc(y) and Φ(x, y) gives

∫
∂D

(
uinc(y)

∂Φ(x, y)

∂ν(y)
− ∂uinc(y)

∂ν(y)
Φ(x, y)

)
ds(y)

=

∫
D

uinc(y)∆yΦ(x, y)−∆uinc(y)Φ(x, y)dy

=

∫
D

uinc(y)(k2)Φ(x, y)− (k2)uinc(y)Φ(x, y)dy

= 0. (2.35)

Next, adding (2.34) to (2.35) yields

us(x) =

∫
∂D

{(
uinc(y) + us(y)

) ∂Φ(x, y)

∂ν(y)
−
(
∂us(y)

∂ν(y)
+
∂uinc(y)

∂ν(y)

)
Φ(x, y)

}
ds(y)

(2.36)

for x ∈ R2\D. Therefore, imposing the boundary condition uinc + us = 0 yields that

the total field must satisfies

u(x) = uinc(x)−
∫
∂D

∂u(y)

∂ν(y)
Φ(x, y)ds(y) (2.37)

for x ∈ R2\D. Observe that, letting x → ∂D in (2.37) and using the boundary

condition uinc + us = 0, we obtain

0 = uinc(x)+ −
{∫

∂D

∂u(y)

∂ν(y)
Φ(x, y)ds(y)

}
+

.

Since the integral on the right-hand side is a single-layer potential with density
∂u

∂ν
∈

C0,α(∂D), we have

0 = uinc(x)+ −
{∫

∂D

∂u(y)

∂ν(y)
Φ(x, y)ds(y)

}
+

= uinc(x)−
{∫

∂D

∂u(y)

∂ν(y)
Φ(x, y)ds(y)

}
= uinc(x)− 1

2

(
S ∂u
∂ν

)
(x), x ∈ ∂D, (2.38)
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so that

−2iηuinc(x) = −iη
(
S ∂u
∂ν

)
(x), x ∈ ∂D. (2.39)

Next, taking the normal derivatives in (2.37), we have

∂u(x)

∂ν(x)
=
∂uinc(x)

∂ν(x)
−
∫
∂D

∂u(y)

∂ν(y)

∂Φ(x, y)

∂ν(x)
ds(y), x ∈ R2\D

implying that

∂uinc(x)

∂ν(x)
=
∂u(x)

∂ν(x)
+

∫
∂D

∂u(y)

∂ν(y)

∂Φ(x, y)

∂ν(x)
ds(y), x ∈ R2\D.

Thus, letting x→ ∂D, we find that

{
∂uinc(x)

∂ν(x)

}
+

=

{
∂u(x)

∂ν(x)

}
+

+

{∫
∂D

∂u(y)

∂ν(y)

∂Φ(x, y)

∂ν(x)
ds(y)

}
+

, x ∈ R2\D.

Since
∂uinc(x)

∂ν(x)
is continuous, we obtain

∂uinc(x)

∂ν(x)
=
∂u(x)

∂ν(x)
+

1

2

(
K′∂u
∂ν

)
(x)− 1

2

∂u(x)

∂ν(x)
, x ∈ ∂D,

which gives

∂u(x)

∂ν(x)
+

(
K′∂u
∂ν

)
(x) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂D. (2.40)

Now, adding (2.39) to (2.40), we get the following equality

∂u(x)

∂ν(x)
+

(
K′∂u
∂ν

)
(x)− iη

(
S ∂u
∂ν

)
(x) = 2

∂uinc(x)

∂ν(x)
− 2iηuinc(x), x ∈ ∂D.

Equivalently, letting ϑ(x) =
∂u(x)

∂ν(x)
, we end up with the following combined field inte-
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gral equation

ϑ(x) +

∫
∂D

{
∂Φ(x, y)

∂ν(x)
− iηΦ(x, y)

}
ϑ(y)ds(y) = 2

(
∂uinc(x)

∂ν(x)
− iηuinc(x)

)
x ∈ ∂D

(2.41)

for the unknown ϑ(x).

In order to guarantee uniqueness of solutions, one must show that the operator

I + K′ − iηS : C(∂D) −→ C(∂D) is bijective. To this end, observe that K′ − iηS

and K − iηS are compact operators from C(∂D) to C(∂D). Since S is self-adjoint,

and K and K′ are adjoint with respect to the bilinear form 〈φ, ϕ〉 =
∫
∂D
φϕds on

C(∂D), the operators K′ − iηS and K − iηS are also adjoint with respect to this

bilinear form. Therefore, by Fredholm’s theorem (see Theorem A.5), in the dual system

〈C(∂D), C(∂D)〉, the operators I + K′ − iηS and I + K − iηS have the same nullity.

As we have shown that I +K− iηS is injective, we can conclude that I +K′− iηS has

trivial null space. Consequently, by the Riesz theorem (see Theorem A.4), we get that

the operator I +K′ − iηS is bijective.



25

3. MULTI-GRID METHOD

In this chapter, following Kress [9] and Hackbusch [12], we discuss two clas-

sical iterative numerical methods: two- and multi-grid methods. In the literature,

these methods are first introduced for the numerical implementations of general ellip-

tic boundary value problems. We shall see that both methods can be well suited to

solve the integral equations as well, and are especially apposite for solving the linear

systems originating from the numerical treatment of Fredholm integral equations of

the second kind [9]

ϕ = Aϕ+ f. (3.1)

These methods are grounded on the two basic mechanisms: smoothing operation

on the present level and defect correction on some coarser levels. We discuss only

two version of the two-grid methods due to Brakhage [10] and Atkinson [11] respec-

tively and multi-grid iterations defined by Hackbusch [12]. For these iterative methods,

convergence properties are derived using the collectively compact operator theory by

Anselone [16] and Atkinson [11]. In the last section we give algorithms and illustrate

numerical results for two- and multi-grid methods.

3.1. Preliminaries

In this section, we give the basic functional analysis tools to prove convergence

of the two- and multi-grid schemes.

Theorem 3.1. [9] Let X and Y be Banach spaces and let A : X → Y be a bounded

linear operator with a bounded inverse A−1 : Y → X. Assume the sequence An : X → Y

of bounded linear operators to be norm convergent ‖An − A‖ → 0, n → ∞. Then for
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sufficiently large n, more precisely for all n with

‖A−1(An − A)‖ < 1,

the inverse operators A−1
n : Y → X exist and are bounded by

‖A−1
n ‖ ≤

‖A−1‖
1− ‖A−1(An − A)‖

. (3.2)

For the solutions of the equations

Aϕ = f and Anϕn = fn

we have the error estimate

||ϕn − ϕ|| ≤
||A−1||

1− ||A−1(An − A)||
{||(An − A)ϕ||+ ||fn − f ||}. (3.3)

Proof. Assume that n is sufficiently large so that we have ‖A−1(An−A)‖ = ‖A−1(A−

An)‖ ≤ ‖A−1‖‖(A−An)‖ ≤ 1. Then, the Neumann series theorem (see Theorem A.1)

entails

||[I − A−1(An − A)]−1|| ≤ 1

1− ‖A−1(An − A)‖
. (3.4)

Next, by the identity A−1
n = (I − A−1(An − A))−1A−1 and the equality above yields

||[I − A−1(An − A)]−1A−1|| ≤ ‖A−1‖
1− ‖A−1(An − A)‖

.

Finally, the estimate (3.3) can be obtained by

An(ϕn − ϕ) = fn − f + (A− An)ϕ.
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Now, we introduce the notion of collectively compact operators.

Definition 3.2. [9] A set A = {A : X → Y } of linear operators mapping a normed

space X into a normed space Y is called collectively compact if for each bounded set

U ⊂ X the image set A(U) = {Aϕ : ϕ ∈ U,A ∈ A} is relatively compact.

Notice that, any element of a collectively compact set is compact and a set of

finitely many compact operators is collectively compact. Moreover, by definition, a

sequence (An)n∈N is collectively compact if the set {An : n ∈ N} is. Also note that the

limit operator A of a pointwisely convergent sequence (An)n∈N of collectively compact

operators is compact [9].

Theorem 3.3. [9] Let X,Z be normed spaces and Y be a Banach space. Let A be

a collectively compact set of operators mapping X into Y and let Ln : Y → Z be a

pointwise convergent sequence of bounded linear operators with limit operator L : Y →

Z. Then

‖(Ln − L)A‖ → 0, n→∞,

uniformly for all A ∈ A, i.e.,

sup
A∈A
‖(Ln − L)A‖ → 0, n→∞.

The following corollary to Theorem 3.3 is used to prove the convergence of two-

grid methods.

Corollary 3.4. [9] Let X be a Banach space and let An : X → X be a collectively

compact and pointwise convergent sequence with limit operator A : X → X. Then

‖(An − A)A‖ → 0 and ‖(An − A)An‖ → 0, n→∞.

From the preceding corollary we can prove the next theorem concerning the error
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analysis for equations of the second kind due to the Brahkage [10] and Anselone and

Moore [17].

Theorem 3.5. [9] Let A : X → X be a compact linear operator in a Banach Space X

and let I−A be injective. Assume the sequence An : X → X to be collectively compact

and pointwise convergent Anϕ → Aϕ, n → ∞, for all ϕ ∈ X. Then for sufficiently

large n, more precisely for all n with

‖(I − A)−1(An − A)An‖ ≤ 1,

the inverse operators (I − An)−1 : X → X exist and are bounded by

‖(I − An)−1‖ ≤ 1 + ‖(I − A)−1An‖
1− ‖(I − A)−1(An − A)(An)‖

. (3.5)

For the solutions of the equations

ϕ− Aϕ = f and ϕn − Anϕn = fn

we have the error estimate

‖ϕn − ϕ‖ ≤
1 + ‖(I − A)−1An‖

1− ‖(I − A)−1(An − A)(An)‖
{‖(An − A)ϕ‖+ ‖fn − f‖}.

Proof. We briefly sketch a proof of the theorem. First observe that, by Riesz Theorem

(see Theorem A.4), the inverse of (I − A) exists and satisfies the identity

(I − A)−1 = I + (I − A)−1A

from which we may conclude that Bn = I + (I −A)−1An approximate the (I −An)−1.

Also note that

Bn(I − An) = I − Cn (3.6)
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where Cn = (I−A)−1(An−A)An. Next Corollary 3.4 entails that norm of Cn decreases

to zero as n → ∞. Thus, choosing sufficiently large n so that ‖Cn‖ < 1 enable us to

make use of the Neumann series Theorem (see Theorem A.1) to conclude that (I−Cn)−1

exists and satisfies

‖(I − Cn)−1‖ ≤ 1

1− ‖Cn‖
.

Furthermore, since An is compact, and from (3.6), I−An is injective, invoking the Riesz

Theorem (see Theorem A.4) yields the existence of the inverse of I − An. Moreover,

again by utilizing (3.6), we obtain (I−An)−1 = (I−Cn)−1Bn from which (3.5) follows.

The error estimate can be established by the identity

(I − An)(ϕn − ϕ) = fn − f + (An − A)ϕ.

The following corollary is an immediate consequence of the preceding theorem.

Corollary 3.6. [9] Under the assumptions of Theorem 3.5 we have the error estimate

‖ϕn − ϕ‖ ≤ C{‖(An − A)ϕ‖+ ‖fn − f‖} (3.7)

for all sufficiently large n and some constant C.

3.2. Defect Correction

In this section, following [9, 12, 18], we discuss the abstract framework of defect

correction principle, which form a basis for the two- and multi-grid, for integral equa-

tions of the second kind. It basicly consists of the sequence of operations: restriction,

coarse grid solution and prolongation, which we described in details in the last section.

For a more detailed description of the defect correction method, we refer to Stetter [8].



30

Assume that A : X → X be a bounded linear operator on a Banach space X

so that (I − A)−1 exists and is bounded . Then, we approximate the solution of the

Fredholm integral equations of the second kind

ϕ− Aϕ = f (3.8)

by solutions of the approximating equations

ϕn − Anϕn = fn (3.9)

where An approximates A, fn approximates f , and we expect that ϕn approximates ϕ.

Here we define the approximating operator An’s by Nyström discretization

Anϑ(x) =

qn∑
j=0

wjnnK(x, xjn)ϑ(xjn),

where {xjn : j = 1, 2, ..., qn, qn ∈ N} is the set nodal points corresponding to level n.

Furthermore, the sequence (An) of bounded linear operators An : X → X is collectively

compact and pointwise convergent which enable us to utilize Theorem 3.5 to guarantee

existence and uniqueness of a solution to the approximate equation (3.9) [16]. In what

follows, the index n expresses different levels of Nyström discretization in which the

number of nodal points varies as the level changes. For convenience we set F := (I−A)

and Fn := (I − An).

Suppose that we are given an approximate solution ϕinputn of (3.9). Then, in

order to reduce the high oscillations in the error ϕn − ϕinputn , we smooth the given

inital approximation. Among the class of smoothing operations (Gauss-Seidel, Jacobi

and Picard’s iteration, conjugate gradient methods,...) for general linear and nonlinear

system, as is anticipated from the nature of our problem, we shall use Picard’s iteration

to smooth the given approximate input. For more detailed descriptions of class of

smoothing operations, we refer to [12] and [19]. Let Pj denotes the j times Picard’s
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iteration operator. Then, by the smoothing operation

ϕn,0 = Pj[ϕinput],

we expect that we now have a better approximation ϕn,0. Next, we elucidate the defect

correction iteration.

Observe that if δn is the exact correction function of the approximate solution

ϕn,0 of Fnϕn = fn, then we must have

Fn(ϕn,0 + δn) = fn ⇔ Fn(ϕn,0 + δn) = fn

⇔ Fnϕn,0 + Fnδn = fn

⇔ Fnδn = fn − Fnϕn,0

⇔ Fnδn = dn

where dn := fn−Fnϕn,0 is the defect or residual function. These equivalent statements

reveal that δn is the exact correction function of ϕn,0 if and only if it satisfies the defect

correction equation

Fnδn = dn. (3.10)

Next, observe that since δn = ϕn−ϕn,0, it is comparatively small with respect to ϕn,0,

and thus it is superfluous to solve the defect correction equation exactly. Instead, we

write

δn = Bndn (3.11)
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where the bounded linear operator Bn approximates the inverse F−1
n . Thus we deduce

ϕn,1 := ϕn,0 + δn

= ϕn,0 +Bndn

= ϕn,0 +Bn(fn − Fnϕn,0)

= ϕn,0 +Bnfn −BnFnϕn,0

= [I −BnFn]ϕn,0 +Bnfn

as an improved approximate solution to (3.9). Continuing in this way leads to following

defect (residual) correction iteration

ϕn,i+1 := [I −BnFn]ϕn,i +Bnfn, i = 0, 1, 2, 3... (3.12)

for the solution of (3.9). If ‖I − BnFn‖ < 1, or the spectral radius of I − BnFn is

less than one, then, by contraction mapping principle, iteration (3.12) converges to a

solution ϕn of BnFnϕn = Bnfn and the solution is unique. Accordingly, as the unique

solution ϕn of (3.9) automatically solves the equation BnFnϕn = Bnfn, the iteration

(3.12) converges to the unique solution of (3.9) if it happen to converge [9].

3.3. Two-Grid Methods

Following Kress [9], here we discuss two type of the two-grid-method due to

Brakhage [10] and Atkinson [11].

Definition 3.7. The two-grid method is an iterative numerical scheme comprised of

two main constituents, namely smoothing operations and defect correction iterations

(3.12) with the approximate inverse Bn on the level n given by the correct inverse F−1
m

for some m < n.

As is clearly, the name “two-grid” comes from the fact that we use only two levels,

namely the present level n and the coarser level m < n. Next, observe that, we can
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write

I −BnFn = I − F−1
m Fn

= I − F−1
m + F−1

m An

= FmF
−1
m − F−1

m + F−1
m An

= F−1
m (I − Am − I) + F−1

m An

= F−1
m (An − Am). (3.13)

By previous section, recalling that the operators An approximate the operator A, the

choice of Bn as in preceding definition means to solve the residual correction equation

in some coarser level. In this section, we focus on the two extreme cases of the two-grid

methods where we use either the preceding level m = n − 1 as is done Brakhage [10]

or the coarsest level m = 0 proposed by Atkinson [11] to solve the residual correction

equation.

Thus, taking B
(1)
n = F−1

n−1, the first variant of the two-grid iteration we shall

consider reads

ϕn,i+1 := [I −B(1)
n Fn]ϕn,i +B(1)

n fn, (3.14)

= F−1
n−1(An − An−1)ϕn,i + F−1

n−1fn i = 0, 1, 2, 3... (3.15)

and the second variant reads

ϕn,i+1 := [I −B(2)
n Fn]ϕn,i +B(2)

n fn, (3.16)

= F−1
0 (An − A0)ϕn,i + (F0)−1fn i = 0, 1, 2, 3... (3.17)

where B
(2)
n = F−1

0 .

The next theorem regards the convergence of the two-grid iterations.

Theorem 3.8. [9] Assume that the sequence of operators An : X → X is either norm
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convergent or collectively compact and pointwise convergent Anϕ → Aϕ, n → ∞, for

all ϕ ∈ X. Then two-grid iteration

ϕn,i+1 := F−1
n−1{(An − An−1)ϕn,i + fn} i = 0, 1, 2, 3... (3.18)

using two consecutive grids converges, provided that n is sufficiently large.

Proof. Let ‖An − A‖ → 0, as n → ∞. Then we immediately get that Fn is norm

convergent to F . Accordingly, from estimate (3.2) we get

‖F−1
n ‖ ≤

‖A−1‖
1− ‖A−1[Fn − F ]‖

=
‖A−1‖

1− ‖A−1(A− An)‖

≤ ‖A−1‖
1− ‖A−1‖‖(A− An)‖

≤ C

for all sufficiently large n ∈ N. Thus the result follows from the fact that

‖F−1
n−1(An − An−1)‖ ≤ C‖An − An−1‖ → 0, as n→∞. (3.19)

Now we can deduce that for sufficiently large n ∈ N so that ‖F−1
n−1(An − An−1)‖ < 1,

the iteration (3.18) converge to the unique solution ϕn of (3.9).

Next assume that the sequence (An) is collectively compact and pointwise conver-

gent. Since pointwise convergence An → A of a collectively compact sequence implies

the compactness of the limit operator, A is compact and from theorem (3.5) the in-

verse of Fn’s exist and are uniformly bounded for sufficiently large n. Therefore we can

deduce that the sequence Ãn := F−1
n−1(An − An−1) is collectively compact.

Then, from the pointwise convergence Anϕ− An−1ϕ→ 0, n→∞ for all ϕ ∈ X,

by Theorem (3.3), setting A :=
{
Ãn : n ∈ N

}
, Ln := An − An−1 : X → X, L = 0
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operator and X = Y = Z, we get

‖(An − An−1)F−1
n−1(An − An−1)‖ → 0, n→∞.

Moreover, by the uniform boundedness of F−1
n−1 we obtain

0 < ‖
{
F−1
n−1(An − An−1)

}2 ‖

≤ ‖F−1
n−1‖‖(An − An−1)F−1

n−1(An − An−1)‖ → 0,

as n→∞ which implies

‖
{
F−1
n−1(An − An−1)

}2 ‖ → 0,

as n→∞. Hence the result follows.

The next theorem is about convergence of the two-grid iterations taking the

approximate inverse Bn = F−1
0 in defect correction principle. We see that this iteration

converges whenever A0 is already a good approximation to A.

Theorem 3.9. [9] Assume that the sequence of operators An : X → X is either norm

convergent or collectively compact and pointwise convergent Anϕ → Aϕ, n → ∞, for

all ϕ ∈ X. Then the two-grid iteration

ϕn,i+1 := F−1
0 {(An − A0)ϕn,i + fn} i = 0, 1, 2, 3... (3.20)

using a fine and coarse grid converges, provided that the approximation A0 is already

sufficiently close to A.

Proof. First assume that the sequence (An) of operators are norm convergent. Then,

as in the previous theorem, F−1
n are uniformly bounded by a constant C. Thus choose
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a coarsest grid so that

‖An − A0‖ ≤
1

2C
for n > 0.

Accordingly we have,

‖F−1
0 (An − A0)‖ ≤ ‖F−1

0 ‖‖(An − A0)‖ ≤ C
1

2C
=

1

2
.

which implies that two-grid iteration converges.

Now assume that the sequence (An) is collectively compact and pointwise con-

vergent. In order to show the convergence of the iteration (3.20), we can select the

coarsest grid so that

‖F−1
0 (Am − A0)F−1

0 (An − A0)‖ < 1

2

for all m,n ≥ 0, which yields

‖
(
F−1

0 (An − A0)
)2 ‖ < 1.

Here we used Theorem 3.3 applied to the collectively compact sequence Ãn := F−1
0 (An−

A0) and Lm := Am − A0 converging to L := A− A0. Thus the result follows.

3.4. Multi-Grid Methods

In this section we discuss two different style of the multi-grid method by following

Hackbusch [12], Schippers [20] and Kress [9]. The two-grid methods described in The-

orem 3.8 and Theorem 3.9 use only two levels whereas the multi-grid methods make

use of n+ 1 levels. The basic idea of multi-grid algorithm is as follows.
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Recall that in two-grid algorithm we ended up with the defect correction equation

Fn−1δn−1 = dn−1. (3.21)

on the level n − 1 and solved it exactly in that level. Then, instead of solving the

correction equation exactly on the level n−1, we can go further and apply same defect

correction principle for approximating the solution of linear system Fn−1δn−1 = dn−1.

Thus, as is expected, we now have a new defect correction equation Fn−2δ
′
n−2 = d′n−2

on the level n − 2. Notice that, we have used the three levels n, n − 1 and n − 2 up

to now. In fact we can also apply same defect correction procedure to approximate

the solution of Fn−2δ
′
n−2 = d′n−2. and continue in this way until we reach the coarsest

level, then we solve the correction equation exactly there. Thus we have used total

of n + 1 levels, namely {n, n − 1, n − 2, ..., 0}. In each level, the exact correction

function is approximated by applying multi-grid algorithm p times in which the initial

approximation is taken to be zero. More compactly, we portray multi-grid algorithm

as in the next definition.

Definition 3.10. [9] The multi-grid method is an iterative numerical scheme based

upon composition of two main characteristics: smoothing operations and defect cor-

rection iteration of the form (3.12) with the approximate inverse defined recursively

by

B
(3)
0 := F−1

0 ,

B(3)
n :=

p−1∑
m=0

[I −B(3)
n−1Fn−1]mB

(3)
n−1, n = 1, 2, ... (3.22)

for some p ∈ N.

Next we show that multi-grid method covers the advantages of the two-grid

method. First observe that, by induction on p and recursive formula (3.22) we have

I −B(3)
n Fn−1 = [I −B(3)

n−1Fn−1]p (3.23)
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for all n ∈ N. Let M
(3)
n := I − B(3)

n Fn be the multi-grid iteration operator using n+ 1

levels. Then from Definition (3.10) and (3.23), we deduce that

M (3)
n = I −B(3)

n Fn = I −B(3)
n IFn = I −B(3)

n Fn−1F
−1
n−1Fn

= I −
[
I − I +B(3)

n Fn−1

]
F−1
n−1Fn

= I − F−1
n−1Fn + {I −B(3)

n Fn−1}F−1
n−1Fn

= F−1
n−1(An − An−1) +

{
M

(3)
n−1

}p
F−1
n−1Fn.

This shows that the iteration operators M
(3)
n can be defined by the recursive formula

M
(3)
1 = T

(3)
1 ,

M (3)
n = T (3)

n +
{
M

(3)
n−1

}p
(I − T (3)

n ), n = 1, 2, ... (3.24)

where

T (3)
n := F−1

n−1(An − An−1) (3.25)

are the two-grid iteration operators.

As is seen in the next theorem, convergence of the multi-grid method depends

upon the approximation on each level. In particular, in order to guarantee convergence

of the multi-grid method one should set the coarsest level so that approximation on

that level is accurate enough.

Theorem 3.11. [9] Assume that

‖T (3)
n ‖ ≤ qn−1C (3.26)

for all n ∈ N and some constant q ∈ (0, 1] and C > 0 satisfying

C ≤ 1

2q
(
√

1 + q2 − 1). (3.27)
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Then, if p ≥ 2, we have

‖M (3)
n ‖ ≤ 2qn−1C < 1, n ∈ N.

Proof. First observe that (
√

1 + q2)2 < (1 + q)2 for q > 0 and that by (3.27) we have

‖M (3)
1 ‖ = ‖T (3)

1 ‖ ≤ q1−1C = C < 2C ≤ 1

q
(
√

1 + q2 − 1) < 1.

Thus, the assertion holds true for n = 1. Now suppose that it is correct for some n ∈ N.

Then, we use the recurrence relation (3.24) to obtain

‖Mn+1‖ = ‖T (3)
n+1 +

{
M (3)

n

}p
(I − T (3)

n+1)‖

≤ ‖T (3)
n+1‖+ ‖M (3)

n ‖p(‖I‖+ ‖T (3)
n+1‖)

= ‖T (3)
n+1‖+ ‖M (3)

n ‖p(1 + ‖T (3)
n+1‖)

≤ qnC + (2qn−1)p(1 + qnC)

≤ qnC + (2qn−1)2(1 + qnC)

= qnC +
4

q
q2n−1C2 +

4

q
q2n−1C2qnC

≤ qnC +
4

q
qnC2 +

4

q
C2qnC

= qnC

(
1 +

4

q
C(1 + qC)

)
≤ qnC2.

The last inequality holds because 4C(1 + qC) ≤ q for all 0 ≤ C ≤
√

1+q2−1

2q
. This

follows from the fact that f(t) = 4t(1− qt)− q ≤ 0 for all t ∈ [0,

√
1+q2−1

2q
].

Recall that, ϕn → ϕ as n → ∞ and ϕn,i → ϕn as i → ∞. Since our primary

aim is to approximate ϕ, large number of iterations on each level may be redundant.

In the next definition, we describe the full multi-grid scheme or nested iteration which

makes iteration error ‖ϕn,i − ϕn‖ on each level approximately of the same order as

the discretization error ‖ϕn − ϕ‖ by fixing the iteration number so that these errors is

maintained to be approximatly the same [9].
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Definition 3.12. Starting with ϕ̃0 := F−1
0 f0, the full multi-grid scheme constructs a

sequence (ϕ̃) of approximations by performing k steps of the multi-grid iteration on

n+ 1 levels using the preceding ϕ̃n−1 as initial element.

We note that the computational cost of the multi-grid and full multi-grid methods

are O(22(n+1)) for the case that the grid size on the level n is the half of the grid size

on the level n − 1 [12]. Before we state a convergence theorem for the full multi-grid

method, we make some observations.

Let ϕ̃0 := F−1
0 f0 be the initial element in multi-grid scheme. For the sake of

simplicity, set ϕ1,0 = ϕ̃0 and then iterate the following scheme

ϕ1,i+1 = (I −B(3)
1 F

(3)
1 )ϕ1,i +B

(3)
1 f1 i : 0, 1, 2, ...

k times and set the out put ϕ1,k =: ϕ̃1 as an input for the iteration in the next level.

Then set ϕ2,0 = ϕ1,k and perform the following iteration

ϕ2,i+1 = (I −B(3)
2 F

(3)
2 )ϕ2,i +B

(3)
2 f2 i : 0, 1, 2, ...

k times and set the out put ϕ2,k =: ϕ̃2 as an input for the iteration in the next level.

Then set ϕ3,0 = ϕ2,k and perform k steps iteration in the next level. Continuing in this
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way, we get ϕ̃n+1 = ϕn+1,k at n+ 1 level. Then,

ϕ̃n+1 = ϕn+1,k = (I −B(3)
n+1Fn+1)ϕn+1,k−1 +B

(3)
n+1fn+1

= [I −B(3)
n+1Fn+1]

[
(I −B(3)

n+1Fn+1)ϕn+1,k−2 +B
(3)
n+1fn+1

]
+B

(3)
n+1fn+1

=
[
I −B(3)

n+1Fn+1

]2

ϕn+1,k−2 +
[
I −B(3)

n+1Fn+1

]
B

(3)
n+1fn+1 +B

(3)
n+1fn+1

=
[
I −B(3)

n+1Fn+1

]3

ϕn+1,k−3 +
[
I −B(3)

n+1Fn+1

]2

B
(3)
n+1fn+1

+
[
I −B(3)

n+1Fn+1

]
B

(3)
n+1fn+1 +B

(3)
n+1fn+1

...

=
[
M

(3)
n+1

]k
ϕn+1,0 +

k−1∑
m=0

[
M

(3)
n+1

]m
B

(3)
n+1fn+1

=
[
M

(3)
n+1

]k
ϕ̃n +

k−1∑
m=0

[
M

(3)
n+1

]m
B

(3)
n+1fn+1 (3.28)

We are now ready to prove the following theorem.

Theorem 3.13. [9] Assume that

‖ϕn − ϕ‖ ≤ Cqn (3.29)

for some constants 0 < q < 1 and C > 0, and that t := supn∈N ‖M
(3)
n ‖ satisfies

tk < q.

Then for the approximation ϕn obtained by the full multi-grid method we have that

‖ϕ̃n − ϕn‖ ≤ C
(q + 1)tk

q − tk
qn, n ∈ N. (3.30)

Proof. Let

α :=
(q + 1)

q − tk
tk.
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Thus we have

(α + 1 + q)tk =

(
(q + 1)

q − tk
tk + 1 + q

)
tk =

(
q(1 + q)

q − tk

)
tk = q

1 + q

q − tk
tk = qα.

Next observe that (3.30) is trivially satisfied for n = 0 since

ϕ̃0 = F−1
0 f0 = ϕ0 ⇒ ‖ϕ̃0 − ϕ0‖ = 0.

Now suppose that the assertion hold true for some n ∈ N. Then first note that from

ϕn+1 − An+1ϕn+1 = fn+1 we can deduce

B
(3)
n+1fn+1 = B

(3)
n+1Fn+1ϕn+1 (3.31)

= [I − I +B
(3)
n+1Fn+1]ϕn+1 (3.32)

= ϕn+1 −M (3)
n+1ϕn+1. (3.33)

Accordingly, from (3.28) and (3.31) we get

ϕ̃n+1 =
[
M

(3)
n+1

]k
ϕ̃n +

k−1∑
m=0

[
M

(3)
n+1

]m
B

(3)
n+1fn+1

=
[
M

(3)
n+1

]k
ϕ̃n +

k−1∑
m=0

[
M

(3)
n+1

]m
(ϕn+1 −M (3)

n+1ϕn+1)

=
[
M

(3)
n+1

]k
ϕ̃n +

k−1∑
m=0

[
M

(3)
n+1

]m
ϕn+1 −

[
M

(3)
n+1

]m+1

ϕn+1)

=
[
M

(3)
n+1

]k
ϕ̃n + ϕn+1)−

[
M

(3)
n+1

]k
ϕn+1).

Thus we obtain

‖ϕ̃n+1 − ϕn+1‖ = ‖
[
M

(3)
n+1

]k
(ϕ̃n − ϕn+1)‖ ≤ tk‖ϕ̃n − ϕn+1‖

≤ tk (‖ϕ̃n − ϕn‖+ ‖ϕn − ϕ‖+ ‖ϕ− ϕn+1‖)

≤ tk
(
Cαqn+ Cq + Cqn+1

)
= Ctk(α + 1 + q)qn = Cαqn.
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The proof is completed now.

3.5. Numerical Results

In this section, we illustrate the theoretical convergence result for the two- and

multi-grid methods which are defined by the approximate inverses B(1) (Brakhage’s

method) and B(3) (Hackbusch’s method) in the previous sections. As an example, the

integral equation governed by the sound soft scattering problem

ϑ(x)−
∫
∂D

K(x, y)ϑ(y)ds(y) = f(x), x ∈ ∂D (3.34)

where

K(x, y) =
∂Φ(x, y)

∂ν(x)
− ikΦ(x, y) and f(x) = 2

(
∂uinc(x)

∂ν(x)
− ikuinc(x)

)
(3.35)

is solved for various values of the parameter k for the unknown ϑ(x). We test the two-

and multi-grid algorithms for the unit circle D for which, in case uinc(x) = eikx·a and

a = (1, 0), the exact solution of (3.34) is [21]

ϑ(x) = −2i

π

∞∑
n=−∞

ein(x+π/2)

H
(1)
n (k)

, x ∈ [0, 2π].

The approximating operators An are defined via suitable quadrature rule

Anϑ(x) =
2n+1−1∑
j=0

wjnK(x, xj)ϑ(xj),

where Ωn = {xj = jhn : j = 1, 2, ..., 2n+1} is the set of nodal points, hn = 2π(2n+1−1)−1

is the grid size and the weights {wjn} are given by {hn/2, hn, hn, ...hn, hn/2}. Referring

to Kress [9] and Anselone [16], the approximating operators (An) is collectively compact

and pointwise convergent which guarantees the convergence of two- and multi-grid

iterations for sufficiently large n.
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3.5.1. Two-Grid Method: First Variant

As in the previous section in which two- and multi-grid method described in

a more abstract framework, assume that we have some approximation ϑn,0 for the

solution of discretised equation

ϑn − Anϑn = fn, x ∈ ∂D. (3.36)

Next we shall improve given approximation. To this end, we first smooth the

given approximation by a 1−step Picard’s iteration to get an intermediate result

ϑn,1 = Anϑn,0 + fn. (3.37)

Then the error δn = ϑn−ϑn,1 is smooth compared with ϑn−ϑn,0 [12]. If δn is the exact

correction, i.e., ϑn = ϑn,1 + δn, then by pluging ϑn,1 into the equation ϑn−Anϑn = fn,

we end up with the defect (residual) dn = fn − ϑn,1 + Anϑn,1. As is seen below, ϑn,1

exactly solve the (3.36) if and only if dn = 0. Moreover, since

(In − An)δn = (In − An)ϑn,1 − (In − An)ϑn = (In − An)ϑn,1 − fn = dn, (3.38)

the exact correction δn is the solution of the defect correction equation (In − An)δn =

dn. Instead of solving the defect correction equation on the present level, we shall

approximate δn by using some coarser levels. By the fact that approximations of

smooth functions by the coarser level can be sufficiently accurate [12], we approximate

the solution of (In − An)δn = dn by the defect correction equation (Im − Am)δm = dm

for some m < n. Taking m = n− 1 to obtain the first variant of the two-grid method

(Brakhage), we solve the equation (In−1−An−1)δn−1 = dn−1 exactly on the level n− 1

and interpolate to level n in order to approximate the solution of (In − An)δn = dn.

Here note that the matrix (In − An) is defined for all levels n ≥ 1. In the previous

section, we carried out the convergence analysis of two-grid and multi-grid methods by
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considering the iteration matrices of the two methods as operators on each level, yet we

need some interpolation and restriction operators to serve as a bridge between different

levels for numerical implementation. Accordingly, we introduce a linear mapping Rn,

called restriction, which restricts a function defined on level n to the coarser level n−1.

we can simply choose Rn to be injection Rinj
n which is defined as

(Rinj
n dn)(x) = dn(x) for all x ∈ Ωn−1 ⊂ Ωn.

However, since Rinj
n omits the values of a function at x ∈ Ωn\Ωn−1, it may result in

loss of accuracy. Thus we should also consider components of a function on Ωn\Ωn−1.

To this end we shall define the restriction operator Rn as

Rndn(x) =
1

4
[dn(x− hn) + 2dn(x) + dn(x+ hn)] for x ∈ Ωn−1

for which the corresponding matrix is then

Rn =
1

4



1 2 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 2 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 . . . 0 0 0 0 0 0 0 0

0 0 0 0 0 0 . . . 0 0 0 0 0 0

0 0 0 0 0 0 0 0 . . . 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 2 1


(2n−1)×(2n+1−1)

Next, letting dn−1 = Rndn, we can now obtain the exact correction δn−1 = (In−1−

An−1)−1dn−1 on the coarser level n−1. We expect that we can approximate δn by δn−1

which is defined on Ωn−1. Our next aim is to interpolate the exact correction function

δn−1 to the present level n. To this end, we introduce the linear interpolation operator

(called prolongation) denoted by Pn, which approximates the δn by interpolating the
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δn−1. We simply choose Pn to be the piecewise linear interpolation defined as

(Pnδn−1)(x) =


δn−1(x) x ∈ Ωn−1

0 x = 0, 2π

[δn−1(x− hn) + δn−1(x+ hn)]/2 otherwise.

(3.39)

Thus Pn can be represented by Pn = 2[Rn]ᵀ. Since ϑn = ϑn,1 + δn is the exact solution

and δ̃n = Pnδn−1 is an approximation to δn, we can improve the value of ϑn,1 by ϑn,1+δ̃n.

To summarize, let ϑn,0 be a given approximation to the solution of (In − An)ϑn = fn.

Then

Step 1: Smoothing the Input by Picard Iteration

ϑn,1 = Anϑn,0 + fn

Step 2: Calculation of the Defect (Residual)

dn = fn − (In − An)ϑn,1

Step 3: Restriction of the Defect to the Coarse Level

dn−1 = Rndn

Step 4: Solution of the Exact Correction on the Coarse Level

δn−1 = (In−1 − An−1)−1dn−1

Step 5: Interpolation of the Exact Correction from Coarse to the Present Level

δ̃n = Pnδn−1

Step 6: Improving the Given Approximate Solution

ϑn,2 = ϑn,1 + δ̃n.

More compactly, after the smoothing operation, one can write

ϑn,2 =
[
In − Pn(In−1 − An−1)−1Rn(In − An)

]
ϑn,1 − Pn(In−1 − An−1)−1Rnfn,

or, more abstractly

ϑn,2 =
[
I − F−1

n−1Fn
]
ϑn,1 − F−1

n−1fn
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Figure 3.1. Wave Number versus Relative Error.

which is the first variant of the two-grid method proposed by Brakhage [10]. We, of

course, choose n ∈ N so that Theorem 3.14 guarantees the convergence of two-grid

method.

Next, we depict the convergence behavior of the first variant of the two-grid

method. In Figure 3.1, we see that relative errors increase as the wave number k

increases for fixed level. In each level, we set initial approximations to be Nyström

solution of the previous level. As we know that increase in k leads to increase in

oscillation of the integrand in 3.34, classical numerical methods naturally loose their

robustness for k � 1. On the other hand, Figures 3.2 and 3.3 are the plots of relative

error versus level L for different values of the wave number k. In each plot, initial

approximation is the Nyström solution of the integral equation (3.34) on the level

L− 4, L− 3, L− 2 and L− 1 where L represents the present level. As is seen clearly,

as the level of initial approximation increases which means that the initial function

approximates the solution better, the relative error decreases.
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Figure 3.2. Relative Error vs Level for the Two-Grid Method.
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Figure 3.3. Relative Error vs Level for the Two-Grid Method.
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3.5.2. Multi-Grid: First Variant

In this section, we demonstrate the convergence of the multi-grid algorithm nu-

merically for small wave number k. As in the two-grid method, interpolation and

restriction operator also play an important role in the multi-grid method. Following

Hackbusch [12], we first observe that one can write T
(3)
n as

T (3)
n = In − Pn(In−1 − An−1)−1Rn(In − An)

= In − PnRn + Pn(In−1 − An−1)−1[(In−1 − An−1)Rn −Rn(In − An)]

= In − PnRn + Pn(In−1 − An−1)−1[RnAn − An−1Rn]

Hence, from the recursive definition of the multi-grid iteration (3.24), we obtain the

recursively defined multi-grid iteration matrices

M
(3)
1 = T

(3)
1 (3.40)

M (3)
n = T (3)

n + Pn
(
M

(3)
n−1

)p
(In−1 − An−1)−1Rn(In − An) (3.41)

= T (3)
n + Pn

(
M

(3)
n−1

)p[
Rn − (In−1 − An−1)−1(RnAn − An−1Rn)

]
, (3.42)

where we use the identity

(In−1 − An−1)−1Rn(In − An) =
[
Rn − (In−1 − An−1)−1(RnAn − An−1Rn)

]
.

For a given approximation ϑn,0 to the solution of Fnϑn = fn, the multi-grid algorithm

can then be described as follows.

Step1: Smoothing the Input by Picard’s Iteration

ϑn,1 = Anϑn,0 + fn

Step2: k Iteration of the Smoothed Approximation with Iteration Matrix M
(3)
n

ϑn,j+1 = M
(3)
n ϑn,j +B

(3)
n fn j = 1, 2, .., k

where B
(3)
n are defined recursively in (3.22) and (M

(3)
n ) is defined as above.
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In the next two plots (Figures 3.4 and 3.5), multi-grid algorithm is implemented

in a way that only initial approximation is smoothed by Picard’s iteration, and the

improvement of exact correction is done by 2− step (p=2) multi-grid iteration in each

step taking the initial correction to be zero.
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Figure 3.4. Relative Error vs Level Graph for Multi-grid Method.
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4. A CONVERGENT INTEGRAL EQUATION METHOD

FOR HIGH FREQUENCY SCATTERING

In this chapter, we devise and analyze a method for computing the scattering

returns by any smooth convex barrier in two dimensions. The classical numerical

methods developed for the solution of such problems give rise to number of degrees of

freedom that (at best) increase linearly with increasing wave number k. Accordingly,

they are not suitable for high-frequency (k � 1) simulations. Our approach is based

upon utilization of a well-posed integral equation formulation of the scattering problem,

and Galerkin approximations adopted to the known asymptotic properties (boundary

layers) of the solution.

4.1. Description of Numerical Method and Main Results

In this section, we describe a numerical method for the sound-soft scattering

problems, and we present that it requires only a minor increase (kε for any ε > 0) in

the number of degrees of freedom to maintain a fixed accuracy at the end of the section.

In chapter 1, we have formulated the sound-soft scattering problem as the boundary

integral equation (2.41) which we rewrite as

Rkϑ = fk (4.1)

where

Rk = I +K′ − ikS and f = 2

(
∂uinc

∂ν
(x)− ikuinc(x)

)

and S and K′ are defined as in (2.14) and (2.16). Here, we have replaced the coupling

parameter η with k so as to optimize the condition number of the boundary integral

operator Rk (see Kress [22]).
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Now let ∂D = {γ(s) : s ∈ [0, 2π]} be a 2π-periodic parametrization of ∂D,

and choose t1, t2 ∈ [0, 2π] so that γ(t1) and γ(t2) correspond to tangency points in

accordance with the unit direction vector a of incoming plane wave uinc(x) = eikx·a. Let

ν(x) be the unit normal vector at the point x ∈ ∂D and 〈·, ·〉 be the usual inner product

in R2. Then I={x ∈ ∂D|〈ν(x), a〉 < 0} is called the illuminated region and S={x ∈

∂D|〈ν(x), a〉 > 0} is called the shadow region. Moreover, we choose parametrization

γ so that γ(0) is a point in the shadow region. For convenience, assume that γ(s) is

proportional to arc-length parametrization on ∂D. Hence, with the same symbols, we

can rewrite (4.1) as

Rkϑ(s) = fk(s), for s ∈ [0, 2π]. (4.2)

For any measurable subset Λ of [0, 2π], we denote (ϑ,w)L2(Λ) to be the usual L2 inner

product of complex or real valued functions defined on Λ and ‖·‖L2(Λ) to be the induced

norm. For simplicity, we write (ϑ,w), ‖ · ‖ and L2 when Λ = [0, 2π]. In the standard

Galerkin method, the variational formulation of (4.2) is to find ϑ ∈ L2 such that,

ak(ϑ,w) := (Rkϑ,w) = (fk, w) (4.3)

for all w ∈ L2. To define our approximation spaces, we first divide ∂D into five parts

and construct the approximation spaces in each region in the form of complex exponen-

tials modulated by polynomials. Next, in order to study approximation properties of

our algorithm, we study the asymptotic behavior of the function V (s, k), which is ap-

pearing in the geometrical optics ansatz ϑ(s, k) := ϑ(γ(s), k) = kV (s, k) exp(ikγ(s) ·a)

and oscillates slowly than ϑ, for large k. Then we derive a bound for the derivatives of

V (s, k) of all orders.

Next, in order to approximate V (s, k) efficiently, we divide ∂D into subregions

as depicted in the next definition.

Definition 4.1. Let 0 ≤ εm < εm−1 < ... < ε1 < 1/3 and ξ1, ξ2 > 0 be constants.
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Then, for sufficiently large k > 0, we define a total of 4m subregions as follows:

Illuminated region (I): ΛI = [t1 + ξ1k
−1/3kε1 , t2 − ξ2k

−1/3kε1 ]

Deep shadow region (S): ΛS = [t2 + ξ2k
−1/3kε1 , 2π + t1 − ξ1k

−1/3kε1 ]

Shadow boundaries (SB1 and SB2):

ΛSB
1 = [t1 − ξ1k

−1/3kεm , t1 + ξ1k
−1/3kεm ], ΛSB

2 = [t2 − ξ2k
−1/3kεm , t2 + ξ2k

−1/3kεm ]

Transitions in the illuminated region (TI): For j = 1, 2, ..,m− 1,

ΛI1
j = [t1 + ξ1k

−1/3kεj+1 , t1 + ξ1k
−1/3kεj ], ΛI2

j = [t2 − ξ2k
−1/3kεj , t2 − ξ2k

−1/3kεj+1 ]

Transitions in the shadow region (TS): For j = 1, 2, ..,m− 1,

ΛS1
j = [t1 − ξ1k

−1/3kεj , t1 − ξ1k
−1/3kεj+1 ], ΛS2

j = [t2 + ξ2k
−1/3kεj+1 , t2 + ξ2k

−1/3kεj ]

Next, we let {χj : j = 1, ..., 4m} be the characteristic functions of these subre-

gions, then clearly

χj(s)ϑ(s) = kχj(s)e
ikγ(s)·aV (s, k), s ∈ [0, 2π]. (4.4)

Bearing this in mind, choose integers dj ≥ 0 and define the local approximation spaces

as

Ljk = span
{
kχj(s)e

ikγ(s)·as` : ` = 0, 1, 2, ..dj
}
. (4.5)

Finally, we define our global approximation space as

Gdk = ⊕4m
j=1L

j
k (4.6)

where |d| =
∑4m

j=1(dj + 1) is the dimension of our approximation space. The Galerkin

formulation for (4.4) is thus to find ϑ̃ ∈ Gdk such that

ak(ϑ̃, w̃) = (fk, w̃), for all w̃ ∈ Gdk . (4.7)
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Next, in order to carry out the error analysis, we make use of the following lemma due

to Céa (see [23]).

Lemma 4.2. (Céa’s Lemma) Suppose ak satisfies, for all ϑ,w ∈ L2, the two assump-

tions:

continuity |ak(ϑ,w)| ≤ Bk‖ϑ‖ ‖w‖, Bk > 0,

coercivity |ak(ϑ, ϑ)| ≥ αk‖ϑ‖2, αk > 0

Then both the weak form (4.3) and its Galerkin approximation (4.7) have unique solu-

tions (ϑ ∈ L2 and ϑ̃ ∈ Gdk). Moreover,

‖ϑ− ϑ̃‖ ≤ Bk

αk
‖ϑ− w̃‖ (4.8)

for all w̃ ∈ Gdk .

In order to utilize the preceeding lemma in our scattering problem, we use (4.4)

to write

ϑ(s) =
4m∑
j=1

χj(s)ϑ(s) = k
4m∑
j=1

χj(s)e
ikγ(s)·aV (s, k), (4.9)

and write w̃ ∈ Gdk as

w̃(s) = k

4m∑
j=1

χje
ikγ(s)·ap

dj
j (s) (4.10)

for some p
dj
j ∈ P(dj) for j = 0, 1, 2...4m. From (4.8)-(4.10), we have the following

corollary [7].

Corollary 4.3.

‖ϑ− ϑ̃‖ ≤
(
Bk

αk

)
k

4m∑
j=1

{
‖eikγ(s)·a‖L∞ inf

p∈P(dj)
‖V (·, k)− p‖L2(Λj)

}
. (4.11)
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In order to derive bounds for the best approximation error, as the preceding

corollary shows, on each subregion we need to estimate the best approximation error

for the approximation to V (s, k) via polynomials of certain degree. These are given in

the next theorem (for a proof, see Section 4.3).

Theorem 4.4. Let 0 ≤ εm < εm−1 < ... < ε1 < 1/3. For 2 ≤ n ≤ min{dIS, dSB, dT}+1

and sufficiently large k, we have:

Illuminated and deep shadow regions : For Ω ∈ {ΛI ,ΛS}

inf
p∈P(dIS)

‖V (·, k)− p‖L2(Ω) .n k
−(1+3ε1)/2

(
k(1/3−ε1)/2

dIS

)n

Shadow boundaries : For Ω ∈ {ΛSB
1 ,ΛSB

2 }

inf
p∈P(dSB)

‖V (·, k)− p‖L2(Ω) .n k
−1/2

(
kεm

dSB

)n

Transition regions : For Ω ∈ {ΛIr
j ,Λ

Sr
j } j : 1, 2, ..m− 1 and r = 1, 2

inf
p∈P(dT )

‖V (·, k)− p‖L2(Ω) .n k
−(1+3εj+1)/2

(
k(εj−εj+1)/2

dT

)n

where “a .n b” means that a ≤ Cnb for some constant Cn that depends only on n, and

dIS, dSB and dT are degree of polynomials to approximate V (s, k) on the regions ΛI ,

ΛS, ΛSB
1 , ΛSB

2 , ΛIr
j and ΛSr

j respectively, and P(d) is the set of algebraic polynomials of

degree d or less.

Since ‖eikγ(s)·a‖L∞ = 1, letting dT = d
Λ
I1
j

= d
Λ
S1
j

= d
Λ
I2
j

= d
Λ
S2
j

for j = 1, 2, ..,m−
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1, dIS = dΛI = dΛS and dSB = dΛSB1
= dΛSB2

, Corollary 4.3 and Theorem 4.4 entail

‖ϑ− ϑ̃‖ .n
(
βk
αk

)
k
m−1∑
j=1

k−(1+3εj+1)/2

(
k(εj−εj+1)/2

dT

)n
(4.12)

+

(
βk
αk

)
kk−(1+3ε1)/2

(
k(1/3−ε1)/2

dIS

)n
+

(
βk
αk

)
kk−1/2

(
kεm

dSB

)n
.

where αk and βk are the coercivity and continuity constants respectively and estimated

in [7, sect.4].

Next, in order to obtain an optimum error bound with respect to k, we choose

εj’s so that (εj − εj+1)/2 = (1/3− ε1)/2 = εm holds. An easy calculation shows that

εj =
2m− 2j + 1

3

1

2m+ 1

for j = 1, 2, ..,m. With this choice of εj, inequality (4.12) entails

‖υ − υ̃‖ .n
(
βk
αk

)
k
m−1∑
j=1

k−
2m−j
2m+1

(
k

1
(6m+3)

dT

)n

+

(
βk
αk

)
kk−

2m
2m+1

(
k

1
(6m+3)

dIS

)n

+

(
βk
αk

)
kk−1/2

(
k

1
(6m+3)

dSB

)n

.

Observe that the first term of the right-hand-side of the inequality above is maximum
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when j = m− 1. Hence, it follows that

‖υ − υ̃‖ .n
(
βk
αk

)
kk−

m+1
2m+1

(
k

1
(6m+3)

dT

)n

+

(
βk
αk

)
kk−

2m
2m+1

(
k

1
(6m+3)

dIS

)n

+

(
βk
αk

)
kk−1/2

(
k

1
(6m+3)

dSB

)n

.

Now we can summarize the main result in the next theorem.

Theorem 4.5. Let υ̃ be the solution of the Galerkin approximation (4.7). Assume

that polynomials of degree dT is used in transition regions and dIS in illuminated and

deep shadow regions, and dSB in shadow boundaries. Then for all n with 2 ≤ n ≤

min{dT , dIS, dSB}+ 1, we have

‖υ − υ̃‖
k

.n

(
βk
αk

){
k−

m+1
2m+1

(
k

1
(6m+3)

dT

)n

+ k−
2m

2m+1

(
k

1
(6m+3)

dIS

)n

+ k−
1
2

(
k

1
(6m+3)

dSB

)n}

where βk and αk are continuity and coercivity constants.

Notice that k−
m+1
2m+1 < k−1/2 and k−

2m
2m+1 ≤ k−2/3 for m ≥ 1. Thus, choosing

d = dT = dIS = dSB, we immediately have the following result.

Corollary 4.6. Let υ̃ be the Galerkin solution as described in (4.7). Also assume that

n ≥ 2 and d = dT = dIS = dSB ≥ n− 1. Then we have

‖υ − υ̃‖
k

.n

(
βk
αk

)
k−1/2

(
k

1
6m+3

d

)n

.

The preceding corollary implies that in order to fix the accuracy of the method,

one should increase the degree of the polynomials d proportional to k
1

6m+3 where m is

the number of subregions in each transition region.
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4.2. Asymptotics Expansion of the Normal Derivative of the Total Field

In this section, we give the asymptotic expansions and properties of the slowly

oscilating function V (s, k) for the high frequency case (k � 1). We begin with the

following theorem which is proved by from Melrose and Taylor [1].

Theorem 4.7. There exist 4 > 0 such that V (s, k) has the asymptotic expansion:

V (s, k) ∼
∑
`,m>0

k−1/3−2`/3−mb`,m(s)Ψ(`)(k1/3Z(s)) (4.13)

valid for s ∈ I4 := (t1 −4, t1 +4) ∪ (t2 −4, t2 +4), where γ(t1) and γ(t2) are the

tangency points. The functions b`,m,Ψ and Z have the following properties.

• b`,m are C∞ complex-valued functions on I4.

• Z is a C∞ real valued function on I4, with simple zeros at t1 and t2, which is

positive valued on (t1, t2) ∩ I4 and negative valued on (t2 − 2π, t1) ∩ I4.

• Ψ : C→ C is an entire function specified by

Ψ(τ) := exp(−iτ 3/3)

∫
c

exp(−izτ)

Ai(e2π/3z)
dz (4.14)

where Ai is the Airy function [24] and c is an appropriate contour. In particular,

Ψ(τ) = a0τ + a1τ
−2 + a2τ

−5 + anτ
1−3n +O(τ 1−3(n+1)) as τ →∞, a0 6= 0 (4.15)

and this expansion remains valid for all derivatives of Ψ by formally differentiating each

term on the right- hand-side, including the error term (see [1, Lemma 9.9]). Moreover,

there exist β > 0 and c0 6= 0 such that for any n ∈ N

Dn
τ Ψ(τ) = c0D

n
τ

{
exp(−iτ 3/3− iτα1)

}
(1 +O(exp(−|τ |β))), as τ → −∞ (4.16)

where α1 = exp(−2πi/3)ν1 and 0 < ν1 is the right-most root of Ai.
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Next, we express V (s, k) as a sum of finitly many explicit k−dependent terms

and a manageable remainder as stated in the next corollary [7, sect. 5].

Corollary 4.8. With the same notation as in Theorem 4.7, the functions b`,m can be

extended to 2π -periodic C∞ functions such that, for all L,M ∈ N, the decomposition

V (s, k) =

[
L,K∑
`,m

k−1/3−2`/3−mb`,m(s)Ψ(`)(k1/3Z(s))

]
+RL,M(s, k) (4.17)

holds for all s ∈ [0, 2π], with remainder term satisfying, for all n ∈ N

|Dn
sRL,M(s, k)| ≤ CL,M,n(1 + k)µ+n/3, (4.18)

where µ := −min

{
2

3
(L+ 1), (M + 1)

}
and CL,M,n is independent of k.

In the next theorem, we now present bounds on the derivatives of V (s, k) of all

order with respect to s, which is utilized to estimate semi-norms and then carry out

error analysis.

Theorem 4.9. [7] For all n ∈ N and sufficiently large k, we have

|Dn
sV (s, k)| .n

1 +
∑n

j=2 k
(j−1)/3(1 + k1/3|ω(s)|)−j−2 if n ≥ 2

1 if n = 0, 1.

(4.19)

where w(s) = (s− t1)(t2 − s).

Proof. First, note that, by properties of Z given in Theorem 4.7, we have Z(s) =

h(s)ω(s) where h is a smooth function and positive on [0, 2π] and ω(s) = (s−t1)(t2−s).

For any n ∈ N, there exist L,M ∈ N so that −µ ≥ n/3, where

µ = −min {2(L+ 1)/3, (M + 1)}.
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Next, applying Corollary 4.8 yields,

V (s, k) = AL,M(s, k) +RL,M(s, k)

where

AL,M(s, k) := k−1/3

L∑
l=0

k−2l/3Bl,M(s)Ψ(l)(k1/3Z(s)). (4.20)

HereBl,M is given by the sum
∑M

m=0 k
−mbl,m(s) where bl,m(s) is described as in Theorem

4.7. As µ+ n/3 ≤ 0, by (4.18), it then follows

|Dn
sRL,M(s, k)| ≤ Cn,L,M(1 + k)µ+n/3 ≤ Cn,L,M

for all k. Now, by the Leibniz’s rule for the product of functions and Faà Di Bruno’s

formula [25] for the derivatives of composition of functions and the fact that all deriva-

tives of Bl,M(s) are bounded by a constant, we have

|Dn
sAL,M(s, k)|

≤ k−1/3

L∑
l=0

k−2l/3
∣∣Dn

s [Bl,M(s)Ψ(l)(k1/3Z(s))]
∣∣

= k−1/3

L∑
l=0

k−2l/3

∣∣∣∣∣
n∑
j=0

(
n

j

)
B

(n−j)
l,M (s)(Ψ(l)(k1/3Z(s)))(j)

∣∣∣∣∣
.n k

−1/3

L∑
l=0

k−2l/3

∣∣∣∣∣
n∑
j=0

(Ψ(l)(k1/3Z(s)))(j)

∣∣∣∣∣
.n k

−1/3

L∑
l=0

k−2l/3

∣∣∣∣∣∣∣
n∑
j=0

∑
∑j
y=1 ymy=j

(Ψ(l+m1+..+mj)(k1/3Z(s)))

j∏
p=1

(k1/3Z(p)(s))(mp)

∣∣∣∣∣∣∣ .
Note that Z(s) = h(s)ω(s) is a smooth function, accordingly all of its derivatives are

bounded by a constant independent from k. For convenience, letting m1+m2..+mj = i
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gives

|Dn
sAL,M(s, k)|

.n k
−1/3

L∑
l=0

k−2l/3

n∑
j=0

∑
∑j
y=1 ymy=j

k(m1+...+mj)/3
∣∣Ψ(l+m1+...+mj)(k1/3Z(s))

∣∣
.n k

−1/3

L∑
l=0

k−2l/3

n∑
j=0

∑
1≤i≤j

ki/3
∣∣Ψ(l+i)(k1/3Z(s))

∣∣
.n k

−1/3

L∑
l=0

k−2l/3

n∑
j=0

kj/3
∣∣Ψ(l+j)(k1/3Z(s))

∣∣
.n k

−1/3

n∑
j=0

L∑
l=0

k(j−2l)/3
∣∣Ψ(l+j)(k1/3Z(s))

∣∣ . (4.21)

At this point, we use (4.15) and (4.16) to derive the estimates

|Ψ(τ)| ≤ C0(1 + |τ |), (4.22)

|Ψ′(τ)| ≤ C1, (4.23)

|Ψ(l)(τ)| ≤ Cl(1 + |τ |)−2−l, for l ≥ 2. (4.24)

Thus, splitting the outer sum in (4.21) into three parts, we have

|Dn
sAL,M(s, k)|

.n k
−1/3

L∑
l=0

k−2l/3
∣∣Ψ(l)(k1/3Z(s))

∣∣+ k−1/3

L∑
l=0

k(1−2l)/3
∣∣Ψ(l+1)(k1/3Z(s))

∣∣
+ k−1/3

n∑
j=2

L∑
l=0

k(j−2l)/3
∣∣Ψ(l+j)(k1/3Z(s))

∣∣
.n k

−1/3

(
1 + k1/3|Z(s)|+ k−2/3 +

L∑
l=2

(1 + k1/3|Z(s)|)−2−l

)

+ k−1/3

(
k1/3 +

L∑
l=1

k(1−2l)/3(1 + k1/3|Z(s)|)−2−l−1

)

+ k−1/3

n∑
j=2

L∑
l=0

k(j−2l)/3(1 + k1/3|Z(s)|)−2−l−j.
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Since Z(s) = h(s)w(s) and h is a non-vanishing continuous function, we get

|Dn
sAL,M(s, k)| .n k−1/3

(
1 + k1/3|w(s)|+ k−2/3 +

L∑
l=2

(1 + k1/3|w(s)|)−2−l

)

+ k−1/3

(
k1/3 +

L∑
l=1

k(1−2l)/3(1 + k1/3|w(s)|)−2−l−1

)

+ k−1/3

n∑
j=2

L∑
l=0

k(j−2l)/3(1 + k1/3|w(s)|)−2−l−j

.n 1 +
n∑
j=2

k(j−1)/3(1 + k1/3|ω(s)|)−j−2

(
1 +

L∑
l=1

k−2l/3(1 + k1/3|ω(s)|)−l
)

.n 1 +
n∑
j=2

k(j−1)/3(1 + k1/3|ω(s)|)−j−2.

4.3. Semi-norm Estimates and Best Approximation Error

In this section, we estimate the semi-norms of V (s, k) on each region described

in Definition 4.1 and carry out the error analysis of Galerkin method formulated as in

(4.7).

To this end, consider the 2π-periodic function W (s, k) defined on [0, 2π] as

W (s, k) = k−1/3 + |w(s)|

where w(s) = (s− t1)(t2 − s), and note that

W (s, k) =

−(s− c1)(d1 − s) if s ∈ [0, 2π]\[t1, t2],

(s− c2)(d2 − s) if s ∈ [t1, t2],

(4.25)
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for k ≥ 1 where

c1 = t1 + (T −
√
T 2 − k−1/3) = L−

√
T 2 − k−1/3,

d1 = t2 − (T −
√
T 2 − k−1/3) = L+

√
T 2 − k−1/3,

c2 = t1 + (T −
√
T 2 + k−1/3) = L−

√
T 2 + k−1/3,

d2 = t2 − (T −
√
T 2 + k−1/3) = L+

√
T 2 + k−1/3 (4.26)

with L = t2+t1
2

and T = t2−t1
2

. Next, given an interval I = (a, b), it is well known that

there exist Cn > 0 such that, for all nonnegative integers n with n < d+ 1,

inf
p∈P(d)

‖f − p‖L2(I) ≤ Cnd
−n|f |n,I (4.27)

where

|f |n,I :=

[∫ b

a

|f (n)(s)|2(s− a)n(b− s)nds
]1/2

(4.28)

is the semi-norm defined on I, and P(d) is the set of univariate polynomials of degree

≤ d (see [26, Cor. 3.12]). We employ this to derive bounds for the approximation of

V (s, k) via polynomials. We now state and prove a theorem regarding the semi-norm

estimates of V (s, k).

Theorem 4.10. Let 0 ≤ εm < εm−1 < ... < ε1 < 1/3. For n ≥ 2 and sufficiently large

k, we have the following semi-norm estimates on each region given in Definition 4.1.

Illuminated and Deep Shadow Regions : For Ω ∈ {ΛI ,ΛS}

|V (s, k)|n,Ω .n 1 + k−(1+3ε1)/2k(1/3−ε1)n/2 (4.29)

Shadow Boundaries : For Ω ∈ {ΛSB
1 ,ΛSB

2 }

|V (s, k)|n,Ω .n 1 + k−1/2k(εm)n
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Transition Regions : For Ω ∈ {ΛIr
j ,Λ

Sr
j : j = 1, 2, ..m− 1 and r = 1, 2}.

|V (s, k)|n,Ω .n 1 + k−(1+3εj+1)/2k(εj−εj+1)n/2.

where “a .n b” means that a ≤ Cnb for some constant Cn that depends only on n.

Proof. We show only the semi-norm estimate of V (s, k) on the illuminated region. For

the sake of simplicity, let [a, b] := [t1 + ξ1k
−1/3kε1 , t2 − ξ2k

−1/3kε1 ] = ΛI . Observe that,

by Theorem 4.9, we have

|V (s, k)|2n,ΛI =

∫ b

a

|Dn
sV (s, k)|2(s− a)n(b− s)nds

.n

∫ b

a

{
1 +

n∑
j=2

k(j−1)/3

(1 + k1/3|ω(s)|)j+2

}2

(s− a)n(b− s)nds

.n

∫ b

a

{
1 + k−1

n∑
j=2

1

(k−1/3 + |ω(s)|)j+2

}2

(s− a)n(b− s)nds

.n

∫ b

a

(s− a)n(b− s)n + k−2

n∑
j=2

(s− a)n(b− s)n

W (s, k)2j+4
ds

.n 1 + k−2

n∑
j=2

∫ b

a

(s− a)n(b− s)n

W (s, k)2j+4
ds (4.30)

Next, we calculate the last integral. By Lemma B.2 and noting that W (s, k) = (s −

c2)(d2 − s) in the given interval [a, b], we get

k−2

n∑
j=2

∫ b

a

(s− a)n(b− s)n

(s− c2)2j+4(d2 − s)2j+4
ds

.n k
−2

n∑
j=2

2j+4∑
i=1

n∑
p,q=0

F (n, p, q, i)

.n k
−2

n∑
j=2

2j+4∑
i=1

n∑
p,q=0

(
(c2 − a)p(c2 − b)q(b− c2)2n−(p+q+i)+1 (4.31)

−(c2 − a)p(c2 − b)q(a− c2)2n−(p+q+i)+1

+(a− d2)p(b− d2)q(d2 − a)2n−(p+q+i)+1 − (a− d2)p(b− d2)q(d2 − b)2n−(p+q+i)+1
)
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where F (n, p, q, i) is defined as in Lemma B.2. For convenience, letting T = k−
1
3

T+

√
T 2+k−

1
3

and recalling (4.26), we have

2T − ξ2 ≤ (b− c2) = T +

√
T 2 + k−

1
3 − ξ2k

− 1
3kε1 ≤ T +

√
T 2 + 1⇒ (b− c2) = O(1)

ξ1k
− 1

3
+ε1 ≤ (a− c2) = T + ξ1k

− 1
3

+ε1 ≤ (
1

2T
+ ξ1)k−

1
3

+ε1 ⇒ (a− c2) = O(k−
1
3

+ε1)

ξ2k
− 1

3
+ε1 ≤ (d2 − b) = T + ξ2k

− 1
3

+ε1 ≤ (
1

2T
+ ξ2)k−

1
3

+ε1 ⇒ (d2 − b) = O(k−
1
3

+ε1)

2T − ξ1 ≤ (d2 − a) = T +

√
T 2 + k−

1
3 − ξ1k

− 1
3

+ε1 ≤ T +
√
T 2 + 1⇒ (d2 − a) = O(1)

for sufficiently large k. Plugging these into (4.31) yields

k−2

n∑
j=2

∫ b

a

(s− a)n(b− s)n

(s− c2)2j+4(d2 − s)2j+4
ds

.n k
−2

n∑
j=2

2j+4∑
i=1

n∑
p,q=0

[(k−1/3+ε1)p − (k−1/3+ε1)p(k−1/3+ε1)2n−(p+q+i)+1

+ (k−1/3+ε1)q − (k−1/3+ε1)q(k−1/3+ε1)2n−(p+q+i)+1]

.n k
−2

n∑
j=2

2j+4∑
i=1

n∑
p,q=0

[
(k−1/3+ε1)p + (k−1/3+ε1)2n−(q+i)+1 + (k−1/3+ε1)q + (k−1/3+ε1)2n−(p+i)+1

]
.n k

−2

n∑
j=2

2j+4∑
i=1

n∑
p,q=0

[
1 + (k−1/3+ε1)2n−(q+i)+1 + (k−1/3+ε1)2n−(p+i)+1

]
.n k

−2
[
1 + (k−1/3+ε1)−n−3

]
.n
[
k−2 + (k−1/3+ε1)−n−3k−2

]
.n
[
1 + k(−1/3+ε1)(−n−3)−2

]
.n
[
1 + k(1/3−ε1)n−(1+3ε1)

]
Thus, by (4.30), we obtain

|V (s, k)|2n,ΛI =

∫ b

a

|Dn
sV (s, k)|2(s− a)n(b− s)nds

.n 1 + k−2

n∑
j=2

∫ b

a

(s− a)n(b− s)n

(s− c2)2j+4(d2 − s)2j+4
ds

.n
[
1 + k(1/3−ε1)n−(1+3ε1)

]
.

The semi-norm estimates on shadow boundary and transition regions can be established
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similarly. However, when we estimate the semi-norm on deep shadow region we end

up with

|V (s, k)|2n,ΛS .n 1 + k−2

n∑
j=2

∫ b

a

(s− a)n(b− s)n

W (s, k)2j+4
ds

where [a, b] = ΛS = [t2 + ξ2k
−1/3kε1 , 2π + t1 − ξ1k

−1/3kε1 ]. Accordingly, we have to

estimate the integral
∫ b
a

(s−a)n(b−s)n
W (s,k)2j+4 ds. To this end, we separate the integral in two

parts

∫ b

a

(s− a)n(b− s)n

W (s, k)2j+4
ds =

∫ 2π

a

(s− a)n(b− s)n

W (s, k)2j+4
ds+

∫ b

2π

(s− a)n(b− s)n

W (s, k)2j+4
ds.

The first integral can be estimated in a manner similar to that for the illuminated

region, yet for the second integral, we have to make a change of variables u = s−2π by

noting the fact that W (s, k) is a 2π-periodic function of s. Thus, we need to estimate

∫ b−2π

0

(u+ 2π − a)n(b− 2π − u)n

W (u+ 2π, k)2j+4
du =

∫ b′

0

(u+ 2π − a)n(b− 2π − u)n

W (u, k)2j+4
du

where b′ = b − 2π. The estimation of this integral can now be carried out similar to

that for the illuminated region.

Now, we are ready to derive bounds for the best approximation error. Indeed,

recalling (4.27), Theorem 4.4 is now an immediate consequence of the preceding the-

orem. In more detail, for the first estimate in Theorem 4.4, let 2 ≤ n ≤ dI + 1. By

(4.27), we then have

inf
p∈P(dI)

‖V (·, k)− p‖L2(ΛI) ≤ Cnd
−n
I |V (s, k)|n,ΛI

where |V (s, k)|n,ΛI is the semi-norm defined in (4.28). Next, by Theorem 4.10, it follows
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that

inf
p∈P(dI)

‖V (s, k)− p‖L2(ΛI) .n d
−n
I (1 + k−(1+3ε1)/2k(1/3−ε1)n/2)

.n d
−n
I + k−(1+3ε1)/2k(1/3−ε1)n/2d−nI

.n k
−(1+3ε1)/2k(1/3−ε1)n/2d−nI

.n k
−(1+3ε1)/2

(
k(1/3−ε1)/2

dI

)
.

The remaining estimates in Theorem 4.4 can be carried out similarly.

4.4. Shadow Region-Revisited

In this section, we derive improved estimates over the shadow region by analyzing

the second asymptotic expansion of the function Ψ(s) given in (4.16). First we note

the following improvement upon Theorem 4.9 on the shadow region.

Theorem 4.11. For s ∈ [0, t1) ∪ (t2, 2π] and sufficiently large k, we have,

|Dn
sV (s, k)| .n

1 +
∑n

j=0 k
(j−1)/3e−k

1/3ω(s)sin(2π/3)ν1 if n ≥ 2

1 if n = 0, 1.

(4.32)

where ν1 < 0 is the right most root of the Airy function Ai(z) [24].

Proof. First note that, by properties of Z (see Theorem 4.7 and (4.13)), we have

Z(s) = h(s)ω(s) = h(s)(s− t1)(t2 − s)

where h is a smooth real function and positive on [0, 2π]. Given any n ∈ N, choose

L,M ∈ N so that −µ ≥ n/3, where µ is defined as

µ = −min {2(L+ 1)/3, (M + 1)}.



71

Then, by Corollary 4.8, we get

V (s, k) = AL,M(s, k) +RL,M(s, k)

where

AL,M(s, k) := k−1/3

L∑
l=0

k−2l/3Bl,M(s)Ψ(l)(k1/3Z(s)).

HereBl,M is given by the sum
∑M

m=0 k
−mbl,m(s) where bl,m(s) is described as in Theorem

4.7. Since µ+ n/3 ≤ 0, by (4.18), we then have

|Dn
sRL,M(s, k)| ≤ Cn,L,M(1 + k)µ+n/3 ≤ Cn,L,M (4.33)

for all k. Thus, by Leibnitz’s rule,

|Dn
sAL,M(s, k)|

≤ k−1/3

L∑
l=0

k−2l/3
∣∣Dn

s [Bl,M(s)Ψ(l)(k1/3Z(s))]
∣∣

= k−1/3

L∑
l=0

k−2l/3

∣∣∣∣∣
n∑
j=0

(
n

j

)
B

(n−j)
l,M (s)(Ψ(l)(k1/3Z(s)))(j)

∣∣∣∣∣ .
Next, we use Fa Di Bruno’s formula [25] for the derivatives of composed functions.

Since all derivatives of Bl,M(s) have k-independent bounds, we obtain

|Dn
sAL,M(s, k)| .n k−1/3

L∑
l=0

k−2l/3

∣∣∣∣∣
n∑
j=0

(Ψ(l)(k1/3Z(s)))(j)

∣∣∣∣∣
.n k

−1/3

L∑
l=0

k−2l/3

∣∣∣∣∣∣∣
n∑
j=0

∑
∑j
y=1 ymy=j

(Ψ(l+m1+...+mj)(k1/3Z(s)))

j∏
p=1

(k1/3Z(p)(s))(mp)

∣∣∣∣∣∣∣ .
The aforementioned properties of the function h in the decomposition Z(s) = h(s)w(s)
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accordingly yields

|Dn
sAL,M(s, k)|

.n k
−1/3

L∑
l=0

k−2l/3

n∑
j=0

∑
∑j
y=1 ymy=j

k(m1+...+mj)/3
∣∣Ψ(l+m1+...+mj)(k1/3ω(s))

∣∣
.n k

−1/3

L∑
l=0

k−2l/3

n∑
j=0

∑
1≤m1+...+mj≤j

k(m1+...+mj)/3
∣∣Ψ(l+m1+...+mj)(k1/3ω(s))

∣∣ .
Therefore, letting m1 + ...+mj = i and rearranging sums, we have

|Dn
sAL,M(s, k)| .n k−1/3

L∑
l=0

k−2l/3

n∑
j=0

∑
1≤i≤j

ki/3
∣∣Ψ(l+i)(k1/3ω(s))

∣∣
.n k

−1/3

L∑
l=0

k−2l/3

n∑
j=0

kj/3
∣∣Ψ(l+j)(k1/3ω(s))

∣∣
.n k

−1/3

n∑
j=0

L∑
l=0

k(j−2l)/3
∣∣Ψ(l+j)(k1/3ω(s))

∣∣ . (4.34)

We now use the asymptotic expansion 4.16 of the derivatives of Ψ for the shadow

region. Since the roots of the Airy function Ai(z) are negative [24], when τ → −∞, the

function Ψ together with its derivatives decay exponentially. If we write (4.16) more

explicitly, Faà Di Bruno’s formula [25] entails

|Dn
τ Ψ(τ)| = |c0D

n
τ

[
exp(−iτ 3/3− iτα1)

]
||(1 +O(exp(−|τ |β)))| (4.35)

.n
∑

∑n
y=1 ymy=n

| exp(m1+...+mn)(−iτ 3/3− iτα1)||
n∏
p=1

(g(p)(τ))mp | (4.36)
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where g(τ) = −iτ 3/3− iτα1. Since g(τ) vanishes after 3 times differentiation, we get

|Dn
τ Ψ(τ)| .n

∑
∑n
y=1 ymy=n

| exp(m1+...+mn) ||(−iτ 3/3− iτα1)||
n∏
p=1

(g(p)(τ))mp |

.n
∑

∑n
y=1 ymy=n

| exp(m1+...+mn) ||(−iτ 3/3− iτα1)||(g′(τ))m1(g′′(τ))m2(g′′′(τ))m3|

.n
∑

∑n
y=1 ymy=n

| exp(m1+...+mn) ||(−iτ 3/3− iτα1)||(−iτ 2 − iα1)m1||(−2iτ)m2||(−2i)m3|.

(4.37)

Next, let X(s, k) := e−k
1/3ω(s)sin(2π/3)ν1 and note that

|e−ikω3(s)/3−ik1/3ω(s)α1| = |e−ikω3(s)/3−ik1/3ω(s){cos(−2π/3)+isin(−2π/3)}ν1 |

= |e−ikω3(s)/3‖e−ik1/3ω(s)cos(2π/3)ν1−k1/3ω(s)sin(2π/3)ν1|

= |e−k1/3ω(s)sin(2π/3)ν1| = |X(s, k)|. (4.38)

Accordingly, by (4.37) and (4.38), we have

|Ψ(l+j)(k1/3ω(s))|

.n
∑
|e−ikω3(s)/3−ik1/3ω(s)α1(−ik2/3ω2(s)− iα1)m1(−2ik1/3ω)m2(−2i)m3|

.n
∑
|e−ikω3(s)/3−ik1/3ω(s)α1||(−ik2/3ω2(s)− iα1)m1||(−2ik1/3ω)m2||(−2i)m3|

.n
∑
|e−k1/3ω(s)sin(2π/3)ν1|| − ik2/3ω2(s)− iα1|m1 | − 2k1/3ω(s)|m2|2|m3

.n
∑
|X(s, k)|| − ik2/3ω2(s)− sin(2π/3)ν1 − icos(2π/3)ν1|m1| − 2k1/3ω(s)|m2

.n
∑
|X(s, k)|| − sin(2π/3)ν1 − i[k2/3ω2(s) + cos(2π/3)ν1]|m1| − 2k1/3ω(s)|m2

.n
∑
|X(s, k)||ν1 + k4/3ω4(s)|m1 | − 2k1/3ω(s)|m2

where all sums above are taken over the set

{
(m1, ...,ml+j) :

l+j∑
y=1

ymy = l + j,my ∈ N for 1 ≤ y ≤ l + j

}
.

As exponential functions of negative exponents decay faster than any polynomial at
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infinity, we obtain

|Ψ(l+j)(k1/3ω(s))|

.n
∑

∑l+j
y=1 ymy=l+j

e−k
1/3ω(s)sin(2π/3)ν1(ν1 + k4/3ω4(s))m1(−2k1/3ω(s))m2

.n e
−k1/3ω(s)sin(2π/3)ν1 (4.39)

whenever ω(s) > 0. Therefore, using (4.39) in (4.34) gives

|Dn
sAL,M(s, k)| .n k−1/3

n∑
j=0

L∑
l=0

k(j−2l)/3|Ψ(l+j)(k1/3Z(s))|

.n k
−1/3

n∑
j=0

L∑
l=0

k(j−2l)/3e−k
1/3ω(s)sin(2π/3)ν1

.n

n∑
j=0

k(j−1)/3e−k
1/3ω(s)sin(2π/3)ν1 .

Since RL,M and its derivatives of all order are bounded by (4.18), we finally have

|Dn
sV (s, k)| .n 1 +

n∑
j=0

k(j−1)/3e−k
1/3ω(s)sin(2π/3)ν1 . (4.40)

As we anticipated, in the next section, we estimate the semi-norm of V (s, k) in

the shadow region by utilizing the preceding theorem.

Theorem 4.12. [Improved semi-norm estimate in the shadow] Let ε > 0 be given.

Then, for any interval [a, b] ⊂ [0, t1) or (t2, 2π] and n ≥ 2 we have

|V (s, k)|2n,(a,b) .n
(

1 + ek
1/3(ε−2ω̄sin(2π/3)ν1)

)

for sufficiently large k, where ω̄ = maxs∈[a,b] ω(s) and ν1 < 0 is the right most root of

the Ai.
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Proof. By (4.28), we have

|V (s, k)|2n,(a,b) =

∫ b

a

|Dn
sV (s, k)|2(s− a)n(b− s)nds

.n

∫ b

a

(
1 +

n∑
j=0

k(j−1)/3e−k
1/3ω(s)sin(2π/3)ν1

)2

(s− a)n(b− s)nds

.n

∫ b

a

(
1 +

n∑
j=0

k(2j−2)/3e−2k1/3ω(s)sin(2π/3)ν1

)
(s− a)n(b− s)nds

.n

∫ b

a

(s− a)n(b− s)nds+
n∑
j=0

k(2j−2)/3

∫ b

a

e−2k1/3ω(s)sin(2π/3)ν1(s− a)n(b− s)nds

.n 1 +
n∑
j=0

k(2j−2)/3

∫ b

a

e−2k1/3ω(s)sin(2π/3)ν1(s− a)n(b− s)nds.

Next, since ν1 < 0, we get

|V (s, k)|2n,(a,b) .n 1 +
n∑
j=0

k(2j−2)/3

∫ b

a

e−2k1/3ω(s)sin(2π/3)ν1(s− a)n(b− s)nds

.n 1 +
n∑
j=0

k(2j−2)/3e−2k1/3ω̄sin(2π/3)ν1(b− a)2n+1

.n 1 + k(2n−2)/3(b− a)2n+1e−2k1/3ω̄sin(2π/3)ν1

.n 1 + eεk
1/3

e−2k1/3ω̄sin(2π/3)ν1

where ω̄ = maxs∈[a,b] ω(s).

Next, recalling (4.27), we derive the best approximation error in the deep shadow

region as depicted in the next theorem.

Theorem 4.13. [Improved best approximation in the shadow] Let ε > 0 be given.

Then, for any interval Ω ⊂ [0, t1) or (t2, 2π] and 2 ≤ n ≤ dΩ + 1, we have

inf
p∈P(dΩ)

‖V (·, k)− p‖L2(Ω) ≤ Cn
ek

1/3(ε−2ω̄sin(2π/3)ν1)

dnΩ

where ω̄ = maxs∈[a,b] ω(s) and ν1 < 0 is the right most root of the Ai, and dΩ is the

degree of polynomials to approximate V (s, k).



76

5. CONCLUSION

The main aim of this thesis was to devise numerical methods for high-frequency

scattering problems in 2 dimensional settings by utilizing the geometrical optics ansatz

(1.1) for convex obstacles rigorously established by Melrose and Taylor [1]. To this end,

we transformed the sound soft scattering problem into a well-posed boundary integral

equation and, by virtue of the ansatz, which expresses the normal derivative of the

total field as a highly oscillating complex exponential modulated by a slowly oscillating

amplitude, we constructed a new Galerkin method to capture the oscillations for large

wave number k and approximate the slowly oscillating part of the solution. In essence

our method was based on the refinement of transition regions given in Definition 4.1

where asymptotic properties of the solution changes from polynomial to exponential.

As a main convergence result, we showed that it suffices to increase the degrees of

freedom proportional to kε for any ε in order to retain a fixed accuracy.

In the third chapter, we implemented two- and multi-grid methods for integral

equations of the second kind. We tested both methods with sound-soft scattering

problem for the unit circle for which the exact solution is known. As is seen in numerical

results, multi-grid method is not efficient for high-frequency problems if the number of

level is large.

Our method can also be applied to multiple scattering problems by a carefully

design of a Galerkin approximation spaces in accordance with the given configuration.
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APPENDIX A: Functional Analysis

The following theorems and definitions can be found in [9].

Theorem A.1. [Neumann Series] Let A : X → X be a bounded linear operator on a

Banach space X with ‖A‖ < 1 and let I : X → X denote the identity operator. Then

I − A has a bounded inverse on X that is given by the Neumann series

(I − A)−1 =
∞∑
k=0

Ak

and satisfies

‖(I − A)−1‖ ≤ 1

1− ‖A‖
.

Definition A.2. [Compact Operators] A linear operator A : X → Y from a normed

space X into a normed space Y is called compact if it maps each bounded set in X

into a relatively compact set in Y .

Theorem A.3. Let X, Y and Z be normed spaces and let A : X → Y and B : Y → Z

be bounded linear operators. Then the product BA : X → Z is compact if one of the

two operators A or B is compact.

Theorem A.4. [Riesz Theory for Compact Operators] Let A : X → X be a compact

linear operator on a normed space X. Then I − A is injective if and only if it is

surjective. If I −A is injective (and therefore also bijective), then the inverse operator

(I − A)−1 : X → X is bounded.

Theorem A.5. [Fredholm Theorem] Let 〈X, Y 〉 be a dual system and A : X → X,

B : Y → Y be compact adjoint operators. Then the nullspaces of the operators I − A

and I −B have the same finite dimension.

Theorem A.6. [Arzelà-Ascoli] A set U ⊂ C(D) is relatively compact if and only if it
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is bounded and equicontinuous, i.e., if there exist a constant C such that

|ϕ(x)| ≤ C

for all x ∈ D and all ϕ ∈ U , and for every ε > 0 there exists δ > 0 such that

|ϕ(x)− ϕ(y)| < ε

for all x, y ∈ D with |x− y| < δ and all ϕ ∈ U .

Definition A.7. [Parallel Surface] For a bounded domain D of class Cm, m ≥ 1, we

have the notion of the parallel surface described by

∂Dh := {z = x+ hν(x) : x ∈ ∂D} (A.1)

where ν is the unit normal to the ∂D and h is a real parameter.

Definition A.8. [14] [Hölder Spaces] A real or complex valued function ϕ defined on

a set D ⊂ R2 is called uniformly Hölder continuous with Hölder exponent 0 < α ≤ 1 if

there is a constant C such that

|ϕ(x)− ϕ(y)| ≤ C|x− y|α

for all x, y ∈ D. We define the Hölder space C0,α(D) to be the linear space of all func-

tions defined on D which are bounded and uniformly Hölder continuous with exponent

α. It is a Banach Spaces with the norm

‖ϕ‖0,α := ‖ϕ‖0,α,D := sup
x∈D
|ϕ(x)|+ sup

x,y∈D
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

.

We also introduce the Hölder space C1,α(D), 0 < α ≤ 1, of uniformly Hölder contin-

uously differentiable functions as the space of differentiable functions for which gradϕ
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belongs to C0,α(D). With the norm

‖ϕ‖1,α := ‖ϕ‖1,α,D := ‖ϕ(x)‖∞ + ‖gradϕ‖0,α

C1,α(D) is again a Banach space.
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APPENDIX B: Auxiliary Results

Lemma B.1. For c < d and m ∈ N, we have

1

(s− c)m(d− s)m
=

m∑
j=1

(
2m− j − 1

m− j

)
1

(d− c)2m−j

[
1

(s− c)j
+

1

(d− s)j

]
.

Proof. We first compute the partial fraction decomposition

1

(s− c)m(d− s)m
=

A0

(s− c)m
+

A1

(s− c)m−1
+ ...+

Am−1

(s− c)
(B.1)

+
B0

(d− s)m
+

B1

(d− s)m−1
+ ....+

Bm−1

(d− s)

where Ak, Bk ∈ R for k = 0, 1, ...,m−1. To this end, we multiply both sides by (s−c)m

to obtain

1

(d− s)m
= A0 + A1(s− c) + A2(s− c)2...+ Am−1(s− c)m−1 (B.2)

+ (s− c)m
[

B0

(d− s)m
+

B1

(d− s)m−1
+ ....+

Bm−1

(d− s)

]

so that setting s = c we get

1

(d− c)m
= A0 + A1(c− c) + A2(c− c)2...+ Am−1(c− c)m−1

+ (c− c)m
[

B0

(d− s)m
+

B1

(d− s)m−1
+ ....+

Bm−1

(d− s)

]
= A0.
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Next, we differentiate (B.2) to obtain

m

(d− s)m+1
= A1 + A2(s− c) + 3A3(s− c)2...+ Am−1(m− 1)(s− c)m−2

+m(s− c)m−1

[
B0

(d− s)m
+

B1

(d− s)m−1
+ ...+

Bm−1

(d− s)

]
+ (s− c)m(d/ds)

[
B0

(d− s)m
+

B1

(d− s)m−1
+ ...+

Bm−1

(d− s)

]

so that for s = c, we get

m

(d− c)m+1
= A1.

Continuing in this way, we have

Ak =

(
m+ k − 1

m− 1

)
1

(d− c)m+k
for all 0 ≤ k ≤ m− 1.

In a similar manner, one can multiply equation (B.2) by (d− s)m to get

Bk = Ak for all 0 ≤ k ≤ m− 1.

Next, writing the coefficients Ak and Bk in (B.2) and letting let m− k = j, we get

1

(s− c)m(d− s)m
=

m−1∑
k=0

(
m+ k − 1

k

)
1

(d− c)m+k

[
1

(s− c)m−k
+

1

(d− s)m−k

]
=

m∑
j=1

(
2m− j − 1

m− j

)
1

(d− c)2m−j

[
1

(s− c)j
+

1

(d− s)j

]
�

Lemma B.2. Let t1, t2 ∈ [0, 2π] be so that γ(t1) and γ(t2) correspond to tangency points

in accordance with the unit direction vector a where γ is a 2π-periodic parametrization
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of boundary of a bounded convex domain D. Also let us define

c1 = t1 + (T −
√
T 2 − k−1/3) = L−

√
T 2 − k−1/3,

d1 = t2 − (T −
√
T 2 − k−1/3) = L+

√
T 2 − k−1/3,

c2 = t1 + (T −
√
T 2 + k−1/3) = L−

√
T 2 + k−1/3,

d2 = t2 − (T −
√
T 2 + k−1/3) = L+

√
T 2 + k−1/3 (B.3)

where L = t2+t1
2

and T = t2−t1
2

. Suppose that either [α, β] ⊆ [t1, t2] and c = cI , d = dI

or [α, β]∩ (t1, t2) = ∅ and c = cS, d = dS. Then, for any a, b ∈ R, n ∈ N∪{0}, m ∈ N,

there holds

∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds =

m∑
j=1

n∑
p,q=0

(
2m− j − 1

m− j

)(
n

p

)(
n

q

)
(−1)n

(d− c)2m−jF (n, p, q, j)

where,

F (n, p, q, j) = (c− a)p(c− b)q log

(
β − c
α− c

)
+ (a− d)p(b− d)q log

(
d− α
d− β

)

when 2n− p− q − j + 1 = 0,

F (n, p, q, j) =
(c− a)p(c− b)q

2n− p− q − j + 1

[
(β − c)2n−p−q−j+1 − (α− c)2n−p−q−j+1

]
+

(a− d)p(b− d)q

2n− p− q − j + 1

[
(d− α)2n−p−q−j+1 − (d− β)2n−p−q−j+1

]
when 2n− p− q − j + 1 6= 0.
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Proof. By Lemma B.1, we have

∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds

=

∫ β

α

m∑
j=1

(
2m− j − 1

m− j

)
(s− a)n(b− s)n

(d− c)2m−j

[
1

(s− c)j
+

1

(d− s)j

]
ds

=

∫ β

α

m∑
j=1

(
2m− j − 1

m− j

)
1

(d− c)2m−j

[
(s− a)n(b− s)n

(s− c)j
+

(s− a)n(b− s)n

(d− s)j

]
ds

=
m∑
j=1

(
2m− j − 1

m− j

)
1

(d− c)2m−j

[∫ β

α

(s− a)n(b− s)n

(s− c)j
ds+

∫ β

α

(s− a)n(b− s)n

(d− s)j
ds

]
.

Next, we make the change of variables s−c = u in the first integral and d−s = u

in the second to get

∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds

=
m∑
j=1

(
2m− j − 1

m− j

)
1

(d− c)2m−j

[∫ β−c

α−c

(u+ c− a)n(b− u− c)n

uj
du

+

∫ d−β

d−α

(d− u− a)n(b− d+ u)n

uj
du

]
=

m∑
j=1

(
2m− j − 1

m− j

)
(−1)n

(d− c)2m−j

[∫ β−c

α−c

(u+ c− a)n(u+ c− b)n

uj
du

+

∫ d−β

d−α

(u+ a− d)n(u+ b− d)n

uj
du

]
.

As binomial theorem entails

(u+ c− a)n(u+ c− b)n

uj
=

n∑
p=0

n∑
q=0

(
n

p

)(
n

q

)
u2n−p−q−j(c− a)p(c− b)q

and

(u+ a− d)n(u+ b− d)n

uj
=

n∑
p=0

n∑
q=0

(
n

p

)(
n

q

)
u2n−p−q−j(a− d)p(b− d)q,
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it follows that

∫ β

α

(s− a)n(b− s)n

(s− c)m(d− s)m
ds

=
m∑
j=1

(
2m−j−1
m−j

)
(−1)n

(d− c)2m−j

n∑
p,q=0

(
n

p

)(
n

q

)[∫ β−c

α−c
u2n−p−q−j(c− a)p(c− b)qdu

+

∫ d−β

d−α
u2n−p−q−j(a− d)p(b− d)qdu

]
=

m∑
j=1

(
2m−j−1
m−j

)
(−1)n

(d− c)2m−j

n∑
p,q=0

(
n

p

)(
n

q

)[
(c− a)p(c− b)q

∫ β−c

α−c
u2n−p−q−jdu

+ (a− d)p(b− d)q
∫ d−β

d−α
u2n−p−q−jdu

]
.

Then, the result follows.
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les hautes fréquencies”, C.R. Acad. Sci. Paris , Vol. 318, p. 165–170, 2004.

3. Giladi, E. and J. Keller, “A hybrid numerical asymptotic method for scattering

problems”, Journal of Computational Physics , Vol. 174, pp. 226–247, 2001.

4. Giladi, E. and J. Keller, “An asymptotically derived boundary element method

for the Helmholtz equation”, Journal of Computational and Applied Mathematics ,

Vol. 198, pp. 52–74, 2007.

5. Bruno, O., C. Geuzaine, J. Monroe and F. Reitich, “Prescribed error toler-ances

within fixed computational times for scattering problems of arbitrarily high fre-

quency: the convex case”, Phil. Trans. Roy. Soc. London, Vol. 362, pp. 629–645,

2004.

6. Huybrechs, D. and S. Vandewalle, “A sparse discretization for integral equation for-

mulations of high frequency scattering problems”, SIAM J. Sci. Comput., Vol. 29,

p. 2305–2328, 2007.

7. Dominguez, V., I. G. Graham and V. P. Smyshlyaev, “A hybrid numerical-

asymptotic boundary integral method for high-frequency acoustic scattering”, Nu-

merische Mathematik , Vol. 106, pp. 471–510, 2004.

8. Stetter, H. J., “The defect correction principle and discretization methods”, Nu-

mer. Math., Vol. 29, pp. 425–443, 1978.

9. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory ,



86

Springer, New York, 1998.
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